
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Biology Biology 

2021 

IMPACT OF SHORT MEDITATION ON ATTENTIONAL IMPACT OF SHORT MEDITATION ON ATTENTIONAL 

PERFORMANCE PERFORMANCE 

Lauren E. Guerriero 
University of Kentucky, guerrieroren@gmail.com 
Author ORCID Identifier: 

https://orcid.org/0000-0001-5641-7794 
Digital Object Identifier: https://doi.org/10.13023/etd.2021.357 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Guerriero, Lauren E., "IMPACT OF SHORT MEDITATION ON ATTENTIONAL PERFORMANCE" (2021). 
Theses and Dissertations--Biology. 78. 
https://uknowledge.uky.edu/biology_etds/78 

This Doctoral Dissertation is brought to you for free and open access by the Biology at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Biology by an authorized administrator of UKnowledge. For 
more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/biology_etds
https://uknowledge.uky.edu/biology
https://orcid.org/0000-0001-5641-7794
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Lauren E. Guerriero, Student 

Dr. Bruce O'Hara, Major Professor 

Dr. Jessica Santollo, Director of Graduate Studies 



IMPACT OF SHORT MEDITATION ON ATTENTIONAL PERFORMANCE 

________________________________________ 

DISSERTATION 
________________________________________ 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Arts and Sciences 
at the University of Kentucky 

By 
Lauren “Ren” E. Guerriero 

Lexington, Kentucky 
Director: Dr. Bruce F. O’Hara, Professor of Biology 

Lexington, Kentucky 
2021 

Copyright © Lauren “Ren” E. Guerriero, 2021 
https://orcid.org/0000-0001-5641-7794 

https://orcid.org/0000-0001-5641-7794?lang=en


ABSTRACT OF DISSERTATION 

IMPACT OF SHORT MEDITATION ON ATTENTIONAL PERFORMANCE 

Meditation describes a large variety of traditions that all include the conscious 
focus of attention.  By maintaining attention, meditators experience both acute and long-
term changes in physiology, anatomy, and cognitive performance.  The type of 
performance benefit is believed to depend, at least in part, on the specific type of mental 
training.  What is much less clear in the literature is the impact of a single session of 
meditation on the brain and how the acute changes could impact performance.  Studies in 
advanced meditators show an increase in neuronal coordination and slowing of neuronal 
firing across many regions in the brain, but this remains poorly studied in novices.  It is 
also unknown how neural dynamics fluctuate over time during meditation, as most 
studies have assumed the changes remain relatively constant.   

To investigate this, non-meditators were taught a simple eyes-closed focused 
breathing meditation.  This technique is common to many meditation traditions and is 
often used at the start or end of more advanced meditation techniques.  Using a within 
subject design, attention and vigilance were measured using the psychomotor vigilance 
test (PVT).  Novice meditators showed improvement on the PVT with 20 minutes, and 
even 5-minutes of meditation in a large classroom setting.   

Using electroencephalography, EEG, the neural dynamics during a single session 
of 20-minute meditation were investigated.  This exploratory analysis also implemented a 
phase synchronization measure of coherence, mean phase coherence (MPC), which is 
novel to the meditation field.  Results suggest that MPC may have identified regions of 
high coherence during meditation that are also correlated with improved PVT attentional 
performance.  The results also suggest that meditation is a dynamic neural process that 
requires more careful analysis into changes over time (across a single meditation bout). 
Finally, results suggest that “control” conditions need to be more systematically studied, 
as many conditions may show similar benefits or neural dynamics to meditation.  

KEYWORDS: Meditation, attention, performance, EEG, neural dynamics, mean phase 
coherence 
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CHAPTER 1. INTRODUCTION 

Meditation is the conscious control of attention.  While this is a broad concept, 

particularly in how it is used in many cultural traditions, all forms of meditation involve 

manipulating the state of mind and regulating internal attention (C. Kaur & P. Singh, 

2015).  Some of the earliest texts describing meditation appear in the Upanishads, which 

are believed to be written between 900-500 BCE (Subramanya & Telles, 2009).  Since 

that time almost all major religions have developed some form of meditation.  This 

mental training has become widespread outside of religious traditions and is used for self-

actualization, stress reduction, and improving mental well-being (Lee et al., 2018).   

Meditative practices can be generally categorized into two groups: focused 

attention and open monitoring (C. Kaur & P. Singh, 2015; Lee et al., 2018; Travis & 

Shear, 2010).  Concentrative or focused attention meditations (FA) rely on focusing on a 

single “object,” such as “the breath”, a single word, or a mantra.  In contrast, open 

monitoring (OM), or mindfulness meditations, do not focus on any single stimulus or 

experience; instead, the intention is to monitor thoughts as they come without passing 

judgment.   

However, not all meditation researchers use these two categories. Some 

researchers consider it too simplistic in categorizing the wide variety of meditation 

traditions. Travis and Shear argue that transcendental meditation (TM), a meditative 

practice that involves automatic self-transcending, belongs in a third distinct category 

(Travis & Shear, 2010).  Further, “loving kindness” meditation, which focuses on 

developing love and kindness toward the self and then extending to others, combines 

elements of both FA and OM (Dominique P Lippelt et al., 2014).   
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1. Early Meditation Research – 1960s and 70s

Meditation research initially became popular in the 1960s and 1970s when

researchers studied the physiology of yogis, practitioners of Transcendental meditation 

(TM), and mindfulness meditators.  Yoga consists of a wide variety of religious and 

philosophical traditions spanning many centuries in India, with meditative practices 

focusing on inner peace or enlightenment achieved in part by reducing distractions from 

internal or external stimuli (Aftanas & Golocheikine, 2001).  Transcendental meditation 

(TM), a type of FA meditation focuses on a mantra/sound with the intent to experience 

transcendental consciousness (Travis et al., 2002). 

While technologically limited, these early studies laid an important groundwork in 

our current understanding of meditation-induced physiological changes. The findings 

indicated that meditation induces a hypometabolic state; meditators had slower 

respiration rates, decreased galvanic skin responses, and reduced heart rates than non-

meditators (Bagchi, 1958; Kasamatsu & Hirai, 1966; Wallace, 1970). TM and other FA 

meditations also induce a hypometabolic state during practice as compared to rest 

(Benson et al., 1975; Elson et al., 1977; Morse et al., 1977).  These physiologic changes 

were attributed to decreased sympathetic nervous system activation (Davidson, 1976; 

Lang et al., 1979) and increased parasympathetic activation (Bujatti & Biederer, 1976). 

However, other studies found no such change – or even opposite changes with heart rate 

and respiration (Das, 1957). These conflicting results have been attributed to the 

variability in types of meditation practices and difference in experimental designs and 

types of subjects. Still, recent research is likewise inconclusive: some show decreased 

sympathetic activity (Walton et al., 1995; Young & Taylor, 1998) and increased 



3 

parasympathetic activity (Kubota et al., 2001; Young & Taylor, 1998), others show no 

impact on autonomic activity (using heart rate variability, (Takahashi et al., 2005). 

1.1.1 Early EEG studies of meditation  

These early studies relied on electroencephalography (EEG) to study neural 

dynamics, a way to record electrical activity of the human brain non-invasively (İnce et 

al., 2020).  By placing electrodes on a person’s scalp, EEG can measure changes in 

electrical current that indicate changes in the activity of brain synapses, providing results 

in the form of electric potentials (Teplan, 2002).  The currents detected by EEG are 

mostly due to the dendritic excitation of pyramidal neurons in the cerebral cortex. This is 

because the pyramidal neurons are close to the measurement electrodes and their signal 

masks other electrical activity. Thus, deeper neuronal dynamics are not measured by EEG 

(Teplan, 2002). 

To quantify wave magnitudes, EEG data is Fourier transformed to determine the 

power spectrum at these different frequencies (Teplan, 2002).  Although the exact 

frequency intervals vary based on definition, the waves are defined as: delta (0.5-3 Hz or 

1/sec), theta (3-7 Hz), alpha (7-13 Hz), beta (13-30 Hz), and gamma (>30 Hz) (slowest to 

fastest).  Contributions of all waves are seen in all EEG at all times, but the relative 

amounts of these change during different activities (Teplan, 2002).  The first “brain 

wave” identified in humans was the Berger wave, or alpha wave, which becomes more 

prominent when the eyes are closed (Barry et al., 2007; İnce et al., 2020). We now 

understand the alpha eye-closed wave to be due to the ocular cortex/ occipital cortex not 

receiving any visual signals and a synchronization of neurons at this frequency (Barry et 

al., 2007).   
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EEG studies during the 1960s and 1970s showed that experienced meditators had 

different neurophysiology compared to non-meditators. Specifically, meditation showed a 

slowing of cortical activity – moving from the faster beta waves common while awake to 

the slower alpha and theta rhythms (Anand, 1961; Banquet, 1973; Kasamatsu & Hirai, 

1966; Wallace, 1970). Further, some tradition-specific patterns emerged. During 

meditation, Samadhi yogis were found to have higher alpha waves (compared to other 

meditators, (Anand, 1961); Buddhist Zen meditators showed alpha waves in the frontal 

and central cortical regions and theta wave transient bursts after 20 minutes of practice 

(compared to non-meditator controls, (Kasamatsu & Hirai, 1966); and transcendental 

meditation increased gamma power, specifically at 40 Hz (compared to non-meditator 

controls, (Banquet, 1973).   

It is important to note that EEG measurements common in these early studies 

have several limitations. Because individual neurons produce undetectably small electric 

potentials, EEGs can detect only the summed activity of many neurons at a threshold still 

detectable through the scalp, skull, and meninges (Teplan, 2002). Still, though these early 

studies lacked spatial information due to use of few electrodes and computational 

limitations, they have been replicated and more completely characterized using modern 

technology and mathematical algorithms (see Section 2.2). 

1.1.2 Impact of meditation on performance 

Though changes in neurophysiology were not systematically studied in relation to 

performance and anxiety, a few studies documented differences in performance between 

meditators and nonmeditators.  These studies found differences primarily with 

transcendental meditation (TM);  TM meditators showed faster reaction times than non-
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meditators (Appelle & Oswald, 1974) and compared to a pre-meditation baseline (Holt et 

al., 1978).  There were also occasional reports of exceptional abilities in these long-term 

meditators.  Anand, Chhina, and Singh (Anand, 1961) reported that a subset of their yogi 

subjects were more resistant to pain induced by putting one’s hand in cold water for 45-

55 min.. This finding was supported by recent research documenting reduced brain 

activation in response to painful hot water (Orme-Johnson et al., 2006).  Other studies 

have documented an effect of meditation on anxiety. Experienced meditators habituated 

quickly to distracting and stressful stimuli (Anand, 1961; Goleman & Schwartz, 1976; 

Orme-Johnson et al., 2006; Puryear et al., 1976), and newly-trained meditators self-

reported lower levels of anxiety after training (Puryear et al., 1976; Wallace & Benson, 

1972).  

2. The current field of meditation research – 1980s to now

Meditation research has gained popularity since the 1960s and 70s, and the results 

indicate a positive effect of meditation on general health and wellbeing.  Clinical studies 

indicate reduced insomnia, attention deficit hyperactivity disorder, anxiety disorders, and 

hypertension (Janssen et al., 2015; King et al., 2002; Miller et al., 1995; Mitchell et al., 

2017; Walton et al., 1995; Zylowska et al., 2008).  One study suggests it elongates life 

(Alexander et al., 1989).  However, these studies document correlations only and lack 

investigation into the processes involved in meditation and how they interact with normal 

or abnormal physiology.  

Improvements in technology and physiological understanding have led to improved 

methodologies in meditation research.  Because EEG can gather data at a very high 

temporal resolution, it is still commonly used. However, modern technology allows EEGs 
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to distinguish neural dynamics at much higher spatial resolution (Dissanayaka et al., 

2015) (Section 2.2). Further, results from EEGs have been combined with results using 

other kinds of technology, namely functional magnetic resonance imaging (fMRI). fMRI 

shows changes in blood flow of the brain and is interpreted under the assumption that 

brain regions with more blood flow are more active (Hasenkamp et al., 2012; Lazar et al., 

2000; Takahashi et al., 2005) (Section 2.1).  Thus, while EEG measures mostly cortical 

changes, fMRI also shows the activity of deep brain regions. 

1.1.3 Functional Magnetic Resonance Imaging (fMRI) Studies of Meditation 

fMRI studies have identified both cortical and deep structures active during 

meditation.  Specifically, both FA and OM meditation activate the prefrontal cortex and 

parietal cortex (Froeliger et al., 2012; Hasenkamp et al., 2012; Lazar et al., 2000; 

Takahashi et al., 2005), which are attention regulation regions of the brain. This may be 

because both subtypes involve self-regulation and the conscious control of attention 

(Lazar et al., 2000; D. P. Lippelt et al., 2014; Manna et al., 2010).  However, another 

hypothesis is that meditation changes the activation of the default mode network (DMN).  

The DMN is most active during passive rest or involuntary activities and is thus less 

active during behaviors that require executive control (Lee et al., 2018; Travis & Parim, 

2017).  A few studies have found that meditation experience reduces the DMN activation 

(Brewer et al., 2011, Simon & Engstrom, 2015).  However, this is still unclear, as there is 

fMRI evidence that DMN activation is due to mind wandering instead of meditation 

(Hasenkamp et al., 2012). 

Like EEG, fMRI research has limitations. One is that fMRI gathers data at a much 

slower rate than EEG; for example, meditation dynamics have been sampled by fMRI at 
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33Hz (Hasenkamp et al., 2012; Lazar et al., 2000), whereas EEG samples at 128 Hz or 

faster (Kopal et al., 2014; Lo & Chang, 2013; Tomljenović et al., 2016; Travis & Parim, 

2017) (up to 5kHz (Dissanayaka et al., 2015)).  EEG studies have better temporal 

resolution which helps understand meditation-associated temporal dynamics and cortical 

changes, thereby providing information about how cortical neurons may be 

communicating or coordinating across cortical regions.   

1.1.4 EEG Studies of Meditation 

All the changes induced by meditation can be broken into two categories based on the 

length of their impact.  State changes is the term given to short-term changes that take 

place during or after meditation practice.  In contrast, trait changes are the more 

permanent changes in response to extensive meditation practice and frequent repetition of 

the same attentional processes.   

1.1.4.1 State Changes due to Meditation 

State changes can be most easily studied in novice meditators. Their lack of 

meditation experience means they have no long-term trait changes that could influence 

the brain and their resulting performance.  Therefore, any changes observed after 

meditation cannot by definition be classified as a long-term effect. State effects of 

meditation are directly due to changes in variable neuronal activity, specifically measured 

as changes in neuronal speed (power) and neuronal coordination (coherence). 

1.1.4.1.1 NEURONAL SPEED – POWER OF FREQUENCY WAVES 

Neural oscillations are the rhythmic patterns of neural activity and are measured 

in frequency (using Hz or 1/sec).  Measured using EEGs, neuronal speed, which is also 
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referred to as firing, can be detected as changes in voltage across the scalp (Teplan, 2002) 

which is reported as power, or magnitude, of the different frequency waves (Ng et al., 

2012); see section 1.1).  In general, modern EEG studies support the earlier findings: 

meditation acutely causes slowing of neuronal frequency by increasing the power of 

alpha and theta waves (see below), which is interpreted as neuronal slowing from the 

dominant beta wave of normal wake (Teplan, 2002).  This increase in power is caused by 

increased neurons firing in this frequency range.   

The frontal lobe of the cortex is responsible for executive controls, including 

attention regulation, working memory, and emotional regulation (Aftanas & 

Golocheikine, 2001; Klimesch, 1999).  EEG studies showed that neural dynamics in the 

frontal lobe changes in response to meditation.  This is likely due to the attention 

regulation and executive control used during meditation practices.  Most studies of 

focused attention (FA) meditation show an increase in EEG alpha power in the frontal 

lobe (approximately 8 to 12 Hz, depending on the definition used by the authors) 

(Banquet, 1973; Cahn & Polich, 2013; Dunn et al., 1999; Klimesch et al., 1996; 

Takahashi et al., 2005) and has been associated with increased relaxation and attention 

(Aftanas & Golocheikine, 2001; Cahn & Polich, 2013).  Other studies have documented 

meditators with even slower neuronal firing in the frontal cortex into lower alpha (8-10 

Hz) and the theta range (4 to 8 Hz) (compared to pre-meditation control baseline; 

(Aftanas & Golocheikine, 2001; Banquet, 1973; Cahn et al., 2010; Lee et al., 2018; 

Mizuki et al., 1980; Takahashi et al., 2005).  The power and location of these slow alpha 

and theta waves is similar to that which takes place during attention tasks (Kubota et al., 
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2001), complex cognitive tasks (Mizuhara et al., 2004), and during consciousness and 

sensory perception (Kjaer et al., 2002).   

Other non-meditation attention-regulating tasks have shown similar neural 

dynamics as those reported during meditation.  The increases in alpha power in the 

frontal cortex have been documented during simple, paced breathing with eyes open 

while counting and using non-meditator subjects (Fumoto et al., 2004; Stancák et al., 

1993).   This paced breathing task is based on counting.  Fumoto and colleagues designed 

their breathing task be distinct from meditation by the authors and non-meditator subjects 

were chosen (Fumoto et al., 2004; Stancák et al., 1993).  Stančák and colleagues studied 

paced breathing as a way to change cardiovascular measures (Stancák et al., 1993).  

These studies indicating that breathing control can increase EEG frontal alpha power 

outside of formal meditation, suggesting that the “attention to breathing” that is common 

to many subtypes of meditation and early meditation training induces physiological 

changes that can be induced separately from religious, mystic, or purposes of self-

actualization.   

Meditation could also impact the neural dynamics in the occipital lobe. When 

eyes close, the occipital lobe stops receiving visual signals and enters a “default” state, 

waiting for visual signals.  During any eyes-closed meditation practice, the occipital 

alpha power increase is immediately apparent (Cantero et al., 2002; Fumoto et al., 2004; 

Schürmann & Başar, 2001).  Thus, meditative practices that include closing eyes fully or 

partially, common in most types, induces an increase in alpha power in the occipital lobe 

(Cantero et al., 2002; Park & Park, 2012; Schürmann & Başar, 2001).  However, these 

changes may depend on meditation type; another study found no difference in occipital 
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power of any frequency between their focused-breathing counting Zen meditation and the 

eyes open control condition (Takahashi et al., 2005).   

A limit of current understanding of power dynamics is the temporal changes over 

the duration of the meditative practice. While one study found no significant changes in 

frontal, central, and parietal lobe alpha power over time in expert TM meditators (Travis 

& Wallace, 1999), another study of paced breathing found alpha quicken and increase in 

amplitude five minutes into the breathing exercise (Fumoto et al., 2004).  However, 

changes in EEG power over time are rarely studied, with many papers citing Travis and 

Wallace (1999), which found no significant changes in frontal, central, and parietal alpha 

power over time in expert TM meditators (Travis & Wallace, 1999).   

1.1.5 Neuronal Coordination – Coherence 

Neuronal coordination is the degree to which regions of the brain are 

synchronized and is interpreted as a measure of functional connectivity.  It is measured 

by the degree of correlation between two signals as a function of frequency components 

(Dissanayaka et al., 2015) and is reported in EEG as the amount of coherence in a 

frequency band, such that higher coherence indicates more communication between 

cortical regions (Basharpoor et al., 2021; Thatcher, 2012).   

In the meditation literature, coherence has been calculated in multiple ways, 

making cross-study comparisons difficult and overall trends ambiguous (Table 1.1). The 

most common method, the Fast Fourier Transfer (FFT), calculates coherence as the 

concurrent changes in power using a cross-correlation between electrodes at the same 

time (Tomljenović et al., 2016; Travis et al., 2010; Travis et al., 2017). However, this 

method is unable to incorporate wave phase, or the different portions of the sinusoidal 
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wave. For example, neurons firing at different points in the wave can have the same 

power and same frequency, but, because of phase differences, are unlikely to be 

synchronized or receiving excitation from the same neural source (Fries, 2015).  Further, 

the FFT cross-correlation method removes sources of variation in the data by first 

binning the data together to calculate power; only then is coherence determined using a 

cross-correlation.   

Most studies of coherence show that meditators have higher EEG coherence than 

non-meditators (Figure 1.1A), or there is more coherence during meditation practice 

compared to non-meditation (Figure 1.1B).  This is broadly reported between the frontal 

cortices or between the frontal and parietal regions in focused attention (FA), open 

monitoring (OM), and transcendental meditations (TM) (Cahn & Polich, 2013; Travis & 

Parim, 2017; Travis & Shear, 2010).  For example, studies on FA meditation show 

increased coherence between the prefrontal and posterior association regions (Aftanas & 

Golocheikine, 2001; Aftanas & Golosheikin, 2003) which are associated with working 

memory (Klimesch, 1999; Sarnthein et al., 1998) and learning (Laukka et al., 1995), 

respectively.  Studies on OM practices indicate coherence of slower frequencies and 

increased theta coherence between the frontal and parietal lobes (Cahn & Polich, 2013; 

Lee et al., 2018).  Table 1 provides further details on all EEG coherence studies in 

meditation. 
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(continued)
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The most reported and consistent changes across different types of meditation is 
interhemispheric alpha coherence in the frontal region (bolded).  A) Changes in 
coherence as compared between expert meditators and novice non-meditators. B) 
Changes in non-meditators as compared to before meditation and after meditation.  
Yellow solid lines indicate regions of increased coherence; blue dashed lines indicate 
decreased coherence between regions. Each individual line indicates coherence changes 
that have been published in at least one meditation study, but no single study has found 
all of these associated coherence changes.  The coherence changes may vary due to 
subjects, EEG devices, type of meditation, duration of meditation, coherence analysis 
methods, and statistical test used. 

1.1.6 Performance changes due to meditation states 

Like earlier studies, more recent research supports positive impacts of meditation 

on performance. FA meditation involves increased attentional processes on a specific 

object of focus, and thus may increase various aspects of performance. Evidence supports 

this: three weeks of training in FA (Dhammakaya Buddhist) meditation  improved 

subjects’ reaction time (Sudsuang et al., 1991).  Further, reaction time and psychomotor 

vigilance also improved after a single FA meditation session (Kaul et al., 2010).  

Comparisons of meditation types indicate this benefit is strongest for FA meditation. In a 

study that directly compared meditation types, a single bout of FA meditation helped 

subjects stay on task and persist in a goal by suppressing non-task related information; 

Cortical Regions: 
F = Frontal 
C = Central 
T = Temporal 
P = Parietal 
O = Occipital 

Frequencies: 
Δ = Delta 
α = Alpha 
θ = Theta 
γ = Gamma 

Figure 1-1 Summary of EEG regional coherence changes due to meditation. 
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OM meditation found no such effect (Colzato et al., 2016).  In the Wilkins counting test, 

long-term OM meditators were found to be more accurate than FA meditators when the 

auditory bleeps that were supposed to be counted were unexpectedly fast (Valentine & 

Sweet, 1999). This may be due to OM meditations having broader attention focuses than 

FA meditation.  

Meditation has positive impacts on other measures of task performance. 

Depending on the type of training, it may mobilize mental resources and improve 

information processing.  “Attentional blink” is the term given to the amount of time it 

takes to detect the second of two quickly presented stimuli. Meditation decreased 

attentional blink via increased theta phase attentional event-related potential coherence 

(Slagter et al., 2009).   

Meditation can benefit practitioners in ways separate from task performance. A 

great deal of attention has been focused on its effects on emotion and drowsiness.  Two 

studies utilized an 8-week Mindfulness-Based Stress Reduction course (MBSR) 

(Anderson et al., 2007; Melloni et al., 2013).  The results indicated no differences in 

subject attention before and after their training; however, one study documented 

improvements in mindfulness and emotional well-being (Anderson et al., 2007). 

Meditation may also combat sleep deprivation and its accompanying decreased attention 

and increased fatigue and sleepiness (Kohler et al., 2017).  One study found an increase 

in attentional performance for sleep-deprived, but not well-rested, participants after OM  

(Kohler et al., 2017), which may be an effect of increased mental resource mobilization 

(Kohler et al., 2017). Indeed, OM meditations are associated with occipital gamma power 

and decreased delta power (Cahn et al., 2010).  This bilateral, frontal lobe decrease in 
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delta power may reflect OM decreasing the homeostatic pressure of sleep or opposing it 

some different way (Kohler et al., 2017). 

3. Traits due to meditation 

Trait effects are more permanent changes in response to extensive meditation 

practice and repetition of the same attentional processes (Cahn & Polich, 2013).  These 

traits are identified as differences in performance or as functional and anatomical changes 

due to long-term meditation practice (Hölzel et al., 2011; Lutz et al., 2009).  Measuring 

trait effects require subjects to not meditate before testing, thus ensuring all differences in 

performance are not due to state effects of meditation.   

Research suggests that meditative practices may increase performance in 

comparison to non-meditative practices. One study on performance indicated that 

experienced Buddhist OM practitioners had less Stroop interference, a measure that 

indicates better cognitive control, control of automatic responses, and/or higher executive 

control (Moore & Malinowski, 2009; Teper & Inzlicht, 2012).  Experienced meditators 

also performed better on the d2-concentration and endurance test, indicating better speed, 

accuracy, and attentional and inhibitory control (Moore & Malinowski, 2009). Further, 

there is evidence that they react to changes more quickly and are more flexible in 

redirecting attention to new information (Hodgins & Adair, 2010).  The duration of 

practice seems important; it has been correlated with the amount of attention, 

mindfulness, and awareness the meditator has, as more experienced practitioners have 

more extreme trait changes (Hauswald et al., 2015).   

Expert meditators better task performance may be due to the functional and 

anatomical changes associated with long-term meditation (Hölzel et al., 2011; Lutz et al., 
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2009).  One physiological trait positively correlated with meditation practice is increased 

EEG gamma power.  Studies found that increased EEG gamma power in the parietal-

occipital area in experienced meditators takes place during meditation as well as during 

rest (Braboszcz et al., 2017; Ferrarelli et al., 2013).  FA, OM, and combined FA/OM 

meditations have higher mean gamma power both during meditation and an instructed 

mind-wandering task (Braboszcz et al., 2017).  Since this happens during meditation and 

persists afterward, this gamma power increase is most likely a trait change.  There are 

some reports of anatomical changes correlated with long-term meditation practice.  

Expert meditators, as compared to age-matched non-meditators, have thicker prefrontal, 

frontal, and temporal cortices and less age-related thinning of the cortices (Kang et al., 

2012; Lazar et al., 2005). The regions identified in these studies are associated with 

attention, interoception, and sensory processing, which are all trained during meditation 

practice (Davidson et al., 2003; Kang et al., 2012; Lazar et al., 2005; Pagnoni & Cekic, 

2007).  Meditation also improved the functional connections of the cortex as seen in 

higher coherence, especially in the prefrontal and frontal regions (Aftanas & 

Golocheikine, 2001; Cahn & Polich, 2013). 

4. Unknowns of meditation and performance

Meditation improves attention and emotional wellbeing but has limitations on its

enhancements and its dedicated “fan” base may exaggerate the benefits and positive 

results. The effects of meditation do not improve all performance measures ubiquitously.   

For example, meditation did not improve cardiac interoception (the conscious perception 

and counting of heart rate) task performance, although brain regions associated with 

interoception had increased power during meditation (Khalsa et al., 2008; Melloni et al., 
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2013; Nielsen & Kaszniak, 2006).  The attentional regions may be more active, but there 

were no improvements in the specific cardiac interoception since this task was not trained 

during meditation.  Another example of this is that meditators and controls showed no 

differences in the Go/No-Go, which measures the ability to interpret a stimulus quickly 

and correctly and inhibit a trained response (Kohler et al., 2017).  These subjects 

practiced focused attention Nidra yoga meditation, which have no focus on inhibiting 

conditioned responses to a stimulus that is measured with the Go/No-Go task (Simmonds 

et al., 2008).  Training of attentional regions does not improve all potential tasks that use 

that specific region.   

Meditation does improve specific attentional tasks.  A prior study by our lab 

showed improvements in reaction time after meditation (Kaul et al., 2010).  In this study, 

10 novice meditators completed reaction time tasks before and after multiple conditions, 

one of which was meditation.  After completing a 40-minute focused-breathing 

meditation, 9 of the 10 subjects had a faster reaction time.  These novice meditators 

showed an average of 16.5 msec improvement on the psychomotor vigilance test (PVT) 

(Kaul et al., 2010).  Our previous work showed that 40 minutes of meditation is effective 

in improving performance, namely reaction time improvements, but this duration of 

meditation was said to be long by some individual subjects (Kaul et al., 2010).  To follow 

up on the Kaul and colleagues’ study, this dissertation will investigate the impact of 

shorter bouts (5 and 20 mins) of meditation in novices. 

The PVT is a simple and portable reaction time test that is not impacted by 

learning or taking it multiple times (Wilkinson & Houghton, 1982).  The PVT has a 

simple visual stimulus and subjects must hit a button in response to the stimulus.  Stimuli 
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are presented at a random interval of 2 to 10 seconds.  Since this original publication, the 

PVT has been widely used in performance and sleep deprivation research.  PVT data 

contain information beyond changes in reaction time (RT). Since RTs are collected many 

times during the 10-minute test, PVT also measures continual vigilance and time-on-task.  

According to Dinges, PVT is a simple “way to track changes in behavioral alertness” 

with no learning or aptitude effect (Basner & Dinges, 2011).  One such measure beyond 

RT are instances when the subject is not being vigilant and does not react to the stimulus; 

these lapses are defined as RT > 500ms.  Kaul and colleagues did not report the changes 

to other PVT measures and we will be following up on that (Kaul et al., 2010) 

For this dissertation, I aimed to understand the state effect of meditation in novice 

meditators without trait effects.  I tested the hypothesis that novice meditators experience 

a performance benefit from a single session of meditation. Most meditation practices start 

with simple focused attention because it requires the least amount of training and 

practice.  Open monitoring (OM) meditations were not chosen since they are more 

difficult for beginners and lacks an explicit attentional focus (Manna et al., 2010).  OM 

meditation usually requires structure and long-term practice.  For this reason, breathing-

focused attention meditation was chosen.  This practice can be quickly taught to non-

meditators and has been shown previously to have an impact on immediate attentional 

performance (Kaul et al., 2010).   

We are also focusing on novices to focus on the state effects of meditation.  There 

may be certain traits that predispose someone to successful meditation and getting greater 

benefits from meditation (Pace et al., 2009).  There are also many different covariables 

that may vary drastically between long-term meditators and non-meditators, such as diet, 
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activity level, amount of motivation, and the ability to master a task.  It is impossible to 

determine if this is directly due to the meditation training, or to other differences between 

groups.  To address this problem, we studied novice meditators, who had little to no self-

reported meditation experience.   

This dissertation is unique because we investigated the effects of meditation on 

phase coherence, in contrast to most studies that investigate power.  Our coherence 

measures were calculated using mean phase coherence (MPC) (Mormann et al., 2000).  

This algorithm calculates the instantaneous phase difference from two electrodes with 

signals coming from the same source brain (see Chapter 2 - Methods for computational 

details). MPC calculates the instantaneous phase differences of every data point, thus 

preserving sources of variation (Mormann et al., 2000).  The MPC is independent of EEG 

amplitude and power and is not impacted by phase delay due to distance, and thus gives 

more rigorous coherence information and indicating the specific electrodes for which 

phase is synchronized (Schevon et al., 2007).   

Chapter 2 aims to study: 

1) Does 20 minutes of focused-breathing meditation improve reaction time in

novices?

2) How does meditation impact other measures from the PVT?

3) Are there characteristic neurophysiological changes induced by this meditation in

novices?

4) Do the neurophysiological changes correlate with changes in performance?
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Finally, gathering data in the 2010 study (Kaul et al., 2010) and in Chapter 2 

requires a large amount of time and research resources.  Also 20 minutes may even be 

burdensome on some people who have very short time.  In the literature it is unclear the 

impact of brief meditation on performance. To study this Chapter 3 aims to study: 

1) Does 5 minutes of focused-breathing meditation improve reaction time in

novices?

2) Can a meditation activity be successfully integrated into a freshman introductory

classroom?



 
 

CHAPTER 2. REACTION TIME PERFORMANCE IMPROVES WITH 20-MINUTES OF 
MEDITATION IN NOVICES: ASSOCIATION WITH POWER AND COHERENCE IN THE EEG 

5. Introduction 

Meditation describes a wide variety of traditions that all involve the conscious 

control of attention (C. Kaur & P. Singh, 2015).  The type of attention, training, and 

intent of meditation differs based on the meditation tradition and where it came from.  

When undergoing training, most meditation practitioners start with simple focused 

attention meditation, where their focus is on one object or word, such as the breath, 

flame, or word.  Focused attention (FA) meditations often take place at the beginning and 

end of other types of meditation (mindfulness/open monitoring or loving kindness).   

Throughout the varied histories of meditation traditions there have been fantastic 

claims and benefits that their training can bring, along with more modest claims, such as 

increased emotional regulation, stress reduction, and increased lifespan (Lee et al., 2018).   

experienced meditators have improved attentional blink (Slagter et al., 2009), redirection 

of attention to new information (Hodgins & Adair, 2010), Stroop task performance 

(Moore & Malinowski, 2009; Teper & Inzlicht, 2012), cognitive flexibility (Colzato et 

al., 2016), mental resource mobilization (Kohler et al., 2017), and sustained attention 

(Valentine & Sweet, 1999).  Performance benefits may depend on the type of meditation 

and be evident only after years of training and discipline.  However, it is not known 

whether a single session of meditation affects performance.  This study aims to determine 

the short-term impact of meditation on physiological attention.  To do this, we need to 

study novice meditators who do not have meditation-induced changes.  Previous studies 

of meditation showed that novices trained in Dhammakaya Buddhist FA meditation for 3 

weeks in had improved reaction times (Sudsuang et al., 1991).   Conversely, mindfulness-
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based stress reduction (MBSR) training for 8 weeks did not change attention measures 

(Anderson et al., 2007; Melloni et al., 2013), supporting that performance benefits may 

vary by type of meditation training.   

A previous study in our lab investigated meditation in both expert meditators and 

novices.  Novices, who had no meditation experience, were tested under four 40-minute 

treatments (meditation, nap, a control of sitting quietly, and meditation after a night of 

sleep deprivation) and then given a psychomotor vigilance test (PVT).  A PVT was taken 

before and after a 40-minute condition to measure the change in performance.  There 

were 2 control conditions-- sedentary activity and after a nap. Subjects in the control 

groups performed worse on the PVT after the 40-min treatment.  Laying down for a nap 

likely lead most subjects to fall asleep, leading to “sleep inertia”, or the feeling or 

grogginess and reduced reaction time after waking, as has been documented in many 

studies (Tassi et al., 2006).  The control group experienced a much smaller decline in 

reaction time, perhaps due to an increased afternoon dip or other cause of slightly 

increased fatigue.  The meditation condition was a 40-minutes eye-closed focused-

breathing meditation and resulted in improved reaction time, with an average of 16.65 

msec faster mean PVT (Kaul et al., 2010).  This performance boost was even larger 

(average of 27.3 msec) when subjects underwent a full night of sleep deprivation before 

completing the protocol (largely to due to the greater possible improvement from the 

slower reactions times after sleep deprivation).   

While the performance boost from meditation was robust and consistent, the study 

had several limitations and left many questions unanswered that we aim to better 

understand with this study.  First, in this study we are using electroencephalography 
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(EEG) to understand the neural dynamics during meditation that take place in novices.  

This study aims to determine which, if any, neural correlates that take place during 

meditation correspond to those that may underlie performance changes.  There are many 

variables associated with EEG measures that may be worth examining.  For example, the  

very first publication on EEG in 1929, by Hans Berger, described the reduction in alpha 

waves when the eyes were opened, known as the Berger effect or alpha blocking (Barry 

et al., 2007; Kirschfeld, 2005; İnce et al., 2020), which is relevant to changes seen in 

meditation, especially on initial eye closure.  We will investigate if this eyes-closed alpha 

is also associated with performance changes (Barry et al., 2007).  In the meditation 

literature, many studies have been done to understand neural dynamics of meditation and 

how they differ between meditation subtypes.  In most of this literature, EEG dynamics 

have been predominately analyzed by looking at power, coherence, and complexity.  The 

‘power’ of each frequency band, delta, theta, alpha, beta, gamma, of the raw EEG can be 

quantified using a Fast Fourier Transform (FFT) converting the original signal into its 

frequency components. Power changes, whether relative or absolute, vary highly based 

on analysis method and type of meditation.  It is argued that different types of power 

changes indicate different types of meditation induced neural changes such as focused 

attention, open monitoring, and self-transcending (Travis & Shear, 2010).   

Coherence, in general, is a measure of functional connectivity and 

synchronization between different brain regions.  The meditation literature has calculated 

this value in a multitude of ways including the measure of synchronization or correlation 

using power spectral density (Dissanayaka et al., 2015) which assume that temporally 

concurrent changes in power indicate changes in coherence. A majority of meditation 
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research that has analyzed coherence has compared power using FFT, and then calculated 

the coherence spectra.  The specific methodological details are often lacking in these 

studies, but the most robust findings showed that long-term meditators generally have 

increased coherence during meditation or in comparison to non-meditator controls.  

Specifically, transcendental meditation (TM) practitioners have been extensively reported 

to have increased alpha coherence (Levine, 1976; Orme-Johnson & Haynes, 1981; 

Travis, 2001; Travis & Wallace, 1999) and perhaps theta coherence during meditation 

(Tomljenović et al., 2016).  Those who practice Sahaja Yoga show increased theta 

coherence, especially in the left frontal cortex (Aftanas & Golosheikin, 2003; Baijal & 

Srinivasan, 2010).  These findings are not necessarily unique to experts, as some novice 

TM practitioners showed a similar increase in alpha coherence (Dillbeck & Bronson, 

1981; Gaylord et al., 1989; Levine, 1976). However, in a more recent study, this alpha 

coherence was found to be absent in novices (Aftanas & Golocheikine, 2001), but in 

another study increased after just 2 months of TM meditation training (Travis & 

Arenander, 2006).  Although these findings appear generally valid, they do not 

specifically address phase or other aspects of the EEG signals in their calculations. 

To take a more rigorous analytical approach to coherence and power, we applied 

phase synchronization to analyze functional connectivity during meditation.  Other phase 

locking methods have found increased gamma (25-40 Hz) coherence during rest and 

during loving kindness meditation (Lutz et al., 2004), increased theta coherence during 

OM Vipassana meditation (Slagter et al., 2009), and increased alpha coherence during 

TM (Travis et al., 2010).  Our coherence measures were calculated using mean phase 

coherence (MPC) (Mormann et al., 2000).  This algorithm works by calculating the 
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instantaneous phase difference from two electrodes assuming that the signals come from 

the same source, the brain (see Methods for more details).  This is also unique to the 

meditation field since it will provide phase information independent of amplitude/power, 

which has yet to be applied to meditation EEG.  This phase locking also removes the 

phase delay due to distance (Schevon et al., 2007), allowing more accurate comparisons 

between disparate electrodes which could help determine if meditation increases 

synchronization across the brain.  

To understand the impact of a single session of mediation, in this study we will 

apply MPC to investigate the neural dynamics during meditation in novice meditators. In 

a study of similar voluntary abdominal breathing (VAB), EEG showed distinct changes 

over time (Fumoto et al., 2004).  This abdominal breathing, which lasted for 20 minutes 

with eyes closed, showed the expected Berger alpha waves at the beginning of the 

activity, with a consistent peak at 10 Hz in most subjects.  After splitting alpha into high 

(10-13 Hz) and low (8-10 Hz) frequency activity, low frequency alpha showed a steady 

decrease in power throughout the VAB and disappeared after 6-7 minutes.  Later, a lower 

amplitude wave of the high alpha steadily increased in power starting at 5 minutes until 

the end of the study (Fumoto et al., 2004).  The authors attributed this later 10-13 Hz high 

frequency alpha to feelings of vigor and reduced anxiety.  Unlike other papers which 

state that meditation-induced EEG patterns do not change throughout practice in expert 

meditators (Travis & Wallace, 1999), novices during breathing  focused meditation can 

show distinct changes in EEG power and may also show changes in coherence over time.  

This will also be investigated here.  
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We also determined whether short meditation improved  e reaction time in novice 

meditators. , For many novices, the 40-minutes of meditation used in our previous 

experiment was a long time to focus on their breath, which may increase confounding 

effects when the mind wanders, and is longer than most individuals will be able to sustain 

if they wish to adopt a daily practice of meditation.  The present study shortened 

meditation duration to 20 minutes and examined the effects on PVT sustained attention 

performance.   

By gathering EEG data during meditation, we wanted to investigate the EEG 

dynamics during focused breathing meditation.  We hypothesized that alpha and theta 

power would be highest in frontal electrodes, due to the concentration and attention 

regulation needed during meditation (Cahn & Polich, 2013; Lee et al., 2018).  We also 

hypothesize that this alpha and theta power will change over time, with a drop in power 

over time as novice subjects are unable to maintain concentration (INANAGA, 1998).  

Not only are we expecting to see high power, but meditation is also hypothesized to 

increase frontal coherence, which has been supported in multiple different prior studies 

(Aftanas & Golocheikine, 2001); Aftanas & Golocheikine, 2002; Arambula et al., 2001; 

Ghista et al., 1976; Huang & Lo, 2009; Khare & Nigam, 2000; Travis, 2011).  When 

these EEG measures are related back to performance, we hypothesize that those subjects 

with the best coherence between frontal electrodes will have the largest improvements in 

PVT performance.  Given the high amount of alpha with eyes-closed, especially in 

occipital cortex and more posterior regions, we investigate whether there may be higher 

alpha coherence between occipital electrodes and parietal electrodes.  We further 

hypothesize that occipital alpha power will correlate with reaction time measures.  Given 
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the exploratory nature of these studies, we also assess a number of other EEG variables 

that may be associated with meditation. 

6. Methodology

2.1.1 Subjects 

Non-meditators with were recruited for this project, including no experience (>6 

months) with meditation, mindfulness, or yoga.  All subjects (n=25) were 18 to 55 years 

old, right-handed, and appeared to be in excellent health and did not admit to medical or 

psychiatric illness or sleep disorders.  Subjects were instructed to abstain from nicotine, 

alcohol, and other drugs on the study day.  They were also instructed to keep a regular 

sleep-wake schedule prior to testing day.  Subjects were recruited by campus 

advertisements at the University of Kentucky or word of mouth.  All procedures were 

approved by the University of Kentucky Institutional Review Board and informed 

consent was obtained from all subjects. \ 

2.1.2 Procedure  

On the test day, novice meditators took a 10-minute PVT on the computer (PC-

PVT, (Khitrov et al., 2014) using a gaming mouse for better accuracy.  The PVT 

randomly presented subjects with a stimulus every 2 to 10 msec for the duration of the 10 

minutes.  Given the very simple nature of this test, no learning or improvement has 

generally been observed after repeated trials (Basner & Dinges, 2011). However, to 

eliminate even slight “first-time” effects, each subject was given a practice trial on the 

PVT prior to the start time.  After completing the 10-minute PVT, subjects were taught 

how to meditate.  Focused breathing meditation was chosen since it is easily learned by 

beginners and is often used in the beginning or end of other types of meditation training. 
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All subjects were trained by the same instructor using the following script to ensure 

uniformity.   

“We will now begin the focused breathing meditation.  Sit straight in your 

chair with your feet flat on the ground with your shoulders aligned with 

your hips. Place your hands in your lap or in a comfortable 

position.  During this meditation, focus only on your breathing.  When 

your thoughts wander, keep bringing it back to your breath.  Close your 

eyes and I will tell you when 20 minutes is over. Do you have any 

questions?” 

Post-meditation, the subject completed a final 10-minute PVT. 

For a subset of these subjects (n=13), EEG was applied before the meditation 

intervention to gather information about cortical activity.  For 7 subjects, an EMOTIV 

Epoc+ System was used to record meditation-induced brain activity. This dry electrode 

system gathered data at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 

with reference at the mastoid. To confirm that the EMOTIV was accurately gathering 

data, 5 subjects underwent EEG recording with a more sophisticated gold cup electrode 

in the OpenBCI Electrode Cap with Cyton Biosensing Board (OpenBCI).  Electrodes 

were applied to the following locations to match the EMOTIV montage: F3, F4, F7, F8, 

Fp1, Fp2, P7, P8, T7, T8, O1, and O2, with reference to the ear. All EEG was sampled at 

128 Hz 

Data was combined from both recording devices as both have been shown to be 

highly accurate and comparable to the field standard gold-cup electrodes (LaRocco et al., 

2020), and produced similar quality recordings in our study.  The EMOTIV Epoc+ has 
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been shown to be 70-94% accurate and the OpenBCI systems have been shown to be 79-

96% accurate (LaRocco et al., 2020).  To make coherence comparisons between the two 

devices, power analyses are between locations that were recorded by both devices: AF3, 

F7, F3, T7, P7, O1, O2, P8, T8, F4, F8, and AF4 (Supplementary Figure 1).   

7. Data Analysis 

2.1.3 PVT 

PVT data was postprocessed using REACT (Ambulatory Monitoring, Inc.) and 

analyzed with PC-PVT Tester (Khitrov et al., 2014).  Reaction time (RT) was determined 

for each stimulus from the presented stimulus until the output (the subject hit the button).  

Two types of errors were recorded: lapses (RT >500 msec) and false starts (subject giving 

an output without a stimulus). Mean RT, speed (mean 1/RT), number of lapses, number 

of false starts, number of total errors (number of lapses + false starts), slowest 10% RT, 

1/slowest 10% RT, fastest 10% RT, and 1/fastest 10% RT were analyzed.   

2.1.4 EEG 

EEG data during the 20-minute meditation was processed using MATLAB 

R2021a.  Data was band pass filtered from 0.1 to 60 Hz using a 4th order Butterworth 

filter.  The Butterworth was chosen since it is designed to be maximally flat as compared 

to other filters that introduce ripples into continuous data (Laghari et al., 2014).  One 

subject was removed due to poor EEG signal quality.  Artifacts in the rest of the subjects 

were identified first by manual inspection, by which some slower frequency and high 

amplitude distortions were seen which we attributed to headset movement.  Automatic 

detection of these artifacts was done by taking the standard deviation of raw signals to 

flag epochs above the 95th percentile and remove 1 second epochs that had unusually 
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high deviation as compared to the average raw signal. Manual inspection of flagged 

artifacts shows that all slow frequency, high amplitude artifacts were correctly flagged, 

and data were removed.   

Continuous data were split into the following frequencies: delta (0.5-3 Hz), theta 

(3-7 Hz), alpha (7-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz). We then calculated 

mean phase coherence, as first applied to EEG by Mormann and colleagues in epilepsy 

patients (Mormann et al., 2000).  This method allows for calculating instantaneous phase 

differences for each selected electrode pair at each time point recorded. First the Hilbert 

transform was used to determine the phase of two signals, ɸ.  Then MPC is determined 

using the following:  

MPC =
1
𝑇𝑇
�𝑒𝑒𝑖𝑖(ɸ𝑡𝑡

𝑛𝑛−ɸ𝑡𝑡
𝑚𝑚)

𝑇𝑇

 𝑡𝑡=1

 

T is the total number of time points.  ɸ𝑡𝑡
𝑛𝑛 − ɸ𝑡𝑡

𝑚𝑚  is the instantaneous phase 

difference between the mth and nth electrodes at time point t.   The symbol i denotes an 

imaginary unit. First the difference of the instantaneous phases is determined and 

transformed to get discrete phase coherence values placed on a unit circle.  After all 

points are plotted on the unit circle, the mean of all samples is taken to determine MPC 

(Schevon et al., 2007; Yoshida et al., 2020). 

The output of these calculations is a complex number made of both real and 

imaginary components, which contain power (μV) and phase angle data (unitless), 

respectively.  These power and coherence data were then binned into 30-sec epochs with 

15-sec overlap (epochs are sequentially numbered from 1-78).  Interhemispheric 

synchronization was calculated for all electrode pairs of the same location on either 
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hemisphere: AF3/Fp1-AF4/Fp2, F3-F4, F7-F8, T7-T8, P7-P8, and O1-O2.  

Intrahemispheric coherence was calculated for all electrode pairs.  There is no consensus 

on how to partition regions of electrodes, so regional coherence was calculated by 

averaging together electrodes of similar locations: frontal (AF3/Fp1, AF4/Fp2, F3, F4, 

F7, F8), parietal (P7, P8), temporal (T7, T8), and occipital (O1, O2).  Any MPC value 

above 0.3 is considered to show more coherence than random noise (this was calculated 

from random mixing of EEG time points, and then calculating the MPC from randomized 

data).   

Statistical analysis was completed using JMP Pro 15.  PVT data was analyzed 

using paired t-tests to determine if subjects had different performance before and after 

meditation.  Relationships between EEG measures and PVT data were investigated using 

Pearson’s correlation and scatter plots with linear and quadratic models with non-

parametric smoothing.  Due to the large number of comparisons, we implemented a 

multiple comparison correction and α was set as 0.01.  Time points that did not meet this 

adjusted threshold were considered to still be associated with PVT data, when ten or 

more time points had p<0.05, as a Bernoulli process shows this to have a 0.05% chance 

of being due to random chance. 
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8. Results/Data Analysis 

2.1.5 20 Minutes of Meditation Improves PVT Performance 

Given our prior findings with 40 minutes of meditation (Kaul et al 2010), We 

tested the hypothesis that 20 minutes of meditation would improve reaction time from 

pre-meditation to post-mediation in novice meditators.  Meditation significantly 

improved mean reaction time ((t(24) = 2.138, p=0.02), paired t-test).  This averaged to a 

performance boost of 8.9 milliseconds on mean RT (Figure 2.1).  Before meditation 

subjects had an average reaction time of 266 msec (+/- 30) and after meditation was 257 

msec (+/- 27). 

Subjects (n=25) did the PC-PVT before and after 20 minutes of mediation. that did the 
meditation, performance on the PVT improved, on average 8.9 msec from pre-meditation 
to post-meditation.  Error bars denote SEM. *p=0.02 using paired t-test. 

 

Figure 2-1: 20 Minutes of meditation improves PVT reaction time. 
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To understand how our subjects were improving, we analyzed other PVT 

variables.  During the 10-minute PVT, subjects may have absences in vigilance when 

reaction times are longer than 500 msec, called lapses.  Our subjects showed a significant 

reduction in lapses ((t(24) = 2.139, p=0.02), paired t-test) from an average of 1 lapse to 

an average of 0.5 lapses after meditation.  An individual subject cannot have a partial 

lapse, as lapses are a discrete variable that is counted.  Many of the subjects had 0 lapses 

and drove the average to 0.5.  When the slowest and fastest reaction times were analyzed, 

the 10% slowest reactions times failed to reach significance (p=0.07), but there was a 

trend that post-meditation improved the slowest reaction times (pre-meditation: 398 

msec, and post-meditation: 376 msec).  There was no change in the fastest reaction times 

before and after meditation.   

During the 10-minute PVT, reaction time is sampled about 94 times.  The inverse 

of individual reaction times was graphed to look at the change in performance over time.  

This change in performance was determined with a linear fit and the slope was taken to 

determine the change in RT over the full 10-minute test.  These slopes were then 

compared before and after meditation.  Before meditation, subjects had slower reaction 

times as the trial continued (m=-0.034).  We found that meditation reduces this change 

overtime (m=-0.016) ((t(24) = 2.146, p=0.02), paired t-test).  
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One subject’s representative graphs showing a decline in performance before meditation 
(m=-0.40) and a lesser decline after meditation (m=-0.013).  Blue open circles indicate 
individual reaction times (RTs), red closed dots indicate minute averages in RT, red line 
is the linear fit of all RTs.  

 

2.1.6 MPC showed high frontal alpha and theta coherence 

MPC (mean phase coherence) was used to calculate coherence for all possible 

electrode pairs and in individual frequency bands.  Values vary from 0 to 1, with 0 

indicating no coherence and 1 indicating perfect coherence.  We defined coherence above 

0.5 as moderate coherence and over 0.75 as high coherence.   

Frontal electrodes show strong intrahemispheric and interhemispheric coherence.  

This was strongest in the alpha band, but also was visible in the theta band (Figure 2.3).  

Prefrontal alpha electrodes (AF3/Fp1 and AF4/Fp2) show high coherence with (AF3-

AF4, AF4-F3, AF4-F4, AF3-F3, AF3-F4, F3-F4).  Frontal-temporal coherence was also 

high in the alpha band and moderate in the theta band.  Occipital electrodes showed 

Post-Meditation 

Pre-Meditation 

Figure 2-2 Meditation improves vigilance over the 10-minute PVT. 
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moderate interhemispheric coherence and occipital-parietal alpha coherence.  This pattern 

is detailed in Figure 2.1 

Parietal and temporal electrodes show hemispheric differences in MPC (Figure 2.4).  

Investigations into parietal electrode pairs show differences in coherence between right 

and left side, with right parietal-temporal (P8, T8) showing higher alpha coherence with 

distal electrodes.  P8 (alpha MPC=0.41) and T8 (alpha MPC=0.42) showed more 

widespread coherence with occipital, temporal, and frontal electrodes.  Left hemisphere 

P7 (alpha MPC=0.32) and T7 (alpha MPC= 0.33) only showed coherence with occipital 

and temporal electrodes, with no frontal coherence.   
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Figure 2-3 Novices have high frontal alpha and theta coherence during meditation. 
A) Beta MPC for all electrode pairings. B) Beta MPC for electrode AF3. C)Alpha MPC
for all electrode pairings. D) Alpha MPC for electrode AF3.  E) Theta MPC for all
electrode pairings. F) Theta MPC for electrode AF3. Color scale indicates MPC with
yellow for perfect coherence and blue indicating no coherence. All images indicate a
single representative epoch. Any MPC larger than 0.3 has more coherence than random
noise.
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Figure 2-4 Novices show higher right-side alpha coherence in the temporal and parietal 
electrodes.  
A) P8 shows higher MPC for further away electrodes (frontal and prefrontal) than B) P7.
C) T8 shas higher and more distal MPC than D) T7.  Color scale indicates MPC with
yellow for perfect coherence and blue indicating low coherence. Any MPC larger than
0.3 has more coherence than random noise.

2.1.7 EEG Power Correlates with Reaction Time 

For the subjects with usable EEG (n=12), there was a non-significant trend in 

reaction time improvement after meditation (p = 0.079), with an average of 10.6 sec (+/- 

23) faster reaction time.  Of these subjects, 7 showed improvement in mean RT after

meditation and 5 either had no change or had slower mean RT after meditation.  With this 
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distribution of some subjects improving, some showing no differences, and some having 

worse reaction time after meditation we investigated the associations between EEG 

power and coherence to the PVT measures. 

EEG power was correlated with difference in PVT mean reaction time (RT) 

(Figure 2.5).  Prefrontal (AF3, AF4) gamma power (Supp. Figure 2) showed a correlation 

in the first three minutes of meditation (AF3: p<0.01 for epoch 6, p<0.05 for 2-5, 7, 10-

12, and 55; AF4: p<0.01 for epochs 5 and 6, p<0.05 for 1- 4, 7, 10, 11, and 50), where 

subjects with lower gamma power show larger performance boost.  No other electrodes 

had significant gamma power correlations.  Alpha power correlated with RT in frontal 

electrodes F3 (p<0.05 for 6, 7, 10, 12, 20, 26, 27, 29-31, and 68) and F4 (p<0.05 for 6, 7, 

10, 12, 20, 26, 27, 29-31, and 68) (Supp. Figure 3).  F3 and F7 beta power also correlated 

with difference in RT (F3: p<0.01 for 58, 59, and 60, p<0.05 for 7-20, 29-31, 35, 41, 42, 

45, 48-53, 57, 61, 64, 65, 67-69, 72, and 73; F7: p<0.01 for 51 and 58, p<0.05 for 34, 35, 

49, 50, 52-54, 57, 59, 62, and 63) (Supp. Figure 4).  F3 alpha power correlated during the 

first ten minutes of recording.  Frontal alpha and beta power notably did not correlate 

with PVT in the first minute of mediation.  F7 beta power correlated during the 8 to 16 

minutes.  F4 alpha power correlated with performance but showed no specific temporal 

pattern.  Occipital alpha power also showed an association with difference in RT (O1: 

p<0.05 for 2, 4-7, 9-17, 19, 29-31, 35, 43, 44, 47, 48, 50, and 51) (Supp. Figure 5).  

Frontal delta and theta power showed no correlation.  Parietal and temporal electrodes of 

any frequency band showed no association.  

  



40 

Figure 2-5 Temporal differences of EEG power and MPC correlates with PVT reaction 
time (RT) during meditation.   
Throughout the 20-minutes of meditation, all EEG epochs that showed a strong 
correlation with the difference in PVT RT had a vastly different distribution based on 
electrode, frequency bin, and power/MPC.  Prefrontal (AF3, AF4) gamma power showed 
a correlation in the first three minutes of meditation.  Frontal alpha and beta power 
notably did not correlate with PVT in the first minute of mediation.  Frontal-temporal 
MPC had the most epochs correlated with RT.  Boxes indicate the median and 25th and 
75th quartiles, and whiskers indicate the first and last significant epoch.  Red solid points 
p<0.01 Pearson’s correlation to difference in mean RT, black hollow points = p<0.05. 
Circles indicate epochs of significant MPC correlation, triangles indicate significant 
power correlations.  

2.1.8 EEG Alpha Coherence Associates with Reaction Time 

EEG mean phase coherence (MPC) in the alpha band was associated with 

difference with PVT reaction time (Figure 2.5).  First, we looked at MPC for 

interhemispheric coherence, showing the synchronization across both hemispheres.  None 

of the electrode pairings passed our adjusted alpha value or 10 epoch threshold for 

significance.  F7F8 MPC did show eight epochs of correlation with RT with p<0.05, 

which is worth noting.   No other frequency bands or electrodes were correlated.  Then 

synchronization between cortical regions were correlated to PVT RT.  Frontal-temporal 
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alpha MPC show significant correlations for the most time points (Supp. Figure 6).  This 

means subjects with higher MPC between the frontal and temporal electrodes correlated 

with better improvements in RT.  This correlation was also noted for alpha MPC frontal-

occipital and temporal-occipital coherence.  Coherence between other regions or in other 

frequency bands were not associated with difference in PVT RT. 

This figure notates all data that correlated significantly with mean difference in PVT due 
to 20-minutes of meditation.  Left: Mean Phase Coherence (MPC) in the alpha band 
shows increase coherence and synchronization between the frontal-temporal and frontal-
occipital regions are associated with an improvement in PVT performance. Right: Power 
correlates with PVT performance, showing that increased alpha and beta power, and 
decreased gamma power lead to better PVT performance. Yellow, solid lines and red* 
indicate p<0.05 from Pearson’s correlation for at least 10 epochs. Dashed line indicates 
p<0.05 for only 9 epochs, which still is a less than 2% chance of being random noise. 

9. Discussion

In the current study, we showed that 20minutes of meditation improved PVT

reaction time in novices.  Subjects had faster mean RT, had fewer lapses, and maintained 

vigilance better during the 10-minute PVT after mediation compared to baseline before 

Figure 2-6 Summary of EEG findings in relation with PVT Performance. 
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meditation.  These findings support a previous study in our lab that a single 40-minute 

meditation improved PVT reaction time (Kaul et al., 2010).  Our data show that 40 

minutes is not needed for significant performance benefits, and a shorter 20 minutes of 

focused breathing can still impart benefits.   

It should be noted that 40 minutes of meditation improved PVT reaction time 16.7 

msec (Kaul et al., 2010), whereas our subjects had an average of 8.9 msec of 

improvement.  This is due to large variation in the difference between pre-meditation RT 

and post-meditation RT.  Kaul and colleagues had all ten subjects improve RT after 

meditation (2010).  Of the twenty-five subjects in this study, only seventeen had an 

improvement in mean RT; eight subjects had no change or worse RT after meditation.  

Although the majority of subjects did have RT improvements due to the meditation, some 

did not benefit.  This could be due to 20 minutes not being a long enough time to benefit 

the subject or a potential lack of motivation or other confounding variables in a subset of 

subjects.  

Our results are consistent with previous studies that demonstrated that meditation 

improved attention in novices.  Rather than a single session, these studies relied on longer 

training paradigms.  Studies of FA support that the duration of training is directly 

correlated with reaction time improvement (Kohler et al., 2017; Sudsuang et al., 1991), 

but our data support that a single session is enough to see significant improvement.  

Specifically, three weeks of Dhammakaya Buddhist meditation training in novices 

improved performance on visual choice reaction time, and this performance boost was 

even larger after six weeks of meditation training (Sudsuang et al., 1991).  Mindfulness 

meditations may or may not improve attentional performance, as studies show different 
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effects of training (Anderson et al., 2007; Slagter et al., 2007; Slagter et al., 2009).  An 8-

week Mindfulness-based stress reduction (MBSR) course did not improve reaction time 

during a sustained attention test (Anderson et al., 2007).  A longer three month 

mindfulness training in Vipassana meditation was shown to have better attentional 

performance by showing a smaller attentional-blink compared to the novice group 

(Slagter et al., 2007; Slagter et al., 2009).  This task does not measure speed of reaction, 

but rather accuracy of identification.  The authors attributed this to the experimental 

subjects not needing as much attentional resources to identify the first target and were 

more likely to detect the second target (Slagter et al., 2009).   

In addition to performance measures, we explored EEG during meditation and 

how it may relate to the performance boost.  PVT performance was correlated with 

multiple EEG power measures.  Alpha power was the most associated with improvement 

of mean reaction time.  Frontal alpha is associated with alertness, attention, and task load 

(Klimesch, 1999).  Meditators have been shown to have higher frontal alpha power than 

non-meditators (Aftanas & Golocheikine, 2001; Aftanas & Golocheikine, 2002; 

Arambula et al., 2001; Ghista et al., 1976; Huang & Lo, 2009; Khare & Nigam, 2000; 

Travis, 2011).  In our novices, there was a strong association in prefrontal and frontal 

electrodes, where subjects with higher alpha power during meditation had a better change 

in performance.  Our data also showed a correlation with lower frontal gamma power and 

improved attentional performance.  The implications of this result are unclear. Parietal-

occipital gamma increase in activity is considered a meditation trait and has only been 

noted in advanced meditators (Braboszcz et al., 2017; Cahn et al., 2010; Ferrarelli et al., 

2013). It is possible that our correlation in gamma could be related to ocular muscle 
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activity, as the association was only seen in AF3 and AF4, and does not indicate any 

association with cortical function (Olson et al., 2016). 

We next examined coherence within the EEG during the 20-minute meditation bouts.  

To improve the rigor of these EEG measures, we used mean phase coherence (MPC) 

analysis to measure synchronization of cortical regions.  The majority of studies of EEG 

synchronization during meditation look at correlations of power changes (Aftanas & 

Golocheikine, 2001; Aftanas & Golosheikin, 2003; Dillbeck & Bronson, 1981; Gaylord 

et al., 1989; Murata et al., 2004; Tomljenović et al., 2016; Travis, 2011; Travis et al., 

2010; Travis et al., 2017; Travis & Wallace, 1999).  (See Chapter 1, Table 1.1 for a 

summary of coherence analysis in meditation).  Using power correlations shows 

concurrent amplitude changes in the same frequency band, but neglects phase 

information.  Recent hypotheses into neuronal dynamics propose that strong effective 

connectivity requires coherence or rhythmic synchronization between neuronal groups 

sending and receiving signals (Fries, 2005, 2015).  Inputs that rhythmically and 

consistently arrive at times of high input would benefit from this enhanced connectivity, 

and without this coherence, inputs would arrive at random time in the phase and have less 

effective connectivity (Fries, 2015).  Following this hypothesis, MPC more accurately 

describes the communication between cortical regions during meditation.   

Our EEG data showed the following: high alpha coherence in prefrontal and frontal 

electrodes, moderate alpha coherence between occipital and parietal electrodes, and more 

coherence on the right side of the brain than the left.  Increase alpha synchronization , 

specifically, showed significant correlation with better PVT performance.  This was seen 

most strongly for the frontal-temporal regions but was also more wide-spread in the 
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frontal-occipital and temporal-occipital MPC values.  High alpha coherence is the most 

widely reported result in studies of meditators compared to controls, and has been 

perhaps the most well established change that occurs with meditation (Dillbeck & 

Vesely, 1986; Levine, 1976; Murata et al., 2004; Newandee & Reisman, 1996; Travis & 

Arenander, 2006; Travis et al., 2010; Travis et al., 2017).  Alpha coherence has been 

suggested to be a default state for local cortical neuronal groups to synchronize, and it 

may help mediate attentional processes, although the evidence is limited (Fries, 2015).  

The individual subjects we found with better coherence may have better communication 

between cortical groups associated with attention, which in turn contribute to the 

performance benefits found in this study. 

We did not find an association between meditation theta power or coherence and PVT 

performance.  This may be due to our subjects having a lack of long-term meditation 

training.  More experienced meditators, including those who have received only weeks of 

training, have been shown to have an increased frontal theta power and coherence (Baijal 

& Srinivasan, 2010; Cahn et al., 2010; Cahn & Polich, 2013; Gaylord et al., 1989; Tang 

et al., 2009; Tsai et al., 2013).  These more experienced meditators have had longer time 

to practice and presumably become better at meditation and attentional control.  Theta 

dynamics during meditation have remained controversial as other studies have noted 

reduced theta activity during meditation (Dunn et al., 1999; Huang & Lo, 2009).  It is 

also possible that our specific type of meditation was not an engaging enough task to 

induce theta power changes.  It has been suggested that frontal theta in particular is 

related with the maintenance of attention and vigilance during specifically during 

directed tests as compared to a more passive task (Baijal & Srinivasan, 2010; 
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INANAGA, 1998).  Since our procedure measured EEG during meditation and not the 

PVT, this may account for our lack of significant theta power and coherence findings.  

Future studies should look at the theta band during the reaction time test to see if novices 

have any changes to theta power or coherence due to the single session of meditation.   

Human neural dynamics change rapidly over time, and our data shows trends that 

change over time.  Prefrontal gamma power (AF3 and AF4) was correlated with 

attentional performance in the first three minutes of meditation, whereas frontal alpha and 

beta notably lacked correlation during the first minute of meditation.  Other noteworthy 

differences are that two correlations with performance, F7 beta power and temporal-

occipital alpha MPC, did not show a relationship with RT until the second half of 

meditation.  Few studies of EEG during meditation have looked at the changes across the 

meditation period, but rather select a small sample of data, usually less than one minute 

for coherence and other complexity analysis (Aftanas & Golocheikine, 2001; Aftanas & 

Golocheikine, 2002; Aftanas & Golosheikin, 2003; Dissanayaka et al., 2015; Gaylord et 

al., 1989; Huang & Lo, 2009; Murata et al., 2004; Tomljenović et al., 2016; Travis, 2011; 

Travis & Arenander, 2006; Travis et al., 2010; Travis & Parim, 2017).  One such 

influential study of TM had meditators EEG binned for the 1st, 5th, and 10th minutes 

during eyes-closed rest and TM practice (Travis & Wallace, 1999).  Coherence values 

were not significantly different, but there was a non-significant but still noteworthy 

increase in coherence around the middle of the meditation.  This paper has been cited 

multiple times as the reasoning behind coherence values not changing over time and 

therefore limiting data used for analysis (Travis, 2011; Travis & Parim, 2017).  Analysis 

of more specific time points have revealed interesting findings in experienced meditators.  
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One study of experienced Sahaj Samadhi meditators also showed that theta power was 

not constant and was highest in the middle of their meditation (about 8 to 12 minutes in) 

(Baijal & Srinivasan, 2010).  Zen meditators had the highest relative beta power during 

the last 5 minutes of a 40-minute meditation (Huang & Lo, 2009).  Investigations that 

only look at a subset of EEG data during meditation would have missed such associations 

over time. 

A limitation to this study is that there was no EEG data for control or reference.  

One problem in the meditation field is that there is no standardized and generally 

accepted control.  Some studies rely on an eyes-closed rest for non-meditation conditions 

(Aftanas & Golocheikine, 2001; Gaylord et al., 1989; Newandee & Reisman, 1996; 

Travis & Arenander, 2006; Travis & Parim, 2017; Travis & Wallace, 1999).  However, 

the act of closing eyes immediately increases alpha power, markedly in the occipital 

lobes (Barry et al., 2007), and is arguable a first step toward a “meditative state”.  Our 

data shows that this occipital alpha power as soon as eyes were closed was correlated to 

attentional performance.  Our data also supports that this eyes-closed alpha could be 

associated with the performance benefits of meditation, and other studies of meditation 

support that occipital cortex dynamics are characteristic of higher states of consciousness 

during meditation (Huang & Lo, 2009).  Because of this, we do not think eyes-closed rest 

is a good non-meditation condition.  Eyes-open rest conditions as controls (as used in 

(Takahashi et al., 2005) differ greatly because they are precisely missing the alpha power 

increases due to closing of the eyes and thus may vary too much from eyes-closed 

meditation.  Other options need to be considered.  Future investigations should compare 
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multiple types of control conditions (both eyes closed and eyes open) and examine their 

EEG dynamics in comparison to meditation.   

Another limitation of our study is that the exploratory design only lends itself to 

descriptive and correlative results.  Our data shows an association between meditation 

EEG power and coherence and performance changes during the PVT.  We cannot say 

that these changes in EEG during meditation are in any way causative, but the 

relationships between EEG and RT are noteworthy, and could be manipulated in various 

ways to test or at least suggest a causative role.  Subjects with higher EEG alpha power 

and coherence had a better performance boost in the PVT.  It would be interesting to see 

if these subjects had an easier time maintaining attention.  Future studies should 

investigate this relationship further.   

In conclusion, our data shows that 20 minutes of meditation improved PVT 

performance, and that these performance changes were associated with EEG measures 

during meditation.  Given the wide range of methods used for coherence measures and 

other EEG variables during meditation, we suggest more consistent and rigorous 

measures be adopted (such as MPC used here) and that assessment of these measures be 

done throughout the entire meditation period.   



 
 

CHAPTER 3. THE EFFECTIVENESS OF SHORT MEDITATION ON ATTENTIONAL 
PERFORMANCE: A QUICK CLASSROOM ACTIVITY 

10. Abstract 

Undergraduate students suffer from stress and attention problems throughout their 

academic career.  This is a great time for students to learn a new skill; meditation 

practices have been shown to improve mental and physical health and our activity can 

introduce them to this beneficial practice. Utilizing the learning-cycle approach, we had 

students first engage with a problem, explore interpretations, conduct a meditation 

experiment, and then interpret and explain results. This short activity investigates the 

impact of focused-breathing meditation on the attention of students using the 

psychomotor vigilance test (PVT). The within subjects’ design showed that a majority of 

students see reaction time improvements with just 5-minutes of meditation or 5-minutes 

of being sedentary. This has been repeated over many years and in both an introductory 

biology course and as well in a 300-level neuroscience techniques course. We also 

investigated if the amount of sleep the previous night would impact performance 

changes, but this was found to have no effect. Our 5-minute meditation activity taught 

with the learning-cycle approach can be quickly added to any neuroscience, biology, 

behavior, or psychology course. Further discussion focuses on the stress response, the 

neurophysiology of meditation, brain electrical activity, brain regions, and impact of 

behaviors on physiology.   

11. Introduction 

Undergraduate students, especially first year (Cooke et al., 2006; Farnill & 

Robertson, 1990) and minority students including ethnic minorities (Paukert et al., 2006; 

Wei et al., 2010), transgender students (Effrig et al., 2011; Swanbrow Becker et al., 2017) 
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and first generation students (Jenkins et al., 2013; Stephens et al., 2012), experience a 

large amount of anxiety and stress when transitioning to college.  College is a new social 

and geographical environment that is often accompanied by large amounts of stress, more 

than that experienced by non-college attending peers (Stallman, 2010).  Stress is 

pervasive and highly detrimental to class performance (Ahmed & Julius, 2015; Stallman, 

2010; Struthers et al., 2000), something all academics know too well.  The stress response 

also increases aging (Epel & Lithgow, 2014; Lupien et al., 1999), disease (Cohen et al., 

2007; Krantz & McCeney, 2002), and prevalence of psychological disorders (Mounsey et 

al., 2013; Nagurney, 2007).  Meditation has been shown in various contexts to decrease 

stress (Burger & Lockhart, 2017; Dillbeck & Orme-Johnson, 1987; Mohan et al., 2011; 

Singh et al., 2012; Smith, 1976; Tang et al., 2007).  Teaching meditation to students can 

take place in multiple ways, but this study focuses on a brief introduction to meditation 

and the neurophysiological changes it can elicit, even in first time meditators.   

As a time of intense stress, being in college also provides an opportunity to learn 

new life skills and stress reduction techniques.  On average, college students are 

generally more open to meditation, since they use complementary and alternative 

medicine at a higher rate than the overall American population (Nowak & Hale, 2012; 

Versnik Nowak et al., 2015).  Meditation is not new to college classrooms, but most uses 

of meditation have interventions that span weeks or a whole semester.  These long-term 

interventions have successfully helped these students decrease their stress response 

(Ramler et al., 2015) and improve in multiple areas of life, including increased healthy 

habits (Soriano-Ayala et al., 2020), better psychological wellbeing and increased 

compassion (Crowley & Munk, 2017).  Meditation has also been used to improve 
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classroom performance as a method of self-reflection and led to better retention of 

classroom material (Levit Binnun & Tarrasch, 2014).  Study group interventions that 

practice 10-minutes of meditation at the start and end of their study time had significantly 

higher semester and cumulative GPAs compared to a studying only control group (Hall, 

1999). For further reading, meditation in the collegiate context has been thoroughly 

reviewed by (Shapiro et al., 2008). 

We believe that meditation, when used in the classroom can not only teach 

students a new technique but can be a good introduction to neurophysiology and brain 

neuronal dynamics.  Meditation has been successfully integrated into a semester long 

course, Neuroscience of Meditation (Olson, 2018).  This course included many types of 

meditation, brain dissections, performance measures, EEG, and psychological 

questionnaires.  These students experienced a reduced barrier to meditation and had an 

improvement of attitudes toward science in general, through the study of meditation 

(Olson, 2018).  This course showed promising results but requires an entire semester of 

work.  For many neuroscience, psychology, or physiology courses, this may not be 

possible. Our exercise aims to expose students to meditation in a single class session and 

show the short-term impact meditation can have on their physiology. 

The University of Kentucky's STEMCats program is a living learning program for 

first year students in STEM fields that are planning to pursue professional STEM careers, 

such as medicine, dentistry, pharmacy, engineering, and research.  This program provides 

social, academic, and professional development opportunities for success in these 

programs.  One special course for those in the STEMCats program is the fall Biology 101 

in which students explore opportunities, research, and career paths in a variety of STEM 
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fields.  During these sessions, faculty and professionals are guest speakers about their 

particular field to provide information and activities.  We took this opportunity to develop 

our meditation activity and to teach the neurophysiology of meditation to these students.   

Students are more interested in a topic if they have first person experience with 

it.  A learning-cycle approach is a widely used teaching method to increase student 

engagement and retention of material (Kolb & Fry, 1974; Kolb, 1984) and has been 

specifically applied to neuroscience courses (Stewart & Stavrianeas, 2008). We used this 

teaching method to first engage with a problem, explore interpretations, conduct the 

meditation experiment, and explain the results. For the learning-cycle approach to work 

to link meditation and neurophysiology, we needed an experiment that included a 

measure that is impacted by a single session of meditation.  A previous study completed 

by our lab showed that a longer 40-minute meditation had an acute impact on 

psychomotor vigilance (Kaul et al., 2010). The psychomotor vigilance task (PVT) 

measures reaction time and sustained attention in response to a visual stimulus (Dorrian 

et al., 2005).  Kaul and colleagues also showed that the performance boost due to 

meditation may also be related to previous nights’ sleep duration, so sleep data was 

gathered from students (Kaul et al., 2010).  PVT performance is known to be susceptible 

to sleep loss (Kohler et al., 2017) and may be impacted by long meditation experience 

(Kaul et al., 2010).  

The goal of this study is to show the effectiveness of a short meditation activity in 

the classroom. We wanted to determine if performance boosts are measurable from a 

short 5-minute meditation period, using a computer-based PVT program that is readily 

accessible for a wide variety of courses and teaching activities.  
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12. Materials and Methods 

Our session was a 50-minute activity that included a 15-20 minute lecture, discussion 

on experimental design, meditation exercise, data collection, and discussion of data. All 

research protocols were reviewed and approved by the University of Kentucky’s 

Institutional Review Board. 

Learning objectives: 

• Recognize the extraordinary claims about meditation 

• Demonstrate within subject experimental design 

• Interpret human reaction time data 

• Describe the impact of sleep loss and meditation on reaction time 

Subjects 

All subjects (n=419) were students enrolled in the STEMCats class, BIO 199, 

which gives undergraduates a chance to be exposed to a diversity of STEM fields and 

research through lectures and activities with multiple faculty and researchers at the 

University of Kentucky.   

Lecture Design 

Using the learning-cycle approach we designed an experiential activity and lecture 

for first-year undergraduates.  We first introduce the topic of meditation, explaining the 

history of meditation traditions, types of meditation, and end with an open-ended 

question on the claimed benefits of meditation (including anti-aging, anti-hypertensive, 

relaxation, decreased depression, helps insomnia).  This introduction leads to a class-wide 

discussion about how meditation affects performance and how this can be tested in a 

classroom setting.    
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Next the class had a brief discussion about the potential benefits of meditation and 

what the students already know about meditation. This led the entire class to think about 

what meditation can do and how we can measure changes in some variable.   During this 

time, the discussion was led to get students to talk about the materials that we have at our 

disposal including a group of novice meditators and a performance measure (the 

PVT).  At this time an overview of the experiment was given students will complete a 

PVT, do the meditation activity, and take a post-meditation PVT.  

PVT was completed using an online 2-minute Psychomotor Vigilance Test from the 

Sleep Disorders Center Florida http://www.sleepdisordersflorida.com/ pvt1.html).  This is 

available for all internet enabled devices.  For the purposes of this class, PVT was 

completed in a computer lab with desktop computers that each had a dedicated corded 

“mouse” to click.  Steps were taken to ensure that PVTs are taken using the same device 

within subjects to reduce inter-test variability.  Students were then asked to record their 

average response time, which is automatically calculated via the website (false starts are 

automatically removed, as are response times less than 100 msec - which is faster than 

humans can respond to a real visual stimulus). Data was recorded using a slip of paper 

that includes: Sleep Duration Last Night (hours), Before Meditation average response 

time (msec) and number of false starts, After Meditation average response time (msec) 

and number of false starts. 

After the pre-meditation PVT data was recorded, students were instructed how to do 

the 5-minute focused breathing meditation.  During meditation, subjects are asked to 

close their eyes, then focus on their breathing, and if their minds wander to bring focus 

back to their breath.  Each trial was completed with the same meditation instruction:  

http://www.sleepdisordersflorida.com/%20pvt1.html
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“We will now begin the focused breathing meditation.  Everyone sit up straight in 

your chair with your feet flat on the ground.  Place your hands in your lap or in a 

comfortable position.  During this meditation, focus only on your breathing.  Close 

your eyes and I will tell you when 5 minutes is over. Begin.” 

After completing the full experimental protocol, students are presented with some 

data that was gathered previously to discuss data analysis.   Students were asked to form 

a conclusion on said data.  During this time, discussion was led to determine how 

performance variables could be assessed, explaining the basics - such as a lower number 

indicates a faster reaction time, within vs. between group differences, and how meditation 

might potentially improve their reaction time.  This then leads into a further short 

lecture/presentation on what meditation is doing to your brain, basics of 

electroencephalography (EEG), brain regions, and the other impacts of 

meditation.  Meditation practices have been extensively shown to cause changes in the 

EEG, general physiology, anatomy, and cognitive performance.   

Analysis 

Since this lesson gathered sleep and reaction time data, this allowed for us to 

investigate this group of novice meditators' responses from a 5-minute meditation period 

on subsequent PVT performance.  To determine performance changes due to the 5-

minute meditation, the difference between pre-meditation reaction time (RT) and post-

meditation RT was calculated for all subjects.  A paired t-test was used to determine 

significant changes in reaction time (α=0.05).  Group differences between the meditation 

and control groups was determined using a two-sample unequal variance t-test. A 

bivariate fit of hours of sleep the night before testing and the change in reaction time was 
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used to determine if the previous night sleep correlated with the change reaction time.  

All statistical analysis was completed using SPSS.  

13. Results 

Out of the entire data set (n=417), two subjects were outliers with change in RT > 

1000 msec were removed for a final sample size of n=415.  There was a significant 

improvement in RT (t(416) = 6.73, p<0.0001) with subjects showing a mean of 26.03 ± 

79.02 msec improvement in reaction time after meditation. 65.8% of people in this study 

had improved reaction times after the 5-minute meditation session (Figure 3.1).   Sleep 

time before meditating, in this sample, did not correlate with change in reaction time in 

the control group (p=0.93) or the meditating group (p=0.21). 

Performance improved, on average, following the 5-minute meditation session when all 
subjects were analyzed together. Reaction time decreased an average of 26 milliseconds 
from pre-meditation to post-meditation (n=417). Error bars denote SEM. *p<0.001 using 
paired t-test. 

 

Figure 3-1 Quick 5-Minute Meditation Improves PVT Reaction Time. 
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3.1.1 2015-2016 

The first data was collected during the 2015-16 STEMCats Seminar Courses. This 

group consisted of 186 students. Analysis was completed to determine if students got a 

boost in performance from the 5-minute meditation.  These reaction times (RT) were 

measured using a 2-minute PVT and analysis was completed for the reaction time 

data.  A one-tailed paired t-test showed a significant difference between pre and post 

meditation RT(t(185)=4.227, p<0.001) (Figure 3.2). RT decreased an average of 13.2 

msec from premeditation (335 士 71.8 msec) to post meditation (321 士 61.9 msec). This 

shows that there was a significant and consistent decrease in reaction time after students 

underwent five minutes of meditation. From premeditation to post meditation, 122 out of 

186 people improved their reaction times.  

3.1.2 2016-17 

The next set of data was collected in 2016-2017 and consisted of 102 students. 

These students also showed an improvement in RT pre versus post meditation (t(101) = 

4.882, p<0.0001) (Figure 3.2). Reaction time decreased an average of 59.57 msec from 

premeditation (555 士 281.9 msec) to post meditation (495 士 227.9 msec). From 

premeditation to post meditation, 71 out of 102 people improved their RTs. 

3.1.3 2018-19 

A year after the last group, in 2018-2019, 41 students performed the test. This 

group also showed significant improvement in RT post mediation (t(40) = 1.925, 

p=0.0308) (Figure 3.2). RT decreased an average of 7.46 msec from premeditation (304 
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士 33.8 msec) to post-meditation (297 士 24.8 msec). From premeditation to post 

meditation, 21 of 41 people improved their reaction times. 

3.1.4 2019 

To conclude the study, in 2019 a group started with a 5-minute control sedentary 

activity, followed by the 5-minute meditation protocol. To determine if reaction time 

differences significantly differed between meditation and the control sedentary activity, a  

Each group of students show a significant improvement in RT after their short 
meditation.  RT decreased in the 2015-2016 group by 13.25 msec, in the 2016-2017 
group by 59.57 msec, and in the 2018-2019 group by 7.463 msecs. Error bars denote 
SEM. *p<0.05, **p<0.0001 using a paired t-test.  Note: We do not know the cause of the 
slower reaction times in 2016-2017, but this website based version may respond slower 
than the traditional PVT machines, or various PC based program that are equivalent, 
and may have had an especially slow connection in this one year.  However, the delay 
appeared to be consistent throughout this year, and thus should not impact the pre vs. 
post comparisons. 
 

 

Figure 3-2 Each Group Shows an Improvement in PVT Reaction Time After 5-minutes of 
Meditation. 
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(n=72) and all meditation subjects. Two-sample unequal variance t-test was performed on 

the difference between control  

  Despite the greater RT improvement with meditation vs. control activity 

(26msec vs. 15msec), there were no statistically significant differences between the 

control activity and meditation. 

 

 

 

 

 

 

 

 

 

 

 

 

Both the control sedentary activity and meditation showed a decrease in RT.  Meditation 
practice did show a 26 士 79.2 msec reduction/ boost in reaction time from premeditation 
to post meditation for all subjects.  The control activity is not dissimilar from some 
meditation practices and also showed a 15 士 7.57 msec reduction of reaction time from 
pre activity to post control (p<0.005). Error bars denote SEM. 

 

Follow up analysis showed that the control sedentary activity also significantly 

improved RT (t(71) = 3.41, p<0.0005).  RT decreased from the sedentary activity an 

Figure 3-3 Reaction Time is Improved by both Meditation and Short Sedentary Activity. 
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average of 15 msec from pre-activity (363 士 98.5 msec) to post control (347 士 81.5 

msec) (Figure 3.3).   

14. Discussion 

3.1.5 Problem 

     Our data show the effectiveness of a 5-minute introductory meditation exercise and its 

impact on reaction time as measured by a simple PVT.  This activity requires little 

equipment and can be broadly used as an experiment to get students interested in their 

control over their own brain.  Previous studies of meditation in the classroom have relied 

on long meditation training and semester long laboratory classes.  These require much 

effort, laboratory materials, and student input.  For wider, classroom applications we 

show the effectiveness of only a 5-minute meditation on basic attentional 

performance.  The online PVT is easy for students to take using any device and can be 

completed at home if needed. Our activity can be used in introduction biology courses, 

neuroscience courses, seminars, behavioral classes, and psychology courses.  This 

activity is quick with consistently positive responses from students.  This student 

response was not quantified, but in early years of these studies, students were able to 

choose different activities, and this activity had the highest attendance and highest 

interest (out of 12).  

3.1.6  Contributions 

 Previous research has shown that longer training of meditation improves 

performance.  This is the first paper that shows that 5 minutes of focused breathing 

meditation is effective in reducing reaction time in a large classroom study.  Although 

data is limited to RT, this is still encouraging for future meditation research.  Using the 
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same type of meditation, a previous study completed in our lab showed that a 40-minute 

meditation also significantly improved RT (Kaul et al., 2010). These data showed that 

participants’ RT decreased by 16.5 msec, which was a slightly larger boost than that seen 

in this study (Kaul et al., 2010), and essentially all subjects had at least a small 

improvement when averaged over two trials each.  Thus, a longer duration of meditation 

appears to provide a more consistent boost in performance, however, the short 5-minute 

meditation often provided a similar (but slightly lower) improvement, and likely a similar 

physiological response. 

Interestingly, the 5-minute “control” activity was also shown to have a 

performance boost.  The act of meditation consisted of closing eyes in a controlled 

position.  Meditation is also a time of sitting quietly, being removed from stress of 

academic activities, and not focusing on learning or other activities.  These same things 

took place during the control activity, and we would even argue that this time of 

relaxation and sitting quietly is similar to meditation in several aspects, and perhaps 

allows the brain to “reset” to better perform in subsequent tasks (perhaps also similar to 

so-called ‘power naps’ of 5-10 minutes duration, that may or may not involve any actual 

sleep). 

When discussing these data and your findings with your students, this can lead to 

discussions of the mechanism of action of meditation, which we and many others believe 

is increasing the neuronal coordination and inducing slower firing of the neurons (Cahn 

& Polich, 2013; Chamandeep Kaur & Preeti Singh, 2015; Lee et al., 2018). This in turn 

leads to the performance enhancing effect (reviewed in (Guerriero & O'Hara, 

2019).   Studies of longer durations of meditation with subsequent EEG recordings show 
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that meditation can reduce attentional blink and allows for more effective brain resource 

allocations (Slagter et al., 2009).  Other EEG studies have also shown that after 

meditation practice, meditation can have an immediate effect on attentional measures 

(Rani & Rao, 2000).  

3.1.7 Limitations 

This study only analyzes the effect of 5 minutes of meditation on a single 

performance measure, psychomotor vigilance.  Other performance measures have been 

found to benefit from longer meditation, but it's unknown if 5 minutes of meditation 

would change performance on these other measures.  Longer-term meditation has been 

shown to improve information processing, memory, and other measures of attention 

(reviewed in (Guerriero & O'Hara, 2019; Shapiro et al., 2008) and these require follow up 

studies.   

Our data show no impact of self-reported sleep duration on reaction time.  Due to 

the exploratory nature of our data, this was not unexpected.  Normal sleep may show no 

effect due to meditation.  A previous study completed by our lab (Kaul et al., 2010) 

showed that after a full night of sleep deprivation there was a larger boost in reaction time 

performance by meditation, due to the slower reaction time pre-intervention for these 

sleep deprived subjects.  Another study of attention and meditation after one night of 

sleep loss showed that those subjects that meditated had better attentional performance 

than those who rested (Kohler et al., 2017). Both studies show the impact of an entire 

night sleep loss on attention that is then improved by meditation. This finding may be 

limited to severe sleep deprivation and was unable to be seen in the sleep amounts 

reported by students, which cover a more modest level of sleep debt.  Our 2-minute PVT 
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may also not be sensitive enough to capture sleep loss induced attentional deficits, as 

both previous studies used the more widely accepted and validated 10-minute PVT (Kaul 

et al., 2010; Kohler et al., 2017). This topic of sleep and meditation should undergo 

further study because undergraduate students in general suffer from poor sleep which can 

interact with missing classes, receiving lower grades, and poor mental wellness (Orzech 

et al., 2011).  Lastly, as noted in the Figure 3.2 legend, the 2 minute website version used 

in this study appears to have a delay relative to the commonly used PVT-192 device that 

has been sold for decades, or equivalent PC versions (Khitrov et al., 2014), which 

typically use 10-minute test periods.  However, the delay appears to be consistent within 

each subject and testing period, and thus our pre vs. post RT averages, and the subtraction 

of these values to assess increased or decreased speed should be accurate. 

3.1.8 Implications 

We showed that 5 minutes of meditation significantly decreased RT in the context 

of an introductory seminar-based class for biology majors.  Beyond exposure to 

neuroscience through meditation, the exposure to meditation is valuable to students. As 

stated earlier, there is a myriad of psychological and physiological benefits from 

meditation practice itself.  

Students can change a physiological measure, psychomotor vigilance and 

attention, by a very simple and short meditation.  We have previously described the 

impact of meditation on performance (Guerriero & O'Hara, 2019) and this material is a 

good starting point for additional lecture and lab material.  The authors also had success 

using this activity in a Bio 300 level course for Neuroscience majors: Introduction to 

Neuroscience Techniques (mostly sophomores and juniors).  The meditation activity was 
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used as a preface to an EEG-based exploratory lab.  This lab included this same 

meditation activity (data not collected for research purposes) and followed with a brief 

lecture on the neurobiology of meditation and the different frequency brain waves 

typically demarcated in EEG studies (delta, theta, alpha, beta, and gamma).  Lab groups 

then used an EEG to visualize the immediate eyes closed occipital alpha power increase 

(unpublished data).  They then increased alpha power while repeating the focused 

breathing meditation and/or relaxation.  Multiple students have stated that this lab was 

one of their favorites in the course due to the personal and hands on nature of the 

activity.  
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CHAPTER 4. CONCLUSIONS 

In this dissertation, I aimed to determine if a single bout of meditation improves 

attentional performance in non-meditators.  Other studies showed that short trainings of a 

few weeks of meditation improved reaction time and other attentional performance, but 

there is limited data on what a single session can do.  A previous study in our lab found a 

40-minute session of focused-attention meditation improved PVT reaction time, but this 

session may be too long for most non-meditators and those with limited time.  To further 

understand how meditation impacts performance, I studied the impact of 20-minutes of 

meditation on the psychomotor vigilance test (PVT).  Our data support that a single 

session of meditation can improve reaction time speed and vigilance in non-meditators.  

Our data also show that meditation lessened the number of lapses of attention during the 

10-minute PVT.  Finally, meditation also allowed subjects to sustain their vigilance better 

throughout the PVT.   

To understand how meditation relates to this performance boost, I studied cortical 

neural dynamics using electroencephalography (EEG) in a subset of our subjects.  I 

described cortical synchronization using a method new to the meditation field, mean 

phase coherence.  This analysis relies on phase synchronization which is a more accurate 

measure of coherence than power correlation, as has been used throughout the meditation 

field.  The subjects had high alpha coherence in their frontal electrodes, both within and 

between hemispheres, a measure associated with attention regulation.  I also found 

moderate theta and beta coherence in these frontal regions.  Correlations of EEG power 

and coherence to performance changes were then done to determine what during 

meditation is causing variations in performance.  Better PVT performance was correlated 
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with higher frontal alpha power, higher occipital alpha power, higher frontal beta power, 

and lower prefrontal gamma power.  Higher alpha MPC in the frontal-temporal, frontal-

occipital, and temporal-occipital regions was also correlated with better PVT 

performance.  MPC needs to be applied to expert meditators and other meditation 

practices for better understanding of coherence. 

I then wanted to understand if a shorter bout of meditation could improve reaction 

time in novices, specifically targeted for first year students.  I also worked to design a 

classroom activity around meditation that would get students engaged with the topic and 

be interested in the biological study of meditation.  Using the learning-cycle approach, a 

50-minute activity was designed to get students to ask critical questions, engage as a test 

subject, analyze data, interpret the possible implications of the data, understand within 

subject research design, and ask bigger questions about meditation and the conscious 

control of cognition on their own performance.  After developing this activity over a few 

years, only 5 minutes of meditation was found to significantly improve PVT performance 

in the classroom.  These results reproduced over multiple years of running the activity 

with multiple groups of students.  Attempts at developing an eyes-open control were 

unsuccessful, as students who were sitting and relaxing at their desks also saw a 

performance boost. 

Future work in this field needs to better understand what is taking place in the 

brain during meditation and how it relates to performance.  My data were correlative in 

identifying EEG power and coherence changes associated with PVT performance.  The 

implications of these data is unclear.  The most well understood coherence is the delta 

power that takes place during deep sleep (citation).  Current understandings implicate that 
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the delta wave power is associated with increase perfusion of cortical tissue by cerebral 

spinal fluid (CSF) that works to clear the brain of metabolic waste (Xie et al., 2013)This 

process, called the glymphatic system, seems to have a proportional relationship between 

the power of delta wave and amount of glympathic influs. Although not understood well, 

EEG waves of other frequencies could indicate movement of CSF during wake.  It is 

possible that during meditation, there is a increase in this perfusion of CSF into the brain 

tissue, as measured in increased magnitude of alpha and theta waves, providing the 

restorative and performance inducing benefits due to meditation practice.  If true, this 

would also support that a single session of meditation can impact performance.   

To understand if increasing the magnitude of a specific wave can impart similar 

benefits of meditation, subjects could do a selective training of specific neural dynamics.  

This could be possible by using neural feedback, a method to train a defined brain pattern 

using positive reinforcement (citation).  Specifically rewarding subjects with increase 

magnitude of frontal and posterior alpha waves, and frontal theta waves could mimic the 

brain wave patterns of the novice meditators that we found to perform better on the PVT.  

This would help elucidate the causative relationship between neural dynamics during 

meditation and performance could be elucidated.   

Next, we were limited in the number of subjects that underwent EEG analysis, 

and all were pulled from the college population.  First year college students have been 

found to… Future work should also determine certain groups attitudes toward meditation 

and if that impacts the performance enhancing benefits.  Specifically, previous exposure 

to meditation from your family could shape current attitudes on practicing meditation, 

and therefore amount of focus given during practice.  Subjects amount of stress could 
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also impact how much they benefit from meditation.  A small amount of stress may be 

able to be reduced during the meditation, but I believe large amounts of stress could 

prevent concentration on the meditation practice.  Beyond college students, more subjects 

from broader groups need to be studied to see if the performance boost from meditation is 

more generalizable to the public. 

My data point to limitations in the meditation research field.  To understand what 

is taking place in the brain during meditation, more careful analysis methods need to be 

considered.  If coherence is a measure of cortical synchronization and connectivity, then 

phase needs to be related from one cortical region to another.  Also, my data support that 

the brain during meditation undergoes complex temporal changes and different EEG 

measures are associated with performance at varying times throughout the meditation.  

This raises many questions into how specifically power and MPC relate to performance 

and how does that change over time.  In any case, my findings raise many more questions 

that need further investigation.  

  



 
 

APPENDIX – SUPPLEMENTARY DATA 

Using the International 10-20, the following electrodes were measures in all EEG 
subjects.  For coherence analysis these electrodes were then gathered into regions of 
interest based on cortical location (green: frontal, gray: temporal, blue: parietal, and 
yellow: occipital). 
  

Figure 4-1 Electrode Locations for used in this study 
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Top: AF3 shows immediate correlation with PVT reaction time.  The point at 13 minutes 
is likely noise. Bottom: AF4 also shows immediate correlation with PVT RT with a likely 
noise related point at 12 minutes. Solid lines indicate mean gamma power, dashed lines 
indicate SEM.  +p<0.01, *p<0.05 Pearson’s correlation of individual alpha power to 
difference in RT. 
  

Figure 4-2 Pre-Frontal gamma power correlates with PVT performance in the beginning of 
meditation 
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Figure 4-3 EEG frontal alpha power correlates with PVT reaction time. 
Alpha power over time shows when alpha power is correlated with difference in reaction 
time (RT) pre-meditation minus post-meditation. The first minute lacked any correlation, 
but alpha power 1-8 minutes into meditation showed the most correlation to RT. Top: F3 
alpha power, Bottom: F7 alpha power.  Solid lines indicate mean alpha power, dashed 
lines indicate SEM.  *p<0.05 Pearson’s correlation of individual alpha power to 
difference in RT. 
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Figure 4-4 Frontal beta power correlated with performance on the PVT. 
Top: F7 beta power. Bottom: F3 beta power. Solid lines indicate mean beta power, 
dashed lines indicate SEM.  *p<0.05 Pearson’s correlation of individual alpha power to 
difference in RT. 
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Figure 4-5 Occipital alpha power correlated with attentional performance. 
Supplementary Figure 5: Solid lines indicate mean alpha power, dashed lines indicate 
SEM.  *p<0.05 Pearson’s correlation of individual alpha power to difference in RT. 
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A) Frontal-Temporal Alpha MPC is most correlated with change in PVT performance.  
B) Frontal-Occipital Alpha MPC shows long distance coherence correlated with changes 
in PVT. Solid lines indicate mean alpha MPC, dashed lines indicate SEM.  + p<0.01, 
*p<0.05 Pearson’s correlation of individual alpha power to difference in RT. 
  

Figure 4-6 MPC was correlated with attentional performance 
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