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ABSTRACT OF DISSERTATION 
 
 
 

 
ELUCIDATING THE ROLE OF THE TYROSINE PHOSPHATASE, SHP-2, IN 

REGULATION OF PD-L1 EXPRESSION IN NON-SMALL LUNG CANCER 
USING BOTH BIOCHEMICAL ANALYSES AND REAL-WORLD GENOMIC 

INFORMATION 
 

Immune checkpoint inhibitors (ICIs), especially those that target 
programmed cell death protein 1 (PD-1) and programmed cell death ligand-1 (PD-
L1), have been shown to provide substantial clinical benefit in many patients with 
non-small cell lung cancer (NSCLC). While these therapeutic agents can be highly 
effective in the correct context, the biological systems that malignant cells draft 
from normal activities of the cell are poorly characterized. Tumor cell-specific 
expression of PD-L1 is likely important for clinical benefit from PD-1 and PD-L1 
inhibitors. It is known that PD-L1 is inappropriately expressed in many cancers 
harboring mutations in the RAS family of genes. The KRAS gene is mutated in as 
many as 30% of NSCLC tumor and drives tumor proliferation.  Because there are 
no FDA-approved KRAS-targeting agents available for NSCLC patients, ICI 
therapy has been used in patients with tumors harboring mutations in the KRAS 
gene with clinical success. However, utilization of these therapies will remain 
hindered until there is a more complete understanding of the mechanisms 
governing the expression of targets of ICIs, specifically of PD-L1. The work in this 
dissertation explores the role of the tyrosine phosphatase, SHP-2. SHP-2 has 
been scrutinized as an important signaling molecule in a variety of cancers that 
links the activity of several signaling cascades as a regulator of KRAS, resulting 
in the clinical development of inhibitors of SHP-2. The work encompassed in these 
studies takes two complementary approaches to explore the role of SHP-2 in 
control of PD-L1 expression. First, publicly available real-world genomic 
information was used to establish a connection between the activity and/or 
expression of SHP-2 and PD-L1 in tumors and how expression relates to response 
to ICI therapy. Second, this work further sought to elucidate the molecular 
mechanism by which SHP-2 impacts the expression of PD-L1 in an NSCLC cell 
line model system. From these investigations, this work established that SHP-2 
and PD-L1 have an expression relationship in clinical samples that may impact 
response to ICI therapies and experimentally identified a possible mechanism by 
which SHP-2 impacts PD-L1 expression in NSCLC. 
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CHAPTER 1.  

1.1 INTRODUCTION 

Cancer, at its most fundamental level, is a disease characterized by 

abnormal cells that divide without control and can invade nearby tissues (1). While 

correct and concise, this deceptively simple definition only scratches the surface 

of the answer to the question ‘What is cancer?’ Within the past 100 years, the 

burden of cancer has evolved in a manner that mirrors the pathology of the 

disease itself. In 1900, the leading causes of death in the USA were primarily due 

to both bacterial and viral infections, with cancer accounting for 64 deaths per 

100,000 people. Between 1900 and 2010 overall mortality from all causes declined 

by 54%, yet the rates of death due to cancer increased roughly 300%, resulting in 

cancer as one of the leading causes of death, second only to heart disease by 

2019 (2). The decline in deaths due to infectious disease and subsequent 

increases in lifespan may largely be attributed to the development of antibiotics 

and vaccines (3). As a result, the physiological landscape upon which human 

disease occurs was ever altered, facilitating the emergence of illnesses that arise 

not from extrinsic factors such as pathogens, but rather from malfunctions of our 

own biology that become more apparent as lifespan increases. This shift in 

mortality reveals much about the nature of this ever-changing affliction, and so 

one may think of cancer as a pathology not of the human body, but of the human 

evolution.  

 

The evolution of an organism requires three core criteria to occur: 

reproduction, variation, and selective pressure. The increase in life expectancy 

over the last century and how it relates to cancer reflects one of these core 

evolutionary principles: reproduction. It is thought that, among many factors, the 

escalation in cancer mortality over the last century can primarily be attributed to a 

large increase in life expectancy. In 1900 the average life expectancy at birth was 

47 years, compared to 79 years by 2010 (2). As an individual grows past the point 
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in their life at which they may bear offspring, their continued existence becomes 

evolutionarily disadvantageous to their species. That is to say that, from a purely 

evolutionary standpoint and from the perspective of a low population, newly 

developing species, there are diminishing returns on the usefulness of an 

individual that can no longer reproduce. Once older individuals can no longer serve 

a caretaker role and must instead be taken care of, in times when there is great 

pressure to survive, older individuals take more time, energy and resources than 

they provide. As such, there is minimal evolutionary incentive for the development 

of biochemical mechanisms which prevent the onset of cancer later in life, at least 

as is the case in homo sapiens. However, there do exist numerous biochemical 

mechanisms aimed at restraining genetic variance throughout the ages of 

reproductive capability and onward. Whether it be by detecting and eliminating 

sources of genetic lesions, preventing the unregulated replication of individual 

cells, or carefully curating the integrity of the genome itself, our bodies every 

attempt to cull the inception and progression of cancer aims to minimize the 

probability of potentially detrimental genetic mutations. 

 

The corrupted application of selective pressure by cancerous cells, 

specifically with regard to the development of anti-cancer therapies, has revealed 

itself as one of the greatest obstacles in the effective treatment and control of 

disease progression. A longstanding issue in the use of drugs to combat the growth 

of pathogenic organisms has been their ability to acquire resistance to therapeutic 

intervention. Bacterial cells rapidly evolve under the selective pressure of drugs 

that impede their ability to properly divide, and malignant human cells possess the 

same capabilities but to a substantially more sophisticated extent. Methicillin-

resistant Staphylococcus aureus (MRSA) is a relatively simple single cell organism 

that has imposed major challenges in the development of antibacterial drugs. 

MRSA’s genome contains some 2.8 million base pairs which encode roughly 2,629 

coding sequences, about 10-fold fewer coding sequences than the human genome 

(4). When one compares the complexity of, and challenges posed by prokaryotic 

mechanisms of drug resistance against the highly adaptive, multiplex, and 



 

3 

 

intersecting pathways applied by eukaryotic cells to the same end, the task of 

overcoming tumoral drug resistance appears incredibly difficult. It is important to 

consider that the generation of random genetic mutations is a naturally occurring 

process that leads to phenotypic changes which may or may not be advantageous 

to an organism. When a rapidly and haphazardly reproducing population of 

heterogenous cells is put under the selective pressure of pharmacological 

intervention, their ability to exponentially evolve past even the most efficacious of 

therapies is unveiled as the true obstacle in cancer drug development.   

 

Of all the drugs which enter clinical trials for the treatment of cancer, a dismal 

97% of them fail to receive FDA approval, the lowest among all drug indications 

(5). The consequences of these failures are enormous; by the time a drug reaches 

late phase clinical trials, hundreds of millions of dollars and years of time have 

been invested in its development (6). Furthermore, most of these clinical failures 

stem not from issues in the toxicity or pharmacokinetics of a drug as one might 

predict. Rather, these failures are the result of inadequacies in drug efficacy, the 

cause of which is often indiscernible until later phase clinical trials and may be 

attributed to unforeseen downstream cellular processes that remain poorly 

understood (7)(8). Despite our best efforts to predict the success of a drug with 

preclinical modeling, when they finally reach a human subject, the drugs simply do 

not work. The decision for which anti-cancer compound is chosen to treat a tumor 

is based upon the mechanism of action that would prove most effective in stopping 

that tumor’s growth. If we do not fully understand the mechanism of a compound, 

that is to say the drug isn’t doing exactly what we ‘think’ it’s doing, it drastically 

impairs our ability to utilize our treatments to their full potential. Thus, the failure to 

completely understand and fully characterize all the facets of how a drug, its target, 

and the downstream effectors of that target function within an actual tumor has 

created a wildly unsustainable system for cancer drug development. 

 

The ancient Chinese military strategist, Sun Tzu, once wrote in The Art of 

War, “If you know your enemy as you know yourself, you will fight without fear in 
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100 battles. If you know yourself but not your enemy, with every victory gained you 

will also suffer defeat.” Though he wrote this regarding military strategy, this 

proverb lends relevancy to the war against cancer. Despite the ongoing 

development of highly sophisticated targeted therapies, cancers continue to 

evolve, adapt, and overcome our best efforts in manners we remain unable predict. 

Although we create groundbreaking new therapies which drastically improve the 

lives of those with previously untreatable cancer, we often fail to predict for whom 

they will work, how they work, and when they do not work- why not. The enemy 

now standing in opposition of humanity is cancer, and cancer at its most 

fundamental level, is evolution. To fully understand how human cells can evolve 

and overcome our efforts to eradicate them, we must understand as completely as 

possible every component of every biological process by which cancer cells evade 

destruction and consume their host. 

 

Thus, to fully utilize any cancer treatment, we must focus our efforts into 

thoroughly defining every complexity of a drug and its mechanism of action. The 

factors that control the expression, activity, epigenetic regulation, metabolic 

turnover, parallel and intersecting pathways, downstream and upstream effectors 

of the target are all important for discerning the right therapy for the right 

patient/tumor at the right time. The work herein aims to further elucidate the 

complexities of the regulation of programmed cell death ligand 1 (PD-L1) 

expression, the target of some of the most successful cancer therapies to date. 

1.2 BIOLOGY OF NSCLC 

 
Hallmarks of cancer 
 

At its most basic level, cancer is the uncontrolled and unregulated replication 

of a cell. However, there are a variety of cellular mechanisms by which this 

outcome can be achieved. Canonically, these defining biochemical capabilities 

have been historically separated into ten distinct categories described a decade 

ago by Hanahan and Weinberg (9). Depending on the type of cancer and the tissue 
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of origin, the acquisition of several of these capabilities may allow a cell to evolve 

into cancer, with very late-stage cancers having the potential to encompass all ten, 

heavily contributing to the innate heterogeneity of the disease. These ten hallmarks 

of cancer can be broadly grouped by the mechanism by which they promote 

unregulated cell growth, and will be expanded on in the forthcoming sections; 1) 

the recruitment or corruption of extrinsic tissues to assist in tumor development 2) 

the disruption of cellular checks and balances designed to prevent the occurrence 

and progression of cancer 3) the exploitation of intrinsic signaling or genetic 

pathways related to cellular growth or 4) strategies to evade and/or manipulate the 

immune system. 

 

Recruitment or corruption of extrinsic tissues 
 

In order for a tumor to continue growing beyond the normal limitations of its 

tissue of origin, it must have a proper supply of oxygen and nutrients and be able 

to survive in an irregular growth environment. The two major mechanisms by which 

cancer will coerce neighboring tissues to assist in its progression are by inducing 

angiogenesis, or by invading the nearby tissues directly through the process of 

metastasis. The notion that a critical part of tumor progression was the recruitment 

of blood vessels to supply the growing tumor mass with nutrients was initially met 

with great resistance. Judah Folkman, the so-called ‘father of angiogenesis’ in 

1971 defined angiogenesis as “a cascade of processes emanating from 

microvascular endothelial cells in response to soluble factors” hypothesizing that 

developing tumors were being limited in their growth by an inability to acquire 

enough oxygen and mitogenic factors, and that only by recruiting blood vessels to 

fuel their growth could tumors develop into later, deadlier stages of disease (10). 

Over time, further insight was gained to confirm this hypothesis and led to the 

discovery of a number of growth factors known to induce angiogenesis, namely 

proteins such as vascular endothelial growth factor (VEGF) and hypoxia-inducible 

factor alpha (HIF-a). As such, drugs which interfere with these pathways reduce 

the recruitment of blood vessels and subsequent blood flow to tumors thus serving 
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as viable therapeutic options for a variety of tumor types, though not many are 

used in the clinic today.  

 

Perhaps the most deleterious characteristic of advanced cancer is its ability 

to invade or spread to other tissues in a process known as metastasis. Though 

one of the deadliest properties of the disease, metastasis is a highly inefficient 

process that requires numerous specific biological conditions to be met then 

resulting in the development of heterogenous cell populations capable of surviving 

outside of their tissue of origin (11). This ultimately leads to the development of 

secondary tumors, typically to highly vascularized tissues such as the liver, brain, 

and lungs. Chemotherapy, a branch of therapy which damages and hinders 

actively proliferating cells non-discriminately throughout the entire body, has 

served as an effective treatment strategy to prevent cells which have been shed 

from the primary tumor from forming a colony and replicate in secondary tissues. 

 

Disruption of cellular checks and balances 

 

For a cell to transition into malignancy, a loss of function in mechanisms that 

restrict unregulated cell growth must occur in addition to oncogenic mutations that 

drive proliferation. The enabling of replicative immortality, ability to resist 

programmed mechanisms of cell death, and evasion of growth suppressors are all 

methods cancer applies to subvert such preventative measures. When describing 

the ability of a cell to become ‘immortal’ it is important to note that this refers not 

to any single cell being able to resist death, but rather to the loss of genetic 

limitations designed to limit the number of times any individual cell may replicate. 

The ‘Hayflick phenomenon’ describes the limited number of times a primary cell 

population in culture will divide until cellular division stops and the cell enters a 

state in which it will no longer continue to undergo mitosis known as senescence 

(12). Cellular senescence is thought to be a natural process that occurs in most 

somatic tissue and in general can be thought of as “cellular aging”. It has been 

hypothesized that the principle of senescence is an evolutionary mechanism 
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specifically intended to reduce the likelihood of cancer occurring by restricting the 

total number of times a cell can replicate. Each time a cell divides there-in lies the 

potential for the occurrence of errors while creating copies of genetic code. By 

imposing an upper limit to the number of times which a cell may divide, the 

maximum potential for mutations during mitosis is reduced, thus diminishing the 

likelihood of a cell becoming cancerous. Importantly, the number of times a cell is 

programmed to divide is also governed by what type of cell it is and what functions 

that cell serves. For example, a neuron almost never divides, whereas enterocytes 

may divide indefinitely. 

 

The biochemical mechanism that exerts this self-imposed senescence 

manifests in the form of GC rich DNA sequences located at the ends of linear 

eukaryotic chromosomes known as telomeres. Telomeres function as protective 

‘caps’ for the ends of chromosomes and are created by the enzyme telomerase, a 

specialized reverse transcriptase that adds back telomeric DNA to the ends of 

chromosomes. Over time, somatic tissues will gradually lose expression of 

telomerase, resulting in the shortening of telomeric DNA (13). After enough 

telomeric DNA has been lost, the shortened telomeres are recognized by the cell 

as double-strand breaks, which will then lead to large amounts of genomic 

instability and chromosomal aberrations triggering p53 modulated senescence or 

apoptosis. To subvert the natural process of cellular senescence, cancer cells 

have been shown to inappropriately express telomerase, thus preventing the loss 

of telomeric DNA (14). This revelation has prompted the development of 

telomerase inhibitors currently undergoing clinical trials. 

 

A characteristic shared by nearly every subtype of cancer is the ability to 

deter or otherwise evade cellular signaling events that result in self-mediated cell 

death processes such as apoptosis, anoikis, or autophagy. Unlike cellular necrosis 

which happens in a fast, non-programmed fashion, these processes involve a 

variety of finely coordinated cellular signaling cascades that result in the controlled 

breakdown of organelles, proteins, and genetic material. Proteins such as Bax/Bcl-
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2 and the caspase family of proteins are heavily involved in transmitting and 

regulating signal cascades that induce apoptosis to control DNA damage resulting 

from unregulated cellular growth and division. It is well understood that the loss or 

dysfunction of these proteins has been strongly correlated to the progression of 

cancer. 

 

In addition to the evasion of both intracellular and extracellular stimuli that 

initiate programmed-cell death, another hallmark of cancer is the inactivation of 

tumor suppressor genes. Tumor suppressor genes contribute to the normal 

development of healthy cells by controlling DNA damage and cell cycle 

progression. These genes have gained the title of “tumor suppressors” by 

influencing processes that stifle the growth and survival of cells that would 

otherwise progress to malignancy (15). They do this in a number of ways: inhibiting 

cell growth and division, promoting apoptosis, preventing or hindering genetic 

change, inhibiting angiogenesis, and inhibiting metastasis. The gene TP53 

encodes the tumor suppressing protein p53, one of the most well characterized 

tumor suppressors. A transcriptional activator, p53 functions to regulate the 

expression of a multitude of genes that influence growth, DNA damage and repair, 

and apoptosis (16). 

 

Sustained cell signaling 
 

Cancer results from the uncontrolled replication of a cell population. To 

maintain unregulated proliferative signaling, cancer cells may utilize any number 

of signal transduction pathways related to proliferation and survival. Depending on 

cancer subtype, the number of unique signaling pathways it co-opts may vary 

greatly, highlighting not only the inherent variance within a single cancer subtype, 

but also between cancer subtypes. For example, it is not uncommon for leukemias 

to only require a single oncogenic driver mutation to maintain sustained cellular 

signaling and progress to malignancy. The tyrosine-protein kinase ABL1 is 

frequently mutated in leukemias, often through a chromosomal translocation at 
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t(9;22) that results in the fusion of breakpoint cluster region protein (BCR) with 

ABL1, distorting the regulatory domains of ABL1 resulting in a constitutively active 

protein kinase that continuously initiates or sustains cell signaling cascades related 

to cell division, adhesion, and resistance to apoptosis (17).  

 

In addition to the BCR-ABL fusion protein, many additional oncogenic driver 

proteins are also kinases responsible for activating signal transduction pathways. 

Epidermal growth factor receptor (EGFR/Her-2) is a receptor tyrosine kinase 

commonly mutated in NSCLC and breast cancer, with mutations that result in 

constant phosphorylation of substrate proteins (18). Phosphoinsolitol-3-kinase 

(PI3K) is responsible for phosphorylating lipids that transmit signals within the 

AKT/mTOR pathway resulting in the constant activation of this cellular growth 

pathway. Janus kinase (JAK) is responsible for activating cell signaling cascades 

involving the signal-transducer and activator of transcription (STAT) family of 

proteins. Given the heavy involvement of protein phosphorylation within these 

growth and survival pathways, protein phosphatases such as Src-homology 

containing protein 2 (SHP-2) and phosphatase and tensin homolog (PTEN) have 

been shown to function as negative regulators of these pathways, and a loss in 

their activity or expression has been linked to tumor progression (19). 

 

Inflammation and the avoidance of immune detection 

 

 Outside of the intracellular processes occurring within the tumor itself, there 

are extrinsic biological systems that influence tumor development, not the least of 

which is the immune system. It has long been understood that there is a great deal 

of interplay between the immune system and the tumor itself, however until 

recently, the importance of the immune response on tumor development had not 

been thoroughly researched. One of the primary functions of the immune system 

is to identify and eliminate cancer through the recognition of mutant proteins that 

may result in tumorigenesis, a process known as immune surveillance. The 

manner in which the immune system does this is highly complex and involves 
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many different immune cell types. CD4+ helper T-cells identify cancerous 

neoepitopes and mobilize natural killer (NK) cells and cytotoxic CD8+ T-cells to 

eliminate them. Additionally, immune cells secrete immunomodulatory or 

inflammatory molecules such as cytokines or antibodies which are produced by B-

cells. This persistent activity of the immune system against an identified tumor 

often results in prolonged chronic inflammation (20).  

 

Eventually, a tumor can accumulate mutations to evolve to the final ‘escape 

phase’ in which it applies several mechanisms such as antigenic modulation, tumor 

induced privileged sites, and tumor-induced immune suppression to completely 

elude immune detection. However, therapies which disrupt these mechanisms of 

immune evasion and ‘unmask’ the tumor to the immune system have 

demonstrated immense clinical benefit in recent years. Immunotherapy first began 

in the early 20th century when Dr. William B. Coley would inject mixtures of live 

and attenuated streptococcus into patient tumors to induce a localized immune 

response (21). In recent years, monoclonal antibodies developed against 

immunosuppressive proteins such as programmed death protein 1 (PD-1) and its 

ligand (PD-L1) have revolutionized the field of cancer therapy and will be 

discussed in greater detail in later chapters. 

 

Biology and epidemiology of NSCLC 

 

 Of all cancer types, lung cancer, non-small cell lung cancer (NSCLC) 

specifically, may be the most burdensome on the American healthcare system. It 

is the leading cause of cancer deaths each year both world-wide and within the 

US, accounting for nearly 22% of all deaths due to cancer (22). Furthermore, the 

Commonwealth of Kentucky suffers the highest rates of death due to lung cancer 

in the entire country, likely attributable to the high rates of smoking (22). 

 

Lung cancer can be divided into two groups, the more prevalent and slower 

growing NSCLC, and the less common but more aggressive small cell lung cancer 
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(SCLC). NSCLC can be further divided into two major histological groups, lung 

squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). LUSC is a 

slow growing form of the diseases and originates from squamous cells; a type of 

epithelial cell that lines the inside airways of the lungs. LUAD arises from glandular 

cells that are found within the smaller airways and alveoli and has the tendency to 

progress less quickly than other lung cancers. Although all types of lung cancer 

are associated with smoking, the association is strongest with LUSC when 

compared to LUAD. LUAD is the most common lung cancer histology amongst 

non-smokers (23). The most prominent risk factor for NSCLC is tobacco use, 

contributing to greater than 80 percent of lung cancer deaths. Additional risk 

factors include pre-existing conditions such as COPD or previous aerodigestive 

malignancies, genetic predispositions, or exposure to carcinogenic compounds 

such as asbestos, radon, and arsenic (24). 

 

Although many cancers can be divided into discrete subgroups based upon 

their histology, tissue, and cell type of origin, the heterogeneity of the disease from 

a molecular standpoint cannot be overstated. There have been numerous studies 

which have established high intratumor heterogeneity as a negative prognostic 

indicator, characterized by factors such as tumor mutational burden (TMB), 

chromosome instability (CIN), and copy number variation (CNV) (25)(26)(27)(28). 

NSCLC, specifically, is well understood to be a highly heterogenous disease which 

likely contributes to the challenges posed in identifying effective therapies that 

provide durable and long-lasting clinical benefit (29). There are likely many 

reasons for the genetic diversity of NSCLC; however, the consistent DNA damage 

induced by tobacco use over a long period of time has been hypothesized to be a 

major contributing factor (30). Importantly, as we continue to develop our 

understanding of cancer and its ever-increasing complexity, this heterogeneity 

highlights the value of mechanistic studies to elucidate the molecular workings of 

the disease. Though not always immediately apparent, the eventual clinical 

translatability of such work may function to attenuate previous failures in attempts 
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to develop efficacious treatments that eventually become FDA-approved therapies 

(31)(32).  

 

In LUAD, mutations in the genes encoding KRAS and EGFR are extremely 

common and detected in 32% and 27% of LUAD tumors, respectively. In addition 

to these well-characterized oncogenes, activating mutations in other genes such 

as BRAF, ALK, MET, and ROS play an important role in the development of LUAD. 

Mutations in tumor suppressor genes such as TP53, STK11, and PTEN are all 

common in LUAD, with nearly 50% of LUAD tumors harboring inactivating 

mutations in the TP53 gene (33). 

 

Biology of KRAS 

 

The KRAS protein (Kirsten rat sarcoma 2 viral oncogene homolog), encoded 

by the KRAS gene, is a small, membrane-associated GTPase that functions to 

transmit external cellular signaling events to the nucleus. It belongs to a large 

superfamily of genes that encode small GTPases, and more specifically the 

subfamily known as the Ras family of genes. The RAS proteins include the three 

highly homologous proteins HRAS, NRAS, and KRAS. The KRAS protein contains 

a GTP binding pocket that serves to switch between its active GTP-bound state 

and its inactive GDP-bound state. Furthermore, this GTP-binding pocket is found 

within its G-domain, a region of the protein where downstream effectors may bind 

and intimate cellular signaling cascades. The balance of these two states is 

controlled by guanine nucleotide exchange factors (GEFs) which catalyze the 

transition from GDP-bound KRAS to a GTP-bound state, and GTPase-activating 

proteins (GAPs) which bind to activated G proteins, stimulate their activity or 

expedite GTP hydrolysis. When bound to GTP, KRAS can bind to cellular effector 

molecules such as son of sevenless (SOS) complexed with adaptor proteins like 

growth factor receptor-bound protein 2 (Grb2) to transmit signals from the cell 

membrane to the nucleus. These signaling cascades are known to influence 

cellular processes such as cell differentiation, proliferation, and apoptosis. 
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Importantly, the activation of KRAS is not just a single-step process but requires 

correct interactions with effector and scaffolding proteins such as SHP-2 for proper 

activation (34). 
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Figure 1.1. The KRAS signaling cascade. Upon ligation of RTKs with soluble 
growth factors or cytokines, the RTKs will trans-autophosphorylate allowing for 
the recruitment of protein complexes (Grb2/SOS/SHP-2) to the cell membrane 
which may then recruit additional proteins (KRAS) to allow for the initiation of 
cell signaling cascades that control cell growth and survival. 
Made with Biorender.com 
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Upstream of Ras is a wide variety of membrane bound RTKs including but 

not limited to EGFR, Her2, platelet derived growth factor receptor (PDGFR), ROS 

proto-oncogene 1 (ROS1), ALK, VEGFR and others (35)(36)(37). Activation of 

RTKs upstream of Ras occurs upon binding an appropriate ligand which are most 

commonly growth factors like EGF or cytokines. Upon ligation, monomeric RTKs 

will then dimerize and auto, or trans-autophosphorylate, tyrosine residues on their 

cytoplasmic domains. The phosphorylated tyrosine residues then function as 

binding sites for adaptor proteins such as SHP-2 and Grb2 which contain Src 

homology 2 (SH2) or phosphotyrosine binding (PTB) domains. The adaptor 

proteins may recruit additional scaffold or adaptor proteins such as the GEF SOS 

to form complexes. The complexes can associate with membrane-bound KRAS 

and catalyzes its transition to an active GTP-bound state. Once active, KRAS can 

then bind to and activate additional downstream effector molecules to initiate signal 

transduction pathways that control proliferation (Raf/MEK/ERK), apoptosis 

(PI3K/Akt/mTOR), cytoskeletal reorganization (TIAM1/Rac/Rho), and cell cycle 

progression (PLC/PKC) (37). 

 

As stated above, in NSCLC mutations in the KRAS gene are common and 

function to impair the ability of KRAS to revert to an inactive GDP-bound state. As 

many as 30% of all NSCLC tumors harbor mutations in the KRAS gene and are 

generally mutually exclusive from tumors driven by EGFR mutations. The 

distribution of mutations in the Ras gene vary by cancer type and Ras isoform. 

However, a vast majority of the mutations in the KRAS gene occur at the 12th 

codon (83%) which encodes a glycine residue, followed by the 13th codon (14%) 

which also encodes a glycine, and lastly the 61st codon (2%) which encodes 

glutamine (38). Mutations at G12/G13 substantially reduce the GTPase activity of 

KRAS which prevents its reversion to an inactive GDP-bound state. This then 

results in the constitute activation of downstream pathways that drive cell growth 

and survival. In NSCLC, the most common substitutions are KRASG12C, KRASG12V 

(found most often in smokers) and KRASG12D all of which have been shown to have 

varying effects on the activation levels of different downstream growth and survival 
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pathways (39). Substitutions in codon 61 that change the polar uncharged amino 

acid glutamine to charged residues such as histidine are thought to impair the 

coordination and stabilization of GTP hydrolysis which catalyzes the return of 

KRAS to an inactive GDP-bound state (40). 

 

Therapeutic interventions for NSCLC 

 

The treatment of NSCLC depends on the stage of the disease upon 

diagnosis. For early-stage NSCLC (Ia to resectable IIIb) the primary treatment is 

localized radiation therapy to reduce tumor mass followed by with surgery to resect 

the tumor. As tumor stage progresses past Ia, chemotherapeutic agents such as 

cisplatin, docetaxel, etoposide, and vinorelbine are used as neoadjuvant therapies 

to increase the chances of a complete resection. For tumors that progress to non-

resectable stage IIIb/IV, next-generation sequencing (NGS) is often applied to 

determine the mutational profile of the tumor and direct the application of targeted 

therapies. In the absence of actionable mutations, chemotherapy is often used as 

palliative therapy (41). 

 

 In LUAD, targeted therapies are available for tumors which harbor 

mutations in EGFR, ALK, or ROS1. First generation small molecule inhibitors of 

EGFR such as erlotinib and gefitinib (also known as tyrosine kinase inhibitors, or 

TKIs) bind to the intracellular tyrosine kinase domain of EGFR and prevent it from 

phosphorylating substrate proteins. Additionally, monoclonal antibodies like 

cetuximab have been used to bind to and inhibit EGFR signaling in colorectal and 

head and neck cancers (42). Although first generation TKIs which bind to and 

disrupt oncogenic EGFR signaling have demonstrated great clinical success, 

acquired resistance to these therapies through mutations in the domains to which 

the drugs bind has presented significant obstacles in their optimal application 

(43)(44). Mutations such the T790M substitution, which arises from mutations in 

exon 20 of the EGFR gene, alters the structure of the intracellular tyrosine kinase 

domain of the protein and is able to overcome competitive small molecule inhibition 
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by drastically increasing its affinity for ATP binding (45). This has prompted the 

development of second and third line EGFR inhibitors such as the third generation 

EGFR TKI Osimertinib, which has a higher affinity specifically towards the T790M 

EGFR mutant (45). 

 

While there exist targeted therapies against major LUAD oncogenes, direct 

inhibition of the KRAS protein with small molecules has proven exceptionally 

difficult, despite decades of research (46). Very recently, a small molecule inhibitor 

of the KRAS G12C variant, AMG510, has shown promising results in early phase 

clinical trials. Regardless, there remain no FDA-approved targeted therapies for 

patients harboring KRAS mutations and thus therapies are limited to cytotoxic 

chemotherapy. As a result of this unmet need, efforts have been made to find new 

targets downstream of KRAS signaling that may serve as more suitable drug 

targets to varying levels of success. Additionally, the use of ICIs in KRAS active 

cancer offers a new targeted therapeutic avenue for patients with this type of 

mutation.  

1.3 IMMUNE CHECKPOINT INHIBTORS AND PD-L1 

 

Monoclonal antibodies and the advent of Immune checkpoint inhibitors 

 

Within the last decade, the emergence of a class of drugs known as immune 

checkpoint inhibitors (ICIs) has had an extraordinary impact on the field of cancer 

therapy. In 2011, the FDA approved the use of the first ICI, ipilimumab, for the 

treatment of metastatic melanoma (47)(48). It did not take long for the potential 

efficacy of this newly emerging branch of immunotherapy to be fully recognized 

(49)(50). Within several years of this drugs approval, the development of 

monoclonal antibodies was rapidly accelerated, amounting to the FDA approval of 

the first drug ever given a ‘breakthrough therapy’ designation, obinutuzumab. The 

impact of ICIs, especially for patients that until recently had no other treatment 
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options, was so immense that the new ‘breakthrough therapy’ designation was 

created to get ICIs to the bedsides of patients as quickly as possible.  

 

While there are many proteins for which monoclonal antibody therapies 

have been developed, by far the most effective are antibodies which target the 

immune checkpoint proteins cytotoxic T-lymphocyte-associated protein 4 (CTLA-

4), programmed death protein 1 (PD-1), and its ligand programmed death ligand 1 

(PD-L1). These proteins serve a highly important biological function; to modulate 

the activity and activation of T cells.  

 

The revolutionary discovery of the CTLA-4 immune checkpoint pathway 

occurred in the early 90s in the lab of James P. Allison when he observed that 

CTLA-4 had the ability to reduce the action of activated T-cells. He soon developed 

an antibody against CTLA-4 that could block its function by pharmacologically 

inhibiting the endogenous inhibitor of immune cell activation. Pre-clinical animal 

studies quickly confirmed his hypothesis with impressive results, though it wasn’t 

until roughly a decade later in 2007 that phase 1 clinical trials of ipilimumab began 

for the treatment of various kinds of treatment resistant cancer (51). 

 

Around the same time as the discovery of CTLA-4, Tasuku Honjo made the 

discovery of PD-1 and came to understand that it possessed immunomodulatory 

capabilities like that of CTLA-4. PD-1 is another receptor expressed on the surface 

of activated T-cells, and upon ligation to PD-L1, is internalized and through a 

separate mechanism to CTLA-4 deactivates the T-cell. In 2014, the first 

monoclonal antibody against PD-1, pembrolizumab, was approved by the FDA for 

the treatment of metastatic melanoma. Soon after in 2015, it was approved for use 

in patients with treatment resistant metastatic NSCLC, and whose tumors 

expressed PD-L1. 

 

While activation of both the CTLA-4 and PD-1/PD-L1 pathways results in 

the deactivation of cytotoxic T-cells, there are some key differences in the 
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mechanism by which they do so (51). PD-L1 is normally expressed on the surface 

macrophages, T-cells, B-cells, and healthy epithelial cells in response to an 

immune reaction and primarily functions as a mechanism for the immune system 

to differentiate “self” from “non-self”. Upon ligation of PD-L1 to its receptor PD-1, 

expressed on the surface of activated T-cells, the PD-1 receptor is internalized and 

initiates a signaling cascade that results in the deactivation of the T-cell. What 

makes this pathway so pivotally important in the context of cancer is the ability of 

a tumor to aberrantly express PD-L1 on the cell surface, thus co-opting the 

immunoregulatory function of PD-1 ligation and inappropriately deactivating 

cytotoxic T-cells, often times to such an extent it leads to T-cell exhaustion. 

 

  CTLA-4 is a receptor expressed on the surface of activated T-cells that 

competes with the CD28 receptor to bind to its ligand B7 which is expressed on 

the surface of antigen presenting cells (APCs) (52). The relative expression levels 

of CTLA-4 and CD28 are based on the activation level of the T-cell receptor (TCR) 

via major histocompatibility complex (MHC) binding. A weak TCR stimulus causes 

CD28:B7 binding to overcome CTLA-4:B7 binding and results in activation of 

signaling cascades that promote T-cell proliferation, survival, and cytokine 

production (53). When a strong TCR stimulus occurs, the inverse happens, and 

there is a net negative effect on T-cell activation. The primary function of the CTLA-

4 pathway is to reduce T-cell activity in the interest of protecting healthy cells from 

an overactive immune response, thus functioning as an “immune checkpoint” that 

restrains immune cell activation. Importantly, the CTLA-4 pathway impacts the 

earlier phases of immune activation by influencing immune cell proliferative 

potential (54).  

 

In contrast to the CTLA-4 pathway which produces its effects in the early 

phases (i.e. priming phase) of immune activation, the PD-1/PD-L1 interaction 

occurs in the later stages (i.e. effector phase) of T-cell activation by suppressing 

activated, cytotoxic T-cells. Furthermore, CTLA-4 is primarily expressed on 

regulatory T-cells, whereas PD-1 is expressed on other types of immune cells such 
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as B-cells or myeloid cells. These two immune checkpoint pathways also differ in 

the expression of their ligands, B7 and PD-L1. B7 is expressed by APCs which are 

typically found within lymphatic tissues, as opposed to PD-L1 which can be 

expressed upon a wide variety of peripheral and immune cells, and more 

importantly, on many different types of tumors. 

 

Monoclonal antibodies against PD-1 and PD-L1 have indeed demonstrated 

clinical success across a variety of cancer types, specifically in advanced 

melanoma and NSCLC. In 2015, results were published from the KEYNOTE-001 

trial, a multicohort phase 1 study of pembrolizumab (brand name Keytruda) in 

patients with metastatic carcinoma, melanoma, or NSCLC carcinoma (55). 

Pembrolizumab demonstrated tolerable antitumor activity in NSCLC patients 

regardless of prior treatment status, and in 2017, the investigators reported a 

median overall survival (OS) time of 22.1 months (56). Very importantly, these 

patients all had a PD-L1 tumor proportion score (TPS) of at least 50% (determined 

by immunohistochemistry (IHC) staining), suggesting that tumors expressing the 

highest levels of PD-L1 may respond better to PD-1/PD-L1 inhibition than tumors 

with lower PD-L1 expression (56). In 2019, 5-year results were reported that 

showed OS rates of 23.2% for treatment-naïve patients and 15.5% for previously 

treated patients (57). The significance of these improvements to long term survival 

cannot be overstated when compared to the historic 5-year OS rate of 5.5% (56). 

Additional KEYNOTE trials have shown repeatable clinical value of PD-1/PD-L1 

inhibition in NSCLC and the relevance of a PD-L1 TPS ≥ 50% (58)(59)(60). 

Importantly, KEYNOTE trials 42 and 189, demonstrated the value of these targeted 

therapies in patient tumors not harboring mutations in EGFR or ALK (61)(62). 

Given the mutually exclusive nature of EGFR, KRAS, and ALK mutations, these 

findings support the notion that patients with KRAS-mutant tumors (for whom there 

exist no targeted therapies) are poised to greatly benefit from PD-1/PD-L1 

blockade (63)(64). 
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Although the results of these clinical trials provide the foundation for a 

promising future for drugs which inhibit PD-1 or PD-L1, there remain significant 

limitations to these therapies that curtail their optimal application. One such 

limitation is the occurrence of significant adverse reactions that can negatively 

impact nearly every major organ system (65). These treatments also face a major 

challenge in feasibility; the price of therapy often exceeds $100,000 over the 

course of treatment, thus greatly limiting their use only to patients able to afford it. 

Further compounding these issues is the low rate of response to PD-1/PD-L1 

blockade (20-30% overall response rate (ORR) in solid tumors) (66). The objective 

response rate to PD-1/PD-L1 blockade is also known to vary by tumor type, with 

melanoma typically demonstrating the most consistent response (30-45%), trailed 

by NSCLC (15-20%) (67)(68). As demonstrated by the KEYNOTE trials, NSCLC 

patients with a high PD-L1 TPS (≥50%) responded better to therapy than those 

with a TPS below 50%. However, a high PD-L1 TPS does not necessitate 

response to therapy; clinical studies have shown that even in NSCLC patients with 

high PD-L1 expression, as many as half still did not respond to the PD-1 inhibitor 

pembrolizumab (69). Conversely, the lack of PD-L1 expression does not mean a 

patient will not response to therapy. In certain cases, the response rates between 

those with and without tumoral PD-L1 expression remain relatively similar (70). 

The lack of understanding as to why some patients without tumoral PD-L1 

expression still respond to PD-1/PD-L1 inhibition warrants further investigation into 

the mechanisms malignant cells apply to aberrantly express PD-L1 and evade 

immune system detection.  

 

It is apparent that the expression of PD-L1 on a patient tumor is of clinical 

significance, though it has shown to be insufficient as a sole indicator of response 

to PD-L1 blockade. This suggests that a more sophisticated metric than the mere 

quantity of PD-L1 expressing cells is a necessary prerequisite to the complete 

utilization of PD-L1 expression as a prognostic indicator. As such, many attempts 

have been made to identify biomarkers of response to PD-1/PD-L1 blockade to 

replace or supplement tumoral PD-L1 expression. For example, tumor mutational 
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burden (TMB) is a measure of the quantity of somatic non-synonymous coding 

mutations in a tumor. Tumors with a high TMB (20 or more mutations per 

megabase) express a greater number of mutated proteins resulting in heightened 

immunogenicity through the increased likelihood of neoantigens being recognized 

by the immune system. Another proposed biomarker, microsatellite instability 

(MSI), reflects changes in the number of nucleotides in DNA elements composed 

of repeated motifs (71). MSI quantifies the number of times DNA mismatch repair 

systems fail to correct errors and is indicative of the levels of genetic instability 

within a tumor. Though it is true that this instability is often detrimental to an 

individual cells growth and survival, when this instability is extrapolated to a larger 

population of cells rapidly replicating, this instability eventually results in 

advantageous mutations that allow for continued or expedited tumor growth.  Both 

TMB and MSI have been able to provide prognostic value in differing cancer 

subtypes, but they are inferior in their accuracy compared with PD-L1 TPS. The 

most effective prognostic indicator response to PD-1/PD-L1 blockade may be a 

combination of these independent biomarkers (72).  

 

Given the importance of PD-L1 expression (especially when a tumors TPS 

is ≥50%) in the application of ICIs in NSCLC, a comprehensive understanding of 

the mechanisms governing PD-L1 expression is vital. PD-L1 expression can vary 

greatly not only between individual NSCLC tumors, but also within different regions 

of the tumor itself. This heterogeneity has been hypothesized to be a major factor 

that cripples the prognostic clinical value of PD-L1 TPS. The factors regulating PD-

L1 expression are not yet fully understood, however mechanisms which have been 

investigated thus far can be grouped by transcriptional and post-transcriptional 

control. 

 

Intrinsic factors which regulate genetic and epigenetic alterations have been 

demonstrated to impact the expression of PD-L1. Methylation of the CD274 

promoter has been shown to reduce PD-L1 transcriptional activity in NSCLC, and 

the expression of histone deacetylase has been correlated with PD-L1 expression 
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as well (73). Further transcriptional regulation of PD-L1 expression is augmented 

by the activity of signal transduction pathways such as RAS/Raf/ERK, EGFR, 

PI3K/Akt/mTOR, and tumor suppressing pathways involving TP53 or STK11 all of 

which may influence PD-L1 expression to some extent (74)(75)(76). Extrinsic 

factors such as cytokines, specifically molecules such as IFN- γ and IL-6, are 

known to induce the expression of PD-L1 in many different types of cancers and 

immune cells alike (77). Growth factors that stimulate the above-mentioned 

pathways can also induce PD-L1 transcriptional activity (78). DNA damaging 

agents and angiogenesis/hypoxia may also influence the transcriptional activation 

of PD-L1 (79). Once transcribed into mRNA, a variety of different miRNAs can 

target the CD274 transcript to fine tune its translation into protein (80)(81). The 

stability of CD274 mRNA can also be impacted by alterations to the 3’-UTR of the 

transcript, and oncogenic Ras signaling has also been shown to influence CD274 

mRNA stability (82)(83). Additionally, post translational modifications to the PD-L1 

protein such as, glycosylation, ubiquitination, and serine/threonine 

phosphorylation delicately articulate PD-L1 expression and metabolism 

(84)(85)(86). 

1.4 PHOSPHATASES, KINASES, AND SHP-2 

 

Protein Phosphorylation 

Protein phosphorylation is a major modality by which protein function and 

activity is controlled. Phosphorylation is a reversible post-translational modification 

(PTM) of eukaryotic proteins carried out by kinase enzymes. Furthermore, protein 

phosphorylation is an essential component of various signal transduction 

pathways that relate to the development and progression of cancer. The human 

genome contains at least 518 protein kinases which may phosphorylate as many 

as 70% of all known human proteins (87). The possibility that proteins may become 

post-translationally phosphorylated was discovered in the early 1900s; however, it 

wasn’t until half a century later that protein phosphorylation was described as an 
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enzymatic process. This discovery stirred further interest into researching the 

biological relevance of kinases and their importance to cellular signaling pathways. 

In 1992, Edmon Fischer and Edwin Krebs were awarded the Nobel prize for their 

discoveries concerning reversible protein phosphorylation (88). Since then, many 

research groups have devoted their efforts to begin completely characterizing the 

human kinome (89). 

 

In eukaryotes, protein phosphorylation is carried out by protein kinases which 

attach a negatively charged hydrophilic phosphate (PO4
-) group from adenosine 

triphosphate (ATP) to either serine, threonine, or tyrosine residues. The addition 

of a phosphate group to a protein likely changes its structure, function, localization, 

or ability to interact with other proteins. The phosphorylation of a protein can result 

in a vast array of changes to its function, and the extent of phosphorylation to any 

specific protein has a unique impact on the cellular processes in which it is 

involved. For example, the tumor suppressor protein p53 can be phosphorylated 

on serine residues following DNA damage which influences its ability to bind to 

DNA and function as a transcription factor. In the case of PD-L1, serine/threonine 

phosphorylation at T180 or S184 increases its binding affinity to E3 ligases and 

results in its degradation (16).  

 

Kinases 

 

While there are only three (major) amino acids that become phosphorylated, 

the kinases responsible for such modifications are specific to either Ser/Thr or Tyr, 

and also highly specific for their unique protein substrates. The phosphorylation of 

serine and threonine residues is typically carried out by dual-specificity kinases 

that have the ability to add a phosphate group to either amino acid (90). 

Phosphorylation of tyrosine residues is carried out by tyrosine kinases, and a very 

small family of non-canonical kinases can phosphorylate both Ser/Thr or Tyr 

residues. Of all known phosphorylation events in the human kinome, a vast 

majority (95%) are the phosphorylation of serine residues, followed by 3-4% are 



 

25 

 

that of threonine, and less than 1% tyrosine (90). Importantly, protein 

phosphorylation plays a considerable role in essential signal transduction 

pathways that regulate processes such as growth, survival, and cell division. Thus, 

in cancer, kinase activity is often deregulated resulting in the constitutive activation 

of pathways that regulate cell growth and survival. Given the wide array of known 

kinases and the multifaceted functions they carry out, the dysregulation of kinase 

activity within a tumor does not necessarily mean that all kinases are oncogenes, 

and that it must be an increase in kinase activity that results in a tumor promoting 

phenotype (91).  

 

Despite tyrosine phosphorylation events being rare relative to that of serine 

and threonine, their relevance to pathways often deregulated in cancer is 

substantial. Receptor tyrosine kinases (RTKs) are transmembrane bound 

enzymes that selectively phosphorylate tyrosine residues upon ligation to 

extracellular signal molecules such as growth factors or cytokines. Upon ligation, 

monomeric RTKs will dimerize and trans-autophosphorylate their cytoplasmic 

kinase domains resulting in the recruitment of protein complexes which initiate a 

wide array of signal transduction pathways (34)(35). The largest number of known 

oncogenes belongs to the family of tyrosine kinases (9). As such, therapeutic 

strategies which impede deregulated tyrosine phosphorylation are highly pertinent 

to the treatment of cancer. Tyrosine kinase inhibitors (TKIs) have become some of 

the most effective targeted therapies for many different cancer types, but 

especially NSCLC. There have been multiple generations of TKIs that inhibit EGFR 

activity, greatly stunting the progression of cancers which are dependent on EGFR 

for growth (92). The clinical success of TKIs provides a logical foundation for the 

development of drugs which target tyrosine phosphatases that function as negative 

regulators of these same pathways.  

 

Phosphatases 
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Protein phosphatases function not only to help maintain and negatively 

regulate the careful balance of protein phosphorylation within cell signaling 

cascades, but to also participate in articulating the precise and structured 

sequence of such phosphorylation events (93). It is important to note that 

compared to the >500 known kinases (and 90 known tyrosine kinases) encoded 

within the human genome there are only roughly 200 phosphatases, 38 of which 

are tyrosine specific phosphatases (PTPs) (94). In the early 21st century, scientific 

interest was heavily focused upon protein kinases. However, in the past decade, 

the importance of phosphatases as more than just non-specific housekeeping 

enzymes has gained appreciation.  

 

Given the well characterized importance of tyrosine kinases in oncogenic cell 

signaling, it is logical that negative regulators of the same processes should be of 

equal importance. Although, generally, the phosphorylation of tyrosine resides 

results in increased protein activity, this is not always the case, and so maintaining 

the balance of Tyr phosphorylation can have varying effects on protein activity. 

Understanding the general principle that phosphorylation of a protein increases its 

activity, this would lead one to believe that PTPs should function as tumor 

suppressors in an inverse manner to tyrosine kinases. However, though many 

PTPs do in fact negatively regulate cell growth, migration, and invasion, a number 

of PTPs have demonstrated tumor promoting properties which often differ based 

upon the unique PTP as well as the type of cancer in which it is expressed (95)(96). 

For example, Receptor-type tyrosine-protein phosphatase gamma (PTPRG) has 

been shown to possess tumor suppressive properties in ovarian and breast cancer 

(96). Several phosphatases of regenerating liver (PRL) have been reported to have 

tumor promoting properties, and their overexpression, as is such in the case of 

PRL3 which is overexpressed in metastatic colorectal cancer, but not in normal or 

early-stage cancer tissue (97). It is also thought to contribute to the development 

of lung and liver metastasis (98). Given the wide range of PTP activity on tumor 

initiation and progression, further interrogation into the role of PTPs in cancer may 

result in substantial clinical benefit. 
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Despite recent revelations that PTPs may serve as suitable drug targets in 

cancer, there have been challenges in developing small molecule catalytic 

inhibitors against PTPs as a result of their promiscuous nature with regard to 

protein substrates (99). However, the development of allosteric inhibitors that 

possess higher specificity for phosphatases relevant to oncogenesis and tumor 

progression are beginning to show clinical promise, thus warranting further 

investigation into the biology that underpins PTP function with tumor cells (100). 

One such phosphatase that has been identified as a critical regulator of oncogenic 

signaling pathways (such as the KRAS pathway) is the tyrosine phosphatase SHP-

2.  

 

SHP-2 

 

The non-receptor tyrosine phosphatase, Src homology region 2 domain-

containing, phosphatase-2 (SHP-2) encoded by the PTPN11 gene, is ubiquitously 

expressed in a variety of mammalian cells and has gained attention as a 

therapeutic target in recent years. SHP-2 is expressed in both NSCLC patient 

tumors and cell lines. SHP-2 has three major structural domains; a catalytic protein 

tyrosine phosphatase (PTP) domain on the C-terminal region and two neighboring 

Src homology region 2 (SH2) domains on the N-terminal region (101). The SH2 

domains function to bind to phosphorylated tyrosine residues on protein 

substrates, but also possess unique functions that modulate the various activities 

of SHP-2 itself.  In its basal inactive state, the N-SH2 domain binds to and inhibits 

PTP activity or binds to phosphoprotein substrates, whereas the C-SH2 domain 

contributes to binding energy and substrate specificity (102).  The activity of SHP-

2 is controlled through autoinhibitory interactions between the catalytic PTP 

domain and the N-SH2 domain. The regulation of this inhibitory state is governed 

through conformational changes induced from binding with protein substrates, 

mediated through the phosphorylation of two tyrosine residues (Y542 and Y580) 
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located on its c-terminal domain (CTD) which influence its affinity to protein 

substrates.   
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Figure 1.2. Structural conformations of SHP-2. When in an inactive 
state, the N-terminal SH2 domain will fold back on the catalytic 
phosphatase domain, preventing phosphatase activity (top). Once activated 
(through Tyr phosphorylation on its C-terminal domain at Y542 or Y580, or 
by binding to protein substrates) the N-SH2 domain releases from the PTP 
domain, allowing phosphatase activity (bottom). Made with Biorender.com  
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Figure 1.3 The activities of SHP-2. Expanded diagram of SHP-2’s 
involvement within the KRAS signaling cascade, as well as the JAK/STAT and 
PI3K/Akt pathways. SHP-2 has been shown to both positively and negatively 
regulate STAT signaling through its catalytic phosphatase activities. 
Additionally, SHP-2 has been shown to be involved in anti-apoptotic signaling 
by suppressing caspase-3 mediated apoptosis (104). 
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SHP-2 has been implicated in numerous pathways relevant to cancer, and 

the precise nature in which it impacts these pathways is both highly complex and 

context specific. It has been shown to be a negative regulator of the Jak/STAT 

pathway by dephosphorylating Tyr701 of STAT1 in response to interferon 

stimulation. Conversely, SHP-2 can also positively regulate Jak/STAT signaling by 

dephosphorylating Tyr1007 of Jak2, reducing its ability to form a degradation 

inducing complex with Socs1, thus preventing Jak2 turnover (103). Additionally, 

SHP-2 catalytic activity is required for proper regulation of the PI3K/Akt survival 

pathway (104). However, it is not only the catalytic PTP activity of SHP-2 which is 

responsible for its signal transducing capabilities. In immune cells, ligation of the 

PD-1 receptor results in SHP-2 mediated receptor dimerization and internalization 

which occurs irrespective of SHP-2s PTP activity (105). Indeed, SHP-2 serves a 

variety of functions in oncogenic signaling pathways, though not to be 

overshadowed is its critical role in mediating KRAS signaling events. Several 

groups have demonstrated the importance of SHP-2 within the RAS/Raf/ERK 

signaling cascade, even going so far as to insinuate SHP-2 as a critical regulator 

of KRAS-signaling in NSCLC (106). Furthermore, it has been shown that KRAS-

mutant NSCLC depends on SHP-2 for carcinogenesis, though ablation of SHP-2 

activity or expression was only sufficient to delay tumor progression, not reverse it 

(107).  

 

Despite the known importance of SHP-2 in this oncogenic signaling pathway, 

whether SHP-2 is a tumor suppressing or promoting protein remains unclear and 

may depend on the context in which it is expressed. SHP-2 has displayed tumor 

suppressing activities in hepatocellular carcinoma and has been shown to 

suppress oncogenesis by dephosphorylating Ras in glioblastoma (108). Outside 

the realm of cancer, mutations that impact the catalytic activity of SHP-2 are linked 

to diseases such as Noonan syndrome (NS) and Noonan syndrome with multiple 

lentigines (NSML). These diseases can cause a wide variety of developmental 

defects that vary from one individual to another and can change over the course 

of an affected individual’s lifespan (109). This demonstrates that the impact of 
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SHP-2 expression bears great relevance to the molecular context in which it is 

expressed. As it stands, further understanding of the impact of SHP-2 expression 

within the context of a lung tumor and how that relates to the regulation of 

oncogenic lies the potential for the development of new therapies that diminish 

SHP-2 activity or expression. However, until we are able to better understand the 

complex nature of phosphatases (and SHP-2 specifically) involvement in 

oncogenic signaling pathways, we remain limited in our ability to create efficacious 

therapies that synergize with currently available treatments, such as TKIs and 

immunotherapies. 

1.5 PROJECT OVERVIEW 

The aim of the work described herein was to combine the application of in 

vitro biochemical experimentation with analysis of real-world, publicly available 

clinicogenomic information to uncover a mechanism by which SHP-2 controls the 

regulation of PD-L1 in KRAS active non-small cell lung cancer (NSCLC). It has 

been a long-standing goal of this laboratory to harness the power of 

pharmacogenomic data to improve the personalization of therapy for NSCLC 

patients. While the scope of the presented work resides primarily within the realm 

of foundational biology, its reach expands into the domain of clinical practice by 

explicating the underlying mechanisms that influence the efficacy and application 

of existing and emerging cancer therapies.  

 

As the use of immune checkpoint inhibitors (ICIs) rapidly transitioned from 

bench to bedside within the past decade, the accumulation of clinical information 

has begun to reveal the flaws preventing optimal utilization of these therapies. To 

date, the ability to predict which patients will elicit a response to immune checkpoint 

inhibition remains strikingly poor and has been estimated to lead to responses in 

less than 13% of patients with cancer in the US (110). Importantly, the benefit of 

ICI treatment in responding NSCLC patients exceeds that of other cancers, further 

demanding improved methods to predict responsive patients in this type of cancer 

(110). Among the methods that have been approved to predict which patients will 
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respond to immune checkpoint inhibition based upon the stage of the disease, the 

most impactful has been tumoral expression of PD-L1, specifically tumors with 

>50% total PD-L1 expression. It is therefore important to gain a complete 

understanding of the factors which govern PD-L1 expression in NSCLC. The 

mechanisms governing the expression of PD-L1 in tumor cells are diverse and 

continue to grow in number adding complexity to the combined impact of their 

actions. Resulting from this complexity is the discovery of drug targets which may 

synergize with PD-L1 inhibition. These combinations may have considerable 

clinical value, especially in patients harboring activating KRAS mutations who have 

few targeted therapeutic options.  

 

I hypothesized that the tyrosine phosphatase, SHP-2, is capable of regulating 

PD-L1 expression, specifically in KRAS-active NSCLC. To address this hypothesis, 

I analyzed publicly available protein and gene expression data collected from 

NSCLC patients to investigate correlations in both the expression and activity 

of SHP-2 and the expression of PD-L1. I then acquired data sets from two 

additional studies to further interrogate the relationship between SHP-2 and 

PD-L1 expression and to determine whether SHP-2 expression correlates 

with response to immune checkpoint inhibition (Chapter 2). Second, I 

conducted in vitro biochemical analyses to examine the expression and 

activity of SHP-2 in KRAS active NSCLC cell lines and measure the impact on 

PD-L1 expression (Chapter 3). Finally, I utilized biochemical and proteomic 

techniques to uncover novel protein-protein interactions using SHP-2 as bait 

to define the partners with whom SHP-2 interacts as a means to discover the 

mechanism(s) by which SHP-2 governs PD-L1 expression in KRAS active 

NSCLC. 

 



 

 

CHAPTER 2.  

2.1 Overview 

The identification of novel therapies, new strategies for combination of 

therapies, and repurposing of drugs approved for other indications are all important 

for continued progress in the fight against lung cancers (22). Perhaps the most 

significant advance in therapy for many cancer types was the entry of immune 

checkpoint inhibitors (ICI) as a standard of care therapy for melanomas in 2014 

(111). For non-small cell lung cancers (NSCLC), specifically those without 

targetable mutations in epidermal growth factor receptor (EGFR) or anaplastic 

lymphoma kinase (ALK), ICIs that target programmed cell death 1 (PD-1) or 

programmed death ligand 1 (PD-L1), have revolutionized cancer therapy even 

though response rates are relatively low (112).  

 

Both pembrolizumab and atezolizumab, PD-1 and PD-L1 inhibitors 

respectively, are approved ICI for frontline lung adenocarcinoma therapy for 

patients with high levels of PD-L1 expression on tumor cells (113). Durvalumab, 

an anti-PD-1 agent, is approved as maintenance therapy (114). Decisions to 

implement ICI therapy are often dependent on the PD-L1 tumor proportion score 

(TPS) using evidence from the KEYNOTE-024 and -042 trials (115) (116). 

Importantly, PD-L1 expression may not be the optimal biomarker of response as 

suggested in pivotal clinical studies (e.g. KEYNOTE and OAK trials), but it is clear 

that patients with high levels of tumoral PD-L1 are likely to experience a robust 

response to checkpoint inhibition (117). While many research groups have 

searched for improved biomarkers of response for checkpoint inhibitors, others 

have focused on identification of therapies that might be combined with ICI to 

improve patient outcomes (118). 

 

I found that inhibition of the tyrosine phosphatase, SHP-2, increased gene 

and cell surface protein expression of PD-L1 in KRAS-active NSCLC cell lines. 
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PD-L1 is normally expressed on the surface of antigen presenting cells while PD-

1 is expressed on T cells. It is the abnormal expression of PD-L1 on tumor cells, 

and the subsequent engagement with PD-1 on T cells, that causes tumors to be 

masked from an immune response (119). Inhibiting this interaction with antibodies 

against either PD-1 or PD-L1 can release a potent immune response toward the 

tumor. I hypothesized that because SHP-2 provides some level of control of 

expression of PD-L1 on NSCLC cells that inhibition of SHP-2 would increase PD-

L1 expression and synergize with ICI therapy. Supportive of my hypothesis is 

recently published data by Chen and colleagues who showed in a NSCLC model 

system that combined SHP-2 and PD-L1 inhibition, with accompanying radiation, 

can overcome resistance to PD-1 inhibitors (120). Other groups have suggested 

that SHP-2 activity maybe more important in T cells, that infiltrate the tumor, to 

carry out signaling events downstream of PD1 stimulation (121). Uncovering the 

precise mechanism of SHP-2 action on PD-L1 expression consumes many 

research groups, the model systems are expensive, and experimental time is long 

to get a drug to the clinic. 

 

With these obstacles in mind, I chose to go to real world data to determine 

whether SHP-2 activity is related to PD-L1 expression and thereby focus my 

research efforts. I took advantage of three publicly available data sets to assess 

whether wet lab experimentation to determine if exploring the combination of ICI 

and SHP-2 inhibition would likely have clinical impact. First, The Cancer Genome 

Atlas (TCGA), now known as the NCI Genetic Data Portal (NCI-GDC), holds well-

annotated expression and functional proteomic data (The Cancer Proteome Atlas 

(TCPA)) for patient tumors. However, most samples were collected prior to FDA 

approvals for ICI therapy, so no response data for ICI treatment is available 

(https://portal.gdc.cancer.gov/projects/TCGA-LUAD). Unfortunately, larger, 

industry-sponsored trials evaluating the clinical space for PD-1 and PD-L1 

inhibitors are still open (e.g. KEYNOTE and OAK), and full genomic and patient 

response datasets are not yet published. Therefore, in order to link expression of 

SHP-2 and PD-L1 with response to ICI, I uncovered two small studies: one in 

https://portal.gdc.cancer.gov/projects/TCGA-LUAD
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NSCLC and one in melanoma patients (122) (123). Using real world data from the 

three studies identified, the hypothesis that inhibition of SHP-2 activity is likely to 

improve response to PD-L1/PD-1 inhibitors justifies wet-lab characterization of the 

mechanism(s) of activity.   

2.2 Methods 

TCPA and GDC analysis of PTPN11 and CD274 expression 
 

TCPA (https://tcpaportal.org/tcpa/index.html), a functional proteomics 

database which contains reverse phase protein array (RPPA) data from a wide 

variety of clinical tumor samples was used to identify a lung adenocarcinoma 

(TCGA-LUAD-L4) dataset containing RPPA data from 362 individual patient 

samples. These data contain quantitative protein expression levels of 237 unique 

proteins for each subject. From the TCPA data, SHP-2_pY542, the 

phosphorylated and active form of SHP-2 and PD-L1 were compared from 362 

patient tumors for relative protein expression levels using a two-tailed, non-

parametric Spearman correlation analysis with 95% confidence intervals. 

Corresponding RNA-sequencing data was acquired from TCGA, now NCI-GDC 

(https://portal.gdc.cancer.gov), for the genes PTPN11 (SHP-2) and CD274 (PD-

L1). RNA sequencing data that matched the previously-queried RPPA data for 

the 362 patient using identifiers linking the TCPA database and the 

corresponding RNA-sequencing data in GDC. I utilized fragments per kilobase-

upper quartile (FPKM-UQ) values. The FKPM-UQ values for the genes PTPN11 

and CD274 for each tumor were analyzed by Spearman correlation analysis as 

previously described.  

 

I conducted the same correlation analysis between PTPN11 and CD274 

on the FPKM-UQ values for the full TCGA-LUAD dataset of 585 tumor samples. 

The tumors were sub-grouped using information on KRAS variants (KRAS-

mutants n=99, KRAS-WT n=486) known to be active and performed the same 

analysis of PTPN11 and CD274 mRNA levels.  
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I then identified another data warehouse (cBioPortal: cbioportal.org) that 

that contains gene expression data from clinical cancer studies. Specifically, we 

located a study sought to characterize the genomic landscape of lung 

adenocarcinomas in East Asians (197). This study contains RNAseq data for 169 

patients, from which I conducted a two-tailed, non-parametric Spearman 

correlation analysis with 95% confidence intervals between PTPN11 and CD274 

mRNA levels (normalization method: z-score). 

 

Last, I selected 10 proteins which I hypothesized to be involved in the 

regulation of PD-L1 expression from the mass spectrometry analysis of proteins 

that co-immunoprecipitated with SHP-2 in Chapter 4. For each of the 10 proteins, 

FPKM-UQ values from the full TCGA-LUAD dataset (n=585) were subjected to 

the same correlation analysis as previous described between each of the 10 

genes and CD274 and PTPN11. 

 

PTPN11 and CD274 expression compared with resistance to ICI in 
melanoma tumors 
 

Single-cell RNA-sequencing (scRNA-seq) data from 31 melanoma tumors 

that were 1) not treated with ICIs or 2) became resistant to ICIs following treatment 

was acquired from the Gene Expression Omnibus (GEO). The R-studio 

Bioconductor GEOquery package was used to capture raw scRNA-seq transcript 

per mission values, cell counts, and annotations from this study (GSE115978). 

TPM values were calculated and annotated by the authors as described in Jerby-

Amon L., et al (122) and then imported into Graphpad Prism for statistical 

analyses.  

 

 I established that scRNA-seq reads were available for several cell types, 

including immune cell types and malignant cells in tumors that were not treated 

with ICI (n=15). From these data, only single cells that were determined to be 

malignant melanoma cells by flow cytometry were selected for study. Of the 15 

untreated tumors, the analysis was arbitrarily narrowed to include patient tumors 
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that had scRNA-seq data for at least 30 unique malignant cells (n=6). To identify 

proportion of single cells in an individual tumor that expressed PTPN11, the 

percentage of cells with non-zero TPM scores for PTPN11 for each tumor was 

calculated. The mean TPM and standard deviation values for PTPN11 and CD274 

for all single malignant cells in these six tumors were then calculated. 

 

 Similarly, tumors (n=15) that had acquired resistance to ICI therapy were 

processed to include only tumors (n=6) with at least 30 unique malignant cells. I 

applied the methods used above to calculate the proportion of single cells 

expressing PTPN11 for each tumor, and the mean TPM values with standard 

deviation for PTPN11 and CD274 when the single cells of all six tumors were 

evaluated together. These values were then used to assess any correlations 

between PTPN11 and CD274 expression and resistance to ICI therapy. 

 

PTPN11 and CD274 expression compare with response to ICI in NSCLC 
tumors 
 

A study was identified for which expression data was evaluable that 

analyzed immune signatures predictive of response to anti-PD-1 inhibitors in 

NSCLC (123). The dataset contains RNA-sequencing and clinical response data 

for 21 NSCLC patients treated with single agent anti-PD-1 therapies. The R-studio 

Bioconductor GEOquery package was used to capture raw RNA-sequencing TPM 

values from this study (GSE136961). Patients who demonstrated progression of 

disease or stable disease that lasted less than 24 weeks were deemed by the 

authors to have no durable clinical benefit (DCB) to anti-PD-1 therapy. Patients 

showing partial or complete response by Response Evaluation Criteria in Solid 

Tumor (RECIST) v1.1 or stable disease for more than 24 weeks were defined as 

receiving DCB. 

 

Of the 21 NSCLC patients in this study, nine demonstrated a DCB to ICI 

therapy and twelve showed no DCB. I binned the data by DCB status and then 

averaged all TPM values for PTPN11 and CD274 for each patient tumor to 
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generate the mean TPM score and standard deviation for each group. An outlier 

analysis was conducted on the PTPN11 TPM data for both DCB and no-DCB 

groups. Outliers were determined by the 1.5 interquartile range (IQR) method 

which adds 1.5 times the IQR to the third quartile and excludes data points that fall 

above that value and subtracts 1.5 times the IQR from the first quartile and 

excludes data points that fall below that value. 

2.3 Results 

Phosphorylated SHP-2 correlates with the loss of PD-L1 expression in lung 

adenocarcinomas  

 

First, protein array data from TCPA LUAD-L4 dataset (n = 362) was 

analyzed to assess correlations between the active, phosphorylated form of 

SHP-2 and PD-L1. The analysis revealed that levels of SHP-2_pY542 show a 

significant negative correlation with PD-L1 expression (r = -0.157, p-value = 

0.0028) in these subjects, suggesting that inhibition of SHP-2 activity may 

increase PD-L1 protein expression (Figure 2.1A and Figure 2.2A). 

 

 Next, to better understand the relationship between expression of SHP-2 

(PTPN11) and PD-L1 (CD274) mRNA in these patient tumors, I analyzed 

corresponding RNA-sequencing data (n=362) from the NCI-GDC. In this 

database, the full TCGA LUAD dataset contained 585 tumor samples, but the 

TCPA data does not contain complete coverage of the samples. Interestingly, 

analysis of the matched data did not reveal a significant correlation (p-value = 

0.3488) between PTPN11 and CD274 mRNA expression levels (Figure 2.1B). 

Following this observation, I wanted to know if any relationship between PTPN11 

and CD274 expression was found using the entire TCGA-LUAD RNA-

sequencing dataset. I found a modest but significant positive correlation existed 

(r = 0.095, p-value = 0.0211) between PTPN11 and CD274 mRNA levels (Figure 

1C). Tumors from this dataset were then sub-grouped by KRAS variants known 
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to be either constitutively active or KRAS-wildtype, I uncovered no significant 

relationships between PTPN11 and CD274 mRNA levels regardless of KRAS 

status.  

Extending my observations from the aforementioned data that suggest a 

relationship between SHP-2 activity and PD-L1 expression, I identified another 

data warehouse (cBioPortal: cbioportal.org) that contains gene expression data 

from clinical cancer studies. The analysis revealed a positive (r = 0.267) and 

significant (p-value = 0.0005***) correlation between PTPN11 and CD274 mRNA, 

again suggesting that SHP-2 and PD-L1 protein are co-expressed in LUAD 

tumors (Figure 2.1D). Together, these TCPA and RNA seq data suggest that 

SHP-2 and PD-L1 protein are co-expressed in LUAD tumor tissue and that 

activation of SHP-2, not simply expression, may control levels of PD-L1. 

However, without knowing the expression levels of inactive SHP-2, we cannot 

state with certainty that SHP-2 activity is the primary role by which SHP-2 

regulates PD-L1 expression. 

 

PTPN11 mRNA expression weakly associates with reduced CD274 mRNA 

expression in melanoma tumors  

 

Having established a correlation between tumoral SHP-2 activity and PD-

L1 expression, but not corresponding gene expression levels in lung 

adenocarcinomas, I sought to understand whether PTPN11 and CD274 

expression levels associate with response of patient tumors treated with ICIs. A 

study was identified (Jerby-Amon L., et al. 2018) that analyzed scRNA-seq data 

from melanoma tumors that were either treatment naive, or that had become 

resistant to ICIs following treatment, and the authors of the study were interested 

in characteristics of the melanoma cells that lead to immune evasion (122). Using 

the expression data from this study, I sought to answer two main questions: 1) 

does PTPN11 mRNA expression correlate with CD274 mRNA levels and 2) does 

PTPN11 expression correlate with poor response to PD-1 inhibition? The workflow 

scheme for the analysis is found in Figure 2.2B.  
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To address the first question, the tumors were identified that were not 

treated with ICI (n=15). The analysis focused on only melanoma tumors (n=6) 

which had at least 30 malignant cell TPM reads resulting in a mean of 108 (s.d. 

91-487) single cells per tumor. The proportion of cells which had non-zero TPM 

values for PTPN11 was then calculated, revealing six untreated tumors (Mel71, 

Mel79, Mel103, Mel80, Mel81, Mel89) that demonstrated ≥50% of single malignant 

cells (mean= 69; range= 50-83%) that expressed PTPN11. Similar to the 

TCPA/NCI-GDC analysis, I observed that elevated expression of PTPN11 

associated with lower expression of CD274 in treatment naïve tumors. 

 

Finally, I wanted to understand the relationship of PTPN11 and CD274 

expression and response to ICI therapy. Patient tumors with acquired resistance 

to therapy (n=15) were used to determine whether the relative levels of PTPN11 

and CD274 were different from the treatment-naïve tumors. Again, these data were 

processed to include only tumors with at least 30 malignant cells (n=6) and resulted 

in a mean of 79 single cells (range 96-169) per tumor. The six ICI resistant tumors 

(Mel78, Mel88, Mel98, Mel102, Mel110, Mel94) showed ≥50% single malignant 

cells (mean=67; s.d.=57-82%) expressed PTPN11, with mean/standard deviation 

TPM values for PTPN11 (mean=1.29; s.d.=0.12) and CD274 (mean=0.09; 

s.d.=0.06). Here, similar expression patterns of PTPN11 and CD274 were 

observed compared with treatment-naive tumors, and again CD274 levels remain 

low when PTPN11 is expressed. Importantly, I did not observe any relationship 

between PTPN11 or CD274 expression and acquired resistance to ICI in this 

dataset. 

 

CD274 mRNA expression associated with response to ICI in NSCLC tumors 

 

Using the data from the next study (Hwang, et al. 2020), I asked whether 

expression of PTPN11 and CD274 mRNA associates with response to ICI therapy 

in NSCLC (123). The investigators in this report aimed to find immune signatures 



 

42 

 

predictive of response to anti-PD-1 inhibitors in NSCLC. I utilized the gene 

expression data to sort the 21 patient tumors to two groups based upon their DCB 

status, resulting in nine patients who demonstrated DCB and twelve patients who 

did not.  

 

After calculating average TPM values for PTPN11 and CD274 and 

excluding outlying tumors, the analysis revealed no significant difference in the 

expression of PTPN11 mRNA between subjects with DCB from those that did not 

respond to anti-PD-1 therapy. Specifically, the mean PTPN11 TPM score for DCB 

was 576.15 with s.d.=281.78 and for no DCB (mean=487.73 with s.d.=361.24) 

(Figure 2.3A). Importantly, the mean expression of CD274 mRNA was nearly 3-

fold higher in patients who responded to therapy (mean=151.16, s.d.=198.33) 

compared to those who did not (mean=61.96, s.d.=64.54) (Figure 2.3B). Together, 

these data showed that PTPN11 gene expression does not associate with CD274 

expression or response therapy in NSCLC patients. These findings are consistent 

with the results from the first study that suggested that SHP-2 activity, not 

expression, correlates with PD-L1 expression. In contrast, these data suggest a 

positive relationship between PD-L1 expression and response to ICI which was 

not observed in the melanoma study.  

 

Proteins that interact in vivo with SHP-2 significantly correlate with both 

PTPN11 and CD274 mRNA expression in lung adenocarcinomas 

 

In Chapter 4, mass spectrometry analysis was performed to determine the 

identity of proteins that co-precipitated with SHP-2 to investigate the protein-

protein interactions in which SHP-2 is involved. I hypothesized that these 

proteins may assist SHP-2 with maintenance of PD-L1 expression. To 

understand whether these proteins are co-expressed with SHP-2 in patient 

tumors and not just in cell culture, I applied the same analysis of the TCPA and 

GDC data sets to further inform my wet-lab research.  
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First, I searched for RPPA data from TCPA for the top 10 scoring proteins 

from that analysis, presented in Table 2.1A. Unfortunately, no protein array data 

were available for any of my 10 proteins of interest. I then evaluated the RNA-

seq data in GDC to identify gene expression data for these proteins in order to 

correlate expression with that of PTPN11 mRNA. Of the expression of 10 genes 

analyzed against PTPN11 in the full TCGA-LUAD dataset (n=585), I found 

significant positive correlations (p-value ≤ 0.001) for 5 genes (DDX3X, HSP7C, 

CPSF5, IF2G, SF3A1) and significant negative correlations for 3 genes (PUF60, 

EIF1A1, RSMB) (Table 2.1B and Figure 2.3A-2.3H). I then aimed to find whether 

any correlation existed between these genes and CD274 mRNA. This analysis 

revealed 2 genes with weak positive correlations (DDX3X, HSP7C) and four 

genes with moderate negative correlations (PUF60, GRP78, RSMB, IF2G) 

(Table 2.1C, and Figure 2.4A-2.4F).  

 

2.4 Discussion 

 

In this chapter, information obtained from publicly-available protein and 

gene expression datasets was used to gain real-world insight into my 

overarching research question: does SHP-2 activity or expression influence PD-

L1 mRNA and protein levels and subsequent response to anti-PD-1 or PD-L1 

therapies in NSCLC? I used this approach because I believe that the utilization of 

patient tumor datasets can inform and direct wet-lab experimentation. The design 

and execution of pre-clinical and clinical studies is expensive, time-consuming, 

and labor-intensive. Here, a simple and efficient process is presented that, when 

combined with bench-side experimentation, can offer substantial insight into the 

clinical translatability of commonly-used, highly-controlled model systems 

designed for drug discovery applications. Through the analysis of two major 

cancer data repositories and two smaller clinical studies, I was able to take 
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further steps towards establishing a connection between the activity of SHP-2 

and PD-L1 expression in human tumors without carrying out a study de novo.  

 

Of the datasets chosen for this study, the most statistically-powerful and 

revealing information arose from the composite analyses of the TCPA and GDC 

data repositories. Using genomic and protein information from a large cohort of 

NSCLC patients, my most important observation was the significant negative 

correlation between the active, tyrosyl-phosphorylated form of SHP-2 and PD-L1 

protein expression (Figure 2.1A). A limitation of these data was that the RPPA 

data did not include expression levels of the unphosphorylated and inactive form 

of SHP-2 which would have been a useful control as informed by my wet-lab 

studies. The conformational changes induced by phosphorylation of SHP-2 could 

alter protein-protein interactions and intracellular signaling cascades that impact 

PD-L1 expression (124). Following from that concern, I observed no statistically 

significant correlation between the levels of SHP-2 and PD-L1 mRNA in the 

patients in the NCI-GDC dataset that were initially studied in the TCPA dataset, 

again highlighting the potential importance of molecular interactions of SHP-2 

dependent on its activated state. Interestingly, when I conducted the same 

analysis on the entire cohort of LUAD patients in the NCI-GDC repository, a 

weak, but inverse correlation between PTPN11 and CD274 mRNA was 

observed, enforcing that the activity of SHP-2 is likely of greater importance in 

PD-L1 regulation than mRNA expression. It is important to note that activity of 

SHP-2 is not necessarily impacted by the level of expression.  

 

When I embarked on these studies, I most desired to understand how SHP-

2 influences response to ICI therapy in KRAS-active tumors to direct my drug 

discovery efforts in a wet lab setting. A limitation of the data deposited in the NCI-

GDC is that the clinical data are often incomplete and lacking details on drug 

treatment and associated response or perhaps pre-date a particular therapy, like 

ICIs in this case. However, I was able to address the expression of SHP-2 and 

PD-L1 in KRAS active LUAD (~26% of the tumors). KRAS status did not change 
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the outcome of the analysis. I identified other studies in which RNA-seq data was 

collected from tumors treated with ICIs, one in melanoma and one in NSCLC 

(122) (123). While the focus of this study is on NSCLC, treatment of melanoma 

using ICIs was approved several years prior to use in NSCLC, and thus the data 

available in this cancer with respect to ICI treatment is more mature. It should be 

noted that melanomas rarely harbor KRAS mutations and more often HRAS 

mutations. Additionally, Raf mutations are more likely the oncogenic drivers of 

cell division in melanoma tumors. Neither of the two small studies made the 

mutation status of Ras available.  

 

The melanoma study was embarked by Regev and colleagues (122) to 

identify a gene expression profile that is associated with immune evasion that 

might predict response to ICI treatment. They conducted scRNA-seq on 

melanoma tumors that were either treatment naïve at that time or had acquired 

resistance to ICI therapy. These data allowed me to test whether PTPN11 and 

CD274 gene expression associated with response to therapy. The authors of the 

study were more interested with defining signatures of resistance that could be 

used to screen patients prior ICI therapy, so the experimental design was not 

ideal for my hypothesis and the sample size was small. As observed in the TCPA 

and NCI-GDC analysis, melanoma tumors also demonstrate that higher PTPN11 

expression was associated with less CD274 mRNA expression. Importantly, 

PTPN11 mRNA levels were roughly equivalent between the treatment naïve and 

ICI resistant tumors. While this analysis provides some insight into the landscape 

of SHP-2 and PD-L1 co-expression, it is important to acknowledge that these 

tumors are not lung tumors, have different oncogenic mutations, and study 

sample sizes were relatively low.  

 

Data from the NSCLC study carried out by Hwang and colleagues in which 

they sought to identify immune gene signatures that may predict clinical 

response to anti-PD-1 therapy were re-purposed for another question (123). 

Expression of PTPN11 did not associate with DCB, but the tumors from patients 
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who experienced DCB displayed increased expression of CD274 mRNA, 

consistent with other studies (68)(125)(126) (Figure 2.3A-2.3B). Taken together, 

SHP-2 activity, not expression, may be important for PD-L1 expression in 

NSCLC and subsequent response to anti-PD-1 and -PD-L1 therapy.  

 

Finally, using data from wet lab experimentation, bioinformatic techniques 

were used to further investigate the mechanism by which SHP-2 regulates PD-L1 

expression. RNA-seq data from the NCI-GDC were used to search for 

correlations in mRNA expression of proteins that co-precipitate with SHP-2, as 

identified by mass spectrometry. From that mass spectrometry screen for SHP-2 

interactors, ten proteins were selected for exploration, eight are known to be 

involved in mRNA processing, and two are involved in protein transport and 

maintenance (Table 2.1A). The primary objective from this analysis was to inform 

and direct subsequent wet-lab experimentation by determining if the protein-

protein interactions observed from in vitro cell culture could be corroborated by 

the co-expression of the mRNA which encodes these proteins in NSCLC patient 

tumors. As such, the findings presented in this chapter will be discussed later 

and in greater detail in chapter 4.  

 

From these analyses, the most striking observation was the strong 

correlation between mRNA expression of the RNA helicase DDX3X and SHP-2 (r  

= 0.4841, p-value < 0.0001) (Figure 2.4A). DDX3X was one of the highest 

scoring proteins across multiple repetitions of the mass spectrometry screen, and 

therefore, this finding supports the hypothesis that SHP-2 and DDX3X interact 

within the context of a NSCLC tumor. Importantly, DDX3X contains a tyrosine 

phosphorylation site at Y104, making it a potential substate for SHP-2. In addition 

to DDX3X, four other proteins (Table 2.1B, Figure 2.4B-2.4E) had positive 

correlations with SHP-2 mRNA expression, three of which (CPSF5, IF2G, 

SF3A1) are mRNA processing proteins and one (HSP7C) a protein chaperone. 

However, there exists no experimental evidence that any proteins other than 

DDX3X are phosphorylated on tyrosine residues. This finding suggests that SHP-
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2 may be involved in the processing and regulation of mRNA within LUAD 

tumors, a novel function of SHP-2. However, as stated above, the activity of 

SHP-2 may be of greater importance than its expression regarding PD-L1 

expression, though unfortunately there does not exist protein expression data for 

DDX3X on TCPA. Although there is a strong positive correlation in the mRNA 

expression of SHP-2 and these five proteins, these data provide no information 

on the activation status of SHP-2 or if it directly interacts with these proteins in 

vivo.  

 

The same analysis was then repeated, this time compared with the mRNA 

expression of CD274. HSP7C, which positively correlated with CD274 mRNA, is 

a molecular chaperone, and PD-L1 is expressed on the cell surface. Therefore, it 

is reasonable to suggest that these two proteins would be co-expressed, if 

indeed PD-L1 is a substrate for trafficking by HSP7C. Interestingly, DDX3X 

mRNA also correlated with that of PD-L1, though the statistical confidence (p-

value = 0.0013) is relatively weak for this type of analysis (Table 2.1C, Figure 

2.5A).  

 

There are limitations to these analyses that warrant consideration. First, 

these data only describe the expression of mRNA of pairs of genes and not of 

protein. While it is well understood that when the mRNA of a gene is expressed, 

often the protein is as well, however this is not always the case as there are 

many mechanisms that influence the translation of mRNA into protein such as 

miRNA involvement and mRNA degradation/metabolism (127)(128). Second, 

RNA-seq data requires special considerations when evaluating the statistical 

significance of the findings. When comparing the mRNA expression of 20,000 

unique genes, the likelihood of false discoveries is much higher than in smaller 

data sets, and so correlations that do not have very high confidence (p-values < 

0.001) of statical significance should be observed with caution (129)(130). 

Contrary to the retrospective analyses of massive genetic datasets collected 

under conditions I was unable to control, the genes I chose to investigate were 
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not random findings of a fishing expedition, but rather are supported by and 

identified from controlled biochemical assays. It has been suggested that pure in 

silico interrogations of differential gene expression may encompass considerable 

pitfalls when applied to large datasets, such as those contained within the GDC. 

Thus, the decision to reinforce my informatic interrogations with reproducible in 

vitro experimental data further underpins the scientific rigor and reliability of 

conclusions drawn from these analyses. Furthermore, the primary intent of these 

exploratory analyses was to inform and direct further bench-top molecular 

interrogation and not serve as the sole information upon which final conclusions 

are to be drawn. Going forward, these hypotheses will be tested using in vitro cell 

based assays altering SHP-2 activity and expression to help ratify the inferences 

from this chapter. 

2.5 Conclusions 

The value of simple, but grounded, methods to use real-world data and apply the 

information gained from this study to direct new wet lab experimentation should 

not be overlooked. Each previously published study I used had limitations for my 

purposes, but I operate within those limitations. Additionally, the strength and 

versatility of these bioinformatics analyses are fortified when combined with 

benchtop molecular analyses. Together they serve as powerful tools when 

elucidating biological mechanisms. These data convince me that continued 

exploration into the role of SHP-2 on both PD-L1 expression and response to 

certain immune checkpoint inhibitors has value. Ultimately there is likely value in 

combining the use of molecules that inhibit the activity of SHP-2, specifically in 

lung tumors, and immune checkpoint inhibitors that depend on expression of PD-

L1 on tumor cell surfaces. 

  



 

49 

 

 
  

Figure 2.1. SHP-2 activity and expression correlates with expression of 
PD-L1 in NSCLC adenocarcinomas. A. Two-tailed non-parametric 
Spearman correlation analysis of RPPA protein expression data for Y542 
phosphorylated SHP-2 and PD-L1 from 362 adenocarcinomas taken from The 
Cancer Proteome Atlas (TCPA: https://gdc.cancer.gov/about-
data/publications/pancanatlas) LUAD-L4 dataset. B. Two-tailed non-
parametric Spearman correlation analysis of bulk RNA-seq FPKM-UQ values 
taken from TCGA (GDC) for the 362 patients that had corresponding RPPA 
protein expression data from TCPA. C. Two-tailed non-parametric Spearman 
correlation analysis of bulk RNA-seq FPKM-UQ values taken from TCGA 
(GDC) for all 585 patients in the TCGA-LUAD dataset. D. Two-tailed non-
parametric Spearman correlation analysis of mRNA z-scores taken from 
cBioPortal (PMID:32015526) for 169 lung adenocarcinoma tumors. The red 
line in each panel represents a linear regression line of best fit. 
 



 

50 

 

 
 
  

Figure 2.2. Workflow scheme for evaluation of SHP2 and PD-L1 
relationships. Reverse-phase protein array (RPPA) was collected from the 
TCPA data repository (https://gdc.cancer.gov/about-
data/publications/pancanatlas) for 362 total patients labeled as the TCPA-
LUAD-L4 data set. RNAseq data was collected from GDC for the full TCGA-
LUAD dataset (n=585). These data were parsed to include only patients for 
which there was matching RPPA data on TCPA (n=362). Single-cell RNAseq 
reads for 31 melanoma tumors were collected and separated into two groups 
based on ICI treatment status. Only single-cell reads for ‘malignant melanoma 
cells’ were retained for analysis.  Tumors which had ≥ 30 unique malignant 
cells with non-zero PTPN11 values were included in the analysis. NSCLC 
tumors (n=21) with sequence data were first separated into two groups based 
on response to ICI treatment. Average TPM values were calculated for 
PTPN11 and CD274, and tumors that had PTPN11 TPM value >2 standard 
deviations from the mean were excluded from the analysis.  
 

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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Figure 2.3. CD274, but not PTPN11, mRNA expression is associated 
with response to ICI in NSCLC tumors. A. PTPN11 TPM values for 
patients who did or did not demonstrate a durable clinical benefit (DCB) from 
ICI therapy, as determined by RECIST criteria (123). There was no 
significant difference between groups, as measured by a student’s t-test. B. 
TPM values for CD274 in patients who did or did not demonstrate a durable 
clinical benefit (DCB) from ICI therapy, as determined by RECIST criteria. 
There was no significant difference between groups, as measured by a 
student’s t-test. 
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Figure 2.4. Genes identified in mass spec screening correlate with PTPN11 
expression in NSCLC adenocarcinomas. Two-tailed non-parametric 
Spearman correlation analysis of of bulk RNA-seq FPKM-UQ values taken from 
TCGA (GDC) for all 585 patients in the TCGA-LUAD dataset for PTPN11 and A. 
DDX3X B. HSP7C C. GPSF5 D. IF2G E. SF3A1 F. PUF60 G. EF1A1 H. RSMB. 
The red line represents a non-linear regression line of best fit. 
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Figure 2.5. Genes identified in mass spec screening correlate with CD274 
expression in NSCLC adenocarcinomas. Two-tailed non-parametric 
spearman correlation analysis of bulk RNA-seq FPKM-UQ values taken from 
TCGA (GDC) for all 585 patients in the TCGA-LUAD dataset for CD274 and A. 
DDX3X B. HSP7C C. PUF60 D. GRP78 E. RSMB F. IF2G. The red line 
represents a non-linear regression line of best fit. 
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Table 2.1. Proteins that co-precipitate with SHP-2 identified by mass 
spectrometry correlate to PTPN11 and CD274 mRNA expression in 
NSCLC adenocarcinomas. A. Table of the top 10 scoring proteins that co-
immunoprecipitated with SHP-2 as identified by mass spectrometry that 
includes their score value as well as their biological function. B. Table 
depicting the values of a two-tailed non-parametric spearman correlation 
analysis of bulk RNA-seq FPKM-UQ values taken from TCGA (GDC) for all 
585 patients in the TCGA-LUAD dataset for proteins that co-precipitated with 
SHP-2 analyzed against PTPN11 or C. CD274.  
 

  

Protein 
MS 

score 
Function 

HSP7C 540.88 
Protein folding and transport, protein complex formation, 

proteome stress protection 

DDX3X 511.12 
RNA-Helicase; binds rG4s structures, including in 5'-UTS of 

NRAS 

PUF60 482.65 
DNA/RNA binding protein; RNA splicing, apoptosis, and 

transcription regulation 

CPSF5 387.32 
Cleavage factor complex; activator of pre-mRNA-3' end 

cleavage. mRNA maturation.  

EIF1A1 353.86 
Elongation initiation factor complex subunit. Th1 specific 

TF, binds to IFNγ promoter 

GRP78 321.38 
ER chaperone, protein folding, degrades misfolded 

proteins 

RSMB 244.19 
pre-mRNA splicing; SMN-Sm complex, component of 

snRNPs 

KPYM 234.93 
Pyruvate kinase, stimulates POU5F1-mediated 

transcriptional activation. Assists in caspase cell death in 
tumor cells 

IF2G 184.97 Eukaryotic initiation factor (e-IF2) subunit 

SF3A1 119.2 pre-mRNA splicing; SF3A complex  

A 
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 PTPN11 + correlation 

Protein Correlation p-value 

DDX3X 0.4841 < 0.0001 

HSP7C 0.1396 0.0006 

CPSF5 0.3152 < 0.0001 

IF2G 0.1604 < 0.0001 

SF3A1 0.3226 < 0.0001 

 PTPN11 - correlation 

Protein Correlation p-value 

PUF60 -0.1473 0.0003 

EIF1A1 -0.1518 0.0002 

RSMB -0.1929 < 0.0001 

 CD274 + correlation 

Protein Correlation p-value 

DDX3X 0.1316 0.0013 

HSP7C 0.1149 0.0051 

 CD274 - correlation 

  Correlation p-value 

PUF60 -0.2527 < 0.0001 

GRP78 -0.2754 < 0.0001 

RSMB -0.2269 < 0.0001 

IF2G -0.1206 0.0032 

B C 
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Table 2.2. PTPN11 mRNA expression weakly associated with 
reduced CD274 mRNA expression in melanoma tumors 
regardless of ICI exposure. A. Six tumors had ≥ 30 unique malignant 
cells that had non-zero PTPN11 and are ICI therapy naïve. Shown are 
the percentage of single cells that expressed PTPN11, the combined 
TPM values for all the single cells within each individual tumor, and the 
average TPM values for all 6 untreated tumors combined.  B. The 
same details as (A) but for tumors that did not respond to ICI therapy. 
There was no significant difference in average PTPN11 and CD274 
TPM values between treatment naïve and treatment resistant groups.  
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CHAPTER 3.  

3.1 Overview 

Non-small cell lung cancer (NSCLC) remains one of the most onerous forms 

of cancer. In 2020, it was estimated that roughly one quarter of all cancer-related 

deaths will be due to cancer of the lung and bronchus (22). The severity of the 

disease can be attributed to late-stage diagnoses and the rapid resistance of 

NSCLC to both cytotoxic chemotherapy and targeted therapies, resulting in a poor 

5-year survival rate of 20% (131). In NSCLC, as many as one third of tumors harbor 

mutations in RAS genes, especially KRAS, a protein which until recently has been 

exceptionally difficult to target with small molecule inhibitors (132)(133)(134). The 

RAS protein is a GTPase which, in response to growth factor stimulation, is 

activated, providing a trigger for initiation of intersecting signaling cascades that 

drive proliferation and cell survival.  

 

Historically, direct inhibition of the KRAS protein or downstream effector 

proteins (such as farnesyltransferases) with small molecules has proven 

exceptionally difficult in providing control of tumor growth (135). Thus, treatments 

for patients with tumors harboring KRAS mutations remain limited to cytotoxic 

chemotherapies or immune checkpoint inhibitors (136). Monoclonal antibodies that 

interfere with PD-1/PD-L1 checkpoints between tumors and cytotoxic/effector T-

cells have shown substantial clinical benefit for a subset of patients without EGFR, 

ALK, or ROS actionable mutations (137). Importantly, evidence is mounting that 

suggests that many KRAS-active tumors possess the unique characteristic of 

aberrant expression of PD-L1. In a 2018 study examining 219 lung 

adenocarcinomas (83), Falk et al. (2018) observed that KRAS-active tumors 

maintained significantly higher PD-L1 expression than KRAS-wildtype tumors, and 

that increased PD-L1 expression was associated with improved overall survival 

(138). In a meta-analysis of over 23 studies, Liu et al. (2020) observed that KRAS-

active NSCLC is more likely to be PD-L1 positive compared with wild-type tumors 
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(137). Furthermore, they observed that patients harboring KRAS-active tumors 

displayed a significantly higher overall response rate to PD-L1 blockade. Together, 

these studies suggest that KRAS-active NSCLC may be particularly susceptible to 

interruption of the PD-L1/PD-1 interaction. 

 

The ability of the immune system to identify and target tumors is a natural 

process that occurs irrespective of pharmacological intervention. In the 1960s and 

1970s, immune cells were further classified as cytotoxic T-cells and dendritic cells 

with specific functions, for example, and in 1975 natural killer cells were found to 

specifically target leukemia cells in mice (139)(140)(141). Within the past several 

decades, proteins involved in modulating the immunological identification and 

targeting of tumors have received a great deal of scientific attention. One such 

protein, PD-L1, has been shown to play a crucial role in modulating immune 

response and T-cell activity. PD-L1 is normally expressed on the surface of cells 

of the immune system, usually antigen presenting cells, as a mechanism by which 

the immune system distinguishes self from non-self (142). Specifically, ligation of 

PD-L1 to the receptor PD-1, which is found on the surface of activated T-cells, 

results in T cell deactivation and protection of self. When PD-L1 is expressed on 

tumor cells and engages PD-1 on effector T cells the tumor is hidden from cytotoxic 

T cells. Once the PD-1/PD-L1 interaction is interrupted, the tumor can now be 

targeted by the immune response. After Honjo et al. (1992) uncovered the biology 

of this interaction, antibodies that bind either PD-1 and PD-L1 were developed to 

unmask the tumor from the immune system and have shown substantial clinical 

benefit for many solid tumors (142)(143)(144). 

 

Although several studies have demonstrated that KRAS-active cancers often 

have increased levels of PD-L1 expression, the precise mechanism(s) by which 

PD-L1 is aberrantly expressed in KRAS-active cancers remains unclear. It is likely 

that multiple signaling pathways, such as PI3K/AKT/mTOR and EGFR, govern PD-

L1 expression (145)(146)(147)(148)(149). One mechanism reported by Coelho et 

al. (2017) showed that oncogenic RAS signaling leads to dysregulation of the RNA-
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binding protein, TTP, that can upregulate PD-L1 expression by stabilizing PD-L1 

mRNA (83). Other studies demonstrate that cytokine-activated pathways, such as 

JAK/STAT, also impact the normal expression of PD-L1 in immune cells (and also 

may be the case in some cancer subpopulations), specifically through interferon 

gamma-induced activation of the transcription factor, signal transducer and 

activator of transcription-3 (STAT3) (150)(151)(152). Additionally, post-

translational modifications to PD-L1 protein can influence its metabolism and 

localization within a cell. Glycosylation of PD-L1 has been shown to impact PD-L1 

stability, thus influencing its ability to impede T-cell activation in cancer cells (153). 

Phosphorylation of PD-L1 on Ser/Thr residues by GSK3β alters the interactions of 

PD-L1 with E3 ligases and thus the extent of PD-L1 ubiquitination, further 

influencing protein turnover and activity (154).  

 

In prior work from this laboratory, mRNA and microRNA gene expression 

profiles that differentiated mRNA expression levels in KRAS-active and EGFR-

mutant lung cancer cell lines were mined using novel bioinformatic approaches to 

examine co-incident changes in mRNA and microRNA expression to identify 

potential therapeutic targets for KRAS-active NSCLC (155). One of the potential 

targets identified that warranted further exploration was the non-receptor tyrosine 

phosphatase, Src homology region 2 containing protein phosphatase (SHP-2). 

SHP-2 has been implicated in regulating the RAS/Raf/ERK pathway as well as 

integrating the activities of the JAK/STAT and PI3K/Akt/mTOR survival pathways 

(124)(156)(157). Along with other laboratories, we initially hypothesized that SHP-

2 might be a direct therapeutic target for KRAS-active NSCLC in the absence of 

efficacious KRAS inhibitors (106)(107)(158). The preponderance of evidence from 

our lab and others indicates that inhibition of SHP-2 is unlikely to cause cell death 

and forced us to consider other explanations for our observations. 

 

SHP-2 is encoded by the PTPN11 gene and contains two SH-2 domains that 

are used to dock phosphorylated tyrosine residues of substrate proteins, and a 

catalytic protein tyrosine phosphatase (PTP) domain that can act upon those 
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substrates. Following receptor tyrosine kinase (RTK) activation, SHP-2 is recruited 

to the cell membrane and may be phosphorylated at two Tyr residues (Y542 and 

Y580) on the C-terminal domain, though the kinases responsible for such 

phosphorylation events remain understudied. Once in an active conformation, 

SHP-2 may interact with other proteins involved in RAS signal transduction such 

as Grb2 and SOS, resulting in subsequent ERK activation, tumor proliferation, 

growth, and survival (159)(160). It is thought that both the ability of SHP-2 to 

enucleate this protein complex, as well as catalytic phosphatase activity both play 

a role in these signal transduction events (108). SHP-2 loses phosphatase activity 

when the N-SH2 domain folds on the phosphatase domain leading to auto-

inhibition (161). However, activating mutations can occur in the N-SH2 or PTP 

domains of the PTPN11 gene and lead to a protein that has disrupted auto-

inhibitory activity associated with unfolding of the protein resulting in a 

constitutively-active phosphatase. The phosphatase domain of SHP-2 is 

responsible for dephosphorylation and deactivation of p120-RASGAP, a negative 

regulator of ERK activation, as well as a collection of other proteins (159)(160). 

Though the catalytic phosphatase activity of SHP-2 contributes to its signal 

transduction capabilities, it is also capable of serving as a scaffold that enucleates 

protein complexes, specifically through interactions of its SH2 domains with p-Tyr 

residues on protein substrates (162). Dissecting the relative influence of SHP-2 

PTP activity from scaffolding functionality is of critical importance as it relates to 

PD-L1 expression. 

 

My initial experiments aligned with the published work of others that 

pharmacological inhibition of SHP-2 activity does not lead to cell death of NSCLC 

cell lines (106). However, I found that ablation of SHP-2, and to a lesser extent 

inhibition of phosphatase activity, did alter the expression of PD-L1. I postulated 

that SHP-2 engages in a multi-protein complex to control PD-L1 mRNA expression 

in KRAS-active cells that does not require phosphatase activity. The future 

implications of this work are that inhibition of SHP-2 may synergize with ICI therapy 

in NSCLC by promoting the expression of PD-L1. 



 

64 

 

3.2 Methods 

Cell lines and treatment conditions 

 

KRAS-active NSCLC cell lines NCI-H460 and A549 were acquired from 

ATCC (STR authenticated) and UKY-29 cells were developed by, and a gift from, 

John Yannelli, Ph.D. at the University of Kentucky, College of Medicine (163). Cells 

were seeded at 1x105 cells/well on a 6-well plate for flow cytometry, or 2x104 on a 

24-well plate for qRT-PCR and western analysis. Cells were allowed to adhere and 

grow for 24 hours in RPMI 1640 containing 10% fetal bovine serum (FBS), 100 

U/mL penicillin, 100 µg/mL streptomycin and maintained at 37°C, 5% CO2. For 

assays involving treatment with SHP099, RMC-4550, SHP-2 siRNA or CRISPR, 

media was then removed and replaced with RPMI 1640 containing 1% FBS for 24 

hours. Media was again replaced with RPMI 1640 containing 1% FBS with either 

a final concentration of [10μM] of the SHP-2 inhibitor SHP099 (Novartis), [20nM] 

of RMC-4550 (SelleckChem), or vehicle (4% DMSO). For genetic ablation of SHP-

2, media was removed and replaced with RPMI 1640 containing 1% FBS and no 

antibiotics. Cells were then transfected with Lipofectamine RNAiMAX 

(ThermoFisher) and SHP-2 siRNA [30nM] (Cell Signaling Technologies) or 

SignalSilence Control siRNA (Cell Signaling Technologies, #6568). A Cas9-guide 

RNA complex (New England Biolabs) or a non-targeting CRISPR/Cas9 guide RNA 

was transfected using Lipofectamine RNAiMAX. Following all treatments, cells 

were incubated for another 24 hours prior to harvest for western analysis in 100µl 

protein sample buffer (62.5mM Tris-HCL pH 6.8, 2% SDS, 10% Glycerol, 5% β-

mercaptoethanol, bromophenol blue) or for qRT-PCR in 350µl buffer RLT 

(QIAgen). Cells plated on 6-well plates designated for flow cytometry were washed 

with ice cold Ca+/Mg+ free PBS prior to trypsinization and flow cytometric analysis. 

 

CRISPR/Cas9 SHP-2 knockout 

 

Guide RNA (gRNA) targeting exon 3 of PTPN11 (SHP-2) was generated 

using the CHOPCHOP online web tool (https://chopchop.cbu.uib.no/), resulting in 
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a gRNA sequence of GATTACTATGACCTGTATGG. The DNA oligonucleotide 

was synthesized by IDT technologies and used to generate gRNA with the EnGen 

sgRNA Synthesis Kit (New England BioLabs). Cells were seeded at 1x105 

cells/well on a 6-well plate or 2x104 cells/well on a 24-well plate for 24 hours in 

RPMI 1640 containing 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin and 

maintained at 37°C in 5% CO2. Media was then replaced with RPMI 1640 

containing 1% FBS for another 24 hours. Media was removed and replaced with 

RPMI 1640 containing 1% FBS and no antibiotics prior to CRISPR treatment. 

gRNA was complexed with EnGen Spy Cas9 NLS (New England BioLabs) and 

added to wells for 48 hours for western analysis or 24 hours for flow cytometry. 

Cells were then lysed in 100μl protein lysis buffer for western blotting or 350μl 

buffer RLT for RNA extraction and RT-qPCR. 

 

Flow Cytometry 

 

Following treatment, cells were washed with cold Ca2+/Mg2+-free PBS 

(VWR) and detached using trypsin-EDTA 0.05% (ThermoFisher). After a 5-minute 

centrifugation at 300xg and 4°C, supernatant was removed and cells were 

resuspended in cold FACS buffer (pH 7.0: 1X PBS, 1mM EDTA, 25 mM HEPES, 

1% heat-inactivated FBS) and transferred to a 96-well round bottom plate (Nunc) 

at 2x105 cells/well for staining. Cells were stained with fluorescent-conjugated 

antibodies specific for PD-L1 (PE) and EGFR (Alexa Fluor 647) (BD Biosciences) 

and fluorescence was measured using (Sony SY3200). UltraComp eBeads 

(Thermo Fisher) were used for fluorescence compensation. Analysis was 

performed using FlowJo v. 10 (Tree Star) and incorporated live and singlet gates 

prior to gating on individual markers. Flow cytometry was performed by the 

University of Kentucky flow cytometry core facility. 
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Western blot analysis 

 

 Following treatment and harvest, cells were lysed with protein sample 

buffer, subjected to a freeze/thaw cycle, sonicated, then heated to 95°C for 5 

minutes prior to protein separation using 10% SDS-polyacrylamide gel 

electrophoresis (PAGE) at 135V for 80 minutes. Proteins were transferred to a 

nitrocellulose membrane and blocked in Tris-buffered saline (TBS) containing 

0.1% Tween 20 and 5% bovine serum albumin for 30 minutes prior to overnight 

incubation at 4°C with primary antibody: SHP-2 (#3397), PD-L1 (#13684), or 

GAPDH (#2118) (Cell Signaling Technologies). After overnight incubation, 

antibody was removed, and blots were washed with TBS containing 0.1% Tween 

20. Secondary HRP-labeled antibodies were applied to the blot in 5% non-fat, dry 

milk in 1X TBS containing 0.1% Tween 20 for one hour. The blot was washed three 

times for 5 minutes each in 1X TBS containing 0.1% Tween prior to developing 

and detection of HRP signal. Signal was quantified using ImageJ software (NIH) 

and values for SHP-2 and PD-L1 were normalized to GAPDH. 

 

Quantitative real-time PCR (qRT-PCR) analysis 

 

 Total RNA was extracted from lysed cells using the RNeasy kit (Qiagen). 

cDNA was then generated using the iScript cDNA synthesis kit (BioRad). qRT-

PCR was performed using human TaqMan primer probe sets (Thermo- Fisher) 

for PD-L1 (Assay ID: Hs00204257_m1), SHP-2 (Hs06636344_g1), GAPDH 

(Hs02786624_g1) and β-Actin (Hs99999903_m1). qRT-PCR data were analyzed 

by calculating ΔCt values for PD-L1 by standardizing PD-L1 Ct values against 

those for the averaged Ct values of housekeeping genes GAPDH and β-Actin. 

 

 

 

 

 

PD-L1 ΔCt = (PD-L1 Ct) – (GAPDH Ct + β-Actin Ct / 2) 
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Statistical analysis 

 

For flow cytometry, the raw cell counts for cells expressing PD-L1 for three 

separate experiments were averaged and a student’s t-test was applied to 

determine statistical significance. For qPCR analysis, ΔCt values for three 

separate experiments were then averaged and a student’s t-test was applied to 

determine significance. 

3.3 Results 

PD-L1 mRNA abundance is increased in SHP-2 ablated cells 

 

To determine whether pharmacological inhibition or genetic ablation of 

SHP-2 altered expression of PD-L1 mRNA, total RNA was prepared from A549, 

H460, and UKY-29 cells that were treated with SHP-099, RMC-4550, SHP-2 

siRNA, or CRISPR. qRT-PCR was used to quantify levels of PD-L1 and GAPDH 

mRNA following treatments. The abundance of PD-L1 mRNA was not significantly 

changed in any cell line with SHP-2 pharmacological inhibitors or siRNA treatment 

(Figure 3.1). Specifically, in H460 and A549 cells, treatment with siRNA or RMC-

4550 caused slight, but not statistically significant, increases in PD-L1 mRNA as 

indicated by a reduction in dCt values. CRISPR/Cas9-mediated knockout of SHP-

2 resulted in significant increases in PD-L1 mRNA in all three cell lines (Figure 

3.1). I used CRISPR/Cas9-mediated ablation to confirm that the findings from 

siRNA-mediated ablation. CRISPR/Cas9 ablation is more reliable, but transfection 

of the gRNA complexes tends to be more toxic to these cells. 

 

PD-L1 protein expression is increased in SHP-2 ablated cells 

 

Following from the mRNA analysis, I then asked whether PD-L1 protein 

levels changed consistently with the changes in mRNA expression. Western blot 

analysis revealed that PD-L1 protein expression increased in all three cells treated 
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with CRISPR (Figure 3.2A-3.2F). Specifically, in CRISPR-treated H460 cells, an 

83% reduction in SHP-2 resulted in a five-fold increase in PD-L1 relative to control 

(Figure 3.2A, 3.2B); in A549 cells, a 92% reduction of SHP-2 resulted in a greater 

than ten-fold increase in PD-L1 relative to control (Figure 3.2C, 3.2D); and in UKY-

29 cells, a 78% reduction of SHP-2 resulted in an eight-fold increase (Figure 3.2E, 

3.2F) relative to control. Although siRNA ablation is not as efficient as CRISPR in 

all cells, H460 cells treated with siRNA also showed an increase in PD-L1 

expression consistent with CRISPR ablation. In both UKY-29 and H460 cells, 

treatment with allosteric SHP-2 inhibitor RMC-4550 led to 1.5-fold and 3.5-fold 

increases in PD-L1 expression, respectively, relative to untreated cells. SHP099 

treatment did not lead to increased PD-L1 expression over that of the vehicle 

controls. Additionally, the negative control cell transfections with either 

SignalSilence Control siRNA or non-targeting CRISPR/Cas9 guide RNA are 

shown in Figure 3.5. 

 

Expression of PD-L1 on the cell membrane increased after SHP-2 ablation 

 

Because cell surface expression of PD-L1 is required for therapeutic antibody 

binding and is often measured prior to initiation of ICI therapy for frontline ICI 

therapy decisions, I investigated whether cell surface expression of PD-L1 also 

changed in response to pharmacological inhibition or genetic ablation of SHP-2. 

Following the same conditions used to assess mRNA and protein levels, I 

measured cell surface expression of PD-L1 and EGFR as a control using flow 

cytometry. An increase in PD-L1 cell surface expression was observed in A549 

(Figure 3.3, 3.4B), H460 (Figure 3.4A), and UKY29 (Figure 3.4C) cell lines 

following treatment in CRISPR/Cas9-mediated SHP-2 knockouts and consistent 

with, but to a lesser extent than, siRNA treatment. Specifically, H460 cells 

demonstrated a 33.7% increase in PD-L1 surface expression; A549 cells showed 

62.9% increase in PD-L1; and UKY-29 cells demonstrated a 27% increase in PD-

L1 surface expression following CRISPR knockout of SHP-2 (Figure 3.4B-3.4D). 

EGFR surface expression was measured as a control surface protein and was 
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unaltered by any treatments. These results follow from total protein analyses that 

loss of SHP-2 increases both total and PD-L1 expressed on the cell membrane. 

3.4 Discussion 

In this chapter, I present my efforts to understand the impact of the tyrosine 

phosphatase SHP-2 on the tumor expression of PD-L1. Currently, tumoral 

expression of PD-L1 is a guideline measure to initiate anti-PD-1 and PD-L1 

therapies in some lung cancer settings. Specifically, for newly diagnosed NSCLC 

patients, treatment with a PD-1 antibody (pembrolizumab) is dependent on tumoral 

expression of PD-L1 that must be greater than 50% to initiate therapy and for 

second-line therapy, greater than 1% (164). Importantly, PD-L1 expression levels 

in tumor biopsies are impacted by many variables: heterogeneity of cell types 

within the tumor, region of the tumor tested, and the individual antibody/platform 

combination utilized which is often unique for an individual therapeutic entity (164). 

It is also reasonable to expect that control of PD-L1 expression differs within and 

among tumors. Given the clinical implications of the variability of PD-L1 

expression, a comprehensive understanding of the regulatory mechanisms 

controlling when and where PD-L1 is expressed on tumor cells is vital.  

 

Prior studies found that PD-L1 expression is aberrantly upregulated in KRAS-

active NSCLC. Importantly, Coehlo et al. (2017) implicated the kinase and 

phosphatase pair of ERK and PP2A in control of the RNA-binding protein, TTP, 

that preserves PD-L1 mRNA stability (83). I found that the absence of SHP-2 

activity via pharmacological inhibition of phosphatase activity contributed to 

increased PD-L1 expression in some KRAS active cells. I hypothesized that SHP-

2 exerts control over PD-L1 expression downstream of growth factor 

signaling/KRAS signaling by impacting transcription initiation.  Dissection of this 

process is of primary importance wherein pharmacological inhibition of SHP-2 may 

have therapeutic value in combination with PD-L1/PD-1 antibodies (145)(165). 

Notably, the proposed mechanisms of PD-L1 regulation in cancerous cells are 
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unlikely to mirror the normal regulation of PD-L1 expression in healthy cells. 

Therein lies the possibility that in malignant cells, PD-L1 regulatory mechanisms 

may be altered by the accumulation of multiple mutations that impact aberrant PD-

L1 expression. 

 

While my initial observation that loss of SHP-2 function resulted in increased 

PD-L1 levels, the level of expression of PD-L1 differs among cell lines. As other 

laboratories have observed, PD-L1 expression is highest in KRAS active cells 

(83)(137). Treatment with small molecule inhibitors of SHP-2 had minimal impact 

on PD-L1 mRNA levels, suggesting that the phosphatase activity associated with 

SHP-2 is not important at this level of control (Figure 3.1). Importantly, ablation of 

SHP-2 with siRNA or CRISPR resulted in consistent increases in PD-L1 mRNA, 

unlike treatment with small molecule inhibitors, also in Figure 3.1. These findings 

hinted toward another role of SHP-2 in control of PD-L1 expression as it may 

participate in a regulatory protein complex that controls PD-L1 mRNA or protein 

half-life much like ERK/PP2A control of TTP (83)(166). Thus, allosteric inhibition 

of SHP-2, with either SHP-099 or RMC-4550, may not interfere with the ability of 

SHP-2 to interact with other proteins. Bivona (2019) suggests that a 

GRB/SOS/GAB/SHP-2 complex transmits information from receptor tyrosine 

kinases to the nucleus to regulate expression of a panel of genes necessary for 

proliferation (167). It is unclear whether these interactions exclusively control the 

flow of phosphates as secondary signals among proteins or other complex 

interactions of proteins provide the control of expression of PD-L1. Finally, flow 

cytometry analysis revealed that cell surface expression of PD-L1 increased in 

cells with SHP-2 ablation consistent with the findings of Liu et al. (2017) (168). It 

is however unclear whether these changes in surface expression are the result of 

increases in total protein, or if there is some mechanism by which SHP-2 is 

involved in trafficking PD-L1 to the cell surface. Further experimentation, such as 

****come back to this**** 
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3.5 Conclusions 

My results provide novel insight into additional regulatory mechanisms 

governing the aberrant expression of PD-L1 in KRAS-mutant NSCLC. Ablation of 

SHP-2 significantly increased PD-L1 mRNA and surface expression, while 

pharmacological inhibition of phosphatase activity resulted in minimal changes in 

PD-L1 levels. Furthermore, I hypothesized that the formation of multi-protein 

complexes is controlled by SHP-2 and provide another layer of regulatory control 

of PD-L1 expression. These observations hold both clinical and basic biological 

implications. Ablation of SHP-2 may synergize with PD-L1 blockade in some 

KRAS-active NSCLC and should be predicted by the expression levels of PD-L1. 

Thus, dissection of the unreported activities of SHP-2 protein complexes in the 

regulation of mRNA processing and trafficking of PD-L1 may offer additional 

insights for both biomarkers and therapy. 
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Figure 3.1. PD-L1 mRNA expression depends on SHP-2. PD-L1 
mRNA levels were measured by qRT-PCR in H460, A549, and UKY29 
cell lines treated with SHP099 [10μM], RMC-4550 [20nM], SHP-2 
siRNA [30nM] or CRISPR/Cas9 mediated SHP-2 knockout. PD-L1 dCt 
values for three independent experiments were generated using 
GAPDH as a reference gene and then averaged. Error bars represent 
standard deviation. Significance was determined using the students t-
test (P<0.05).  
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Figure 3.2. PD-L1 protein levels increase in the absence of SHP-2.  
Representative western blots of A. H460 cell lysates, C. A549 cell 
lysates, and E. UKY-29 cell lysates that were untreated or treated with 
vehicle [4% DMSO], allosteric inhibitors SHP099 [10μM], RMC-4550 
[20nM], and SHP-2 siRNA [30nM] or CRISPR/Cas9-mediated SHP-2 
knockout. Densiometric quantification of SHP-2 and PD-L1 signal 
normalized to GAPDH signal from B. H460 cell lysates (A), D. A549 cell 
lysates (C), and F. UKY-29 cell lysates (E).  
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Figure 3.3. PD-L1 surface expression increases in the absence of 
SHP-2 in A549 cells. Representative pseudo-colored density plots of A549 
cells treated with vehicle [4% DMSO], SHP099 [10μM], RMC-4550 [20nM], 
SHP-2 siRNA [30nM] or CRISPR/Cas9-mediated SHP-2 knockout. The Y-
axis represents EGFR-AlexaFluor 647 signal (control) and the X-axis 
represents PD-L1-PE signal. 
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Figure 3.4. PD-L1 surface expression increases in the absence 
of SHP-2. Flow cytometry quantification of PD-L1 on the surface of 
A. H460 cells, B. A549 cells, and C. UKY-29 cells expressing PD-L1 
on their surface treated as described in figure 3.3. Three 
independent experiments were averaged, and error bars represent 
the standard error of the mean. Significance was determined using 
the students t-test (P<0.05). 
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Figure 3.5. Negative control siRNA and CRISPR gRNA do not 
reduce SHP-2 expression.  Representative western blots of H460, 
A549, and UKY-29 cell lysates that were untreated (Un) or treated with 
SignalSilence negative control siRNA [30nM] (si-NC) or CRISPR/Cas9 
negative control gRNA (CR-NC). Bands for each cell line were all run 
on the same gel and negative control bands were grouped next to 
untreated cells for clarity.  
 



 

 

CHAPTER 4.  

4.1 Overview 

Over the past decade there has been growing interest in understanding the 

multifaceted roles of tyrosine phosphatases as they relate to human cancers. It 

has long been established that phosphorylation of tyrosine residues by tyrosine 

kinases plays a critical role in the transmission of cellular signaling cascades that 

regulate cell growth and survival (169)(170). Considering the gravity of tyrosine 

phosphorylation events, it is logical to expect that the expression and activity of 

negative regulators of these pivotal pathways should hold equal importance to 

abnormal utilization by malignant cells (171). It is also important to note that the 

relationship between kinases and phosphatases is more complex than the simply 

positive or negative regulation of pathway activity; both classes of enzymes are 

capable of more than functioning solely as “on/off” switches, and the addition or 

subtraction of a phosphate group does not necessarily correspond to greater or 

lesser activity. To begin dissecting the complex involvement of protein tyrosine 

phosphatases in cell signaling pathways, this chapter aims to further elucidate the 

mechanism by which the non-receptor tyrosine phosphatase SHP-2 is involved in 

regulating the expression of genes downstream of RTK signaling, specifically PD-

L1.  

 

 SHP-2 has been shown to participate in the transmission of extracellular 

signaling events mediated by several different RTKs and functions as a focal point 

of intersecting signaling cascades such as the Ras/Raf/MEK, JAK/STAT, and 

PI3K/mTOR pathways in cancer cells (124). In NSCLC, SHP-2 plays a critical role 

in regulating oncogenic Ras signaling by forming a multi-protein complex with SOS 

and Gab1/Grb2 at cytosolic phosphorylated tyrosine residues located on RTKs and 

is required for the growth of KRAS-driven NSCLC (106)(107). Additionally, SHP-2 

has been demonstrated to interact with the intracellular immunoreceptor tyrosine-

based switch motif (ITSM) domain of the PD-1 receptor on activated T-cells and 
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macrophages. Upon ligation of PD-1 with its ligand, SHP-2 serves as a scaffold to 

create a PD-1:PD-1 dimer which results in the activation of SHP-2, the 

internalization the PD-1 receptor, and subsequent T-cell activation (172)(173). 

Importantly, the mechanism of SHP-2-mediated activation and PD-1 internalization 

has been shown to occur irrespectively of the catalytic phosphatase activity of 

SHP-2, suggesting that SHP-2 may engage in signal transduction activities solely 

through its ability to initiate protein complex formation (172)(174). 

 

SHP-2 contains three major functional domains; two SH-2 domains (N-SH2, 

C-SH2) that allow SHP-2 to associate with phosphorylated tyrosine residues 

present on its protein substrates, and a catalytic phosphatase domain (175). On 

the C-terminal domain (CTD) of SHP-2 reside two tyrosine residues (Y542 and 

Y580) which may become phosphorylated, releasing SHP-2 from its autoinhibitory 

conformation and allowing for catalytic PTP activity. Although it is well understood 

that SHP-2 phosphorylation correlates with its activity, the exact tyrosine kinases 

responsible for SHP-2 activation remain unknown.  

 

 Mutations in the PTPN11 gene which encodes SHP-2 have been linked to 

several types of human diseases, including cancer (176)(177)(178)(179). 

Noonan’s syndrome (NS) and Noonan syndrome with multiple letigines (NSML), 

formerly known as LEOPARD syndrome, are diseases in which the regulatory 

mechanisms for SHP-2 activation are altered (180). Activating mutations of SHP-

2, such as E76K, are associated with NS and juvenile myeloid leukemia, and the 

E76K mutation is the most commonly found SHP-2 mutation in NSCLC tumors, 

although the incidence of SHP-2 mutations is low in NSCLC (181). Such activating 

mutations activate SHP-2 by disrupting the auto-inhibitory interactions between the 

N-SH2 and PTP domains, resulting in constitutively active phosphatase activity. 

Additionally, these mutations may impact the protein complex formation capability 

of SHP-2, as demonstrated by Fragale et al.  Specifically, SHP-2 mutants with 

disrupted autoinhibitory activity maintained prolonged binding with adaptor 

proteins Gab1/Grb2 (182).  
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 As previously described, the involvement of SHP-2 (whether through PTP 

or scaffolding activity) in numerous immunomodulatory pathways suggests that 

SHP-2 activity or expression would be capable of influencing PD-L1 levels. The 

factors governing how and when PD-L1 is aberrantly expressed by malignant cells 

are only beginning to be understood. However, there are multiple regulatory levels 

of PD-L1 expression that have been described. For example, the activity of signal 

transduction pathways such as the RAS/Raf/ERK, Jak/STAT, and PI3K/Akt/mTOR 

all have been shown to influence transcriptional activity of PD-L1 (183)(184). More 

specifically, NSCLC patient tumors harboring mutations in the KRAS gene have 

upregulated levels of PD-L1, as well as improved responses to ICI therapy 

compared to patients with wildtype KRAS. Coelho et al. demonstrated that 

oncogenic RAS signaling can upregulate PD-L1 expression by stabilizing PD-L1 

mRNA through the mRNA binding protein tristetraprolin (TTP) (83). Finally, post 

translational modifications to PD-L1 such as glycosylation, ubiquitination, and 

Ser/Thr phosphorylation have been shown to impact PD-L1 protein turnover and 

metabolism, as well as the trafficking of PD-L1 to the cell surface (86)(185).  

 

 As described earlier in chapters 2 and 3, I observed that PD-L1 protein 

significantly and negatively correlates with levels of active (p-Y452) SHP-2 in 

NSCLC patient tumors, and that there also exists a slight positive correlation 

between PTPN11 and CD274 mRNA levels. From my in vitro experimentation in 

chapter 3, I observed increases in PD-L1 mRNA, protein, and surface expression 

following genetic ablation of SHP-2 protein, concurrent with my finding that SHP-2 

activity negatively correlates with PD-L1 expression in human tumors. Importantly, 

I observed that inhibition of SHP-2 phosphatase activity with two small molecule 

allosteric inhibitors of SHP-2 did not impact levels of PD-L1 expression, and thus 

the ability of SHP-2 to enucleate protein-protein complexes may be of greater 

importance than its catalytic PTP activity with regard to PD-L1 expression. To 

begin unraveling the mechanism by which SHP-2 influences PD-L1 expression, I 

first sought to pinpoint the layer of expression at which SHP-2 exerts control, as 
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well as identify any protein binding partners of SHP-2 that may be responsible for 

the PD-L1 phenotypes observed in earlier chapters. 

4.2 Methods 

Cell lines and treatments 

 

For cycloheximide and actinomycin D treatments, NCI-H460 cells were 

seeded at 2x104 cells/well on a 24-well plate in RPMI 1640 containing 10% FBS 

and incubated at 37°C, 5% CO2 for 24 hours. Media was then removed and 

replaced with RPMI 1640 containing 10% FBS and no antibiotics prior to 

transfection with SHP-2 siRNA [30nM] (ThermoFisher) and Lipofectamine 

RNAiMAX (ThermoFisher). After a 48-hour incubation with the lipid complexes, 

media was removed and replaced with RPMI 1640 containing 10% FBS and either 

Cycloheximide [10mg/mL] or Actinomycin D [1mg/mL]. Cells were harvested after 

0, 2, 4, 6, 8, and 10 hours of exposure to either compound in protein sample buffer 

for western blot analysis or buffer RLT (QIAgen) for RNA extraction and RT-qPCR. 

To assess the status of SHP-2 expression in our cell lines of interest NCI-H460, 

A549, and UKY29 cells were seeded at 2x104 cells/well in a 24-well plate in 1mL 

of RPMI 1640 containing 10% FBS and incubated at 37°C, 5% CO2 for 24 hours. 

Designated wells then had media removed and replaced with RPMI 1640 

containing 1% FBS. After 24 hours, designated wells had FBS added back to a 

final concentration of 10% and were allowed to incubate for another 24 hours prior 

to harvest.  

 

For growth factor stimulation assays, NCI-H460, A549, and UKY29 were 

seeded at 2x105 cells/well in all well of a 6-well plate in 3mL of RPMI 1640 

containing 10% FBS and incubated at 37°C, 5% CO2 for 24 hours. For five of the 

wells, media was then replaced with 3mL RPMI 1640 containing 0.1% FBS. After 

24 hours, FBS was added back to four of the starved wells and cells were 
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harvested 1, 2, 4, and 8 hours post addition of FBS. The remaining two wells were 

harvested 48 hours after being plated.  

 

For carfilzomib treatments, NCI-H460, A549, and UKY29 cells were seeded 

at 2x104 cells/well on a 24-well plate in 1mL RPMI 1640 containing 10% FBS and 

incubated at 37°C, 5% CO2 for 24 hours. Cells then were allowed to either remain 

in 10% FBS RPMI 1640 for an additional 48 hours, or media was replaced with 

1mL of 1% FBS RPMI 1640 and allowed to incubate another 24 hours. Finally, 

designated cells had media removed and replaced with 10% FBS RPMI 1640 for 

24 hours. Carfilzomib (SelleckChem) and/or FBS to a final concentration of 10% 

FBS were added 72 hours after initial seeding to designated wells to a final 

concentration of [50nM] for 8 hours prior to harvest. Cells were harvested in 100µL 

protein sample buffer prior to protein separation by SDS-page and western blot 

analysis.  

 

For immunoprecipitations, NCI-H460 cells were seeded on a 60mm plate at 

a density of 1x105 cells in 5mL of RPMI 1640 containing 10% fetal bovine serum 

(FBS), 100 U/mL penicillin, 100 µg/mL streptomycin and maintained at 37°C, 5% 

CO2 for 24 hours. Media was then replaced with 2.5mL of RPMI 1640 containing 

1% FBS and no antibiotics. Cells were transfected with 5mg of a plasmid construct 

encoding wild-type (WT) SHP-2 fused to EGFP (AddGene, plasmid #12283) using 

the Lipofectamine 3000 (ThermoFisher) transfection reagent and incubated for 48 

hours to ensure the expression of SHP-2. Media was then removed, and cells were 

washed with 5mL of ice-cold 1X phosphate buffered saline before lysing the cells 

with 1mL ice-cold IP lysis buffer (50mM HEPES pH 7.5, 150mM NaCl, 1% Triton 

X-100, 10% glycerol, 1.5mM MgCl2, 1mM EDTA) on ice for 5 minutes. 

 

SHP-2 transfection and co-immunoprecipitation 
 

Wildtype (WT)-SHP-2 transfected H460 cells were lysed then transferred into 

a 1.5mL tube, sonicated three times with a handheld sonicator to disrupt cell 
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membranes, and centrifuged for 10 minutes (>13,000xg) at 4°C. Half of the 

supernatant was transferred to a new 1.5mL tube and a monoclonal SHP-2 

antibody (Cell Signaling Technologies, #3397) was added at a dilution of 1:150 

then rotated overnight at 4°C. The remaining supernatant was handled in the same 

manner but without the addition of antibody. 

 

The following day, protein A magnetic beads (10µL slurry per 100µL lysate; 

Cell Signaling Technologies) were pre-washed 3 times with 5 times their volume 

of IP lysis buffer and captured using a magnetic tube rack before being added to 

the cell lysate. The slurry was incubated while rotating for 20 minutes at 4°C. 

Protein-complexed magnetic beads were then collected in a magnetic tube rack, 

washed 5 times with 5 times their volume of IP lysis buffer, washed three times 

with 50mM HEPES pH 7.5, then captured and resuspended in 30µL protein sample 

buffer. The samples were heated to 95°C for 5 minutes. Beads were collected and 

the supernatant was loaded onto a 10% SDS-PAGE acrylamide gel and separated 

at 135V for 70 minutes. The gel was then transferred to a clean glass container 

containing Coomassie blue staining solution (2.5% Coomassie Blue, 10% glacial 

acetic acid, 50% MeOH, 50% dH2O) and incubated, while rocking, at room 

temperature for 60 minutes. Coomassie was then removed, and the gel was 

washed twice with dH2O for 30 minutes before a final overnight de-staining in 

dH2O. The gel was then transferred to a bio-safety cabinet and protein bands were 

excised using a clean razor blade and then transferred to 1.5mL tubes. The 

University of Kentucky Proteomics Core completed mass spectrometry analysis. 

 

CD274 promoter luciferase assay 

 

NCI-H460, A549, and UKY29 cells were seeded at 2x104 cells/well on a 24-

well plate in 1mL RPMI 1640 containing 10% FBS and incubated at 37°C, 5% CO2 

for 24 hours. Media was then replaced with 500µL RPMI 1640 with 1% FBS 

containing no antibiotics prior to transfection with SHP-2 siRNA (ThermoFisher) 

with RNAiMAX (ThermoFisher) to a concentration of [30nM]. After a 24-hour 
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incubation, media was replaced with RPMI 1640 with 10% FBS containing no 

antibiotics and cells were transfected with plasmid vectors containing Renilla 

luciferase with a TK promoter (Promega #E2241) and firefly luciferase with the 

CD274 promoter (Addgene #107003) using Lipofectamine3000 (ThermoFisher). 

Additionally, one group of transfected cells were also treated with RMC-4550 

(SelleckChem) at [20nM]. Media was removed 24 hours post-transfection, and 

cells were washed with 1x phosphate buffered saline. Cells were then lysed by 15 

minutes of incubation with 100µL of passive lysis buffer (Promega #E1910) while 

rocking at room temperature. To measure luminescence, lysate was warmed to 

room temperature and then 20µL was plated onto a white-bottom 96-well plate 

(USA Scientific #5665-5074). The Promega dual-luciferase reporter assay system 

was then used to measure luminescence with a Synergy H1 multi-mode microplate 

reader (BioTek). To control for transfection efficiency, firefly luciferase 

luminescence was standardized to Renilla luminescence by dividing the firefly 

signal values by the Renilla signal values. 

 

Quantitative real-time PCR (qRT-PCR) analysis 

 

Total RNA was extracted from lysed cells using the RNeasy kit (Qiagen). 

cDNA was then generated using the iScript cDNA synthesis kit (BioRad). qRT-

PCR was performed using human TaqMan primer probe sets (Thermo- Fisher) for 

PD-L1 (Assay ID: Hs00204257_m1), SHP-2 (Hs06636344_g1), GAPDH 

(Hs02786624_g1) and β-Actin (Hs99999903_m1). qRT-PCR data were analyzed 

by calculating ΔCt values for PD-L1 by standardizing PD-L1 Ct values against 

those for the averaged Ct values of housekeeping genes GAPDH and β-Actin. 

 

 

 

 

 

 

PD-L1 ΔCt = (PD-L1 Ct) – (GAPDH Ct + β-Actin Ct / 2) 
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Western blot analysis 

 

Following treatment and harvest, cells were lysed with protein sample 

buffer, subjected to at least one -20°C freeze/thaw cycle, sonicated, then heated 

to 95°C for 5 minutes prior to protein separation using 10% SDS-polyacrylamide 

gel electrophoresis (PAGE) at 135V for 80 minutes. Proteins were transferred to a 

nitrocellulose membrane and blocked in Tris-buffered saline (TBS) containing 

0.1% Tween 20 and 5% bovine serum albumin for 30 minutes prior to overnight 

incubation at 4°C with primary antibody: SHP-2 (#3397), PD-L1 (#13684), or 

GAPDH (#2118) (Cell Signaling Technologies). After overnight incubation, 

antibody was removed, and blots were washed with TBS containing 0.1% Tween 

20. Secondary HRP-labeled antibodies were applied to the blot in 5% non-fat, dry 

milk in 1X TBS containing 0.1% Tween 20 for one hour. The blot was washed three 

times for 5 minutes each in 1X TBS containing 0.1% Tween prior to developing 

and detection of HRP signal. Signal was quantified using ImageJ software (NIH) 

and values for SHP-2 and PD-L1 were normalized to GAPDH.  

 

Mass spectrometry 

 

Each gel slice was treated with dithiothreitol (DTT), iodoacetamide (IAA), and 

digested with trypsin. The tryptic samples were filtered with 0.22µM PVDF filters 

and subject to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. 

MS data sets were searched in MASCOT against a custom database containing a 

reviewed dataset of Homo sapiens proteins from Uniprot. 

(https://www.uniprot.org/uniprot/?query=taxonomy:%22Homo%20sapiens%20(H

uman)%20%5b9606%5d%22&fil=organism%3A%22Homo+sapiens+%28Human

%29+%5B9606%5D%22+AND+reviewed%3Ayes). The MASCOT files were 

filtered with peptide medium confident filter (MCF, target peptide false discovery 

rate of 5% for ‘medium’ confidence) to filter out low confidence peptides. 
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4.3 Results 

SHP-2 ablation changes PD-L1 mRNA and protein half-life  

 

To dissect the mechanism by which SHP-2 influences PD-L1 expression, I 

first wanted to determine the role of SHP-2 in either transcription or translation, 

using actinomycin D and cycloheximide treatments, respectively. Cycling H460 

cells with or without ablation of SHP-2 using siRNA were treated with either 

actinomycin D or cycloheximide for 10 hours. siRNA ablation of SHP-2 was chosen 

here to reduce toxicity from transfection and allow for sufficient cell numbers for 

subsequent treatments. mRNA and protein expression of SHP-2, PD-L1 and 

GAPDH were measured by qRT-PCR and western blot, respectively. We 

discovered that in cells lacking SHP-2 then subsequently treated with actinomycin 

D, both PD-L1 protein and mRNA were degraded more rapidly than in cells 

expressing SHP-2 (Figure 4.1A, 4.1B, 4.3). In cells lacking SHP-2 then treated with 

cycloheximide, modest changes in PD-L1 protein and mRNA levels were observed 

when compared to SHP-2 expressing cells (Figure 4.2A, 4.2B, 4.4). Collectively, 

these data suggest that SHP-2 likely functions in regulating mRNA turnover.  

 

SHP-2 ablation increases CD274 promoter activity 

 

To begin investigation of the impact of SHP-2 expression on PD-L1 mRNA 

expression, a CD274 promoter-driven luciferase construct was ectopically 

expressed to measure whether altering SHP-2 expression influences CD274 

promoter activity. I discovered that A549 and UKY29 cells treated with either SHP-

2 siRNA or RMC-4550 had greater CD274 promoter activity compared to control 

(Figure 4.5A, 4.5C). Importantly, these changes in CD274 promoter activity varied 

by cell type, with H460 cells demonstrating no differences in CD274 promoter 

activity in either treatment.  

 

SHP-2 interacts with proteins involved in mRNA processing and cellular 

chaperoning 
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Because SHP-2 appears to influence both PD-L1 mRNA and protein half-

life, I wanted to determine whether SHP-2 is interacting with other proteins that 

might assist in understanding the mechanism used to manage PD-L1 expression. 

I sought to identify protein partners of SHP-2 in cells using co-immunoprecipitation 

followed by mass spectrometry identification of protein partners. Ectopically-

expressed SHP-2 was immunoprecipitated from H460 cells and resolved by SDS-

PAGE. LC-MS/MS was carried out on gel regions subjectively chosen to contain 

prominently stained proteins. We then queried the tryptic protein fragments to 

determine identification of proteins in that slice.  Importantly, the bait protein, SHP-

2, was among the proteins discovered in our analysis. We then generated a list of 

the highest scoring proteins, with scores ranging from 234.93 to 540.88 and amino 

acid coverage ranging from 18.33% to 51.98%. Of these proteins, two (HSP7C, 

GRP78) have been shown to be involved in the chaperoning and proper folding of 

proteins, and the remaining eight (DDX3X, PUF60, CPSF5, EF1A1, EF1A3, 

DDX3Y, RSMB, RSMN) have been shown to be involved in transcriptional 

regulation/activation and mRNA processing (Table 4.1). These results are 

consistent with a role for SHP-2 in either mRNA processing or regulation of 

turnover.  

 

SHP-2 expression is not targeted by the proteasome 

 

During this experimentation, I observed that SHP-2 is poorly expressed in 

NSCLC cells that are actively growing, consistent with the observations of other 

groups (Figure 4.6)(106)(107). Thus, NSCLC cell lines were maintained in low 

serum for assays designed to evaluate the impact of SHP-2 activity or expression. 

I sought to understand why SHP-2 expression was not expressed in cycling cells 

as would be expected of a protein that was crucial for KRAS pathway control. I 

suspected that loss of SHP-2 expression was linked to increased proteasomal 

degradation in cycling cells.  
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To first understand the context of SHP-2 expression as it relates to the cell 

cycle, I first cultured cells in low serum media (0.1% FBS), added back serum to a 

concentration of 10% FBS, and harvested cells after 1, 2, 4, and 8 hours. I 

discovered that in H460 and A549 lines, SHP-2 expression was rapidly and 

substantially decreased after 1 hour, and this reduction in expression was 

maintained through the 8-hour time point (Figure 4.7). To test if the loss of SHP-2 

was mediated by proteasomal degradation, cells were cultured under varying 

media conditions for 72 hours followed by treatment with the selective 26S 

proteasome inhibitor carfilzomib (CFZ). We found that cells maintained in low 

serum conditions (48 hours of 1% FBS RPMI) had the highest levels of SHP-2 

expression, compared with cells in high serum conditions. Importantly, SHP-2 

expression was unaffected following CFZ treatment, suggesting that the loss of 

SHP-2 expression in cycling cells is not due to degradation by the 26S proteasome 

(Figure 4.8)  

4.4 Discussion 

The aim of this final data chapter was to elucidate the mechanism by which 

SHP-2 exerts control over PD-L1 expression. In chapter 3, I observed changes in 

PD-L1 levels at all layers of expression (mRNA, protein, and surface expression) 

in response to genetic ablation of SHP-2 protein. These results suggested that 

SHP-2 had multiple roles on PD-L1 expression, but it was important to understand 

why. It was discovered that in H460 cells treated with actinomycin D, the half-life 

of both PD-L1 mRNA and protein was decreased in cells with reduced SHP-2 

expression, while in cells treated with cycloheximide demonstrated minimal 

changes in PD-L1 mRNA and protein half-life. Thus, the impact of SHP-2 on PD-

L1 expression likely resides in the regulation of mRNA half-life rather than by 

influencing the translation or turnover of PD-L1 protein, potentially in a manner 

similar to that of TTP as described by Coehlo et al. Importantly, these findings 

suggest a previously unreported function of SHP-2 in direct control of mRNA 

expression and metabolism. With these observations in hand, we further 
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hypothesized that SHP-2 serves as a protein scaffold for a multi-protein complex 

involved in mRNA turnover. To begin dissecting novel SHP-2 protein-protein 

interactions that would support our hypothesis, we performed immunoprecipitation 

of SHP-2 followed by mass spectrometry analysis to identify co-

immunoprecipitating proteins. 

 

 From the bioinformatic perusal of the tryptic peptide sequences from the 

mass spectrometry analysis, I uncovered proteins previously identified as: 1) 

components of multi protein complexes, 2) participants in mRNA translation and 

processing, and 3) chaperones of proteins from the endoplasmic reticulum (ER) to 

the cell surface. Of the top 10 scoring proteins from the analysis shown in Table 1, 

two have been shown to serve as chaperones for proteins from the endoplasmic 

reticulum, and eight are involved in transcriptional regulation, mRNA processing 

and maturation. The protein with the most independent hits in the analysis, 

HSP7C, plays significant roles in the transport and folding of newly synthesized 

polypeptides, the formation and dissociation of protein complexes, and can even 

function as a repressor of transcriptional activation (186)(187)(188). The second 

highest scoring protein, DDX3X, is a multifunctional RNA helicase involved in a 

large variety of cellular processes, specifically with regard to RNA transcription and 

metabolism. Importantly, DDX3X contains a tyrosine at residue 104 which may be 

phosphorylated and could serve as a potential interaction site for SHP-2 SH2 

domains (189). Additionally, DDX3X has been reported to have both tumor-

promoting and tumor-suppressive effects, similar to SHP-2, and has been shown 

to have deregulated expression in several types of cancer (124)(189)(190).  

 

 Having established a connection between SHP-2 expression and PD-L1 

mRNA levels in the bioinformatic analyses of tumor data, I wanted to understand 

if SHP-2 and its potential protein partners were capable of impacting PD-L1 

transcriptional activity by influencing activity of the CD274 promoter. I discovered 

that A549 and UKY29 cells with reduced SHP-2 activity or expression maintained 

significantly higher levels of CD274 promoter activity than those that express active 
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SHP-2 (Figure 4.7). This finding further reinforces our hypothesis that SHP-2 

exerts transcriptional control of PD-L1, potentially through its involvement in 

upstream signaling pathways such as the RAS/Raf/ERK and Jak/STAT pathways, 

both of which have been shown to influence CD274 transcriptional activity 

(191)(192). Interestingly, the reductions in SHP-2 activity had minimal impact on 

CD274 promoter activity in H460 cells when compared to A549 and UKY29 cells. 

Across multiple repetitions, H460 cells demonstrated the lowest levels of CD274 

promoter activity of all three cell lines even though they consistently express the 

highest levels of PD-L1 protein (as measured by western blot) (Figure 4.6). This 

suggests that in some cell types, there are post-transcriptional regulatory events 

that modulate the stability of the CD274 mRNA available for translation. It is 

important to note that H460 cells with ablated SHP-2 expression demonstrated a 

more rapid degradation of PD-L1 mRNA and protein, however SHP-2 knockdown 

had no impact on CD274 promoter activity in these cells. Additional repetitions of 

the actinomycin D/cycloheximide experiments, also expanded to A549 and UKY29 

cells, are necessary to help understand these observations and provide additional 

information on if these trends are impacted by cell type. It is also important to 

dissect whether there is an impact of SHP-2 at the CD274 promoter that directs 

transcription, or if SHP-2 serves a protective role for CD274 mRNA by forming a 

complex with eIF1-a and DDX3X at the cap of newly transcribed mRNA that 

influences mRNA stability and delivery to the ribosome. Interestingly, treatment 

with the SHP-2 allosteric inhibitor RMC-4550 similarly increased CD274 promoter 

activity and so the catalytic PTP activity of SHP-2 may bear relevance to 

transcriptional control of PD-L1. However, it is still unclear as to what extent the 

presence of RMC-4550 impacts the proposed SHP-2 protein complex formation. 

 

From our mass spectrometry screen, we identified 8 proteins that are 

involved in mRNA processing, however only one protein (PUF60) has been shown 

to directly bind to the promoter region of genes and regulate their transcriptional 

activity (193). Additionally, our analysis of RNA-seq data from NSCLC patient 

tumors revealed a significant negative correlation (r = -0.253, p<0.0001) between 
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PUF60 and CD274 mRNA. Though there remains the possibility of SHP-2’s direct 

involvement in a complex that binds to the CD274 promoter, further 

experimentation is required to dissect these processes and uncover the 

mechanism by which SHP-2 impacts CD274 transcriptional activity.  

 

 Finally, the expression of SHP-2 primarily in non-cycling cells made it 

difficult to understand how SHP-2 regulates PD-L1 in growing tumor cells. Thus, 

in cycling cells, is SHP-2 expressed only for a brief period to transmit a signal or 

interact with a protein substrate, followed by prompt SHP-2 degradation or 

promoter deactivation? Or are there other mechanisms that limit SHP-2 protein 

expression? I hypothesized that SHP-2 may be a target for degradation by the 

proteasome in cells that are actively dividing, and that SHP-2 expression in cycling 

cells could be both ephemeral and contingent upon the activation of pathways in 

which it serves a necessary function. I discovered that cells rapidly lost expression 

of SHP-2 after the addition of mitogens to low serum cell media. Within 1 hour 

SHP-2 expression was greatly diminished and did not return by the 8-hour time 

point. This suggests that regulation of SHP-2 expression is cell-cycle mediated, 

and that as cells enter the S-phase of the cell cycle, expression of SHP-2 is lost, 

and expression does not return until cells either progress past the S-phase or leave 

the cell cycle completely. To determine whether SHP-2 expression is lost due to 

proteasomal activity, cells were treated with CFZ after starvation and serum 

addition. However, I discovered that CFZ treatment for 8 hours did not prevent the 

degradation of SHP-2, suggesting the 26S proteasome is not responsible for this 

loss of SHP-2 expression. These observations suggest that SHP-2 expression is 

differentially modulated by the replicative status of malignant cells, which is an 

important consideration for pharmacologically inhibiting SHP-2 in vivo.  

 

 Each of the findings in this chapter are also important to consider within the 

context of a human tumor in situ. As noted in earlier chapters, NSCLC tumors are 

comprised of not one singular cell type, but of heterogenous sub-populations of 

cells. As a tumor grows it will recruit blood vessels through the process of 
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angiogenesis to acquire sufficient amounts of oxygen and mitogenic factors. 

However, tumor angiogenesis is not an efficient or articulate process, and so it 

may render parts of the tumor devoid of sustenance, specifically areas like the core 

of tumor, which may become populated by necrotic tissue (194)(195)(196). My 

findings suggest that SHP-2 expression, and its influence on PD-L1 expression, 

may be most prevalent in specific areas of a tumor, such as the core, with slowed 

growth. Furthermore, it suggests that SHP-2 is of greater importance to cells under 

conditions in which survival is of greater importance than replication. Further 

experimentation, such as immunohistochemical interrogation of KRAS-active 

NSCLC tumor biopsies for the co-occurrence of SHP-2 and PD-L1, is required to 

understand whether the in vitro expression patterns mirror that of an actual tumor. 

4.5 Conclusions 

The experimentation in this chapter imparts evidence that SHP-2 regulates 

PD-L1 mRNA half-life. Further, CD274 promoter activity was impacted by a loss of 

SHP-2 expression, thereby further narrowing the scope of SHP-2 to a 

transcriptional regulatory role. Although SHP-2 is not expressed as cells enter S-

phase, evidence presented here shows that SHP-2 is not degraded by the 26S 

proteasome in actively cycling NSCLC cells. Additional experimentation should 

include studies to determine the mechanisms controlling SHP-2 expression in 

cycling cells. Finally, using the information gleaned from the immunoprecipitation 

analyses, I predict that multi-protein complexes, controlled by transient SHP-2 

expression, are the regulatory agents of PD-L1 control. These observations hold 

both clinical and basic biological implications. Ablation of SHP-2 may synergize 

with PD-L1 blockade in NSCLC and may be predicted by the expression levels of 

PD-L1 from a biopsy as standard of care. Thus, dissection of the unreported 

activities of SHP-2 protein complexes in the regulation of mRNA processing and 

trafficking of PD-L1 may offer additional insights for both biomarkers and therapy. 
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Figure 4.1. SHP-2 expression influences PD-L1 protein half-life in 
actinomycin D treated cells. A. NCI-H460 cells were seeded at 2x104 
cells/well on a 24-well plate in RPMI 1640 containing 10% FBS and 
incubated at 37°C, 5% CO2 for 24 hours. Media was then removed and 
replaced with RPMI 1640 containing 10% FBS and no antibiotics prior to 
transfection with SHP-2 siRNA [30nM] for 48 hours prior to treatment with 
actinomycin D [1ug/mL] and timepoints were taken every 2 hours for 10 
hours. B. Densitometric quantification of the representative western blot of 
PD-L1 signal normalized to GAPDH in actinomycin D treated cells. 

A 

B 
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A 

B 

Figure 4.2. SHP-2 expression modestly influences PD-L1 protein 
half-life in cycloheximide treated cells. A. NCI-H460 cells were 
seeded at 2x104 cells/well on a 24-well plate in RPMI 1640 containing 
10% FBS and incubated at 37°C, 5% CO2 for 24 hours. Media was 
then removed and replaced with RPMI 1640 containing 10% FBS and 
no antibiotics prior to transfection with SHP-2 siRNA [30nM] for 48 
hours prior to treatment with cycloheximide [10ug/mL] and timepoints 
were taken every 2 hours for 10 hours. B. Densitometric quantification 
of the representative western blot of PD-L1 signal normalized to 
GAPDH in cycloheximide treated cells. 
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Figure 4.3. SHP-2 expression influences PD-L1 mRNA half-life in 
actinomycin D treated cells. A Time-course of mRNA expression levels 
of CD274 (PD-L1) in NCI-H460 cells treated as previously described in 
Figure 4.1 with actinomycin D. 
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Figure 4.4. SHP-2 expression does not impact PD-L1 mRNA half-life 
in cycloheximide treated cells. A Time-course of mRNA expression 
levels of CD274 (PD-L1) in NCI-H460 cells treated as previously described 
in Figure 4.2 with cycloheximide. 
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A 

Figure 4.5. CD274 transcriptional activity is increased in cells with 
ablated SHP-2 activity or expression. A. Ectopic expression of a 
CD274 promoter driven luciferase cassette (pGL3 2 kb prom. CD274) in 
A549 cells, B. H460 cells, or C. UKY29 cells either untreated after 
transfection or treated with SHP-2 siRNA [30nM] or RMC-4550 [20nM]. 
Firefly luminescence expression was normalized to Renilla luminescence 
signal driven by the thymidine kinase promoter. 
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Figure 4.6. SHP-2 is not expressed in actively cycling cells. NCI-H460, 
A549, and UKY29 cells were seeded at 2x104 cells/well in a 24-well plate in 
1mL of RPMI 1640 containing 10% FBS and incubated at 37°C, 5% CO2 

for 24 hours. Cells labeled 1% and S+ then had media removed and 
replaced with RPMI 1640 containing 1% FBS. After 24 hours, cells labeled 
S+ had FBS added back to a final concentration of 10% and were allowed 
to incubate for another 24 hours prior to harvest. Cells labeled 10% 
remained in 10% media for the full 72 hours.  
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Figure 4.7. SHP-2 expression is lost as cells re-enter the cell cycle. NCI-
H460 and A549 cells were seeded at 2x105 cells/well in all well of a 6-well 
plate in 3mL of RPMI 1640 containing 10% FBS and incubated at 37°C, 5% 
CO2 for 24 hours. For five of the wells, media was then replaced with 3mL 
RPMI 1640 containing 0.1% FBS. After 24 hours, FBS was added back to 
four of the starved wells and cells were harvested 1, 2, 4, and 8 hours post 
addition of FBS. Lanes labeled 10% remained in 10% media for 48 hours, 
and well labeled 1% were harvested 24 hours after being changed to 1% 
media.  
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Figure 4.8. Carfilzomib treatment has no impact on SHP-2 
degradation. For carfilzomib treatments, NCI-H460, A549, and UKY29 
cells were seeded at 2x104 cells/well on a 24-well plate in 1mL RPMI 1640 
containing 10% FBS and incubated at 37°C, 5% CO2 for 24 hours. Cells 
then were allowed to either remain in 10% FBS RPMI 1640 for an 
additional 48 hours, or media was replaced with 1mL of 1% FBS RPMI 
1640 and allowed to incubate another 24 hours (lanes labeled 1%). Finally, 
designated cells had media removed and replaced with 10% FBS RPMI 
1640 for 24 hours. Carfilzomib and/or FBS to a final concentration of 10% 
FBS were added 72 hours after initial seeding to designated wells to a final 
concentration of [50nM] for 8 hours prior to harvest. Wells labeled S+ 
received FBS for 8 hours in addition to carfilzomib. 
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Protein Score % 
Coverage 

Function 

SHP-2 648.58 48.57 Protein tyrosine phosphatase 

HSP7C 540.88 35.29 Chaperone, protein folding, proteolysis 
activation 

DDX3X 511.12 33.08 RNA-helicase, binds rG4s structures 

PUF60 482.65 30.77 DNA/RNA binding protein, RNA splicing, 
transcription regulation 

CPSF5 387.32 51.98 Cleavage factor complex, activator of 
pre-mRNA-3' cleavage 

EF1A1 353.86 35.06 Promotes tRNA binding during peptide 
synthesis 

EF1A3 353.86 35.06 Promotes tRNA binding during peptide 
synthesis 

DDX3Y 353.09 24.55 RNA-helicase, binds rG4s structures 

GRP78 321.38 22.94 ER chaperone, protein folding, degrades 
misfolded proteins 

RSMB 244.19 18.33 pre-mRNA splicing, SMN-Sm complex, 
component of snRNPs 

RSMN 244.19 18.33 pre-mRNA splicing, SMN-Sm complex, 
component of snRNPs 

Table 4.1. Top 10 scoring proteins identified in LS-MS/MS analysis. 
Mass spectrometry analysis of proteins which co-immunoprecipitated 
with SHP-2, ranked by percent coverage and categorized by function. 



 

 

 

CHAPTER 5.  

5.1 Overview 

The work described herein utilizes the immense power of publicly available 

gene and protein expression data to serve as a quick and effective tool to form a 

foundation upon which the logical development of a discretely testable hypothesis 

may be formatted for benchtop laboratory experimentation. Given the importance 

of SHP-2 to numerous oncogenic pathways, the multifaceted functionality of SHP-

2 as both a tyrosine phosphatase and a protein scaffold, and the strong correlation 

between SHP-2 activity and PD-L1 protein expression in patient tumors, I 

hypothesized that SHP-2 regulates PD-L1 expression through the 

enucleation of a protein complex that influences PD-L1 mRNA expression 

and metabolism. 

 

Indeed, the findings described in this work bear clinical and translational 

significance by suggesting that inhibition or targeted degradation of SHP-2 may 

synergize with PD-L1 blockade, especially in KRAS-driven NSCLC. An important 

caveat of this suggestion is the lack of SHP-2 in growing cells, or at least those in 

S-phase. However, the true value of this work lies not in the expedited application 

of synergistic drug combinations, but rather in the expansion of knowledge 

regarding the basic biology behind the anomalous utilization of immune checkpoint 

proteins by malignant cells. Though arguably the greatest achievement in cancer 

therapy of this century, the optimal application of immune checkpoint inhibitors 

remains restricted by a lack of understanding behind the regulatory mechanisms 

that govern ICI target expression. These studies, through the interrogation of the 

molecular mechanisms underpinning PD-L1 expression, function to ameliorate the 

shortcomings of modern ICI therapeutic interventions. Furthermore, the 

investigation of the biological relationship between SHP-2 and PD-L1 has revealed 

the potential of previously unreported functions of SHP-2 in the trafficking of 
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proteins and processing of mRNA. These revelations present the potential for new 

therapeutic avenues that manipulate these novel mechanisms of PTPs in cancer, 

further accentuating the value of basic biology research in the field of cancer 

therapeutics.  

 

Summary of Results 

 

To begin my exploration into the relationship between SHP-2 and PD-L1 

expression, I turned first to one of the most powerful cancer informatic databases 

available to date: The Cancer Proteome Atlas, and the NCI Genetic Data 

Commons. These databases contain protein and gene expression data with 

substantial sample sizes of real-world patient tumors across a plethora of cancer 

subtypes. Additionally, I looked to the Gene Expression Omnibus (GEO), a 

database that serves as depository for published results. While the data contained 

in the TCPA/GDC predates the advent of ICIs in the clinic, GEO provides data from 

smaller studies that, in some cases, collected gene expression data from patients 

who did or did not respond to ICI therapy. Together, the information contained in 

these three databases was used to address two research questions: does there 

exist a correlation between SHP-2 activity/expression and PD-L1 expression, 

and does the expression of SHP-2 correlate to response to ICI therapy? 

 

Upon interrogation of reverse-phase protein array data for lung 

adenocarcinoma (LUAD) patients (n=362) I uncovered a significant negative 

correlation between active SHP-2 and PD-L1 protein levels. Interestingly, when I 

analyzed mRNA expression of SHP-2 and PD-L1 for these same 362 patient 

tumors, I uncovered no significant correlations in mRNA levels. Upon expanding 

our analysis to the entire LUAD dataset (n=585), I discovered a slight and 

significant positive correlation in SHP-2 and PD-L1 mRNA. These findings suggest 

that these two proteins may be co-expressed in NSCLC tumors, and the activity of 

SHP-2 is used to more finely tune tumoral expression of PD-L1.  
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Next, I turned to GEO to find smaller studies that analyzed malignant cells 

for SHP-2 and PD-L1 expression that also contained data for response to immune 

checkpoint inhibition, as the GDC/TCPA was lacking ICI response data. I found 

that, although PTPN11 mRNA expression maintained no significant correlation to 

ICI response in both melanoma or NSCLC, PTPN11 and CD274 mRNA did weakly 

associate in melanoma. Furthermore, I found that CD274 mRNA levels were 

associated with response to ICI in NSCLC tumors, an observation made by many 

others that supports the current clinical ICI treatment recommendation of ICI usage 

in patients with tumors with a PD-L1 tumor proportion score ≥50%. 

 

Finally, I conducted a similar correlation analysis of proteins that co-

precipitate with SHP-2 in KRAS-active NSCLC cells, detailed in chapter 4. The 

protein which I had the most interest in, DDX3X, had a strong positive correlation 

with SHP-2, suggesting that these proteins are indeed co-expressed not only in 

NSCLC cells in vitro, but in real-world patient tumors as well. Additionally, both 

DDX3X protein and mRNA are expressed in cycling and non-cycling H460, A549 

and UKY29 cells 

 

Following the insight gained from our bioinformatic analysis, I used several 

methods to ablate SHP-2 expression and activity and measured their effects on 

PD-L1 expression at the levels of mRNA, total protein, and cell surface protein. I 

hypothesized that reductions in SHP-2 activity or expression would result in 

increases to PD-L1 expression in KRAS-active NSCLC cells. I used two 

allosteric inhibitors (SHP099 and RMC-4550) to inhibit the phosphatase activity of 

SHP-2. To diminish SHP-2 expression, I used both siRNA to prevent PTPN11 

mRNA translation, and CRISPR/Cas9 mediated knockout to edit the PTPN11 

genomic template and prevent PTPN11 mRNA expression altogether.  

 

My experimentation revealed that changes in PD-L1 expression were 

primarily in response to genetic ablation of SHP-2 protein, rather than 

pharmacological inhibition. Genetic ablation of SHP-2 removes both its ability to 
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enucleate protein complexes and its catalytic phosphatase activity. Allosteric 

inhibition of SHP-2 prevents phosphatase activity, but it is unknown to what extent 

this type of inhibition influences protein-protein interactions of SHP-2. However, it 

is important to note that the TCPA dataset did not contain expression data for total 

SHP-2, only for pY542-SHP-2. At the mRNA and total protein levels we observed 

a significant increase in PD-L1 expression following SHP-2 CRISPR knockouts, 

but not with siRNA knockdowns. At the level of cell surface expression, I again 

observed significant increases in PD-L1 levels in cells with diminished SHP-2 

expression. Taken together, our findings provide a novel mechanism for the 

aberrant expression of PD-L1 in KRAS-active NSCLC. 

 

Having observed increases in PD-L1 at multiple levels of expression 

following SHP-2 knockout, but not small molecule inhibition, I next hypothesized 

that multiprotein complexes enucleated by SHP-2 are the regulatory agents 

of transcriptional control of PD-L1. To test this, I began by using actinomycin D 

and cycloheximide to measure the impact of SHP-2 knockdown on PD-L1 mRNA 

and protein half-life. I discovered that cells lacking SHP-2 and treated with 

actinomycin D, both PD-L1 protein and mRNA were more rapidly degraded (and 

to a lesser extent the same was observed with cycloheximide) suggesting that 

SHP-2 likely functions in regulating mRNA turnover. I immunoprecipitated SHP-2 

coupled with mass spectrometry to identify co-precipitating protein partners. 

Interestingly, the top ten scoring proteins were involved in either mRNA processing 

or as ER chaperones, observations concurrent with my discoveries from chapter 

3. These findings are highly significant as they suggest previously unreported 

functions of SHP-2 complexes in the regulation of mRNA turnover and protein 

trafficking but will require more experimentation to definitively understand.  

 

I followed up on these observations by utilizing a luciferase reporter assay 

to measure the transcriptional activity of the CD274 promoter in the presence or 

absence of SHP-2. I discovered that SHP-2 knockdown cells had higher levels of 

CD274 promoter activity than those expressing SHP-2, though importantly, this 
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varied by cell type. It is worth noting that H460 cells, the cell line I used to measure 

mRNA stability, had no changes in promoter activity following SHP-2 ablation or 

inhibition. This suggests that the function of the proposed SHP-2 complex may not 

be to directly interact with the CD274 promoter, but rather to post-transcriptionally 

regulate mRNA. Though all three cell lines harbor activating mutations in the KRAS 

gene, they also harbor additional mutations in pathways known to regulate PD-L1 

transcriptional activity. For example, H460 cells harbor an activating mutation in 

PIK3CA, the catalytic subunit of the PI3K complex. Constitutive activation of this 

pathway may be responsible for the high levels of CD274 transcriptional activity in 

untreated H460 cells and may serve as an explanation for why diminished SHP-2 

activity/expression had no impact on CD274 promoter activity in these cells (74). 

 

 Finally, I used the selective proteasome inhibitor carfilzomib and stratified 

media conditions to discern under what conditions cells express SHP-2 and 

investigate a potential mechanism of SHP-2 turnover. I found that as cells enter S-

phase, SHP-2 expression is rapidly diminished, though not through proteasomal 

degradation. It is possible that ablation of SHP-2 activity in these cell lines impacts 

CD274 mRNA expression at multiple levels; first, by disrupting the transmission of 

signaling cascades that positively regulate CD274 mRNA expression (such as the 

RAS/Raf/ERK cascade) (83)(106)(107), and then also by preventing the formation 

of SHP-2 protein complexes which negatively regulate CD274 mRNA stability or 

metabolism, as suggested by my own experimentation.  

 

Indeed, the complex interplay between these proteins and the manner by 

which they interact and intersect at multiple nodes of molecular operations poses 

a great challenge in elucidating the mechanism of SHP-2s regulation of PD-L1. 

Future experimentation which picks apart the involvement of SHP-2 in these 

signaling cascades from my newly proposed mechanisms of SHP-2 complexes in 

mRNA processing will be necessary to elucidate the role of SHP-2 in the 

expression of PD-L1.  
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Experimental limitations 

 

In these studies, I combined the power of publicly available gene and 

protein expression data with benchtop biochemical analysis to test my hypothesis 

that SHP-2 influences PD-L1 expression in KRAS-active NSCLC. Through this 

analysis, I demonstrated that SHP-2 activity and expression impact PD-L1 levels 

both in patient NSCLC tumors and in vitro cell culture. Furthermore, I began 

investigating possible mechanisms by which SHP-2 does this and uncovered 

previously unreported functions of SHP-2 as well as provide a mechanism for SHP-

2 degradation in replicating cells. Though I am confident in both the reliability and 

reproducibility of these findings, there are important considerations that must not 

be ignored regarding the experimental design and biological/bioinformatic models 

applied in these studies. 

 

Through my analysis of protein expression data deposited on TCPA, I 

uncovered a significant negative correlation between SHP-2 activity and PD-L1 

expression. However, the TCPA data did not include expression levels of total 

SHP-2 protein, only the Y542 activated form. As a result of this, I am unable to 

dissect the impact of inactive from active SHP-2, particularly as it relates to the 

catalytic phosphatase activity of the protein verses its protein enucleation 

capabilities. The TCPA data also did not include protein expression for any of the 

top 10 identified protein hits from the mass spec screen, limiting the usefulness of 

the combined bioinformatic/biochemical methods used. Though the sample size of 

TCPA NSCLC patient samples was still several hundred (n=362) this was still a 

subset of the full TCGA-LUAD data set (n=585) and thus further limited the power 

of the analysis. Thankfully, these shortcomings were attenuated by the more 

complete data contained in the GDC, however this dataset too had its own 

limitations. One aim of my bioinformatic analyses was to understand how SHP-2 

expression correlated to ICI response, but the GDC contained incomplete or 

missing drug response data. And lastly, the datasets acquired from GEO were 
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limited by either small sample sizes (n<30), non-NSCLC patient samples, or not 

entirely complete ICI response data.  

 

Following the results of my informatic analyses, I tested the effects of 

diminished SHP-2 activity or expression on PD-L1 expression in KRAS-active 

NSCLC cells. The major limitation of these studies is that all my work was confined 

to cell-based assays, and so the scope of my observations does not cross into how 

the expression of these two proteins relate within an actual living organism. I also 

observed that expression of SHP-2 was greatly reduced in cells that are actively 

cycling, and so to allow for the expression of the target of my small molecules and 

genetic knockouts, it was necessary to culture the cells in low serum containing 

media. The fact that cells were not cycling in these experiments results in 

alterations in the expression of genes that regulate cell cycle progression, or those 

that are expressed more strongly in conditions in which survival outweighs 

proliferation. Though these cells were certainly impacted on a molecular level by 

the lack of mitogenic factors which disallowed cell cycle progression, this model 

does indeed reflect the hypoxic, mitogen devoid conditions and non-cycling cell 

populations that exist within actual tumors. In my experiments that called for 

ablated SHP-2 expression, the differential efficacy of siRNA versus CRISPR/Cas9 

mediated knockdown is not to be ignored. Furthermore, the transfection of these 

cells with lipid complexes had increased toxicity compared to that of the small 

molecule inhibitors, and so the less efficacious (and also less toxic) method of 

siRNA ablation was more appropriate for experiments involving cycloheximide or 

actinomycin D. Additionally, both the cycloheximide/actinomycin D and co-

immunoprecipitation experiments were carried out only in the H460 cell line, not in 

A549 or UKY29 cells. Lastly, though the clinicogenomic analyses of my top ten 

mass spec hits provided additional evidence for the co-expression and potential 

interactions of these proteins and SHP-2, reverse pulldowns of the identified 

proteins followed by analysis for the presence of SHP-2 is required to reinforce my 

conclusions.  
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Conclusions and future directions 

 

The work described herein successfully identified SHP-2 as a protein that 

could influence the expression of PD-L1 through the combined application of 

cancer informatics and biochemical analyses. In doing so, I also uncovered new 

information about the biological functions of SHP-2 in NSCLC cells. In these 

studies, I demonstrated the usefulness and power of informatic analyses of publicly 

available datasets such as TCPA and GDC, which helped to focus the aim of my 

biochemical experimentation and expedite the interrogation of my hypotheses. My 

most significant finding is a new mode of regulation for PD-L1 in NSCLC cells 

through the activity and expression of SHP-2. Furthermore, these observations 

suggest that the inhibition of SHP-2 would synergize with PD-L1 blockade in 

NSCLC patients, which bears a great deal of clinical relevance as SHP-2 inhibitors 

are already on their way through clinical trials. Through my biochemical analyses, 

I also was able to uncover several previously unreported biological functions of 

SHP-2. First, of the top ten hits from my mass spec analysis, eight of these proteins 

are directly involved in the regulation and processing of mRNA, which until now, 

SHP-2 was not known to interact with. The other two proteins identified were both 

ER chaperone proteins, again suggest another previously unknown function in the 

trafficking of proteins to the cell surface.  

 

Based upon my findings, my working hypothesis is that SHP-2 forms a 

complex with the RNA helicase DDX3X and eIF-1a at the cap of newly transcribed 

mRNA that functions to negatively regulate PD-L1 expression (Figure 5.1). It may 

do this by altering mRNA stability or half-life, or by participating in the chaperoning 

of CD274 mRNA to the ribosome, impacting the translation of CD274 mRNA into 

protein. At the same time, there also exists the possibility that ablation of SHP-2, 

specifically in KRAS active cells, diminishes the activity of signaling pathways 

known to positively influence PD-L1 transcriptional activity, thus simultaneously 

increasing PD-L1 expression through the removal of the negative regulatory SHP-
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2 complex and decreasing PD-L1 expression through the reduced activation of 

intersecting signaling pathways.  

 

Moving forward, I plan to continue my investigation of GEO datasets which 

include NSCLC patient tumors treated with ICIs as more mature data for ICI 

treatment in this tumor subtype becomes available. I have also generated both 

hyperactive and catalytically inactive mutants of SHP-2 which I plan to transfect 

into these same cells and observe their impact on PD-L1 expression and which 

may help to dissect the roles of SHP-2 signal transduction from complex formation 

as they relate to CD274 mRNA expression. The findings of the mass spec 

screening provide many potential avenues for further experimentation, however I 

have chosen the most promising candidate, DDX3X, to be the first protein for which 

I conduct reverse immunoprecipitation to confirm its interaction with SHP-2. 

Furthermore, I will knock out DDX3X with CRISPR/Cas9 and conduct a similar 

analysis to that detailed in chapter 3. Lastly, my finding that SHP-2 is not degraded 

by the proteasome in actively cycling cells, but through a different unknown 

mechanism, lays the groundwork for additional experimentation that further details 

the precise nature of how and why replicating NSCLC cells eliminate SHP-2.  

 

 



 

 

 

  

3’ 

5’ 

CD274 

CD274 mRNA 

Figure 5.1. Working hypothesis for the mechanism of PD-L1 
regulation by SHP2-. SHP-2 forms a complex with the RNA helicase 
DDX3X and eIF-1a at the cap of newly transcribed mRNA that functions 
to negatively regulate PD-L1 expression. It may do this by altering 
mRNA stability or half-life, or by participating in the chaperoning of 
CD274 mRNA to the ribosome, impacting the translation of CD274 
mRNA into protein. 
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APPENDIX 1. TABLE OF ABBREVIATIONS 

 

Abbreviation Gene name Protein name 

VEGF VEGF Vascular endothelial growth factor  

HIF-a HIF-a Hypoxia-inducible factor 1-alpha 

p53 TP53 Cellular tumor antigen p53 

Bax BAX Apoptosis regulator BAX 

Bcl-2 BCL2 B-cell lymphoma 2 

ABL1 ABL1 ABL proto-oncogene 1 

BCR BCR Breakpoint cluster region protein 

EGFR/Her-2 EGFR Epidermal growth factor receptor 

PI3K PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase 

Akt PKB Protein kinase B 

mTOR MTOR Mammalian target of rapamycin 

JAK JAK Janus Kinase 

STAT STAT Signal transucer and activator of transcription 

SHP-2 PTPN11 SH2 containing protein tyrosine phosphatase 

PTEN PTEN Phosphatase and tensin homolog 

CD4 CD4 Cluster of differentiation 4 

CD8 CD8 Cluster of differentiation 8 

PD-1 PDCD1 Programmed cell death protein receptor 1 

PD-L1 CD274 Programmed cell death protein ligand 1 

KRAS KRAS Kirsten ras oncogene homolog 

BRAF BRAF1 B-Raf Proto-Oncogene, Serine/Threonine Kinase 

ALK ALK ALK Receptor Tyrosine Kinase 

MET MET MET proto-oncogene receptor tyrosine kinase 

ROS ROS1 ROS Proto-oncogene 1 

STK11 STK11 Serine/threonine kinase 11 

SOS SOS1 Son of Sevenless nucleotide exhange factor 

Grb2 GRB2 growth factor receptor bound protein 2 

Raf RAF1 Raf-1 proto-oncogene serine/threonine kinase 

MEK MAP2K Mitogen-activated protein kinase kinase 1 

Erk MAPK1 Mitogen-activated protein kinase 1 

TIAM1 TIAM1 TIAM Rac1 Associated GEF1 

Rac RAC1 Rac family small GTPase 1 

Rho RHO Rhodopsin 

PLC PLCG1 Phospholipase C Gamma 1 

PKC PRKCA Protein kinase C 

CTLA-4 CD152 Cytotoxic T-lymphocyte-associated protein 4 



 

113 

 

CD28 CD28 Cluster of differentiation 29 

TCR TRA T-cell receptor alpha 

B7 CD80 B-lymphocyte activation antigen B7 

PTPRG PTPRG Receptor-type tyrosine protein phosphatase gamma 

PRL PRL Prolactin 
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