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ABSTRACT OF THESIS 

LANDSLIDE SITE ASSESSMENT AND CHARACTERIZATION USING REMOTE 

SENSING TECHNIQUES 

Landslides are common and dangerous natural hazards that occur worldwide, often causing 

severe direct impacts on human lives, public and private properties. It is imperative to identify 

the landslide susceptible areas to avoid or mitigate the possible damage. Landslide prediction 

can be presented in a slope failure in spatial and/ or temporal terms. If it is presented in spatial 

term, it is considered a landslide susceptibility map (LSM) defined as the probability of 

spatial occurrence of slope failures. If it is presented in a combination of spatial and temporal 

distribution of the landslide susceptibility, it is commonly referred to as landslide hazard map 

(LHM). This document presents generation and comparison of LHM, and LSM using a 

remote sensing data. In addition, this paper shows the workflow of using multi-temporal UAV 

images to detect land movement and estimate soil moisture.   

 

KEYWORDS: Landslide hazard, landslide susceptibility, UAV, COSI-Corr, Logistic 

Regression model, Remote Sensing. 
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1 Introduction 

1.1 Problem Synopsis 

Landslides are common and dangerous natural hazards that occur worldwide, often causing 

severe direct impacts on human lives, public and private properties, and lifelines (Klose et 

al. 2014). It is imperative to identify the landslide susceptible areas to avoid or mitigate the 

possible damage. Landslides occur when the shear stress along a failure plane within the 

geologic materials of a slope exceeds the shear strength of the material. Landslide 

susceptibility can be defined as the probability of spatial occurrence of slope failures, given 

a set of geo-environmental conditions (Guzzetti et al. 2005). Common methods for 

landslide susceptibility modelling include logistic regression, neural network analysis, 

data-overlay, index-based and weight of evidence analyses, with an increasing preference 

towards machine learning methods in the recent years (Reichenbach et al. 2018). Landslide 

susceptibility map (LSM) created by aforementioned methods stays static across the area 

because these methods do not account for the variation of soil characteristics such as soil 

moisture. The antecedent soil moisture and evapotranspiration govern the actual soil 

moisture regime and thus govern the factor of safety of a slope. Landslide hazard map 

(LHM) presents when and where the landslide is likely to occur, combining spatial and 

temporal distribution of the landslide susceptibility (Guzzetti et al. 2005). The aim of this 

paper is to produce local–scale landslide hazard map (LHM) using a limit equilibr ium 

approach (Lu and Godt 2008) that utilized publicly available satellite and remote sensing 

data, and to compare it to LSM that is produced using a machine learning model. A LHM 

will provide insights into the temporal and spatial evolution of landslides compared to a 

static LSM, which only models the probability and location of the landslides. Additiona l ly, 

this paper presents the workflow of using a small unmanned aerial vehicle (UAV) with 

optical digital camera to detect a land movement, and to extract soil parameters. Land 

movement and soil moisture of a slope are good indicators of the slope stability, and used 

as a forecasting of the slope failures and landslides. 
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1.2 Research Objectives  

The following objectives were established for this study: 

• Extract geomorphic variables derived from an aerial LiDAR-based 1.5 m digita l 

elevation model (DEM), soil property variables from Web Soil Survey (WSS), and 

land cover data in the study area in northern Kentucky. 

• Use machine learning approach to model the landslide susceptibility using the 

variables extracted.  

• Create LSM using the trained model and validate the result using actual landslides 

in northern Kentucky area. 

• Estimate soil strength data (internal friction angle) using plasticity index from 

WSS. 

• Extract soil hydrologic parameters using sand, clay, and silt percentage. 

• Create LHM using a limit equilibrium factor of safety equation (Lu and Godt 2008), 

and validate the result at study sites. 

• Compare LSM to LHM. 

• Acquire multi-temporal images of a landslide area using UAV.  

• Detect a horizontal land movement using an image correlation technique (COSI-

Corr). 

• Detect a vertical land movement using Synthetic Aperture Radar (SAR) images.  

• Estimate soil parameters such as soil moisture using machine learning technique 

using the multi-temporal images. 

1.3 Relevance of Research 

Landslide susceptibility map is often created using logistic regression, neural network 

analysis, data-overlay, index-based and weight of evidence analyses, with an increasing 

preference towards machine learning methods in the recent years (Reichenbach, P et al., 

2018). However, landslide hazard map gives close-to-real time assessment of the slope 

stability because it takes account of the variation in soil moisture, which plays important 

roles in limit equilibrium factor of safety equation. With the advent of the remote sensing 

technologies, there is a lot of open source spatial and temporal data such as 1.5 m DEM, 

soil database from WSS, and land cover information. This document demonstrates the use 
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of remote sensing data to create LSM and LHM. The latter gives us evolution of the slope 

stability condition compared to the static LSM. The use of landslide hazard map helps 

identify the risk of landslide at any given time. In addition, this paper shows the use of 

UAV to detect land movement which is the most common indicator of a future landslide 

occurrence, and also it shows the extraction of soil moisture using the multi-tempora l 

images collected by the UAV. The soil moisture extracted from the UAV images can be 

utilized in limit equilibrium factor of safety equation to assess the slope stability.  

1.4 Contents of Thesis 

Chapter 2-3 consist of papers that are to be submitted for publication and the contests is 

verbatim. 

Chapter 2 presents landslide hazard and susceptibility maps derived from satellite and 

remote sensing data using limit equilibrium analysis and machine learning model. This 

paper shows that using publicly available data, we can create a multi-temporal landslide 

hazard map that can produce a close-to-real time landslide susceptibility map. The 

landslide hazard map derived from the limit equilibrium analysis tells us the evolution of 

the landslide development temporally and spatially, whereas the landslide susceptibility 

map derived statistically indicates the locations of possible landslides in the long term. 

Dashbold, B., Bryson, L.S., and Crawford, M.M. (2021). Landslide hazard and 

susceptibility maps derived from satellite and remote sensing data using limit equilibrium 

analysis and machine learning model. Landslide [to be submitted] 

Chapter 3 establishes a method to use a small unmanned aerial vehicle (UAV) to detect 

land movement utilizing photogrammetric techniques, and to estimate soil moisture data 

using machine learning model. The result of land movement detection analysis showed a 

mean movement of 9.23 cm, 3.03 cm, and 0.23 cm in the study area for three pairs of 

images that were taken one month apart, respectively. Using the UAV multi-tempora l 

images, linear regression model estimated the soil parameters including soil moisture at 

root zone (0-100 cm) (R2=0.823), soil moisture at 100-200 cm (R2=0.906) at 100-200 cm, 

and vegetation greenness fraction (R2=0.988). The land movement and soil moisture data 
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can be used to gain significant information about the active landslide, and the stability of a 

slope. 

Dashbold, B. and Bryson, L.S. (2021). Using multi-temporal UAV images to detect land 

movement and to estimate soil moisture data using machine learning model. Engineering 

Geology [to be submitted] 
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2 Landslide Hazard and Susceptibility Maps Derived from Satellite and Remote 
Sensing Data Using Limit Equilibrium Analysis and Machine Learning Model 

2.1 Introduction 

Landslides are common and dangerous natural hazards that occur worldwide, often causing 

severe direct impacts on human lives, public and private properties, and critical 

infrastructure (Klose et al. 2014). Direct costs of landslides in Kentucky are conservative ly 

estimated to be between $10-$20 million annually (Crawford 2014; Crawford and Bryson 

2017). Therefore, it is imperative to identify the landslide susceptible areas to avoid or 

mitigate the possible damage. Landslides occur when the shear stress along a failure plane 

within the geologic materials of a slope exceeds the shear strength of the material. 

Landslides is commonly triggered by intense short period rainfall or prolonged rainfa ll, 

earthquakes, or human activities. Landslide susceptibility mapping (LSM), which 

describes the spatial distribution for the probability of landslide occurrence in each area 

according to the geographical environment, is considered a common countermeasure for 

mitigating the effects of landslides (Huang and Zhao 2018; Merghadi et al. 2020). More 

simply put, susceptibility can be defined as the probability of spatial occurrence of slope 

failures, given a set of geologic and climatological conditions (Guzzetti et al. 2005). 

Several researchers (e.g., Guzzetti et al. 2005; Alvioli et al. 2016; Reinchenbach 2018) 

have suggested a variety of approaches and methods for landslide susceptibility in different 

geological and climatic settings. With an increasing preference towards machine learning 

methods in the recent years, the more common methods for landslide susceptibility 

modelling include logistic regression, neural network analysis, data-overlay, index-based 

and weight of evidence analyses (Reichenbach et al. 2018). While LSM provides the spatial 

distribution of landslide probability, landslide hazard map (LHM) gives the probability that 

a landslide of a given magnitude will occur in each period and in a given area (Segoni et 

al. 2018). LHM presents when and where the landslide is likely to occur, combining spatial 

and temporal distribution of the landslide susceptibility (Guzzetti et al. 2005). 

Rainfall thresholds are the most widely used triggering factor in landslide hazard 

assessment and early warning tools (Crozier 1997; Segoni et al. 2018). However, in many 

cases, early warnings based solely on rainfall is not adequate because antecedent soil 
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moisture conditions play a crucial role in the initiation of landslides (Zhuo et al. 2019). 

Some researchers (Zhuo et al. 2019; Wicki et al. 2020; Guzzetti et al. 2020) have 

investigated the soil moisture threshold for triggering landslides directly, accounting for 

the temporal evolution of soil moisture before and after slope movement. These studies 

mainly used machine learning models to investigate the correlation between the soil 

moisture threshold and the onset of landslides. However, these types of approaches do not 

consider the statics and fundamental mechanics associated with landslides. Approaches 

that utilize fundamental mechanics, such as limit equilibrium, are required to better 

understand landslide occurrences. However, the use of a limit equilibrium equation to 

create and verify a LHM at known locations and known dates is very minimal. 

The aim of this paper is to produce local–scale landslide hazard map (LHM) using a limit 

equilibrium approach (Lu and Godt 2008) that utilized publicly available satellite and 

remote sensing data, and to compare it to LSM that is produced using a machine learning 

model. A LHM will provide insights into the temporal and spatial evolution of landslides 

compared to a static LSM, which only models the probability and location of the landslides. 

This paper presents a two-part approach, where satellite and local site geologic data were 

combined to create a LHM and an LSM. A machine learning model was used to create the 

LSM using geomorphic variables derived from an aerial LiDAR-based 1.5 m digita l 

elevation model (DEM), soil property data from Natural Resources Conservation Service 

(NRCS) Web Soil Survey (WSS), and land cover data in northern Kentucky area where 

the Kentucky Geology Survey (KGS) has an extensive landslide inventory. The produced 

LSM was verified against the known landslide occurrences yielding an accuracy rate of 

84.1 percent. The LSM is based on relatively static parameters at failure conditions (i.e., 

the onset of a landslide). Therefore, the LSM represents the probability of the failure at the 

worst case of scenario. 

A limit equilibrium factor of safety equation for a hillslope with transient infiltra t io n 

conditions (Lu and Godt 2008) was used to produce the LHM with 15.2 m spatial resolution 

using soil moisture data from the National Aeronautics and Space Administration (NASA) 

Soil Moisture Active Passive (SMAP) mission, slope angles derived from 1.5 m LiDAR 

DEM, and soil physical properties from WSS. The LHM was verified temporally and 
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spatially against the landslides. The LHM on the date with the lowest factor of safety values 

was compared to the LSM produced by a machine learning approach to assess how the 

factor of safety values compared to the probability of the landslide susceptibility map, 

which does not change temporally. 

2.2 Study area 

2.2.1 Area Geology 

Several landslide sites in northern Kentucky were used to comprise the study area for this 

study. The north-central area of Kentucky is characterized by weathered limestone bedrock 

of the Ordovician strata that has been pushed toward the crest of the Cincinnati Arch and 

is often exposed at the ground surface (McGrain 1983). This area is defined as Outer 

Bluegrass physiographic region of Kentucky. The defining geologic elements of the Outer 

Bluegrass region consist of late Ordovician and Silurian-age limestones, dolomites, and 

shales (McDowell 1986), deep valleys formed by erodible shale that exists above non-

erodible rock types, rich soils for agricultural uses, and gentle rolling hills formed by slopes 

ranging from 20 percent to 30 percent. Topographic relief averages approximately 150 m, 

ranging from steep slopes (i.e., slope angles between 20 to 35 degrees) along the Ohio 

River, gently sloping uplands (i.e., slope angles < 6 degrees) and broad dissected valleys. 

Shaly bedrock in the region weathers easily and produces thin to thick, clayey colluvia l 

soils. Landslides typically occur within the colluvium or along the colluvial-bedrock 

contact (Crawford and Andrews 2012). Geotechnical reports in northern Kentucky show 

that the average depth to the bedrock in the hillslope soil is about 4.6 m. Therefore, it is 

used in the slip surface depth in the factor of safety equation. 

2.2.2 Site Locations 

Landslide data used for this study were obtained from the Kentucky Geological Survey 

(KGS) Landslide Inventory (Kentucky Geological Survey, 2019). Landslide sites in 

Campbell County and Kenton County, northern Kentucky were used as training points for 

the machine learning model to create the LSM. Other sites in Campbell County not used 

as training points were as validation sites. Two sites in northern Kentucky (identified in 



8 
 

the KGS Landslide Inventory as Site 6501 and Site 6294) and two sites in eastern Kentucky 

(identified in the KGS Landslide Inventory as Site 6396 and Site 6458) were used to 

validate the results of LHM, which was created using the limit equilibrium analysis. 

 

 

Figure 2-1. Location of the study sites: (a) landslide sites in northern Kentucky used for training the machine 
learning model for the LSM creation, (b) two sites in northern Kentucky (Site 6294 and Site 6501) used in 
validation of LHM, (c) validation site in Johnson County used in creating the LHM (Site 6396), (d) validation 
site in Pike County in eastern Kentucky (Site 6458) for creation of the LHM. Images were taken from DEM 
and Google Earth imagery using ArcGIS scene. 

Figure 2-1 presents the locations of the study sites used in this study, relative to the State. 

Terrain information was obtained from the 1.5 m LiDAR DEM in the study area that was 

a)

c) d)

b)
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flown in 2011 and 2012. Sites 6501 and 6294 [Figure 2-1(b)] are in Campbell County and 

are about 180 m apart. The landslides occurred on 3/30/2018 and 2/04/2016, respectively. 

The slope angles in the vicinity of the landslide points range between 5 degrees to 38 

degrees, with the slope surface partially covered with trees. The landslide runouts at these 

sites resulted in debris that blocked the road downslope of the sites. Site 6396 [Figure 2-

1(c)] is in Johnson County, eastern Kentucky and was reported on 1/24/2017. The slope 

angles in the area ranged from 38 degrees to 58-degree along the roadway downslope of 

the site. Site 6458 [Figure 2-1(d)] is in Pike County, eastern Kentucky. The landslide was 

reported on 2/10/2018. The slope angle was approximately 63 degrees with sporadic rock 

outcropping with little to no overburden in some areas. 

2.3 Landslide susceptibility map – machine learning analysis 

The general landslide susceptibility map (LSM) was created using machine learning 

technique for Campbell County in northern Kentucky. A Geographic Information System 

(GIS) model was to prepare and extract features for the machine learning analysis such as 

geomorphic variables, soil physical variables, and land cover variables. These features are 

independent variables and are used to predict target variables, known as Landslide 

Conditioning Factors (LCFs). The LCFs in this study were extracted using GIS and 

compiled into database as training points for the machine learning analysis to predict 

landslide susceptibility. The logistic regression machine learning model was selected for 

this study based on the performance with a high prediction accuracy in the previous studies 

(Du et al. 2017; Kalantar et al. 2018; Kadavi et al. 2019; Nhu et al. 2020; Crawford et al. 

2021). 

The KGS Landslide Inventory listed 234 known landslide occurrences in Campbell and 

Kenton counties in northern Kentucky region, some of data entries include the reported 

failure dates. All 234 landslide sites were used to extract LCF features for the machine 

learning analysis. In training the model, 75 percent of the sites was used in training the 

model (176 points for each class; landslide and non-landslide) and 25 percent was used in 

testing the data for validation. 
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2.3.1 Variables and Statistics Compilation used in the Machine Learning Analysis 

Landslide occurrence is influenced by bedrock geology, geological structure, hills lope 

morphology, soil type and thickness, and hydrogeological conditions (Xu et al. 2018). We 

used 15 variables in the machine learning analysis from three distinct fields including soil 

property features, geomorphic features, and land cover information. Table 2-1 shows all 

used features with their definitions. The soil property features play important roles in 

determining soil strength and its behavior. Figure 2-2 shows the soil property features and 

their range of values extracted from the NRCS WSS that include percent sand, percent silt, 

percent clay, saturated hydraulic conductivity, available water capacity, one third bar water 

content, plasticity index, and liquid limit, all of which were used as features in the logist ic 

regression analysis. Geomorphic features were used as LCF features in landslide 

susceptibility modelling in several studies (e.g., Reichenbach et al. 2018; Crawford et al. 

2021). The geomorphic features used in this analysis were slope, aspect, curvature, 

elevation, roughness, and plan curvature, all derived from 1.5 m LiDAR DEM in ArcGIS 

and shown in Figure 2- 3. The 1.5 m LiDAR DEM was taken from the Kentucky Elevation 

Data and Aerial Photography Program (KyFromAbove, 2021), and it is publicly accessible 

and open-source portal. In addition, land cover data from of 2016 National Land Cover 

Database (NLCD) product suite (Multi-Resolution, 2021) [Figure 2-2(i)] were used in the 

analysis. 
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Table 2-1. Features used in the logistic regression model. 

Geomorphic features  Definition  

Elevation  
Vertical distance of a point above or below a reference surface, 
derived as a representation of the Earth’s surface, derived as a 
representation of the Earth’s surface (meters) 

Slope  Gradient or steepness from each cell of an elevation raster (degrees) 

Terrain roughness 
Degree of terrain irregularity calculated as surface deviation from a 
smoothing window; scale of landscape features is important in 
choosing a smoothing-window size 

Curvature  Second derivative value from each cell from an elevation raster 
(1/100 of a z-unit) 

Plan curvature  Curvature of the surface perpendicular to the direction of maximum 
slope (1/100 of a z-unit) 

Aspect  Compass direction of a downhill-facing slope, derived for each cell 
of an elevation raster. 

Soil Property Features Definition  

Percent sand Sand percentage in the soil layer.  
Percent silt Silt percentage in the soil layer. 

Percent clay Clay percentage in the soil layer. 

Saturated hydraulic 
conductivity 

The ease with which pores in a saturated soil transmit water 
(micrometers per second). 

Available water capacity Quantity of water that the soil can store for use by plants (centimeters 
of water per centimeter of soil layer) 

One third bar water 
content 

Amount of soil water retained at a tension of 1/3 bar (volumetric 
percentage of the whole soil) 

Plasticity index 
Numerical difference between the liquid limit and plastic limit of the 
soil. It is the range of water content in which a soil exhibits the 
characteristics of a plastic solid (percent). 

Liquid limit 
Water content, on a percent by weight basis, of the soil (passing #40 
sieve) at which the soil changes from a plastic to a liquid state 
(percent) 

Land cover 
information Definition  

Land cover data Land cover characteristic (eg., grassland, shrub, deciduous forest) 
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Figure 2-2. Soil property features from NRCS WSS: (a) one third bar water content, (b) available water 
capacity, (c) clay percentage, (d) saturated hydraulic conductivity, (e) liquid limit, (f) plasticity index, (g) 
sand percentage, (h) silt percentage, and (i) land. 

(f)(d)

(a) (b) (c)

(e)

(g) (h) (i)
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Figure 2-3. Geomorphic features derived from 1.5 m LiDAR DEM: (a) aspect, (b) curvature, (c) plan 
curvature, (d) elevation, (e) roughness, and (f) slope. All features were used in Logistic Regression model to 
create LSM in northern Kentucky. 

The statistics used in the analysis were the mean, standard deviation, variance, skewness, 

and coefficient of variance as these statistics capture the variation of the distribution of the 

data in each buffer area for each LCF features. Descriptive statistics (e.g., mean, range, 

standard deviation) of elevation and slope are better predictors of the presence (or absence) 

of landslides than the same indices computed for the single DEM cells (Carrara et al. 1991, 

Alvioli et al. 2016, Reichenbach et al. 2018). The statistics used for each feature in the 

(a) (b)

(f)

(d)

(e)

(c)
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buffered areas for the landslide and non-landslide were calculated in ArcGIS and shown in 

Table 2-2. 

Table 2-2. Statistics for each of the features in a buffer area for logistic regression model. 

Statistics  Formula  

Mean 

1

N
Mean x Nii

= ∑
=

 

Standard Deviation  
2

1

1 ( )
N

i
i

x Mean
N

σ
=

= −∑  

Variance 2σ  

Coefficient of Variance  CV Meanσ=  

Skewness  (3 )Sk Mean Md σ= −  

ix = grid cell value; Md  = median value; N = the total number of samples in the training 

or testing dataset in each feature for the buffer area. 

There were 15 independent variables with five statistics for each variable except for NLCD, 

which used only median value since the spatial resolution was 30 m. Therefore, a total of 

71 features were used in the machine learning model as training points. There were some 

dependencies between the features such as elevation variance feature and elevation 

standard deviation feature. However, the model tended to start with more features that 

narrowed down to the optimal number of features to get the higher accuracy of the result 

as determined by statistical skill assessment method. 

A circular buffer area of 45.7 m radius from the centroid point of the landslide extent was 

used as a mask layer to extract feature statistics. Therefore, it dictated the spatial resolution 

of the LSM (91 m). Figure 2-4 shows how the mask buffer areas used to extract each feature 

were aligned with the landslide extent in a close view. Most of the buffer masks fell within 

the extent of the landslide boundary (Figure 2-4). Timilsina et al. (2014) observed that a 

buffer polygon that represents most of the landslide extent is superior to a single point in 

accounting for variability in landslide characteristics. Crawford et al. (2021) evaluated the 
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performance of several buffer sizes for predicting landslides in eastern Kentucky using the 

MATLAB Classification Learner application (Mathworks Inc., 2021). These researchers 

found a buffer size of 45.7 m performed best in predicting landside. This buffer size was 

used in this study to extract the features because the landslides in this study were in the 

same region as those investigated in Crawford et al. (2021). 

 

Figure 2-4. Landslide buffers (44.7m radius) around centroids of mapped landslides and a non-landslide, 
Campbell County, Kentucky. 

For the data preparation, all 234 landslide occurrences in northern Kentucky were assigned 

the class value of 1 for landslide, and all 71 features for each landslide were extracted using 

the buffer mask area. An equal number of points that represented non-landslide areas were 

randomly selected and assigned the class of 0 for non-landslide. All 71 features for all 234 

non-landslide areas were extracted the same way, using the same size buffer mask area as 

the landslide areas. Thus, the two classes; landslide=1 and non-landslide=0, had the same 

size and features and were extracted the same way. The non-landslide areas were manually 

inspected to confirm that there were no landslide in the non-landslide buffer area. An equal 

number of landslides (1) and non-landslides (0) was required for an equal class-distribut ion 

ratio, which helps to eliminate class bias (Gupta et al. 2019). 

2.3.2 Logistic Regression Model for the Creation of the LSM 

Logistic regression is a statistics-based linear model used to model the probability of the 

existence of a certain class. Logistic regression is also known in the literature as logit 

regression, maximum-entropy classification (MaxEnt) or the log-linear classifier. In this 
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model, the probabilities describing the possible outcomes of a single trial are modeled 

using a logistic function. The dependent variables or indicator variables, which were 

predicted using the logistic regression model, were value of 1 (landslide) or value of 0 

(non-landslide). The probability of absence of landslide (0) or presence of landslide (1) 

was expressed as Eq. 1: 

1
1 zP

e−
=

+
       (1) 

where P is the cumulative estimated output probability of a landslide occurrence (confined 

between 0 and 1), z  was the weighed linear combination of independent variables (ranging 

from − ∞ to + ∞) that could be expressed as a Eq. 2 sum of constants (Kadavi et al. 2019): 

0 1 1 2 2ln
1 n n

pz V V V
p

β β β β
 

= = + + + + − 
     (2) 

where ( )1p p− is the corresponding odds or the likelihood ratio, 0β  is the constant 

intercept; iV  ( 1, 2,3,....,i n= ) are the independent variables (e.g., Curvature Std, Slope 

Variance) and iβ  ( 1, 2,3,....,i n= ) are the coefficient estimates of the model. 

The coefficients in Eq. 2 express the effects of the predictor independent variables on the 

relative risk of being a landslide or not a landslide (0 or 1). The relative risk increases or 

decreases with each value of the independent variable iV  (i.e., the rate of change) in log-

odds as V changes (Crawford et al. 2021). Consequently, higher z-values suggest a P-value 

closer to 1, which indicates the presence of a landslide. Conversely, lower z-values suggest 

a P-value closer to 0, which indicates the absence of a landslide. The iβ  coefficients of the 

model were estimated using a cost function as shown in the works of Lee and Liu (2003). 

The threshold value of 0.5P =  in Eq.1 was used as a decision boundary such that a P value 

0.5 or greater was classified as Class 1 (landslide), and a P value less than 0.5 was classified 

as Class 0 (non-landslide). We assumed that the variables were not normally distributed or 

did not have linear relationships (Nandi et al. 2016). The advantage of logistic regression 

is that the variables may be either continuous or discrete, and it is not necessary for these 

variables to have normal distributions (Du et al. 2017). Therefore, the logistic-regress ion 
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analysis was well suited for this study because the primary unknowns are the relationships 

among the variables (Crawford et al. 2021). 

The initial result including all 71 features (independent variables) was developed in the 

logistic regression model. The optimal number of features were searched to produce the 

highest model accuracy using a univariate feature selection method, using all features in 

the logistic regression model. The univariate feature selection method works by selecting 

the features that produced the most accuracy of the model based on univariate statistica l 

tests. The feature selection process is a preprocessing step to optimize the number of 

features to yield the best accuracy of the model. In this selection process, each feature to 

the indicator variable (1, 0) was compared to determine if there is any statistica l ly 

significant relationship between them. This method is also known as analysis of variance 

(ANOVA), which analyzes the relationship between one feature and the indicator at a time 

without the consideration of the other features. The univariate selection method uses 

statistical tests to select those features that have the strongest relationship with the indicator 

variable (0 or 1) and yields test scores for each feature. All the test scores were compared, 

and the features with top scores were selected. Based on the univariate statistical test on all 

the training data, 18 features produced the highest accuracy and were subsequently used in 

the logistic regression model. Figure 2-5 shows the optimal number of features with their 

corresponding accuracy percentage (given as cross validation scores in the figure) using 

the univariate feature selection method. The accuracy for the model increased to optimal 

77 percent at 18 features, and it dropped to an approximate accuracy value of 73% after 30 

features (Figure 2-5). Table 2-3 shows the 18 features that produced the highest model 

accuracy using univariate selection method in the logistic regression model with their 

corresponding ranking scores. 
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Figure 2-5. Optimum number of features using univariate feature selection method in logistic regression 
model. 

Table 2-3. Features that yielded highest score of accuracy after univariate selection method in the logistic 
regression model. 

Feature Selection 
Scores Feature Selection 

Scores Feature Selection 
Scores 

Elevation CV 14.50 Aspect Std 3.78 Aspect Variance 2.25 

Elevation 
Variance 12.72 Slope CV 3.58 Sand Mean 2.18 

Elevation Std 10.60 Curvature Std 3.40 
Available Water  

 - Content Mean 
2.05 

Slope Mean 7.76 Slope Variance 3.26 NLCD Median 1.85 

Plan Curvature 
Std 4.05 Curvature 

Variance 2.88 Clay Std 1.28 

Plan Curvature 
Variance 3.89 Slope Std 2.39 

One Third Bar 
Water - Content 
Mean 

1.25 

2.3.3 LSM Model Performance and Validation 

The logistic regression model for the LSM was validated using the Receiver Operating 

Characteristic (ROC) metric to evaluate the classifier output quality (Landslide = 1, Non-

Landslide = 0). The ROC is a practical method to visualize the performance of the model. 

In the validation process, we used 25 percent of the landslide inventory points (59 landslide 

points and 59 non-landslide points) as test data. The area under the curve (AUC) of the 
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ROC provided the accuracy of the classifier on the test points. The ROC was created 

plotting specificity (false positive rate) on x-axis versus sensitivity on y-axis. Specific ity 

and Sensitivity ware defined as, 

( )
TNSpecificity

TN FP
=

+
     (3) 

( )
TPSensitivity

TP FN
=

+
     (4) 

where TP is true positive i.e., the number of landslides (Class 1) predicted accurately; TN 

is true negative i.e., the number of non-landslides (Class 0) predicted correctly; FP is false 

positive - the number of non-landslides predicted as landslides whereas FN is false negative 

- the number of landslides predicted as non-landslides. The specificity indicates the 

proportion of the negative class that was correctly classified, and the sensitivity indicates 

the proportion of the positive class that was correctly classified. Figure 2-6 shows the AUC 

for the model, which was calculated in the test dataset as 0.841. 

 

Figure 2-6. Results of Logistic Regression function. Model performance is indicated by the receiver operating 
characteristic curve, the area under the curve (ROC AUC) for the test data. 

This machine learning model was used to map a landslide susceptibility on a large-scale 

area such as Campbell County. ArcGIS was used to extract the selected 18 features (Table 

2-3) from the spatial data, and to enumerate them in the tables that needed to be processed 
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in machine learning model. The landslide susceptibility result from the machine learning 

model was inserted back into ArcGIS to produce the LSM. Figure 2-7 shows countywide 

LSM for Campbell County using the result of the machine learning model. 

 

Figure 2-7. LSM for Campbell County, Kentucky using logistic regression model. 

Crawford et al. (2021) developed a landslide susceptibility classification system based on 

standard deviation from the mean of landslide occurrence probability. We used a similar 

approach for this current study. The mean probability value of landslide occurrences for 

our study was 0.634 with a standard deviation of 0.186. One standard deviation from the 

mean was 0.448 and two standard deviations from the mean was 0.262. We assumed 

rounded values for break points. High susceptibility was values greater than mean 

(approximately 0.6), High to Moderate susceptibility was within one standard deviation 

from the mean (0.41 to 0.6), Moderate was within two standard deviations from the mean 

(0.31-0.4), and Low was values below two standard deviations from the mean (< 0.3). 

Table 2-4 shows the susceptibility classes for landslide occurrences, indicating 87 percent 

of the landslide extents in Campbell County were classified as high Moderate to High 

(Figure 2-7). 
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Table 2-4. Landslide occurrences modeled in LSM in Campbell County. 

Total of Landslide occurrences 131   

Susceptibility level Number of 
Landslides  

Percent of all 
landslides  

Low (< 0.3) 6 4.6% 
Moderate (0.31 and 0.4) 11 8.4% 

High to Moderate (0.41 and 0.6) 36 27.5% 
High (> 0.6) 78 59.5% 

 

Campbell County has a total area of 413 sq.km of which 53.6 percent was classified as 

Low probability, 20.1 percent as Moderate probability, 19.9 percent as high to moderate 

probability, and 6.3 percent as high probability (Figure 2-7). Figure 2-8 shows the 

validation of the LSM using the actual landslide areal extents in a close view in which the 

extent of seven landslide occurrences in the area 3.5 km by 2 km are all within or crossing 

areas classified as high Moderate to High.  

Because the statistical based LSM are created by prior landslide events, the LSM provides 

estimate probabilities of future landslide susceptibility in a spatial term. LSM describes the 

relative likelihood of future landslides occurrences based solely on statistical methods 

using slope variables such as the ones used in this study (Table 2-1) from the past landslide 

events. This implies that future landslide events will be more probable to occur under the 

conditions in which the past landslide events occurred. The mapped landslide susceptibility 

provides useful tools for avoiding or reducing potential damages from the landslides. In 

contrast, LHM predicts not only spatial component of the landslide susceptibility, but also 

temporal aspect of the landslide events, rendering the LHM time-aware dynamic map. 
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Figure 2-8. Zoomed view of LSM for Campbell County with landslide extents. Note, the cell size of the 
figure is 91 m. 

2.4 Landslide Hazard Map – Factor of Safety Equation 

Whereas the LSM provides an estimate of “where” a landslide is most likely to occur, the 

landslide hazard map (LHM) provides an estimate “when” a landslide is most likely within 

a region susceptible to landslides. We estimated the “when” landslides occurred using the 

limit equilibrium factor of safety equation presented by Lu and Godt (2008). Zhuo et al. 

(2019) found a correlation between seasonal variations in soil moisture and the occurrence 

of landslides. Traditional limit equilibrium factor of safety equations are based on static 

equilibrium involving resistance forces in equilibrium with the driving forces on a slope 

and do not count for the unsaturated soil conditions. Therefore, these equations produce 

factor of safety values that are constant regardless of the changing hydrologic conditions 

(i.e., volumetric water content and matric suction) of the soil. Lu and Godt (2008) 

suggested that the resisting forces in a hillslope system were functions of the hydrologic 

conditions in the slope and those conditions varied dynamically and with depth in the 

vadose zone. The implication of the Lu and Godt (2008) suggestion is the factor of safety 

of a hillslope will vary with dynamic variations and with depth of the hydrologic 

conditions. For this study, we evaluated the LHM produced by the factor of safety equation 

using four study sites described previously in this paper. 

2.4.1 Factor Of Safety Equation – Creation Of Dynamic Landslide Hazard Map 

The Lu and Godt (2008) equation presents the fact of safety for subaerial infinite slopes in 

the unsaturated saturated soil conditions. The Lu and Godt (2008) equation is given as the 
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sum of three distinct contributions to slope strength; the frictional strength component, the 

cohesion strength component, and the strength component derived from matric suction. 

The general form of the equation is given as: 

( )
( ) ( ) ( ) ( ) ( )tan 2 tan cot tan

tan sin 2

s

ss ss

cFS
H H

φ σ β β φ
β γ β γ
′ ′

′= + + +    (5) 

where FS is the factor of safety; φ′ is the soil friction angle; c′ is the effective soil 

cohesion; β is the slope angle; γ  is the soil unit weight; ssH  is the depth to bedrock; sσ

is the suction stress. a characteristic function of the soil that describes the inter-partic le 

stresses resulting from the wetting and drying of the soil. The suction stress is given as, 

s
eS sσ =      (6)  

where eS is the effective degree of saturation = ( ) ( )r s rθ θ θ θ− − ; θ  is the volumetric water 

content; rθ  is the residual volumetric water content; sθ  is the saturated volumetric water 

content; s is the soil matric suction, which is defined in this study using the van Genuchten 

(1980) soil water characteristic curve (SWCC) model given as, 

( )

1
1

1 1
n

m
r

a w
s r

s u u θ θ
α θ θ

− 
 − = − = −  −   

    (7) 

where au  is the pore air pressure; wu  is the pore water pressure;α is a fitting parameter 

reflecting the air entry value; n  is a fitting parameter related to the inflection point of the 

SWCC; m  is fitting parameter related to the curvature of the SWCC near the residual point, 

( )1m n n= − . 

The shear strength parameters (i.e., c′  and φ′ ) for the sites used in the LHM model were 

acquired from various geotechnical reports obtain near the site locations from the Kentucky 

Transportation Cabinet Geotechnical Project Report Database (Kentucky Geologica l 

Survey, 2021) and from estimates made using data from the NRCS WSS database. The 

geotechnical reports indicated that the soils in the northern Kentucky area consisted 

predominantly of colluvium (i.e., silty clay). When not directly given, the soil friction 
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angles were estimated using the Wood (1990) equation and the plasticity index extracted 

from the WSS database given as, 

1' sin 0.35 0.1ln
100
PIφ −   = −     

    (8) 

where PI  is the plasticity index. The effective soil cohesion, c′  for the colluvium was 

found to be negligible. Therefore, the second term in the Eq. 5 dropped out. Figure 2-9 

shows the estimated map of the soil friction angles, φ′ derived from Eq. 8 and the plasticity 

index data in the vicinity of study sites 6294 and 6501. The soil friction angle, φ′ ranges 

between 27.6 degrees and 33.6 degrees with the lower end of this range dominating the 

study area in northern Kentucky (Figure 2-9). 

 

Figure 2-9. Soils data in northern Kentucky used for the creation of the LHM: (a) soil friction angles estimated 
for the study area in vicinity of Site 6294 and 6501 using the Wood (1990) equation; (b) plasticity index data 
taken from NRCS WSS. 

The spatial resolution of the LHM was arbitrarily set as 15.2 m. This spatial resolution was 

chosen to detect landslide occurrences that fall between local-scale (grid size of 5 m or 

less) landslide occurrences and regional scale (grid size of 20 m -30 m) landslide events 

(Kakavas and Nikolakopoulos 2021). The slope angle map was created using the 1.5 m 

LiDAR DEM in ArcGIS. Therefore, the resolution of the slope map was 1.5 m. 

Consequently, the slope map was resampled to a 15.2 m cell grid using a bilinear 

resampling technique. The bilinear resampling technique performs a bilinear interpola t ion 

and determines the new value of a cell based on a weighted distance average of the four 

nearest input cell centers. The bilinear resampling technique is useful for continuous data 

a) b)

Plasticity index

SITE 6294

SITE 6501

SITE 6294

SITE 6501



25 
 

and will cause some smoothing of the data (ArcGIS, 2021). Figure 2-10 shows the 

resampled slope angles used in the Eq. 5, which ranges from 0 degree angle to 57 degree 

angle in the study site. 

 

Figure 2-10. Resampled slope angle from 1.5 m to 15.2 m grid cells (taken from 1.5 m LiDAR DEM) for the 
study area in vicinity of Site 6294 and 6501 in northern Kentucky. 

Depth to bedrock, ssH , was assumed to be 4.5 m in the study region as a typical depth to 

the bedrock value taken from the geotechnical reports in the study area and used as the slip 

surface depth in Eq. 5. Bittelli et al. (2012) pointed out that the infinite slope model often 

assumes that the failure plane is coincident with the soil–bedrock interface. The unit weight 

of the soil, γ  was assumed to be 18.8 kN/m3. A summary of the soil shear strength and 

slope parameters used for the study sites is given in Table 2-5. 
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Table 2-5. Soil properties used in the general factor of safety equation as presented in Eq. 5 at the study sites. 

SITE ID County  β  (deg) ssH  (m) φ′ (deg) Failure Date 

6294 Campbell  42.03 4.5 28.17 2/4/2016 

6501 Campbell  23.1 4.5 28.17 3/30/2018 

6396 Johnson  34.39 4.5 27.26 1/24/2017 

6458 Pike  42.19 4.5 22.87 2/10/2018 

All the parameters in Eq. 5 are constant except for sσ = suction stress, which is a function 

of hydrologic parameters such as volumetric water content and matric suction. These 

parameters enable the LHM to be dynamic. 

2.4.2 Estimation of Matric Suction 

As was previously discussed, soil matric suction was defined using the van Genuchten 

(1980) soil water characteristic curve (SWCC) model. The van Genuchten (1980) model 

parameters ,  , , ns rθ θ α  for the study area were estimated using the Rosetta online tool 

(Rosetta, 2021). These parameters were estimated according to Schaap et al. (2001) 

pedotransfer function, which utilizes the percentages of sand, silt, clay and bulk density, 

all of which was extracted in ArcGIS from the NRCS WSS soil database. These data are 

shown in Table 2-6. Figure 2-11 represents the sand, silt, clay percentage used in estimating 

the hydrologic parameters for the Eq. 5. However, if the estimated sθ  from the Rosetta tool 

was less than the highest value of θ  obtained from the satellite volumetric water content, 

then sθ  was replaced by the highest value ofθ . It is observed from Figure 2-11 that the 

study area mostly consists of silt and clayey silt soil. 
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Table 2-6. Extraction of hydrologic parameter using the Rosettta online tool. 

Input to Rosetta Online Tool Output from Rosetta Online Tool 

Sand% Silt% Clay% 
Bulk 

density 

(g/cm3) 
rθ  sθ   α

(1/cm) n m 

26.8 48.7 24.5 1.67 0.09133 0.35042 0.00655 1.33572 0.25134 

13.2 47.5 39.3 1.43 0.11740 0.43786 0.00575 1.34640 0.25728 
12.1 44.2 43.6 1.55 0.12251 0.41273 0.00645 1.29802 0.22960 
12.9 48.9 38.2 1.44 0.11608 0.43342 0.00557 1.35167 0.26017 

13 44.2 42.7 1.55 0.12128 0.41092 0.00642 1.30076 0.23122 
9.4 64.2 26.4 1.48 0.09860 0.40979 0.00420 1.42828 0.29986 

 

 

Figure 2-11. Soil data obtained from the NRCS WSS for the study area in vicinity of Site 6294 and Site 6501 
in northern Kentucky: (a) sand percentage (b) silt percentage (c) clay percentage. The data were consequently 
used to estimate van Genuchten (1980) model parameters in Rosetta online tool.  

2.4.2.1 Volumetric Water Content Satellite Data Acquisition 

Volumetric water content data from the National Aeronautics and Space Administra t ion 

(NASA) Earth and Precipitation Satellite Missions were used for a time span of six weeks; 

three weeks prior to the reported landslide failure dates and three weeks post the landslide 

failure dates for each study area. Time-series data for satellite measured soil moisture were 

acquired from the NASA Soil Moisture Active Passive (SMAP) Earth satellite mission. 

The SMAP data were accessed and acquired using the Application for Extracting and 

Exploring Analysis Ready Samples (AppEEARS) tool. SMAP provides four data products 

one of which is the Level 4 (SMAP L4_SM) product. This product is a model-derived 

value-added product obtained by merging SMAP observations with estimates from a land 

surface model in a data assimilation system. The land surface model component of the 

assimilation system is driven with observations-based meteorological forcing data, 

a) b)

(a) (c)(b)

SITE 6294

SITE 6501

SITE 6294

SITE 6501

SITE 6294

SITE 6501
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including precipitation, which is the most important driver for soil moisture (Reichle et al. 

2011). The model-derived product produces three-hourly estimates of surface and root 

zone soil moistures (to a depth of 100 cm) at a 9 km gridded spatial resolution with a data 

availability latency of 7 to 14 days (Chan et al. 2016). The SMAP L4_SM product was 

used for this study. The multiple three-hourly soil moistures reported over a 24-hour period 

were averaged to provide a daily value of soil moisture. Figure 2-12 shows the SMAP data 

in the northern Kentucky area temporally and spatially. Figure 2-12(a) shows 9 km spatial 

resolution grids in Campbell County, over which the soil moisture data is uniform. The 

volumetric water content ranges from 0.42 to 0.51 in Campbell County [Figure 2-12(a)] 

from January 14, 2016 to February 25, 2016 during which the failure occurred. Figure 2-

12(b) shows the variation of soil moisture change with time at Site 6294. The data were 

reported three weeks before and three weeks after the failure date. 

 

Figure 2-12. Temporal and Spatial SMAP data for the northern Kentucky area: (a) Spatial grid of volumetric 
water content from SMAP in Campbell County, Kentucky (b) volumetric water content at Site 6294 over six-
week period during which the failure occurred. 

2.4.3 Performance and Validation of Landslide Hazard Map 

The soil and hydrologic parameters that remain constant ( β , φ′ , sθ , rθ , α , n , m , ssH ) 

and the temporally varying daily volumetric water content at each study site were used in 

the Eq. 5 to generate the daily factor of safety values for the given investigative period (i.e., 
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three weeks prior to the landslide, and three weeks post the landslide). The factor of safety 

values were validated using the four study sites to assess whether the LHM correctly 

mapped the landslides spatially and temporally. 

The LHM covered 300 m by 300 m area with a spatial resolution of 15.2 m at each study 

site. The validation was made by overlaying the known failure area with the created LHM 

temporally and spatially at each site. Table 2-7 shows the factor of safety values a week 

before the failure date, failure date, and a week after the failure date at each study site. 

Overall, the landslide hazard map indicated the areas where landslide occurred as having 

factor of safety values ranging from 1.15 -1.73. We observed that these factor of safety 

values exceed a value of 1.0 (i.e., the value at incipient failure). This exceedance is most 

likely due to geomorphic and geotechnical behavior that is too complicated to be captured 

by a simple subaerial infinite slope model. However, the general trend shows that the 

failures occurred as the factor of safety values reached their lowest levels. 

Table 2-7. Factor of safety at the study sites at different times. 

Site ID  
Factor of Safety  

7 days before  Failure Day  7 days after  

6396 1.41 1.15 1.33 

6458 3.13 1.27 1.02 
6294 1.71 1.29 1.5 
6501 2.17 1.73 1.58 

2.4.3.1 Validation of Model Performance at Sites in which the LHM Model 
Performed Optimally 

Site 6396 in eastern Kentucky and Site 6294 in northern Kentucky show similar results that 

identified the landslides correctly temporally and spatially. The LHM derived from the Eq. 

5 for Site 6396 and Site 6294 indicates that only areas around these sites showed a low 

factor of safety on the date the actual failures occurred. The LHM was symbolized with 

different colors to illustrate the areas with different factor of safety values by the break 

points based on factor of safety values; values lower than the factor of safety value on the 

failure date (Table 2-7) for each site (red), values between this value and 1.75 (orange), 

values between 1.751 and 2.5 (yellow), values between 2.51 and 3.5 (light green), and 

values ≥ 3.51 (dark green). 
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Figure 2-13 shows the LHM the factor of safety evolution of the Site 6396 for the dates a 

week before the failure [Figure 2-13(a)], the failure date [Figure 2-13(b)] and a week after 

the failure [Figure 2-13(c)]. As seen in Figure 2-13(b), only the area around the failure 

location was correctly identified with the red color grid indicating the low factor safety of 

1.15 on the day it failed, and everywhere else, the factor of safety is greater than 1.15. 

Also, the LHM for a week before the failure [Figure 2-13(a)] shows that the factor of safety 

is more than 1.15 everywhere in the map, and the same is shown in Figure 2-13(c) a week 

after the failure capturing the evolution of the landslide area. Figure 2-13(d) illustrates the 

factor of safety values at Site 6396 over a time span of six weeks covering three weeks 

prior and three weeks after the failure. The factor of safety reaches 1.15 on the failure date 

which was the lowest value during the time span [Figure 2-13(d)] at the Site 6396. 
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Figure 2-13. The LHM for Site 6396: (a) a week before the failure date; (b) on the failure date; (c) a week 
after the failure date; and (d) the factor of safety at Site 6396 between January 3, 2017 and February 12, 2017 
during which the failure happened. 

Figure 2-14 validates the LHM showing that only the location where the landslide at Site 

6294 happened indicates the lowest factor of safety in red area on the failure date and it 

matches the low factor of safety in the time graph spanning six weeks [Figure (2-14.d)]. 

Similar to the Site 6396, Figure 2-14 illustrates the evolution of the factor of safety values 

leading to the landslide, the landslide and the after the landslide. 

Figure 2-13(d) and Figure 2-14(d) illustrate that the factor of safety value lowers to 1.15 

and 1.29 (Table 2-7) when the failure happened, and they correctly show the failure time 

in the period of six weeks. The Figure 2-14(d) also shows that the factor of safety can reach 

less than 1.29 after the failure date, for the Eq. 5 accounts for the soil moisture, and the soil 
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moisture can increase during and post the failure. It is observed from the Figure 2-13(d) 

and Figure 2-14(d) that the failure happened after a threshold point of 1.15 and 1.29 in 

factor safety values for the Site 6396 and Site 6294, respectively. Furthermore, the factor 

of safety value at Site 6294 even lowered to 0.5 as the soil moisture increased to the highest 

after 10 days of the failure date. It is inferred that the lowest factor of safety does not mean 

the failure happens at this point in time, rather it is the certain factor of safety threshold, 

which was calculated as 1.15 and 1.29 for the Site 6396 and 6294, the soil has to reach for 

the failure to occur. Seed at al. (1989) hypothesized that during and post slope failure, the 

pore water pressure build-up in granular materials under undrained conditions goes up 

reducing the strength of the soil which corroborates the behavior of the Figure 2-14(d). 

 

Figure 2-14. The LHM for Site 6294: (a) a week before the failure date; (b) on the failure date; (c) a week 
after the failure date; and (d) the factor of safety between January 14, 2016 and February 23, 2016 during 
which the failure happed. 
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2.4.3.2 Validation of Model Performance at Sites in which the LHM Model 
Performed Slightly Less than Optimal 

Figure 2-15 shows that the factor of safety was 1.73 at the Site 6501on the failure date, and 

four red grids near where the landslide at the Site 6294 occurred show the factor of safety 

less than 1.3 [Figure 2-15(b)]. However, these areas failed in 20 16 and remediated and 

stabilized since they were next to the highway, so the slope angles and the soil properties 

are most likely not the same any longer. Therefore, the red grids are not representative of 

the conditions at the Site 6294 for the time shown in Figure 2-15(b). However, Figure 2-

15(c) shows that the LHM for a week after the failure shows the lower factor of safety 

around the failure area at Site 6501, for the soil moisture increased post the failure date. 

The red areas upslope of the failure area [Figure 2-15(c)] might have been failed, but since 

the red areas are in the wooded area up the hill, they were not verified. Figure 2-14 (d) 

illustrates the factor of safety values at the Site 6501 over the time span of six weeks, and 

it shows that the factor of safety lowered from 1.73 on the failure date to 1.26 five days 

after the failure due to the post soil moisture increase. 

Figure 2-16 correctly shows the failure location with factor of safety of 1.27 on the failure 

date. However, Figure 2-16(b) shows more areas with similar or less factor of safety values 

than the Site 6458. Some of the areas have very steep angles (45 degree and more); 

therefore, assumed to be sloped rock surface. The repose angle of sand is 45 degrees 

(Glover, 1999) at the max in the nature, and the areas that had more than 45 degrees of 

angles were assumed to be rock surface areas in which the factor of safety values become 

null because the Eq. 5 is not applicable to rocks. 

Figure 2-16(c) indicates lower factor of safety values for the map area than that of the 

failure date [Figure 2-16(b)], and we argue that the sloped rock surface area is existent in 

the area, the actual internal angle in the area is stronger than the ones used in the Eq. 5 to 

create the map, the actual depth to the bedrock shallower than 4.5 m, all of which could 

potentially contribute to the red areas of the map [Figure 2-16(b) and 2-16(c)]. The friction 

angle of the soil was assumed to be uniform in the study, but the soil strength of slope 

materials is spatially heterogeneous, as the slope material is produced by a natural process 

(Chowdhury et al. 2010). In addition, it is observed from Figure 2-16 (d) that the factor of 
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safety value kept lowering after the failure date indicating the soil moisture kept increasing 

for the three weeks after the failure. 

Overall, the factor of safety map aligns correctly with the study sites temporally and 

spatially, with some additional areas indicating the false landslide warnings such as areas 

away from the landslide location at the study sites in red color [Figure 2-16(b)]. We argue 

that the reasons can be the area is composed of rock surface or outcropping having more 

than 45 degrees, the heterogeneity of the soil; friction angle of the soil the higher than 

estimated friction angle, and the lower depth to the bedrock than the estimated depth used 

in creation of the map. The LHM for each study site indicates that using the Eq.(5), good 

insights can be gained into the likelihood of landslide temporally and spatially based on 

the soil moisture evolution and coarse soil properties. 
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Figure 2-15. The LHM for Site 6501: (a) a week before the failure date; (b) on the failure date; (c) a week 
after the failure date; and (d) the factor of safety between March 9, 2018 and April 18, 2018 during which 
the failure happed. 
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Figure 2-16. The LHM for Site 6458: (a) a week before the failure date; (b) on the failure date; (c) a week 
after the failure date; and (d) the factor of safety between January 20, 2018 and March 1, 2018 during which 
the failure happed. 

2.4.3.3 Comparison of the landslide hazard map to the landslide susceptibility map 

Direct comparison between the LHM at Site 6501 on the date its lowest factor of safety 

occurred (4/4/2018) and the LSM were conducted to assess how these two models map 

landslides compared to the one another. In addition, direct comparison between the LHM 

at Site 6501 on 3/20/2018, and the LSM were carried out the same exact way to see the 

change in the landslide occurrence. For the comparison to be made, a spatial resolution of 

the maps had to be the same. Therefore, resampling of LSM with 91.4 m spatial resolution 

was done converting it to 15.2 m spatial resolution to match the resolution of the LHM. 

The resampled spatial resolution of LSM matches that of the LHM (Figure 2-7) 15.2 m 

allowing the direct comparison of the values quantitatively. 
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The quantitative comparison between the probability map and factor of safety map was 

carried out by setting the factor of safety value less than 1.75 to be likely to be a landslide 

because our study sites (Table 2-7) show that the factor of safety ranged from 1.15 to 1.75 

on the failure dates and by setting probability value of 0.40 and higher to be a landslide in 

LSM because 87 percent (Table 2-4) of actual landslides in inventory belonged to this 

category. 

2.4.3.4 Comparison of LHM at Site 6501 on 4/4/2018 and LSM. 

Figure 2-17 shows the comparison of the maps visually and Table 2-8 compares the maps 

quantitatively, grid-by-grid in the confusion matrix indicating that the LSM models 46 

percent more probable locations of landslide occurrences (3805 occurrences versus 2610 

occurrences) than that modeled by the LHM. A confusion matrix is a table that is often 

used to describe the performance of a classification model on a set of test data for which 

the true values are known. In this study, it is used to compare the model classes (landslide 

or non-landslide) on grid to grid. Table 2-8 shows that the 1633 grids on the maps are 

classified as landslides by both LHM and LSM, and 4726 grids are classified as non-

landslides by both of the models out of 9508 total grids on the map (Figure 2-17). 

 

Figure 2-17. Comparison of (a) the lowest value of LHM in 5 years at Site 6501 on 4/4/2018 and (b) the 
LSM. 

  

a) b)
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Table 2-8. Confusion matrix of LHM (4/4/2018) vs LSM in part of northern Kentucky site area (Figure 2-
17). 

  
LSM 

  
Landslide Non-Landslide 

 LHM 
Landslide  1633 977 

Non-Landslide   2172 4726 

2.4.3.5 Comparison of LHM at Site 6501 on 3/20/2018 and LSM. 

Figure 2-18 shows the comparison of the LHM at Site 6501 on 3/20/2018, two weeks 

before the lowest factor of safety date (4/4/2018), and LSM visually. Table 2-9 compares 

the maps quantitatively grid by grid in confusion matrix the same way that LHM on 

4/4/2018 was compared to LSM. Table 2-9 indicates that the LSM models 48 times more 

probably locations of landslide occurrences (3805 occurrences vs 77 occurrences) than that 

modeled by the LHM. Furthermore, it shows that 57 grids on the maps are classified as 

landslides by both LHM and LSM, and 5683 grids are classified as non-landslides by both 

of the models out of 9508 total grids on the map (Figure 2-18) for 3/20/2018. 

 

Figure 2-18. Comparison of (a) LHM at Site 6501 on 3/20/2018 and (b) the LSM. 

  

a) b)
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Table 2-9. Confusion matrix of LHM (3/20/2018) vs LSM in part of northern Kentucky site area (Figure 2-
18). 

    LSM 

  
 

Landslide Non-Landslide 

 LHM 
Landslide  57 20 

Non-Landslide  3748 5683 

These comparisons corroborate the main statement that the LHM derived from the factor 

of safety map shows when and where landslides are more likely to occur and gives us more 

insights into the evolution of a given state of factor of safety of soil for any time period and 

compared well to the LSM derived from the machine learning model (logistic regression), 

which was based on the actual landslide failures from the past. 

2.5 Discussion 

During the last decade, there has been an increase in spatial and temporal data available to 

the public, such as high resolution DEMs and national soil property databases, which can 

be used for probabilistic and deterministic slope stability analysis. These available data can 

be prepared in Geographic Information System (GIS) for a regional-scale landslide 

susceptibility analysis. There is a need to better understand, identify and assess landslide 

susceptibility and develop landslide hazard map for communities that are in the close 

vicinity of the landslide zones. Furthermore, the public can use the LHM in their decision-

making process to minimize the potential risk of injuries and damages caused by landslide. 

The limitation for this study includes that the soil properties used in the Eq. 5 to create the 

LHM; 'φ , Hss, c’ , and hydrologic parameters; ,  , , ns rθ θ α  were all estimated using soil 

database from WSS which was made in 1:20000 scale (nrcs.usda.gov) not representing the 

soil variance in small scale. The internal friction angles of sand for Site 6458 and 6396 in 

eastern Kentucky area were taken from the geotechnical reports for the project located 

within 3.2 km radius of the study sites, so the actual friction angle and the variance of the 

soil strength in the study site was not verified. However, the friction angles used in the 

location produced LHMs that matched the location and the time of the failure sites. The 

soil moisture data from SMAP has a spatial resolution of nine km, and the uniform soil 

moisture data for the whole nine km grid was used in the Eq. 5 for the creation of the LHM 
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for part of northern Kentucky area in the vicinity of Site 6294 and 6501, assuming that 

there was no variation. Also, the depth of the bedrock was taken from the average depth 

from the geotechnical engineering reports in northern Kentucky area, so the actual depth 

to the bedrock at the sites was not in-situ measurement. Uncertainty in model parameter 

evaluation has been recognized as an important cause of mismatch between simulated and 

observed distributions of landslide occurrence (Burton et al., 1998). Therefore, when 

performing susceptibility analysis with physically based models, spatial variability and 

uncertainties in ground conditions must be considered (Bittelli et al. 2012). 

LSM reveals the probability of landslide occurrences whereas LHM shows the temporal 

and spatial evolution of landslide occurrences. The general procedure used in this study 

can be generalized with a certain degree of confidence to assess the stability of the slope 

using satellite and remote sensing data that are available publicly without any measured in-

situ soil properties. As this study demonstrated that the land hazard map at close-to-real 

time can be created using Eq. 5 (Lu and Godt 2008), using the available data, and the factor 

of safety threshold of 1.15 to 1.75 in this study correctly predicted the landslide spatially 

and temporally with a few additional areas indicating the false landslide warnings because 

of the uncertainty of the estimated values of the soil and the overburden soil at the area as 

previously shown in this paper. This paper shows the use of soil moisture data, the elevation 

data, and the soil property data, all accessible publicly gives a good insight about the 

assessment of the factor of safety against the landslide. 

2.6 Conclusion 

In this study, we used the infinite slope factor of safety equation (Lu and Godt, 2008) 

utilizing satellite soil moisture data, high resolution LiDAR digital elevation map (DEM), 

and soil strength data derived from soil database from USDA to produce the LHM, and we 

validated the results using the four study sites with known landslides and the failure dates. 

The result of the LHM correctly indicated low factor of safety values at the study sites 

temporally and spatially. However, some additional areas with low factor of safety values 

at Site 6548 and 6501 where the occurrence of the landslide was not verified on the dates 

the landslide occurred was identified as a landslide in the LHM, and we argue that the area 

at the Site 6548 was composed of sporadic rock surfaces where it had more than 45 degree 
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slope angles, and the uncertainty of the estimated friction angle, the depth to the bedrock 

and the soil moisture data, all of which contributed to the false indication of the landslide 

areas in the LHM for those sites. Over a long period of factor of safety graph of the sites, 

it indicated that use of the Eq. 5 could assess the landslide susceptibility in an area 

temporally and spatially instead of regional statistically produced LSM which was 

insensitive to a variation in the soil moisture. LSM was created using the logistic regression 

machine learning model using the variables that included six geomorphic variables of 

slope, aspect, curvature, elevation, roughness, and plan curvature, all extracted from 1.5 m 

LiDAR DEM, eight variables of clay percent, silt percent, sand percent, saturated hydraulic 

conductivity, available water capacity, one third bar pressure water content, plasticity 

index, liquid limit, all extracted from the physical property of soil database from (WSS), 

and a variable of 2016 National Land Cover Database (NLCD) product suite. The result of 

LSM produced the AUC of 0.841.The comparisons of the LHM and LSM were done 

quantitatively using the confusion matrix (Table 2-8 and Table 2-9), which showed that 

even on the date with the highest soil moisture content, the LHM still modeled less 

occurrence of landslides and verified correctly against the study sites. The validation of 

LHM for each study site indicated that using the infinite slope factor of safety equation (Lu 

and Godt, 2008), we can model the likelihood of landslide temporally and spatially based 

on the soil moisture evolution of the area, the soil properties and DEM data all available 

publicly rather than statistically produced LSM. 
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3 Using Multi-Temporal UAV Images to Detect Land Movement and to Estimate 
Soil Moisture Data Using Machine Learning Model. 

3.1 Introduction 

Land movement and soil moisture of a slope are good indicators of the slope stability, and 

used as a forecasting of the slope failures and landslides. Landslides are common and 

dangerous natural hazards that occur worldwide, often causing severe direct impacts on 

human lives, public and private properties, and lifelines (Klose et al. 2014). Mapping and 

displacement monitoring of unstable slopes is a crucial issue for the prevention and 

assessment of hazards (Rossi et al. 2018). Landslide forecasting is an early warning system 

that helps to predict a slope failure spatially and temporally. Different approaches exist to 

predict the location and the time of the slope failures, depending on which parameter is 

adopted to indicate probable imminent failure. The most reliable (and most commonly 

used) parameters for forecasting the time of failure are the slope displacement and its 

derivatives; velocity, and acceleration (Intrieri et al. 2019). These kinematic parameters are 

directly related with the stability conditions of the moving mass, and there are a number of 

methods and approaches to monitor them in real time (Intrieri et al. 2019, Lacasse and 

Nadim 2009, Raspini 2018). Land movement monitoring can be carried out with various 

techniques and approaches. They are mainly divided into three categories; in-ground 

monitoring instruments, geodetic, and remote sensing techniques. In-ground instruments 

include inclinometer, extensometers, and piezometers, and strain gages. Geodetic 

techniques are based on the survey of a network of selected points in the landslide body 

and displacements computation using a total station, a GPS survey equipment that gives 

very high accuracies. Remote sensing techniques include space-born, air-borne platforms 

that have on-board passive or active sensors. Remote sensing techniques are effective tools 

to rapidly obtain spatially distributed information on landslide kinematics (Delacourt et al. 

2007), and can be operational from spaceborne, airborne, and ground-based platforms 

(Rossi et al. 2018). Synthetic Aperture Radar (SAR) (space-borne) active sensor can 

observe the Earth's surface at any time of the day or night, regardless of weather and 

environmental conditions. SAR has the advantage of operating at wavelengths not impeded 

by cloud cover or lack of illumination (European Space, 2021). Several studies includ ing 

works of Metternicht et al. (1998), Tofani et al. (2013), and Scaioni et al. (2014) used SAR 
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data successfully to detect the change in land movement in sub-centimeter scale using 

Interferometric Synthetic Aperture Radar (InSAR) techniques. InSAR techniques have 

become widely used and broadly recognized tools for landslide mapping and monitor ing. 

Differential Interferometry (DinSAR) is a technique that exploits the interferometric phase 

difference between combinations of SAR images with the orbital information to detect a 

point displacement in a line of sight direction. The primary goal of such techniques is to 

derive an interferogram that expresses the phase difference for each image pixel between 

two passages of the satellite on the same area. By using multiple SAR images and the 

interferograms derived, it is possible to retrieve the temporal evolution of ground 

displacements over time (Solari et al. 2020).  

Unmanned aerial vehicle (UAV) is used in an air-borne remote sensing technology to 

capture aerial images with high resolution and high efficiency. UAV-based remote sensing 

has the following advantages: real-time applicability, flexible survey planning, high 

resolution, low cost, and it can collect information in dangerous environments without risk 

(Changchun et al. 2010, Rossi et al. 2018). UAV can be mounted with many different type 

of sensor such as Light Detection and Ranging (LiDAR), hyperspectral, thermal sensor to 

analyze the surface information and its topography. The land movement was detected using 

UAV in studies including the works of Yang et al. (2020), Turk (2018), and Lucieer et al. 

(2014), and these studies demonstrated the effectiveness of UAV images using precise 

orthorectification, image co-registration, and image correlation technique. Co-registration 

of Optically Sensed 

Images and Correlation COSI-Corr (Ayoub et al. 2009) technique was used in these studies 

successfully demonstrating the land movement can be detected using optical truecolor 

imagery (RGB image) taken by UAV.  

Use of multi-temporal images collected by UAV in extraction of soil moisture data was 

shown in the works of Lu et al. (2020), and Ge et al. (2019) employing machine learning 

models to extract soil moisture from visible and hyperspectral images. Antecedent soil 

moisture conditions play a crucial role in the initiation of landslides (Zhuo et al. 2019). It 

is important to use the actual soil moisture data instead of rainfall data for developing a 

limit equilibrium factor of safety to assess the stability of a slope. The antecedent soil 
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moisture and evapotranspiration govern the actual soil moisture regime and thus govern 

the factor of safety. Zanetti et al. (2015) used RGB images and artificial neural networks 

to estimate soil moisture. Dos Santos et al. (2014) established different linear models using 

RGB, HSV (Hue, Saturation, Value), and the digital number of a panchromatic image to 

estimate soil moisture in each type of soil (Lu et al. 2020).  

In this paper, we aimed to demonstrate the use of UAV images to detect the land movement, 

to extract soil parameters in the area where landslide occurred. These findings can be used 

to evaluate and assess the current condition of slope stability as means of forecasting. UAV 

with an optical digital camera was used to capture 20 multi-temporal RGB images over 

three month period over an area, where landslide occurred and remediated in 1995. The 

UAV images were processed and ortho-rectified employing digital photogrammetr ic 

algorithms in PIX4D (Pix4D S.A., Lausanne, Switzerland) software. Once the images were 

ortho-rectified, they were co-registered pixel to pixel so that the images can be used in the 

image-correlation algorithm (COSI-Corr) to detect any land movement. Furthermore, the 

statistics from the images were extracted and input into machine learning model to extract 

soil parameters. This work attempted to demonstrate the process flow that can use UAV 

images to obtain land detection and soil parameter to gain a good insight into the close to 

near-time state of slope stability. 

3.2 Study area 

A site in Garrard County, Kentucky was chosen as a study site due to its documented 

landslide history and its close distance to our location. Garrard County is located in central 

Kentucky area, and it is characterized by steep hills, and deep valleys. This area is defined 

as the Hills of the Bluegrass physiographic region of Kentucky, and the area is composed 

of Upper Ordovician calcareous siltstone and shale of the Garrard and Clays Ferry 

Formations. Elevation ranges from 157 m in the northern part near the Kentucky River to 

424 m in the southern part adjacent to Rockcastle County. The Hills of the Bluegrass belong 

to the Eden-Nicholson-Lowell soil series (Thompson and Poindexterss 2005). The area is 

mostly composed of silty sand underlain by gray shale with some interbedded limestone. 

The slope failure at the site was first reported on July 7, 1995, and the preliminary 

investigation was done on the same date. According to the engineering memorandum, a 
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head scarp appeared in the southbound lane of KY 39 that affected about 55 m of the 

roadway. The approximate area of the landslide was 0.011 sq. km. The embankment was 

about 20 m in height and the slope transitioned from a 2:1 to an approximate 12:1 or flatter 

near the bottom. Figure 3-1 shows the study area that was flown over by UAV and the 

extent of the landslide. The slope area was heavily vegetated with tall grasses and shrubs. 

The access to the slope was very limited which was one of the advantages of using UAV 

in inaccessible areas. The slope angles in the area ranged from 10 degrees to 36-degree 

slope angles along the downslope of the roadway.  

 

Figure 3-1. Aerial view of the study site. Landslide occurred and remediated in 1995, Garrard County, Kentucky. 

Images were taken between 1100 and 1600 (Eastern Time, USA) throughout the 

observation period for three months. Land cover type is classified as pasture/hay from 

National Land Cover Data (NLCD) 2016 map (Multi-Resolution, 2016).  

3.3 UAV deployment and operation 

The UAV used for this study was DJI Phantom 4 Advanced quadcopter for its low cost and 

ease of use with smart flying camera that was able to intelligently avoid obstacles during 

flights. Its camera is RGB camera that offers image quality with greater clarity, lower noise, 

and high resolution. Table 3-1 shows the specification of the UAV used in the study. The 

camera parameters were consistent for each UAV flights, so the image processing can be 

done with the same settings. The flight altitude was set at 62 m because the sub-centime ter 

spatial resolution of the images were desired to detect any land movement at sub-pixel 
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scale at the study site. The area for each image was about 54 m by 82 m with 80 percent 

overlapping between the adjacent images rendering a spatial resolution of 5 cm. Figure 3-

2 shows the UAV and its flight path that was set in an automatic flight mission app used 

for photogrammetric data acquisition for each flight. Figure 3-2.a shows the UAV used, 

and its controller component.  

Table 3-1. Technical specification of the UAV 

Detail Parameters Value 

 
Model DJI Phantom 4 Advanced 

Drone Weight 1368 g 

 
Dimensions 350 mm diagonally 

 
Max Speed 31 kmph 

 
Camera FC6310_8.8 

Camera Image sensor 
1" CMOS  effective Pixel : 

20M 

 
Lens 

FOV 84° 8.8 mm/24 mm 
(35 mm format equivalent) 

 
Photo size 5472 x 3078 

 
Aperture f/2.8 

 
ISO 3200 

 
Shutter speed 8-1/8000 s 

3.3.1 Flight path 

Automatic flight and easy-to-use remote controls for small UAVs enable convenient one-

man operation of UAVs flying over field on-demand. Acquiring high-resolution aerial 

imagery requires autonomous flight on a pre-defined flight route, particularly when flying 

over wide fields. The forward and side overlap for the autonomous flight are highly critical 

for successfully constructing RGB orthoimages or reflectance map (Guan et al. 2019). The 

flight plan was carried out using 80 percent frontal overlap and 60 percent lateral overlap 

with the spatial resolution of 0.05 m. Consequently, based on the resolution and 

specification parameters of the RGB camera, an above ground level (AGL) altitude for the 

UAV was set to 62 m to acquire images. In order to ensure the consistent frontal and side 

overlap and keeping the resolution as desired, PIX4Dcapture app was used to acquire all 
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the images. PIX4Dcapture is a flight planning and image acquisition app developed for 

Android and iOS mobile operating system by Pix4D. Figure 3-2.c shows the aerial view of 

the flight plan used in acquiring the images. An average of 90 images were taken for each 

flight, and they were processed in image processing software later.  

 

Figure 3-2. UAV and its flight path used in the study area  (a) Phantom 4 advanced UAV equipped with a 
digital camera to collect images (b) study site from oblique angle from the look point shown in (c) and the 
landslide boundary extent in red line marker (c) aerial view of flight path for the UAV set in flight planning 
mobile app. 

3.4 Image processing: 

The acquired images can not be used in landslide detection or soil parameter extraction 

analysis until they are processed such that all pixels are in an accurate (x, y) position on 

the ground. Photogrammetry is a discipline, developed over many decades, for processing 

imagery to generate accurately georeferenced orthorectified images. Orthorectification is 

a process that removes the geometric distortions introduced during image capture and 

produces an image product that has planimetric geometry, like a map. Orthorectified 

imagery, also known as orthoimagery, is precisely registered to a ground coordinate system 

and the image scale is constant throughout the entire image (L3Harris Geospatial, 2021). 

The orthorectified images are processed to apply corrections for optical distortions from 

the sensor system, and apparent changes in the position of ground objects caused by the 

perspective of the sensor view angle and ground terrain (ArcGIS manual, 

http://learn.arcgis.com/en/arcgis- imagery-book). Common production workflows employ 

a)

b)

c)

http://learn.arcgis.com/en/arcgis-imagery-book
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structure from motion (SfM) and multi-view stereopsis (MVS) techniques to build digita l 

surface model and to produce ortho-rectified images. All image processing was done in 

photogrammetry software Pix4D mapper (Pix4D, 2021). Pix4D mapper searches for 

matching points by analyzing all images using SIFT (Lowe 2004) feature matching 

technique with an improved version of the binary descriptors proposed in Strecha et al. 

(2011), which are very powerful to match keypoints quickly and accurately. Figure 3-3 

shows one of the matching keypoint on the ground from different images in one flight.  

Those matching points as well as approximate values of the image position and orientation 

provided by the UAV autopilot were used in a bundle block adjustment (Triggs 1999) to 

reconstruct the exact position and orientation of the camera for every acquired image. 

Based on this reconstruction, the matching points were verified and their 3D coordinates 

calculated using GPS measurement from the UAV during flight. Those 3D points were 

interpolated to form a triangulated irregular network in order to obtain a DEM that was 

used to project every image pixel and to calculate the geo-referenced ortho-rectified images 

(Strecha et al. 2012). 

 

Figure 3-3. Matching point on the ground from different overlapping images in SIFT photogrammetry  
technique processed in Pix4D mapper. 

Once the orthorectified images were processed, they were co-registered to have the same 

geometry so that every pixel in the images matched correctly. 

Image co-registration is a process of geometrically aligning two or more images to integrate 

or fuse corresponding pixels that represent the same objects. Typically, the geometric 

relationship between images is obtained through a number of tie points that are matching 
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points in each image. Fully automatic tie point generation is possible through area-based 

matching technique. This technique compares the gray scale values of patches of two or 

more images and tries to find conjugate image locations based on similarity in those gray 

scale value patterns. The results of area-based matching largely depend upon the quality of 

the approximate relationship between the images. This is determined through traditional or 

pseudo rational polynomial coefficients (RPC) map information, or by using three or more 

tie points (L3HARRIS Geospatial, 2021.). Automatic co-registration process was carried 

out in ENVI 5.5 (Exelis Visual Information Solutions, Boulder, Colorado) remote sensing 

software.  

Figure 3-4 shows the co-registration of two images using automatic registration tool. Once 

the multi- temporal images were orthorectified and co-registered, they were analyzed 

further to detect a land movement.  

  

Figure 3-4. Coregistration of images were performed using area based matching technique in ENVI (a) tie 
points in the base image (8/11/2020) to which (b) tie points in secondary image (9/11/2020) were co-
registered. 

3.5 Research Methods  

3.5.1 Landslide movement detection 

The co-registered images were further processed to detect any land movement employing 

image-correlation technique developed by LePrince et al. (2007) and Ayoub et al. (2009). 

The method is referred to as COSI-Corr: Co-registration of Optically Sensed Images and 

Correlation (Ayoub et al., 2009). This technique produces an automatic pixel-wise change 

a) b)
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detection between two orthorectified and precisely co-registered optical images and was 

originally designed to measure displacements from seismic activity (Leprince et al. 2007). 

It correlates two single-band images of any optical remotely sensed images. Therefore, red 

band was used to detect the landslide movement detection. COSI-Corr uses an image kernel 

to compute the correlation between the two images (Lucieer et al. 2014). There are two 

correlators in COSI-Corr; frequency and statistical. The frequency correlator is Fourier 

based and is more accurate than the statistical one. However, this method is very sensitive 

to noise. We used statistical correlator due to the high noise in the images from seasonal 

color change. The statistical correlator maximizes the absolute value of the correlation 

coefficient and is coarser but more robust than the frequency one. The displacement 

algorithm in COSI-Corr requires a number of initial settings (Ayoub et al. 2009): (1) 

window size – the size in pixels of the patches that will be correlated in x and y direction; 

(2) step –determines the step in x and y direction in pixels between two sliding windows; 

(3) search range – sets the maximum distance in the x and y direction in pixels where the 

displacements to measure are to be searched (Lucieer et al. 2014). The window size for this 

analysis was set to 32x32 pixels, step 16x16 pixels, and search range 10x10 pixels.  

We chose three pair images, each taken one-month apart for the period of 8/11/2020 to 

11/10/2020 such that images taken on 8/11/20 and 9/11/20 formed a pair, an another pair 

of images taken 9/11/20 and 10/9/20, and the last pair of images taken 10/9/20 and 11/10/20 

were correlated to detect a horizontal land movement in COSI-Corr. In addition to the 

horizontal movement detection, the vertical movement detection between 8/6/20 and 

9/11/20 was carried out using SAR images using D-InSAR (Differential Interferometry) 

technique that exploits single interferometric SAR pair acquired by an SAR sensor. The 

result from D-InSAR analysis produced the displacement map in the direction of line of 

sight (LOS) of the satellite.  This map does not capture the horizontal movement of land. 

In many scientific and commercial studies including works of Parker et al. (2017), 

Alshammari et al. (2018), and Yang et al. (2018), LOS measurements were converted into 

the vertical direction by projecting the data using the sensor incidence angle. This 

procedure neglected the horizontal components of motion that would also be mapped into 

the LOS. The assumption of a purely vertical motion field was mentioned in most of these 

studies (Fuhrmann and Garthwaite 2019).  



51 
 

3.5.2 Results of land displacement analysis 

The result of correlation of the images using COSI-Corr produces three layers for each 

image pair; displacement layers in east-west (E/W) and north-south (N/S) directions and 

the signal/noise ratio (SNR). Positive values in the E/W and N/S layers represent that the 

slope moves east and north, respectively. Negative values indicate movements to the west 

and south. SNR values range from 0 to 1 higher values indicating high confidence in 

estimating displacements. The vector magnitude of the land movement was calculated 

using Euclidian distance; 2 2( / ) ( / )Dist E W N S= + . Figure 3-5 shows the horizontal land 

movement at the study site for each pair of images in Euclidian distance and the direction 

of the land movement in arrows. The displacement map break points in the color legend of 

Figure 3-5 was created using standard deviations from the mean. A rectangular area of 17 

m x 37 m on the slope where the slope angle was the highest was selected as an area to get 

metrics of the displacement rather than the entire slope embankment. Table 3-2 shows that 

mean displacement for a pair dataset (8/11/20 and 9/11/20) has the biggest movement 

within the rectangular area, and the direction of the mean movement indicates that it 

pointed in the direction that was 90 degrees rotated in clockwise direction compared to the 

slope direction. The directional movement arrows in Figure 3-5.a show this movement. 

The mean Euclidean distance for this pair within the rectangular box was 9.23 cm. This 

movement was considerably higher than those of the other two pairs. Figure 3-5.b and 

Figure 3-5.c show the movements for the pair image of 10/09/20 - 9/11/20, and 11/10/20-

10/09/20. The mean Euclidian distances were 3.03 cm and 0.23 cm, respectively. The 

movement direction of latter two pairs appeared to be aligned with the direction of the 

slope compared to the first pair. In overall area shown in Figure 3-5, the biggest movement 

in each pair was 66.2 cm to 66.9 cm, and all appeared to be located around the area where 

there were presence of trees.  

Authors such as Lucieer et al. (2014), Yang et al. (2020) found that shadow differences in 

solar zenith angles in the optical image pair influenced the images and produced unreliab le 

results using COSI-Corr technique. Thus, in this study, the shadow of the trees appeared to 

be incorrectly producing the biggest displacement in the image pairs. Figure 3-6 shows the 
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total accumulated mean displacement in E/W and N/S direction from 8/11/20 to 11/10/20 

within the box area.  

Furthermore, Sentinel-1 SAR image pair from 8/06/2020 and 9/11/2020 was analyzed 

using DinSAR technique mentioned in Section 3.2 of this paper. The result of analysis 

shows that 4 cm of subsidence in the line of sight direction was produced within the 

rectangular box area for this image pair. Figure 3-5.d shows the subsidence map created 

using DinSAR in the study area with 15 m spatial resolution. This result only shows the 

subsidence in LOS with no regards to the horizontal displacement.  
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Figure 3-5. Horizontal displacement map of the study site for the pair images from (a) 8/11/20 and 9/11/20, 
(b) 9/11/20 and 10/9/20, (c) 10/9/20 and 11/10/20 using COSI-Corr technique. (d) Vertical displacement (in  
LOS direction of SAR satellite) of the study site between 8/6/20 and 9/11/20 using DinSAR technique, 
Garrard County, Kentucky. 
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Figure 3-6. Accumulated mean displacement in E (+)/W (-) and N (+)/S (-) direction within the metrics area 
for the time span of 8/11/20 and 11/10/2020. 

Table 3-2. The mean displacement in E (+)/W (-), N (+)/ S (-), and Euclidean distance for each pair of the 
images. 

Dates 
East (+)/West(-) 

Mean (meter) 

North(+)/South(-) 

Mean (meter) 

Euclidean distance 

(abs) (meter) 

8/11/2020 0 0 0 

9/11/2020 -0.0257 0.0886 0.0923 

10/9/2020 -0.0128 -0.0275 0.0303 

11/10/2020 0.0023 -0.0003 0.0023 

 

3.5.3 Extraction of soil parameters from optical images using logistic regression 
machine learning model. 

Soil parameters such as soil moisture are important parameter in slope stability as shown 

in the works of Lu and Godt (2008), Zhuo et al. (2019), Wicki et al. (2020), and Guzzett i 

et al. (2020), linking it to the triggering of the landslides. In this study, using all mult i-

temporal, ortho-rectified and co-registered images, an attempt was made to extract soil 

parameters that have an importance in slope stability. The target soil parameters we desired 

to estimate using the UAV images are presented in Table 3-3. Machine learning analysis 
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was carried out to get the correlation between the soil parameters and the RGB (Red = 

Band 1, Green = Band 2, Blue = Band3) band of the images. A RGB source is a light source 

which emits at the same time red, green and blue light. A combination of these colors 

makes up a true color image. A wide range of colors can be obtained by mixing different 

amounts of red, green and blue light. A wavelength of spectral RGB band ranges between; 

red light (635-700 nm), green light (520-560 nm), and blue light (450-490 nm). In digita l 

imaging, the brightness values of the bands are scaled to 8-bit (0-255) values that represent 

a surface reflectance. Figure 3-7 illustrates the band differences in the image captured on 

9/11/2020, and its histogram. As seen in Figure 3-7(d) thorugh (f), all bands are scaled to 

digital numbers (DN), and the different band has a different distribution of the DN. The 

mean DN for each band in Figure 3-7 is band 1 = 95.1, band 2 = 159.7 , band 3 = 144.2.  

 

Figure 3-7. Spectral bands of digital images (9/11/2020) and their histograms of digital numbers (0-255) for 
surface reflectance. (a) Red (Band 1) (b) green (band 2) (c) blue (band 3) (d) histogram of band 1 (e) 
histogram of band 2 (f)  

Linear regression machine learning model was used to correlate the soil parameters with 

the brightness variables from the images. The values for 12 target variables (Table 3-3) 

were taken from two satellite data sources, which were the Global Land Data Assimila t ion 
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System (GLDAS), and NASA Soil Moisture Active Passive (SMAP). These target variable 

were used to train the model to predict the target variables. Table 3-3 shows each of the 

target variables, and their spatial resolutions. Temporal resolution of all data was 3 hours.  
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Table 3-3. Soil parameters extracted from UAV images using machine learning model. 

Target Variables Description 
Spatial 

resolution 

GLDAS_NOAH025_3H_2_1_SoilM

oi10_40cm_inst 

Area-Averaged of Soil moisture content (10 

- 40 cm underground) 

0.25 

degree  

GLDAS_NOAH025_3H_2_1_SoilM

oi0_10cm_inst 

Area-Averaged of Soil moisture content (0 

- 10 cm underground) 

0.25 

degree  

GLDAS_NOAH025_3H_2_1_Root

Moist_inst 

Root zone soil moisture (0-100cm 

underground) 

0.25 

degree  

GLDAS_NOAH025_3H_2_1_SoilM

oi40_100cm_inst 

Area-Averaged of Soil moisture content (40 

- 100 cm underground) 

0.25 

degree  

SPL4SMGP_005_Geophysical_Data

_sm_surface_5 
Top layer soil moisture (0-5cm) (m3/m3) 9km 

SPL4SMGP_005_Geophysical_Data

_sm_surface_wetness_5 
Top layer soil wetness (0-5cm) 9km 

SPL4SMGP_005_Geophysical_Data

_heat_flux_ground_5 
Downward ground hear flux into layer 1 of 

soil heat diffusion model.  
9km 

SPL4SMGP_005_Geophysical_Data

_land_evapotranspiration_flux_5 

Evapotranspiration from land (excluding 

areas of open water and permanent ice) 
9km 

SPL4SMGP_005_Geophysical_Data

_sm_rootzone 

Root zone soil moisture (0-100 cm) 

(m^3/m^3) 
9km 

GLDAS_NOAH025_3H_2_1_SoilM

oi100_200cm_inst 

Area-Averaged of Soil moisture content 

(100 - 200 cm underground) 

0.25 

degree  

SPL4SMGP_005_Geophysical_Data

_sm_rootzone_pctl_5 

Root zone soil moisture (0-100 cm; 

percentile units) 
9km 

SPL4SMGP_005_Geophysical_Data

_vegetation_greenness_fraction_5 

Vegetation \"greenness\" or fraction of 

transpiring leaves averaged over the land 

area (excluding areas of open water and 

permanent ice) of the grid cell 

9km 
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3.5.3.1 Variables and Statistics compilation used in machine learning analysis  

We used three bands from the images as independent variables and their statistics in the 

training process to model the target variables (Table 3-3). The statistics used for each band 

in the analysis were the mean, standard deviation, Eigenvalue for each band, and 

covariance between the bands as these statistics capture the variation of the distribution of 

the data in each band. The mask area that was used to get the statistics from each band of 

the images was the same image extent as the one used in the land displacement analysis 

(Figure 3-5). Figure 3-8 shows the mean and standard deviation of all three bands in 

comparison over three month period at the study site. The band 2 and band 3 statistics 

appeared to have a similar trend (Figure 3-8). 

 

 

Figure 3-8. Mean and standard deviation for the multi-temporal images (a) mean band values and (b) standard 
deviation values for each image over three month period at the study site. 

 

Alizamir et al. (2020) successfully used a machine learning model with various statistica l 

combination of variables to predict soil temperature at different depths. We had three band 

variables with three statistics for each band, and three covariance between pairs of bands 

(band1 and band2, band1 and band3, band2 and band3) making the total number of features 

to be 12 to be used as training points in the machine learning model. The statistics for each 

image in the study area were calculated using the formulas in Table 3-4.  

Table 3-4. Statistics for each band of the images for linear regression model. 
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Statistics Formula 

Mean 

1

N
Mean x Nii

= ∑
=

 

Standard Deviation  
2

1

1 ( )
N

i
i

x Mean
N

σ
=

= −∑  

Covariance  
1, 2

( 1 1)( 2 2)
1

i i
b b

b b b b
COV

N
− −

=
−

∑  

Eigenvalue  Av w vλ= =  

ix = grid cell value; N = the total number of grid cells; 1 , 2i ib b ( 1, 2,3,....,i n= ) are the band 

cell values in band 1 and band 2; 1, 2b b  are the mean value of the bands; A= n n× matrix 

of pixel; λ = Eigenvalue, v = Eigenvector such that matrix multiplication of λ  and v  is the 

same as just multiplying the vector by a constant as follows: 

1 1 2 2
1

.....
n

i i j j
j

v w A A v A v A v A vλ ν
=

= = = + + + = ∑     (9) 

An eigenvalue/eigenvector decomposition of the covariance matrix reveals the principa l 

directions of variation between images in the collection. This has applications in image 

coding, image classification, object recognition. All statistics were calculated in ENVI 

software for each band in the study area. 

For the data preparation, a set of all 12 features shown in Table 3-5 as predictor or 

independent variables was extracted for each image in ENVI, and enumerated in a table 

that was ready to be put into linear regression model. The values for the target variables 

(Table 3-3) for each collection date of the images were obtained from GLDAS, and SMAP, 

and added to a table as the target values. Once the predictor variables and the target 

variables for each image were in the table, they were used as training points in linear 

regression machine learning model. 
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Table 3-5. Features used to model soil parameters in linear regression model. 

band1_mean band1_band2_covarian

ce 

band2_std band3_mean 

band1_std band1_band3_covarian

ce 

band2_Eigenvalue band3_std 

band1_Eigenval

ue 

band2_mean band2_band3_covarian

ce 

band3_Eigenval

ue 

 

3.5.3.2 Linear regression model for predicting soil parameters  

Linear regression is a method of modelling a target value from predictor values. In linear 

regression model, the target value is expected to be a linear combination of the predictor 

features. In mathematical notation, 

0 1 1( , ) ... i iy w x w w x w x= + + +      (10) 

where, y = target value; 0w = constant intercept; iw ( 1,2,3,....,i n= ) = coefficient estimates 

of the model; ix ( 1,2,3,....,i n= ) = predictor variables (e.g, band1 mean, band2 Eigenva lue) 

(Table 3-5). The coefficients express the effects of the predictor variables on the target 

variable value. Linear regression model fits a linear model with coefficients iw to minimize 

the residual sum of squares between the observed targets such as soil moisture data from 

SMAP in the dataset, and the targets predicted ( y ) by the linear approximation. 

Mathematically it solves a problem of the form: 

2

1

1minimize ( )
n

w i
y y

n =
−∑       (11) 

where, y = predicted value or target value ; y = observed or actual target value; n = all data 

points. The model coefficients are optimized in Eq. 11 using Gradient Descent method 

explained in the work of Ruder (2016).  

3.5.3.3 Model Performance and validation 

Normally in machine learning analysis, all dataset is divided into a training set (typically 

75 percent) and a test set (25 percent) to evaluate the performance of the trained model 
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against the test set. However, in this study, we had only 20 points for the acquisition dates 

of the images, so the entire dataset was used as a training set, and the trained model was 

tested using the entire dataset, which was the same as the train test score. Table 3-6 lists 

the constant intercept; ( 0w ), coefficients; iw ( 1,2,3,....,i n= ), that were calculated in the 

linear regression model, and the predictor variables; ix ( 1,2,3,....,i n= ). Plugging these 

coefficients and independent variables in Eq.10, the predicted target values can be 

estimated.  
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Table 3-6. Coefficients to estimate soil parameters from Linear Regression model using Eq. 10. 

Coeff. Pred. Var 

SPL4SMGP
_005_Geoph
ysical_Data_
sm_rootzone

_pctl_5 

GLDAS_NO
AH025_3H_
2_1_SoilMoi
100_200cm_i

nst 

SPL4SMGP
_005_Geoph
ysical_Data_
vegetation_g
reenness_fra

ction_5 

SPL4SMG
P_005_Geo
physical_D
ata_sm_ro

otzone 

w0 intercept 1.05 293.65 0.09 0.37 

w1 (x1) 
band1_mean 5.85 -17.44 -0.04 -0.02 

w2 (x2) 
band1_std 221.02 -265.57 0.03 0.21 

w3 
(x3) 

band1_Eigen
value 

-1573.24 1718.54 0.86 -2.61 

w4 
(x4) 

band1_band2
_covariance 

423.22 -136.18 0.01 0.67 

w5 
(x5) 

band1_band3
_covariance 

112.26 -388.96 -0.45 0.48 

w6 (x6) 
band2_mean 83.11 -17.82 0.16 0.01 

w7 (x7) 
band2_std -202.44 25.57 -0.13 -0.16 

w8 
(x8) 

band2_Eigen
value 

-13.16 34.94 -0.04 0.02 

w9 
(x9) 

band2_band3
_covariance 

1046.42 -1209.44 -0.32 1.5 

w10 (x10) 
band3_mean -66.14 20.98 -0.12 0.01 

w11 (x11) 
band3_std 30.14 187.52 0.02 -0.03 

w12 
(x12) 

band3_Eigen
value 

-37.02 -13.53 -0.03 -0.02 

Coeff = coefficient estimates; Pred. Var = predictor variables. 
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R-squared (R²) value was selected as evaluation metrics for the assessment of the model 

estimating the target value. R2 is a statistical measure of how close the dataset is fitted to 

the regression line in the model. It represents the proportion of variance of actual value that 

is explained by the independent variables in the model. It provides an indication of 

goodness of fit and therefore a measure of how well target variables are likely to be 

predicted by the model (scikit-learn 2021). Table 3-7 shows the predicted target variables 

that had R2 values more than 0.8. 

Table 3-7. Target variables that yielded more than 0.8 R2 score in the linear regression model provided input 
from the variables from UAV images. 

Selected Target Variables > 0.8 (R2 -value) R2- Value 

SPL4SMGP_005_Geophysical_Data_sm_rootzone 0.823 

GLDAS_NOAH025_3H_2_1_SoilMoi100_200cm_inst 0.906 

SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5 0.961 

SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_5 0.988 

The result from the machine learning analysis indicates that using combination of band 

statistics of multi-temporal optical images, we can model with a certain degree of 

confidence, soil moisture (SM) in units of m3/m3, and SM percentile at root zone (0-100 

cm), SM in unit of kg m2 at 100-200 cm , and vegetation greenness fraction (Table 3-6). 

Figure 3-9 shows the result of the linear regression model with the aforementioned 

predicted target values and the actual values. The soil moisture plays important role in 

slope stability. The extraction of SM using UAV can help assess the state of slope stability 

using SM threshold values, or limit equilibrium equation (Lu and Godt 2008) which yields 

a factor of safety of the slope accounting for the SM content.  
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Figure 3-9. Predicted target values using linear regression model, actual target values from Satellite data 
(GLDAS, SMAP), and R2 score. (a) soil moisture percentile at root zone (b) Soil moisture at root zone (c) 
Vegetation Greeness fraction (d) Soil Moisture Content at 100-200 cm at study site, Garrard County, 
Kentucky. 

3.6  Discussion 

In this paper, we examined the workflow of using UAV with optical digital camera to gain 

an understanding of slope dynamic and stability employing a land surface detection and 

extraction of soil moisture content, both of which were presented in Section 5. The flights 

were taken between 1100 and 1600 (Eastern Time, USA) on days with less than 20 percent 

clouds for the reason that visible light-electromagnetic radiation is transmitted in the sun-

surface-sensor (UAV) route, and the transmission process is affected by the absorption and 

scattering of atmospheric molecules, water vapor, aerosol, and other atmospheric 

components. The visible light-electromagnetic radiation captured by UAV includes the 
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surface reflection information and records the interference of the atmosphere in the surface 

reflection information (Lu et al. 2020, Shoshany et al. 2019).  

This workflow of using UAV to detect a land movement and to extract soil parameters can 

be generalized for a slope with low vegetation. Areas with high vegetation have a shadow 

effect on movement detection process (COSI-Corr), producing unreliable results. Weather 

conditions with scattered clouds and resulting sharp and dark shadows makes the process 

more difficult. Differences in illumination conditions and in vegetation condition (e.g. lush 

spring grass versus short winter grass) between the acquisition dates can hamper the COSI-

Corr algorithm to identify matching features between images acquired under different 

lighting conditions (Lucieer et al. 2014). The large land movement areas represented by 

red color in Figure 3-5 were highly associated with the shadow of trees or bushes in the 

study area. 

The use of ground control points (GCPs) and UAV camera GPS locations produces 

georeferenced ortho-rectified images. GCPs improve the absolute and relative accuracy of 

photogrammetry. Although we used no GCPs for this project, Pix4D mapper searched for 

matching points by analyzing all images using SIFT (Lowe 2004) feature matching 

technique to ortho-rectify the images. Without GCPs, images were co-registered exploit ing 

fully automatic tie point generation possible through area-based matching technique in 

ENVI. In addition, seasonal change in vegetation affects the reflectance impacting the 

displacement computation since the algorithm searches for similar surface patterns in a 

specified search radius. This seasonal reflectance change has an impact on these patterns 

and hence an impact on the displacement vector computation (Lucieer et al. 2014).  

There was no in-ground measurement for land movement detection nor soil moisture 

measurement to validate the results. Soil parameters obtained from GLDAS and SMAP 

have a spatial resolution of 0.25 degree and 9 km, respectively. They were used as actual 

or observed values to train the model, and assumed to uniform across the spatial resolutio n 

area, neglecting the variance in soil parameters in the area.  

Machine learning models normally use a number of training points to train a good working 

model, and a portion of the points are used as test points to validate the performance of the 

model. However, we had only 20 points for image acquisition dates and all points were 
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used as training points. Therefore, the model is highly specific to the study area of which 

the features were taken. Despite all the limitation aforementioned above, we demonstrated 

feasibility of the workflow that can detect land movement (Figure 3-5), and extract soil 

parameters (Table 3-6) from UAV flights with methods presented earlier section of this 

paper. Further studies are needed to verify and validate the performance of the workflow. 

This paper aimed to introduce the workflow of using UAV to gain an insight into slope 

dynamic and stability.  

3.7 Conclusion.  

In this study, we used a UAV equipped with optical digital camera to collect multi-tempora l 

images over the area where a landslide occurred and repaired in the past. The images were 

processed using matching points by analyzing all images employing SIFT (Lowe 2004) 

and bundle block adjustment (Triggs 1999) techniques to create ortho-rectified images. 

The ortho-rectified images were co-registered in ENVI, geometrically aligning 

corresponding pixels, and representing the same objects. We selected three pairs of the 

images (8/11/20 and 9/11/20, 9/11/20 and 10/9/20, and 10/9/20 and 11/10/20) to see if there 

was any land movement employing COSI-Corr, image correlation technique presented in 

Ayoub (2009). The result showed that there was a mean movement of 9.23 cm, 3.03 cm, 

and 0.23 cm in the area 17 m x 37 m where the metrics were taken on the slope for each 

pair in chronological order. In addition, SAR images from 8/6/20 and 9/11/2020 were 

analyzed exploiting DinSAR technique to get the subsidence in LOS, and the result showed 

4 cm depression in the metrics area. Furthermore, using multi-temporal images, we 

estimated the soil parameters; soil moisture in units of m3/m3 (R2=0.823), soil moisture in 

percentile (R2=0.961) at root zone, soil moisture in unit of kg m2 (R2=0.906) at 100-200 

cm, and vegetation greenness fraction (R2=0.988) employing linear regression machine 

learning model. Statistical combination of variables from all 20 images were used as 

training points in the linear regression model, and the target variable values were taken 

from satellite data (GLDAS, SMAP). Our results indicate that using UAV equipped with 

an optical digital camera, we can estimate land surface movement, and extract soil 

parameters such as soil moisture data using the technique presented in this paper. The land 

movement and soil moisture data can be used to gain significant information about the 
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active landslide, and the stability of a slope. The further study is needed to validate and 

verify the performance of this workflow.  
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4 Conclusions 

Using satellite soil moisture data, remote sensing data including high resolution LiDAR 

digital elevation map (DEM), and soil strength data derived from soil database from 

USDA, close-to-real time landslide hazard map (LHM) was produced at the local scale. 

The final multi-temporal landslide hazard map was validated temporally and spatially using 

four study sites of known landslide locations and failure dates. The resulting product 

correctly indicated low factor of safety values at the sites on the dates the landslide 

occurred. Landside susceptibility map (LSM) was created using the logistic regression 

machine learning model utilizing the variables that included six geomorphic variables 

extracted from 1.5 m LiDAR DEM, eight variables extracted from the physical property of 

soil database from (WSS), and a land cover variable from 2016 National Land Cover 

Database (NLCD). The receiver operating characteristic curve (ROC), area under the curve 

(AUC), were used for the accuracy of the model which yielded a success rate of 0.84. The 

comparisons of the LHM and LSM were done quantitatively using the confusion matrix 

(Table 2-8 and Table 2-9), which showed that even on the date with the highest soil 

moisture content, the LHM still modeled less occurrence of landslides and verified 

correctly against the study sites. The validation of LHM for each study site indicated that 

using the infinite slope factor of safety equation (Lu and Godt, 2008), we can model the 

likelihood of landslide temporally and spatially based on the soil moisture evolution of the 

area, the soil properties and DEM data all available publicly rather than statistica l ly 

produced LSM. 

Land movement was detected using multi-temporal images collected by UAV equipped 

with a digital camera over the area where a landslide occurred and repaired in the past. The 

collected images were ortho-rectified, and co-registered using photogrammetric and area-

based matching techniques. Image correlation technique (COSI-Corr) was applied to three 

pairs of images that were one month apart to detect a horizontal land movement. The result 

showed a mean movement of 9.23 cm, 3.03 cm, and 0.23 cm in the metrics area for each 

pair in chronological order. Furthermore, using the multi-temporal images, we estimated 

the soil parameters; soil moisture in units of m3/m3 (R2=0.823), soil moisture in percentile 

(R2=0.961) at root zone, soil moisture in unit of kg m2 (R2=0.906) at 100-200 cm, and 

vegetation greenness fraction (R2=0.988) employing linear regression machine learning 
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model. Statistical combination of variables from all multi-temporal images were used as 

training points in the linear regression model, and the target variable values were taken 

from satellite data (GLDAS, SMAP). The land movement and soil moisture data can be 

used to gain significant information about the active landslide, and the stability of a slope. 
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Appendix A   
Python Codes For Landslide Susceptibility Map 

Using Logistic Regression Model.  
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Classifier Model for Landslide Susceptability Using Logistic 

Regression with RFE (Univariate Selection Tool and Recursive 

Feature Elimination) as Feature Selection Tool 

 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import warnings 

from sklearn.decomposition import PCA 

from sklearn.feature_selection import RFE 

from sklearn.feature_selection import RFECV 

from sklearn.feature_selection import SelectKBest, chi2 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import accuracy_score, f1_score 

from sklearn.metrics import f1_score,confusion_matrix 

from sklearn.model_selection import train_test_split 

from sklearn.neighbors import KNeighborsClassifier 

import matplotlib.pyplot as plt 

%matplotlib notebook 

 

np.set_printoptions(precision=3) 

pd.set_option('display.float_format', lambda x: '%.3f' % x) 

warnings.filterwarnings('ignore') 

np.random.seed(8) 

%matplotlib inline 

 

def generate_accuracy_and_heatmap(model, x, y): 

    cm = confusion_matrix(y,model.predict(x)) 

    sns.heatmap(cm,annot=True,fmt="d") 

    ac = accuracy_score(y,model.predict(x)) 

    f_score = f1_score(y,model.predict(x)) 

    print('Accuracy is: ', ac) 
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    print('F1 score is: ', f_score) 

    print ("\n") 

    print (pd.crosstab(pd.Series(model.predict(x), name='Predicted'), 

                       pd.Series(y['Predictor'],name='Actual'))) 

    return  

 

# My data  

df =pd.read_csv('FINAL_CAMPB_KENTON_CO.csv')  

 

print('The number of landlsides: 1  and Not Landslides: 0: \n', df.Predicto
r.value_counts()) 

# We see that it is not inbalanced , it has a probability of 50% chance 
 

numerical_feature_columns = list(df._get_numeric_data().columns) # creating 
a list to see the header of the columns  

numerical_feature_columns 

 

target = 'Predictor' 

k = 50 #number of variables for heatmap 

cols = df[numerical_feature_columns].corr().nlargest(k, target)[target].ind
ex 

correl = df[cols].corr() 

plt.figure(figsize=(16,16)) 

sns.heatmap(correl, annot=True, cmap = 'viridis' )  # cmap color options: '
inferno', , 'cividis''YlGnBu''magma''plasma' 
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# Separating the features from the labels 

X1 = df.loc[:, df.columns != target] # Conidition statement nested in this 
line of code. 

Y1 = df.loc[:, df.columns == target] 

 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

X = scaler.fit_transform(X1) 
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# we must apply the scaling to the test set that we computed for the tra

ining set 

print('The shape of the features',X.shape) 

print('The shape of the labels', Y1.shape) 

 

# Splitting the train set and the test set 

x_train, x_test, y_train, y_test = train_test_split(X, Y1, random_state=

0) # the default is set to 0.25 test set, also now 

# the data is np array no longer the panda dataframe 

 

C = [0.01,0.05,0.1, 0.5, 1, 2, 5, 8, 10 ,15, 20, 30, 40, 50] 

# after trying different regularization, it shows that the C = 0.01 give

s the best result.  

 

clf_lr = LogisticRegression(C = 0.0005) 

lr_baseline_model = clf_lr.fit(x_train,y_train) 

 

generate_accuracy_and_heatmap(lr_baseline_model, x_test, y_test) 

  

 

Univariate feature selection Tool 
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select_feature = SelectKBest(chi2, k=19).fit(x_train, y_train) 

 

# Creating a panda dataframe from the list , X1 column, and  

selected_features_df = pd.DataFrame({'Feature':list(X1.columns), 

                                     'Scores':select_feature.scores_}) 

selected_features_df.sort_values(by='Scores', ascending=False) 

Feature Scores 

23 EL_Coef_Var 14.495 

22 EL_Variance 12.716 

21 EL_STD 10.595 

61 Slope_MEAN 7.758 

20 EL_MEAN 5.145 

42 Plan_Curve_STD 4.048 

43 Plan_Curve_Variance 3.885 

1 Aspect_STD 3.782 

64 Slope_Coef_Var 3.583 

16 Curveture_STD 3.399 

63 Slope_Variance 3.257 

17 Curveture_Variance 2.881 
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Feature Scores 

62 Slope_STD 2.393 

2 Aspect_Variance 2.247 

51 Sand_MEAN 2.175 

5 AWC_MEAN 2.050 

35 NLCD_MEDIAN 1.848 

11 Clay_STD 1.283 

66 WC3rd_MEAN 1.254 

67 WC3rd_STD 1.170 

3 Aspect_Coef_Var 1.155 

31 LL_STD 1.073 

48 Rough_Variance 1.040 

13 Clay_Coef_Var 0.868 

58 Silt_Variance 0.854 

33 LL_Coef_Var 0.806 

47 Rough_STD 0.686 
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Feature Scores 

15 Curveture_MEAN 0.648 

8 AWC_Coef_Var 0.637 

69 WC3rd_Coef_Var 0.634 

... ... ... 

37 PI_STD 0.277 

25 Ksat_MEAN 0.275 

26 Ksat_STD 0.271 

45 Plan_Curve_Skewness 0.250 

56 Silt_MEAN 0.243 

54 Sand_Coef_Var 0.198 

68 WC3rd_Variance 0.196 

30 LL_MEAN 0.131 

29 Ksat_Skewness 0.117 

28 Ksat_Coef_Var 0.113 

52 Sand_STD 0.070 
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Feature Scores 

32 LL_Variance 0.067 

41 Plan_Curve_MEAN 0.060 

4 Aspect_Skewness 0.053 

57 Silt_STD 0.043 

9 AWC_Skewness 0.042 

60 Silt_Skewness 0.036 

10 Clay_MEAN 0.035 

14 Clay_Skewness 0.028 

0 Aspect_MEAN 0.025 

59 Silt_Coef_Var 0.023 

7 AWC_Variance 0.022 

34 LL_Skewness 0.020 

40 PI_Skewness 0.011 

50 Rough_Skewness 0.006 

18 Curveture_Coef_Var 0.002 
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Feature Scores 

44 Plan_Curve_Coef_Var 0.002 

19 Curveture_Skewness 0.001 

55 Sand_Skewness 0.001 

38 PI_Variance 0.000 

x_train_chi = select_feature.transform(x_train) # reducing the features 

to the k number of features.  

x_test_chi = select_feature.transform(x_test) 

In [43]: 

select_feature.get_support(indices = True) 

Out[43]: 

array([ 1,  2,  5, 11, 16, 17, 20, 21, 22, 23, 35, 42, 43, 51, 61, 62, 6

3, 

       64, 66], dtype=int64) 

In [44]: 

select_feature_list = list(select_feature.get_support(indices = True)) 

select_feature_list 

Out[44]: 

[1, 2, 5, 11, 16, 17, 20, 21, 22, 23, 35, 42, 43, 51, 61, 62, 63, 64, 66

] 

In [45]: 

# to see which features are being used.  

selected_features_df1 = selected_features_df.iloc[select_feature_list]['

Feature'] 

selected_features_df1.to_csv('Selected_feaures.csv') 

In [47]: 

lr_chi_model = clf_lr.fit(x_train_chi,y_train) 

In [48]: 
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generate_accuracy_and_heatmap(lr_chi_model, x_test_chi, y_test) 

Accuracy is:  0.7863247863247863 

F1 score is:  0.8201438848920861 

 

Actual      1 

Predicted     

0          12 

1          19 

 

 

# Cross Validation scores:  

from sklearn.model_selection import cross_val_score 

 

cv_scores = cross_val_score(lr_chi_model, X, Y1, cv =5) 

 

print('Cross-validation scores (3-fold):', cv_scores) 

print('Mean cross-validation score (3-fold): {:.3f}' 

     .format(np.mean(cv_scores))) 

Cross-validation scores (3-fold): [0.777 0.798 0.691 0.691 0.707] 

Mean cross-validation score (3-fold): 0.733 

 

Equation for the selected features. 
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In [50]: 

coef = lr_chi_model.coef_.tolist() 

class_ = lr_chi_model.classes_ 

print(lr_chi_model.intercept_) 

print(coef) 

coef_list = list(coef) 

[-0.023] 

[[-0.09635920203764367, -0.05312688523528351, -0.06627828655493466, -0.0

3371384619115812, 0.07069903909893288, 0.04155803063697834, -0.142537961

47726086, 0.14688932481330982, 0.11348556424732094, 0.17650182480232998, 

-0.07040267728098656, 0.0840502094330824, 0.056347475249267816, -0.03497

305484503876, 0.1308785299334852, 0.062354221671975046, 0.04932229482041

728, -0.08241909801742367, -0.08388179482495318]] 

 

RFE with cross validation 

In [20]: 

rfecv = RFECV(estimator=clf_lr, step=1, cv=5, scoring='accuracy') 

rfecv = rfecv.fit(x_train, y_train) 

print('Optimal number of features :', rfecv.n_features_)  # takes the ra

nking#1 data 

print('Best features :', X1.columns[rfecv.support_]) 

Optimal number of features : 17 

Best features : Index(['Aspect_STD', 'Aspect_Variance', 'AWC_MEAN', 'Cur

veture_MEAN', 

       'Curveture_STD', 'EL_MEAN', 'EL_STD', 'EL_Variance', 'EL_Coef_Var

', 

       'NLCD_MEDIAN', 'Plan_Curve_STD', 'Plan_Curve_Variance', 'Slope_ME

AN', 

       'Slope_STD', 'Slope_Variance', 'Slope_Coef_Var', 'WC3rd_MEAN'], 

      dtype='object') 

In [21]: 

important_features = list(X1.columns[rfecv.support_]) 

important_features 
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Out[21]: 

['Aspect_STD', 

 'Aspect_Variance', 

 'AWC_MEAN', 

 'Curveture_MEAN', 

 'Curveture_STD', 

 'EL_MEAN', 

 'EL_STD', 

 'EL_Variance', 

 'EL_Coef_Var', 

 'NLCD_MEDIAN', 

 'Plan_Curve_STD', 

 'Plan_Curve_Variance', 

 'Slope_MEAN', 

 'Slope_STD', 

 'Slope_Variance', 

 'Slope_Coef_Var', 

 'WC3rd_MEAN'] 

In [23]: 

plt.figure() 

plt.xlabel("Number of features selected") 

plt.ylabel("Cross validation score of number of selected features") 

plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) 

plt.show() 
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In [25]: 

# To graph everything in excel the score and rate need to be copied to t

xt file.  

optimalFeature_df = pd.DataFrame({'Number of Featuress Selected':list(ra

nge(1, len(rfecv.grid_scores_) + 1)), 

                                     'Cross Validation Score':list(rfecv

.grid_scores_)}) 

optimalFeature_df.to_excel("C:\\Users\\bda227\\Documents\\RESEARCH\\Pap

er1_landslideMapping\\tables_OptimalFeature.xlsx")  

In [65]: 

x_test.shape 

Out[65]: 

(117, 71) 

In [66]: 

x_train_rfecv = rfecv.transform(x_train)  # Data with 17 features from t

he selection model 

x_test_rfecv = rfecv.transform(x_test) 

x_test_rfecv.shape 

Out[66]: 
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(117, 18) 

In [67]: 

lr_rfecv_model = clf_lr.fit(x_train_rfecv, y_train) 

In [68]: 

generate_accuracy_and_heatmap(lr_rfecv_model, x_test_rfecv, y_test) 

Accuracy is:  0.7863247863247863 

F1 score is:  0.8120300751879699 

 

 

Actual      1 

Predicted     

0          13 

1          18 

 
# Cross Validation scores:  

 

cv_scores = cross_val_score(lr_rfecv_model, X, Y1, cv =5) 

 

print('Cross-validation scores (5-fold):', cv_scores) 

print('Mean cross-validation score (5-fold): {:.3f}' 

     .format(np.mean(cv_scores))) 

Cross-validation scores (5-fold): [0.777 0.798 0.691 0.691 0.707] 

Mean cross-validation score (5-fold): 0.733 
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Evaluation 

We can check precision,recall,f1-score using classification report! 

In [71]: 

predictions = lr_rfecv_model.predict(x_test_rfecv) 

In [72]: 

from sklearn.metrics import classification_report 

In [73]: 

print(classification_report(y_test,predictions)) 

              precision    recall  f1-score   support 

 

           0       0.86      0.67      0.75        57 

           1       0.74      0.90      0.81        60 

 

    accuracy                           0.79       117 

   macro avg       0.80      0.78      0.78       117 

weighted avg       0.80      0.79      0.78       117 

 

In [74]: 

print('Coefficients:\n', clf_lr.coef_) 

print('Intercepts:\n', clf_lr.intercept_) 

Coefficients: 

 [[-0.093 -0.051 -0.063 -0.053  0.074 -0.136  0.152  0.116  0.182 -0.066 

   0.088  0.058  0.136  0.066  0.051 -0.08  -0.076 -0.049]] 

Intercepts: 

 [-0.01] 
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Appendix B 

     
Python Codes To Estimate Soil Parameters From 

Multi-Temporal UAV Images.   

  



87 
 

Regression Model to correlate image statistics to soil parameters 

using Linear Regression  

%%javascript 

IPython.OutputArea.auto_scroll_threshold = 9999; 

In [1]: 

import os 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import warnings 

from sklearn.decomposition import PCA 

from sklearn.feature_selection import RFE 

from sklearn.feature_selection import RFECV 

from sklearn.feature_selection import SelectKBest, chi2 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

import matplotlib.pyplot as plt 

from sklearn.model_selection import cross_val_score 

plt.style.use('ggplot') 

In [25]: 

from sklearn import feature_selection 

In [2]: 

np.set_printoptions(precision=3) 

pd.set_option('display.float_format', lambda x: '%.3f' % x) 

warnings.filterwarnings('ignore') 

np.random.seed(8) 

%matplotlib inline 

In [3]: 
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# see the plots interactively 

%matplotlib notebook 

In [4]: 

os.chdir('C:\\Users\\bda227\\Documents\\ENVI\\Paper2\\python_codes') # to chan
ge your directory to the location you want.  

In [4]: 

os.getcwd() # to see the working directory 

Out[4]: 

'C:\\Users\\bda227\\Documents\\ENVI\\Paper2\\python_codes' 

In [5]: 

# My data  

df =pd.read_excel('All_satellite_droneData.xlsx')  

In [6]: 

df.shape 

Out[6]: 

(20, 52) 

In [7]: 

df.info() 

# everything looks good! no missing data. 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 20 entries, 0 to 19 

Data columns (total 52 columns): 

Date                                                             20 non-null da
tetime64[ns] 

Date_Time                                                        20 non-null da
tetime64[ns] 

band1_mean                                                       20 non-null fl
oat64 

band1_std                                                        20 non-null fl
oat64 

band1_Eigenvalue                                                 20 non-null fl
oat64 
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band1_band2_covariance                                           20 non-null fl
oat64 

band1_band3_covariance                                           20 non-null fl
oat64 

band2_mean                                                       20 non-null fl
oat64 

band2_std                                                        20 non-null fl
oat64 

band2_Eigenvalue                                                 20 non-null fl
oat64 

band2_band3_covariance                                           20 non-null fl
oat64 

band3_mean                                                       20 non-null fl
oat64 

band3_std                                                        20 non-null fl
oat64 

band3_Eigenvalue                                                 20 non-null fl
oat64 

SPL4SMGP_005_Geophysical_Data_sm_rootzone                        20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_AvgSurfT_tavg                           20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_CanopInt_tavg                           20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_Evap_tavg                               20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_GWS_tavg                                20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_Qg_tavg                                 20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_Qh_tavg                                 20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_Qle_tavg                                20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_SoilMoist_P_tavg                        20 non-null f
loat64 
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 GLDAS_CLSM025_DA1_D_2_2_SoilMoist_RZ_tavg                       20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_SoilMoist_S_tavg                        20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_TVeg_tavg                               20 non-null f
loat64 

 GLDAS_CLSM025_DA1_D_2_2_TWS_tavg                                20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_AvgSurfT_inst                              20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_Evap_tavg                                  20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_Qg_tavg                                    20 non-null fl
oat64 

 GLDAS_NOAH025_3H_2_1_Qh_tavg                                    20 non-null fl
oat64 

 GLDAS_NOAH025_3H_2_1_Qle_tavg                                   20 non-null fl
oat64 

 GLDAS_NOAH025_3H_2_1_RootMoist_inst                             20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_SoilMoi0_10cm_inst                         20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_SoilMoi10_40cm_inst                        20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_SoilMoi40_100cm_inst                       20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_SoilMoi100_200cm_inst                      20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_SoilTMP0_10cm_inst                         20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_SoilTMP10_40cm_inst                        20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_SoilTMP40_100cm_inst                       20 non-null f
loat64 

 GLDAS_NOAH025_3H_2_1_SoilTMP100_200cm_inst                      20 non-null f
loat64 



91 
 

 GLDAS_NOAH025_3H_2_1_Tveg_tavg                                  20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_heat_flux_ground_5                 20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_heat_flux_sensible_5               20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_land_evapotranspiration_flux_5     20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5                 20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_sm_surface_5                       20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_sm_surface_wetness_5               20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_soil_temp_layer4_5                 20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5     20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_surface_temp_5                     20 non-null f
loat64 

SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_5    20 non-null f
loat64 

dtypes: datetime64[ns](2), float64(50) 

memory usage: 8.2 KB 

 

Function to create a graph 

In [66]: 

# without scaling the data. Original  

from sklearn.metrics import r2_score 

from sklearn.metrics import mean_squared_error 

def PlotPolly(model, independent_variable, dependent_variabble, Name,power): 

    x_new = np.linspace(independent_variable.min(), independent_variable.max()
, 20) 

    y_new = model(x_new) 
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    y_hat = np.asanyarray(model(independent_variable)) 

    y_test = np.asanyarray(dependent_variabble) 

    R2_score = r2_score(y_test, y_hat)    

#     print("R2-score: %.3f" % r2_score(y_hat , y_test) ) 

    MSE = mean_squared_error(y_test, y_hat) 

    plt.figure() 

    plt.plot(independent_variable, dependent_variabble, '.', x_new, y_new, '-'
) 

#     plt.title('Polynomial Fit with Matplotlib for q0 x e_eoc VS e_ini') 

    plt.title('Polymomial Regression(Power={})\n\ 

            R^2 = {:.3f}, MeanSqrd Error:{:.3f} '.format(power, R2_score, MSE)
) 

    ax = plt.gca() 

    ax.set_facecolor((0.898, 0.898, 0.898)) 

    fig = plt.gcf() 

    plt.xlabel(Name) 

    plt.ylabel(y) 

 

    plt.show() 

    plt.close() 

 

Feature Selection 

In [8]: 

y_list = ['SPL4SMGP_005_Geophysical_Data_sm_rootzone',' GLDAS_NOAH025_3H_2_1_R
ootMoist_inst',' GLDAS_NOAH025_3H_2_1_SoilMoi0_10cm_inst', 

' GLDAS_NOAH025_3H_2_1_SoilMoi10_40cm_inst',' GLDAS_NOAH025_3H_2_1_SoilMoi40_1
00cm_inst',' GLDAS_NOAH025_3H_2_1_SoilMoi100_200cm_inst', 

'SPL4SMGP_005_Geophysical_Data_heat_flux_ground_5','SPL4SMGP_005_Geophysical_D
ata_land_evapotranspiration_flux_5', 

'SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5','SPL4SMGP_005_Geophysical_D
ata_sm_surface_5', 

'SPL4SMGP_005_Geophysical_Data_sm_surface_wetness_5','SPL4SMGP_005_Geophysical
_Data_soil_water_infiltration_flux_5', 
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'SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_5'] 

Using only all the variables in Linear Regression Model 

In [15]: 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import r2_score 

Normalizing the X 

In [13]: 

# Scaling it using min max scaler 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

X_norm = scaler.fit_transform(X) 

 

Using correlation Features 

Using f_regression 

In [126]: 

# configure to select all features 

 

for i in range(1,13):     

    fs = SelectKBest(score_func=f_regression, k=i) 

    # learn relationship from training data 

    fs.fit(X, y) 

    # transform train input data 

    X_train_fs = fs.transform(X) 

    # transform test input data 

 

 

    # fit the model 

    model = LinearRegression() 

    model.fit(X_train_fs, y) 
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    # evaluate the model 

    yhat = model.predict(X_train_fs) 

    # evaluate predictions 

    mae = mean_absolute_error(y, yhat) 

    print('MAE: %.3f' % mae) 

    # R2 score 

    R2_score = r2_score(y, yhat)    

    print("R2-score: %.3f and when selected features : %.f" % (r2_score(y, yha
t), i)) 

MAE: 0.008 

R2-score: 0.586 and when selected features : 1 

MAE: 0.007 

R2-score: 0.661 and when selected features : 2 

MAE: 0.007 

R2-score: 0.713 and when selected features : 3 

MAE: 0.007 

R2-score: 0.716 and when selected features : 4 

MAE: 0.007 

R2-score: 0.717 and when selected features : 5 

MAE: 0.007 

R2-score: 0.724 and when selected features : 6 

MAE: 0.006 

R2-score: 0.734 and when selected features : 7 

MAE: 0.006 

R2-score: 0.740 and when selected features : 8 

MAE: 0.006 

R2-score: 0.809 and when selected features : 9 

MAE: 0.005 

R2-score: 0.819 and when selected features : 10 

MAE: 0.005 

R2-score: 0.819 and when selected features : 11 

MAE: 0.005 
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R2-score: 0.823 and when selected features : 12 

In [119]: 

def select_features1(X, y): 

 # configure to select all features 

 fs = SelectKBest(score_func=mutual_info_regression, k= 5) 

 # learn relationship from training data 

 fs.fit(X, y) 

 # transform train input data 

 X_train_fs = fs.transform(X) 

 return X_train_fs, fs 

 

# feature selection 

X_train_fs, fs = select_features1(X, y) 

# fit the model 

model = LinearRegression() 

model.fit(X_train_fs, y) 

# evaluate the model 

yhat = model.predict(X_train_fs) 

# evaluate predictions 

mae = mean_absolute_error(y, yhat) 

print('MAE: %.3f' % mae) 

# R2 score 

R2_score = r2_score(y, yhat)    

print("R2-score: %.3f" % r2_score(y, yhat)) 

MAE: 0.007 

R2-score: 0.691 

 

Using RFE (Recursive Feature Elimination) 

In [217]: 

# evaluate RFE for regression 

from numpy import mean 
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from numpy import std 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import RepeatedKFold 

from sklearn.feature_selection import RFE 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.pipeline import Pipeline 

 

 

list_target_corr = [] 

for k in y_list: 

    y = df[k] 

 

    # to formulate the graph for the number of features Vs the R2 values.  

    x_value = [] 

 

    y_value = [] 

    for i in range(1,13): 

        # create pipeline 

        rfe = RFE(estimator=LinearRegression(), n_features_to_select=i) 

        model = LinearRegression() 

        pipeline = Pipeline(steps=[('s',rfe),('m',model)]) 

 

        # fit the model on all available data 

        pipeline.fit(X_norm, y) 

        # make a prediction for one example 

 

        yhat = pipeline.predict(X_norm) 

        # print('Predicted: %.3f' % (yhat)) 

        R2_score = r2_score(y, yhat) 

        if R2_score >= 0.8: 

            print("R2-score: %.3f" % r2_score(y, yhat),f': {k} , and feature s
elected : {i}') 
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            list_target_corr.append(k) 

            

        x_value.append(i) 

        y_value.append(R2_score) 

 

    # To plot the image    

    if R2_score >= 0.8: 

        plt.plot(x_value, y_value, label = k) 

        plt.plot(x_value, y_value,'o', alpha=0.8, color = 'r') 

        # thisaxis.plot(X_test, y_test, 'o', label='Test Value', alpha=0.8) 

        plt.xlabel('number of features') 

        plt.ylabel('R2 values') 

        plt.title('RFE graph with number of features vs R2 scores') 

        plt.legend() 

        plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) 

        list_target_corr.append(k) 

 

print(f'The names of the target variables:\n {set(list_target_corr)} and the l
ength id {len(set(list_target_corr))}') 

 

# # evaluate model 

# cv = RepeatedKFold(n_splits=5, n_repeats=2, random_state=1) 

# n_scores = cross_val_score(pipeline, X, y, scoring='neg_mean_absolute_error'
, cv=cv, n_jobs=-1, error_score='raise') 

# # report performance 

# print('MAE: %.3f (%.3f)' % (mean(n_scores), std(n_scores))) 

# R2_score = r2_score(y, yhat)    

# print("R2-score: %.3f" % r2_score(y, yhat)) 

# n_scores 

R2-score: 0.802 : SPL4SMGP_005_Geophysical_Data_sm_rootzone , and feature sele
cted : 7 
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R2-score: 0.809 : SPL4SMGP_005_Geophysical_Data_sm_rootzone , and feature sele
cted : 8 

R2-score: 0.810 : SPL4SMGP_005_Geophysical_Data_sm_rootzone , and feature sele
cted : 9 

R2-score: 0.811 : SPL4SMGP_005_Geophysical_Data_sm_rootzone , and feature sele
cted : 10 

R2-score: 0.822 : SPL4SMGP_005_Geophysical_Data_sm_rootzone , and feature sele
cted : 11 

R2-score: 0.823 : SPL4SMGP_005_Geophysical_Data_sm_rootzone , and feature sele
cted : 12 

R2-score: 0.830 :  GLDAS_NOAH025_3H_2_1_SoilMoi100_200cm_inst , and feature se
lected : 10 

R2-score: 0.831 :  GLDAS_NOAH025_3H_2_1_SoilMoi100_200cm_inst , and feature se
lected : 11 

R2-score: 0.906 :  GLDAS_NOAH025_3H_2_1_SoilMoi100_200cm_inst , and feature se
lected : 12 

R2-score: 0.832 : SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5 , and featu
re selected : 8 

R2-score: 0.960 : SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5 , and featu
re selected : 9 

R2-score: 0.960 : SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5 , and featu
re selected : 10 

R2-score: 0.961 : SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5 , and featu
re selected : 11 

R2-score: 0.961 : SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5 , and featu
re selected : 12 

R2-score: 0.839 : SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5 
, and feature selected : 9 

R2-score: 0.843 : SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5 
, and feature selected : 10 

R2-score: 0.847 : SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5 
, and feature selected : 11 

R2-score: 0.856 : SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5 
, and feature selected : 12 

R2-score: 0.958 : SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_
5 , and feature selected : 6 
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R2-score: 0.968 : SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_
5 , and feature selected : 7 

R2-score: 0.968 : SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_
5 , and feature selected : 8 

R2-score: 0.979 : SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_
5 , and feature selected : 9 

R2-score: 0.988 : SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_
5 , and feature selected : 10 

R2-score: 0.988 : SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_
5 , and feature selected : 11 

R2-score: 0.988 : SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_
5 , and feature selected : 12 

The names of the target variables: 

 {'SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5', ' GLDAS_NOAH025_3H_2_1_S
oilMoi100_200cm_inst', 'SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_
flux_5', 'SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_5', 'SPL
4SMGP_005_Geophysical_Data_sm_rootzone'} and the length id 5 

 

IMPORTANT!! 



100 
 

The following dataframe is the one we want to use to correlate the 

data. 

In [10]: 

# Originally We had the following soil parameters, however I decided to drop t
he ones that give us less than 0.8 R2 value 

# After filtering through the list\ 

print('Original selected Target variables from Satellites') 

 

for k in y_list: 

    print(f'{k}') 

print('\n') 

y_list_final = ['SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5', ' GLDAS_NO
AH025_3H_2_1_SoilMoi100_200cm_inst', 

                'SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5'
,  

                'SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_5
', 'SPL4SMGP_005_Geophysical_Data_sm_rootzone']  

for f in y_list_final: 

    print(f'Final selected target variable that has more than 0.8 R2-Value: {f
}') 

     

df_used = df[['SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5', ' GLDAS_NOAH
025_3H_2_1_SoilMoi100_200cm_inst',  

              'SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5',  

              'SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_5', 
'SPL4SMGP_005_Geophysical_Data_sm_rootzone']] 

Original selected Target variables from Satellites 

SPL4SMGP_005_Geophysical_Data_sm_rootzone 

 GLDAS_NOAH025_3H_2_1_RootMoist_inst 

 GLDAS_NOAH025_3H_2_1_SoilMoi0_10cm_inst 

 GLDAS_NOAH025_3H_2_1_SoilMoi10_40cm_inst 

 GLDAS_NOAH025_3H_2_1_SoilMoi40_100cm_inst 
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 GLDAS_NOAH025_3H_2_1_SoilMoi100_200cm_inst 

SPL4SMGP_005_Geophysical_Data_heat_flux_ground_5 

SPL4SMGP_005_Geophysical_Data_land_evapotranspiration_flux_5 

SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5 

SPL4SMGP_005_Geophysical_Data_sm_surface_5 

SPL4SMGP_005_Geophysical_Data_sm_surface_wetness_5 

SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5 

SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_5 

 

 

Final selected target variable that has more than 0.8 R2-Value: SPL4SMGP_005_G
eophysical_Data_sm_rootzone_pctl_5 

Final selected target variable that has more than 0.8 R2-Value:  GLDAS_NOAH025
_3H_2_1_SoilMoi100_200cm_inst 

Final selected target variable that has more than 0.8 R2-Value: SPL4SMGP_005_G
eophysical_Data_soil_water_infiltration_flux_5 

Final selected target variable that has more than 0.8 R2-Value: SPL4SMGP_005_G
eophysical_Data_vegetation_greenness_fraction_5 

Final selected target variable that has more than 0.8 R2-Value: SPL4SMGP_005_G
eophysical_Data_sm_rootzone 

In [26]: 

data_head = X.columns 

data_head 

Out[26]: 

Index(['band1_mean', 'band1_std', 'band1_Eigenvalue', 'band1_band2_covariance'
, 

       'band1_band3_covariance', 'band2_mean', 'band2_std', 'band2_Eigenvalue'
, 

       'band2_band3_covariance', 'band3_mean', 'band3_std', 

       'band3_Eigenvalue'], 

      dtype='object') 

Predicted soil parameters Vs Actual soil Values 

In [33]: 
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model = LinearRegression() 

 

for f in y_list_final: 

    y = df[f] 

    # fit the model 

     

    model.fit(X_norm, y) 

    # evaluate the model 

    yhat = model.predict(X_norm) 

    # evaluate predictions 

    mae = mean_absolute_error(y, yhat) 

    print('MAE: %.3f' % mae) 

    # R2 score 

    R2_score = r2_score(y, yhat)    

    print("R2-score: %.3f" % r2_score(y, yhat)) 

    # creating new column for the dataframe with y_hat data. 

    new_column_name = f + 'yhat' 

    df_used[new_column_name] = yhat 

    # creating new column for the coeficients 

    # Plotting the predicted Vs the actual 

    # Predicted values  

    plt.plot(df['Date'], yhat) 

    plt.plot(df['Date'], yhat, '^', markersize = 10, 

                 label='Predicted', alpha=0.8, color ='g') 

    # Actual Values 

    plt.plot(df['Date'], y) 

    plt.plot(df['Date'], y,'o', label='True Value', alpha=0.8, color = 'r') 

    # thisaxis.plot(X_test, y_test, 'o', label='Test Value', alpha=0.8) 

    plt.xlabel('Date') 

    plt.ylabel('Target value') 

    plt.title('Linear Regression \n\ 
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        Train $R^2 = {:.3f}$'.format(R2_score)) 

    plt.title(f) 

    plt.legend() 

    plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) 

    plt.show() 

    print(f"{f} is {model.coef_}") 

# to see if the yhat values are appended to this     

     

MAE: 2.865 

R2-score: 0.961 

 

SPL4SMGP_005_Geophysical_Data_sm_rootzone_pctl_5 is [    5.846   221.024 -1573
.241   423.222   112.26     83.11   -202.441 

   -13.155  1046.425   -66.14     30.136   -37.017] 

MAE: 1.046 

R2-score: 0.906 

 GLDAS_NOAH025_3H_2_1_SoilMoi100_200cm_inst is [  -17.437  -265.57   1718.541  
-136.183  -388.959   -17.821    25.572 
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    34.941 -1209.445    20.979   187.523   -13.553] 

MAE: 0.000 

R2-score: 0.856 

SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5 is [ 4.108e-06  1
.536e-05 -4.551e-04  7.703e-05  1.529e-04  7.472e-06 

 -2.683e-05  1.101e-05  3.194e-04 -5.976e-06 -8.779e-05  3.375e-06] 

MAE: 0.003 

R2-score: 0.988 

SPL4SMGP_005_Geophysical_Data_vegetation_greenness_fraction_5 is [-0.035  0.02
5  0.862  0.006 -0.445  0.162 -0.134 -0.038 -0.323 -0.118 

  0.024 -0.025] 

MAE: 0.005 

R2-score: 0.823 

SPL4SMGP_005_Geophysical_Data_sm_rootzone is [-0.021  0.214 -2.609  0.666  0.4
75  0.01  -0.159  0.017  1.499  0.005 

 -0.033 -0.019] 

In [18]: 

df_used.drop(columns = ['SPL4SMGP_005_Geophysical_Data_soil_water_infiltration
_flux_5yhat', 'SPL4SMGP_005_Geophysical_Data_soil_water_infiltration_flux_5'], 
inplace=True) 

Exportng the predicted data VS Actual data and plot the graph in 

excel for the paper later. 

In [232]: 

df_used.to_excel('Correlated_data_predicted_VS_actual.xlsx', index = False) 

In [ ]: 

  

In [162]: 

df.columns[1] 

Out[162]: 

'Date_Time' 

In [180]: 

rfe = RFE(estimator=LinearRegression(), n_features_to_select=7) 
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model = LinearRegression() 

pipeline = Pipeline(steps=[('s',rfe),('m',model)]) 

 

# fit the model on all available data 

selector = pipeline.fit(X_norm, y) 

# make a prediction for one example 

 

yhat = selector.predict(X_norm) 

# print('Predicted: %.3f' % (yhat)) 

R2_score = r2_score(y, yhat)    

print("R2-score: %.3f" % r2_score(y, yhat)) 

 

for i in range(X.shape[1]): 

    if rfe.support_[i] == True: 

        print(f'The selected features are {df.columns[i+2]}') 

 

#  print('Column: %d, Selected %s, Rank: %.3f' % (i, rfe.support_[i], rfe.r
anking_[i])) 

R2-score: 0.802 

The selected features are band1_std 

The selected features are band1_Eigenvalue 

The selected features are band1_band2_covariance 

The selected features are band1_band3_covariance 

The selected features are band2_std 

The selected features are band2_band3_covariance 

The selected features are band3_std 

 

END OF THE DRONE DATA ANALYSIS  
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