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ABSTRACT OF DISSERTATION 

 
 
 

 

IMPACT OF PREFERENTIAL FLOW, SOURCE WATER CONNECTIVITY, AND 

AGRICULTURAL MANAGEMENT PRACTICES ON SEDIMENT AND 

PARTICULATE PHOSPHORUS DYNAMICS IN MIDWESTERN TILE-DRAINED 

LANDSCAPES 

 

Tile drainage is recognized as a significant transporter of sediment and particulate 

phosphorus (PP) in the Midwestern U.S., leading to proliferation of Harmful Algal 

Blooms (HABs). Numerous studies have focused on Dissolved Reactive Phosphorus 

(DRP) and Nitrogen (N) flux dynamics in tile-drained landscapes; however, the impact of 

preferential flow and agricultural management practices on fate and transport of sediment 

and PP has remained poorly understood.  The overarching objective of this study was to 

improve understanding of sediment P delivery in tile-drained landscapes. This 

dissertation focuses on four studies.  

In the first study, forms and flow pathway dynamics of total phosphorus (TP) 

loading in midwestern tile-drained landscapes was investigated. A dataset including 5 

years of surface and tile discharge P and N concentrations from two Edge-of-Field (EOF) 

study sites with contrasting soil and management practices were investigated. 

Hydrograph recession techniques were coupled with multiple linear regression (MLR) for 

understanding hydrologic flow pathways, and empirical mode decomposition (EMD) 

time-series analysis was used to determine the significance of PP seasonality processes 

and the effect of management practices. The results showed that macropore flow plays a 

significant role in PP delivery to subsurface P loading which was significantly affected 

by environmental conditions and management practices.  

In the second study, a new framework that couples hydrograph recession and 

specific conductance end-member mixing analysis (SC-EMMA) was developed to 

quantify both flow pathway dynamics and source connectivity of drainage water in tile-

drainage. Statistical analysis was employed to evaluate the impact of pathway-

connectivity dynamics on DRP concentrations. The results highlighted that pathway-

connectivity hydrograph components improved prediction of DRP concentrations over 

hydrograph recession and SC-EMMA results in isolation. The findings also highlighted 

the importance of matrix-macropore exchange and preferential flow of new water to 

groundwater recharge to impact drainage hydrographs and DRP concentrations. 

        In the third study, our new pathway-connectivity framework was combined with 

high-frequency turbidity data to investigate sources and pathways of sediment delivery in 

tiles. MLR analysis was performed to evaluate impacts of pathway connectivity on 

sediment concentration and seasonal dynamics were assessed using hysteresis analysis. 

The results showed that new water that routes through quickflow reservoir is the main 



     

 

hydrograph fraction for sediment and PP delivery in these landscapes. Results showed 

that hydrograph partitioning can improve prediction of sediment concentration and 

quickflow of new water was the major sediment and PP delivery pathway to tiles. 

Sediment concentrations were different in dry season with promoted macropores as 

compared to cold season with higher soil moisture and freezing and thawing effects.  

In the fourth study, the impacts of drainage water management (DWM) on flow 

pathway-connectivity and PP dynamics were investigated. Before-After-Control-Impact 

(BACI) assessment, long-term EMD, and hysteresis analysis of data from a paired 

controlled (CD) and free-drainage (FD) field site was performed. The results showed that 

tile discharge, preferential flow and sediment P are significantly impacted by DWM at 

the event timescale.  Results also suggested that DWM can change time-to-peak of 

hydrograph, preferential flow, thus impacting sediment pathway and transport processes 

in subsurface flow.  Cumulatively, DWM was found to decrease sediment and PP 

concentration and loadings at the study site through enhancement of subsurface filtration 

and decreases in preferential transport of new water.   

The processes elucidated in this study should be considered and used in 

agroecosystem models for improving representation of subsurface sediment delivery 

processes, and for model evaluation. Future studies should consider use of more robust 

tracers to elucidate spatial and temporal distribution of sediment sources and erosion 

mechanisms from subsurface pathways.     

 

KEYWORDS: Tile Drainage, Preferential Flow, Source-connectivity, Sediment, 

Particulate P, Drainage water management.  
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CHAPTER 1.  INTRODUCTION 

1.1 Background Information 

  

 Midwestern tile-drained landscapes export high levels of phosphorus (P), leading 

to proliferation of Harmful and Nuisance Algal Blooms (Blann et al., 2009; Smith et al., 

2015 and Williams et al., 2016). Numerous studies have quantified dissolved reactive P 

(DRP) loadings and studied the mechanisms of DRP transport to subsurface drainage 

(e.g., Sims et al., 1998, Algoazany et al. 2007, Ruark et al., 2012; King et al., 2015; 

Smith et al., 2015; Williams et al., 2015; Christianson et al., 2016; Pease et al., 2017). 

Notwithstanding the importance of DRP, less emphasis has been placed on other forms 

of P in tile drains, resulting in their exclusion from agricultural water management 

models (e.g. Radcliffe et al., 2015; Christianson et al., 2016; Chen et al., 2018). 

Nevertheless, studies have shown much of the total P (TP) in subsurface drainage can be 

associated with particulate P (PP) (e.g. Schwab et al., 1977; Bottcher et al., 1989; 

Paasonen and Koivusalo, 2006; Enright and Madramootoo, 2004; Macrae et al., 2007; 

and Eastman et al., 2010; Christianson et al., 2016). As soils are eroded from the 

landscape and delivered to downstream waterbodies, P may be mobilized and can 

promote eutrophication and degradation of freshwater and marine sources (Zhu et al., 

2018), or can fuel in-stream primary productivity (Brennan et al., 2017; Ford et al., 

2018). Towards improved considerations of PP fluxes in management strategies, a need 

exists to evaluate the magnitudes and drivers influencing sediment and PP delivery to 

tile-drains.  
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The USDA-ARS SDRU in Ohio has established a series of Edge-of-Field (EOF) 

surface and subsurface monitoring platform across soil, management, and topographic 

gradients to quantify the impacts of practices on nutrient loadings in tile-drained 

landscapes. In these monitoring sites, surface runoff is measured using H-flumes, and a 

weir is installed in the outlet of tile drains. ISCO 6712 portable automatic samplers are 

used to collect water quality samples from surface and subsurface runoff. All water 

samples are analyzed for DRP, total P (TP), NO3-N, NH4-N, and total N (TN) 

concentrations. The compiled results (Kevin King, unpublished) from all the EOF sites 

indicates that subsurface DRP concentration and loading contributes 59% and 47% of TP 

concentration and loading, respectively. The TP―DRP may consist of Dissolved 

Organic P (DOP), Particulate Organic P (POP) and Particulate Inorganic P (PIP).  

Further investigation of drivers of these fluxes is critical given the impacts on TP 

loadings, particularly in spring, which has been linked to HABs in receiving water bodies 

(Macrae et al., 2010; King et al., 2015). 

 

 

 

 

 

 

 

Figure 1.1  a) Tile discharge from a USDA-ARS EOF site. b) Surface and Tile DRP Vs 

TP concentrations and loadings from 40 USDA-ARS EOF sites (Kevin King, 

unpublished). 

 

Lindsay Pease. 2018 (a) 
(b) 
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1.2 Conceptual Framework of PP delivery to Tiles 

Studies that have previously measured PP delivery to tile drains suggest that soil 

characteristics, environmental conditions, and agricultural management practices all 

influence PP delivery to subsurface drainage (Figure 1.2). Regarding soil characteristics, 

finer sediments contain more Bioavailable Particulate P (BAPP) and may be preferentially 

transported during erosion (Michaud and Laverdiere, 2004; Collins et al., 2019). Likewise, 

soil texture is widely recognized to influence matrix and macropore flow. It is commonly 

assumed that TSS and PP delivery to tiles is through macropore flow and selective removal 

and transport of sediment from different parts of soil profile have shown macropore inner 

wall erosion (Oygarden et al., 1995; Unsitalo et al., 2001; Stone and Krishnappan, 2001; 

Paasonen and Koivusali, 2006, Schilling and Helmers, 2008). Regarding subsurface flow 

pathways, preferential flow is a function of soil matrix infiltration capacity, soil moisture, 

interaction between macropores and matrix and connectivity of macropores (Klaus et al., 

2013; Tsuboyama et al., 1994; Sidle et al., 2001). Under low soil moisture conditions, water 

can quickly transport to tile via dessication cracks (Williams et al., 2018; Ford et al., 2017). 

Under saturated soil moisture conditions, the rapid vertical flux through earthworm burrows, 

root channels and inter-aggregate voids can occur (Jarvis 2007, Deurer et al., 2009, Beven 

and Germann, 2013). In addition, when cracks are visually closed, a transition from 

preferential flow to matrix flow takes place and matrix flow starts at the top of the profile and 

progresses downward as moisture content exceeds field capacity. Regarding environmental 

conditions, raindrop impacts and intensity result in sediment detachment and transport of fine 

particles through macropores (Pilgrim and Huff, 1983, Heppell and Chapman 2006, Jarvis 

2007) and TSS concentration and PP delivery in tiles can be different over seasons (Paasonen 

and Koivusalo, 2006; Schelde et al., 2006). Management is also perceived to be important as 

peak TSS concentrations in tile-drains have been observed following tillage (Paasonen and 
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Koivusalo, 2006). Further, the concentration of PP and BAPP bound to sediment is related to 

soil test P levels, and hence fertilization practices are perceived important (Poirier et al., 

2012). Nevertheless, these perceptions are rarely robustly evaluated. For instance, studies that 

attribute TSS delivery to macropore flow have rarely quantified preferential flow 

contributions. Robust datasets that span the range of management conditions, soil textures, 

and environmental gradients are needed to test existing perceptions to better inform 

management practices. 

 

Figure 1.2  Mechanisms and factors driving sediment delivery to subsurface for a) soil 

with desiccation cracks b) soil is saturated and macropores are visually closed 

 

        Drainage Water Management (DWM) has been commonly used in tile-drained 

landscapes to regulate groundwater table and reduce subsurface drainage fluxes (Drury et 

al., 1999; Ghane et al., 2012). DWM structures are usually placed at the outlet of the tile 

network in order to regulate outlet elevation by adding and removing the stop logs within 

the structure. Depending on this regulation, here we define that when the stop logs are 

removed the outlet is free-drained (FD) which means that the hydraulic head in the tile 

drains is adjusted to be less than the hydraulic head of the water table in the surrounding 

soils. Under this condition gravitational flow and gradients are formed towards the drain 

(a) (b) 
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provided that water table is not lower than drain depth. Conversely, when the stop logs 

are in place we define that the tiles are under controlled drainage (CD) and the elevation 

of outlet is increased in order to retain more water in the field when needed.  Several 

studies have shown that while controlled drainage (CD) is an effective practice in 

reducing subsurface flow and nutrient loading (Evans et al., 1995; Fausey, 2005; Strock 

et al., 2010; et al., 2012), it can increase surface runoff and consequently sediment 

loading from tile-drained fields (Singh et al., 2007; Ale et al., 2008; Cook and Verma 

2012). Several previous studies have indicated that the reduced nutrient loading, 

especially nitrogen loading, is attributed to reduced water fluxes, and nutrient 

concentrations remain unchanged or slightly changed (Williams et al., 2015; Nash et al., 

2015; Ross et al., 2016). DWM can also alter subsurface pathway dynamics such as 

increase of lateral seepage with CD (Ale et al. 2008, Thorp et al., 2008), and result in 

water loss via other pathways such as surface runoff and groundwater recharge (Ross et 

al. 2016). Hence, determining the efficiency of DWM is challenging due to limitations in 

characterization of all hydrological pathways (Cooke and Verma 2012). A need exists to 

quantify the effect of DWM on water lost in pathways such as preferential flow, surface 

runoff, groundwater recharge (Ross et al. 2016) and consequently impact of CD on 

sediment delivery in surface and subsurface of tile-drained field equipped with DWM.  

1.3 Overarching Objective 

        Numerous studies have focused on DRP and nitrogen flux dynamics in tile-drained 

landscapes, and automated samplers have been used in EOF monitoring programs to 

capture flow and dissolved and total nutrient event flow concentrations. However, less 

emphasis has been placed on PP. Therefore, a need exists to study fluxes and dynamics of 

sediment and PP to improve our understanding of sediment P delivery in tile-drained 

landscapes with the ultimate goal of advancing agricultural water quality models and 
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providing effective management solutions that minimize downstream impacts. The 

following objectives have been outlined towards achieving our overall goal: 

  

Objective 1: Characterizing subsurface flow pathways and P forms to evaluate impacts of 

preferential flow, environmental conditions, and management practices on particulate P 

delivery in tile-drained landscapes. 

Objective 2: Develop and evaluate a novel framework to partition subsurface flow based 

on both flow pathway and source connectivity descriptors and elucidate their impact on P 

concentration dynamics in tile drainage.  

Objective 3: Quantify sediment loading dynamics for a subsurface drained agroecosystem 

and assess the governing flow pathway and water source impacts on tile sediment loads. 

Objective 4: Identify impacts of Drainage Water Management (DWM) on flow pathway-

connectivity and sediment phosphorus dynamics in a tile-drained agroecosystem. 

 

This dissertation is organized in seven chapters, chapter 1 establishes the focus of this 

research, current research gaps, and general rational of this dissertation. Chapters 2, 3, 4, 

and 5 focus on objectives 1, 2, 3 and 4, respectively. Chapter 6 provides a summary from 

findings of all chapters. Finally, Chapter 7 addresses future research needs and 

preliminary results of a tracer-based approach for partitioning sediment source 

provenance. The second chapter is published in Journal of Environmental Quality and is 

adapted by editor’s permission to be incorporated in this dissertation.  
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CHAPTER 2. IMPACTS OF PREFERENTIAL FLOW AND AGROECOSYSTEM 

MANAGEMENT ON SUBSURFACE PARTICULATE PHOSPHORUS LOADINGS IN 

TILE-DRAINED LANDSCAPES 

Adapted with permission from Nazari, S., Ford, W. I., King, K. W. 2020. Impacts of preferential flow and 

agroecosystem management on subsurface particulate phosphorus loadings in tile‐drained landscapes, 

Journal of Environmental Quality, Vol. 49, No. 5, pp. 1370-1383. 

Copyright © 2020 John Wiley & sons, Ltd. 

2.1 Introduction 

Midwestern tile-drained landscapes export significant levels of phosphorus (P) 

that contribute to the proliferation of harmful and nuisance algal blooms (Blann et al., 

2009; Smith et al., 2015 and Williams et al., 2016). While numerous studies have 

quantified dissolved reactive P (DRP) loadings and studied the mechanisms of DRP 

transport to subsurface drainage systems, less emphasis has been placed on other forms 

transported through tile drains such as particulate P (PP) and dissolved unreactive P 

(DUP) (Radcliffe et al., 2015; King et al, 2015; Christianson et al., 2016; Chen et al. 

2018).  In particular, as PP is lost from the landscape and delivered to downstream 

waterbodies, bioavailable P may be mobilized, promoting eutrophication and degradation 

of freshwater and marine sources or fueling in-stream primary productivity (Brennan et 

al. 2017; Ford et al., 2018; Zhu et al, 2018). 

Field-scale nutrient studies in tile-drained agroecosystems have evolved over the 

past 50 years and now focus on methodologies for continuous monitoring of flow-

weighted mean concentrations (FWMC) of dissolved and total nutrient species using 

automated samplers on surface flumes and subsurface tile mains (Williams et al., 2016; 

Harmel et al., 2018).  Temporal and economic constraints often limit analyses that can be 

performed on samples and, as a result, most long-term monitoring programs typically 
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only analyze bioavailable nutrients (orthophosphate, nitrate and ammonium) and total 

nutrient concentrations (Williams et al., 2016; Christianson et al., 2016; Macrae et al., 

2007; Reba et al., 2013; Macrae et al., 2019). Regarding total nutrients, both alkaline and 

alkaline/acid persulfate digestions on unfiltered samples have been used for coupled 

measurements of total P (TP) and total (TN); although the alkaline persulfate digestions 

are recognized to underpredict TP when suspended sediment concentrations are 

significant (Koroleff et al., 1983; Patton and Kryskalla, 2003; Dayton et al., 2017).  

We postulate that the P:N ratios of non-soluble reactive forms will provide insight 

to forms and sources of P in edge-of-field studies.  The difference between TP and DRP 

(TP – DRP) reflects the sum of inorganic PP, organic PP, and DUP (Macrae et al., 2019), 

while the difference between TN and dissolved inorganic N (DIN) (TN – DIN) reflects 

organic (both particulate and dissolved) nitrogen species (Patton and Kryskalla, 2003).  

Organic compounds have predictable P:N ratios in soil organic matter that are 

significantly less than P:N ratios of the bulk soil pool in row-cropping systems, which 

stems from accrual of inorganic P in soils (Cleveland and Liptzin, 2007; Froussard et al., 

2016).  We perceive that comparing ratios of TP – DRP to TN – DIN can aid in 

informing forms of P delivered to tile drains and provide insight into where PP is 

mobilized in the soil profile.  

Several studies have shown that much of the TP in subsurface drainage may be 

associated with PP that is delivered to tile drains through preferential flowpaths (Eastman 

et al. 2010; Christianson et al., 2016; Turunen et al., 2017).  The occurrence and 

magnitude of preferential flow varies as a function of soil matrix infiltration capacity, soil 

moisture, matrix-macropore interaction and hydrologic connectivity of macropores to 
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subsurface pathways (Sidle et al., 2001; Klaus et al., 2013). Under both low and high 

antecedent moisture, water may quickly transport to tiles via desiccation cracks, 

earthworm burrows, root channels and inter-aggregate voids (Beven and Germann, 2013; 

Ford et al., 2017; Williams et al., 2018). As a result, preferential flow has high temporal 

variability.  The increasing availability of continuous, long-term flow records from tile-

drains illustrate the need for empirically-based methods to quantify preferential and 

diffuse flow contributions to tile runoff hydrographs.   

Hydrograph recession analysis is an empirically-based flow partitioning approach 

used in karst springs that has applicability to tile-drained landscapes (Schilling and 

Helmers, 2008; Jarvie et al., 2014; Husic et al., 2019; Ford et al., 2019).  In hydrograph 

recession, the receding limb of the hydrograph is conceptualized as the drainage of a 

series of reservoirs that have variable hydraulic conductivities and storage volumes 

(Husic et al., 2019).  These reservoirs often recede exponentially, resulting in distinct log-

linear regions.  A master recession curve can be generated for a site by compiling events 

from long-term monitoring data to determine the number of statistically differentiable 

reservoirs in a system (Gregor and Malik, 2012).  Hydrograph recession can also be 

applied on an event-by-event basis to quantify temporal variability in flow pathway 

dynamics (Jarvie et al., 2014; Ford et al., 2019).  The applicability of hydrograph 

recession to tile-drained landscapes is recognized given that reservoir-style hydrologic 

models have been applied to tile-drain hydrographs to reflect quick preferential flow 

through macropores and slow diffuse percolation through the soil matrix (Brauer et al. 

2014; Ford et al., 2018). While hydrograph recession has been successfully applied at the 
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watershed scale in tile-drained landscapes, applications at edge-of-field scales are lacking 

(Schilling and Helmers, 2008). 

In addition to flow pathways, P dynamics in tile drains are complicated by 

variability in environmental conditions and agricultural management practices.  

Regarding environmental conditions, precipitation intensity and magnitude influence 

sediment detachment and transport through macropores and PP delivery in tiles has been 

shown to vary seasonally (Paasonen and Koivusalo, 2006; Schelde et al., 2006; Jarvis, 

2007). Sediment and PP delivery through tile-drains is well recognized to be impacted by 

tillage, but the documented impacts are inconsistent due to confounding factors (Coelho 

et al. 2012). For example, tillage can increase the soil losses via surface disturbance but 

may also decrease macropore continuity, thus decreasing preferential flow from overland 

flow (Paasonen and Koivusalo, 2006; Williams et al., 2016).  The relative roles of 

hydroclimatic variability and management practices on P delivered to tile drains is not 

well understood (Macrae et al., 2019).  Time-series analysis of long-term concentration 

records has provided insight into controlling drivers of P transport from subsurface flow 

pathways in watershed-scale studies and may be valuable in identifying governing 

mechanisms at the field scale now that long-term records of continuous flow and nutrient 

data are available (Jarvie et al., 2017; Ford et al., 2018; 2019). 

Empirical Mode Decomposition (EMD) is a time-series analysis method that has 

high perceived utility for tile-drain water quality studies given its flexibility for detecting 

trends in complex datasets. In tile-drained landscapes of the Western Lake Erie basin, 

nonstationary and non-linear phosphorus delivery may stem from changes in runoff 

patterns and land management practices (Jarvie et al., 2017; Pease et al. 2017, Williams 
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et al. 2018).  Among time-series analysis approaches used in environmental studies, 

EMD does not have limitations of Fourier-based and regression approaches which 

assume linear and stationary time-series (Wu et al., 2007; Ford et al. 2015). Instead of 

selecting fixed functional forms of trends, the trends are adaptive over time (Wu et al. 

2007; Ford et al., 2015).  As a result, the method has recently been applied to nutrient 

concentration and flow datasets in karstic and tile-drained watersheds (Ford et al. 2015, 

Ford et al. 2018, Ford et al. 2019). While there is perceived utility for analyzing tile-drain 

nutrient signals, application at the field scale has been limited, in part, due to a lack of 

continuous long-term datasets.  

In this study, we characterize subsurface flow pathways and P forms to evaluate 

impacts of preferential flow, environmental conditions, and management practices on 

particulate P delivery in tile-drained landscapes. Specific objectives of this study were to 

a) use continuous edge-of-field monitoring data and P:N ratios of non-soluble reactive 

nutrient species to assess the forms and magnitudes of TP – DRP transported in tile-

drains; b) assess the utility of hydrograph recession analyses to quantify preferential flow 

dynamics in tile drains; and c) perform time-series analysis of long-term TP – DRP data 

to identify the impact of management and environmental drivers on TP – DRP delivery to 

tile drains. To meet these objectives, we employed exploratory analysis of N and P 

datasets, continuous and master recession curve hydrograph recession analysis on tile 

flow, and empirical mode decomposition (EMD) time-series analysis at two study sites 

with contrasting soil characteristics in Ohio, USA.   
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2.2 Methodology 

2.2.1 Study Site and Materials  

We selected two sites from the USDA-ARS Soil Drainage Research Unit edge-of-

field monitoring network for detailed study. The sites are comparable in terms of slope 

(<0.5% to 3%), average annual precipitation (1045±151 mm) and crop rotations (corn-

soy-wheat) (Williams et al. 2016; Figure 2.1).  However, the sites differ in soil texture 

(clay vs. loam), depth to drainage network (0.7- 1 m), and tillage and fertilization 

practices.  These soil textures, drainage depths, and management practices typify end-

members for the region (Williams et al., 2016).  Both sites consist of two surface (CS-A 

and CS-B for the clay site and LS-A, LS-B for the loam site) and two tile (CT-A and CT-B for 

the clay site and LT-A, LT-B for the loam site) monitoring stations. The drainage areas of 

surface monitoring stations were delineated by micro-topographical differences and were 

7.33 ha, 1.5 ha, 3.24 ha, and 2.35 ha for CS-A, CS-B, LS-A, and LS-B, respectively.  Tile 

drainage areas were delineated by subsurface drainage maps and were found to be 8.71 

ha, 1.13 ha, 3.69 ha, and 5.87 ha, for CT-A, CT-B, LT-A, and LT-B, respectively.  The clay 

site is tilled following each harvest. Inorganic fertilizer was applied typically after 

planting. Historic management practices have resulted in soil test P levels in the 

maintenance range in the plow layer (M3P= 29.6 ppm in 0-15 cm) that decrease with 

depth (M3P= 5.8 ppm in 15-61 cm).  The loam site was strip tilled before planting in 

2012, 2016 and 2017 and disk tilled after manure application in 2016. Inorganic and 

organic fertilizers were applied during the monitoring period. In contrast to the clay site, 

historic management practices at the loam site have resulted in high soil test P levels in 
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the plow layer (M3P=113.6 ppm in 0-15 cm) that decrease with depth (M3P= 33.5 ppm 

in 15-61 cm).   

2.2.2 Nutrient Data Collection and Loading Analysis 

The study sites were a part of the USDA-ARS Soil Drainage Research Unit edge-of-field 

monitoring network and methodology for field data collection and analysis used 

previously published methods (Williams et al., 2016; Pease et al., 2017). Tile mains were 

equipped with a weir insert (Thel-Mar, Brevard, NC), ISCO 4230 Bubbler Flow Meters 

(Teledyne Isco, Lincoln, Nebraska), and ISCO 2150 Area Velocity Sensor, which 

measured discharge under submerged conditions. Surface monitoring stations on each 

field were equipped with H-Flumes and a bubbler flow meter, which measured water 

depth in the flumes in order to calculate surface volumetric discharge using stage-

discharge curves. The tile and surface monitoring stations were instrumented with ISCO 

6712 portable automatic samplers in order to collect nutrient samples. Water samples 

were collected from surface runoff using a flow-proportional strategy. A flow-

proportional approach could not be used for subsurface drainage; thus, daily time-

compositing was used. Tipping bucket rain gages were used to measure rainfall duration, 

intensity, and depth, and were corrected using a standard rain gage (Macrae et al., 2019).  

All water samples were analyzed for DRP, TP, NO3-N, NH4-N, and TN 

concentrations for the entire monitoring duration at all sites. Dissolved splits were 

vacuum filtered (0.45 μm), analyzed for N according to US Environmental Protection 

Agency (USEPA) method 353.3 and for P according to USEPA method 365.1. TP and 

TN concentrations were determined from unfiltered samples using alkaline persulfate 

method of Koroleff et al. (1983) prior to 2015 and the USGS method of Patton and 
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Kryskalla (2003) thereafter.  The differences in analytical methods is important to note 

given the findings of Dayton et al. (2017), which found that average total phosphorus 

percent recovery of USGS and alkaline persulfate methods were 76.1% and 24.5%, 

respectively, using suspensions derived from soils in agricultural landscapes of Ohio. 

Samples rarely fell below method detection limits, with the exception of NH4-N, which 

was below detection for approximately 4% of samples.  For these samples, we assumed 

NH4-N concentrations were equal to zero.  Most of these measurements occurred at low 

flow conditions and hence had limited impact on loading dynamics.  Further, as a result 

of analytical and handling error, DRP concentrations would occasionally exceed TP.  

When this occurred, we assumed TP concentrations were equal to DRP.  

2.2.3 Analytical Methodology 

2.2.3.1 Explanatory analysis of TP―DRP loads and forms 

Surface and subsurface daily TP, DRP, TN, and DIN loadings were calculated 

using the approach of Williams et al. (2015). Briefly, we determined the midpoint of all 

sample time steps for each bottle. We then used linear interpolation between measured 

values at the mid-point to estimate the concentration for each interval when flow was 

measured. Loading was estimated as the product of interpolated concentrations and 

flowrate. We also estimated average daily FWMC by dividing average daily loads by 

daily discharge for the measured water quality parameters. We summarized loadings 

using annual and seasonal averages. Seasons were defined as winter (January-March), 

Spring (April-June), Summer (July-September), and Fall (October-December) for our 

analysis.  
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In order to infer the dominant forms of P in tile-drained fields, we analyzed P:N 

ratios of non-soluble reactive nutrients. First, we calculated TN and DIN loadings, 

analogous to the methodology for TP and DRP.  We generated a linear regression 

between daily tile TP – DRP and TN – DIN loading for samples measured using the 

alkaline persulfate digestion (prior to 2015) and for the alkaline/acid persulfate digestion 

(post 2015).  Next, we compared the results to typical P:N ratios for organic matter in 

agroecosystems which have been found to range from 0.034 to 0.083 (Frossard et al., 

2016).  These ratios for organic matter have been found to show limited variability across 

comparable landcovers (Cleveland and Liptzin, 2007). Therefore, deviation from organic 

matter P:N ratios would indicate sediments high in inorganic P (e.g., surface derived 

sediments).  

 

2.2.3.2 Hydrograph Recession Analysis 

Master recession curve analysis was performed by compiling subsurface 

hydrograph recessions from events throughout the monitoring period. Recession curves 

were manually fit to the compiled recession events to produce a line of best fit.  

Calibrations were performed by modifying recession coefficients for a user-selected 

number of reservoirs to generate a master recession curve that provided the best visual fit 

to the data.  For tile-drains, two reservoirs were assumed, representing matrix and 

macropore flowpaths.  Reservoir recession coefficients in the literature vary, however 

studies typically show that distinct reservoirs differ by a factor of three, or greater 

(Schilling and Helmers, 2008; Rimmer and Hartmann, 2012; Husic et al., 2019). For our 

study, we generated a master recession curve using three years of tile hydrology data. We 
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selected 18 recessions from CT-A and 24 recessions from LT-A to create a single master 

recession curve using RC 4.0 software (HydroOffice; Malik and Vojtkova, 2012; Gregor 

and Malik, 2012). More recessions existed for each field, but they were not included in 

the analysis since they were either comprised of days with zero flow (associated with no 

flux or tile backwater) or had non-linear recessions associated with disruption of initial 

recession with secondary flow peaks. 

Continuous time‐series estimates of flow pathways for CT-A and LT-A were 

estimated using event-based hydrograph separation methodology for three years of study. 

The methodology is described in detail elsewhere (Husic et al., 2019; Ford et al., 2019).  

Briefly, for each hydrologic event, we plotted the falling limb of the subsurface discharge 

hydrograph on logarithmic scale and manually fit linear curves on reservoirs and 

determined the inflection points of the linear trends. In the next step, a linear increase in 

slow flow was then assumed from the beginning of the rising limb of the hydrograph, 

which represented the start of quickflow, to the determined inflection point on the falling 

limb from previous step, and this point signified the separation of quick and slow flow 

(Husic et al., 2018). Finally, event contribution by each pathway was calculated as the 

area between the two curves for the quick flow pathway and the area under the curve for 

the slow flow pathway (Ford et al. 2019). To quantify the impact of flowrate and 

quickflow on TP – DRP concentrations, we performed a multiple linear regression 

analysis.  The model response variable, daily TP – DRP (mg/l), was regressed against 

flowrate and fraction of flow associated with quickflow using RStudio (RStudio, inc, 

2011). 

2.2.3.3 Empirical Mode Decomposition (EMD) Time Series Analysis 
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In this study, the main goal of employing EMD was to use it as a dyadic filter to 

remove noise from data and determine intra-annual to inter-annual trends and compare 

the trends with timing of management practices that are perceived to impact TP – DRP 

delivery in tiles. The process of time series analysis using the EMD may be summarized 

in three steps. In step 1, the EMD decomposes the time series (raw data) into a series of 

Intrinsic Mode Functions (IMFs), in which the lowest frequency IMF is identified as the 

base residual trend and the highest frequency trend is considered noise for well-sampled 

datasets (Wu et al., 2007). The EMD uses an iterative procedure called sifting to generate 

IMFs. Briefly, the algorithm finds all local maxima and minima in the time series, then 

computes the corresponding interpolations as upper and lower envelopes of the signal 

using a cubic spline function. Next, the average of the lower and upper envelope is 

subtracted from the data signal (related to the current iteration). The process is repeated 

until the average envelope converges to a specified threshold. The converged envelope is 

subtracted from the original dataset and the steps are repeated until all extremes are 

removed. We used a previously published code in Matlab that conducts EMD and 

generates IMFs (Rato et al. 2008).  The model was run from 2013 to 2017 for TP – DRP 

FWMC at both study sites. 

 In step 2, a statistical significance test was performed on IMFs based on the 

method explained by Wu et al. 2007 to determine if IMFs were significantly different 

from white noise. The first IMF, which typically reflects noise for well-sampled datasets, 

was considered as base noise. Then, a negative linear relationship of log10 of variance and 

log10 of period with a slope of -1 was plotted with log10 (Var) ± log 10 (3) as upper and 

lower bounds for confidence intervals. A log-log plot of variance versus mean period was 
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plotted for each IMF on the same graph.  Finally, the IMFs that plotted outside of the 

specified interval were considered statistically different from white noise, reflecting a 

significant trend in the data.  

In step 3, the significant IMFs were aggregated at environmentally relevant 

timescales. For the present study we focused on the seasonal timescales given the 

implication for seasonal eutrophication and HABs (Ford et al. 2018). Statistically 

significant frequencies with mean period between six to eighteen months were included 

as a seasonal trend since trends may not have been pronounced in certain years (resulting 

in a frequency greater than 12 months), or may experience a secondary intra-annual 

oscillation in some years (resulting in a frequency less than twelve months). If such a 

phenomenon is commonly occurring, leading to frequencies outside of the specified 

bounds, it would suggest that the result is likely due to a non-seasonal fluctuation. The 

seasonal IMFs were summed and compared with timing of management practices. 

2.3 Results 

2.3.1 Exploratory analysis of TP – DRP loads and forms 

The clay and loam sites displayed contrasting hydrologic behavior and timing, 

despite similar precipitation patterns.  The average annual precipitation was 1057 mm at 

the clay site and 1033 mm at the loam site.  Rainfall was greatest in spring and summer 

and least in fall and winter at both sites.  Similarly, average total runoff (surface plus 

subsurface) for both fields was comparable (257 mm for the clay site and 307 mm for the 

loam site). For the clay site, 44% of discharge was through surface runoff, which was 

greatest in spring and least in fall, and 56% through subsurface runoff, which was 
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greatest in spring and least in summer. Conversely, for the loam site, surface runoff was 

negligible (<3% of total runoff), while subsurface runoff was greatest in winter and least 

in summer.  

Annual loading results highlight similar total P loadings through combined 

overland and subsurface flow paths but contrasting P forms at the clay and loam sites. 

Similar to total runoff, TP loadings for the clay and loam site were comparable and 

averaged 1.6 kg ha-1 yr-1 and 1.9 kg ha-1 yr-1, respectively.  Contrasting TP, annual DRP 

loading was an order of magnitude less at the clay site (0.12 kg ha-1 yr-1) as compared to 

the loam site (1.25 kg ha-1 yr-1).  As a result, annual subsurface TP – DRP loading 

constituted 93% and 34% of TP in the clay and loam site, respectively. Regarding 

seasonality, TP – DRP loadings were greatest in spring (TP – DRP = 0.35 kg ha-1 yr-1) 

and summer (TP – DRP = 0.27 kg ha-1 yr-1) for the surface pathway, but were greatest in 

winter (TP – DRP = 0.22 kg ha-1 yr-1) and spring (TP – DRP = 0.34 kg ha-1 yr-1) for the 

subsurface pathway at the clay site.  TP – DRP loadings were greatest in winter (TP – 

DRP = 0.22  kg ha-1 yr-1) and fall (TP – DRP = 0.21 kg ha-1 yr-1) for the subsurface 

pathway and were, comparatively, negligible for the surface pathway at the loam site.   

The slopes of the regression line between TP – DRP and TN – DIN loadings 

provide the average P:N ratios of non-soluble reactive nutrients in surface and tile runoff 

at the study sites (Figure 2.2).  To compare these findings with P:N ratios of organic 

matter, we included two lines that represent the range of P:N ratio for organic matter 

reported in agroecosystems (0.034-0.083).  Analysis of the P:N ratios prior to 2015 

differed from those following 2015 at both sites.  For the clay site, we found a surface 

P:N ratio of 0.1068 and subsurface P:N ratio of 0.054 prior to 2015.  After 2015, the P:N 
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ratio increased four-fold in both surface and subsurface pathways to 0.38 and 0.23, 

respectively.  For the loam site, we found a surface P:N ratio of 0.076 and subsurface P:N 

ratio of 0.043 prior to 2015.  After 2015, the P:N ratio increased three-fold in both 

surface and subsurface pathways to 0.25 and 0.13, respectively.  The difference in P:N 

ratios prior to, and after 2015 stems from differences in percent P recovery of the alkaline 

persulfate method (Koroleff et al., 1983) and the alkaline/acid persulfate method (Patton 

and Kriskala, 2003) for TP analysis, which is further discussed in section 4.2.  These 

results show higher P:N ratios in surface runoff as compared to subsurface runoff at both 

sites, which reflects connectivity to surface soils with high inorganic P content.  

Interestingly, higher P:N ratios at the clay site as compared to the loam site in both 

surface and subsurface pathways was somewhat surprising given the soil test P levels at 

the loam site were greater than the clay site. 

2.3.2 Tile-drain Hydrograph Recession Analysis 

Results from the master recession curves and continuous recession analysis at the 

subsurface outlet of each field identified two discernible slopes, confirming two 

reservoirs, with reservoir 1 (R1) representing a steep recession and reservoir 2 (R2) a 

mild recession. The recession coefficients (α) of the clay site for R1 and R2 were 2 and 

0.25 day-1, respectively (Figure 2.3.a). The recession coefficients (α) of the loam site for 

R1 and R2 were 0.95 and 0.35 day-1, respectively. On average, results of the master 

recession curve suggest that R1 and R2 account for 66% and 34% of subsurface flow at 

the clay site and 36% and 64% of the subsurface flow for the loam site.  

Results of the continuous recession analysis provide insight into seasonal flow 

pathway dynamics and how they compare between the clay and loam sites (Table 2.1).  
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The results of continuous recession analysis yielded similar results to the master 

recession curve, with R1 and R2, respectively, accounting for 65% and 34% of the 

subsurface discharge at the clay site, and 36% and 64% of the subsurface discharge at the 

loam site. The greatest portion of flow for R1 occurred in summer at the clay site, 

comprising 82% of the total subsurface flow. At the loam site, R1 was greatest in fall, 

comprising 57% of the total subsurface flow. The greatest subsurface flow volume to tiles 

from R1 occurred in spring at the clay site, constituting 40% of total annual quickflow. 

The greatest subsurface flow to tiles from R1 occurred in winter at the loam site, 

constituting 37% of total annual quickflow. The least contribution of R1 to annual 

subsurface flow to tiles occurred in summer at both fields. 

The multiple linear regression model comparing TP – DRP concentration to flow 

parameters was significant for both fields; however, the model explained only a small 

fraction of the variance in the TP – DRP dataset.  For the clay site we found coefficients 

for flow rate (7×10-4) and fraction of flow associated with quickflow (0.31) were 

positively related to TP – DRP and were significant (p<0.001).  Likewise, the overall 

model was significant (p<0.001) and had an adjusted R2 of 0.24, suggesting the 

predictors described 24% of TP – DRP variability.  Similar results were found for the 

loam site in which coefficients for Qt (5.2*10-4) and Ft (0.08) were positively related to 

TP – DRP and were significant (p<0.001).  The overall model was significant (p<0.001) 

and also had an adjusted R2 of 0.24, suggesting the predictors described 24% of TP – 

DRP variability.  Comparing the two sites, the coefficients for Qt were comparable, 

however the quickflow coefficient at the clay site was four-fold greater than the loam 
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site, highlighting the importance of quickflow contributions in exerting enhanced controls 

on TP – DRP concentrations at the clay site. 

2.3.3 Empirical Mode Decomposition Analysis 

Empirical mode decomposition results for TP – DRP loading for both the clay and loam 

site from 2013-2017 are provided in Figure 2.4.  The raw data time series for TP – DRP 

loading was first decomposed into IMFs using the aforementioned sifting process, which 

are shown in step 1 for the clay (Figure 2.4.a) and loam (Figure 2.4.b) sites. The analysis 

generated nine IMFs and a residual trend for the clay site and eight IMFs and a residual 

trend for the loam site.  Next, the statistical significance of the IMFs was tested (Step 2) 

and we found that five out of nine and two out of eight IMFs were statistically 

significant, at the clay and loam site, respectively.  This means that these IMFs have 

variances that were greater than what would be expected from noise and indicated a 

physical trend in the data.  In Step 3, we summed the significant IMFs that had a mean 

period between 0.5-1.5 years (reflecting seasonal trends) and compare the timing of 

maxima-minima dynamics to management information to identify how practices and flow 

drivers influence these statistically significant trends.  We focus on the results from Step 

3.  

        The sum of significant IMFs showed differences in amplitudes coinciding with the 

TP method utilized (Figure 2.4, Step 3).  TP – DRP concentrations at both sites had more 

subtle oscillations prior to 2015 when using the Koroleff persulfate digestion procedure.  

For the clay site, max-min differences in the sum of statistically significant IMFs varied 

over a 0.2 mgP/L range prior to 2015, but more than 0.6 mgP/L range after 2015.  

Similarly, the loam site varied over a 0.1 mgP/L range prior to 2015 and 0.5 mgP/L range 
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after 2015. These findings indicate that the significant trends are associated with 

particulate P.   

        Regarding the impact of flow and crops, we found that for both sites the peak TP – 

DRP concentrations occurred in fallow seasons that had the greatest flow, and that 

minimum TP – DRP concentrations occurred in late-fall, following harvest (Figure 2.4, 

Step 3). Generally, in both fields, TP – DRP concentration gradients decreased when the 

field was cultivated and increased when the field was fallow.  The majority of TP – DRP 

maximum peaks occurred in spring for the clay field and winter for the loam field when 

average subsurface discharge, macropore flow, and consequently TP – DRP and DRP 

loadings were greatest. On the other hand, the occurrence of most of the minimum peaks 

in late fall for both sites show that the occurrence of minima were not correlated with 

discharge since tile discharge was minimum in summer for both sites.  

        Regarding tillage practices, vertical tillage was used at the clay site following each 

harvest, while conservation tillage was used at the loam site.  We found that TP – DRP 

concentrations increased to a local maximum in three out of the four years (2014, 2015, 

and 2017), in the early winter following tillage, before decreasing to a local minimum in 

mid to late winter.  Conversely, conservational tillage and use of cover crops at the loam 

site showed no discernable impacts on TP – DRP concentrations. 

        The impact of cover crops when the field is typically fallow was also recognized to 

influence significant seasonal trends.  Wheat was present at the clay site in 2013, and on 

the loam site in late 2014 through summer 2015.  For the clay site, in the year with wheat 

we found that TP – DRP minima occurred during spring coinciding with wheat cover on 

the field during a period that the field is typically fallow, and as a result the maxima 
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shifted to summer following harvest.  Likewise, TP – DRP peaks at the loam site showed 

a smaller winter maximum while wheat was on the field in 2015, followed by a large, 

instantaneous spike in TP – DRP concentration following wheat harvest in summer.”   

2.4 Discussion 

2.4.1 Preferential Flow Dynamics in Tile Drainage 

Results of the hydrograph recession analysis indicate distinguishable quick and 

slow flow reservoirs at both the clay and loam sites that reflect preferential flow through 

macropores and diffuse flow through soil matrix percolation.  The recession coefficient 

for R1 was eight-fold greater than R2 at the clay site and three-fold greater than R2 at the 

loam site.  Reservoirs are often determined distinguishable when recession coefficients 

are more than three-fold different (e.g., Husic et al. 2019).  Further, for the loam site, we 

found 36% of the subsurface flow transport to tiles occurred via the quick flow reservoir, 

R1.  This result falls within uncertainty bounds of macropore flow estimates (both 

seasonally and annually) in a recent macropore modeling publication from the loam site 

(Ford et al., 2017), suggesting R1 represents preferential flow via macropores.  Regarding 

slow flow, the inverse of the recession coefficient represents the time it would take to 

drain the reservoir without any additional discharge and a constant recession slope.  This 

time would be 4 and 2.8 days for the clay and loam site, respectively which is comparable 

to expected matrix transit times reported in similar tile-drained landscapes of Indiana 

(Vidon and Cuadra, 2010).  Collectively, these results suggest hydrograph recession 

provides a data-driven method for quantifying preferential flow and diffuse matrix 

percolation contributions to tile hydrology.  
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        Our results provide insight into how preferential flow contributions are impacted by 

desiccation crack networks that bypass the drainage layer during the growing season.  

Surface runoff was second greatest in the summer, which agrees well with other recent 

studies that have shown that high-intensity rainfall on clay soils can trigger infiltration-

excess surface flow with either simultaneous or zero tile response (e.g., Kokulan et al. 

2019; Macrae et al., 2019).  We found that quickflow contributions constituted 80% of 

tile flow during summer months, suggesting simultaneous connectivity of surface and tile 

pathways, which has been highlighted to occur in spring and summer in clay soils 

(Macrae et al., 2019).  Nevertheless, tile flow was least in the summer, suggesting a 

disconnection between macropore flow through these desiccation crack pathways and the 

tile drains.  Water that infiltrates via desiccation crack flow may bypass the drainage 

system if crack networks extend deep into the vadose zone and recharge the seasonably 

low ground water table (Mirus and Nimmo, 2013), or may infiltrate into the unsaturated 

matrix.  The latter is likely small given hydrophobicity of macropore walls is recognized 

to increase under low moisture conditions (Nimmo, 2012), which suggest a fate of deep 

percolation.  Collectively these results suggest that groundwater recharge could be an 

important regulator in timing and flow pathway dynamics of tile discharge. 

2.4.2 TP – DRP Forms and Pathways in Fine Textured Soils 

Results of our study suggest TP – DRP concentrations in tile and surface flow 

pathways are predominantly associated with PP.  Results of the P:N analysis showed 

significantly greater P:N ratios in both surface and subsurface pathways of the clay and 

loam sites when using the USGS persulfate digestion methodology (Patton and Kriskala, 

2003) as compared to the alkaline persulfate digestion (Koroleff, 1983).  Studies in 



26 

 

cultivated row-cropping soils have shown fairly stable ratios for P:N of organic matter 

(Figure 2.2), with greater P:N ratios attributed to the presence of inorganic P bound to 

soil surfaces (Frossard et al., 2016).  Dayton et al. (2017) suggested that the USGS 

persulfate digestion method captures approximately 76% of total P for edge-of-field tile 

drain samples when sediment concentrations are high, whereas the alkaline persulfate 

method of Koroleff (1983) captures only 25%.  Similarly, our results show that P:N is 

approximately three to four times higher when using the USGS method providing further 

support that particulate P is the primary contributor to TP – DRP loadings from the study 

sites.  This result was not surprising given several studies measuring both TP and PP 

fluxes have shown PP can dominate TP loadings in tile drainage (e.g. Paasonen and 

Koivusalo, 2006; Enright and Madramootoo, 2004; Macrae et al., 2007; and Eastman et 

al., 2010; Christianson et al., 2016).  

Comparison of results for TP – DRP loadings, concentrations and P:N ratios for 

the clay and loam sites highlight differences in sediment sources and pathway dynamics.  

We hypothesized that TP – DRP would be greater for the loam site as compared to the 

clay site given the greater tile flow volumes and soil test P levels at the loam site.  

Contrary to this we found greater TP – DRP concentrations, loadings, and P:N ratios at 

the clay site.  We postulate differences in source contributions and flow pathway 

dynamics explain, at least some of these differences.  Regarding sediment sources, 

sediment erosion from surface soils was greater at the clay site, but negligible at the loam 

site.  The prominence of simultaneous pathway activation in the clay site (Macrae et al. 

2019) would suggest greater connectivity of overland sediments to tile, which is partially 

supported by P:N ratios that deviate from organic signature that would be expected from 
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macropore wall erosion.  The low P:N ratios in surface runoff of the loam site support a 

lack of surface erosion. Furthermore, in loamy soils, overland flow often requires 

saturation-excess conditions that limit simultaneous connectivity of surface runoff and 

tile flow (Macrae et al. 2019) suggesting that surface sediment sources would not be a 

prominent contributor to TP – DRP loadings in tile drains. Second, macropore flow at the 

clay site was a greater percentage of tile flow and occurred over a much shorter duration 

(e.g., α= 2 at the clay site) as compared to the loam site.  Macropore flows are well 

recognized to span a gradient of laminar to highly turbulent flow regimes (Beven and 

Germann, 2013; Williams et al., 2016).  The rapid transport of flow through larger 

desiccation cracks (especially in spring and summer) at the clay site suggest turbulent 

flow regimes with greater transport carrying capacities and shear stresses.  Conversely, 

the loam site likely had less turbulent flow in macropore pathways.  This result is 

supported by findings from Ford et al. (2017), which was conducted at the same loam site 

as the present study.  In their study, a numerical model that assumes macropore flow 

occurs as laminar films along macropore walls was successfully applied to estimate 

preferential flow. This would suggest less erosive flows with less transport carrying 

capacities. These findings underscore the potential importance of flow regimes (in 

addition to preferential flow volumes) in order to adequately predict delivery of sediment 

and particulate P to tiles. 

2.4.3 Environmental and Management Effects on TP – DRP delivery to tile drains 

Our results highlight the coupled effects of flow dynamics and landcover to 

regulate seasonal maximum-minimum variability of TP – DRP concentrations. Peak TP – 

DRP concentrations generally occurred in seasons with the maximum quick flow 
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contributions at both sites.  Likewise, at both sites we found decreases in TP – DRP 

concentrations following planting, reaching a minimum in fall, corresponding with 

harvest. The only deviations in these max-min dynamics were years with wheat in the 

rotation in which  the presence of wheat during the wet season resulted in delaying peak 

TP – DRP concentrations in runoff.  Decreasing values of TP – DRP during the growing 

season may reflect decreasing turbulent intensity in macropore flow. As ET increases 

during the growing season, desiccation cracking increases and may decrease shear stress 

on macropore walls given the increased surface area for transporting preferential flow.  

This is compounded by lesser flow volumes to tile drains during the growing season as 

well as lesser contributions from the soil matrix.  Further, surface erosion may decrease 

because of vegetation cover, however we saw the second greatest contribution of TP – 

DRP in surface runoff during summer at the clay site, so we do not suspect that is a major 

mechanism leading to decreased concentrations of TP – DRP in tile drainage.   

 Our results suggest long-term impacts of disruption of macropore connectivity to 

influence TP – DRP concentrations in tiles.  We found intra-annual fluctuations in TP – 

DRP concentrations at the clay site following conventional tillage practices, but no 

discernable effects on the loam site using conservation tillage practices.  For the clay site 

we found that after tillage, TP – DRP concentrations increased to a local maximum in 

early January before decreasing slightly to a local minimum in mid-winter and then 

increasing again to the annual maxima in spring. This occurred in three years (2014, 

2015, and 2017). Williams et al. (2016) found that soil disturbance resulting from tillage 

can significantly reduce peak event flows and may reduce delivery of DRP to tile drains.  

However, for DRP, the effect of tillage diminishes rapidly, and raindrop impact and wet 
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and drying cycles after tillage result in reformation of cracks in the soil surface, which 

consequently leads to more subsurface macropore flow (Mapa et al., 1986; Messing and 

Jarvis, 1993). Our results suggest that as cracks reform, PP may be impacted over longer 

timeframes as peak flows through macropores increase.  Increasing peak flows will result 

in greater shear stresses and inner-wall macropore erosion and sediment delivery to tiles. 

The decrease to a local minimum late in winter may be associated with re-wetting. As the 

clay soil becomes saturated, macropores decrease due to soil swelling and TP – DRP 

reaches a local minimum. Shortly after the occurrence of local minimums, macropore 

pathways reform due to an increase of ET, and TP – DRP increases from a local 

minimum to a maximum when subsurface and macropore discharge peaks in spring.  

2.4.4 Broader Implications 

Our study highlights the potential for P:N to be a useful tracer of PP sources given 

that the P:N ratios in surface soils differ from subsurface due to stratification of soil P in 

the profile. Sediment fingerprinting is a commonly used approach for quantifying 

sediment sources in agricultural landscapes (e.g., Davis and Fox, 2009); however, P:N 

atomic ratios are not included in fingerprinting studies to the authors’ knowledge.  We 

postulate P:N should be included in future unmixing models for quantifying sediment 

source provenance.  One such application is to quantify differences in inner-wall 

macropore erosion and transport to tile-drains, from surface-derived erosion.  As 

highlighted in Wilson et al. (2018), datasets are lacking to evaluate subsurface erosion 

processes, and novel utilization of this existing edge-of-field data may help to fill this 

data gap.  Such applications will ultimately lead to improved simulation tools that can be 
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coupled with agroecosystem management models in order to provide more holistic P 

management plans.  

Preferential flow has been identified as one of the significant pathways of P 

delivery, and a wide-range of methods have been used to quantify subsurface flow 

pathway dynamics ranging from dual-porosity numerical models, to data-driven 

hydrograph separation techniques using hydrochecmical and isotope tracers (Schilling 

and Helmers, 2008; Vidon and Cuadra 2010; Klaus et al., 2013; Williams et al., 2016; 

Smith and Capel, 2018; Jarvis 2007; Deurer et al. 2009; Ford et al., 2017). While each of 

these methods provides insight into macropore flow and subsurface P delivery pathways, 

most long-term monitoring programs have continuous flow measurements, but may lack 

long-term measures of tracers. Likewise, numerical models are often complex, and their 

use is limited to specialists. The application of hydrograph recession analysis used in this 

study provides a promising, easy-to-use tool for partitioning flow pathway dynamics in 

tile-drains and compares well with previous macropore modeling estimates.  

Our study confirmed the effectiveness of EMD in detecting trend in long-term TP 

– DRP datasets from tile-drains and is likely transferable to other contaminants of 

interest. While crop, tillage practices and fertilizer application varied year to year at our 

study sites, we were able to detect management induced trends for TP – DRP using 

EMD. Although Fourier filters can remove noise of linear data with distinct frequency 

scales, these filters fail when the processes are either nonlinear or nonstationary (Huang 

et al. 1998). Likewise, statistical significance tests (e.g., Kruskal-Wallis) can help to 

identify the seasonal differences in median or average value of P concentrations (Pease et 

al. 2017), however these differences may be masked by noisy time-series. Previous 
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studies on transport of subsurface nutrients in tile-drained landscapes shows that change 

of crop rotation, rainfall pattern, tillage practices and fertilization can have a significant 

effect on a variety of subsurface nutrient concentrations (King et al. 2015; Williams et al., 

2016; Ford et al., 2018).  These findings suggest that EMD can be successfully applied 

across a broader class of signals for detecting important management impacts at the field 

scale. 

2.5 Figures and Tables 

Table 2.1  Seasonal and annually averaged total tile flow (Q), slowflow (Qslowflow), and 

quickflow (Qquickflow) pathways results to tile drains for the clay and loam sites from 

2015-2017. 

 

  Tile (clay) Tile (loam) 

Q (mm) Annual 143.7 299 

Winter 48.4 128.3 

Spring 62.1 74.3 

Summer 13.3 40.7 

Fall 19.9 55.6 

Qquickflow(mm) Annual 93.4 107.6 

Winter 31.00 39.8 

Spring 36.6 26.0 

Summer 10.9 13.8 

Fall 14.1 32.3 

Qslowflow(mm) Annual 50.3 191.3 

Winter 17.4 88.5 

Spring 25.5 48.3 

Summer 2.4 26.9 

Fall 5.8 23.4 
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Figure 2.1  Study site sampling locations in Ohio, USA.  Picture of typical USDA-ARS 

edge-of-field monitoring platforms for surface and tile drainage are included 
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Figure 2.2  Comparison of daily TP – DRP and TN – DIN loadings from surface and tile 

runoff at Site 1 (clay) and Site 2 (loam).  Loadings are composited from both monitoring 

stations at each field. 
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Figure 2.3  Master Recession curves constructed over 5 years of subsurface flow from 18 

recessions for (a) the clay site and from 24 recessions for (b) the loam site 

  

(a) 
(b) 
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Figure 2.4  Five-year time series of TP – DRP concentration for the clay (a) and the loam 

(b) site. The raw TP – DRP timeseries is decomposed into a set of intrinsic mode 

functions (IMFs) in Step 1. In Step 2, the IMFs are tested to determine if trends are 

significantly differentiable from white noise.  In Step 3, the significant IMFs representing 

seasonal trends ‘periods between 0.5-1.5 years) were summed and compared with 

management information.  

 

 

 

 

 

 

 

 

0

0.5

1

1.5

2

2.5
Su

b
su

rf
ac

e
 T

P
-D

R
P

  (
m

g
/l

)

Raw Data

-7

-6

-5

-4

-3

-2

-1

0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

lo
g1

0
(V

ar
ia

n
ac

e
)

log 10 (Period (years))

Statistical Significance Test

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Su
b

su
rf

ac
e

 T
P

-D
R

P
 (

m
g

/l
)

Raw Data

-6

-5

-4

-3

-2

-1

0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g1

0
(V

ar
ia

n
ac

e
)

log 10 (Period (years))

Statistical Significance Test

-1

1 IMF1

-1

1
IMF2

-1

1
IMF3

-1

1
IMF4

-1

1
IMF5

-1

1
IMF6

-1

1
IMF7

-1

1
IMF8

-1

1
IMF9

-1

1
IMF1

-1

1
IMF2

-1

1
IMF3

-1

1
IMF4

-1

1
IMF5

-1

1
IMF6

-1

1
IMF7

-1

1
IMF8

-1

1
Residual Trend

Su
m

 o
f 

Si
gn

if
ic

an
t 

IM
Fs

-1

1
Residual Trend

Su
m

 o
f 

Si
gn

if
ic

an
t 

IM
Fs

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Su
b

su
rf

ac
e

 T
P

-D
R

P
 (

m
g

/l
)

 0.5 yrs<Mean Period <1.5 yrs

Corn 
Plant

Corn 
Harvest

Vertical
Tillage

Soybean 
Plant

Soybean 
Harvest

Vertical 
Tillage

Corn 
Plant

Corn 
Harvest

Vertical 
Tillage

Wheat 
Harvest

Soybean
Plant

Vertical 
Tillage & 
Soybean 
Harvest

Vertical
Tillage

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Su
b

su
rf

ac
e

 T
P

-D
R

P
 (

m
g

/l
)

0.5 yrs< Mean period< 1.5 yrs

Corn 
Plant

Corn 
Harvest

Soybean 
Plant

Soybean 
Harvest

Wheat 
Plant

Wheat Harvest Strip Tillage

Corn 
Plant

Corn 
Harvest

Strip
Tillage

Corn 
Plant

Disk
Tillage

a)
 C

la
y 

si
te

b
) 

Lo
am

 s
it

e

Step 1: Decompose into IMFs

Step 1: Decompose into IMFs

Step 2

Step 3: Sum of Siginifcant IMFs

Perform 
Significance 

Test

Step 3: Sum of Siginifcant IMFs

Step 2

Perform 
Significance 

Test



36 

 

CHAPTER 3. QUANTIFYING HYDROLOGIC PATHWAY AND SOURCE 

CONNECTIVITY DYNAMICS IN TILE-DRAINAGE: IMPLICATIONS FOR P 

CONCENTRATIONS 

Adapted from a revised resubmission to Vadose Zone Journal: Nazari, S., Ford, W. I., King, K. W. 

2021. Quantifying Hydrologic Pathway and Source Connectivity Dynamics in Tile-Drainage: Implications 

for P Concentration. 

3.1 Introduction 

Agricultural subsurface tile-drainage across the midwestern US has increased 

eutrophication and the persistence of harmful and nuisance algal blooms (Simard et al., 

2000; Kleinman et al., 2015; Van Esbroeck et al., 2016).  Tile-drainage networks in fine-

textured soils are often the primary field-scale discharge pathway during stormflows and 

can disproportionately impact watershed-scale water and nutrient budgets (King et al., 

2014; Williams et al., 2015; Schilling et al., 2020).  Tile-drainage nutrient loadings 

during stormflows reflect variability in flow pathway dynamics and source water 

connectivity (King et al., 2015; Smith et al., 2018; Pluer et al., 2020; Jiang et al., 2021; 

Ortega-Pieck et al., 2020). For the purposes of this study, flow pathway refers to the 

subsurface flow domain such as percolation through micropores in the soil matrix or 

preferential transport through macropores, and source connectivity refers to sources of 

water such as event water (e.g., precipitation or irrigation water), or pre-event water (e.g., 

water residing in the soil matrix prior to stormflows).  Existing methodologies to quantify 

flow pathway dynamics and source connectivity during storm events have limitations 

ranging from short temporal domains and coarse sampling resolutions, when using 

chemical and isotopic tracers (Pluer et al., 2020; Nazari et al., 2020), to uncertainties and 

long-term data requirements associated with field-scale numerical models (Ford et al., 

2017).  Development and evaluation of a framework that considers both flow pathway 
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and source connectivity dynamics at the field point of discharge (referred to herein as 

‘edge-of-field’) to assess the implications for tile-drain water quality is a major need and 

research gap. 

        Soils in tile-drained fields have been conceptualized as two-domain hydrologic 

systems including diffuse percolation through the soil matrix and preferential flows 

through macropore networks, with interactions occurring between the domains (Klaus et 

al., 2013; Gerke et al., 2013; Brauer et al., 2014; Bishop et al., 2015; Frey et al., 2016).  

Diffuse flow through matrix percolation is associated with slow and delayed seepage of 

water from the soil matrix to tile drains. Preferential flow through macropores reflects the 

rapid transfer of water to tiles via desiccation cracks, root channels, worm holes, 

fractures, and other bio pores that bypass percolation through the soil matrix (Flury et al., 

1994; Beven and Germann, 2013). There is widespread recognition of bi-directional 

matrix-macropore interaction during events in tile-drained fields that has been found to 

significantly impact contaminant loadings (Klaus et al., 2013; Bishop et al., 2015; 

Williams et al., 2015; Callaghan et al., 2017; Ford et al., 2018). Recent advancements in 

field-scale hydrology and water quality models (e.g., Hydrus, MACRO, APEX, and 

DRAINMOD) have been important for representing these dynamics and water sources 

for agroecosystem management (Beven and Germann, 2013; Ford et al., 2017; Askar et 

al., 2020).  However, in agroecosystem models, they often require long-term records for 

rigorous calibration and validation and neglect or over-simplify simulation of processes 

including matrix-macropore interaction, resulting in uncertainties during model 

evaluation (Djabelkhir et al., 2018; Pferdmenges et al., 2020).   
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        Utilization of hydrograph recession analysis has been identified as an effective 

method to quantify event-scale matrix and macropore pathway contributions (Ford et al., 

2019; Husic et al., 2019; Nazari et al., 2020). In hydrograph recession, hydrographs are 

conceptualized as the drainage of a series of reservoirs that have variable hydraulic 

conductivities and storage volumes (Husic et al., 2019). These reservoirs often recede 

exponentially, resulting in distinct log-linear regions of the hydrograph. The hydrograph 

recession method has been successfully applied in subsurface drained landscapes with 

lateral preferential pathways including karst and tile-drained landscapes to partition flow 

into diffuse and preferential flowpaths with varying hydraulic conductivities (Schilling 

and Helmers 2008; Mellander et al., 2013; Ford et al., 2019; Husic et al., 2019; Nazari et 

al., 2020).   

        Regarding tile drainage source dynamics during storm flows, studies have applied 

various chemical and isotopic tracer methods (Keinzler and Naef 2008; Vidon and 

Cuadra 2010; Klaus et al. 2013; Williams et al. 2015; Ford et al. 2018).  Most studies that 

assess source water dynamics partition tile-drainage water into ‘new’ and ‘old’ water 

components, in which ‘old’ water reflects storage in the soil prior to the event, and ‘new’ 

water reflects either precipitation or irrigation inputs during an event (Schilling and 

Helmers, 2008; Vidon and Cuadra 2010; Klaus et al., 2013; Williams et al., 2016).  These 

studies have found that preferential flow can consist of both new and old water sources 

(Vidon and Cuadra, 2010; Williams et al., 2016; Smith et al., 2018). While these 

techniques have been effective at identifying source water dynamics at the field to 

watershed scale within-events, these approaches are often limited to coarse resolution 
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sampling of a few events due to data collection and analytical expense (Williams et al., 

2016; Pluer et al., 2020).   

Studies have employed high-frequency conductance-based measurements as an 

inexpensive means to continuously monitor source connectivity dynamics during tile-

drain hydrologic events at the watershed scale (e.g., Heppell and Chapman, 2006; 

Schilling and Helmers, 2008; Vidon and Cuadra 2010; Kronholm and Capel, 2015) and 

more recently at the field scale (Smith et al., 2018; Pluer et al., 2020).  Specific 

conductance (SC) can be used as a general indication of runoff age due to change of 

drainage water ion concentrations during residence within the soil profile. Typically, 

waters with extended residence times are likely to have a greater ionic content and SC 

values (Pilgrim et al., 1983).  In recent years, advances in the robustness and reliability of 

inexpensive in-situ water quality sensors have enabled scientists and practitioners to 

continuously monitor SC (Snyder et al., 2018).  As a result, studies are now deploying 

these technologies in tile-drains at the edge-of-field and coupling these measurements 

with end-member mixing analyses (EMMA) to quantify the contribution of preferential 

flows of new water (Smith et al., 2018; Pluer et al., 2020).  To date, studies have not 

coupled hydrograph recession and SC-EMMA approaches for investigating flow pathway 

and source connectivity dynamics simultaneously.  

        Several studies have postulated that flow pathway and source connectivity dynamics 

impact dissolved reactive phosphorus (DRP) loadings in tile-drained agroecosystems. 

Water extractable P from soils correlates well with tile drain DRP concentrations during 

storm events, hence, event-water that is rapidly transported to tile via preferential 

flowpaths is often cited as a driver of tile DRP concentrations (Stamm et al., 1998; 
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Heathwaite and Dils, 2000).  Other studies have illustrated that matrix water may be 

rapidly transported from variable depths in the soil column to tile during events, which 

alters DRP concentration dynamics (Klaus et al., 2013; Williams et al., 2016; Ford et al., 

2018).  We postulate that combining hydrograph recession analysis of tile flow and SC-

EMMA will improve quantification of flow pathway and source water connectivity 

dynamics, and consequently improve correlations with nutrient concentrations in tile-

drainage.  

The overall objective of this study was to develop a new approach to partition 

subsurface flow based on both flow pathway and source connectivity descriptors and 

elucidate their impact on P concentration dynamics in tile drainage. Specific objectives of 

this chapter are to: 1) apply hydrograph recession analysis of subsurface discharge to 

partition the tile hydrograph into quickflow and slowflow pathways, and SC-EMMA to 

partition new-water and old-water; 2) develop and apply a new hydrograph separation 

framework that describes both hydrologic pathway (i.e., matrix flow vs. preferential 

macropore flow) and source connectivity (e.g., new-water vs. old-water) in tile drainage; 

and 3) investigate the relationship between separated hydrograph fractions and tile-drain 

DRP concentrations.  

3.2 Materials and Methods 

3.2.1 Study Site 

A field site from the USDA-ARS Soil Drainage Research Unit edge-of-field 

monitoring network (Williams et al., 2016) was secured for this study. The field site 

(0.158 km2) is a systematically tile drained field in Wood County, Ohio U.S.A.  



41 

 

Systematic tile drainage was implemented at 0.9 m (3 ft) below the soil surface with a 

lateral spacing of 15.2 m (50 ft).  Laterals were routed to a 0.3 m (12 in) tile main which 

was equipped with a drainage water management structure before discharging to a 

downstream ditch (Figure 3.1a). During our monitoring period, the structure remained 

open as part of a before-after-control-impact assessment, thus the field was always freely 

drainage during our monitoring period. The soils were characterized as silty-clay-loams 

consisting of Nappanee (NpA) and Hoytville (HcA) soil series (SSURGO soil data base, 

NRCS USDA, 2019). Soil P levels were measured using Mehlich-3 P soil tests at various 

depths and locations for the field and were found to average 80.6 mg kg-1 in the upper 

surface layer (0-5 cm), 36.5 mg kg-1 from 5-15 cm, and averaged 6.3 mg kg-1 at depths of 

15-60 cm.  The typical crop rotation was corn-soybean-wheat, managed with 

conservation-tillage.  At the onset of monitoring (October 1, 2018), the field contained 

soybean that was harvested on 10/17/2018.  The field remained fallow until wheat was 

planted the following season (10/11/2019).       

3.2.2 Data Collection and Analysis  

Precipitation and discharge were collected by the USDA-ARS using well-

accepted edge-of-field monitoring practices (Williams et al., 2016; Figure 3.1b). Tipping 

bucket rain gages were used to measure 10-minute rainfall intensity, depth, and duration. 

Tile mains were equipped with a weir insert (Thel-Mar, Brevard), and an ISCO 4230 

Bubbler Flow Meter (Teledyne Isco, Lincoln, Nebraska). Additionally, the tile outlet was 

equipped with an ISCO 2150 Area Velocity sensor for 30-minute discharge 

measurements under submerged conditions. Similarly, a surface monitoring site was 

equipped with a 61-cm (2-ft) H flume and a bubbler flow meter to measure 10-minute 
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discharge. Discharge was reported from the standard flume or weir stage-discharge 

relationships or as the product of area and velocity for the tile outlet when submerged. 

During water year 2019 (October 1, 2018-September 30, 2019), total tile discharge was 

522 mm, or 41% of precipitation (1263 mm). Surface runoff was only 8.3 mm (< 1% of 

precipitation) highlighting the importance of the subsurface flow pathway. Mean 30-

minute tile discharge throughout the monitoring period was 0.0025 m3/s, while maximum 

discharge was 0.0343 m3/s. 

A YSI EXO3 water quality sonde (Xylem/YSI Incorporation, 2020) was installed 

in the drainage water management structure to continuously (15-minute interval) measure 

specific conductance (see Figure 3.1c).  The sonde was equipped with a 

conductivity/temperature sensor, which uses four internal pure-nickel electrodes to 

measure solution conductance. Two of the electrodes are current driven, while the other 

two are used to measure voltage drop (EXO User Manual). Monthly maintenance was 

performed on the instrument per manufacturer recommendations, and was consistent with 

other studies (Snyder et al., 2018).   A one-point calibration approach was performed 

using KorEXO software and a calibration standard with conductivity equal to 1000 

µs/cm.  

        Surface and tile water samples were collected using a Teledyne ISCO 6712 portable 

sampler and accessories. Surface samples were collected using a flow proportional 

methodology; that is, a 200 mL aliquot was collected for every 1mm volumetric depth. 

Ten composited aliquots made up one sample. Due to periodic submergence, a time-

proportional approach was used to collect water samples. A 100-ml aliquot was collected 

every six hours for 48 hours and composited into a single sample bottle reflecting a two-
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day composite sample. During rainfall events, samples were collected at higher 

frequencies (samples collected every 15 minutes and composited hourly). Collected water 

samples were analyzed for dissolved reactive P (DRP) throughout the monitoring period 

by first vacuum filtration (0.45µm) and then analyzing for P using the ascorbic acid 

reduction method (Murphy and Riley, 1962). Samples rarely fell below method detection 

limits. Specific conductance was also measured on all Isco collected samples using a 

calibrated SC sensor in the laboratory. 

 

3.2.3 Analytical Methodology 

3.2.3.1 Hydrograph Recession and SC EMMA 

Hydrograph recessions from events throughout the monitoring period were 

compiled to develop a master recession curve. We assumed two flow pathways reflecting 

reservoirs for matrix and macropore flow, consistent with previous studies (Schilling and 

Helmers 2008; Vidon and Cuadra 2010; Williams et al., 2016; Nazari et al., 2020). 

Recession coefficients (k) for a linear reservoir are defined by the equation Q=Q0e
-kt 

(Gregor and Malik, 2012). The master recession curve (MRC) was automatically created 

using a Genetic Algorithm (GA) incorporated in RC 4.0 software (HydroOffice; Gregor 

and Malik, 2012; Malik and Vojtkova, 2012). We omitted events that were either 

comprised of days with zero flow (i.e., associated with no flux or tile backwater) or had 

nonlinear recessions associated with disruption of the initial recession and/or secondary 

flow peaks. For MRC creation, we selected 18 recessions from the site. Then we selected 

two linear reservoirs and fit two recession curves so that the two recessions provided 
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optimal fit to the data. The goodness-of-fit was tested using the Nash-Sutcliffe Efficiency 

(NSE) value (Moriasi et al., 2007). 

Hydrograph recession analysis was performed for each storm event using methods 

described by Husic et al. (2019) and Ford et al. (2019) (Figure 3.2a) which has been 

recently applied in tile-drained landscapes (Nazari et al., 2020).  Briefly, for each 

hydrologic event, we graphed the falling limb of the subsurface discharge hydrograph on 

a logarithmic scale and manually fit linear curves to distinct log-linear regions (reflecting 

drainage of two reservoirs) to determine the inflection points of the linear trends. Then, a 

linear increase in slow flow was assumed from the beginning of the rising limb of the 

hydrograph, which represents the start of quickflow (Qquick), to the determined inflection 

point on the falling limb from the previous step, which represents the maximum of the 

slow flow reservoir (Husic et al., 2019).   To test the impact of the assumption of linear 

increase of slowflow reservoir on flow pathway results we evaluated two alternative 

approaches for calculation of the slowflow hydrograph for eight events.  We used a non-

linear two-parameter digital filter method (Eckhardt, 2005), in which parameters were 

calibrated so that slowflow reservoir non-linearly increased to the maximum slowflow 

value near or before the hydrograph peak and then its value remained constant to the 

inflection point on the falling limb. We also used a non-linear one-parameter digital filter 

method (Lyne and Hollick, 1979) in which the recession constant was calibrated so that 

slowflow non-linearly increased slowly early in the event and then increased rapidly 

towards the inflection point on the falling limb of the hydrograph. Comparing the results 

of these two approaches showed limited impact on results (1-4% difference), and the 

timing of flow pathway peaks remained unchanged. Given the insensitivity of this 
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assumption, we present results using the simplified linear assumption for the 27 events. 

The area between the hydrograph and the slow flow curve represented Qquick, and the area 

underneath the slow flow reservoir curve represented Qslow. We performed this analysis 

on 27 storm events (SEs) from water year 2019.  

New-water and old-water fractions were quantified using specific conductance 

end-member mixing analysis (SC-EMMA; Figure 3.2b).  Following the approach of 

Smith et al. (2018), we solved the following system of equations at each timestep to 

estimate the pre-event (old) and event (new) flow contributions to tile drainage.  

(𝑄𝑇𝑖𝑙𝑒)𝑡 =  (𝑄𝑜𝑙𝑑)𝑡 +  (𝑄𝑛𝑒𝑤)𝑡                                                                                    (1a) 

(𝑆𝐶𝑇𝑖𝑙𝑒)𝑡(𝑄𝑇𝑖𝑙𝑒)𝑡 = 𝑆𝐶𝑜𝑙𝑑(𝑄𝑜𝑙𝑑)𝑡 +  𝑆𝐶𝑛𝑒𝑤(𝑄𝑛𝑒𝑤)𝑡                                                     (1b) 

where, (QTile)t, (Qold)t, (Qnew)t were total, old-water and new-water tile discharges at time 

t, respectively. (SCTile)t was the measured specific conductance of subsurface tile water at 

time t, and (SCold)t and (SCnew)t were specific conductance of old-water and new-water at 

time t, respectively. We assumed that SCnew was the average specific conductance of 

surface water runoff samples collected from the surface site, and SCold was the specific 

conductance of subsurface water at the beginning of each event and varied from one 

event to the next, a result of variable soil water conditions.  

 

3.2.3.2 Hydrograph Separation Framework 

We developed a new hydrograph separation framework that considers both flow 

pathway and water source connectivity (Figure 3.2c-d).  Once Qquick, Qslow, Qnew and Qold, 

were calculated, we developed the following piecewise functions for each time step (t) to 

estimate the portion of old-water that drains to the quickflow reservoir (Qquick-old), portion 
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of new-water that drains to the quickflow reservoir (Qquick-new), portion of new-water that 

drains through the slowflow reservoir (Qslow-new), and the portion of old-water that drains 

to the slowflow reservoir (Qslow-old). In deriving this framework, we assumed that 1) if 

quickflow exceeded new-water, all new-water was attributed to the quickflow pathway, 

and 2) if new-water exceeded quickflow, then all quickflow was attributed to new-water.  

Based on these assumptions, each pathway-source component of the hydrograph can be 

calculated as follows. 

{
(𝑄𝑞𝑢𝑖𝑐𝑘−𝑜𝑙𝑑)𝑡 = (𝑄𝑞𝑢𝑖𝑐𝑘 − 𝑄𝑛𝑒𝑤)𝑡            𝑖𝑓 (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡 ≥ (𝑄𝑛𝑒𝑤)𝑡 

(𝑄𝑞𝑢𝑖𝑐𝑘−𝑜𝑙𝑑)𝑡 = 0                                           𝑖𝑓 (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡 < (𝑄𝑛𝑒𝑤)𝑡
                                      

(2.a) 

{
(𝑄𝑞𝑢𝑖𝑐𝑘−𝑛𝑒𝑤)𝑡 = (𝑄𝑛𝑒𝑤)𝑡                           𝑖𝑓 (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡 ≥ (𝑄𝑛𝑒𝑤)𝑡 

(𝑄𝑞𝑢𝑖𝑐𝑘−𝑛𝑒𝑤)𝑡 = (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡                        𝑖𝑓 (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡 < (𝑄𝑛𝑒𝑤)𝑡
                                        

(2.b) 

{
(𝑄𝑠𝑙𝑜𝑤−𝑜𝑙𝑑)𝑡 = (𝑄𝑡𝑜𝑡𝑎𝑙 − 𝑄𝑞𝑢𝑖𝑐𝑘)𝑡          𝑖𝑓 (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡 ≥ (𝑄𝑛𝑒𝑤)𝑡 

(𝑄𝑠𝑙𝑜𝑤−𝑜𝑙𝑑)𝑡 = (𝑄𝑡𝑜𝑡𝑎𝑙 − 𝑄𝑛𝑒𝑤)𝑡             𝑖𝑓 (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡 < (𝑄𝑛𝑒𝑤)𝑡
                                         

(2.c) 

{
(𝑄𝑠𝑙𝑜𝑤−𝑛𝑒𝑤)𝑡 = 0                                       𝑖𝑓 (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡 ≥ (𝑄𝑛𝑒𝑤)𝑡 

(𝑄𝑠𝑙𝑜𝑤−𝑛𝑒𝑤)𝑡 = (𝑄𝑛𝑒𝑤 − 𝑄𝑞𝑢𝑖𝑐𝑘)
𝑡
         𝑖𝑓 (𝑄𝑞𝑢𝑖𝑐𝑘)𝑡 < (𝑄𝑛𝑒𝑤)𝑡

                                         

(2.d) 

We partitioned the tile flow into Qquick-new, Qquick-old, Qslow-new, and Qslow-old for the 

entire 2019 water year. For each selected event (27 events), we calculated total water 

volume and fractions for each partitioning.  

 

3.2.3.3 Comparison with Nutrient Concentration 
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Dissolved reactive P concentrations (DRPtile) in tile-drainage will reflect mixing 

of flow contributions and their associated nutrient compositions, which can be described 

using a linear mass-balance mixing model.  Based on our pathway-connectivity 

framework, we conceptualized tile drain nutrient concentrations to be influenced by the 

four hydrograph fractions as follows. 

𝐷𝑅𝑃𝑡𝑖𝑙𝑒𝑄𝑡𝑖𝑙𝑒 = 𝐷𝑅𝑃𝑞𝑢𝑖𝑐𝑘𝑛𝑒𝑤𝑄𝑞𝑢𝑖𝑐𝑘𝑛𝑒𝑤 + 𝐷𝑅𝑃𝑞𝑢𝑖𝑐𝑘𝑜𝑙𝑑𝑄𝑞𝑢𝑖𝑐𝑘𝑜𝑙𝑑 + 𝐷𝑅𝑃𝑠𝑙𝑜𝑤𝑛𝑒𝑤𝑄𝑠𝑙𝑜𝑤𝑛𝑒𝑤 + 𝐷𝑅𝑃𝑠𝑙𝑜𝑤𝑜𝑙𝑑𝑄𝑠𝑙𝑜𝑤𝑜𝑙𝑑                    (3) 

where, DRP is the daily flow-weighted mean nutrient concentration (mg/l), and Q is the 

tile flowrate for each partition (mm/d).  We used a daily, as opposed to event-based 

timestep since cumulative event dynamics will smooth out some variability in pathway 

dynamics. We also disregarded the sorption/desorption effects along the pathways for 

simplification and because the time scale of the events was short. Hence our analysis 

reflects average DRP concentrations for each pathway across events. 

 Dividing both sides of the equation 3 by QTile, the equation can be written as a 

multiple linear regression (MLR) model, with DRPtile as the measured dependent 

variable, fractions of pathway-source contributions as independent variables, and 

concentrations of the sources as unknowns:   

𝐷𝑅𝑃𝑡𝑖𝑙𝑒 = 𝐹𝑞𝑢𝑖𝑐𝑘𝑛𝑒𝑤 × 𝐷𝑅𝑃𝑞𝑢𝑖𝑐𝑘𝑛𝑒𝑤 + 𝐹𝑞𝑢𝑖𝑐𝑘𝑜𝑙𝑑 × 𝐷𝑅𝑃𝑞𝑢𝑖𝑐𝑘𝑜𝑙𝑑 + 𝐹𝑠𝑙𝑜𝑤𝑛𝑒𝑤 × 𝐷𝑅𝑃𝑠𝑙𝑜𝑤𝑛𝑒𝑤 + 𝐹𝑠𝑙𝑜𝑤𝑜𝑙𝑑 × 𝐷𝑅𝑃𝑠𝑙𝑜𝑤𝑜𝑙𝑑              (4) 

where, F is the fraction of total tile discharge for each partition at a given timestep.   

Daily subsurface DRP loadings and flow from the tile drainage network were 

calculated for all events throughout the monitoring period. We determined the midpoint 

of all sample time steps for each collected water sample, then used linear interpolation 

between measured values at the midpoint to estimate the concentration for each interval, 

and finally estimated loading as the product of interpolated concentrations and flow rate 

(Williams et al., 2015). We calculated daily Qquick-new, Qquick-old, Qslow-new and Qslow-old by 
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summing calculated 30-minute flow components. Daily flow-weighted mean 

concentrations of DRP were calculated by dividing daily nutrient load by daily tile 

discharge. Daily flow-weighted mean concentration of DRP was used for MLR analysis 

in equation 4.  

We performed a multiple linear regression at a daily timestep in order to estimate 

‘best-fit’ concentrations for the partitioned hydrograph sources.  The MLR models were 

performed in RStudio software.The F-statistic was used to test the null hypothesis that 

individual coefficients (DRP values in equation 4) were not equal to zero, as well as the 

null hypothesis that the overall MLR model provided a superior fit to a mean trend.  P-

values were calculated for the F-statistics in both hypothesis testing scenarios, and 

significance results are reported for p<0.05, p<0.01, p<0.001, and p<0.0001. We 

performed an analogous analysis using only Qquick/Qslow and Qnew/Qold to assess the 

improvement in predictions when using our new coupled hydrograph separation 

framework over each isolated hydrograph separation method. 

3.3 Results and Discussion  

3.3.1 Hydrograph Recession and SC-EMMA Results 

Master recession curve analysis for the 2019 water year data resulted in two 

discernable reservoirs reflecting preferential flow through macropores and diffuse 

drainage through the soil matrix (Figure 3.3). Reservoir 1 (R1) reflected a steeply 

recessing quickflow pathway, while Reservoir 2 (R2) was characteristic of a mildly 

recessing slowflow pathway. The recession coefficients for R1 and R2 were 0.9 and 0.25 

d−1, respectively (Figure 3.3).  The NSE value was equal to 0.81, suggesting very good fit 



49 

 

(Moriasi et al., 2007). Given that the recession coefficients vary by greater than three-fold 

(Schilling and Helmers, 2008; Rimmer and Hartmann, 2012; Husic et al., 2019), these 

findings are indicative of two distinct flow pathways.  Results of the master recession 

curve suggest that R1 accounted for 54% of the subsurface flow while the remainder, or 

46% was attributed to R2.  These values were consistent with ranges reported for 

preferential and diffuse flow at nearby loam and clay fields with similar long-term 

management practices (Ford et al., 2017; Nazari et al., 2020) and indicated that both 

preferential and matrix flow are significant contributors to subsurface drainage.  

 Specific conductance (SC) measurements during storm events showed a 

consistent pattern of maximum values occurring prior to the event, a decrease to 

minimum values slightly before or after peak discharge, and then increasing values on the 

receding limb toward pre-event levels (Figure 3.4).  Pre-event SC averaged 566.5 µs/cm 

for the twenty-seven events.  Minimum event SC averaged 240.5 µs/cm, reflecting 

decreases towards values reported for precipitation (e.g., 12 µs/cm in Smith et al., 2018) 

and measured SC in the surface runoff samples (15 µs/cm from 55 surface runoff 

samples).  Interestingly, the time to minimum SC values differed significantly for fall and 

winter events (mean = 698 minutes; with range of 165 to 1260 minutes) compared to 

spring and summer events (mean = 183 minutes; with a range of 60 to 390 minutes). 

Similar quick responses (141 min) from spring and summer events on silty clay loam 

sites in Iowa (Smith et al., 2018) have been reported and may be associated with 

differences in management practices, precipitation patterns, and seasonal differences in 

preferential flowpaths (Graham and Lin, 2011; Williams et al., 2016; Pluer et al., 2020).  
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Based on our results, we postulate seasonal differences and precipitation pattern 

dynamics both play an important role in timing of new water delivery to tile drains.  

Regarding precipitation patterns, our results showed that average event precipitation 

intensity (PI) in summer and spring (PI=9.8 mm/day) were two-fold greater than for the 

events in fall and winter (PI= 4.2 mm/day). With regard to seasonal environmental 

conditions, previous studies in tile-drained landscapes suggest that during the growing 

season, low-moisture conditions promote desiccation crack expansion, which enables 

water to rapidly transfer to tiles or bypass the drainage system (e.g. Nazari et al. 2020). 

Conversely, during winter a large amount of infiltration can occur via preferential flow 

because under partially saturated conditions a considerable portion of macropores remain 

air-filled (Granger et al., 1984; Stadler et al., 2000, Pittman et al., 2020; Mohammed et 

al., 2018 and 2020).  Nevertheless, infiltrated meltwater may freeze due to matrix-

macropore heat and water transfer, and the frozen water can block the macropore 

pathway, and consequently reduce infiltration of event water (Stadler et al., 1997; 

Watanabe and Kugisaki, 2017; Demand et al., 2019; Mohammed et al., 2020).  

Cumulatively, these seasonal environmental factors in precipitation and soil dynamics are 

likely drivers of short time to peaks in spring and summer and longer time to peaks in fall 

and winter. 

 Results of the event-based continuous recession and SC-EMMA analysis 

illustrated noticeable differences in magnitude and timing of the quick flow and new 

water fractions, challenging the assumption that new-water is equivalent to preferential 

flow (Table 3.1; Figure 3.5).  Cumulatively, Qquick was estimated to be 172 mm (48% of 

total tile discharge) and Qnew was estimated to be 176 mm (49% of total tile discharge).  
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For individual events, we found quickflow contribution to total subsurface flow varied 

from 8 to 77%, and new-water contributions varied from 3 to 82% (Table 3.1). However, 

new-water and quickflow hydrographs often differed in terms of peak timing and 

magnitude between events (Figure 3.5).  The peak of Qquick often occurred before Qnew 

except for SE12 and SE26. The difference between time to peak of Qquick and Qnew 

averaged 164 minutes for fall and winter events, and 87 minutes for spring and summer 

events. Studies have often assumed the amount of preferential flow is equated to the 

amount of new-water transported to tile (Klaus et al., 2013). For example, Smith et al. 

(2018) and Pluer et al. (2020) interpreted conductance-based unmixing results as 

separation of preferential flow and slow flow. Similarly, Williams et al. (2016) used δ18O 

to define event and pre-event water to tile drains and assumed that event water 

transported to tile drains within a storm event was only possible through macropore 

flows.  Our findings suggest new-water during storm flows may be transported to tile 

through both preferential and diffuse flow paths, suggesting caution should be used with 

tracer-based approaches.   

 

3.3.2 Pathway-Connectivity Results   

Results of the pathway-connectivity framework indicates all four hydrograph 

components had a significant, but variable contribution to tile hydrology.  Cumulatively, 

Qquick-old, Qquick-new, Qslow-old and Qslow-new contributed 9%, 39%, 42% and 10% of tile 

discharge for the analyzed events (Table 3.1). Qquick-old contributions ranged from 0.05% 

to 27%, Qquick-new contributions ranged from 1.86% to 66%, Qslow-new contributions ranged 

from 0.7% to 33%, and Qslow-old contributions ranged from 13% to 98% of total tile 
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discharge. Many agroecosystem water management models make simplifying 

assumptions that limit their ability to represent the aforementioned pathway-connectivity 

dynamics. For instance, APEX, DRAINMOD-P, ADAPT, RZWQM2-P, SimplyP, 

SWAP, and SWAT, do not actively simulate matrix-macropore processes explicitly 

through dual porosity or dual permeability frameworks (Pferdmenges et al., 2020).  This 

is important not only for hydrologic simulations, but also contaminant transport given 

source connectivity has a major impact on nutrient, pesticide and sediment transport 

processes, as will be discussed in section 3.3.3. As modeling frameworks in 

agroecosystems evolve to incorporate robust hydrologic processes, the coupled 

hydrograph-recession SC-EMMA framework proposed herein may be useful for 

quantitative model evaluations given the heterogeneity observed at the event-scale in 

pathway-connectivity dynamics.   

        Results for Qquick-new support existing perceptions that preferential transport of 

surface water occurs through both saturated and unsaturated conditions through 

macropores in fine-textured, tile-drained soils. Qquick-new for the 27 events had a positive 

linear relationship with event precipitation (R2 = 0.4), and a weak negative correlation 

with 10-day antecedent rainfall (R2 = 0.12).  Further, under low antecedent conditions in 

summer (Figure 3.6a), two Qquick-new peaks were observed, one of which occurred 60 

minutes into the event, and the other occurred 210 minutes into the event. This finding 

illustrates that fine-textured tile-drained landscapes are not solely drained by binary flow 

reservoirs, but instead reflect a spectrum of slow to rapid flows.  For example, Schilling 

et al. (2008) illustrated recessions in tile-drained landscapes of Iowa may be separated 

into quick, intermediate, and slow flow regimes. The timing of the second peak is 
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reflective of the time to peak for Qquick-new in fall as evidenced by similar magnitude 

drainage events with greater antecedent moisture (Figure 3.6b). While further work is 

needed to illustrate the prominence and mechanisms driving these early-event peaks, one 

potential mechanism is that desiccation crack networks may be more prominent during 

these low antecedent moisture periods, promoting unsaturated film flow to tiles (e.g., 

Nimmo, 2012; Mirus and Nimmo, 2013; Ford et al., 2017). Regardless, these findings 

support a growing body of research in tile-drained landscapes that suggest macropore 

flows of surface-derived water sources are significant under a range of antecedent 

moisture conditions (Tokunga and Wan, 1997; Cey and Rudolph, 2009; Ford et al, 2017; 

Smith et al., 2018). 

Results for quickflow of old water (Qquick-old) highlight the importance of intrinsic 

event properties to control the magnitude of matrix-macropore flow. The Qquick-old 

component of the hydrograph, by definition, reflects matrix water that is transported to 

tile-drains via macropore flowpaths, and was found to be activated throughout the year, 

even under drier antecedent conditions.  Like Qquick-new, we found a positive linear 

relationship between Qquick-old and precipitation (R2 = 0.52), and a weak negative 

relationship with 10-day antecedent rainfall (R2=0.08).  We also found Qquick-old to have a 

positive linear relationship with Qquick-new (R2 = 0.40).  Klaus et al. (2013) performed 

irrigation experiments on a tile-drained hillslope and found old-water was mobilized 

through shallow surface soil depths (20-40 cm) and transported through macropores 

because macropore–matrix interaction leads to an initiation of macropore flow after a 

moisture threshold was exceeded. Several other studies have highlighted macropore flow 

under porewater tension conditions and associated importance of macropore–matrix 
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interaction in controlling this flow (e.g. Tokunaga and Wan 1997; Cey and Rudolph 

2009; Bishop et al., 2015; Callaghan et al., 2017).  The findings of our study support that 

increasing preferential flow of new-water enhances mixing with the soil matrix (i.e., bi-

directional matrix-macropore interaction). Likewise, our findings support that larger 

precipitation events will result in greater saturation of soils and thus greater rates of 

matrix-macropore exchange.  Contrary to anticipated outcomes, antecedent rainfall had 

little impact on matrix-macropore exchange.  This finding suggests that antecedent 

conditions may be insensitive when compared to intrinsic storm event hydrologic 

characteristics with regards to magnitude of matrix-macropore exchange.   

Apart from near-surface initiation of macropore flow, rapid transport of old water 

to tile drains could occur because of rapid transition of the capillary fringe from tension 

saturation to positive pressure (Sklash and Farvolden 1979). In tile-drained systems, the 

groundwater elevation is at or near the tile drain elevation, therefore it is possible that 

part of the correlation between macropore flow and matrix-macropore exchange is 

associated with the rapid transition of the capillary fringe tension saturation to positive 

pressure near tile drains.  Nevertheless, as will be discussed in section 3.3.3, we do not 

feel this is a prominent source for our study since regression analyses with DRP 

concentrations indicated high levels of DRP in the Qquick-old pathway. 

 Our findings show contributions of both new-water and old-water to the slow 

flow pathways suggesting groundwater recharge of new-water plays an important role in 

tile-drainage fluxes. The average time to peak of Qslow-new for all the events was 32 ± 4 

hours. Using a one-dimensional form of Darcy’s law in which we assumed area weighted 

hydraulic conductivity averaged 5.5 cm day-1 and 45% of porosity for our site (NRCS, 
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2019; Vidon and Cuadra, 2010), we found that for new stormwater to reach tile drains 

through diffuse percolation alone could take on the order of a week. This result suggests 

that new-water, at least to some degree, bypasses portions of the soil matrix before 

ultimately draining through the soil drainage reservoir.  Previous studies have indicated 

that unsaturated-zone preferential flow can significantly contribute to groundwater 

recharge (Lee et al., 2006; Mirus and Nimmo 2013; Cuthbert et al., 2013). For tile-

drained landscapes, Frey et al. (2012) highlighted that under partially saturated conditions 

water transport via macropores to subsurface can then be laterally transmitted to tiles via 

short slowflow pathways in the vicinity of tile lines.  Although we did not measure 

groundwater level and its responsiveness to preferential flow, we found that there was a 

negative relationship between Qslow-new time to peak and 10-day antecedent rainfall (R2 = 

0.19). This finding is consistent with Lee et al. (2006) where the authors found that 

groundwater recharge with preferential flow is dependent on both thickness and degree of 

saturation of the unsaturated zone. Collectively, these results suggest that groundwater 

recharge could be an important regulator of timing and flow pathway dynamics in tile 

discharge. 

3.3.3 Implications for P delivery at the edge-of-field 

Daily flow-weighted mean DRP concentrations were poorly correlated with 

discharge, stemming primarily from significant variability at low tile discharges (Figure 

3.7). We found that tile drainage only predicted about 10% of the variability in DRP.  

The simple regression underestimates DRP concentrations at low-flow conditions where 

DRP concentration was highly variable, and overestimated DRP concentrations at high-

flow conditions when concentrations were less variable. This finding suggests that during 



56 

 

high-flow conditions, subsurface discharge can be a more reliable predictor of DRP 

concentration while under low-flow conditions other environmental factors may 

influence DRP such as P (de)sorption, redox conditions, and water source (Wright et al., 

2001; Kleinman and Sharpley,2002; King et al., 2015).  

Multiple linear regression (MLR) analysis suggests that including both pathway 

and connectivity partitioning was important for estimating tile drainage DRP 

concentrations (Table 3.2; Figure 3.8). The p-value of the F-statistic for all three models 

was < 2×10-16, suggesting all models were significant predictors of tile DRP 

concentrations. Further, all beta coefficients were found to be significant at a 0.05 

significance level. Comparing the visual results of predicted DRP values and measured 

DRP values (Figure 3.8) illustrates that our new pathway-connectivity framework 

provided improvements at low-moderate DRP concentrations (<0.05) as evidenced by 

datapoints converging on the 1:1 line (Figure 3.8c). Further indication of improvement of 

prediction using our pathway-connectivity framework is evidenced by increases in the 

NSE (0.46; see Moriasi et al., 2007), as compared to SC-EMMA (0.41) (Figure 3.8.b), 

and hydrograph recession (0.27) results (Figure 3.8.a). While the improvement may 

partially reflect additional variables in the regression analysis, all regression variables 

were significant (Table 3.2), and the coefficients differed between each of the hydrograph 

partitions.  This methodology may become particularly important for understanding 

dynamics at sites where matrix exchange of old water to macropores constitutes a greater 

proportion of the tile hydrograph.  Further, this methodology may help with evaluating 

drivers of DRP delivery to tile at sites where new water is a poor predictor of DRP 

concentrations ( Pluer et al., 2020).  While predictions could be improved by accounting 
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for variability in individual source compositions, our results support the importance of 

considering both hydrologic source and pathway to accurately predict DRP concentration 

dynamics. Furthermore, our analysis reflects an average DRP concentration from 

pathways, however between events there are likely complex sorption/desorption 

dynamics that result in variability in each pathway. Considering redox or other conditions 

that can effect sorption/desorption dynamics between events can reduce uncertainty 

associated with our MLR analysis and improve the NSE value. 

Best-fit concentrations from the regression model provide insight into sources of 

DRP in the soil profile and the impacts of preferential flow on groundwater recharge.  

Results of the regression analysis showed DRPquick-old was slightly less than DRPquick-new. 

This result suggests DRPquick-old was initiated from near-surface matrix waters, given that 

water extractable P is highly stratified at the study site (see study site description).  Such 

stratification and subsurface labile P accumulation is typical of tile-drained 

agroecosystems in the region (King et al., 2015; Xu et al., 2020). Additionally, 

concentrations for DRPslow-new were high, similar to quick flow pathways.  This finding 

was somewhat surprising considering the slow-new source ultimately drains through the 

matrix reservoir.   In part this finding may partially reflect uncertainties in the new water 

SC end-member, particularly later in the event when SC values may be non-conservative 

(Vidon and Cuadra 2010).  Nevertheless, the finding is of interest because it suggests 

groundwater recharge through preferential flowpaths is an important source of greater 

DRP concentrations in tile drainage, which is rarely emphasized in tile DRP studies 

(King et al., 2015) and merits further consideration in future tile-drainage water quality 
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research, particularly when studying practices such as drainage water management which 

directly impacts water table dynamics.   

The results of this study highlight that coupled characterization of flow pathway 

and water source are important for predicting DRP concentrations in tile-drainage. Few 

studies have assessed the impact of flow pathway and source connectivity dynamics on 

tile P concentrations during storm events (Jiang et al., 2021). Previous studies have either 

used total Q, preferential flow or new/old water estimates to predict P concentrations and 

loading in tiles. For instance, Pluer et al. 2020 found that preferential flow (estimated by 

conductivity based unmixing) was weakly correlated with P concentration, although the 

relationship between P and preferential flow was positive suggesting that preferential 

flow was a significant driver of P transport to tiles (Pluer et al. 2020, Grant et al. 2019).  

Given the relatively low cost of specific conductance, flow and temperature sensors, 

widespread application of pathway-connectivity frameworks across environmental and 

management gradients has significant potential for advancing our understanding of 

contaminant transport in tile-drainage.  

3.4 Conclusions 

A new method was presented that combines Specific Conductance-End-Member 

Mixing Analysis (SC-EMMA) and hydrograph recession approaches to describe both 

hydrologic pathways and source connectivity by separation of subsurface hydrograph into 

Qquick-new, Qquick-old, Qslow-new, Qslow-old. Results highlight event-to-event and seasonal 

variability in dominant source-pathway dynamics. New-water and quickflow 

hydrographs often differed in terms of peak timing and magnitude between events. Our 
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results support that new-water through macropore flow can occur under both dry and 

saturated conditions. Likewise, matrix-macropore exchange occurs under a range of 

antecedent conditions. Contributions of new-water in the slowflow reservoir highlighted 

that groundwater recharge plays a significant role in tile-drainage fluxes. 

Using the pathway-connectivity flow components as descriptors of DRP delivery 

in a multiple linear regression (MLR) model improved prediction of DRP concentrations 

in tiles as compared to tile flow or hydrograph recession results, although it provided 

comparable results to new-water and should be evaluated elsewhere at sites where 

matrix-macropore exchange constitute a larger percentage of the tile water budget.  We 

found that new-water that routes through quickflow and slowflow reservoirs play a 

significant role in delivery of DRP in tiles as compared to old-water. Results show that 

DRP concentrations associated with matrix-macropore exchange revealed initiation of 

this water source from the near-surface matrix.  This study highlights a data-driven 

approach using inexpensive sensors to assess flow pathway and connectivity dynamics 

and can be used to help inform numerical model evaluations and assess environmental 

gradients across sites in future work.
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3.5 Figures and Tables 

Table 3.1  Summary of event timings, precipitations, total tile discharges, and flow partitioning results.   

Event 

# 

Event 

start 

time 

Event 

ending 

time 

Event 

Precip 
QTile   Qquick Qslow  Qnew  Qold  Qquick-old  Qquick-new  Qslow-old  Qslow-new  

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

SE1 
11/1/18 

1:00 

11/9/18 

10:00 
49.91 33.2 (870)* 21.5 (870) 11.7 (4020) 13.1 (1380) 20.1 (690) 8.9 (690) 12.6 (1380) 11.2 (3750) 0.5 (4020) 

SE2 
11/9/18 

13:30 

11/12/18 

3:30 
8.43 4 (300) 0.5 (300) 3.5 (1230) 0.1 (990) 3.9 (300) 0.4 (300) 0.1 (300) 3.5 (1140) 0 (1200) 

SE3 
11/26/18 

1:00 

11/30/18 

4:00 
23.86 21.8 (780) 13.5 (780) 8.2 (2850) 12.3 (840) 9.5 (510) 2.2 (510) 11.4 (840) 7.4 (2190) 0.9 (2850) 

SE4 
12/1/18 

11:00 

12/5/18 

22:30 
14.21 16.9 (930) 7.9 (900) 9 (2880) 7.7 (960) 9.2 (900) 1.2 (900) 6.7 (960) 8 (2310) 1 (2880) 

SE5 
12/20/18 

12:30 

12/27/18 

4:00 
22.4 16.4 (990) 7.8 (960) 8.5 (2610) 6.2 (1080) 10.2 (930) 2.7 (720) 5.2 (1080) 7.5 (2100) 1 (2610) 

SE6 
12/27/18 

13:00 

12/31/18 

7:00 
6.44 5.5 (1440) 0.9 (1410) 4.6 (2640) 0.4 (1560) 5.2 (1410) 0.7 (1410) 0.3 (1560) 4.5 (2550) 0.1 (2580) 

SE7 
12/31/18 

7:30 

1/5/19 

23:30 
24.56 21.9 (540) 12.7 (540) 9.2 (2850) 12.1 (660) 9.8 (450) 1.8 (450) 10.9 (660) 8 (2010) 1.2 (2820) 

 

SE8 
1/22/19 

22:30 

1/31/19 

7:00 
39.55 34.8 (570) 26.8 (2580) 8 (6000) 24.2 (2730) 10.7 (2310) 3.8 (300) 23.1 (720) 6.9 (3060) 1.1 (3960) 

 
 

SE9 
2/12/19 

10:30 

2/14/19 

12:00 
14.18 5.7 (1080) 1.8 (1080) 3.9 (1860) 2.3 (1140) 3.4 (990) 0.3 (990) 1.5 (1140) 3.2 (1230) 0.7 (1860)  

SE10 
2/14/19 

23:30 

2/19/19 

17:00 
1.23 9.7 (990) 3.9 (990) 5.8 (2160) 4.4 (990) 5.3 (210) 0.2 (180) 3.6 (990) 5.1 (1140) 0.7 (2160)  

SE11 
2/20/19 

14:30 

2/21/19 

10:04 
8.44 4.4 (570) 2.7 (540) 1.7 (990) 3.6 (570) 0.8 (300) 0.2 (300) 2.5 (540) 0.6 (420) 1.1 (990)  

SE12 
2/23/19 

16:30 

2/26/19 

3:30 
6 12.6 (1050) 8.3 (1400) 4.4 (2490) 7.2 (1110) 5.4 (750) 1.5 (750) 6.8 (1110) 4 (1980) 0.4 (2490) 

 

 

SE13 
3/9/19 

16:30 

3/13/19 

8:00 
21.38 12.4 (660) 5 (660) 7.4 (1530) 8 (690) 4.4 (330) 0.3 (330) 4.8 (660) 4.1 (750) 3.2 (1530) 

 

 

SE14 
3/14/19 

15:30 

3/20/19 

9:00 
11.43 25 (1890) 8.2 (1890) 16.8 (3660) 9.7 (1980) 15.3 (1830) 1.2 (1830) 7.1 (1940) 14.2 (2730) 2.6 (3630) 

 

 

SE15 
3/20/19 

18:00 

3/26/19 

17:30 
17.4 11 (600) 2.7 (600) 8.3 (2880) 1.8 (870) 9.2 (480) 1.4 (480) 1.3 (870) 7.8 (2250) 0.5 (2880)  

SE16 
3/28/19 

5:30 

4/4/19 

3:30 
37.18 27.2 (2370) 13.4 (4080) 13.8 (6630) 13.8 (4200) 13.5 (3450) 2.2 (1740) 11.2 (2490) 11.2 (3360) 2.6 (4320) 

 
 

SE17 
4/18/19 

15:30 

4/20/19 

4:04 
33.71 16.1 (900) 6.3 (900) 9.8 (1590) 11.2 (960) 4.9 (480) 0.4 (480) 6 (900) 4.5 (780) 5.3 (1590) 

 
 

SE18 
4/20/19 

5:00 

4/25/19 

7:26 
13.92 23.2 (210) 8.5 (300) 14.7 (30) 13.7 (330) 9.5 (210) 0 (210) 8.5 (300) 9.5 (180) 5.2 (450) 

 
 

SE19 
4/27/19 

18:30 

4/29/19 

15:30 
17.02 12.7 (390) 5.2 (630) 7.6 (1620) 5.3 (690) 7.4 (540) 0.6 (300) 4.5 (450) 6.8 (870) 0.8 (1380)  

 



 

 

 

6
1
 

Table 3.2 (Continued) Summary of event timings, precipitations, total tile discharges, and flow partitioning results.  

*The numbers in parentheses show time-to-peaks of flow components in minutes 

  

 

 

 

 

 

 

 

Eve

nt # 

Event 

start 

time 

Event 

ending 

time 

Event 

Precip 

QTile  
 

Qquick Qslow  Qnew  Qold  Qquick-old  Qquick-new  Qslow-old  Qslow-new   

SE20 
4/30/19 

14:00 

5/1/19 

13:30 
6.04 4.4 (240) 0.6 (270) 3.8 (810) 0.7 (360) 3.8 (240) 0.2 (270) 0.4 (360) 3.5 (570) 0.3 (780) 

 

 

SE21 
5/13/19 

6:30 

5/16/19 

22:00 
3.7 4.4 (210) 0.5 (210) 4 (1170) 0.5 (330) 3.9 (180) 0.2 (180) 0.3 (330) 3.7 (810) 0.3 (1140)  

SE22 
5/28/19 

4:00 

5/31/19 

12:28 
8.27 10.1 (150) 2.5 (150) 7.7 (60) 5.3 (210) 4.9 (150) 0 (150) 2.5 (210) 4.9 (150) 2.8 (60)  

SE23 
6/13/19 

19:00 

6/14/19 

23:30 
2.18 3.9 (120) 1.4 (240) 2.5 (600) 2.1 (270) 1.8 (210) 0.3 (60) 1 (120) 1.4 (90) 1.1 (450)  

SE24 
6/15/19 

10:30 

6/19/19 

13:30 
5.45 11.6 (1140) 5.6 (1140) 6 (2220) 6.1 (1170) 5.5 (1140) 0.6 (540) 5 (1170) 4.9 (1140) 1.1 (2220)  

SE25 
7/6/19 

19:30 

7/10/19 

9:30 
16.77 0.6 (90) 0.1 (90) 0.6 (210) 0 (150) 0.6 (90) 0 (90) 0 (150) 0.6 (270) 0 (210) 

 

 

SE26 
9/21/19 

15:00 

9/22/19 

19:00 
22.91 1 (120) 0.5 (120) 0.5 (600) 0.3 (60) 0.7 (90) 0.25 (90) 0.25 (120) 0.47 (540) 0.03 (600)  

SE27 
9/30/19 

2:00 

9/30/19 

23:30 
32.76 6.2 (300) 3.1 (240) 3.1 (870) 3.5 (570) 2.7 (270) 1.2 (270) 1.9 (480) 1.6 (480) 1.5 (870)  

Sum   469.33 356.83 171.87 184.96 175.32 181.5 32.54 139.13 148.98 35.99 
 
  

Mean     17.38 13.21 6.37 6.86 6.50 6.73 1.21 5.16 5.52 1.33  

SD     ±12.5 ±9.5 ±6.5 ±4.1 ±5.8 ±4.67 ±1.8 ±5.27 ±3.47 ±1.41  
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Table 3.3  Results of the multiple linear regression analysis for daily flow-weighted mean 

DRP concentrations. Estimated coefficient column shows estimated dissolved reactive P 

concentration (mg/L) associated with each flow fraction with standard error in 

parenthesis. 

 Estimated Coefficients P-Value of flow fractions P-Value of Overall Model 

Regression using new pathway-connectivity framework 

DRPquick-old 0.076 (0.02)** 0.00033 <2×10-16 

DRPquick-new 0.091 (0.008)*** <2×10-16 

DRPslow-old 0.028 (0.003)*** 2.65×10-12 

DRPslow-new 0.153 (0.019)*** 8.8×10-13 

Regression using only Hydrograph Recession Analysis 

DRPquick 0.088 (0.006)*** <2×10-16 <2×10-16 

DRPslow 0.043 (0.003)*** <2×10-16 

Regression using only SC-EMMA Analysis 

DRPnew 0.108 (0.007)*** <2×10-16 <2×10-16 

DRPold 0.034 (0.003)*** <2×10-16 

.P=0.05, *P=0.01, **P=0.001, ***P=0.0001 
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Figure 3.1  Location of the tile-drained field located in Wood county, Ohio, USA. a) 

Aerial field delineation and monitoring location. b) Outlet of the tile network and its 

installed weir, and ISCO pump sampler. c) High-frequency sensing YSI EXO2 Sonde 

and its deployment in a drainage water management structure. 

 

 

 

 

 

 

 

 

 

(a) 
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Figure 3.2  Separation of subsurface hydrograph to combined pathway-connectivity 

components including Qquick-old, Qquick-new, Qslow-old, and Qslow-new. Subsurface hydrograph is 

separated into quickflow (Qq) and slowflow (Qs) reservoirs using hydrograph recession 

analysis in Step 1 (a). Subsurface hydrograph is separated into new-water (Qn) and old-

water (Qo) components using SC-EMMA approach (b). In Step 2, a set of equations are 

employed and calculated Qquick, Qslow, Qold and Qnew (From Step 1) are used to separate 

hydrograph into pathway-connectivity components as shown in (c) and (d). 
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Figure 3.3  Master recession curve constructed from 18 subsurface flow recessions for 

water year 2019. 
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Figure 3.4  (a) Timeseries of data including 30-minute tile flow (mm) and 15-minute 

specific conductance (µs/cm).  Two events are highlighted at different times of year 

including (b) fall and (c) summer. 

 

 

 

a) 
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Figure 3.5  Tile discharge, quickflow calculated using hydrograph recession analysis and 

new water calculated using specific conductance end-member mixing analysis for each 

storm event (SE) at the study site during water year 2019. 

 

 

 

 



 

68 

 

 

Figure 3.6  Results of pathway connectivity framework for a) SE26 and b) SE2. These 

two events were selected from summer and fall because they reveal seasonal differences 

in subsurface flow pathway and source connectivity. 
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Figure 3.7  Flow-weighted daily mean DRP concentrations for the study site in water 

year 2019 plotted against tile discharge. 
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Figure 3.8  Multiple Linear regression analysis results for daily flow-weighted mean 

concentrations of DRP as compared to a) hydrograph recession results, b) SC-EMMA 

results and c) the new pathway-connectivity framework results. 
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CHAPTER 4. THE ROLE OF FLOW PATHWAY, SOURCE WATER 

CONNECTIVITY, AND ENVIRONMENTAL GRADIENTS ON TILE-DRAIN 

SEDIMENT TRANSPORT DYNAMICS 

4.1 Introduction 

Quantifying sediment and particulate phosphorus (PP) transport dynamics is of 

increasing interest in tile-drained landscapes given recent findings that PP fate plays an 

important role in eutrophic conditions of receiving waterbodies (e.g., Casillas-Ituarte et 

al., 2020).  The impact of hydrologic and sediment transport processes on PP loadings at 

the field-scale in tile-drained landscapes remains poorly understood (Jiang et al., 2021).  

Studies have traditionally attributed fine sediments in tile-drains to erosion from surface 

soils during storm events that are transported to tile drains via preferential flowpaths, thus 

partially bypassing the filtration capacity of the soil matrix (Michaud and Laverdiere, 

2004; Turunen et al., 2017; Collins et al., 2019).  Nevertheless, laboratory studies of 

preferential flow through undisturbed soil cores have indicated that subsurface flow, ionic 

strength of water, and matrix-macropore interaction may also result in subsurface 

sediment erosion and transport, suggesting potential impacts on tile sediment loadings 

(Hendrick et al., 1993; Jacobsen et al., 1997; Schelde et al., 2002; Rousseau et al., 2004; 

Wilson et al., 2018).  There is a pressing research need for sediment and PP databases 

from tile drained agroecosystems to improve understanding of flow pathway and water 

source impacts on PP loadings from tiles (Christianson et al., 2016; Jiang et al., 2021). 

 Subsurface flow pathways have been identified as significant drivers of 

subsurface sediment erosion and transport. It is postulated that preferential flow paths 

play a significant role because macropores provide rapid connectivity from surface to 

tiles, in contrast with micropore pathways in the soil matrix that are usually considered 
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too small for conveyance of sediment particles (Turunen et al., 2017; Akay and Fox, 

2007; Frey et al. 2016). The connectivity of surface to subsurface via macropores 

provides a rapid pathway for detached surface particles to bypass soil filtration capacity 

and move from surface to tiles through turbulent conduits (Stone and Wilson, 2006; 

Poirier et al., 2012; Grangeon et al., 2021). Sediments eroded from the subsurface are 

derived from particle detachment from macropore walls or from seeping from matrix to 

macropores (Wastra et al., 2013; Wilson et al., 2018).  Highly turbulent flow in 

macropores can result in a positive feedback loop in which erosion of macropore walls 

enlarges macropore conduits, creating higher volumes of flow and shear stresses and thus 

a subsequent increase in erosion (Kaplan et al., 1993; Wilson et al., 2016 and 2020; 

Bernatek‐Jakiel et al., 2020).  In order to better understand subsurface sediment erosion 

and transport processes within tile drained fields it is critical to study subsurface flow 

pathways and dynamics in these landscapes. 

        Source water properties have also been identified to play a key role in subsurface 

sediment erosion and transport. Macropore walls are envisioned to have chemical 

exchange/interactions with water and can release or retain particles depending on source 

water chemical properties (Majdalani et al., 2007). Water sources with lower ionic 

strength are more erosive as compared to water with high ionic content because the lower 

ionic strength results in higher osmotic potential and therefore higher total potential of 

soil water which results in weaker links between soil particles, thus increasing particle 

detachment by mechanical pressure (Miyazaki, 1993; Tessier et al., 1999; Rousseau et 

al., 2004).  It is also now well established that preferential flows contain both low ionic 

strength event water and high ionic strength soil water (Klaus et al., 2013; Williams et al., 
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2016; Smith et al., 2018; Pluer et al., 2020; see Chapter 3). Seepage of matrix water to 

preferential flow paths (i.e., matrix-macropore exchange) can result in translocation of 

sediment from the soil matrix to preferential flowpaths (Wilson et al., 2018) and therefore 

may impact sediment loads to tile. These findings highlight that assessing sediment 

transport drivers to tile require hydrograph separation techniques that consider not only 

the flow pathway (e.g., quick and slow flow paths), but also water source (e.g., rainfall 

event water vs. pre-event soil water).  

        Gradients in climatic drivers will impact subsurface flow pathway and water source 

connectivity dynamics as well as erodibility of tile sediment sources.  Increases in 

precipitation intensity and magnitude have generally resulted in increases in surface 

erosion (Warsta et al., 2014; Perks et al., 2015; Sherriff et al. 2016; Turunen et al., 2017; 

Beczek et al., 2019) and increases in preferential flow of low ionic strength water (See 

Chapter 3).  These findings suggest both surface and subsurface sources are expected to 

have increased loadings with increases in precipitation.  Regarding antecedent conditions, 

studies have shown that the subsurface erosion sources experience higher initial peak 

concentrations with increasing time between events due to regeneration of easily 

detachable particles along macropore walls (Schelde et al., 2002; Majdalani et al., 2007; 

Van den Bogaert et al., 2016).  Similarly, temporal variability in erodibility of surface 

sources that are delivered to tile drains have also been postulated (Turunen et al., 2017). 

For instance, a large amount of preferential flow can occur in winter under unsaturated 

and partially saturated conditions (Stadler et al., 2000, Pittman et al., 2020; Mohammed 

et al., 2018 and 2020), but infiltrated water may freeze due to exchange of heat and water 

with soil matrix, and the frozen water can block the macropore pathway and reduce 
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infiltration of event water (Watanabe and Kugisaki, 2017; Demand et al., 2019; 

Mohammed et al., 2020). Previous studies have reported higher preferential flow 

fractions under dryer conditions of summer and spring due to shrink-swell cracks that 

progressively could develop from the end of winter to become fully developed in summer 

and form larger subsurface conduits (Kladivko et al., 1991; Øygarden and Jenssen, 1997; 

Grangeon et al., 2021). 

        Given the complexity of flow pathway, source water connectivity dynamics, and 

surface/subsurface erosion, robust datasets are needed to evaluate tile sediment loading 

dynamics. Continuous measurements of tile flowrates and electrical conductance have 

enabled separation of both flow pathway and water source connectivity dynamics in tile-

drains using data-driven approaches.  Hydrograph recession analysis has been 

successfully applied in subsurface drained landscapes for partitioning quick and slow 

flow pathways of water during storm events (Schilling and Helmers 2008; Mellander et 

al., 2013; Ford et al., 2019; Husic et al., 2019; Nazari et al., 2020).  Further, continuous 

conductance measurements in tile-drain waters have been increasingly reported in recent 

years and have been coupled with end-member unmixing models for partitioning event 

and pre-event water sources during stormflows (e.g., Smith et al., 2018; Pluer et al., 

2020).  In the previous chapter of this dissertation, these methodologies were coupled 

into a flow pathway-connectivity framework that discretizes hydrographs into rapid 

transport of event water, rapid transport of pre-event water, slow transport of event water, 

and slow transport of pre-event water (see Chapter 3).  Given the importance of both 

water source and flow pathways on erosion and transport processes, coupling these 
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hydrograph partitions with sediment measurements from tiles could provide new insights 

to governing processes controlling tile sediment loadings.  

        Continuous in situ sensor measurements of turbidity have rarely been applied in tile-

drainage despite their widespread use as a reliable surrogate for measuring sediment 

concentration dynamics at high-frequencies in many watershed-scale applications.  

Turbidity sensors have become robust and economically feasible for use as a surrogate of 

suspended sediment concentrations in fluvial environments (Sherriff et al., 2016; Snyder 

et al., 2018; Pickering and Ford, 2021).  Continuous monitoring of turbidity has been 

used to assess sediment hysteresis dynamics, which can provide insights into sediment 

peaks and source exhaustion, sediment storage availability and mobilization pathways, 

and lag time between discharge and peak sediment concentration (Williams 1989; Duvert 

et al., 2010; Lloyd et al. 2016; Sherriff et al., 2016, Grangeon et al., 2021). Performing 

hysteresis analysis on separated hydrograph fractions have not been reported to our 

knowledge but may improve insights into tile sediment loading dynamics and prevailing 

flow pathways and water sources impacting sediment delivery.   

        The overarching objective of this study was to quantify sediment loading dynamics 

for a subsurface drained agroecosystem and assess the governing flow pathway and water 

sources impacting tile sediment loads. Specific aims of the study were to:  1) quantify 

sediment concentration and loading dynamics in a systematically-drained field 

characteristic of fine-textured midwestern agroecosystems, 2) assess the impact of flow 

pathway and water source connectivity on sediment dynamics, and 3) perform a 

quantitative sediment hysteresis analysis on tile flowrate and separated hydrograph 

fractions to identify impacts of prevailing environmental factors. 
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4.2 Study Site and Materials  

 

To meet the objectives of this study, we selected a site from the USDA-ARS Soil 

Drainage Research Unit edge-of-field monitoring network (Williams et al. 2016). The 

study site (0.16 km2) was a systematically drained field with a silty-clay-loam soil texture 

in Wood County, Ohio U.S.A. (Figure 4.1.a). Tile drains were implemented at depth of 

0.9 m (3 ft) from the soil surface. Lateral spacing was 15.2 m (50 ft), and the laterals 

were routed to a 0.3 m (12 in) tile main with an outlet equipped with a drainage water 

management structure before flowing into a downstream ditch.  The study site was 

selected because 1) study site characteristics were typical of prevailing agricultural 

management practices, soil texture, soil nutrient conditions, and runoff characteristics in 

the region (Williams et al., 2016); 2) The data collection efforts complement an extensive 

historic database and study record conducted by the USDA-ARS at the site including 

more than seven years of continuous precipitation, flowrate, and nutrient data with 

monitoring of both surface and subsurface pathways; 3) annual TP―DRP loading (a 

surrogate for PP loading) averaged 0.58 kg/ha and preferential flow constituted 48% of 

tile flow, both of which are typical of tile-drained fields in the region (King et al. 2015, 

Williams et al. 2016, see Chapters 2-3); 4) The producer manages the site under 

conservation tillage practices which are now widely adopted across row-cropping 

systems in the tile-drained Midwest (Djodjic et al., 2002; Cullum, 2009; Williams et al., 

2016); and 5) the presence of a drainage water management flow control structure 

provided a secure structure to house sensing equipment. 

Regarding management practices at the site, the typical crop rotation was corn-

soybean-wheat.  At the onset of our high-resolution monitoring (October 1, 2018), the 
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field contained soybean that was harvested on 10/17/2018, the field remained fallow until 

the following planting season and then wheat was planted on 10/11/2019 and remained 

for the duration of our monitoring efforts.  The field was traditionally managed using 

conservation tillage practices.  During our monitoring, no tillage operations were reported 

by the producer from 10/01/2018 to 9/2/2019 but disc tillage was performed on 

09/02/2019, 09/21/2019 and 10/11/2019.  

The surface and tile monitoring stations of the sites are depicted in Figure 4.1.a.  

A berm was installed at the edge of field to direct surface runoff to an H-flume.  The tile-

drain outlet at the edge-of-field was equipped with a drainage water management (DWM) 

structure.  Historically, the DWM plates were opened prior to planting and harvesting and 

closed after planting and harvesting. However, the boards from the control structure were 

removed during our monitoring period from September 2018 to the end of December 

2019 as part of a before-after-control-impact study conducted by the USDA-ARS SDRU.  

Precipitation and flow sample collection was conducted by the USDA-ARS using 

well-accepted methods (Williams et al. 2016). We used over four years of data from 

9/30/2015 to 12/30/2019 for our analysis. To measure rainfall duration, intensity and 

depth, tipping bucket rain gages were used.  Surface monitoring stations were equipped 

with a bubbler meter which measures water depth and was used for calculating surface 

volumetric discharge using a calibrated stage-discharge curve specific to the flume. For 

calculation of subsurface discharge, tile mains were equipped with a weir insert (Thel-

Mar, Brevard), an ISCO Bubbler Flow Meter (Teledyne Isco, Lincoln, Nebraska), and 

ISCO 2150 Area Velocity Sensor which measures velocity under submerged conditions.  
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Flow measurements were reported at 30-minute intervals for tiles and 10-minute intervals 

for surface runoff.  

Both surface and subsurface sites included a Teledyne ISCO 6712 portable 

sampler and accessories to collect nutrient samples (Figure 4.1.b).  Time compositing 

strategies were used for tile-drain samples.  Generally, a 100-ml aliquot was collected 

every six hours for 48 hours and composited into a single sample bottle reflecting a two-

day composite sample. Additionally, during events, samples were collected every 15 

minutes and composited hourly. For surface water sample collection, a flow proportional 

sampling strategy was used, where samples were collected after a preset volume of water 

passes through the flume (Williams et al. 2015). All water samples were analyzed for 

dissolved reactive P (DRP) and Total P (TP), concentrations for the entire monitoring 

period. DRP concentrations were analyzed by vacuum filtration (0.45µm) and then 

analyzing for P using the ascorbic acid reduction method (Murphy and Riley, 1962). 

Concentrations of TP were determined on unfiltered samples following alkaline 

persulfate oxidation and subsequent analysis of DRP (Patton and Kryskalla, 2003). ISCO 

samples collected from 03/01/2019 to 12/30/2019 timeframe were subsampled and 

transported to the University of Kentucky for measurements of total suspended solid 

(TSS).  Before TSS analysis, we used a newly calibrated YSI EXO3 Sonde to measure 

both turbidity and specific conductance of the sample in the lab since the ISCO samples 

were composite samples. The sample was then analyzed for TSS concentration by 

vacuum filtration through glass microfiber filters and dried at 104⸰C prior to weighing, 

consistent with EPA method 160.2 (U.S. EPA, 1983).    
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The tile-drain was equipped with a YSI EXO3 water quality sonde to measure in 

situ turbidity and specific conductance at 15-minute intervals from October 1, 2018 to 

December 31st, 2019 (Xylem Inc, Yellow Springs OH, USA). The sonde was located 

within a drainage water management structure (see Figure 4.1.c).  The turbidity sensor is 

a non-ratiometric nephelometric turbidimeter, which uses a near-infrared light source and 

detects scattering at 90 degree of the incident beam (EXO User Manual). The 

conductivity/temperature sensor uses four internal, pure-nickel electrodes to measure 

solution conductance. Two of the electrodes are current driven, and two are used to 

measure the voltage drop (EXO User Manual). Maintenance was performed on the 

instrument approximately once per month based on recommendations of the 

manufacturer, which is consistent with other studies (Snyder et al., 2018).  The turbidity 

sensor was calibrated using a three-point approach, in which turbidity values of 0 

(Deionized water), 124 and 1010 FNU were used to calibrate the sensor. The sensor was 

rinsed between the second and third calibration points. Calibrations were performed using 

KorEXO software. For conductivity, a one-point calibration was used with a calibration 

standard with conductivity value of 1000 µs/cm.  Measurements were taken at a fifteen 

minute interval continuously during the monitoring period. 

4.3 Analytical Methods 

4.3.1 Sediment and Particulate Phosphorus Concentration and Loading Estimates 

To estimate continuous sediment concentrations from turbidity measurements, we 

developed a regression model for total suspended solids (TSS) as a function of turbidity.  

In total, 188 samples were used to develop the regression.  A least squares linear 
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regression was performed on log transformed TSS and turbidity values, consistent with 

previously published approaches (Rasmussen et al., 2009). The calibrated curve was then 

used to estimate continuous sediment concentrations for the high-frequency continuous 

dataset.  

We calculated continuous estimates of sediment flux using measured flowrate and 

TSS concentrations from the TSS-Turbidity calibration curve and integrated the sediment 

fluxes at event and daily timesteps to estimate event sediment loadings and daily flow-

weighted mean concentrations. Suspended sediment flux (Qss in kg/s), was estimated as 

the product of sediment concentration and flowrate for a specified timeframe.   

Q𝑠𝑠𝑡
= C𝑇𝑆𝑆 𝑡

× 𝑄𝑡                                                                                                                       

(1) 

where, CTSS (kg m-3) is the TSS concentration at time t, Qt (m
3 s-1) is tile discharge at time 

t.  We estimated sediment yields for days, storm events, seasons, and annual timescales 

using the following numerical approximation of the integral of suspended sediment flux 

over a specified timeframe. 

𝑆𝑌 =
∑ 𝑄𝑠𝑠𝑡×∆𝑡𝑛

𝑡=1

𝐷𝐴
                                                (2) 

where, SY (kg/ha) is the suspended sediment yield for a given event ranging from 1 to ‘n’ 

number of timesteps, ∆𝑡 (s) is length of the timestep, and DA (ha) is the drainage area of 

the subsurface drainage network. In addition to sediment loading, event TSS 

concentration (mg/l) for each event was calculated by dividing sediment load by event 

tile discharge volume. In total, 33 events were analyzed throughout our monitoring period 

from October 2018 to December 2019. 
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        Surface and subsurface daily TP and DRP loadings were calculated using the 

approach of Williams et al. (2015). Briefly, we determined the midpoint of all sample 

time steps for each bottle. We then used linear interpolation between measured values at 

the midpoint to estimate the concentration for each interval when flow was measured. 

Loading was estimated as the product of interpolated concentrations and flow rate, 

analogous to the method for sediment loading. We calculated daily, event, seasonal and 

total subsurface TP minus DRP (TP―DRP) loading for the period that we performed 

high-resolution data collection as a surrogate for PP loading.  

4.3.2 Impact of flow pathway and water source connectivity on sediment loading 

Hydrologic flow pathway and source connectivity dynamics for tile drainage was 

conducted using an approach that couples hydrograph recession analysis and specific 

conductance end-member unmixing (see Chapter 3). Hydrograph recession analysis was 

used to partition flow pathways into quickflow and slowflow drainage reservoirs.  

Quickflow (Qquick) represents the rapid flow pathway through subsurface soils via 

macropores, and slowflow (Qslow) represents water that percolates through the soil matrix 

before entering the tile drainage network.  Quickflow and slowflow reservoirs can receive 

both ‘new-water’ (Qnew) from precipitation and ‘old-water’ (Qold) that resides in the soil 

matrix prior to the event. We used SC data and followed previous published approaches 

of SC-member mixing analysis (SC-EMMA) to quantify new-water and old-water 

fractions (Smith et al., 2018; see Chapter 3).  Based on these results, we applied the 

methodology described in chapter 3 to calculate pathway-connectivity hydrograph 

separations including quickflow of old (Qquick-old) and new (Qquick-new) water, and slowflow 

of old (Qslow-old) and new (Qslow-new) water for each event. The Qquick-old is postulated to 
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represent matrix-macropore exchange. We build off results presented in Chapter 3 for 

this study. Briefly, quickflow and slowflow were found to account for 48.4 and 51.6% of 

subsurface discharge during events at the site. SC-EMMA results showed that new-water 

and old-water comprised 46.2 and 53.8% of total subsurface discharge, respectively. 

Results of the pathway-connectivity framework indicated all four hydrograph 

components had a significant, but variable contribution to tile hydrology. Qquick-old, Qquick-

new, Qslow-old and Qslow-new contributed to 12%, 37%, 42% and 9% of total tile discharge for 

all the events.  

To assess the relationship between pathway-connectivity and TSS concentrations 

we used a multiple linear regression (MLR) model. We calculated daily flow contribution 

and divided them by total tile discharge to calculate daily flow fractions (F). We 

developed a mass balance equation in which daily flow-weighted mean TSS 

concentrations of tile discharge were dependent variables (TSStile) and flow fractions 

(Fquick-new, Fquick-old, Fslow), were independent variables. Based on visual observations from 

all events, we combined Qslow-old and Qslow-new since most of the sediment loading occurred 

during the quickflow portion of the hydrograph.  The unknown beta coefficients for the 

MLR reflect average TSS concentrations for each flow fraction (e.g., see Chapter 3). The 

MLR model was performed in RStudio software (RStudio, inc, 2011).  The coefficient of 

determination (R2) and standard error of the regressions (S) were calculated to measure 

how much of the variation in outcome can be explained by the variation in the 

independent variables and to estimate goodness-of-fit measures. The F-statistic was used 

to test the null hypothesis that individual coefficients were not equal to zero and the null 

hypothesis that the overall MLR model provided a superior fit to a mean trend. We report 

https://www.investopedia.com/terms/c/coefficient-of-determination.asp
https://www.investopedia.com/terms/c/coefficient-of-determination.asp
http://statisticsbyjim.com/glossary/standard-error-regression/
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p-values for the overall model and coefficient values for p<0.10, p<0.05, p<0.01, and 

p<0.001.  

4.3.3 Tile sediment hysteresis analysis 

Sediment hysteresis analysis was performed for both total tile discharge and 

separated pathway-connectivity hydrographs. We used both qualitative hysteresis plots 

and quantitative hysteresis indices to evaluate shape and magnitude of hysteresis loops 

(LIoyd et al., 2015; Zuecco et al., 2016).  Regarding qualitative hysteresis plots, we first 

normalized flow and TSS concentration values.  

Normalized 𝑄𝑡 =
𝑄𝑡−𝑄𝑚𝑖𝑛

𝑄𝑚𝑎𝑥−𝑄𝑚𝑖𝑛
        (3a) 

Normalized 𝐶𝑇𝑆𝑆𝑡
=

𝐶𝑇𝑆𝑆𝑡−𝐶𝑇𝑆𝑆𝑚𝑖𝑛

𝐶𝑇𝑆𝑆𝑚𝑎𝑥−𝐶𝑇𝑆𝑆𝑚𝑖𝑛

                  (3b) 

where, Qmin and CTSSmin are minimum discharge and concentration values during an event, 

Qmax and CTSSmax are maximum discharge and concentration values during a storm, and t 

is the given timestep during an event. Normalized values were plotted with 

concentrations on the y-axis and flowrates on the x-axis (see Supplemental Information 

S1).   

A quantitative hysteresis index (Lloyd et al., 2015) was used to quantify strength 

and direction of hysteresis loops. The hysteresis index for each of the flow components 

were calculated using the normalized flow and sediment concentration data. The 

hysteresis index (HI) was calculated every 5% of the discharge and averaged for the 

event. The index was estimated as follows.   

𝐻𝐼 = 𝐶𝑇𝑆𝑆𝑅𝐿
− 𝐶𝑇𝑆𝑆𝐹𝐿

                                                  (4) 
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where, CTSSRL the sediment concentration on the rising limb at a given flow percentile, and 

CTSSFL is the sediment concentration value at the equivalent point in discharge on the 

falling limb. Hysteresis strength is indicated by the magnitude of the HI index, with 

values approaching (±) 1 indicating stronger hysteretic behavior (Lloyd et al., 2016). The 

sign of the index illustrates the direction of the loop with positive denoting clockwise and 

negative denoting counterclockwise. 

4.4 Results 

4.4.1 Sediment and Particulate P Loadings 

Findings from the total suspended solids (TSS) vs. turbidity regression analysis 

showed the reliability of turbidity as a surrogate measure for TSS in tile drainage (Figure 

4.2).  Results showed a strong correlation between TSS concentration and turbidity with 

an R2 of 0.92 with a P-value <0.001 (Figure 4.2).  Regression results spanned values of 

TSS ranging from 5.3-1163.8 mg/L and turbidity from 2.9-875.3 FNU, reflecting the 

range observed during our 15-month in situ monitoring period (Figure 4.3).  While some 

uncertainty in the regression model existed, particularly at low concentrations, we 

anticipate the impacts on overall sediment load estimation is minimal, given that most of 

the sediment is transported at high concentration and flow conditions.   

Results of continuous sediment concentration and sediment yield analysis showed 

significant differences between TSS concentrations and loadings at seasonal and event 

timescales (Figure 4.3; Tables 4.1 and 4.2). Total annual sediment yield for water year 

2019 was 717.4 kg/ha (Table 4.1). The maximum sediment loading occurred in spring 

when precipitation was greatest, and the minimum sediment loading occurred in summer 
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(Table 4.1).  Nevertheless, maximum tile discharge occurred in winter. The finding that 

sediment yields were greater in spring than winter reflects greater concentrations of 

suspended sediment during peak runoff periods in spring which is likely reflective of the 

high precipitation intensities (Figure 4.3).  The event tile sediment yield varied 

significantly between events and had a weak positive correlation with event discharge (R2 

= 0.42), suggesting high variability in sediment concentration dynamics during storm 

events both seasonally and between events (Table 4.2).   

Results of PP loading showed similar seasonal and event-based dynamics to 

sediment loading results. Total annual particulate P for water year 2019 was found to be 

1.212 kg/ha (Table 4.1). Like sediment loading, the maximum particulate P loading 

occurred in spring, and the minimum particulate P loading occurred in summer despite 

maximum tile discharge occurring in winter (Table 4.1).   The event TP―DRP flow-

weighted mean concentrations were lowest in winter and highest in spring. The event-

based relationship between TP―DRP and sediment loading indicated a strong positive 

relationship with significant correlation (p-value <0.001 at α=0.05 and R2 =0.86). These 

findings provide support that TP―DRP dynamics are strongly regulated by suspended 

sediment transport dynamics for the study site.  

 

4.4.2 Impact of Flow Pathway and Water Connectivity on Sediment Concentrations 

The results showed temporal variability in fractions and time to peak of flow 

pathways, and impact of precipitation on macropore flow and matrix-macropore 

exchange.  Average time-to-peak of Qquick-new was 1027 minutes for fall and winter events 

but was 417 minutes for spring and summer events. We found that Qquick-new for the 33 
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events had a significant positive linear relationship with event precipitation (R2 = 0.4, 

P<0.001 at α=0.05), and a weak negative correlation with 10-day antecedent rainfall (R2 

= 0.12, P=0.079 at α=0.05). Similar to Qquick-new, we found a positive linear relationship 

between Qquick-old and precipitation magnitude (R2 = 0.52, P<0.001 at α=0.05), and a weak 

negative relationship with 10-day antecedent rainfall (R2=0.08, P=0.0164 at α=0.05). 

These results aligned with our prior study (Chapter 3) and highlight the importance of 

intrinsic event properties and seasonal controls on the magnitude of Qquick-new and matrix-

macropore exchange rather than soil moisture conditions.  

Results of the multiple linear regression analysis of daily flow-weighted mean 

concentrations highlight the importance of quickflow of new water, limited importance of 

slow flow, and variable impact of the quick-old pathway. Daily flow weighted mean TSS 

concentrations were found to have a significant positive relationship with daily discharge 

(p<0.001; R2 = 0.40), 1-day antecedent rainfall (p=0.04; R2=0.15), and precipitation 

intensity (p=0.01; R2=0.24).  Multiple linear regression (MLR) analysis suggests that 

TSS concentration prediction improved (p-value<0.001; R2 = 0.73) when including 

quickflow of new water (p-value<0.001) and slowflow (p-value<0.001) suggesting 

pathway-connectivity dynamics integrate many of the confounding environmental 

gradients impacting tile sediment concentrations (See Table 4.3).  The coefficient for the 

matrix-macropore exchange (Qquick-old) was not significant (p=0.187), and the standard 

error for the coefficient (60.4mg/L) was more than twice that of other pathways.  The 

results of the model showed that Qquick-new had the greatest impact on concentrations, with 

a beta coefficient equal to 336.5 mg/L.  Qslow had limited impact on sediment loads, 
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which is reflected by a beta coefficient of 29.6 mg/L, that was an order of magnitude less 

than Qquick-new.  

4.4.3 Tile sediment hysteresis analysis 

The hysteresis analysis showed that magnitude and directions of HI values 

differed between tile discharge and the separated hydrograph components (Table 4.2; 

Figure 4.4; Supplemental Figures S.4.1-S.4.4). For total tile discharge (QTile), 14 out of 31 

events demonstrated clockwise hysteresis with an average HI value of -0.02 

(Supplemental Figure S.4.1). For the quickflow pathway transporting pre-event, or old 

water (Qquick-old) hysteresis indices were negative in 29 out of 31 events with an average 

HI value of -0.35, indicating predominantly counter-clockwise hysteresis loops 

(Supplemental Figure S.4.2). Conversely, for the quickflow pathway transporting event, 

or new water (Qquick-new) hysteresis indices were positive in 21 out of 31 events 

demonstrating predominantly clockwise hysteresis with an average HI value of 0.07 

(Supplemental Figure S.4.3).  For the slow flow pathway (Qslow) hysteresis demonstrated 

clockwise patterns for 28 out of 31 events, with an average HI value of 0.31 

(Supplemental Figure S.4.4).   

Hysteresis index values were observed to vary seasonally for both QTile and Qquick-

old, but not Qquick-new (Figure 4.5).  Average seasonal HI values oscillated between 

clockwise and counterclockwise hysteresis for QTile with HI values averaging a minimum 

of -0.076 in spring and a maximum of 0.357 in summer. Average seasonal HI values 

showed limited variability for Qquick-new ranging from a minimum of 0.073 in summer and 

a maximum of 0.163 in fall. Conversely, average HI values showed large ranges in 

variability for Qquick-old  from a minimum of -0.57 in spring and a maximum of 0.32 in 
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summer. The shift from counter clockwise in winter to clockwise in summer/fall reflects 

the shift in timing of the Qquick-new peak in which Qquick-new was found to occur much 

earlier in the events for warm periods (417 minutes) with average water temperature of 

15.5 Celsius as compared to cold periods (1027 minutes) with average water temperature 

of 7.5 Celsius.  

Regression of HI index values against environmental drivers including antecedent 

rainfall, precipitation intensity and precipitation magnitude were found to be insignificant 

for Qquick-old and Qquick-new, but variable significance for QTile and Qslow.  For QTile, 

significant positive linear relationships were observed between HI and event rainfall 

magnitude (p=0.037; R2=0.174) and rainfall intensity (p<0.001; R2=0.507).  We found a 

significant negative relationship between HIslow and 1-day antecedent rainfall conditions 

(p=0.002; R2 = 0.312).  All other HI values for the various pathway-connectivity 

fractions with precipitation intensity and magnitude and antecedent rainfall (1, 5 and 10-

day antecedent rainfall) were non-significant. 

4.5 DISCUSSION 

4.5.1 Field-scale tile sediment loading 

Our results indicated that turbidity is a reliable surrogate for field-scale suspended 

solids monitoring in tile-drained landscapes, likely reflecting the homogeneity of field 

conditions as compared to applications that are often conducted at the watershed-scale. 

The power relationship between TSS and turbidity had an R2 = 0.92.  Strong relationships 

between TSS and turbidity have been reported in other previous watershed-scale studies 

that estimated surface suspended solids concentrations (Downing, 2006; Line et al., 2013, 
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Snyder et al. 2018; Sherriff et al. 2018; Pickering and Ford, 2021). However, studies have 

highlighted that organic matter and sediment property variability impact regressions, and 

many studies report lower R2 values than found in our study (e.g., Lewis et al., 2002; 

Line et al., 2013; Landers et al., 2013; Snyder et al., 2018).  In part, this reflects the fact 

that field-scale monitoring is reflective of relatively homogeneous zones of soil and 

landcover, contrasting objectives of many watershed-scale application studies which 

focus on quantifying source fate and transport dynamics in large, heterogenous systems 

(e.g. Coelho et al. 2012; Molder et al., 2015; Sherriff et al., 2018).  Real-time monitoring 

of turbidity using high-frequency sensors enables detection of rapid changes in TSS 

concentrations during daily cycles or storm events. Thus, turbidity sensors in tile-drained 

landscapes have the potential to provide a deeper understanding of sediment source, fate 

and transport processes and accurate estimates of sediment loads.   

Results of our continuous loading analysis highlight the importance of continuous 

monitoring for accurate sediment yield estimates.  Our sediment yield estimates of 717.4 

kg/ha in water year 2019 (Table 4.1) was on the same order of magnitude of other low-

gradient systematically drained systems that measured year-round sediment loadings 

(e.g., Turunen et al., 2017), but were often an order of magnitude higher than values 

reported using infrequent and short duration sampling methods were used (Culley et al., 

1983; Zhao et al., 2001; Stone et al., 2011; Coelho et al., 2012).  This finding likely 

reflects that continuous monitoring is important for capturing infrequent, large events, 

which often disproportionately impact sediment loadings (Pickering and Ford, 2021).  

For example, the seven largest events (out of twenty-seven total events) in water year 19 



 

90 

 

constituted nearly 60% of the sediment load for the year.  Cumulatively, this finding 

highlights the importance of long-term, high frequency monitoring. 

        Annual TP―DRP loads were strongly correlated with sediment loadings at event to 

seasonal timescales and were reflective of PP loads across the tile-drained Midwest, 

suggesting sediment loads from our site are likely reflective of the broader region.  The 

relationship between TP-DRP and sediment loading was significant (P<0.001) in all 

seasons, but with stronger correlations during low-flow conditions. This variation can be 

an indication of changes in sources of sediment, erosion and transport processes during 

higher flow conditions. TP―DRP (a surrogate for PP) loads fell within typical values 

reported in the literature for fine-textured, tile-drained landscapes (e.g. Eastman et al., 

2010; Christianson et al., 2016; Nazari et al., 2020).  For example, the annual PP loading 

varied from 1.48 kg/ha/year in a clayey site to 0.65 kg/ha/year in a loamy site in the same 

region, in Ohio (see Chapter 2); and from an average of 0.33 to 0.88 kg/ha/year in nearly 

1300 North American tile drained sites reported in MANAGE (Measured Annual 

Nutrient loads from AGricultural Environments) database (Christianson et al., 2016). 

Given the similarities in loading, agricultural management practices, soil type and land 

slope gradient of our study site to the broader midwestern US, the findings of this study 

may be generalizable to tile sediment processes occurring at broader spatial scales.  

 

4.5.2 Impact of pathway-connectivity and environmental drivers on tile sediment 

transport  

Results suggest that preferential transport of low ionic strength water is the 

primary contributor to sediment loadings and are postulated to exhaust an easily erodible 

sediment source. Findings from the MLR analysis highlighted that the quickflow pathway 
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of new water had the highest flow-weighted mean daily sediment concentrations.  

Hysteresis results generally showed positive, clockwise hysteresis values for Qquick-new 

(Figure 4.4; Table 4.2; Supplemental Figure S.4.3).   Clockwise hysteresis loops often 

indicated the existence of proximal sediment sources, with subsequent exhaustion of 

sources on the rising limb of the event (Williams, 1989; Evans & Davies, 1998).  New 

water has a low ionic strength which are more erosive than inflowing water with high 

ionic strength (Rousseau et al., 2004).  Further, in between storm events, drying promotes 

development of a biocrust layer that is easily eroded in both surface soils and preferential 

flow paths by the low ionic strength water (Majdalani et al., 2007; Van den Bogaert et al., 

2016; Wilson et al., 2018). Several previous watershed-scale studies have highlighted an 

initial flush of loose particles from the surface soils (Nouwakpo et al., 2010; Wilson et 

al., 2016) and laboratory studies have shown analogous processes in macropores 

(Jacobsen et al., 1997; Schelde et al., 2002; Michel et al., 2010).   Based on the existing 

data, it is difficult to assess surface vs. subsurface sourcing of sediment.  Future work 

should incorporate ambient source tracing methods (e.g., stable isotopes, elemental, and 

physical tracers) that are sensitive to vertical gradients in the soil profile.  

Results for the Qquick-old pathway suggest transport of matrix water through 

macropores did not significantly impact sediment delivery to tile, contrasting recent 

findings for dissolved reactive phosphorus (DRP).  Maximum TSS concentrations 

typically occurred on the falling limb of Qquick-old flow path although the HI values 

showed the highest variability as compared with other pathways (Figure 4.4).  Similarly, 

MLR results showed the coefficient for the quick-old pathway was non-significant.  

These result contrasts recent findings in tile drainage that matrix-macropore exchange is 
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an important predictor of DRP since matrix-macropore exchange may be initiated in the 

root-zone (Klaus et al., 2013; Williams et al., 2016; Ford et al., 2018; see Chapter 3).  

While translocation or seeping of particles from the soil matrix to macropores (suffusion 

or illuviation) is hypothesized as one of the sources of sediment transported in 

macropores (Wilson et al., 2018), the role of matrix-macropore exchange on this 

translocation remains unclear. The high variability in this source may partially reflect the 

sensitivity of erosion and detachment processes under variable soil moisture conditions. 

More experimental studies are needed to address hydraulic non-equilibrium effects (e.g. 

seepage forces) on flow and particle detachment or particle illuviation (Wilson et al. 

2018). Such processes may be particularly important for tile sediment dynamics in 

systems where matrix-macropore exchange comprises a larger percentage of the storm 

event hydrograph.  

        Our results showed that the slow flow pathway had limited impact on sediment 

delivery to tile-drainage. While hysteresis analysis showed inconsistent directions and 

magnitudes for total tile discharge, these characteristics were more consistent when using 

partitioned flow components. For example, strong and positive HI values of Qslow 

hysteresis showed that the peak of Qslow is significantly lagged after TSS peak (Figure 

4.4, Supplemental Table S.4.1), and suggests that slowflow has limited impact on tile 

sediment loadings. As a result, the discretization of slow and quick-new hydrographs 

improved prediction of TSS concentration as compared with simple Q-based regression 

analysis, although concentrations of Qslow, were an order of magnitude lower than Qquick-

new (further highlighting the limited importance of Qslow on sediment loadings). This 

finding reflects the idea that slowflow pathways are important filters for sediment laden 
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waters. In this regard, previous studies suggested that particle sieving and retention can 

occur in subsurface pathways (van den Bogaert et al., 2016; Burkhardt et al., 2008; 

Turtola et al., 2007; Jarvis et al., 1999). Smaller particle sizes in clayey soil are less 

sensitive to filtration processes (Ulén, 2004). The process of retention and sieving 

processes have not been extensively studied practically, but Turunen et al., 2017 

modelling study suggested that a large portion of the eroded sediment can stay in the field 

due to the retention and sieving processes. Cumulatively these results suggest converting 

Qquick-new fluxes to Qquick-old of Qslow may significantly reduce sediment and PP delivery to 

tile drains. 

        Based on our results, we postulate that seasonal differences in flow pathway 

dynamics play a significant role in sediment loading dynamics to tiles. In regard to 

seasonal differences, our results show short hydrograph time to peaks in the growing 

season and longer time to peaks in winter and late fall. In addition, HI values for Qquick-new 

were consistent, but variable for Qquick-old and Qtile, reflecting the variability in time to 

peaks.  Previous studies in tile-drained landscapes showed that during the growing 

season, dry soil conditions promote desiccation crack expansion and rapid transport of 

event water to tiles via macropores (see Chapter 2). Under saturated and unsaturated 

conditions of winter, large infiltration can occur because a considerable portion of 

macropores remain air-filled (Stadler et al., 2000, Pittman et al., 2020; Mohammed et al., 

2018 and 2020).  However, in the winter freezing/thawing effects can result in freezing of 

preferential water and blockage of macropore path, delaying the hydrograph time to peak 

(Stadler et al., 1997; Watanabe and Kugisaki, 2017; Demand et al., 2019; Mohammed et 

al., 2020). The more tortuous macropore flow conditions in winter as compared to 
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summer and spring are one reason for the decreased sediment concentration and loadings 

we found in our study, despite greater flow volumes in winter.  

A second environmental factor impacting dynamics were the contrasting 

precipitation patterns in growing vs. dormant seasons. Our results showed positive 

correlations between precipitation magnitude and Qquick-new, and we observed that average 

precipitation intensity was almost twice as high in spring and summer as compared to 

winter and fall. While this, in part, impacts flow pathway dynamics, it may also impact 

source erosion dynamics.  Previous studies have shown that hydraulic forces and splash 

erosion rates, which were the factors behind the sediment loss during the growing 

seasons, have direct positive relationship with rainfall intensity and magnitude (Warsta et 

al., 2013; Turunen et al., 2017). Collectively, these findings highlight the potential 

importance of both seasonality of flow pathway dynamics and precipitation dynamics for 

explaining temporal variability in tile sediment loading dynamics.  

 

4.5.3 Implications for Management 

Despite the adoption of conservation tillage practices at the study site, subsurface 

tile loadings were high because of preferential flow of event water, suggesting 

management practices should target reductions in Qquick-new. No-till is recognized to 

reduce time to peak of macropore flow (Verbee et al., 2010; Williams et al., 2016) 

resulting in less transit time for sediment retention and higher shear stresses in subsurface 

pathways. Based on our results we suggest that management practices that will combat 

the unintended impacts of no-till or reduced tillage has on subsurface pathways should be 

considered. For instance, hydrogels, which are water-absorbing polymers that are applied 
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in agricultural settings for their environmental benefits such as reduction of soil erosion 

and nutrient loss, enhanced soil permeability and infiltration rate, and increased water-

holding capacity (Narjary et al. 2013; Hosseini et al., 2020; Bairwa et al., 2020) may be 

beneficial in reducing the intensity of preferential flow and increasing tortuosity of water, 

which consequently aids in remedying the preferential flow of new water and sediment 

loading.  Further, practices such as controlled drainage may reduce preferential flows of 

new water, although flow pathway dynamics have not been robustly evaluated in these 

landscapes (Cook and Verma, 2012; Saadat et al., 2018; Shedekar et al., 2020).  Further 

work should assess how other tile-drain best management practices may be coupled with 

conservation tillage practices to reduce subsurface sediment loadings. 

In addition to the well-recognized environmental implications for P transport, 

sediment from tile-drains also have practical implications for edge-of-field treatment 

techniques such as denitrifying bioreactors. It is well-established that various water 

source compositions and quality can alter nitrate removal effectiveness of bioreactors and 

may require long-term maintenance (Addy et al., 2016). Water sources available for 

treatment in woodchip bioreactors in many agricultural landscapes is high which 

necessitates TSS calculations for investigation of bioreactors performance in removal of 

particulate P or TSS (Beauchemin et al., 1998; Vanni et al., 2001; Gentry et al., 2007).   

Assuming a typical reactor will have a volume of roughly 150 cubic yards / 50 acre of 

drainage, we would have a 120 cubic yard, or 92 m3 reactor that would be required for 

our study site (Addy et al., 2016).  Assuming a sediment density of 1500 kg /m3, 7.7 m3 

of sediment will pass through the bioreactor each year.  The increased hydraulic 

residence time for these systems will decrease transport capacity and subsequently result 
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in sedimentation, highlighting the potential for high maintenance needs in these 

environments.   As a result, it may be necessary to couple woodchips with other sediment 

filtration practices such as sedimentation basins or solid settling tanks in order to provide 

high-capacity and low-maintenance treatment of TSS (e.g., Choudhury et al., 2016). 

4.6 Conclusion 

        We used a recently developed framework to evaluate the impact of flow pathways 

and source connectivity on sediment and particulate P delivery in tile-drained landscapes.  

Our results highlight the capability and successful application of high-resolution sensors 

in improving understanding of pathways and source connectivity dynamics for sediment 

loadings in tile-drainage. Subsurface water source connectivity and flow pathway 

dynamics, precipitation patterns, seasonal differences and subsurface erosion play a role 

in sediment and PP loadings to tile drains. We found that new-water that routes through 

quickflow and slowflow play a significant role in sediment delivery and matrix-

macropore exchange impacts need more investigation in different soil textures. The 

estimation of event-based sediment concentrations has implications for the process of 

design and assessment of bio-reactors. High concentrations of sediment in our study 

suggest that the combined use of conservation tillage with other management practices 

such as hydrogels or drainage water management, which can increase tortuosity of water 

and decrease surface and subsurface soil erosion, is necessary for reduction of sediment 

delivery in tile-drained landscapes. Our inexpensive high-resolution estimation of 

sediment concentrations and loadings and pathway dynamics within the events can be 

used for evaluation of newly developed process-based models.  
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4.7 Figures and Tables 

Table 4.1  Seasonal and annual sediment yield, precipitation, and discharge for water year 

2019 

 

PRC 

(mm) 

Discharge 

(mm) 

Sediment Yield 

(kg/ha) 

TP―DRP load (kg/ha) 

WY 2019 1213.5 517.75 717.38 1.212 

Fall 234.62 127.03 148.19 0.2 

Winter 219.01 211.26 258.90 0.445 

Spring 414.67 170.03 283.27 0.547 

Summer 345.20 9.44 27.02 0.019 
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Table 4.2  Summary of discharge, event-based sediment yield, and HI values for pathway-connectivity indicators for the 31 

monitored events. 

Event Start Time End Time 
Discharge 

Sediment 

Yield 

TP-

DRP 

load  

HI Values 

(mm) (kg/ha) (kg/ha) (Qtotal) (Qq-o) (Qq-n) (Qs) 

S1 11/1/2018 0:30 11/9/2018 10:00 33.21 21.46 0.022 0.02 -0.27 0.17 0.46 

S2 11/9/2018 11:30 11/12/2018 23:30 3.96 0.21 0.004 -0.08 -0.3 0.04 0.33 

S3 11/25/2018 19:30 11/30/2018 4:00 21.78 46.35 0.077 0.05 -0.54 0.16 0.36 

S4 12/1/2018 0:00 12/5/2018 22:30 16.85 22.06 0.006 -0.24 -0.44 0.17 0.34 

S5 12/20/2018 12:00 12/27/2018 4:00 16.37 25.76 0.033 -0.16 -0.67 0.01 0.49 

S6 12/27/2018 4:30 12/31/2018 7:00 5.5 2.35 0.025 -0.15 -0.5 0.03 0.51 

S7 12/31/2018 7:30 1/5/2019 23:30 21.87 58.68 0.081 -0.22 -0.44 0.05 0.36 

S8 1/21/2019 18:00 1/31/2019 7:00 34.85 28.95 0.057 -0.17 -0.34 0.14 0.54 

S9 2/12/2019 0:00 2/14/2019 12:00 5.72 2.12 0.006 -0.04 -0.16 0.11 0.14 

S10 2/14/2019 12:30 2/19/2019 17:00 9.67 5.25 0.008 -0.1 -0.29 0.06 0.3 

S11 2/20/2019 14:24 2/21/2019 10:04 4.37 2.46 0.007 0.15 -0.72 0.08 0.3 

S12 2/23/2019 13:00 2/26/2019 3:30 12.64 24.04 0.026 0.06 -0.22 0.09 0.49 

S13 3/9/2019 15:00 3/13/2019 8:00 12.4 30.77 0.031 0.1 -0.62 0.17 0.29 

S14 3/13/2019 8:30 3/20/2019 9:00 25.03 47.08 0.077 -0.21 -0.5 0.03 0.16 

S15 3/20/2019 17:00 3/26/2019 17:30 11.01 5.5 0.010 -0.08 -0.37 0.17 0.33 

S16 3/28/2019 0:00 4/4/2019 3:30 27.23 50.47 0.066 0.06 -0.55 0.19 0.29 

S17 4/18/2019 15:36 4/20/2019 4:04 16.11 48.45 0.087 0.42 -0.78 0.06 0.4 

S18 4/20/2019 4:33 4/25/2019 7:26 23.19 52.63 0.076 -0.09 NA 0.04 0.1 

S19 4/27/2019 15:00 4/29/2019 15:30 12.75 27.3 0.045 -0.02 -0.45 0.15 0.27 

S20 4/30/2019 8:30 5/1/2019 13:30 4.44 6.94 0.027 -0.28 -0.77 0.14 0.38 

S21 5/13/2019 6:00 5/16/2019 22:00 4.43 1.44 0.006 -0.31 -0.49 0.06 0.25 

S22 5/28/2019 3:07 5/31/2019 12:28 10.14 45.13 0.066 -0.16 NA 0.11 0.24 

S23 6/13/2019 16:00 6/14/2019 23:30 3.86 5.37 0.014 -0.32 -0.53 0.03 0.25 

S24 6/15/2019 7:00 6/19/2019 13:30 11.62 9.06 0.032 0.02 -0.44 0.11 0.31 

S25 7/6/2019 19:00 7/10/2019 9:30 0.62 0.2 0.000 0.46 0.51 0.06 0.63 

S26 9/21/2019 15:00 9/22/2019 19:00 1.01 2.52 0.004 0.12 -0.09 0.02 0.45 

S27 9/30/2019 1:30 9/30/2019 23:30 6.19 22.48 0.012 0.49 0.54 0.14 0.21 

S28 10/26/2019 17:00 10/28/2019 23:30 2.99 0.64 0.002 0.08 -0.03 0.33 0.44 

S29 10/30/2019 7:00 11/2/2019 23:30 26.33 8.32 0.020 0.03 -0.03 0.36 0.26 

S30 12/9/2019 9:30 12/11/2019 23:30 3.25 0.49 0.001 0.2 -0.13 0.38 0.55 

S31 12/29/2019 20:00 12/31/2019 23:30 9.45 38.7 0.055 -0.28 -0.53 0.09 0.28 
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Table 4.3  Results of the multiple linear regression analysis for daily flow-weighted mean 

TSS concentrations. Estimated coefficient column shows estimated TSS concentration 

(mg/L) associated with Qquick-new and Qquick-old  and Qslow fractions with standard error in 

parenthesis. 

 Estimated Coefficients  p-value of 

coefficient 

p-value of overall model 

TSSquick-old 80.1(60.4) 0.187 <2.2e-16 

TSSquick-new 336.5 (28.4)*** <2e-16 

TSSslow 29.6 (8.3)*** 0.00062 

.P=0.05, *P=0.01, **P=0.001, ***P=0.0001 
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Figure 4.1  a) Study site sampling locations in Ohio, USA; b) Typical USDA-ARS edge-

of-field monitoring platforms for surface and tile; (c) YSI EXO sonde (with turbidity and 

conductivity sensors) were installed in the drainage water management structure; (d) 

Environmental conditions: macropores and snow-covered field. 
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Figure 4.2  Regression of total suspended solids (TSS) and turbidity curve using log-

transformed measures of TSS concentrations and turbidity values. 
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Figure 4.3  Continuous timeseries for a) precipitation and tile discharge, b) temperature 

and specific conductance, and c) turbidity 

 

 

 

 

 

 

(a) 

(b) 

(c) 
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Figure 4.4  Box-and-Whisker plots of HI values of Qtile, Qquick-old, Qquick-new, Qquick and 

Qslow against TSS concentrations. The dash and solid line within each box show mean and 

median HI values, respectively. 
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Figure 4.5  Box-and-Whisker plots of HI values of Qtile, Qquick-old, Qquick-new, Qquick and 

Qslow against TSS concentrations. The dash and solid line within each box show mean and 

median HI values, respectively. Hysteresis Index (HI value) is a quantitative assessment 

for direction and strength of hysteresis loops. 
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CHAPTER 5. IMPACTS OF DRAINAGE WATER MANAGEMENT ON FLOW 

PATHWAY-CONNECTIVITY AND SEDIMENT PHOSPHORUS DYNAMICS IN A 

TILE-DRAINED AGROECOSYSTEM 

5.1 Introduction 

Subsurface tile drainage in fine-textured soils throughout the midwestern U.S has 

enhanced eutrophication and persistence of harmful and nuisance algal blooms in 

receiving waterbodies (Blann et al., 2009; Radcliffe et al., 2015; Smith et al., 2015; 

Williams et al., 2016). Sediment-bound phosphorus (P), or particulate P (PP) loadings 

from tile-drainage has been recognized to play a key role in eutrophication and is 

suggested to be governed by preferential flows (Macrae et al., 2007; and Eastman et al., 

2010; Christianson et al., 2016).  Widespread study of preferential flows in tile-drained 

landscapes has been conducted over the past 20 years (Kung et al., 2000; Paasonen-

Kivekas and Koivusalo, 2006; Shilling and Helmers 2008; Radcliffe et al., 2015; King et 

al., 2015; Nazari et al., 2020). An area that has received less attention is the study of 

drainage water management impacts on preferential flow and PP loads (Cooke and 

Verma, 2012; Ross et al., 2016; Lavaire et al., 2017). Drainage water management 

(DWM) systems are a structural management practice commonly utilized in tile-drained 

landscapes to regulate the water table in order to enhance crop yields, reduce subsurface 

drainage fluxes, and improve water quality (Drury et al., 1999; Ghane et al., 2012).  The 

practice has been cited in several studies for its positive impacts on subsurface drainage 

reductions, although water quality benefits remain uncertain (Fausey, 2005; Skaggs et al., 

2012; Lavaire et al., 2017; Shedakar et al., 2020).   

        Although DWM has generally shown flow reductions that have resulted in decreases 

in both DRP and TP loadings, the impact on concentrations have been more variable 
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(Williams et al., 2015; Nash et al., 2015; Ross et al., 2016).  Drainage water management 

has been found to increase evapotranspiration, surface runoff and lateral and vertical 

seepage, leading to decreases in volumetric flow reductions through tile drains (Singh et 

al., 2007; Cook et al., 2012; Williams et al., 2014; Liu et al., 2019).   Studies have also 

emphasized the impact of climate, crop type, and management practices on DWM flow 

reduction (King et al., 2016; Ross et al., 2016). However, the impact of DWM on P 

concentration and loading is not well understood and inconsistent P loading and 

concentration results has hindered approval of DWM as a P mitigation strategy 

(Carstensen et al., 2019; Hoffmann et al., 2020). For example, several studies showed 

that DWM is effective to reduce both TP and DRP loading, but this reduction has been 

attributed to subsurface flow reduction; and P concentration often is insignificantly 

impacted (e.g. Evans et al., 1995; Feser et al., 2010; Williams et al., 2015, Ross et al., 

2016). However, Nash et al. (2015) found that ortho-P load reduction was not solely 

attributed to tile water reduction, but partially was due to seasonality and plant uptake of 

P during dry seasons when water is held in the field. Nevertheless, studies have 

postulated high tendency toward higher TP and other P form losses when using DWM 

due to increased water level and change of redox conditions (e.g. Ross et al., 2016; 

Carstensen et al., 2019). Therefore, further investigation on evaluating the impact of 

DWM on PP delivery is needed. 

        Studies have used a variety of methodologies to assess the impact of DWM on 

hydrology and water quality.  Previous studies have assessed DWM performance using 

before-and-after impact, before-after control-impact (BACI) study designs of paired 

controlled (CD) and free-drainage (FD) fields, and computer modeling (Youssef et al., 
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2005; Fang et al., 2012; Williams et al., 2015; Salehi et al., 2017; Shedekar et al., 2017, 

2020).  BACI study designs are a common approach because they control for the 

temporal variability of external factors such as climate or crop type.  The BACI study 

design requires two experimental fields with similar soil characteristics, drainage system 

design, and cropping practices (Clausen and Spooner, 1993). While these methodologies 

have been effective in understanding cumulative impacts of drainage water management, 

few studies have assessed how specific timescales (e.g., event, seasonal, or longer-term) 

are impacted, although it’s perceived that numerous timescales will be impacted given 

the impacts on soil moisture, evapotranspiration, and surface runoff.   

Comparison of hydrologic and water quality trends from time-series analysis can 

provide insight into specific processes impacting sediment and nutrient transport (Ford et 

al., 2015).  Empirical Mode Decomposition (EMD) is a time series analysis methodology 

that has been effective in identifying event-based, seasonal, and longer-term trends in 

hydrologic and water quality parameters in subsurface drained agroecosystems, and the 

associated impact of agricultural management practices (Huang et al., 1998; Wu et al., 

2007; Ford et al., 2018; 2019). In this study, we postulate that combination of BACI 

study design with EMD will provide deeper insight into the processes impacting 

hydrologic and PP fluxes under drainage water management.   

 Inconsistencies in our understanding of how CD impacts water quality in part 

reflects a limited understanding on how CD impacts flow pathway dynamics and water 

source connectivity (Cook et al., 2012; King et al., 2015; Ross et al., 2016).  Regarding 

subsurface flow pathways, preferential flow is a function of soil matrix infiltration 

capacity, soil moisture, exchange between macropores and the soil matrix and 
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connectivity of macropores (Tsuboyama et al., 1994; Sidle et al., 2001; Klaus et al., 

2013). DWM can alter soil moisture conditions, seepage, subsurface flow pathways, and 

consequently soil matrix and macropore interactions during high water table conditions 

(Skaggs et al., 2012; Saadat et al., 2018; Liu et al., 2019).  Source water connectivity 

refers to origin of water in tile drainage and has traditionally been discretized into event 

water (e.g., precipitation or irrigation water), and pre-event water (e.g., water residing in 

the soil matrix prior to stormflows) (e.g. Vidon and Cuadra, 2010; Williams et al., 2016; 

Smith et al., 2018).  Recent work in tile-drained landscapes has found that degree of soil 

saturation has significant impacts on source water connectivity in addition to flow 

pathway (see Chapter 3), and hence DWM is anticipated to alter pathway-connectivity 

dynamics.  There is a pressing research need to evaluate pathway-connectivity dynamics 

in controlled drainage sites.  

Water source connectivity and subsurface flow pathway dynamics have been 

found to significantly impact sediment transport dynamics in tile-drained landscapes (e.g. 

Michaud and Laverdiere, 2004; Wilson et al., 2018; Collins et al., 2019; Nazari et al., 

2020). It is commonly assumed that sediment and PP delivery to tiles is through 

macropore flow and selective removal and transport of sediment from different parts of 

soil profile (Oygarden et al., 1997; Uusitalo et al., 2001; Stone and Krishnappan, 2002; 

Paasonen and Koivusali, 2006; Schilling and Helmers, 2008). Specifically, preferential 

transport of event water provides heightened connectivity to surface soils and has low 

ionic strength which enhances its potential to erode and transport fine sediments 

(Hendrick et al., 1993; Jacobsen et al., 1997; Schelde et al., 2002; Rousseau et al., 2004; 

Wilson et al., 2018).  Conversely, matrix-macropore exchange has been found to be less 
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erosive because it has higher ionic strength and decreases the fraction of water connected 

to surface soil sources (see Chapter 4).  We postulate that altering flow pathway, and 

water source connectivity dynamics will impact the delivery of sediment and PP to tile 

drains. 

 Tile-drainage source-connectivity and sediment transport dynamics can be 

quantified through coupling of high-frequency sensing with hydrograph separation and 

hysteresis analysis techniques.  Hydrograph recession analysis is an empirically-based 

hydrograph separation approach that can be used in tile-drainage to partition the flow 

hydrograph into quick and slow-flow components at an event-scale (Schilling and 

Helmers, 2008, Ford et al. 2019, Husic et al. 2019, Nazari et al. 2020). Combination of 

hydrograph recession analysis with specific conductance end-member mixing analysis 

(e.g. Smith et al., 2018) can aid in separating tile hydrographs into permutations of water 

sources (i.e., new water/old water) and pathway connectivity (i.e., quick/slow) (see 

Chapter 3). Regarding sediment dynamics, studies have highlighted the ability of high-

frequency turbidity sensor data to improve estimates of sediment fluxes and provide 

insight into sediment hysteresis dynamics in a variety of landscapes and spatial scales 

(Sherriff et al., 2016; Snyder et al., 2018). Performing hysteresis analyses with separated 

hydrograph source-connectivity fractions can inform prominent sediment source and 

transport mechanisms (see Chapter 4). Application of these techniques for assessing 

impacts of DWM on sediment erosion and transport dynamics is a novel application and 

current research need. 

        The overarching objective of this study is to investigate impacts of DWM on flow 

pathway-connectivity and sediment phosphorus dynamics in a tile-drained 
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agroecosystem. We collected and used data from a fine-textured paired field that was a 

part of USDA-ARS SDRU edge-of-field monitoring network (Williams et al., 2016). 

Specific objectives of this manuscript were to perform 1) hydrograph recession analysis 

of 4-year subsurface discharge to partition the tile hydrograph into quickflow and 

slowflow pathways in both paired fields, one with controlled-drained (CD) and one free-

drained (FD) during treatment; 2) BACI analysis on flow, quickflow, slowflow, and 

TP―DRP loading in order to assess the annual impact of DWM treatment on flow 

pathways and PP loading; 3) Empirical Mode Decomposition (EMD) time-series analysis 

to investigate event-scale impacts of DWM on tile flow and TP―DRP loadings; and 4) 

Specific Conductance End-Member Mixing Analysis (SC-EMMA) to partition new-water 

and old-water, and perform TSS and flow-pathway hysteresis analysis to better 

understand the impacts of pathway-connectivity on sediment delivery dynamics between 

paired CD and FD sites. 

5.2 Methodology 

5.2.1 Study Site 

To meet the objectives of this study, we selected a paired field site from the 

USDA-ARS Soil Drainage Research Unit edge-of-field monitoring network (Williams et 

al. 2016). The study site is a systematically drained field in Wood County, Ohio U.S.A. 

and is delineated into two fields with separate surface (F1 and F3) and subsurface (F2 and 

F4) outlets (Figure 5.1.a). The contributing area for the western and eastern fields are 

0.154 km2 and 0.158 km2, respectively.  The average annual precipitation during the four 

years of monitoring was 1003.3mm. The site is classified as a silty-clay-loam soil texture 
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consisting of Nappanee (NpA) and Hoytville (HcA) soils (SSURGO soil data base, 

NRCS USDA, 2019). The study site was selected for the present study because: 1) study 

site characteristics were typical of prevailing agricultural management practices, soil 

texture, soil nutrient conditions, and runoff characteristics in the region; 2) the presence 

of drainage water management structures on both tile mains enabled a BACI study design 

and provided a secure structure to house sensing equipment; 3) the fields were managed 

by a single producer with analogous management practices outside of the drainage water 

management treatment; and 4) high-frequency water quality sensor data collection efforts 

complemented an extensive historic database conducted by the USDA-ARS including 

more than five years of continuous data from the monitoring site including precipitation, 

flowrate and water quality data from surface and subsurface pathways.  

        Regarding management practices, the typical crop rotation at the site was corn-

soybean-wheat. The field was managed using conservation tillage practices (Table S.5.1). 

Historically, the DWM plates were opened prior to planting and harvesting and closed 

after planting and harvesting from 2015 through 2017. Starting in December 2017, DWM 

boards were removed at F2 through the remainder of the study, while F4 remained 

managed (Table 5.1).  Water years were separated based on when F2 was managed with 

DWM (WY 2016-2017) and when F2 was under free drainage (WY 2018-2019). Thus, 

F4 served as the control site and F2 as the treatment site.  

 

5.2.2 Data Collection and Analysis 

Precipitation and flowrate timeseries were collected using well-accepted edge-of-field 

(EOF) methods (Williams et al; 2016; Figure 5.1.b).  To measure rainfall duration, 10-
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minute rainfall intensities and depths, tipping bucket rain gages were used.  The 

subsurface outlet for each field was equipped with a weir insert (Thel-Mar, Brevard), and 

an ISCO 4230 Bubbler Flow Meter (Teledyne Isco, Lincoln, Nebraska). The tile outlet 

was also equipped with an ISCO 2150 Area Velocity sensor for 30-minute discharge 

measurements under submerged conditions. A berm was installed on the surface at the 

EOF to direct surface runoff to an H-flume. Surface monitoring stations were equipped 

with a bubbler meter which measures water depth and was used for calculating 10-minute 

volumetric discharge using a calibrated stage-discharge curve specific to the flume.  The 

30-minute subsurface and 10-minute surface discharges were collected for WYs 2016, 

2017, 2018 and 2019 (10/01/2015 to 09/31/2019).  

         

        Surface and tile water samples were collected using a Teledyne ISCO 6712 portable 

sampler and accessories. Surface samples were collected using a flow proportional 

methodology; that is, a 100 mL aliquot was collected for every 1mm volumetric depth. 

Ten composited aliquots made up one sample. Due to periodic submergence, a time-

proportional approach was used to collect water samples. A 100-ml aliquot was collected 

every six hours for 48 hours and composited into a single sample bottle reflecting a two-

day composite sample. During rainfall events, additional high frequency samples (four 

samples collected every 15 minutes and composited hourly) were collected on the rising 

limb of the hydrograph to better capture initial flushes.  Collected water samples were 

analyzed for dissolved reactive P (DRP) throughout the monitoring period by first 

vacuum filtration (0.45µm) and then analyzing for P using the ascorbic acid reduction 

method (Murphy and Riley, 1962). Concentrations of TP were determined on unfiltered 

samples following alkaline persulfate oxidation and subsequent analysis of DRP (Patton 
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and Kryskalla, 2003). Subsurface daily TP and DRP loadings were calculated using the 

approach of Williams et al. (2015). Briefly, we determined the midpoint of all sample 

time steps for each bottle, used linear interpolation between measured values at the 

midpoint to estimate the concentration for each interval when flow was measured, and 

estimated loading as the product of interpolated concentrations and flow rate. Particulate 

P loading was then estimated as the difference between TP and DRP loadings (Nazari et 

al., 2020). 

A YSI EXO 3 sonde (Xylem/YSI Incorporation, 2020) was deployed for WY 

2019 at both tile monitoring platforms to measure turbidity and specific conductance 

continuously (see Chapters 3-4). The sonde was placed on the upstream side of the DWM 

structure for both sites (see Figure 5.1.c).  Maintenance and calibration were performed 

on the instruments approximately once per month based on recommendations of the 

manufacturer, which is consistent with other studies (Snyder et al., 2018).   

Measurements were obtained at a fifteen-minute interval continuously during water year 

2019, i.e., October 1, 2018-September 30, 2019 (Figure 5.2.c-d).  Data gaps occurred 

from 01/11/2019-02/22/2019 because of sensor malfunction at F4. 

Sediment loads were estimated for high-frequency monitoring periods in WY 2019 

using a TSS-turbidity calibration curve at each site.  From 03/01/2019 to 12/30/2019, a 

sample split from the ISCO samples were collected and transported to the University of 

Kentucky for measurement of total suspended solids (TSS) and turbidity.  Before TSS 

analysis, we used freshly calibrated sensors to measure turbidity and specific conductance 

of the sample in the lab since the ISCO samples were composite samples. The sample 

was then analyzed for TSS concentration by vacuum filtration through a 0.7 µm glass 
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microfiber filter and dried at 104⸰C prior to weighing, consistent with EPA method 160.2 

(U.S. EPA, 1983).   To estimate continuous sediment concentrations from turbidity 

measurements, two separate regression models were developed for TSS as a function of 

turbidity for the two sites.  In total, 188 and 211 samples were used to develop the 

regressions for F2 and F4, respectively.  A simple least squares linear regression was 

performed on log transformed TSS and turbidity values, consistent with previously 

published approaches (Rasmussen et al., 2009). TSS-Turbidity curves showed a strong 

correlation between TSS concentration and Turbidity with an R2 of 0.92 and 0.87 for F2 

and F4, respectively.  We calculated estimates of sediment fluxes by multiplying 

sediment concentrations by measured flow rates.  In total, we analyzed 47 events (27 at 

F2 and 20 at F4) throughout the 2019 water year. 

 

5.2.3 Analytical Methodology 

5.2.3.1 Hydrograph Pathway Analysis 

Hydrograph recessions from events throughout the monitoring period were compiled 

to perform master recession curve (MRC) analysis. This analysis has previously been 

performed for freely drained tile drained fields for soil textures characteristic of the 

region (see Chapters 2-3). In this study, we aimed to test applicability of the MRC 

method to sites with CD, hence, we only selected event recessions from the CD site if the 

DWM was closed. The MRCs were automatically created using a Genetic Algorithm 

(GA) incorporated in RC 4.0 software (HydroOffice; Gregor and Malik, 2012; Malik and 

Vojtkova, 2012). For our study, we generated MRCs using 4 years of tile hydrology data. 

We selected 35 recessions of FD period from F2 and 30 recessions of CD period from F4 
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to create a single MRC for each site using RC 4.0 software (HydroOffice; Gregor & 

Malik, 2012; Malik & Vojtkova, 2012). More recessions existed for each field, but they 

were not included in the analysis because they were either comprised of days with zero 

flow (i.e., associated with no flux or tile backwater) or had nonlinear recessions 

associated with disruption of initial recession with secondary flow peaks. We assumed 

two flow pathways reflecting reservoirs for matrix and macropore flow, consistent with 

previous studies (Schilling and Helmers 2008; Vidon and Cuadra 2010; Williams et al., 

2016). As a result, we selected two linear reservoirs and fit recession curves so that the 

two recessions provided optimal fit to the data. The goodness-of-fit was tested using the 

Nash-Sutcliffe Efficiency (NSE) value (Moriasi et al., 2007). 

Event-based hydrograph recession analysis was used to separate tile flow into 

quickflow and slowflow reservoirs for the continuous tile-drainage flowrate time-series 

(e.g., Husic et al., 2019; Ford et al., 2019; see Chapter 2).  For each hydrologic event, we 

plotted the falling limb of the subsurface discharge hydrograph on a logarithmic scale and 

manually fit linear curves to distinct log-linear regions based on findings of two distinct 

reservoirs during our MRC analysis.  Then, a linear increase in slow flow was assumed 

from the beginning of the rising limb of the hydrograph, which represents the start of 

quickflow (Qquick), to the determined inflection point on the falling limb from the 

previous step, which represents the end of quickflow (Husic et al., 2019).  On an event 

basis, the area between the hydrograph and the slow flow curve represented Qquick and the 

area underneath the slow flow reservoir curve represented Qslow. We performed this 

analysis on data from 2015 to 2019 water year and calculated results for 30-minute flow 



 

116 

 

intervals. The analysis was performed on separated events from both sites. A total of 188 

paired events (94 events per site) were analyzed. 

 

 

 

 

5.2.3.2 Before-After-Control-Impact Assessment 

Before-after-control-impact (BACI) study design assumes that changes over time 

such as weather, crop and management (unrelated to the treatment) in the impact site are 

controlled for by these same changes over time in the control site. In this study, tile 

discharge, quickflow and slowflow, and TP―DRP loading were analyzed using BACI 

study design to assess the impact of DWM treatment at F4 (Smith, 2002). For water years 

2016-2017, linear regressions were performed between tile flow, slowflow, quickflow 

and TP―DRP loading for the impacted site (F2) as a function of the control site (F4). We 

used the F statistic to test the null hypothesis that the linear regressions are significant at 

level of α=0.05. Statistical tests were performed in the Sigmaplot 13. The regression 

equations were used to predict tile flow, quickflow, slowflow and TP―DRP loading of 

F2 using the control site (F4) data for 2018 and 2019. Annual percent change in tile 

discharge was calculated as explained by Clausen and Spooner, 1993. The change in tile 

discharge, quickflow, slowflow and TP―DRP loading was determined by summing the 

difference between observed F2 values without DWM and predicted F2 values from F4 

with DWM.  

 

5.2.3.3 Time-series Analysis 
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Empirical mode decomposition (EMD) was applied to investigate event-scale 

impacts of controlled drainage on tile flow and TP―DRP loadings. The EMD method 

was selected because the method is purely empirical and can be applied to a wide class of 

non-stationary signals, overcoming limitations of Fourier and regression-based 

approaches (Wu et al., 2007; Ford et al., 2015). The EMD method decomposes the time-

series into a series of intrinsic mode functions (IMFs) and a residual term. Among the 

IMF functions, the lowest frequency one serves as the base residual trend and the one 

with highest frequency is considered noise, which is generally true for well-sampled 

datasets (Wu et al., 2007). The EMD analysis to generate IMFs was performed in 

MATLAB using previously published code (Rato et al., 2008).  We performed a 

statistical significance test to determine if IMFs were significantly different from white 

noise. Briefly, logarithmic confidence intervals were plotted based on base noise (based 

on the variance of the highest frequency IMF) and a log-log relationship of variance 

versus mean period was plotted for each IMF on the same graph (Wu et al., 2007). Then, 

the IMFs that plotted outside of the specified confidence interval were considered 

statistically different from white noise, reflecting a significant trend in the data (Wu et al., 

2007).  The EMD was applied to daily tile flow and TP―DRP loading for water years 

16-19 to observe the change in pattern before and after periods when the treatment was 

applied.   

 

5.2.3.4 High-frequency Pathway Connectivity and Hysteresis Analysis 

In addition to hydrograph recession analysis, SC-EMMA was employed to each 

storm event to partition the storm flow into new-water (Qnew) and old-water (Qold) 
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fractions (Smith et al., 2018; see Chapter 3). Once Qquick, Qslow, Qnew, Qold were 

calculated, the approach described in Chapter 3 was used to calculate the portion of old-

water that drains to the quickflow reservoir (Qquick-old), portion of new-water that drains to 

the quickflow reservoir (Qquick-new), portion of new-water that drains through the slowflow 

reservoir (Qslow-new), and the portion of old-water that drains to the slowflow reservoir 

(Qslow-old). In deriving this framework, we assumed that 1) if quickflow exceeded new-

water, all new-water was attributed to the quickflow pathway, and 2) if new-water 

exceeded quickflow, then all quickflow was attributed to new-water. We partitioned the 

tile flow into Qquick-new, Qquick-old, Qslow-new, and Qslow-old for the entire 2019 water year. For 

each selected event (27 events), we calculated total water volume and fractions for each 

partitioning. 

We were interested in understanding dynamics regarding within-event TSS flow 

pathway-connectivity dynamics and differences between the two sites.  Given sediment is 

predominantly transported through the quick-flow pathway, we performed sediment 

hysteresis analysis at the control site using total tile discharge (QTile), new water 

transported through quickflow (Qquick-new) and old water transported through quick flow 

(Qquick-old), and compared to results from the impact site, which was conducted in Chapter 

4. We used both qualitative hysteresis plots and quantitative hysteresis indices to evaluate 

shape and magnitude of hysteresis loops.  To assess hysteresis shape, we first generated 

hysteresis plots based on normalized flow and TSS concentration values (e.g. Mano et al., 

2009; Landers and Strum, 2013; Lloyd et al., 2016). Next, we used a hysteresis index 

(Lloyd et al., 2015), which provides quantitative estimates of both direction and strength 

of the hysteresis. The hysteresis index for each hydrograph analyzed was calculated using 
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the normalized flow and sediment concentration data. The hysteresis index (HI) was 

calculated every 5% of discharge. Detailed descriptions of this methodology are provided 

in supplemental information. Box-and-whisker plots were used to visualize distributions 

of HI values for Qtile, Qquick-new and Qquick-old hysteresis and were generated in Sigmaplot 

13. 

      During the treatment period (WY 19) we investigated the relationship between the 

flow pathway-connectivity dynamics, timing of hydrograph dynamics, sediment loading 

and event-mean concentrations, and sediment hysteresis dynamics at our two study sites.  

We separated events where both sites were freely drained, and when only the control site 

was freely drained.  Average values from the events are reported.   

5.3 Results 

5.3.1 Hydrology and Hydrograph Recession Analysis 

The two study sites displayed similar surface runoff patterns, but contrasting tile-

drain hydrologic behavior, even during periods before the treatment was applied. 

Average annual (2016 to 2019 water years) precipitation for the monitoring period was 

1003 mm with maximum precipitation in spring and summer. Precipitation was greatest 

in WY-2019 (1263 mm) and least in WY-2016 (729 mm).  Annual surface discharge was 

within 3% for F1 and F3 for all years.  Surface runoff was highest in WY-17 when corn 

was growing.  Cumulatively, surface runoff constituted less than 15% of total field 

runoff.  Despite similar surface discharges, total tile discharge over the four-year 

monitoring period was different between the two sites and was equal to1457 mm and 917 

mm for F2 and F4, respectively. Total tile discharge was greatest in WY-2019, equal to 
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522 and 301.4 mm for F2 and F4, and the lowest in WY-2017, equal to 215.2 and 135.1 

mm for F2 and F4, respectively.  

        Master recession curve analysis at both sites resulted in two discernable reservoirs 

reflecting a quick and slow reservoir (Figure 5.3). Reservoir 1 (R1) reflected a steeply 

recessing quickflow pathway, while reservoir 2 (R2) was characteristic of a mildly 

recessing slowflow pathway. The recession coefficients for R1 were 0.8 and 1.1 d−1 for 

F2 and F4, respectively. The recession coefficients for R2 were 0.2 and 0.35 d−1 for F2 

and F4, respectively (Figure 5.3). Nash Sutcliffe Efficiency values for the optimal fit 

were found to be 0.7 and 0.75 for F2 and F4, respectively.  Given that the recession 

coefficients vary by greater than three-fold and have strong goodness-of-fit, denoted by 

NSE values, our findings provide evidence of two distinct flow pathways for both sites 

(Schilling and Helmers, 2008; Rimmer and Hartmann, 2012; Husic et al., 2019).  

      Results of the continuous hydrograph recession analysis showed significant 

contributions of quickflow and slowflow at both sites, with high inter-event variability 

(Table 5.2; Table S.5.2). Continuous hydrograph recession results show that quickflow 

transported 31% and 33% of total subsurface flow to tiles in F2 and F4, respectively. 

Regarding events, we found that quickflow reservoir transported 34% and 43% of event 

subsurface flow to tiles at F2 and F4, respectively, which highlights the increased 

importance of slowflow contributions to tile-discharge at F2, relative to F4. Regarding 

within-event variability, flow pathway dynamics were highly variable between events, 

with quickflow contributions to total tile discharge ranging from 6% to 77% and from 1% 

to 88% for F2 and F4, respectively (Table S.5.2). The differences between the mean 

values of quickflow fractions of the two sites is 6.7 and 11.7% for WYs 2016-2017 and 
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WYs 2018-2019, respectively. At the F2 site, average quickflow fractions were 26% and 

38% when the outlet was closed and opened, respectively. At the F4 site, average 

quickflow fractions were 41% and 46% when outlet was closed and opened, respectively. 

In general, average quickflow fractions were lower when drains were closed as compared 

to when they were open. 

 

5.3.2 Before-After-Control-Impact (BACI) Analysis 

Results of the linear regression models showed good agreement for all parameters 

between the two sites and provide insights into tile-drainage differences prior to treatment 

(Table 5.3).  Linear regression analysis between F2 and F4 during the pre-treatment 

period showed significant regressions for all four models (P<0.001). The linear 

regression models had R2 values ranging from 0.78-0.86.  Slopes of the regression lines 

were greater than one for most parameters, which was expected given the results for 

hydrology in Table 5.2 (QTile, Qslow, and TP-DRP).  However, the slope for Qquick was 

very close to one, suggesting that differences between tile drainage at the two sites prior 

to treatment was likely associated with the slowflow pathway.  

Results of the BACI analysis suggest that drainage water management decreased 

total flow, quickflow, and slowflow at the study site; however, impacts on the quickflow 

pathway were more prominent than total flow and slow flow (Table 5.3). Annual 

estimated increase in tile flow when site was freely drained was 86.5 mm, resulting in a 

19.7% increase (see Table 5.3). The quickflow increased by an average of 45 mm, 

reflecting a 27.4% increase over projected values. Slowflow increased by 48.4 mm, 

which was a 17.32% increase over projected values. The results illustrate that drainage 
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water management had the largest relative annual impact on quickflow, although 

slowflow was also impacted. 

        Results of our BACI analysis for TP―DRP loading showed percent increases 

during the treatment period that were greater than percent differences in tile hydrology 

(Table 5.3). Estimated increases in TP―DRP loading for the free drainage site was 0.27 

kg/ha, which reflected an average increase of 27%. This percent increase was greater than 

the percent increase in tile flow (19.7%).  The finding that percent increase in loading 

exceeded percent increase in flowrate suggests that CD also decreased the concentration 

of PP.  Interestingly, the percent decrease in TP―DRP loading was comparable to 

percent decrease in the quickflow pathway (27.4%). 

 

5.3.3 Empirical Mode Decomposition (EMD) Analysis 

Results of the empirical mode decomposition (EMD) analysis on tile flow showed 

significant IMFs at event and annual timescales at both sites, but also longer-term trends 

at the free drainage (treatment) site. The EMD analysis on tile flow generated eight and 

seven IMFs for F2 and F4, respectively (Figure 5.4.c-d). We found that four out of eight 

and three out of seven IMFs were statistically significant at the F2 and F4 sites, 

respectively. Significant trends at multiple frequencies including monthly (frequency 

=0.082 year), annual (frequency~=1 year) and long-term (Frequencies> 1 year) were 

found at F2. Conversely, the long-term IMF trend was not found to be significant for F4, 

but similar to F2, both monthly and annual trends were found for this site.  

Comparison of the sum of significant IMFs to the event-scale dynamics for both 

sites highlights the importance of event-scale controls on variance in the data and the 
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impact of the long-term trend at the free-drainage site (Figure 5.4.a-b).  Visual 

observation of significant IMFs showed that the sum of significant IMFs noticeably 

deviates between the two sites when DWM was managed differently. For pretreatment 

and control periods, the average IMF value changed from -1.04 to 1.84 for the treatment 

site, F2, but remained approximately the same (-0.12 to -0.15) for the control site, F4 (see 

dashed lines on the Figure 5.4.a). This finding reflects the differences in significance in 

long-term IMFs at the site and reflects the increases in flowrate found for the treatment 

site in our BACI analysis.  Regarding event-based dynamics, we compared the significant 

IMFs with frequencies less than one month (Figure 5.4.b).  As can be observed, much of 

the variability in the sum of significant IMFs can be explained by the variability in the 

event-scale (or monthly) IMFs.  For the pre-treatment period, the monthly trends between 

the two sites are relatively similar, particularly during the fall-spring.  During the 

treatment period, we found greater fluctuations for F2 as compared to F4 when the boards 

were closed at F4 and similar magnitude of fluctuations when the boards were open at F4 

(Figure 5.4).   

Results of the EMD analysis for TP―DRP loading differed from the statistical 

significance tests for tile discharge.  The EMD analysis for TP―DRP loading generated 

eight IMFs for F2 and seven IMFs for F4. We found that four out of eight and two out of 

seven IMFs were statistically significant at the F2 and F4 sites, respectively. Significant 

trends at monthly (frequency <0.082 year) and annual (frequency~=1 year) timescales 

were found at F2. Conversely, only event-scale trends were significant at F4.  

Visual observation of significant IMFs for TP―DRP loading (Figure 5.4.a) 

showed that sum of significant IMFs noticeably deviates between the two sites during 
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treatment period. For pretreatment and control periods, average sum of significant IMF 

values remained approximately the same at both sites (See figure 5.5.a). Similar to event-

scale flow results, during the treatment period, we found greater fluctuations for F2 as 

compared to F4 when the boards were closed at F4 and similar magnitude of fluctuations 

when the boards were open at F4. These findings highlight the importance of event-scale 

impacts of DWM on flow and PP loading dynamics to tile which is further investigated in 

the following section. 

5.3.4 High-Frequency Pathway-Connectivity and Sediment Hysteresis Analysis 

Results of the pathway-connectivity analysis suggest that differences in flow 

between field sites for the quickflow pathway are primarily associated with changes in 

the Qquick-new hydrograph (Table 5.4-5.5). Events where only the treatment site (F2) was 

freely drained had event QTile values that were 6.8 mm greater at F2 than F4, and events 

where both sites were freely drained had event QTile values that were 3.3 mm greater at F2 

than F4, on average.   Events where only the treatment site (F2) was freely drained had 

event Qquick values that were 2.9 mm greater at F2 than F4, and events where both sites 

were freely drained had event Qquick values that were 0.3 mm greater at F2 than F4, on 

average.  Similarly, events where only the treatment site (F2) was freely drained had 

event Qquick-new values that were 2.5 mm greater at F2 than F4, and events where both 

sites were freely drained had event Qquick-new values that were 0.6 mm greater at F2 than 

F4, on average.  Qquick-old values were low, particularly for the events where both drains 

were open, and average values for the events were within 0.4mm for both conditions. 

Cumulatively these results show that differences in event-based water fluxes were 

associated primarily with new water transported through the quickflow pathway. 
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The results also highlight impact of controlled drainage on time-to-peak of 

separated hydrograph components. Generally, time-to-peak of the hydrograph and its 

separated components are lower in spring and summer as compared to winter and fall at 

both sites. The average hydrograph time-to-peak was 14.8 hours in winter and fall and 

was 8.6 hours in spring and summer at F2. Similarly, the average hydrograph time-to-

peak was 17.2 hours in winter and fall and was 11.4 hours in spring and summer at the F4 

site. In general, time-to-peak of hydrograph components was greater at F4 site as 

compared to F2 site, but with varying differences depending on CD management (Table 

5.5), especially for Qquick-new. Events where only the treatment site (F2) was freely drained 

had average time-to-peak of Qquick-new of 18.42 and 20 hours for F2 and F4 site, 

respectively, while these values were equal to 9.14 and 9.57 at the F2 and F4 site when 

both sites were freely drained. Similar results were observed for Qquick and Qtile, but not 

for Qquick-old. Time-to-peak of Qquick-old had the opposite effect and occurred sooner than 

anticipated for events where the sites were managed differently.  This can be observed in 

Table 5.5 given both sites were within 0.3 hours when only treatment site was open, but 

were almost 2 hours different, when both sites were freely drained. Collectively, our 

findings suggest that CD can delay time-to-peak of Qtile, Qquick and Qquick-new, but may 

decrease the time-to-peak of Qquick-old. 

Results of the TSS analysis suggest that the difference in sediment loadings of the 

two sites is associated not only with flow reductions but also sediment concentration 

reductions (Table 5.4-5.5). Events where only the treatment site (F2) was freely drained 

had event TSS loading values that were 12.9 kg/ha greater at F2 than F4, and events 

where both sites were freely drained had event TSS loading values that were 7.6 kg/ha 
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greater at F2 than F4, on average. In regard to concentration differences, events where 

only the treatment site (F2) was freely drained had event TSS concentrations values that 

were 18.1 mg/l greater at F2 than F4, and events where both sites were freely drained had 

negligible differences in event TSS concentration values between F2 and F4, on average. 

This finding suggests that CD decreases the sediment concentration delivered to tile 

outlets in addition to reducing flow volumes. 

The results of hysteresis analysis showed event-to-event differences in HI values 

and variable impacts of CD on different components of the separated hydrographs. In 

general, the areas of hysteresis plots were visually greater at the CD site for all flow 

components, and this difference was more evident when the sites were managed 

differently (Figures S.5.1.a to c). Events where only the treatment site (F2) was freely 

drained had event HI values that were 0.27 greater at F2 than F4, and events where both 

sites were freely drained had HI values that were only 0.02 greater at F2 than F4, on 

average (Figure 5.7.c). The average HI values of Qquick-new is positive and close to zero 

with slight differences between the two sites, which indicates proximity of TSS peak to 

Qquick-new peak at both sites for all events. Qquick-old hysteresis results were similar to QTile 

in that events where only the treatment site (F2) was freely drained, event HI values were 

0.15 greater at F2 than F4, and events where both sites were freely drained had HI values 

that were 0.04 less at F2 than F4, on average (Table 5.5). This result suggests that 

pathway-connectivity dynamics in CD can alter sediment delivery to tiles. 
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5.4 Discussion 

5.4.1 Impacts of DWM on Subsurface Flow Pathway and Water Source Connectivity 

Results from the pathway-connectivity analysis suggested that DWM significantly 

reduced subsurface quickflow of new water.  Results from the empirical mode 

decomposition analysis showed event-scale reductions in Qtile during periods with 

controlled drainage was a significant reason for differences in flow between the two sites.   

Likewise, our results from the pathway-connectivity analysis highlighted that the 

differences in average QTile between the two sites when the control site was freely drained 

were explained by the increase in Qquick, and more specifically Qquick-new (Figure 5.7). 

Cumulatively, the BACI results suggest the quickflow pathway was reduced by nearly 

27% because of CD, which was substantially higher than that of slowflow and total tile 

flow. While previous studies have hypothesized that DWM can influence preferential 

flow path dynamics (Cooke and Verma, 2012; Williams et al., 2015; Saadat et al., 2018), 

this is one of the few studies to directly quantify impacts.   Our study provides 

quantitative evidence that DWM reduces preferential transport of event water and 

highlights the efficacy of the pathway-connectivity approach for assessing these 

dynamics in other systems. 

Contrary to anticipated results, surface runoff was negligible compared to tile 

discharge during the treatment period, despite higher than average precipitation in 2018-

2019 (Table 5.2).  Studies have often shown that reductions in subsurface drainage have 

increased surface runoff (e.g. Ale et al., 2008; Singh et al., 2007; Drury et al., 2009; 

Skaggs et al., 2010). In our study, this result may reflect the use of conservation tillage 

practices at the study site which are well recognized to promote establishment and 
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connectivity of macropore flow to tile drains (e.g. Jarvis, 2007; Cullum, 2009; Williams 

et al., 2015). In addition, soils without vegetation often enhance macropore flow (Simard 

et al., 2000) and our study site was fallow during most of the high-frequency data 

collection efforts during the treatment period. While more robust datasets that are 

collected throughout the extent of the BACI monitoring period are needed to control for 

other environmental drivers, our results suggest that DWM may be an effective method 

for cumulatively reducing quickflow from both overland and subsurface preferential 

pathways in similar fine-textured tile drained landscapes with conservation tillage 

practices.   

In addition to altering magnitude of hydrologic pathways and water source 

connectivity, results also showed differences in time to peak. In general, DWM increased 

time-to-peak of QTile, Qquick, and Qquick-new, but decreased the time-to-peak for Qquick-old. 

Several previous studies have suggested that elevated water tables associated with CD 

can dampen peak flow and increase time-to-peak of drainage discharge (Robinson and 

Rycroft 1999; Lahdou et al., 2018).  Our results provide further insight and suggest that 

delayed time to peaks are associated with new water transported through preferential 

pathways.  However, preferential transport of old water due to matrix-macropore 

exchange had an earlier peak than expected when sites were managed differently.  The 

shorter time to peak differences associated with Qquick-old for the controlled drainage 

events likely reflects the higher soil moisture conditions which promote more rapid 

exchange between the matrix and macropore domains. Previous studies have highlighted 

that CD increases soil moisture conditions (e.g. Singh et al., 2007; Ale et al., 2008). 

Furthermore, previous studies support that the greater saturation of soils results in greater 
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rates of matrix-macropore exchange (Nazari et al., 2020), and macropore–matrix 

interaction leads to an initiation of macropore flow after a moisture threshold is exceeded 

and is a significant driver of saturated macropore flow (Klaus et al., 2013; Tokunaga and 

Wan 1997; Cey and Rudolph 2009; Bishop et al., 2015; Callaghan et al., 2017). This 

finding, in part, may contribute to the variable impacts that DWM has on water quality, 

particularly in systems where matrix-macropore exchange comprises a significant portion 

of the subsurface preferential flow budget (Weiler and Naef, 2003; Klaus et al., 2013; 

Callaghan et al., 2017; see chapter 4). Further application of this approach across 

landscape gradients could advance our understanding of not only tile drain impacts on 

preferential flow, but more broadly the impact of water table dynamics on preferential 

flow in fine-textured soils. 

Results of the study also suggest longer term impacts of DWM, particularly on the 

slowflow pathway, which likely reflects increased lateral seepage and evapotranspiration 

at the controlled drainage site. Given the event-scale impacts were primarily associated 

with reduction in quick flow, the slow flow reductions identified by the BACI analysis 

were likely associated with longer-term significant IMFs, found from the tile flowrate 

empirical mode decomposition analysis.  Our EMD analysis showed long-term deviations 

of tile flow signals with a substantially higher sum of IMFs at F2 during the treatment 

period as compared with F4, despite similar mean IMF values during the control period 

(Figure 5.4.a). We postulate that these longer-term IMFs were associated with longer-

term impacts of DWM on the soil water storage dynamics including lateral seepage and 

evapotranspiration, which have commonly been reported to increase as a result of 

controlled drainage (Thorp et al., 2008; Ale et al., 2008; Skaggs et al., 2010; Liu et al., 
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2019; Shedekar et al. 2020). As will be discussed in the following section, these slowflow 

alterations had little impact on sediment or TP-DRP dynamics, although they could be 

important for biochemical processes that could alter soluble contaminant transport and 

should be considered as a potential driver in how controlled drainage impacts nutrient 

budgets holistically.     

5.4.2 Impacts of DWM on Sediment and PP Dynamics in Tile-Drainage 

The findings of this study suggest that TP―DRP loadings were primarily associated 

with the quickflow pathway, highlighting the importance of preferential flows on PP 

delivery to tile drainage at the study site.  Results from the BACI analysis that showed 

higher TP-DRP reductions as compared to tile flow suggest PP load reductions by DWM 

is only partly explained by volumetric flow reductions. Nevertheless, volumetric flow 

reductions in Qquick were similar (on average) to the reductions for TP-DRP.  Further, the 

long-term EMD analysis of PP loading highlighted the significance of event-scale IMFs 

for PP, analogous to observations in QTile that were associated with Qquick, but lacked 

significant IMFs for longer-term dynamics that reflected alterations to the slowflow 

pathway. Our finding that much of the PP load is associated with macropore flow is 

consistent with descriptions provided by others that have studied sediment and PP 

delivery to tile (e.g. Oygarden et al., 1995; Unsitalo et al., 2001; Stone and Krishnappan, 

2001; Paasonen and Koivusali, 2006; Schilling and Helmers, 2008; see Chapter 4).  

Nevertheless, few studies have directly quantified preferential flow dynamics for long-

term assessments.  Our results provide direct evidence of the importance of quick flow 

reductions for mitigating downstream particulate nutrient transport and similar analyses 
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could be easily implemented into existing BACI datasets given the utility of the 

hydrograph recession analysis methodology for the controlled drainage site.    

Our pathway-connectivity results further suggest that PP load reductions under 

controlled drainage likely stemmed from both volumetric reductions of Qquick-new and 

subsurface retention processes that decrease tile sediment concentrations. Generally, our 

findings suggested that sediment exhibited slightly clockwise hysteresis for the Qquick-new 

pathway at both sites for all events and did not show differences in HI values for events 

where only the treatment site was open versus when both sites were open (Table 5.5).  

However, we did find a shift to more negative hysteresis for Qtile and Qquick-old for the CD 

site during the treatment period (Table 5.5). These findings suggest that the sediment is 

transported predominantly through the quick-new hydrograph even under controlled 

drainage, and that the peak occurs later in the hydrograph because of delayed Qquick-new 

peaks.  Further, results showed higher sediment concentrations at F2 than F4 during the 

treatment period as compared to the freely drained period. Previous studies in tile-drained 

fields have indicated that particle sieving and retention can occur when particles are 

transported to subsurface drains (Jarvis et al., 1999; Turtola et al., 2007; Burkhardt et al., 

2008; van den Bogaert et al., 2016; Turunen et al., 2017). We postulate that the delayed 

Qquick-new peak imposed by DWM increased the distance and time for particles to move 

from source to sink within subsurface paths, which consequently resulted in more 

filtration and sieving of particles and reduced TSS concentrations at the CD site. 

Retention and sieving processes have been rarely studied in the context of sediment 

balances and modeling, although studies have indicated that subsurface transport 

processes can have a major role in the sediment loads (e.g. Øygarden et al., 1997; 
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Uusitalo et al., 2001; Turtola et al., 2007; Bechmann, 2012; Warsta et al., 2013; Turunen 

et al., 2017).  This finding underscores the importance of hydrologic pathway and source 

water connectivity dynamics for informing sediment and PP loading dynamics in tile-

drained landscapes.  

While our results illustrate subsurface retention, it is unclear based on existing data 

whether sediment composition changed during transport from source to sink.  Larger 

particles can be retained in the soil and clog soil pores, resulting in transport of smaller 

size particles, similar to fluvial transport processes that generally result in downstream 

fining due to the preferential mobilization and transport of the small and less dense soil 

particles (Slattery and Burt, 1997; Di Stefano and Ferro, 2002; Asadi et al., 2011; Koiter 

et al., 2015; Guan et al., 2017).  The source and particle size distribution of sediments 

will impact the elemental composition of P, and subsequently sediment loads (Michaud 

and Laverdiere, 2004; Mcdowell et al., 2001; Poirier et al., 2012; Perks et al, 2015; 

Collins et al., 2019; Jiang et al., 2020).  Future studies should collect sediment datasets 

for their BACI studies that are sensitive to these changes such as stable isotopes (e.g. 

Glaser et al., 2005; Oerter et al., 2017; Upadhayay et al., 2017), P:N elemental ratios of 

sediments (Nazari et al., 2020), and particle size distributions (Ulen et al., 2004; Stone et 

al., 2011; Poirier et al., 2012; Wilson et al., 2020).  Further understanding of how source 

composition changes in freely and controlled drained landscapes will aid management by 

informing agricultural water management models.  

5.5 Conclusion 

This study investigated annual and event-scale impacts of Drainage Water 

Management (DWM) on water budget, subsurface flow pathways, sediment, and 
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particulate P loading and concentration dynamics in a tile-drained agroecosystem. Based 

on our analysis, we found that DWM did not change surface runoff but decreased total 

flow, slowflow and, more prominently, quickflow. DWM decreased both TP―DRP and 

TSS loadings due to both flow reductions and PP and sediment concentrations. Long-

term time series analysis reflected intra-annual and event-scale importance of flow and 

TP―DRP loadings and deviation between flow and TP―DRP loading signals when the 

sites were managed differently. The results highlighted that the differences in flow 

between sites for the quickflow pathway are primarily associated with changes in the 

Qquick-new hydrograph. We also found that DWM can delay time-to-peak of all flow 

components, and shortened time to peak of matrix-macropore flow. The findings of this 

study suggest that TP―DRP loadings were primarily associated with the quickflow 

pathway, highlighting the importance of preferential flows on PP delivery to tile drainage 

at the study site. The delayed Qquick-new peak imposed by DWM increased the distance and 

time for particles to move from source to sink within subsurface paths, which 

consequently resulted in more filtration and sieving of particles and reduced TSS 

concentrations at the CD site.  
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5.6 Figures and Tables 

Table 5.1  Control structure management periods for F2 and F4 in WY 16-19. 

Date Structure Status 

 F2 F4 

9/30/2015-10/27/2015 Open Open 

10/27/2015-5/7/2016 Close Close 

5/7/2016-5/27/2016 Open Open 

5/27/2016-4/22/2017 Close Close 

4/22/2017-6/24/2017 Open Open 

6/24/2017-11/17/2017 Close Close 

11/17/2017-12/18/2017 Open Open 

12/18/2017-3/20/2018 Open Close 

3/20/2018-06/25/2018 Open Open 

06/25/2018-07/18/2018 Open Close 

07/18/2018-10/31/2018 Open Open 

10/31/2018-04/02/2019 Open Close 

04/02/2019-08/07/2019 Open Open 

08/07/2019-09/30/2019 Open Close 
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Table 5.2  Summary four years of surface and tile discharge, quickflow and slowflow for 

subsurface drain sites F2 and F4. 

 Precip Qsurface (mm) Qtile (mm) Qquick (mm) Qslow (mm) 

 (mm) F1 F3 F2 F4 F2 F4 F2 F4 

2016 728.94 11.6 11.3 346.0 249.7 66.3 60.4 279.7 187.6 

2017 969.59 113.0 110.2 215.2 135.1 41.7 28.4 173.5 106.6 

2018 1051.13 7.6 7.4 374.6 230.9 160.6 102.5 212.7 128.5 

2019 1263.52 25.3 24.7 522.0 301.4 183.2 115.3 338.4 186.1 

Average 1003.3 39.375 38.4 364.45 229.275 112.95 76.65 251.075 152.2 
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Table 5.3  Before-After-Control-Impact (BACI) results. Effect of DWM on annual tile 

flow, quickflow and slowflow. The values in the table are observed values of F2 without 

DWM and predicted F2 values with DWM using F4 observed values and generated 

regression equations using data from water year 2016 and 2017. 

Year Predicted  Observed  Difference Percent Increase 

Tile Flow (mm)     

2018 276.53 333.29 56.76 17.03 

2019 405.82 522.03 116.21 22.26 

     

Avg 341.17 427.66 86.48 19.65 

     

Quickflow (mm)     

2018 106.04 143.07 37.03 25.88 

2019 130.26 183.24 52.98 28.91 

     

Avg 118.15 163.15 45.01 27.40 

     

Slowflow (mm)     

2018 163.08 188.88 25.79 13.66 

2019 267.46 338.50 71.04 20.99 

     

Avg 215.27 263.69 48.42 17.32 

     

TP-DRP (kg/ha)     

2018 0.52 0.66 0.14 20.94 

2019 0.82 1.22 0.41 33.12 

     

Avg 0.67 0.94 0.27 27.03 
F2Tileflow=1.1778× F4Tileflow+0.0029 R2=0.86. 

F2Quickflow=1.0389× F4Quickflow+0.0006 R2=0.82. 

F2Slowflow=1.1921× F4Slowflow+0.0026 R2=0.78. 

F2TP-DRP=1.2149× F4TP-DRP+0.003 R2=0.79. 
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Table 5.4  Event-to-event Pathway connectivity, sediment and TP-DRP loading and concentrations, and HI values. 

 
 

Qquick-

new 

Qquick-

old 
TSS Load Event TSS 

TP-DRP 

load 

Event 

TP-DRP 
HI Values 

(mm) (mm) (kg/ha) (mg/l) (kg/ha) (mg/l) Qtile Qquick-new Qquick-old 

Start Time End Time F2 F4 F2 F4 F2 F4 F2 F4 F2 F4 F2 F4 F2 F4 F2 F4 F2 F4 

S1 11/1/2018 0:30 11/9/2018 10:00 12.6 6.94 8.9 6.24 21.46 23.94 64.62 133.7 0.02 0.01 0.06 0.03 0.02 -0.1 0.17 0.2 -0.27 -0.4 

S2 11/9/2018 11:30 11/12/2018 23:30 0.1 0.01 0.4 0.22 0.21 0.07 5.3 0.96 0.00 0.00 0.06 0.02 -0.1 -0.1 0.04 0 -0.3 -0.1 

S3 11/25/2018 19:30 11/30/2018 4:00 11.4 5.63 2.2 1.22 46.35 26.94 212.8 236.3 0.08 0.04 0.19 0.17 0.05 -0.2 0.16 0.1 -0.54 -0.5 

S4 12/1/2018 0:00 12/5/2018 22:30 6.7 3.74 1.2 1.38 22.06 12.51 130.9 129.7 0.01 0.01 0.03 0.10 -0.2 -0.4 -0.2 0.1 -0.44 -0.7 

S5 12/20/2018 12:00 12/27/2018 4:00 5.2 3.82 2.7 2.71 25.76 14.51 157.4 154.6 0.03 0.02 0.12 0.09 -0.2 -0.3 0.01 0.1 -0.67 -0.6 

S6 12/27/2018 4:30 12/31/2018 7:00 0.3 0.12 0.7 0.66 2.35 0.92 42.73 33.1 0.02 0.00 0.15 0.02 -0.2 -0.7 0.03 0.2 -0.5 -0.7 

S7 12/31/2018 7:30 1/5/2019 23:30 10.9 6.14 1.8 1.45 58.68 29.83 268.3 237.7 0.08 0.02 0.25 0.12 -0.2 -0.4 -0.1 0.1 -0.44 -0.6 

S8 1/21/2019 18:00 1/31/2019 7:00 23.1  3.8  28.95  83.07  0.06  0.11  -0.2  -0.1  -0.34  

S9 2/12/2019 0:00 2/14/2019 12:00 1.5  0.3  2.12  37.06  0.01  0.10  -0  0.11  -0.16  

S10 2/14/2019 12:30 2/19/2019 17:00 3.6  0.2  5.25  54.29  0.01  0.07  -0.1  -0.1  -0.29  

S11 2/20/2019 14:24 2/21/2019 10:04 2.5  0.2  2.46  56.29  0.01  0.10  0.15  0.08  -0.72  

S12 2/23/2019 13:00 2/26/2019 3:30 6.8 6.59 1.5 1.68 24.04 17.77 190.2 120.3 0.03 0.01 0.14 0.12 0.06 -0.1 0.09 0 -0.22 -0.4 

S13 3/9/2019 15:00 3/13/2019 8:00 4.83 3.86 0.3 0.59 30.77 15.13 242 211.6 0.03 0.03 0.20 0.35 0.1 -0.3 0.17 0 -0.62 -0.5 

S14 3/13/2019 8:30 3/20/2019 9:00 7.1 4.31 1.3 1.44 47.08 19.33 183.4 145.5 0.08 0.03 0.25 0.16 -0.2 -0.2 -0 0 -0.5 -0.4 

S15 3/20/2019 17:00 3/26/2019 17:30 1.26 0.64 1.5 1.3 5.5 2.24 48.71 43.18 0.01 0.00 0.08 0.06 -0.1 -0.6 0.17 0.1 -0.37 -0.8 

S16 3/28/2019 0:00 4/4/2019 3:30 11.3 6.05 2.5 1.45 50.47 23.15 180.8 153.5 0.07 0.03 0.15 0.12 0.06 -0.1 0.19 0 -0.55 -0.6 

S17 4/18/2019 15:36 4/20/2019 4:04 6.08 7.28 0.4 1.07 48.45 30.04 293.3 222.6 0.09 0.06 0.36 0.29 0.42 0.41 0.06 0.1 -0.78 -0.8 

S18 4/20/2019 4:33 4/25/2019 7:26 8.72 6.03 0 0.31 52.63 26.64 221.3 194.3 0.08 0.03 0.32 0.15 -0.1 -0.2 -0 0.1 NA -0.4 

S19 4/27/2019 15:00 4/29/2019 15:30 4.5 3.35 0.6 1.32 27.3 17.33 214.1 215.2 0.05 0.01 0.27 0.12 -0 -0.2 0.15 0.1 -0.45 -0.5 

S20 4/30/2019 8:30 5/1/2019 13:30 0.4 0.31 0.2 0.36 6.94 3.75 156.3 116.3 0.03 0.01 0.35 0.23 -0.3 -0.3 0.14 0.2 -0.77 -0.6 

S21 5/13/2019 6:00 5/16/2019 22:00 0.3 0.26 0.2 0.4 1.44 1.5 32.51 50.3 0.01 0.00 0.10 0.06 -0.3 -0.3 -0.1 0.1 -0.49 -0.4 

S22 5/28/2019 3:07 5/31/2019 12:28 2.53  0  45.13  433.9  0.07  0.35  -0.2  -0.1  NA  

S23 6/13/2019 16:00 6/14/2019 23:30 1.06 0.97 0.3 0.37 5.37 7.36 135.7 209.7 0.01 0.01 0.37 0.34 -0.3 -0.3 0.03 0.1 -0.53 -2.6 

S24 6/15/2019 7:00 6/19/2019 13:30 5.07 3.85 0.7 0.93 9.06 11.45 76.05 121 0.03 0.00 0.20 0.14 0.02 0.08 0.11 0.1 -0.44 -0.4 

S25 7/6/2019 19:00 7/10/2019 9:30 0.03  0  0.2  31.48  0.00  0.06  0.46  -0.1  0.51  

S26 9/21/2019 15:00 9/22/2019 19:00 0.25  0.3  2.52  243.6  0.00  0.36  0.12  -0  -0.09  

S27 9/30/2019 1:30 9/30/2019 23:30 1.97 0.68 1.2 0.52 22.48 4.3 

354 

 

 

244.3 0.01 0.01 0.18 0.30 0.49 -0.6 0.14 0.2 0.53 -0.7 
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Table 5.5  Average values of flow pathway-connectivity, timing of peaks, sediment load 

and concentration, and HI values for different pathways for events where both sites were 

freely drained, and only the treatment site (F2) was freely drained. 

 Only treatment site open Both Open 

QTile (mm) 
F2 16.62 11.11 

F4 9.86 7.78 

Qquick (mm) 
F2 8.19 4.10 

F4 5.34 3.83 

Qquick-new (mm) 
F2 6.19 3.73 

F4 3.73 3.15 

Qquick-old (mm) 
F2 2.02 0.35 

F4 1.60 0.68 

QTile peak timing (hrs) 
F2 16.31 7.64 

F4 18.00 8.21 

Qquick peak timing (hrs) 
F2 18.79 8.79 

F4 20.19 9.14 

Qquick-new peak timing (hrs) 
F2 18.42 9.57 

F4 20.04 9.86 

Qquick-old peak timing (hrs) 
F2 13.31 4.86 

F4 13.65 6.57 

TSS Load (kg/ha) 
F2 27.48 21.60 

F4 14.66 14.01 

TSS Mean Concentration (mg/l) 
F2 160.09 161.33 

F4 141.89 161.33 

HI Value (QTile) 
F2 -0.03 -0.08 

F4 -0.30 -0.10 

HI Value (Qquick-new) 
F2 0.07 0.06 

F4 0.09 0.11 

HI Value (Qquick-old) 
F2 -0.38 -0.59 

F4 -0.53 -0.55 
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Figure 5.1  a) Study site sampling locations in Ohio, USA; b) study site delineation with 

location of monitoring platforms, c) typical USDA-ARS edge-of-field monitoring 

platforms for surface and tile drain monitoring; and d) YSI EXO3 sonde. 
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Figure 5.2  Time series of a) daily tile discharge, b) daily TP-DRP loading for 4 years; c) 

turbidity and d) specific conductance for WY 2019   
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Figure 5.3  Master recession curve for a) F2 and b) F4 constructed subsurface flow 

recessions for water year 2019. 

  
(a) (b) 
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Figure 5.4  Four-year time series analysis of tile flow including a) sum of significant 

IMFs of tile for both sites;  b) significant trends with frequencies less than one month; c) 

statistical significance test on IMFs of tile flow for F2, and d) Statistical significance test 

on IMFs of tile flow, slowflow and quickflow, respectively for F4.   
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Figure 5.5  Four-year time series analysis of TP―DRP concentration a) sum of 

significant IMFs for F2 and F4, b) Monthly trends for F2 and F4 c) Statistical 

significance test on IMFs for F2, d) Statistical significance test on IMFs for F4. 
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CHAPTER 6. SUMMARY  

In this dissertation four main studies were conducted to understand impacts of 

preferential flow, source water connectivity, and agricultural management practices on 

dynamics of sediment and particulate phosphorus (PP) in tile-drained landscapes. The 

novel contributions of each study are summarized below: 

The first study: 

• The use of hydrograph recession analysis for separation of tile hydrographs into quickflow 

and slowflow pathways was successfully tested, and we found that macropore flow plays a 

significant role in PP delivery at both clay and loam sites. 

• The capability of Empirical Mode Decomposition (EMD) long-term time series analysis 

was successfully tested in tile-drained landscapes, and the results showed that PP delivery 

is significantly affected by environmental conditions and management practices. 

• The efficacy of P/N ratio as a tracer for characterizing sediment delivery mechanisms in 

tiles was tested, and the results showed that that P/N atomic ratios can be used for 

sediment fingerprinting and unmixing models to quantify sediment source provenance in 

tile-drained studies. 

The second study: 

• A new framework that couples hydrograph recession and SC-EMMA methods was 

developed to partition tile hydrograph into four pathway and water source connectivity 

components (Qquick-new, Qquick-old (matrix-macropore exchange), Qslow-new and Qslow-old).  

• Using these four flow partitions improved prediction of DRP concentration as compared 

to only using tile flow. 
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• Noticeable differences in the magnitude and timing of the quick flow and new water 

fractions were shown with the new framework, challenging the traditional assumption that 

new-water is equivalent to preferential flow. 

• Quickflow of new-water (Qquick-new) plays the most significant role in DRP delivery in tiles 

and it can be activated throughout the year under dry and saturated conditions, and is 

impacted by seasonal differences and precipitation patterns. 

• Matrix-macropore exchange was found to have a significant role in activation of 

preferential flow which impacts on DRP delivery. 

The third study: 

• Hydrograph partitioning can improve prediction of sediment concentration, and the 

hysteresis analysis and multiple linear regression (MLR) results showed that Qquick-new is 

the main pathway of sediment and PP delivery in tiles. 

• Sediment concentrations were different in dry season with promoted macropores as 

compared to cold season with higher soil moisture and freezing and thawing effects. 

• The results highlighted that seasonal differences and soil condition can impact on 

macropore routes and time-to-peak of preferential flow. 

The fourth study:  

• DWM has event-scale impacts on preferential flow and longer term impacts on slowflow. 

• Tile discharge, preferential flow and sediment P are significantly impacted by DWM at 

the event timescale.   
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• DWM results in delayed Qquick, Qquick-new and hydrograph time-to-peaks, but decreased 

time-to-peak of matrix-macropore exchange due to imposition of higher soil moisture 

conditions. 

• DWM was found to decrease sediment and PP concentration and loadings at the study site 

through enhancement of subsurface filtration and decreases in preferential transport of 

new water.   

• The differences between sediment and TP―DRP concentration reductions showed that 

DWM can impact on source composition of sediment, but further investigations are 

needed.   
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CHAPTER 7. FUTURE WORK 

7.1 Preliminary Findings  

One of the major limitations of this research was the inability to quantitatively 

differentiate surface and subsurface derived sediment sources.  Future studies should 

consider using more robust tracers in addition to high-frequency sensors for advancing 

understanding of subsurface erosion and sediment transport dynamics in tile drained 

landscapes, which will aid in informing agricultural water management models. In this 

chapter we further elaborate on the potential utility of P:N ratio of sediments and particle 

size distribution as a sensitive tracer of subsurface erosion and filtering processes. 

In regard to sediment transport processes, few studies have assessed subsurface 

erosion and transport processes in tile-drained landscapes, although laboratory studies of 

preferential flow through undisturbed soil cores have shown that subsurface flow, ionic 

strength of water, matrix-macropore interaction, and subsurface filtering play key roles in 

subsurface sediment transport processes and thus are perceived to impact tile sediment 

loadings (Hendrick et al., 1993; Jacobsen et al., 1997; Schelde et al., 2002; Rousseau et 

al., 2004; Wilson et al., 2018). Our results and several previous studies have also 

indicated that eroded particles may be retained within the soil matrix due to subsurface 

filtering (van den Bogaert et al., 2016; Burkhardt et al., 2008; Turtola et al., 2007; Jarvis 

et al., 1999). Sediment retention can be due to physical ‘straining’ in pore necks, 

physicochemical attraction to the soil matrix, gravitational settling, and immobilization 

within micropores or dead-end pores (Jarvie et al., 1999). Vertical sieving may also be 

important. Several studies on subsurface pipeflows have illustrated an initially high 

sediment concentration at the beginning of leaching soil experiments with larger particle 
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sizes that decrease to a lower concentration sediment with finer size particles as the event 

proceeds (Jacobsen et al., 1997; Nouwakpo et al., 2010; Michel et al., 2010; Wilson et al., 

2020). This, in part, has been attributed to mechanical entrapment of the larger particles 

in the active layer of macropore walls as saturation and mixing advances during events 

(Turtola et al., 2007; Burkhardt et al., 2008; van den Bogaert et al., 2016).  

In regard to sediment source compositions, studies have traditionally attributed 

fine sediments in tile-drains to erosion from surface soils during storm events that are 

transported to tile drains via preferential flowpaths, thus partially bypassing the filtration 

capacity of the soil matrix (Michaud and Laverdiere, 2004; Turunen et al., 2017; Collins 

et al., 2019). The findings of this dissertation highlighted that sediment transported in tile 

drains are anticipated to originate from both surface and subsurface erosion sources 

(Nazari et al., 2020), and DWM may change sediment source compositions. Subsurface 

sources may reflect contributions from macropore walls, which contain a thin erodible 

surface layer that has temporally dynamic erodibility (Majdalani et al., 2007; Wilson et 

al., 2018). Alternatively, subsurface sources may reflect seepage from the matrix to 

preferential flow paths (i.e., matrix-macropore exchange) that can result in translocation 

of sediment from the soil matrix to preferential flowpaths (Wilson et al., 2018). These 

subsurface sources are often excluded from consideration in field-scale transport models 

that simulate sediment and particulate P delivery to tile (e.g., Turunen et al., 2017; 

Sadhukhan et al., 2018).  Improved understanding of the relative importance of 

subsurface processes and sediment source composition are important for advancement of 

agroecosystem management models. 



 

149 

 

Regarding partitioning surface and subsurface sources, physical and chemical 

properties of transported sediments can provide insights into source and fate processes.  

As previously discussed, elemental P:N ratios of sediments can provide insights into 

sediment source provenance because P:N ratios of surface soils often deviate from the 

relatively stable P:N ratios of organic matter deeper in the soil profile of cultivated 

agroecosystems (Cleveland and Liptzin, 2007; Frossard et al., 2016; Nazari et al., 2020).  

However, particle size distribution of tile sediments may reflect the filtering of coarser 

particles during transport from surface to tile sources, as well as preferential erosion and 

transport of fine particles (Stone et al., 2011; Wilson et al., 2018). Such processes could 

alter the P:N composition.  Combining P:N measures with particle size distribution may 

help inform the prominence of subsurface erosion/filtering processes in tile-drained 

landscapes.  

We further analyzed long-term ambient data, (including TP, TN, DRP, and DIN) 

from surface and subsurface pathways for the study site in chapter 4.  Long-term daily 

TP―DRP loading (kg/ha) were plotted against daily TN―DIN (kg/ha) loading for 

surface and subsurface pathways from 09/30/2016-10/01/2019. A linear regression was 

performed for both pathways, and hypothetical lines reflecting typical P:N ratios of 

organic matter were used to infer forms of PP delivered to tile, analogous to the approach 

detailed in Nazari et al. (2020).  A subsample from ISCO samples that were used for TSS 

analysis in Chapter 4 were analyzed using a Laser Diffraction Particle Size Analyzer 

(LISST-Portable|XR) to obtain particle size distribution of sediment in water samples.  

Particle size distribution data between surface and subsurface pathways were compared 

by calculation of average, maximum and minimum d50 values for surface and subsurface 
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samples. We plotted P:N ratio versus d50 for surface and subsurface samples, separately 

and fit a power regression relationship between P:N ratio and PSD data.  

The slopes of the regression line between TP―DRP and TN―DIN loadings 

suggested variable surface and subsurface sediment sources, as well as alterations of the 

surface source during transport (Figure 7.1). Results of the regression analysis suggested 

a surface P:N ratio of 0.18 and a subsurface P:N ratio of 0.10 at the site, both of which 

exceeded the range of P:N ratios for organic matter reported in agroecosystems (0.034-

0.083).   

 
Figure 7.1  Comparison of daily flow-weighted mean concentration of total P (TP) − 

dissolved reactive P (DRP) and total N (TN) − dissolved inorganic N (DIN) from surface 

and tile runoff at the site.  

 

The correlation between PSD and P:N ratio for surface and subsurface data were 

significantly different (Figure 7.2). Weak correlation (R2=0.22) was found between P:N 

ratio and d50 of all subsurface samples (Figure 7.2), although the model was statistically 

significant (P=0.003). The relationship between P:N ratio and d50 of all surface samples 

(Figure 7.2) revealed a stronger correlation (R2=0.4; P=0.001) although the number of 
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surface samples (n=13) were small compared to subsurface samples (n=61). The average 

d50 of subsurface and surface samples were 18.2 (min=10.1 and max=33 microns) and 21 

microns (min=5.7 and max=132 microns), respectively, although Mann-Whitney rank 

sum test showed that there was not a significant difference (P value= 0.315) between the 

median values of D50 for surface and subsurface samples at 95% confidence interval. 

 
Figure 7.2  P:N ratio versus D50 of transported sediment for surface and subsurface 

samples 

 

        Results of the P:N and particle size distribution analysis suggests that tile sediments 

reflect variable contributions of surface and subsurface sediment sources, but also suggest 

removal of coarser sediment during subsurface transport, particularly at high loading 

conditions. Mean trendline results (Figure 7.1) showed a P:N ratio closer to a signal of 

soil organic matter than surface sediment samples and showed high heterogeneity for tile 

P:N (R2 = 0.49) as compared to the surface P:N (R2=0.97).  This finding suggests tile 

sediments reflect a heterogenous mixture of surface and subsurface sediment sources, 

which agrees with findings from both clay and loam soil end-members reported in 

previous studies in Ohio (Williams et al., 2016; Nazari et al., 2020).  Nevertheless, we 
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found a significant portion of samples with high TP―DRP loading that had P:N ratios far 

exceeding P:N of the surface source.  This finding can be explained by results of our 

particle size distribution analysis which show that average d50 of tile sediments was less 

than surface sediments and P:N ratio increased with decreasing particle size (Figure 7.2). 

It is well recognized that sediment chemical properties vary as a function of size class.  

With regard to P:N, finer sediments have relatively higher P sorption index and lower 

potential P due to higher surface area as a P sorption proxy, so finer sediments should 

have higher P:N ratio (Stone and Mudroch, 1989; Mcdowell et al., 2001).  These findings 

suggest that coarser sediments are removed during transport of surface sediments through 

preferential flow paths to tile drainage, resulting in preferential transport of P-rich fine 

sediments during high loading conditions. Particle filtering, or sedimentation is generally 

recognized to occur in subsurface sediment transport (Turtola et al., 2007; Burkhardt et 

al., 2008; Bogaert et al., 2016; Wilson et al., 2018). Our results highlight that coupling 

P:N and particle size distribution results may be useful to quantify the prominence of this 

process at the field-scale and should be broadly assessed across environmental gradients.   

The findings that subsurface pathways may serve as both a source and sink of 

sediments to tile drain sediment loading at the field-scale suggests a need to revise 

existing agroecosystem management models to consider dynamic sediment transport 

processes. Processes such as subsurface erosion and subsurface sieving have not been 

investigated, nor incorporated to recent modeling works that have focused on sediment or 

particulate P detachment and delivery in subsurface drained soils and are an important 

area for future work (Jarvis and Larsbo 2012; Wastra et al., 2013; Turunen et al., 2017).  

Contrasting soil and management practices from the study sites focused upon in this 
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dissertation will strongly impact the composition and loading of sediment to tile drainage, 

hence models need to be developed generally, and evaluated over broad environmental 

and management gradients. Incorporating the flow pathways and processes identified in 

this study into existing continuous simulation numerical models (e.g., APEX, 

DRAINMOD, SWAT, and RZWQM2) will be critical for improving estimates of 

particulate-bound contaminants in tile-drained landscapes. 
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 APPENDICES 

APPENDIX 1.  Supplemental Materials of Chapter 4 

 

Supplemental Table S.4.1. Summary of event discharges and flow partitioning results 

(updated from chapter 3 to include data from Oct 2019-Dec 2019). 

 

  

Discharge 

(mm) 

Qquick 

(mm) 

Qslow 

(mm) 

Qnew 

(mm) 

Qold 

(mm) 

Qquick-old 

(mm) 

Qquick-new 

(mm) 

Qslow-old 

(mm) 

Qslow-new 

(mm) 

S1 33.2 21.5 11.7 13.1 20.1 8.9 12.6 11.2 0.5 

S2 4.0 0.5 3.5 0.1 3.9 0.4 0.1 3.5 0.0 

S3 21.8 13.5 8.2 12.3 9.5 2.2 11.4 7.4 0.9 

S4 16.9 7.9 9.0 7.7 9.2 1.2 6.7 8.0 1.0 

S5 16.4 7.8 8.5 6.2 10.2 2.7 5.2 7.5 1.0 

S6 5.5 0.9 4.6 0.4 5.2 0.7 0.3 4.5 0.1 

S7 21.9 12.7 9.2 12.1 9.8 1.8 10.9 8.0 1.2 

S8 34.8 26.8 8.0 24.2 10.7 3.8 23.1 6.9 1.1 

S9 5.7 1.8 3.9 2.3 3.4 0.3 1.5 3.2 0.7 

S10 9.7 3.9 5.8 4.4 5.3 0.2 3.6 5.1 0.7 

S11 4.4 2.7 1.7 3.6 0.8 0.2 2.5 0.6 1.1 

S12 12.6 8.3 4.4 7.2 5.4 1.5 6.8 4.0 0.4 

S13 12.4 5.0 7.4 8.0 4.4 0.3 4.8 4.1 3.2 

S14 25.0 8.2 16.8 9.7 15.3 1.2 7.1 14.2 2.6 

S15 11.0 2.7 8.3 1.8 9.2 1.4 1.3 7.8 0.5 

S16 27.2 13.4 13.8 13.8 13.5 2.2 11.2 11.2 2.6 

S17 16.1 6.3 9.8 11.2 4.9 0.4 6.0 4.5 5.3 

S18 23.2 8.5 14.7 13.7 9.5 0.0 8.5 9.5 5.2 

S19 12.7 5.2 7.6 5.3 7.4 0.6 4.5 6.8 0.8 

S20 4.4 0.6 3.8 0.7 3.8 0.2 0.4 3.5 0.3 

S21 4.4 0.5 4.0 0.5 3.9 0.2 0.3 3.7 0.3 

S22 10.1 2.5 7.7 5.3 4.9 0.0 2.5 4.9 2.8 

S23 3.9 1.4 2.5 2.1 1.8 0.3 1.0 1.4 1.1 

S24 11.6 5.6 6.0 6.1 5.5 0.6 5.0 4.9 1.1 

S25 0.6 0.1 0.6 0.0 0.6 0.0 0.0 0.6 0.0 

S26 1.0 0.5 0.5 0.3 0.7 0.3 0.3 0.5 0.0 

S27 6.2 3.1 3.1 3.5 2.7 1.2 1.9 1.6 1.5 

S28 2.99 0.75 2.24 0.05 2.94 0.72 0.04 2.23 0.01 

S29 26.33 16.62 9.71 6.04 20.29 11.30 5.33 8.99 0.72 

S30 3.25 0.69 2.56 0.07 3.18 0.63 0.06 2.55 0.02 

S31 9.45 3.14 6.30 2.42 7.26 1.32 1.83 5.71 0.60 
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Figure S.4.1. Hysteresis plots of normalized TSS and total discharge for each event  
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Figure S.4.2. Hysteresis plots of normalized TSS and Qquick-old for each event  
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Figure S.4.3. Hysteresis plots of normalized TSS and Qquick-new for each event  
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Figure S.4.4. Hysteresis plots of TSS and normalized TSS and Qslow for each event  
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APPENDIX 2.  Supplemental Materials of Chapter 5 

Table S.5.1. Management practices and timings for F2 and F4 sites  

F1/F2 F3/F4 

Date Crop Management Practice Details Date Crop Management Practice Details 

10/17/2015 corn harvest 146 bu/acre 10/17/2015 corn harvest 146 bu/acre 

10/28/2015 cover plant 56 lb/acre- Cereal rye (Broadcasted) 10/28/2015 cover plant 56 lb/acre- Cereal rye (Broadcasted) 

5/27/2016 beans plant   5/27/2016 beans plant   

10/11/2016 beans harvest 46 bu/acre 10/11/2016 beans harvest 46bu/acre 

10/12/2016 cover plant 60 lb/acre-broadcast rye 10/12/2016 cover plant 60lbs/acre- broadcast rye 

10/13/2016 cover tillage harrow (incorporate rye) 10/13/2016 cover tillage harrow (incorporate rye) 

5/24/2017 corn plant   5/24/2017 corn plant   

5/24/2017 corn fertilizer application 9 gal/acre (10.34.0)* 5/24/2017 corn fertilizer application 9 gal/acre (10.34.0) 

5/24/2017 corn fertilizer application 30 gal/acre (10.0.4) 5/24/2017 corn fertilizer application 30 gal/acre (10.0.4) 

6/1/2017 corn plant replanted corn 6/1/2017 corn plant replanted corn 

6/27/2017 corn fertilizer application 200 lbs/acre (46.0.0) 6/27/2017 corn fertilizer application 200 lbs/acre (46.0.0) 

6/27/2017 corn fertilizer application 100 lbs/acre (21.0.0) 6/27/2017 corn fertilizer application 100 lbs/acre (21.0.0) 

11/20/2017 corn harvest 66 bu/acre 11/20/2017 corn harvest 66 bu/acre 

5/27/2018   tillage field cultivator (tilled drive lane only) 11/20/2017 cover plant broadcast rye 

5/29/2018   tillage cultimulcher (tilled drive lane only) 5/27/2018   tillage field cultivator (tilled drive lane only) 

5/29/2018 soybeans plant 150000 seeds/acre (15 inches row) 5/29/2018   tillage cultimulcher (tilled drive lane only) 

10/17/2018 soybeans harvest 48 bu/acre 5/29/2018 soybeans plant 150000 seeds/acre (15 inches row) 

9/2/2019   tillage disc- 3 in 10/17/2018 soybeans harvest 59.5 bu/acre 

9/21/2019   tillage field finisher -3 in 9/2/2019   tillage disc- 3 in 

10/10/2019   tillage 5 bar harrow to level and size 9/21/2019   tillage field finisher -3 in 

10/11/2019 wheat plant 135 lbs/acre 10/10/2019   tillage 5 bar harrow to level and size 

10/11/2019 wheat fertilizer application 250 lb/acre (20.21.20.6s) 10/11/2019 wheat plant 135 lbs/acre 

        10/11/2019 wheat fertilizer application 250 lb/acre (20.21.20.6s) 
*The first, second and third number represent %N, % P, % K, respectively 
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Table S.5.2. Quickflow fractions associated with events from water years 2016 to 2019.  

Event Start Date End Date 

F2- Quickflow 

 Fraction (%) DWM 

F4- Quickflow  

Fraction (%) DWM 

WY16-1 12/26/15 0:00 12/28/15 6:30 37.13% close 15.69% close 

WY16-2 12/28/15 7:00 1/3/16 10:30 40.56% close 46.88% close 

WY16-3 1/10/16 0:00 1/12/16 11:00 39.53% close 57.44% close 

WY16-4 1/15/16 0:00 1/20/16 0:00 46.37% close 52.13% close 

WY16-5 2/1/16 0:00 2/9/16 23:30 13.54% close 24.63% close 

WY16-6 2/24/16 0:00 2/29/16 23:30 30.59% close 38.53% close 

WY16-7 3/1/16 0:00 3/4/16 0:00 13.55% close 39.97% close 

WY16-8 3/9/16 0:00 3/12/16 23:30 27.69% close 47.06% close 

WY16-9 3/13/16 0:00 3/14/16 15:00 10.98% close 17.71% close 

WY16-10 3/14/16 15:30 3/22/16 0:00 9.45% close 14.92% close 

WY16-11 3/24/16 0:00 3/27/16 0:00 26.66% close 31.76% close 

WY16-12 3/31/16 0:00 4/4/16 23:30 15.03% close 33.05% close 

WY16-13 4/6/16 10:00 4/8/16 16:30 32.12% close 48.39% close 

WY16-14 4/9/16 10:00 4/10/16 10:00 9.38% close 15.76% close 

WY16-15 4/10/16 10:30 4/14/16 9:00 5.69% close 7.79% close 

WY16-16 4/26/16 0:00 4/28/16 4:00 14.40% close 22.12% close 

WY16-17 5/1/16 22:00 5/4/16 7:00 32.69% close 42.55% close 

WY17-1 1/12/17 6:30 1/15/17 23:30 28.04% close   close 

WY17-2 1/17/17 0:00 1/19/17 11:30 31.82% close 63.88% close 

WY17-3 1/20/17 0:00 1/23/17 4:30 27.79% close 58.44% close 

WY17-4 1/23/17 7:00 1/28/17 23:30 8.32% close 36.41% close 

WY17-5 2/7/17 4:30 2/10/17 5:30 42.99% close 45.68% close 

WY17-6 2/11/17 14:00 2/13/17 13:00 17.32% close 27.43% close 

WY17-7 2/24/17 12:00 2/27/17 5:00 19.85% close 32.09% close 

WY17-8 3/1/17 0:00 3/4/17 23:30 9.67% close 0.01% close 

WY17-9 3/18/17 0:00 3/20/17 0:00 25.29% close 0.03% close 

WY17-10 3/30/17 0:00 4/2/17 4:30 49.18% close 44.05% close 

WY17-11 5/5/17 19:30 5/10/17 23:30 21.72% open 41.27% open 

WY17-12 5/11/17 0:00 5/15/17 23:30 49.66% open 55.06% open 

WY17-13 5/28/17 0:00 5/31/17 23:30 51.90% open 53.21% open 

WY17-14 6/13/17 0:00 6/17/17 23:30 45.02% open 38.00% open 

WY17-15 6/30/17 14:00 7/3/17 23:30 39.08% close 20.74% close 

WY18-1 11/4/17 0:00 11/9/17 23:00 71.11% close 67.92% close 

WY18-2 11/15/17 0:00 11/16/17 23:30 15.30% close 12.53% close 

WY18-3 1/19/18 0:00 2/7/18 23:31 36.29% open 58.79% close 

WY18-4 2/14/18 0:00 2/18/18 23:30 60.17% open 67.52% close 

WY18-5 2/19/18 0:00 2/23/18 23:30 42.81% open 42.10% close 

WY18-6 2/24/18 19:30 2/28/18 10:00 27.17% open 31.64% close 

WY18-7 3/1/18 3:00 3/14/18 23:30 48.50% open 47.54% close 

WY18-8 3/26/18 15:00 4/2/18 23:30 46.47% open 46.98% open 
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Table S.5.2. (Continued). Quickflow fractions associated with events from water years 

2016 to 2019.  

Event Start Date End Date 

F2- Quickflow 

 Fraction (%) DWM 

F4- Quickflow  

Fraction (%) DWM 

WY18-9 4/3/18 0:00 4/12/18 23:30 37.47% open 72.69% open 

WY18-10 4/15/18 0:00 4/23/18 23:31 47.76% open 70.15% open 

WY18-11 5/3/18 8:30 5/5/18 22:00 18.78% open 6.54% open 

WY18-12 5/13/18 15:00 5/20/18 23:30 14.48% open 16.66% open 

WY18-13 5/21/18 16:30 5/25/18 5:30 13.90% open 8.34% open 

WY18-14 6/9/18 11:30 6/13/18 6:30 34.08% open 23.64% open 

WY18-15 6/22/18 12:00 6/24/18 23:30 66.79% open 86.29% open 

WY18-16 6/27/18 0:00 6/30/18 23:30 50.91% open 64.49% Close 

WY18-17 8/21/18 0:30 8/23/18 23:30 42.97% open 58.46% open 

WY18-18 8/25/18 0:28 8/28/18 23:31 34.05% open   open 

WY19-1 10/6/18 0:00 10/9/18 8:30 22.22% open 69.29% open 

WY19-2 10/6/18 0:00 10/9/18 8:30 22.22% open 85.80% open 

WY19-3 10/28/18 12:00 10/31/18 13:00 18.42% open 54.21% open 

WY19-4 11/1/18 0:30 11/9/18 11:00 64.61% open 73.64% close 

WY19-5 11/9/18 11:30 11/12/18 23:30 11.92% open 24.73% close 

WY19-6 11/18/18 7:30 11/23/18 23:30 8.72% open   close 

WY19-7 11/24/18 0:00 11/25/18 19:00 13.45% open   close 

WY19-8 11/25/18 19:30 11/30/18 5:00 62.01% open 66.88% close 

WY19-9 12/1/18 0:00 12/5/18 22:00 46.59% open 53.12% close 

WY19-10 12/20/18 12:00 12/27/18 4:00 47.85% open 69.36% close 

WY19-11 12/27/18 4:30 12/31/18 7:00 16.89% open 27.88% close 

WY19-12 12/31/18 7:30 1/5/19 23:30 58.13% open 60.27% close 

WY19-13 1/21/19 18:00 1/30/19 16:00 76.95% open 87.58% close 

WY19-14 2/7/19 11:00 2/11/19 23:30 34.81% open 22.45% close 

WY19-15 2/12/19 0:00 2/14/19 12:00 31.40% open 55.22% close 

WY19-16 2/14/19 12:30 2/19/19 17:00 39.90% open 54.22% close 

WY19-17 2/20/19 14:24 2/21/19 9:36 61.57% open 55.52% close 

WY19-18 2/21/19 10:00 2/23/19 12:30 19.38% open 20.87% close 

WY19-19 2/23/19 13:00 2/26/19 3:30 59.88% open 18.56% close 

WY19-20 3/9/19 15:00 3/13/19 8:00 40.59% open 62.18% close 

WY19-21 3/13/19 8:30 3/20/19 9:00 32.90% open 43.34% close 

WY19-22 3/20/19 17:00 3/27/19 10:00 25.86% open 37.56% close 

WY19-23 3/28/19 0:00 4/4/19 23:30 49.31% open 49.68% close 

WY19-24 4/14/19 6:30 4/18/19 4:00 14.50% open   close 

WY19-25 4/18/19 15:36 4/20/19 4:04 39.23% open 61.84% open 

WY19-26 4/20/19 4:33 4/25/19 8:24 36.78% open 46.00% open 

WY19-27 4/27/19 15:00 4/29/19 15:30 40.64% open 58.03% open 

WY19-28 4/30/19 8:30 5/1/19 13:30 14.58% open 20.79% open 

WY19-29 5/13/19 6:00 5/16/19 22:00 10.61% open 22.21% open 
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Table S.5.2. (Continued). Quickflow fractions associated with events from water years 

2016 to 2019.  

Event Start Date End Date 

F2- 

Quickflow 

 Fraction 

(%) 

DW

M 

F4- 

Quickflow  

Fraction (%) DWM 

WY19-

30 5/28/19 3:00 

5/31/19 

12:30 24.45% open 33.55% open 

WY19-

31 

6/13/19 

16:00 

6/14/19 

23:30 39.26% open 38.01% open 

WY19-

32 6/15/19 7:00 

6/19/19 

14:30 48.11% open 50.40% open 

WY19-

33 7/2/19 13:00 7/6/19 8:30   open 28.50% open 

WY19-

34 7/2/19 13:00 7/6/19 8:30   open 42.13% open 

WY19-

35 

9/21/19 

15:00 

9/22/19 

19:00 50.15% open   close 

WY19-

36 9/30/19 1:30 

9/30/19 

23:30 50.44% open   close 
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a)

 

 

 



 

164 

 

b) 
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c) 

 

Figure S.5.1. Hysteresis plots of normalized TSS Vs a) normalized discharge b) 

normalized Qquick-old and c) normalized Qquick-old for each event for FD and CD site
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