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ABSTRACT OF THESIS 

 

 
ASSESSING THE USE OF LIDAR AND UAV TECHNOLOGY 

FOR MONITORING GROWING ALFALFA 
 

  
Alfalfa is a popularly grown crop because of its value as a nutritious feed source 

for livestock. The efficient production of an alfalfa crop relies on the monitoring of certain 
parameters, like height, quality, and yield. Traditionally, producers have used manual 
measurements of alfalfa plant height to estimate the nutritive quality and yield of a growing 
alfalfa crop. Manual measurements of plant height are often labor intensive and provide 
low resolution data that is not acceptable for full field scale assessment of growing alfalfa. 
The two studies presented in this thesis offer detailed insight into the rapid and accurate 
monitoring of alfalfa with LiDAR and UAV technologies. The first study explores the use 
of a simple single beam LiDAR sensor to accurately estimate the average canopy height 
and yield of an alfalfa crop. Predictive models of alfalfa canopy height were developed and 
evaluated to find the optimal LiDAR derived measurements to use. The resulting 
measurements were then used to build predictive models of yield, and the best yield model 
was determined. The best models of canopy height and yield both incorporated the 95th 
percentile of LiDAR derived canopy height as a single explanatory variable. The second 
study assesses the field conditions, flight parameters, and general statistical descriptors that 
should be considered for the stable collection and application of UAV derived canopy 
height information. Data taken from different alfalfa fields at different flight parameters 
with different statistical processing were all compared. General canopy height distribution 
statistics from UAV flights flown at or below 50 m with nadir and oblique camera angles 
over thick stands of alfalfa were determined to be reliable for the detection and application 
of the alfalfa canopy surface. Using these determined methods, predictive models of 
canopy height and yield were generated and compared. The best model of average canopy 
height used the 50th percentile of UAV derived canopy height from an UAV flight at 30 m 
in a nadir imaging configuration. The best model of yield used the 95th percentile from an 
UAV flight at 50 m in an oblique imaging configuration.        

 
KEYWORDS: Alfalfa, Unmanned Aerial Vehicle, LiDAR, Canopy Height Modeling, 

Photogrammetry, Flight Parameters  
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CHAPTER 1. INTRODUCTION 

Alfalfa has amassed an international popularity as one of the premier crops for 

grazing applications and hay/haylage production (Lacefield, Henning, Rasnake, & 

Collins, 1997). It has gained this popularity because of its reputation for being a 

nutritious feed for livestock. In the U.S., current estimates place alfalfa among the top 3 

field crops in terms of marketing year average prices and among the top 6 field crops in 

terms of value of production (USDA-NASS, 2021). Major industries, such as dairy and 

equine, rely on the efficient production of alfalfa (Grev, Wells, Sheaffer, & Martinson, 

2017; Martin et al., 2017). 

A key factor in alfalfa production systems is harvest scheduling. When planning a 

harvest, producers are primarily concerned with the yield and nutritive quality of the 

crop. Often times, producers have a target forage quality, commonly defined by the 

relative feed value (RFV) of the alfalfa crop, that they are trying to achieve at harvest 

(Undersander, 2011). This strategy allows for more economical and efficient grazing 

systems and/or hay production because the quality of the alfalfa can be specifically 

catered to the nutrient requirements of various types of livestock (Lacefield, 1988). This 

way of harvesting alfalfa requires thorough assessment and management because missing 

a scheduled harvest date, even by a few days, can cause the alfalfa harvested to be of a 

lower quality. As a means to that end, producers have, traditionally, defined a cutting 

frequency by looking at recommended calendar dates and stage of maturity. Although 

this has worked in the past, defining a cutting frequency in this way is less likely to 

account for the current conditions of a specific alfalfa crop and the dynamic 

environmental factors surrounding that crop.           
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Certain assessment techniques have been adopted by producers to quantify the yield 

and quality of a growing alfalfa crop. Producers have employed methods like visual 

quality inspection, the predictive equations of alfalfa quality (PEAQ) method, and the 

Robel pole method (Lacefield, Henning, Collins, & Swetnam, 1996; Smith, 2008; 

Undersander, 2011; Vittetoe & Lang, 2019). These methods depend on manual 

measurements that can require significant amounts of labor and time to collect. Although 

alfalfa producers have found success in using these methods, the results of these methods 

can fluctuate depending on the person performing the measurement (Lacefield, 1988). 

Even if the measurements are performed perfectly, they only offer low-resolution data 

that is not suitable for field scale monitoring of the alfalfa. 

With the advent of remote sensing technologies and the various platforms that they 

can be affixed to, autonomous field scale monitoring of alfalfa is a possibility. With 

technology like LiDAR sensors and unmanned aerial vehicles (UAVs) equipped with 

RGB sensors, researchers have been able to monitor crop parameters like canopy height 

and yield in cotton, wheat, bermudagrass, and barley (Bendig et al., 2014; Feng, Zhang, 

Sudduth, Vories, & Zhou, 2019; Jimenez-Berni et al., 2018; Pittman, Arnall, Interrante, 

Moffet, & Butler, 2015). Researchers were able to achieve this type of crop monitoring 

by generating canopy height models (CHMs) from the returns of the remote sensing 

technologies, such as 3 dimensional point clouds. Since current methods of forage crop 

assessment, PEAQ and Robel pole, rely at least partially on plant height measurements, 

sensor derived CHMs stand to benefit alfalfa producers by improving the spatial and 

temporal resolution in which canopy height measurements can be taken and, in turn, 

improve the monitoring of production factors, like yield and quality. Before these 
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technologies can be used for alfalfa applications, research into the optimal parameters to 

use from the returns of the sensors and the best methodologies to use in collecting the 

remotely sensed data must be conducted.  

The overall goal of this thesis was to explore the application of LiDAR and UAV 

technologies to monitor growing alfalfa. This research was split into two studies: one 

focusing on LiDAR technology (Chapter 2) and another focusing on UAV technology 

(Chapter 3). The primary objective for the LiDAR study was to assess the capability of a 

simple LiDAR sensor to accurately estimate the average canopy height of an alfalfa crop 

and perform yield estimations. The primary objective of the UAV study was to determine 

the field conditions, flight parameters, and descriptive statistics stable enough to use in 

the generation of robust alfalfa canopy height models and predictive models of alfalfa 

production variables at the field scale.                     
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CHAPTER 2.  USING LIDAR TO MEASURE ALFALFA CANOPY HEIGHT AND YIELD 

2.1 Introduction 

Alfalfa is a nutrient rich, perennial crop that has commonly been used as feed for 

various livestock (dairy cows, horses, etc.). Alfalfa also forms a symbiotic relationship 

with rhizobium bacteria in which nitrogen from the air is converted into a plant available 

form and fixed into the soil, which is advantageous for producers when rotating crops 

(Oke & Long, 1999). Due to these attributes, alfalfa is the most widely grown legume 

worldwide (Cumo, 2013). Being able to timely and accurately monitor quality and yield 

is essential for profitable production of alfalfa. One popular way of assessing alfalfa is 

the PEAQ method.  This method utilizes measurements of plant height and maturity to 

estimate relative feed value, which is later used in harvest scheduling (Vittetoe & Lang, 

2019). Researchers have also found significant relationships between alfalfa height and 

yield that can help producers make management decisions (Lyons, Undersander, Welch, 

& Donnelly, 2016). A common factor in assessing an alfalfa crop is measuring the 

alfalfa’s height. 

Traditionally, alfalfa stand height has been measured manually with a marked rod. 

For PEAQ analysis, growers choose 5 representative plots within a field and measure the 

tallest alfalfa plant within each plot (Vittetoe & Lang, 2019). Alfalfa stand height has also 

commonly been defined as the average of multiple rod measurements within a certain 

area (e.g. 1 m2 region). These traditional methods are labor intensive and use limited 

sampling points that provide height data at a small resolution not suitable for accurate 

monitoring of alfalfa at the field scale. 
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Researchers have used remote sensing techniques to improve the acquisition of 

height data. O. Payero, M. U. Neale, and L. Wright (2004) analyzed the use of vegetation 

indices, derived from spectral reflectance measurements, to estimate alfalfa plant height. 

Strong relationships (R2 > 0.90) were found between the vegetation indices and plant 

height. Utilizing similar techniques, Noland et al. (2018) used spectral reflectance values 

in conjunction with air temperature and LiDAR canopy height measurements to estimate 

alfalfa yield and quality. Ultrasonic sensors have also been used to remotely measure 

plant height for assessing forage yield (Fricke, Richter, & Wachendorf, 2011). One type 

of remote sensing technology that has not been as thoroughly researched for alfalfa 

applications is LiDAR. There has been research that mentions LiDAR’s potential in the 

field and uses LiDAR measurements to compliment other remotely sensed data (Noland 

et al., 2018), but there is a lack of literature investigating LiDAR as a primary means of 

measuring alfalfa plant height for crop monitoring purposes.                    

With today’s LiDAR sensors and platforms, such as UAVs, LiDAR data can be 

retrieved from a farm field at previously unattainable spatial and temporal resolutions. 

With such accurate and timely data, end users can start to make real time farm 

management decisions. The usual return from a LiDAR scan is a 3D point cloud. This 

point cloud is made up of multiple data points the sensor collected in and around a plant 

canopy. Each point represents the measured distance between the LiDAR sensor and the 

canopy structure (Rosell & Sanz, 2012). This point cloud can then be processed into a 

digital surface model (DSM). The actual plant canopy is derived from this DSM by crop 

height modeling (CHM) (Crommelinck & Höfle, 2016). Canopy height modeling 

requires a digital elevation model (DEM) of the bare soil. Bare soil DEMs can be 
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obtained from LiDAR scans taken when there is no vegetation. The DEM of the bare soil 

is then effectively subtracted from the DSM to produce a CHM (Jimenez-Berni et al., 

2018).  

LiDAR has been used for accurately measuring the plant height of certain crops. 

The lidar derived plant height of crops such as wheat, hairy vetch, and miscanthus has 

been shown to be highly correlated to actual plant height measurements (Jimenez-Berni 

et al., 2018; Wiering, Ehlke, & Sheaffer, 2019; L. Zhang & Grift, 2012). L. Zhang and 

Grift (2012) compared manual measurements of stem height and average field height to 

LiDAR derived stem and average field heights. LiDAR measurements were taken 

statically and dynamically. Statically, the LiDAR’s average accuracy was 94.92%. 

Dynamically, the LiDAR’s average accuracy was 96.2%. These findings suggest that 

using LiDAR to measure plant height is plausible. Jimenez-Berni et al. (2018) used a 

LiDAR sensor affixed to a ground-based platform to achieve high throughput plant 

phenotyping of wheat. A R2 value of 0.99 and a RMSE of 0.017 m was observed between 

manual canopy height and LiDAR canopy height. Throughout the literature, manual and 

LiDAR measured plant heights are notably related. 

Although numerous use cases for LiDAR derived canopy height have been well 

defined, the optimum process for converting raw LiDAR outputs into applicable canopy 

height data is still in question. An important consideration in creating CHMs is the 

filtering of the point cloud. Proper filtering can be challenging, but if done correctly, it 

will give a better representation of the canopy height (Song & Wang, 2019). Jimenez-

Berni et al. (2018) filtered their LiDAR data by analyzing the frequency distribution of 

sensor-recorded height. They looked at the associated RMSE between manually 
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measured canopy height and different quantile values, ranging from 0.8 to 1.0, of LiDAR 

canopy height of wheat. Within the range of tested quantiles, 0.955 was found to be the 

optimum quantile to represent the top of the wheat canopy because it exhibited the lowest 

RMSE (Jimenez-Berni et al., 2018). In another study in wheat, Madec et al. (2017) found 

that the 99.5 percentile best represents the top of the canopy. By using a robotic rover 

equipped with a LiDAR sensor, the researchers were able to laser scan microplots of 

wheat to create CHMs. Using the 99.5 percentile to filter the CHMs, a RMSE value of 

3.5 cm was obtained between manually and LiDAR derived plant height. Spatial 

variability of each microplot was also minimized by the 99.5 percentile filter. Ultimately, 

the researchers conclude that the 99.5 percentile of the cumulated height distribution is 

the optimum percentile to use when comparing LiDAR measurements to ground 

measurements. 

Finding an optimal way of collecting alfalfa canopy height data would not only 

impact plant height acquisition, but it could also impact how accurately the yield of an 

alfalfa crop can be estimated. LiDAR derived plant height has been used as a proxy for 

the yield of certain crops. Pittman et al. (2015) found that plant height derived from a 

laser sensor, similar to LiDAR, was notably correlated to the destructively sampled 

biomass of bermudagrass (R = 0.88). Other researchers have had similar success with 

LiDAR based yield estimations of crops like wheat and miscanthus (Eitel, Magney, 

Vierling, Brown, & Huggins, 2014; Mathanker, Maughan, Hansen, Grift, & Ting., 2014). 

LiDAR derived plant height in conjunction with plant health measurements have also 

been used to effectively estimate yield in plants like tall fescue (Schaefer & Lamb, 2016). 

Once canopy height data can be reliably collected from LiDAR sensors, the estimation of 
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more production focused parameters, like yield, can be performed and analyzed for 

effectiveness. 

Before more advanced implementations of LiDAR sensors, such as a LiDAR 

equipped UAV, can be routinely used for alfalfa applications, the accuracy of plant 

height measurements from simpler LiDAR implementations must be tested. Not only 

should the LiDAR measurements be validated, but an optimal set of parameters 

representing the top of the alfalfa canopy should be defined to ensure the effective 

acquisition of plant height data and alfalfa yield estimations. To fill this knowledge gap, 

alfalfa canopy height models were developed using data from a single beam LiDAR 

sensor.  Second, model performances were compared, and the most efficient LiDAR data 

index to use for the accurate prediction of alfalfa canopy height was determined. Third, 

yield models were created from the resulting variables of the canopy height modeling. 

Fourth, the yield models were compared, and the best model was determined.     

2.2 Methods 

2.2.1 Data Collection 

Data were collected during the 2019 growing season at the University of 

Kentucky’s North Farm.  Sampling took place at two alfalfa fields referred to here as 

field 1 (Figure 2.1), with a 7.03 ha area, and field 2 (Figure 2.2), with a 3.09 ha area.  

Field 1 was approximately located at (38.128688, -84.509497), while field 2 was 

approximately located at (38.118587, -84.509612). Field 1 had three different soil types: 

Armour silt loam (Fine-silty, mixed, active, thermic Ultic Hapludalfs), Egam silt loam 

(Fine, mixed, active, thermic Cumulic Hapludolls), and Huntington silt loam (Fine-silty, 
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mixed, active, mesic Fluventic Hapludolls). Field 2 had Armour silt loam, Huntington silt 

loam, and Bluegrass-Maury silt loam (Fine-silty, mixed, active, mesic Typic Paleudalfs). 

Field 1 was planted with a reduced lignin and glyphosate resistant variety, Ameristand 

400 HVXRR (Forage Genetics International, LLC; Nampa, ID), and field 2 was planted 

with a different glyphosate resistant variety, Allied 428RR (Allied Seed, LLC; Nampa, 

ID). 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 This is a satellite image of field 1 at the University of Kentucky's 
North Farm. The yellow polygon denotes the boundaries of the field. 

Figure 2.2 This is a satellite image of field 2 at University of Kentucky's 
North Farm. The yellow shows the boundary of the field. 
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 Data were collected on five separate dates in the 2019 season: May 14, May 17, 

May 21, May 28, and June 6. This allowed for data to be acquired throughout one growth 

cycle, between the first and second cutting of the 2019 season. The first alfalfa cutting 

was executed with a John Deere 630 Discbine (Moline, Illinois) on May 7, 2019. The 

alfalfa was then collected as haylage on May 9, 2019. The second cutting took place 

several days after data collection ended. During the data collection period, herbicide was 

applied once on May 21, 2019. 

 On each sampling date, twenty 1 m2 quadrats (Figure 2.3) were placed in the 

fields. Ten quadrats were used in field 1, which equated to a sample density of 1.42 

samples per hectare, and ten quadrats were used in field 2, resulting in 3.24 samples per 

hectare. Data were taken at each quadrat location. All reported data came from within the 

boundaries of the quadrats. Average plant height within each quadrat were measured 

using a marked rod.  Weed pressure, insect damage, and disease damage were also 

observed and ranked using evaluation tables (Table 2.1-2.2). Lastly, yield per plot was 

determined by clipping the alfalfa in each plot to a residual height of approximately 2.5 

cm, drying the samples, and weighing the samples.  
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Table 2.1 Weed pressure evaluation scale 
Value Weed Pressure 

0 Less than 5% weeds present 
1 5% - 20% weeds 
2 20% - 40% weeds 
3 40% - 60% weeds 
4 60% - 80% weeds 
5 Greater than 80% weeds 

 

Table 2.2 Insect and disease damage evaluation scale 
Value Insect/Disease Pressure 

0 Less than 5% insect/disease damage present 
1 5% - 20% insect/disease damage 
2 20% - 40% insect/disease damage 
3 40% - 60% insect/disease damage 
4 60% - 80% insect/disease damage 
5 Greater than 80% insect/disease damage 

 

 Once all the manual field measurements were collected, a Scanse Sweep (Scanse; 

San Leandro, California, USA) LiDAR sensor was used to acquire single line scans of the 

canopy. This sensor emits a single beam of light, while rotating 360°, to measure distance 

and create a point cloud of the surrounding environment (Figure 2.4). The sensor was 

affixed to a frame that was mounted to each quadrat (Figure 2.5). The frame latched to 

the quadrat and was designed to place the LiDAR sensor 1 m above the top of the quadrat 

and directly over the center of the quadrat. Due to this design, the sensor was 2 m above 

Figure 2.3 This image shows one of the twenty 1 m2 quadrats that were used for data 
collection. The PVC structure is a square with an area of 1 m2, raised 1 m above the 
ground surface. 
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ground level when taking measurements. Using this ground-based frame rather than a 

UAV ensured exact placement of the LiDAR system for repeatable and precise 

comparisons with manually collected samples. During data acquisition, the sensor was 

allowed to scan the crop canopy for 3 to 4 revolutions, which amounted to approximately 

70 data points per quadrat. Flights at 2 m above the ground is near the lowest feasible 

altitude for safe flights, but it was also near the highest possible height for a ground-based 

frame to position the LiDAR device precisely, repeatably and reliably. In very flat terrain, 

UAV flights that scan an entire field may be able to use this 2 m altitude, but it is likely 

that these flights will ultimately occur at higher altitudes. For flights at these higher 

altitudes, it may be necessary to use alternative LiDAR units, such as the Velodyne Puck 

LITE (Velodyne Lidar, San Jose, California, USA), that can record equivalent point 

clouds while flying at higher altitudes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 This figure shows the orientation of the LiDAR sensor and the plane in 
which the sensor collects data points. The sensing plane is represented by a circle 
around the LiDAR sensor. The green portion of the circle represents the relevant data 
that is used for further processing. 
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2.2.2 Data Processing 

All the LiDAR data were processed in MATLAB. Since the sensor captures data 

in a 360° sweep, the first step in processing each LiDAR scan was to filter out any points 

that came from outside the quadrat boundary. Once all the points from each quadrat scan 

were isolated, the data were converted from polar to cartesian coordinates based on the 

fixed geometric relationships of the quadrat, sensor, and the ground. Before statistical 

data could be extracted from the processed data, outliers within the canopy height model 

had to be removed. The Generalized Extreme Studentized Deviate (GESD) test was used 

to account for outliers by assuming that the number of outliers for each model was no 

more than 5% of the total data points. As a final step, the distribution of each dataset was 

visualized on a histogram (Figure 2.6) and manually checked to ensure that all steps of 

the processing were done successfully. Once proper processing was confirmed, mean 

canopy height, maximum canopy height, standard deviation, and various percentile 

values were calculated from each canopy height model. 

Figure 2.5 This image depicts how the 3D scans of the canopy at 
each quadrat were collected. The LiDAR sensor was attached to a 
frame and mounted onto the quadrat to acquire each scan. 
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   (a)      (b)  

 

2.2.3 Modeling 

The goal of this modeling step was to find the best model for predicting the 

average height of the canopy (as measured manually) based on the LiDAR data. The 

LiDAR data was a distribution of heights, and statistical descriptors for each quadrat 

sample were created in the data processing step. It was unclear which descriptors or 

combination of descriptors would be most useful in estimating the actual average height 

of the canopy. Models were tested based on each single descriptor and on various 

combinations of descriptors. It was not feasible to consider every possible combination of 

the descriptors, so testing with more than 2-descriptors was limited to descriptors that 

appeared promising on their own or in 2-descriptor models. 

The modeling process took place within MATLAB. To begin, the manually 

measured and LiDAR-derived alfalfa data were imported into MATLAB’s regression 

learner application.  Simple and multiple linear regression modeling was performed with 

  

Figure 2.6 The histograms show the distribution of the LiDAR-derived canopy height 
of quadrat 1 on 05/14/19: one with outliers (a) and one with the outliers filtered out (b). 
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the entire dataset. Manually measured average canopy height was chosen as the response 

variable for all the models. The predictor variables that were used in the modeling 

process consisted of the nine different LiDAR derived height descriptors: average, 

maximum, standard deviation, 25th percentile, 50th percentile, 75th percentile, 90th 

percentile, 95th percentile, and 99th percentile. Certain field observations were also 

incorporated into the models: weed, insect, and disease pressure. Five-fold cross 

validation was performed on each model to validate the modeling results. This form of 

validation is a k-fold technique that divides the entire dataset into k = 5 groups where 

four groups are used for training, and one is used for testing. This process is repeated k = 

5 times to ensure that each group is used for testing once. The model evaluation metrics, 

R2 and RMSE, from all 5 rounds of testing were averaged to create the general model 

statistics. This validation technique was chosen over the more traditional method of 

splitting the data into one training and one testing set because of the robustness of cross 

validation. This cross validation technique allowed the models to be trained and tested on 

the entire dataset instead of subsets of the dataset. 

Each LiDAR derived height descriptor (average, maximum, 95th percentile, etc.) 

was used as a single predictor to create 9 unique linear models to predict actual average 

canopy height. Once every LiDAR height variable was tested individually, each pair of 

LiDAR height descriptors were tested. This resulted in the creation of 36 unique models. 

It was not feasible to continue checking every combination of descriptors. Only 

descriptors that were used in models with an R2 above 0.88 were used in the next stage of 

modeling. Once models were found that consistently performed well (R2 ≥ .90 and 

RMSE ≤ 4.5 cm) by using any combination of LiDAR height descriptors, field 



16 
 

observations were added to the models to see if these field observations of weed pressure, 

pest pressure or disease pressure could improve the model. 

Once the best models of average canopy height were determined, the variables 

utilized in each of those models were used in the modeling of the sampled yield data. 

This modeling was not limited to linear regression models. Each determined set of 

explanatory variables were implemented into 19 different modeling techniques which can 

be classified into 5 categories: linear regression, support vector machine, regression trees, 

gaussian process, and ensemble of trees. Once all of the models were trained and tested 

by 5-fold cross validation, the models with the highest R2 values were chosen and 

reported in the results section below.    

2.3 Results 

2.3.1 Modeling Canopy Height 

The optimal LiDAR statistical descriptor to use for predicting average canopy 

height by itself was the 95th percentile value from the LiDAR derived canopy height 

distribution.  Performing linear regression analysis with the 95th percentile and actual 

average canopy height as the predictor and response variables, respectfully, resulted in a 

R2 of 0.90 and RMSE of 4.5 cm.  Consequently, the model that was produced from the 

analysis fit the data points well (Figure 2.7). 
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The above regression model is quantitively described by: 

 hp = 0.949l95 + 4.38 (2.1) 

where 

hp = predicted average canopy height (cm) 

l95 = 95th percentile of the height distribution from the LiDAR scan (cm) 

The model can also be represented/visualized by comparing the model estimates from 

the LiDAR data with the actual observations (Figure 2.8). The model performs well, and 

most predictions are close to the actual measured heights. Errors appear evenly 

distributed at different heights, so the linear model is an appropriate fit. 

Figure 2.7 This plot shows the relationship between the 95th 
percentile LiDAR heights and observed average canopy heights. 
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Although the 95th percentile was found to be the optimal LiDAR measurement to 

use, models with other LiDAR derived measurements were tested for comparison.  All 

other models that utilized a single LiDAR measurement (e.g. 99th percentile alone) or 

two LiDAR measurements (e.g. 50th percentile and maximum height together) had R2 

values less than 0.90 and higher RMSE.  Most models that used more than two LiDAR 

measurements or that included alfalfa health observations also had R2 values less than 

0.90.  There were a couple of models that had slightly higher R2 values. A model using 

the 25th, 50th and 95th percentiles had slight improvements in RMSE and R2 (Table 2.3). 

The best model that was found included three LiDAR measurements (25th percentile, 

50th percentile, maximum height) and two alfalfa health descriptors (insect and disease 

pressure). However, these models are much more complex than the basic model using the 

Figure 2.8 This is a goodness of fit plot between the observed average canopy 
height and the predicted average canopy height from the model described by 
Equation 2.1. 
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95th percentile and only provided slight improvements in predictive accuracy as shown 

by the small differences in RMSE and R2. 

Table 2.3 Best linear models of average canopy height and their properties 
 

 

 

2.3.2 Modeling Yield 

The best predictive model of yield was a fine gaussian support vector machine 

that utilized the 95th percentile of LiDAR derived canopy height (Figure 2.9). The model 

was able to achieve a R2 of 0.75. This indicates that 75% of the variation that is present in 

the yield data can be explained by the single predictor model. Consequently, the 

estimated yield values from the model were close to the observed yield values with the 

exception of a couple of predictions when the observed yield was at its highest (Figure 

2.10). Other models were tested with the variables determined in the above section (Table 

2.4). Although most models performed moderately well (R2 ≥ 0.65), there was not a 

combination of variables (LiDAR and/or alfalfa health) or a particular modeling 

technique that could outperform the support vector machine model using only the 95th 

percentile. 

  

 

 

 

Variables RMSE (cm) R2 
95th percentile 4.5 0.90 

25th ,50th ,95th percentiles 4.1 0.91 
25th & 50th percentile, 

max height, insect, 
disease 

3.9 0.92 
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Figure 2.9 This plot shows the relationship between the 95th percentile 
of LiDAR derived canopy height and manually measured yield. This 
plot also shows the predictions from the optimal yield model.  

Figure 2.10 This is a goodness of fit plot showing the relationship 
between the observed yield and the yield predictions from the 
optimal yield model 
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Table 2.4 Best models of yield and their properties 

 

2.4 Discussion 

2.4.1 Predictive Models of Canopy Height 

All the models presented in this study produced accurate predictions of average 

canopy height.  Even with the various complexities of each model, the model accuracies 

were all close to each other. The largest difference between R2 values was .02, while the 

largest difference in RMSE was 0.6 cm. With all the models performing to a similar 

degree of accuracy, the amount of labor that went into data collection and variable 

calculation is a deciding factor on which model is the best. The basic model performed 

well and only required one variable, the 95th percentile of the scanned LiDAR plant 

heights.  Producing this model required a minimal amount of labor. The single LiDAR 

measurement model only required data that could be rapidly collected from the LiDAR 

sensor. Once the LiDAR data were processed, statistics, like the 95th percentile, were 

easily and quickly attainable. 

The model that utilized a combination of LiDAR measurements to predict average 

canopy height performed slightly better than the single variable model, but it was also 

more complex. The data collection process for the combination model was the same as 

the single variable model. This allowed for easy and quick data acquisition without much 

Variables Types RMSE (kg/ha) R2 
95th percentile Fine Gaussian SVMa 376 0.75 
25th ,50th ,95th 

percentiles 
Linear SVM 401 0.71 

25th & 50th percentile, 
max height, insect, 

disease 

Linear SVM 402 0.71 

a support vector machine   
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manual labor. Software could easily handle calculating the additional statistical 

descriptors of the scanned LiDAR plant heights, so computational time was not a major 

issue with the additional complexity. However, given the minimal improvement, the 

simpler model appears more appropriate. If this system is deployed more broadly, it 

would be wise to monitor for occasions when the model performs poorly and see if these 

alternative models turn out to be more robust. 

Adding field observations to the models had only minor benefits to the overall 

accuracy of the models.  Although the model using LiDAR measurements and field 

observations exhibited the best R2 and RMSE values, this model required significantly 

more labor to produce.  In conjunction with LiDAR measurements, the status of the crop 

within the quadrats had to be manually observed and measured (Table 2.1- 2.2). 

Requiring manual field observations would make deployment of a LiDAR system for 

field scale monitoring much more difficult. The model’s accuracy is only marginally 

better than the other models that require less inputs, so it is hard to justify this model for 

practical applications. It may still be worth monitoring this system in broader 

deployments to make sure that corrections for weed pressure, pest pressure and disease 

pressure are not necessary in particular extreme cases.    

2.4.2 Predictive Models of Yield 

The variables that were determined to be the best to use in simple linear regression 

models of canopy height were also used to a moderate degree of success in yield 

modeling. All models of yield presented in this study had moderately high R2 values (R2 

≥ 0.70). The model using the 95th percentile of LiDAR derived canopy height performed 

better than the rest of the tested models. This finding is not only important because of the 
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relatively high R2 value (R2 = 0.75), but that such a high value can be achieved with the 

use of one LiDAR derived height variable. The other models use various combinations of 

LiDAR variables and manual observations, but they still under-performed when 

compared to the single variable model. Because of its high performance and simplicity, 

the support vector machine model with the 95th percentile can be recommended for use in 

yield monitoring. The other yield models presented here should still be considered in 

future cases of yield modeling, especially if conditions of the alfalfa fields are 

significantly different from the conditions in this study.    

2.5 Conclusion 

This study shows that the rapid and accurate acquisition of alfalfa canopy height and 

prediction of yield are possible by means of a simple single beam LiDAR sensor. The 

canopy height and yield data that can be modeled using these methods can inform end-

users on the status of the alfalfa and harvest timing. From the LiDAR data presented in 

this study, three predictive models of alfalfa canopy height were developed. The simplest 

model was comprised of a single LiDAR height measurement, the 95th percentile. The 

other two models incorporated a combination of LiDAR height percentiles and LiDAR 

height data with field observations, respectfully. The prediction accuracies of all three 

models were high (R2 ≥ 0.90 and RMSE < 4.5 cm) and close to each other in value. The 

model incorporating the 95th percentile was able to achieve the same level of accuracy as 

the other models by using fewer explanatory variables. Similarly, three predictive models 

of alfalfa yield were developed from the results of the alfalfa canopy height modeling 

process. All three models performed moderately well (R2 ≥ 0.70), but the best model of 

yield was determined to be a fine gaussian support vector machine using the 95th 
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percentile of LiDAR derived canopy height. Under the conditions of this experiment, the 

95th percentile value of LiDAR derived canopy height can be recommended as a good 

indicator of actual alfalfa canopy height and as an explanatory variable for yield 

modeling. 
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CHAPTER 3. DETERMINING STABLE METHODS OF GENERATING AND APPLYING UAV 
DERIVED CANOPY HEIGHT MODELS FOR ALFALFA MONITORING 

3.1 Introduction 

Researchers are using canopy height models (CHMs) for a variety of crop 

production purposes. Song and Wang (2019) used CHMs to simply measure the height of 

a winter wheat canopy. Yanbo (2016) used CHMs to estimate the yield of a cotton crop. 

Canopy height models have also been used to aid in plant breeding efforts of tomatoes 

and sorghum (Enciso et al., 2019; Watanabe et al., 2017). Above ground biomass of 

barley has also been accurately predicted using data derived from CHMs (Bendig et al., 

2014). Numerous crops have been monitored using CHMs, but few researchers have 

explored using CHMs to monitor alfalfa.  

Alfalfa is often labeled the “Queen of the Forages” because it is considered one of 

the most widely grown legumes in the world (Cumo, 2013). One reason for alfalfa’s 

popularity is how nutritious it is for livestock, such as horses and cattle. The dairy 

industry greatly depends on the efficient production of forage crops, like alfalfa, as a feed 

source for dairy cows (Martin et al., 2017). Another reason for alfalfa’s popularity is its 

ability to form a symbiotic relationship with rhizobium bacteria that allows for 

atmospheric nitrogen to be fixed into a plant available form (Oke & Long, 1999). Due to 

this, alfalfa often improves the performance and yield of subsequent crops grown in 

rotation with the alfalfa (Yost, Coulter, Russelle, Sheaffer, & Kaiser, 2012).  

 Profitable production of alfalfa greatly relies on harvest timing. Certain tradeoffs 

exist between alfalfa yield and alfalfa quality that must be considered when planning to 

harvest alfalfa (Undersander, 2011). Traditional methods of assessing alfalfa have 
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required manually carrying poles through a field and taking different types of canopy 

measurements like the length of the longest stem, PEAQ method, or the height at which 

the canopy reaches sufficient density to provide visual obstruction, Robel pole method. 

The structure of an alfalfa canopy is complex, and these traditional measurements of 

different types of canopy height have been proven to be stable and valuable in estimating 

various properties of growing alfalfa (Smith, 2008; Vittetoe & Lang, 2019). On the other 

hand, these traditional methods come with major downfalls. They can require a 

significant amount of labor and time to complete, and they use a small number of 

sampling points that ultimately give low-resolution data of the alfalfa field.  Having a 

timely way of assessing yield and quality at the field scale would greatly benefit alfalfa 

producers. Additionally, having an innovative way of measuring these quantities will be 

useful in judging the merit of new cultivars, like reduced lignin alfalfa (Cherney, Smith, 

Sheaffer, & Cherney, 2020). Canopy height models derived from UAV imagery could be 

a solution (Figure 3.1). 

  

Researchers have proven that remotely sensed data can be used in alfalfa 

applications at the sub-field scale where data collection was localized to the specific 

sampling area within a field as opposed to the entire field. Noland et al. (2018) were able 

Figure 3.1 This flowchart shows the process of creating CHMs from UAV imagery. 
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to effectively estimate the yield and nutritive value of growing alfalfa with a handheld 

sensor that measured canopy reflectance and a LiDAR sensor that measured canopy 

height. Destructive sampling of various alfalfa plots at different growth stages were 

taken, and the yield/nutritive data rendered from the samples were used as response 

variables in predictive models. The models that utilized the remote sensing data as 

explanatory variables achieved high R2 values between 0.81 and 0.90. Similarly, Dvorak 

et al. (2021) were able to use remotely sensed data from a UAV to predict the quality and 

yield of a growing alfalfa crop at a sub-field scale. Instead of spectral reflectance or 

LiDAR returns, they focused on photogrammetrically processing overlapping RGB 

images of alfalfa plots into CHMs. They found that alfalfa yield and nutritive value can 

be predicted using the mean canopy height and standard deviation derived from the 

CHMs at the sub-field scale. By using the mean canopy height, standard deviation, and 

measures of field health as explanatory variables, the researchers were able to predict 

yield and nutritive values with R2 values around 0.80. These studies serve as proofs of 

concept for using CHMs to monitor growing alfalfa, but further research should be 

conducted to assess the factors that impact CHM generation at the field scale. Before 

implementing the techniques mentioned in the above articles for field-scale monitoring of 

alfalfa production, it is necessary to determine which statistical analyses, flight 

parameters, and field conditions provide a stable CHM that could be considered for 

further processing to identify more production relevant points of information, such as 

nutritive value and yield. 

 When using a UAV to collect data for a CHM, the current standard flight controls 

maintain a constant height above ground level as determined at the launch site. In large 
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fields in regions with even moderate slopes or hills, there can easily be a difference of 

tens of meters from one region of the field to another. If conservation practices like 

terracing are used (common in the Great Plains), these elevation changes can occur 

quickly and may even be captured in the same image, which could prevent even new 

UAVs from adjusting the height to match ground contours. Until UAVs offer the ability 

to perfectly maintain a desired height above the ground while rapidly flying over a field, 

it is critical to assess whether the data that are used to build CHMs are sensitive to these 

differences. This is an important step in moving from experimental research to a 

widespread application by producers in many different regions. 

CHMs can be constructed in different ways from the raw photogrammetry or 

LiDAR point clouds. The general approach is to collect all the points in a given area and 

perform a statistical analysis to assign a single value for that area. Statistics like the 

mean, median, 75th percentile, 99.5th percentile, and max canopy height have all been 

used to build predictive models (Bendig et al., 2014; Chang, Jung, Maeda, & Landivar, 

2017; Madec et al., 2017; Watanabe et al., 2017; Wijesingha, Moeckel, Hensgen, & 

Wachendorf, 2019). Although many of these statistics have been used to varying degrees 

of success in canopy height modeling, little research has been performed on which 

statistic would be the most stable to use in monitoring alfalfa. While researchers have 

focused on establishing CHMs that provide a single measurement for a given area of a 

field, the true canopy structure in a crop like alfalfa is much more complex. A healthy 

stand of alfalfa quickly forms a closed canopy with many stems extending from each 

crown where they attach to the roots. These stems of various lengths are covered with 

leaves and reach different heights above the ground. Given the complexity of the alfalfa 
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canopy structure and the variety of methods in which it has been traditionally measured, 

there is a need to determine appropriate methods for generating CHMs from UAV 

images.  

Even before statistics can be derived from a CHM, certain factors must be 

considered during the image collection process. One of these factors is the field 

condition. Point clouds can look different depending on the conditions of the field being 

imaged. High-resolution CHMs are extremely sensitive to even very small changes in the 

ecosystem structure (Cunliffe, Brazier, & Anderson, 2016). In particular, H. Zhang et al. 

(2018) found that stand density can have a major effect on the CHM generation of 

grasslands. They concluded that an accurate point cloud could not be generated from 

UAV imagery if the canopy was too dense or too thin. Similarly, Zahawi et al. (2015) 

found that substantial errors occurred within CHMs of vegetation exhibiting a relatively 

low canopy height and lack of height variation within the canopy. These differences in 

field conditions can affect the values for the various statistical descriptors of the point 

clouds even over the same locations at the same time. Seeing how field conditions, like 

stand density, can affect the creation of alfalfa CHMs would help producers and 

researchers determine if their operations would benefit from CHMs.    

Other factors that can have a drastic effect on the outcome of UAV derived CHMs 

are the flight parameters. Research has shown that factors like flight altitude and camera 

gimbal angle can significantly impact the 3D reconstruction of a scene (Jaud et al., 2019; 

Mesas-Carrascosa, García, De Larriva, & García-Ferrer, 2016). With flight altitude, there 

exists an inverse relationship between altitude and image resolution. Acquiring high 

resolution imagery typically requires low flight altitude. Certain disadvantages of low 
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altitude flights are longer flight durations and increased data storage requirements 

(Mesas-Carrascosa et al., 2016). For certain crop monitoring applications, extremely high 

spatial resolution is not necessary, and, for those specific use cases, higher altitudes can 

be used for increased efficiency (Mesas-Carrascosa et al., 2015). Determining an optimal 

flight altitude or a range of altitudes for which alfalfa CHMs can be efficiently and 

reliably generated would give guidance to UAV operators imaging alfalfa.  

A lot of UAV missions are flown in a nadir imaging configuration, but there have 

been various studies that have shown the utility of flying with camera angles off from 

nadir (Figure 3.2). James and Robson (2014) found that using oblique imagery can 

reduce errors, like occlusion, in surface models. Another advantage of using oblique 

imagery is that it can give a better view of the vertical relief of the vegetation structure 

(Lin, Wang, Ma, & Lin, 2018). Other researchers have found that combining images, 

taken in nadir and off nadir configurations of the same scene, can reduce errors in the 

surface modeling of complex surfaces (Tu et al., 2021). Determining the optimal gimbal 

angle or combination of gimbal angles that would create stable CHMs would be valuable 

information for future UAV users in monitoring their alfalfa crop. 
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For practical application, it is important to select stable methods to create the CHM. 

The CHM needs to be robust and not sensitive to variations in flight or field conditions. 

A robust method may require not using certain statistical descriptors derived from the 

CHM or precluding the use of the method with certain field conditions or flight 

parameters. The goal of this project was to determine the field conditions, flight 

parameters, and statistical processing methods that would provide a stable, robust CHM 

and that should be considered when creating predictive models of more valuable, 

production-focused data at the field scale. To accomplish this goal, data taken from a 

thick stand and a thin stand of alfalfa was compared. Second, correlations between 

canopy height data taken at different flight parameters were assessed. Third, correlations 

made between common statistical descriptors of modeled canopy height were evaluated. 

Figure 3.2 This figure depicts the fields of view from two UAVs as they cross 
over a field from right to left. The UAV at the top of the figure is in a nadir 
imaging configuration, and the UAV at the bottom is in an oblique configuration. 
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Lastly, predictive models of canopy height and yield were developed from the data 

deemed stable enough for use in modeling.  

3.2 Methods 

3.2.1 Field Conditions 

Two alfalfa fields were used during this study.  Both fields were located at the 

University of Kentucky’s North Farm with field 1 (Figure 3.3) approximately located at 

(38.128688, -84.509497) and field 2 (Figure 3.4) at (38.118587, -84.509612). Field 1 had 

an area of 7.02 ha, while field 2 had an area of 3.09 ha. Each field exhibited different soil 

types and was planted with a different variety of alfalfa.  The soil in field 1 consisted of 

Armour silt loam (Fine-silty, mixed, active, thermic Ultic Hapludalfs), Egam silt loam 

(Fine, mixed, active, thermic Cumulic Hapludolls), and Huntington silt loam (Fine-silty, 

mixed, active, mesic Fluventic Hapludolls). Ameristand 400 HVXRR (Forage Genetics 

International, LLC; Nampa, ID), a reduced lignin and glyphosate resistant variety of 

alfalfa, was planted in field 1. Field 2 contained Armour silt loam, Huntington silt loam, 

and Bluegrass-Maury silt loam (Fine-silty, mixed, active, mesic Typic Paleudalfs). Field 

2 was planted with Allied 428RR (Allied Seed, LLC; Nampa, ID), a glyphosate resistant 

variety of alfalfa.  The first cut of the alfalfa took place on May 7, 2019 with a John 

Deere 630 Discbine (Moline, Illinois). The second cutting was performed after data 

collection had stopped. Herbicide was applied once, on May 21, 2019. 
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Throughout the sampling period, manual observations of weed, insect, and 

disease pressure were collected using the scales in tables 2.1-2.2. Early in the data 

sampling period, most of fields 1 and 2 exhibited low (<5%) weed presence and damage 

due to disease and insects.  Weed pressure stayed relatively constant throughout the 

Figure 3.3 The image depicts field 1. The area highlighted in blue is 
the alfalfa field, and the green lines represent the path of the UAV. 

Figure 3.4 This is an aerial image of field 2. The region highlighted in blue 
shows the extent of field 2, and the green lines depict the flight path of the UAV. 
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sampling period, and only a few locations within both fields exhibited weed pressure 

greater than 5% by the end of data collection. The insect and disease pressure increased 

throughout the data collection period to be between 5% and 20% for most locations in 

both fields. 

Manual measurements of stand density and yield were also taken as measures of 

the field conditions on each collection date. Ten randomly selected plots within both 

fields were used as subsamples for the entire fields. This amounted to 1.42 samples per 

hectare for field 1 and 3.24 samples per hectare for field 2. For each 1 m2 plot, all of the 

alfalfa crowns were counted and used to calculate the stand density of that plot. 

Destructive sampling of the plots was performed to determine yield. The alfalfa harvested 

from each plot was collected, dried, and weighed. Throughout the sampling period, field 

1 had a higher stand density than field 2 (Figure 3.5). The yields followed a similar 

pattern with field 1 exhibiting higher yields than field 2 (Figure 3.6). Field 1 represents a 

standard stand of alfalfa, while field 2 represents a weaker stand of alfalfa. 

 

 

 

 

 

 

 

Figure 3.5 This time series plot shows the average stand density and 
standard deviation for field 1 and 2 during the summer of 2019. 
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3.2.2 Photogrammetry Data Collection 

Data collection began on May 17, 2019 and ended June 4, 2019. On each 

collection date, 10 quadrats were randomly placed in each field (Figure 3.7).  These 

quadrats helped to designate the sampling areas and provided a rigid, easily recognizable 

structure to record ground control points (GCPs).  In total, there were 10 GCPs collected 

on each field with a Trimble 5800 RTK GNSS receiver (Sunnyvale, California).  Each 

GCP corresponded to one of the corners on a quadrat.  Field notes were kept to ensure 

that the GCP information collected in the field could be properly associated with the 

correct UAV images within the photogrammetry software. 

 

 

 

 

Figure 3.6 This time series plot shows the average yield and 
standard deviation for field 1 and 2 during the summer of 2019. 
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For each collection date, fields 1 and 2 were flown a total of three times using a 

DJI Phantom 4 Pro (Shenzhen, China) equipped with an RGB sensor. Using flight 

planning software, the UAV was autonomously flown at 30 m above ground level with a 

90° gimbal angle, at 50 m with a 90° gimbal angle, and at 50 m with a 75° gimbal angle.  

At the 30 m elevation, the UAV was flown at a speed of 3.4 m/s and was able to capture 

images at a 0.8 cm/pixel resolution. At the 50 m elevation, the UAV reached speeds of 

5.7 m/s and achieved an image resolution of 1.4 cm/pixel. The UAV flew in a back and 

forth pattern for all three sets of flight parameters (Figure 3.3-3.4).  A standard front 

overlap of 85% and side overlap of 75% were also used for all three sets of flight 

parameters. The extent of each flight mission covered the entire area of each field and 

some of the area adjacent to the fields.  The UAV was also used to collect low-elevation, 

high-resolution imagery of each quadrat sampling area in each field on each date. The 

UAV was flown at heights near ground level (approximately 10 m) and manually piloted 

Figure 3.7 This image shows one of the quadrats that was used in the data 
collection process. It is a simple PVC structure with a 1 m2 area elevated 1 
m from the ground surface. 
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to circle around the quadrat. The RGB sensor acquired oblique imagery of the quadrat 

sampling area from many angles around the quadrat. Overall, there were four different 

flight parameters, and each one was tested on each sample collection day (four days, each 

separated by one week) in each field (field 1 and field 2), which had different stand 

densities (Table 3.1). 

Table 3.1 Flight parameters tested in each of the two fields. 
 Flight Parameters 1 

(50-90°) 
Flight Parameters 2 

(50-75°) 
Flight Parameters 3 

(30-90°) 
Flight Parameters 4 

(Quadrat) 
Elevation (m) 50.0 50.0 30.0 ~10  
Speed (m s-1) 5.70 5.70 3.40 varied 

Gimbal Anglea -90.0° -75.0° -90.0° varied: -10° to -45° 
Resolution (cm px-1) 1.40 1.40 0.80 varied 

a Gimbal Angle was measured from horizontal.  

 

3.2.3 Data Processing 

 Photogrammetry Software Processing 

Pix4Dmapper (Pix4D S.A., Prilly, Switzerland) was utilized to process all of the 

UAV imagery into CHMs. The process began by taking the images from each field scan 

and importing them into a Pix4D project.  There were separate field scans for each of the 

first three flight parameters (50-90°, 50-75°, and 30-90°) in each field and for each of the 

four data collection days. This provided 24 different field scans. Once the images were 

loaded, the flight path and location of each image were visible in the program. These 

were checked for relative accuracy from field notes that were taken.  If certain images 

were missing or if the generated flight path did not align with the actual flight path, the 

process of importing the images was restarted.  Once the field scan’s images were 

imported properly, the GCP information, collected in the field, was imported into the 
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project. The coordinates recorded from the RTK GPS unit were associated to their 

corresponding locations within the images of the project. 

 After importing all the relevant images and GCP data, the actual image processing 

was able to begin. Pix4D breaks up this process into three stages: initial processing, point 

cloud densification, and digital surface model (DSM) generation. After the initial 

processing stage was complete, the ground sampling distance, RMSE, and camera 

calibration of the initial point cloud were assessed. If these values fell outside of an 

acceptable range, the initial processing was restarted.  Once the initial point cloud was 

deemed acceptable, the final two stages of processing were performed. This processing 

resulted in the creation of 24 point clouds describing the top of the canopy of fields 1 and 

2 on each date with each flight parameter.  

An additional eight more point clouds were created by combining all the field 

scan images (from the 50-90°, 50-75°, and 30-90° flight parameters) collected on a 

particular date in a particular field into one Pix4D project. Additionally, 80 point clouds, 

describing only the quadrat sampling area, were generated using individual Pix4D 

projects from the UAV flights flown near the quadrat.  In total, 112 unique point clouds 

were created. 

 Point Cloud Processing 

The point clouds were processed using Python (version 3.8). Python libraries, 

matplotlib, numpy, transforms3D, and open3D, were utilized to complete the processing. 

The point cloud output from Pix4D was imported into the Python environment and all the 

x, y, and z coordinates describing the field point cloud were extracted. The field point 
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cloud was then segmented into regions around each quadrat. These regions were a circle 

centered on each quadrat with a 2 m radius, but the inner 1 m directly around the quadrat 

was excluded (Figure 3.8). Thus, the analysis region was an annulus with an outer radius 

of 2 m and an inner radius of 1 m around each quadrat. All points within this annulus 

were selected for further analysis. An annulus was used because close inspection of the 

point clouds revealed that most exhibited significant stitching errors within and 

immediately around the quadrat structure.  There were no obvious stitching errors found 

within these annulus regions. 

 

 

 

 

 

 

 

 

After segmentation, there were still minor artifacts in the point clouds that 

frequently created extreme outliers and needed to be accounted for. To do so, a simple 

Figure 3.8 This is a top view of a point cloud depicting a sampling area imaged 
with the UAV. The points in green represent the annulus of points that were 
segmented out from each dataset. The red points were disregarded and not used 
in any further analysis. The dark red square in the middle of the annulus is the 
top of the quadrat.   
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filtering procedure, using the mean, standard deviation, 5th percentile, and 95th 

percentile values of the z coordinates, was utilized. Points with a z coordinate within two 

standard deviations of the mean z value and between the 5th and 95th percentile of z 

values were kept for further analysis. Once filtering of extreme outliers was complete, 

proper CHM values were extracted from the point clouds using the fixed geometric 

relationships between the canopy, quadrat, and ground surface. Statistical descriptors of 

the CHM’s height distribution, the mean, 25th, 50th, 75th, and 95th percentile values, 

were calculated for further statistical analysis.           

3.2.4 Statistical Analysis 

Simple linear regressions were performed with the data generated from the point 

cloud processing. This was to determine the relationship between the data collected with 

different flight parameters. The CHM distribution statistics from each flight condition 

were compared to the corresponding statistics of the other flight parameters.  These 

regression models were split between field 1 and 2. Data from field 1 was only compared 

to other data from field 1, and the same is true for field 2 data. The outcome of this 

analysis was 50 R2 values (five flight parameters, two fields, five CHM descriptors) 

describing the correlations between each possible combination of flight parameters and 

CHM descriptors for each field (Table 3.2). For a given quadrat (sampling location), it 

would be desirable to have a CHM descriptor that was consistent across different flight 

parameters. This consistency would be revealed by a high R2 for relationship between the 

descriptor created using different flight parameters. It is difficult to interpret 50 different 

correlations, so to identify situations that do not produce consistent results, the 

correlations were grouped by field, CHM descriptors, and flight parameters. If a certain 



41 
 

grouping had much lower correlations, it would be revealed as inconsistent and 

unsuitable for use in creating CHMs. 

Table 3.2 Experimental variable for creating canopy height models 
Flight Parameters  Fields CHM descriptors 

50-90° Field 1: Thick Stand mean 
50-75° Field 2: Thin Stand 25th percentile 
30-90°  50th percentile 
Quadrat  75th percentile 

Combination  95th percentile 
 

3.2.5 Predictive Modeling 

Once stable methods of collecting UAV derived canopy height data were 

determined, the data from those methods were employed to produce predictive models of 

measured average canopy height and yield. The modeling process was performed with 

Python (version 3.8). A machine learning library called sci-kit learn was used to build, 

train, and test all of the predictive models used in this analysis. Python code was 

developed to iteratively use statistical descriptors, found to be reliable measures of 

canopy height, as explanatory variables in various regression models of manually 

measured canopy height and destructively sampled yield. All regression modeling 

techniques available within the sci-kit learn library were tested: simple linear, multiple 

linear, support vector machine, gaussian process, decision trees, k nearest neighbor 

(KNN), and neural networks. All the models were validated using repeated k fold cross 

validation. This resulted in each model being trained and tested 50 times (5 fold cross 

validation repeated 10 times) to account for any bias and/or variance that could be present 

in the modeling results. The reported statistics, R2 and RMSE, were the averages from the 

50 rounds of testing. 
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3.3 Results 

3.3.1 Canopy Height Model Stability 

Data collected from a standard alfalfa stand at the five flight parameters were 

highly correlated to each other (Table 3.3). Table 3.3 displays the correlations between 

each CHM descriptor created with one flight parameter with the same CHM descriptor 

created with another flight parameter (e.g. the correlation between the mean height from 

30-90° and the mean height from 50-90°). Simple linear regression between distribution 

statistics resulted in moderate to high R2 values, ranging from 0.75 to 0.97, with many 

greater than 0.90. Data collected within a weak stand of alfalfa were found to be highly 

unstable (Table 3.4). The data had low correlations among the five flight parameters. 

Regression analysis revealed that the majority of the R2 values were below 0.75 with a 

range between 0.06 and 0.91. On average, the correlations found between data taken from 

a thick alfalfa field are higher than that of an alfalfa field with a weak stand. 

Consequently, the distributions of canopy height taken from field 1 at different flight 

parameters share similar values, while the distributions from field 2 have dissimilar 

values (Figure 3.9). 
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Table 3.3 R2 values between statistical descriptors collected in field 1 

 
Table 3.4 R2 values between statistical descriptors collected in field 2 

  
Distribution Statistics 

Mean 25th Percentile 50 Percentile 75th Percentile 95th Percentile 
Quadrat & 30-90° 0.94 0.93 0.94 0.93 0.90 
Quadrat & 50-90° 0.80 0.75 0.81 0.83 0.84 
Quadrat & 50-75° 0.94 0.91 0.94 0.94 0.93 
Quadrat & Combo 0.93 0.92 0.93 0.93 0.91 
30-90° & 50-90° 0.79 0.76 0.79 0.81 0.82 
30-90° & 50-75° 0.93 0.92 0.94 0.94 0.94 
30-90° & Combo 0.95 0.95 0.96 0.96 0.96 
50-90° & 50-75° 0.89 0.87 0.89 0.90 0.92 
50-90° & Combo 0.90 0.88 0.90 0.91 0.92 
50-75° & Combo 0.97 0.95 0.97 0.97 0.97 

Average: 0.90 0.88 0.91 0.91 0.91 
STD: 0.06 0.07 0.06 0.05 0.05 

Range: 0.18 0.20 0.17 0.16 0.15 

  
Distribution Statistics  

Mean 25th Percentile 50 Percentile 75th Percentile 95th Percentile 
Quadrat & 30-90° 0.07 0.06 0.07 0.09 0.17 
Quadrat & 50-90° 0.65 0.51 0.67 0.71 0.76 
Quadrat & 50-75° 0.49 0.37 0.49 0.58 0.67 
Quadrat & Combo 0.51 0.43 0.49 0.54 0.61 
30-90° & 50-90° 0.22 0.18 0.22 0.28 0.38 
30-90° & 50-75° 0.17 0.09 0.17 0.26 0.38 
30-90° & Combo 0.49 0.45 0.48 0.56 0.64 
50-90° & 50-75° 0.86 0.82 0.85 0.86 0.91 
50-90° & Combo 0.84 0.75 0.83 0.86 0.88 
50-75° & Combo 0.78 0.71 0.79 0.80 0.83 

Average: 0.51 0.43 0.51 0.55 0.62 
STD: 0.27 0.26 0.27 0.26 0.23 

Range: 0.78 0.76 0.78 0.77 0.74 

  (a)       (b) 
Figure 3.9 The Gaussian curve plots show the probability density of UAV-derived 
canopy height of each flight condition for quadrat 7 in field 1 (a) and quadrat 20 in 
field 2 (b) on 06/04/2019. 
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While Table 3.3 demonstrated that the various CHM descriptors were stable 

between flight parameters in thick alfalfa stands, it is also necessary to consider if any 

particular flight parameter is much worse or less consistent when compared to the others. 

In this analysis, the correlations for all the CHM descriptors between each pair of flight 

parameters were averaged together. Looking at the correlations between each flight 

parameter in a thick stand of alfalfa, data derived from the 50-90° flight condition seemed 

to be the least stable (Table 3.5). The 50-90° data was the least correlated to all other data 

collected at different flight parameters. The average R2 values ranged from 0.80 to 0.90. 

All other relationships assessed between each of the other flight parameters exhibited 

higher correlations (R2 > 0.90). 

Table 3.5 Average R2 matrix for flight parameters 
 Quadrat 30-90° 50-90° 50-75° Combination 

Quadrat ** 0.93 0.81 0.93 0.92 
30-90° 0.93 ** 0.80 0.93 0.96  
50-90° 0.81 0.80 ** 0.89 0.90  
50-75° 0.93 0.93 0.89 ** 0.97  

Combination 0.92 0.96 0.90 0.97 ** 
Average1 0.90 0.91 0.85 0.93 0.94 

**R2 will be 1 for each condition with itself. 
1Includes the R2 with all flight parameters other than with itself. 

 
For a thick alfalfa stand, the correlations between the descriptive statistics from 

different flight parameters showed that all of the statistical descriptors are stable enough 

to use in predictive modeling (Table 3.3). The mean, 25th, 50th, 75th and 95th percentiles 

had high average R2 (R2 ≥ 0.88). The standard deviation and range of the R2 values are 

also similar between the five variables. On average, the 25th percentile exhibited the 

lowest R2 values within both types of alfalfa stands. For the thin stand, the 95th percentile 

had the highest average R2 value, 0.62 (Table 3.4).  The 95th percentile also had the 

lowest standard deviation and range of R2 values, 0.23 and 0.74 respectfully. 
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3.3.2 Predictive Models of Canopy Height and Yield 

The best model of measured average canopy height in a thick stand of alfalfa is a 

simple linear regression model described by: 

Hp = 0.93h50 + 0.165 (3.1) 

where 

𝐻𝐻𝑝𝑝 = predicted average canopy height (m) 

h50 = 50th percen�le of the height distribu�on from the UAV flown at 30-90° (m) 

Utilizing the 50th percentile of UAV derived canopy height flown at an elevation 

of 30 m in a nadir imaging configuration, the model fits the observed data nicely with 

evenly distributed residual errors (Figure 3.10a) and was able to produce predictions that 

were similar to the observed average canopy height (Figure 3.10b). Even though the 

model is relatively simple, it was capable of explaining 89% of the variation in the 

average canopy height and achieve a RMSE of 0.043 m. 

   (a)      (b) 
Figure 3.10 This figure shows two scatterplots depicting the simple linear regression 
model described in Equation 3.1 (a) and the goodness of fit for the model (b). 



46 
 

This specific model was chosen among the various models that were tested because 

using the 50th percentile as a single predictor outperformed all other statistical descriptors 

(Table 3.6). All models that used a statistical descriptor of canopy height between the 

mean/50th percentile and the 95th percentile performed relatively well (R2 ≥ 0.85). 

Although all the models had acceptable performances, the model incorporating the 50th 

percentile exhibited slightly better model evaluation metrics which makes it the optimal 

model to use. 

Table 3.6 Linear regression models of measured average canopy height with different 
statistical predictors from the 30-90° flight parameter 

Predictor Intercept (m) Coefficient R2 RMSE (m) 
50th percentile 0.165 0.93 0.89 0.043 

mean 0.165 0.96 0.88 0.044 
75th percentile 0.136 0.90 0.87 0.044 
95th percentile 0.104 0.87 0.85 0.047 

 

The model (Equation 3.1) was also decided upon because other models utilizing the 

50th percentile at different flight parameters did not perform as highly (Table 3.7). Most 

of the other models performed well and had R2 values higher than 0.80. The exception to 

this is the model using canopy height data collected from a UAV flown at 50 m with a 

90° gimbal angle. This finding coincides with the previous finding from the stability 

analysis which found that the data from the 50-90° flight parameter was the least stable. 

Out of the models that performed well, the model using data from a 30-90° flight slightly 

outperformed the rest with a R2 of 0.89 and RMSE of 0.043 m. 
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Table 3.7 Linear regression models of measured average canopy height using the 50th 
percentile at different flight parameters 

Flight Parameters Intercept (m) Coefficient R2 RMSE (m) 
30-90° 0.165 0.93 0.89 0.043 

Quadrat 0.102 0.91 0.86 0.049 
Combination 0.118 0.86 0.86 0.048 

50-75° 0.114 0.90 0.83 0.050 
50-90° 0.193 0.65 0.62 0.078 

 

Thus far, the results have reported the findings from simple linear regression 

models of average canopy height. To ensure the robustness of the reported model 

(Equation 3.1), other modeling techniques were evaluated and compared to it (Table 3.8). 

The various techniques rendered models that performed at a similar level or worse than 

the model in Equation 3.1. The KNN model and the multiple linear regression model 

performed comparably to the simple linear model. Technically, the KNN model had a 

better RMSE value, but this model is more complex to define and requires the user to set 

a k value. For the purposes of this study, the simple linear model was deemed the best 

because of its high performance and simplicity. 

Table 3.8 Different model types using the 50th percentile from the 30-90° flight 
parameter as a predictor for average canopy height 

Predictor(s) Regression Model Type R2 RMSE (m) 
30-90° 50th percentile KNNa 0.89 0.041 
30-90° 50th percentile Simple Linear  0.89 0.043 

30-90° mean & 50th percentile Multiple Linear 0.88 0.043 
30-90° 50th percentile Gaussian Process 0.85 0.050 
30-90° 50th percentile Decision Tree 0.81 0.054 
30-90° 50th percentile Support Vector Machine 0.79 0.058 

a k = 5 
 
The optimal model (Equation 3.1) was tested on data from field 2 to evaluate its 

performance in a thin stand of alfalfa. The model was not able to accurately predict the 

average canopy height of field 2. The R2 value between the actual average canopy height 
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and the model’s predictions of average canopy height was a negative number. Not only 

does this show that Equation 3.1 is not able to account for any of the variation seen in the 

canopy height data of field 2, but it also reveals that Equation 3.1 performed poorer than 

a constant model that always outputs the mean value of the canopy height dataset no 

matter the input data (which would have a R2 of 0.0). Additionally, the RMSE value was 

0.192 m which was worse than the RMSE achieved by Equation 3.1 when tested on the 

data from the thick stand (RMSE = 0.043 m).  

The best model of yield in a thick stand of alfalfa is a KNN regression model that 

utilizes k = 5 nearest neighbors and the 95th percentile of UAV derived canopy height 

from the 50-75° flight parameter (R2 = 0.62, RMSE = 476 kg/ha) (Figure 3.11). Other 

modeling techniques and explanatory variables were used in the modeling process, but 

most of the resulting models performed poorly (R2 < 0.60). Only 4 other models were 

able to achieve comparable performances to the KNN model (Table 3.9). These models 

performed to a similar degree as the KNN, but they used canopy height data from the 30-

90° flight parameter. These models were also simple linear regression models that did not 

require a user defined k value. 
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Table 3.9 Highest performing models of yield 

Predictor Regression Model Type R2 RMSE (kg/ha) 
50-75° 95th percentile KNNa 0.62 476 
30-90° 75th percentile Simple Linear  0.62 486 
30-90° 50th percentile Simple Linear 0.62 488 

30-90° mean Simple Linear 0.62 489 
30-90° 95th percentile Simple Linear 0.61 494 
a k = 5 

 

 The optimal model for yield in the thick stand was also tested on data from field 2 

to evaluate its performance in a thin stand. The R2 and RMSE values between the 

model’s predictions of yield and the observed yield were 0.06 and 438 kg/ha, 

respectfully. Even though the model achieved a lower RMSE value in the thin stand than 

in the thick stand, the model would still not be useful for thin stand applications because 

it exhibited a low R2 value. Such a small R2 value is indicative of a model that is hardly 

able to capture any of the variation within the response variable, in this case yield of a 

   (a)         (b) 
Figure 3.11 This figure shows two scatterplots depicting the KNN yield model using the 
95th percentile of canopy height acquired by a UAV at 50-75° (a) and the goodness of fit of 
that model (b). 
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thin stand. This shows that the optimal model for thick stands cannot be used for accurate 

predictions within a thin stand of alfalfa.    

3.4 Discussion 

3.4.1 Canopy Height Model Stability  

From the results, it can be seen that the accuracy of UAV derived CHMs is 

sensitive to field conditions. Specifically, stand density played a major role in the 

correlations between statistical descriptors at various flight parameters. Canopy height 

models derived from UAV imagery of a thick alfalfa stand (field 1) showed high 

correlations between the statistical descriptors. Canopy height models from a thin alfalfa 

stand (field 2) had low correlations between the statistical descriptors. These low 

correlations can be attributed to stitching errors that most of the thin stand CHMs 

exhibited. The point clouds derived from field 2 data were improperly stitched below the 

ground surface (Figure 3.12). Having a thin stand allows for more of the ground surface 

to be exposed around the individual plants. The bare soil surface can interfere with UAV 

data collection and photogrammetry processing. Thompson et al. (2019) saw similar 

results with soil surface interference when creating CHMs. The magnitude of these errors 

fluctuated at different flight parameters. Consequently, there was little linear association 

between the datasets from each flight condition. This rendered the UAV data collected on 

the thin stand near useless in reliably creating robust CHMs of the alfalfa. 
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All flight parameters utilized in this study were significantly correlated to each 

other on a thick stand of alfalfa. The 50-90° flight condition had the smallest correlations 

among all other flight parameters with an average R2 of 0.85. Changing the camera 

gimbal angle from 90° to 75° increased the stability of the data. Flying at 50-75° showed 

improved R2 values over that of 50-90°. This conveys how UAV canopy height collected 

at altitudes ranging from near canopy to 50 m are highly related. Higher altitude flights 

are advantageous because they typically have decreased flight times, but they usually 

produce lower-resolution data. The stability of CHMs generated from higher altitude 

flights might be high, but high stability does not directly correlate to high accuracy when 

compared to manual measurements of canopy height. Also, combining all of the data 

from the flight missions rendered CHMs that were similar to CHMs rendered from single 

flight missions. Data taken at 30-90° and 50-75° achieved comparable stability with 

Figure 3.12 This scatterplot shows a profile view of the point cloud describing a 
sampling area in field 2 on 06/04/2019. The quadrat has been left in the point 
cloud to help visualize the stitching error due to a thin alfalfa stand. Points are 
color-coded based on height on the z axis. 
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significantly less flight time and processing time than the combination flight condition. 

This suggests that multiple flights are unnecessary to capture reliable canopy height data 

and that the most efficient approach would be to use data from a single flight mission. 

All UAV plant height variables were stable in thick alfalfa stands with the 25th 

percentile being the least stable. This suggests that general distribution statistics are 

stable enough to be incorporated into predictive models of canopy height of thick stands 

of alfalfa. As alfalfa stands become thinner, the distribution statistics become less stable. 

The correlations between statistical descriptors of a thin alfalfa stand were drastically 

different than that of a thick stand. Most descriptors had limited correlations with their 

counterparts at different flight parameters. The most stable descriptor in the thin stand 

was the 95th percentile. Because the 95th percentile performed the best in both thick and 

thin stands of alfalfa, it would be the best variable to use in predictive models of canopy 

height in fields with a normal to poor stand. 

3.4.2 Predicting Canopy Height and Yield 

Using the insights gained from the CHM stability analysis, models of alfalfa 

canopy height for a thick stand were developed. All of the models reported in this study 

were accurate in predicting manually measured average canopy height. The best model 

(Equation 3.1) used a single predictor, the 50th percentile of UAV derived canopy height 

at 30-90°. Although Table 3.6 shows the 50th percentile to be the best statistic to use, 

separate models built with other descriptive statistics, such as the mean, had comparable 

performances. Due to this, models using a statistic other than the 50th percentile should be 

considered in future analysis. 
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Although the data from all the tested flight parameters were highly stable, the data 

from the 30-90° flight parameter resulted in the best model of alfalfa canopy height 

(Table 3.7). The model built from the 30-90° flight parameter data even outperformed the 

model built from the quadrat flight parameter data. The quadrat flight parameter data was 

collected from an UAV at an elevation near 10 m while circling a specific quadrat. The 

30-90° data was collected while performing a full field scan at an elevation 20 m above 

that of the quadrat flight parameter. This would suggest that not only can accurate data be 

acquired from field scale UAV scans, but the resulting data from the field scans could 

produce more accurate models than data taken at a higher resolution on a sub-field scale.  

In contrast to the very high accuracies that were achieved in canopy height 

modeling, yield modeling of the thick stand with the UAV derived data resulted in R2 

values less than 0.63 (Table 3.9). The best model of yield used the 95th percentile of 

canopy height data from the 50-75° flight parameter with a KNN regression technique. 

All of the other top performing yield models were simple linear models that used a 

statistical descriptor from the 30-90° flight parameter. Notably, the 50th percentile of 

UAV derived canopy height from the 30-90° flight parameter resulted in one of the top 

yield models as well. This particular data index should be considered in future analysis 

because of its high performance in both canopy height and yield modeling.  

3.5 Conclusion 

The findings from this study outline the methods that should be used to ensure stable 

and robust UAV CHMs of alfalfa. One major factor that can affect CHM generation is 

the field that is being imaged. Data were collected on two different fields, one with a 
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thick stand and one with a thin stand of alfalfa. The resulting CHMs from each field were 

noticeably different. Stable canopy height data was not able to be collected on the thin 

stand with the UAV. This indicated how important stand density can be to the outcome of 

CHMs. Along with the field conditions, the sensitivity of CHMs to UAV flight 

parameters was also tested. Flights ranged from near ground level to 50 m and had 

camera gimbal angles in oblique and nadir configurations. For a thick alfalfa stand, all of 

the flight parameters rendered moderately to highly stable data. Lastly, all of the 

descriptive statistics used in this study were determined to be stable enough to be 

incorporated into predictive models of alfalfa production variables. The mean, 50th, 75th, 

and 95th percentiles of CHMs at different flight parameters were highly correlated to 

each other (R2 ≥ 0.90). Ultimately, the top of an alfalfa canopy can be reliably captured 

and defined by general statistical descriptors derived from UAV flights at heights equal 

to or below 50 m with nadir and oblique imagery for a thick stand of alfalfa. 

From these determined methods, models of alfalfa canopy height and yield were 

developed. The best model of alfalfa canopy height was a simple linear regression model 

using the 50th percentile of UAV derived canopy height from the 30-90° flight parameter. 

The best model of yield was a KNN regression model that used the 95th percentile of 

UAV derived canopy height from the 50-75° flight parameter. By using the methods and 

models reported in this study, moderately to highly accurate field-wide estimations of 

alfalfa canopy height and yield can be achieved on fields with similar conditions as this 

study.
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CHAPTER 4. CONCLUSION 

The findings from these two studies validate and support the use of LiDAR and 

UAV technologies in monitoring growing alfalfa. The first study showed that the rapid 

and accurate acquisition of alfalfa canopy height and yield predictions were possible with 

a simple LiDAR sensor. Multiple predictive models of canopy height and yield were 

developed and tested. The best model of alfalfa canopy height was a simple linear 

regression model that utilized the 95th percentile of LiDAR derived canopy height as the 

single explanatory variable. The best model of alfalfa yield also used the 95th percentile 

as a single predictor, but the regression technique used was a fine gaussian support vector 

machine. This research lays the foundation for implementing LiDAR sensors into more 

autonomous, field scale monitoring systems, such as UAVs equipped with LiDAR 

sensors. 

The second study proposed a methodology for reliable generation of UAV derived 

canopy height data and applied the methods to generate predictive models of alfalfa 

canopy height and yield at the field scale. Reliable canopy height data from a thick stand 

of alfalfa was able to be captured by general distribution statistics from a UAV flown at 

50 m or below in nadir and oblique imaging configurations. Using this criteria, various 

field scale models of alfalfa canopy height and yield were created. The best model of 

canopy height was a simple linear regression model using the 50th percentile of detected 

canopy height from an UAV flown at 30 m in a nadir image configuration. The best 

model of yield was a KNN regression model using the 95th percentile of detected canopy 

height from an UAV flown at 50 m in an oblique image configuration. The findings from 
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this study serve as a means of reliably generating and practically applying UAV canopy 

height modeling for alfalfa monitoring at the field scale.          

  



57 
 

APPENDICES 

[APPENDIX 1. POINT CLOUD PROCESSING CODE] 

from laspy.file import File           
import numpy as np   
import open3d as o3d 
import transforms3d as t3d 
import matplotlib.pyplot as plt 
from ralign import ralign 
import pandas as pd 
 
# Import 2019 Field Scans quadrat corner coordinates  
df = pd.read_excel( 
    'C:/Users/Tuck/OneDrive - University of Kentucky/Grad Work/' 
    'Comparing Field Scan and Quadrat Models/' 
    'Field Scan-Quadrat Corners-TuckCopy.xlsx') 
df = df[['Date','Field','FP','Quadrat','X1','Y1','Z1','X2','Y2','Z2','X3','Y3','Z3']] 
df = df.dropna() 
df = df.reset_index(drop=True) 
 
# Iterates through the 2019 quadrat corner rows to process each point cloud 
for i in range(270,290): 
    row = df.loc[i,:] 
    if row['Field'] == 1 and row['FP'] == 'FP 30-90': 
        inFile = File('E:/Pix4D Alfalfa Data/Field Scans/'+row['Date']+'KY/' 
                      +row['Date']+'_entofieldscan_30m-90-part/2_densification/point_cloud/' 
                      +row['Date']+'_entofieldscan_30m-90-
part_group1_densified_point_cloud.las', mode = "r") 
    elif row['Field'] == 1 and row['FP'] == 'FP 50-75': 
        inFile = File('E:/Pix4D Alfalfa Data/Field Scans/'+row['Date']+'KY/' 
                      +row['Date']+'_entofieldscan_50m-75-part/2_densification/point_cloud/' 
                      +row['Date']+'_entofieldscan_50m-75-
part_group1_densified_point_cloud.las', mode = "r") 
    elif row['Field'] == 1 and row['FP'] == 'FP 50-90': 
        inFile = File('E:/Pix4D Alfalfa Data/Field Scans/'+row['Date']+'KY/' 
                      +row['Date']+'_entofieldscan_50m-90-part/2_densification/point_cloud/' 
                      +row['Date']+'_entofieldscan_50m-90-
part_group1_densified_point_cloud.las', mode = "r") 
    # elif row['Field'] == 1 and row['FP'] == 'FP 30/50-75/90': 
    #     inFile = File('E:/Pix4D Alfalfa Data/Field Scans/'+row['Date']+'KY/' 



58 
 

    #                   +row['Date']+'_entofieldscan_50m-90-part/2_densification/point_cloud/' 
# got to change the FP 
    #                   +row['Date']+'_entofieldscan_50m-90-
part_group1_densified_point_cloud.las', mode = "r") # got to change the FP 
    elif row['Field'] == 2 and row['FP'] == 'FP 30-90': 
        inFile = File('E:/Pix4D Alfalfa Data/Field Scans/'+row['Date']+'KY/' 
                      +row['Date']+'_trianglefieldscan_30m-90-part/2_densification/point_cloud/' 
#change field 
                      +row['Date']+'_trianglefieldscan_30m-90-
part_group1_densified_point_cloud.las', mode = "r") #change field 
    elif row['Field'] == 2 and row['FP'] == 'FP 50-75': 
        inFile = File('E:/Pix4D Alfalfa Data/Field Scans/'+row['Date']+'KY/' 
                      +row['Date']+'_trianglefieldscan_50m-75-full/2_densification/point_cloud/' 
# change field 
                      +row['Date']+'_trianglefieldscan_50m-75-
full_group1_densified_point_cloud.las', mode = "r") # change field 
    elif row['Field'] == 2 and row['FP'] == 'FP 50-90': 
        inFile = File('E:/Pix4D Alfalfa Data/Field Scans/'+row['Date']+'KY/' 
                      +row['Date']+'_trianglefieldscan_50m-90-full/2_densification/point_cloud/' 
# change field 
                      +row['Date']+'_trianglefieldscan_50m-90-
full_group1_densified_point_cloud.las', mode = "r") # change field 
    # elif row['Field'] == 2 and row['FP'] == 'FP 30/50-75/90': 
    #     inFile = File('E:/Pix4D Alfalfa Data/Field Scans/'+row['Date']+'KY/' 
    #                   +row['Date']+'_trianglefieldscan_50m-90-
part/2_densification/point_cloud/' # got to change the FP and field 
    #                   +row['Date']+'_trianglefieldscan_50m-90-
part_group1_densified_point_cloud.las', mode = "r") # got to change the FP and field 
     
    # Get the raw xyz points from LAS  
    x = inFile.x 
    y = inFile.y 
    z = inFile.z 
 
    # Create an array of raw xyz coordinates 
    xyz = np.array([x,y,z]).transpose() 
 
    # Convert and save raw xyz coordinates as a .ply file because Open3D requires this 
format  
    pcd = o3d.geometry.PointCloud() 
    pcd.points = o3d.utility.Vector3dVector(xyz) 
     
    # Define source and target coordinates 



59 
 

    source_coords = np.array([[row['X1'],row['Y1'],row['Z1']], 
                              [row['X2'],row['Y2'],row['Z2']], 
                              [row['X3'],row['Y3'],row['Z3']]]).transpose() 
    target_coords = np.array([[0, 0, 1], [0, 1, 1], [1, 1, 1]]).transpose() 
     
    # Computing rotation, scaling and translation with ralign code from GitHub 
    R, c, t = ralign(source_coords,target_coords) 
 
    # Create 4x4 transformation matrix with transforms3D library 
    s = np.array([c,c,c]) 
    T = t3d.affines.compose(t,R,s) 
 
    # Apply transformation 
    pcd_trans = pcd.transform(T) 
 
    # Creating annulus 
    trans_xyz = np.asarray(pcd_trans.points) 
    x = trans_xyz[:,0] 
    y = trans_xyz[:,1] 
    ann = trans_xyz[(((x-0.5)**2+(y-0.5)**2)>1**2)&(((x-0.5)**2+(y-0.5)**2)<2**2)] 
     
    # save unfiltered pcd 
    pcd_unfilt = o3d.geometry.PointCloud() 
    pcd_unfilt.points = o3d.utility.Vector3dVector(ann) 
    o3d.io.write_point_cloud("E:/Pix4D Alfalfa Data/2019_processed_pcds" 
                          "/annulus/field_scans/pcds/unfiltered/F" 
                          
+str(row['Field'])+"T"+str(row['Quadrat'])+"_"+row['Date']+"_"+row['FP']+".ply", 
pcd_unfilt)  
 
    # Get array of filtered PCD 
    z = ann[:,2] 
    mean = z.mean() 
    std = z.std() 
    perc5 = np.percentile(z,5) 
    perc95 = np.percentile(z,95) 
    filt_xyz = ann[(z > mean - 2*std) & (z < mean + 2*std) & (z > perc5) & (z < perc95)] 
     
    # Histogram of filtered z values 
    plt.hist(filt_xyz[:,2],bins = 100,range=(-0.5,1.5),color = "cornflowerblue",edgecolor = 
'black') 
    plt.title("Histogram of Plant Heights") 
    plt.xlabel('Heights (m)') 
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    plt.ylabel('Count') 
    plt.savefig("E:/Pix4D Alfalfa Data/2019_processed_pcds" 
            "/annulus/field_scans/histo/F" 
            
+str(row['Field'])+"T"+str(row['Quadrat'])+"_"+row['Date']+"_"+row['FP']+".jpg") 
    plt.close() 
 
    # Save filtered pcd 
    pcd_filt = o3d.geometry.PointCloud() 
    pcd_filt.points = o3d.utility.Vector3dVector(filt_xyz) 
    o3d.io.write_point_cloud("E:/Pix4D Alfalfa Data/2019_processed_pcds" 
                          "/annulus/field_scans/pcds/F" 
                          
+str(row['Field'])+"T"+str(row['Quadrat'])+"_"+row['Date']+"_"+row['FP']+".ply", 
pcd_filt)  
 
    # Save filtered pcd in Matplotlib with axes  
    fig = plt.figure() 
    plt3d = fig.add_subplot(111, projection='3d') 
    plt3d.scatter(filt_xyz[:,0], filt_xyz[:,1], filt_xyz[:,2],c = filt_xyz[:,2]) 
    plt3d.set_xlabel('X (m)') 
    plt3d.set_ylabel('Y (m)') 
    plt3d.set_zlabel('Z (m)') 
    plt3d.set_xlim(-2,3) 
    plt3d.set_ylim(-2,3) 
    plt3d.set_zlim(-0.5,1.5) 
    plt3d.set_title('Point Cloud') 
    plt.savefig("E:/Pix4D Alfalfa Data/2019_processed_pcds" 
            "/annulus/field_scans/3D_scatter_plots/F" 
            
+str(row['Field'])+"T"+str(row['Quadrat'])+"_"+row['Date']+"_"+row['FP']+".jpg") 
 
    plt.close() 
 
    # Add descriptive statistics of filtered pcd to excel file 
    desc_stats = pd.read_excel('E:/Pix4D Alfalfa 
Data/2019_processed_pcds/annulus/field_scans/stats.xlsx', 'Sheet1', index_col=None, 
na_values=['NA']) 
    res = pd.DataFrame( 
        np.array([[row['Date'], 
                   row['Field'], 
                   row['FP'], 
                   row['Quadrat'], 
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                   filt_xyz[:,2].mean(), 
                   filt_xyz[:,2].std(), 
                   np.percentile(filt_xyz[:,2],25), 
                   np.percentile(filt_xyz[:,2],50), 
                   np.percentile(filt_xyz[:,2],75), 
                   np.percentile(filt_xyz[:,2],95)]]), 
        columns=['date','field','FP','quadrat','mean','std','25 perc','50 perc','75 perc','95 perc']) 
    desc_stats = desc_stats.append(res,True) 
    desc_stats.to_excel('E:/Pix4D Alfalfa 
Data/2019_processed_pcds/annulus/field_scans/stats.xlsx', sheet_name='Sheet1', index = 
False) 
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[APPENDIX 2. CANOPY HEIGHT PREDICTIVE MODELING CODE] 

import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.linear_model import LinearRegression as lr 
from sklearn.model_selection import cross_validate, RepeatedKFold 
# import numpy as np 
 
# import manually measured data 
df_man = pd.read_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad 
Work/" 
                    "Comparing Field Scan and Quadrat Models/" 
                    "Alfalfa Field Measurements Data 2019 - Tuck Copy.xlsx",0) 
df_man['max'] = df_man['Canopy Height (Max)']*(1/100)   # converting cm to m 
df_man['mean'] = df_man['Canopy Height (Avg)']*(1/100)  # converting cm to m 
df_man = df_man[['Date','Plot','max','mean']] 
df_man = df_man[~(df_man.Plot.str.startswith('S')).fillna(False)] 
df_man = df_man[df_man.Date != '2019-05-14 00:00:00'] # remove 05-14-19 
df_man = df_man[df_man['Plot']<11] # getting only field 1  
df_man4q = df_man.drop([53,98]) # removing gaps that are present in quad data 
df_man4combo = df_man.drop(27) 
 
 
# import quadrat data 
df_quad = pd.read_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad 
Work/" 
                      "Comparing Field Scan and Quadrat Models/statistical methods/" 
                      "annulus/statistical_analysis_obj1.xlsx",0) 
df_quad = df_quad.drop([87,91]) # remove outliers 
df_quad = df_quad.drop(list(range(19))) # remove 05-14-19 
df_quad = df_quad.reset_index(drop=True) 
df_quad = 
df_quad.drop(list(range(10,20))+list(range(29,39))+list(range(48,57))+list(range(67,73))) 
df_quad = df_quad.drop(columns=['std','25 perc','90 perc']) 
 
# import field scan data 
df_fs = pd.read_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad Work/" 
                      "Comparing Field Scan and Quadrat Models/statistical methods/" 
                      "annulus/statistical_analysis_obj1.xlsx",1) 
df_fs = df_fs[df_fs['field']==1] 
df_fs = df_fs.drop(columns=['std','25 perc']) 
df_3090 = df_fs[df_fs['FP']=='FP 30-90'] 
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df_3090 = df_3090.drop(columns=['date','field','quadrat']) 
df_5090 = df_fs[df_fs['FP']=='FP 50-90'] 
df_5090 = df_5090.drop(columns=['date','field','quadrat']) 
df_5075 = df_fs[df_fs['FP']=='FP 50-75'] 
df_5075 = df_5075.drop(columns=['date','field','quadrat']) 
df_combo = df_fs[df_fs['FP']=='FP 30/50-75/90'] 
df_combo = df_combo.drop(57) 
df_combo = df_combo.drop(columns=['date','field','quadrat']) 
 
dflst = [df_3090,df_5090,df_5075,df_combo,df_quad] 
 
# automated linear regression with cross validation 
for n in range(5): 
    data = dflst[n] 
    for i in range(1,5): 
         
        if data.iloc[0,0] == 'FP 30-90': 
            FP = '3090 ' 
            y = df_man[['mean']] 
        elif data.iloc[0,0] == 'FP 50-90': 
            FP = '5090 ' 
            y = df_man[['mean']] 
        elif data.iloc[0,0] == 'FP 50-75': 
            FP = '5075 ' 
            y = df_man[['mean']] 
        elif data.iloc[0,0] == 'FP 30/50-75/90': 
            FP = 'combo '  
            y = df_man4combo[['mean']] 
        elif data.iloc[0,0] == 'F28T1_05-17-2019': 
            FP = 'quad ' 
            y = df_man4q[['mean']] 
             
        label = FP+data.columns[i] 
        x = data[[data.columns[i]]] 
        model = lr().fit(x,y) 
        intp = model.intercept_ 
        coeff = model.coef_ 
        ypred = model.predict(x) 
        k = 5 # k number of folds 
        cv = RepeatedKFold(n_splits=k,n_repeats=10,random_state=0) 
        scores = cross_validate(lr(),x,y,cv=cv,scoring=('r2','neg_root_mean_squared_error')) 
        r2=scores['test_r2'].mean() 
        rmse=-scores['test_neg_root_mean_squared_error'].mean() 
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        # scatter plot and goodness of fit plot 
        fig,ax = plt.subplots(1,2,figsize=(8,4)) 
         
        ax[0].scatter(x,y) 
        ax[0].plot(x,ypred,c='r',label = "model") 
        ax[0].plot([], [], ' ', label='y = '+str(round(float(coeff),2))+'x + 
'+str(round(float(intp),2))) 
        ax[0].plot([], [], ' ', label= 'R\u00b2: '+str(round(r2,2))) 
        ax[0].spines['right'].set_visible(False) 
        ax[0].spines['top'].set_visible(False) 
        ax[0].set_xlabel(f'{label} Canopy Height (m)') 
        ax[0].set_ylabel('Manually Measured Mean Canopy Height (m)') 
        ax[0].set_aspect('equal','box') 
        ax[0].legend() 
         
        ax[1].scatter(y,ypred) 
        ax[1].plot([0,y.max()],[0,y.max()],'r--',label='Perfect Prediction')  
        ax[1].spines['right'].set_visible(False) 
        ax[1].spines['top'].set_visible(False) 
        ax[1].set_ylabel(f'Predicted Mean Canopy Height from {label} (m)') 
        ax[1].set_xlabel('Observed Mean Canopy Height (m)') 
        ax[1].set_aspect('equal', 'box') 
        ax[1].legend()  
        fig.tight_layout() 
        fig.savefig("C:/Users/Tuck/OneDrive - University of Kentucky/Grad Work/FP 
paper/figures/sim_linear/"+label+'.png') 
        plt.close() 
         
        # Add models and model performance to excel file 
        stats = pd.read_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad 
Work/FP paper/models.xlsx", 
                              'Sheet1', index_col=None, na_values=['NA']) 
        res = pd.DataFrame( 
            [['Average Manual Height',label,float(intp),float(coeff),r2,rmse,'simple linear 
regression']], 
            columns=['response','predictor','intp','coeff','R2','RMSE','type']) 
        stats = stats.append(res,True) 
        stats.to_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad Work/FP 
paper/models.xlsx", 
                        sheet_name='Sheet1', index = False) 
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[APPENDIX 3. YIELD PREDICTIVE MODELING CODE]  

import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.linear_model import LinearRegression as lr 
from sklearn.model_selection import cross_validate, RepeatedKFold 
# import numpy as np 
 
# import yield data 
df_yield = pd.read_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad 
Work/" 
                         "FP paper/Alfalfa Field Measurements Data 2019 - Yield.xlsx",0) 
df_yield = df_yield[['Date','Plot','Yield (kg/ha)']] 
df_yield = df_yield[df_yield.Date != '2019-05-14 00:00:00'] 
df_yield = df_yield[df_yield['Plot']<11].reset_index(drop=True) 
df_yield_C = df_yield.drop(7) 
df_yield_Q = df_yield.drop([13,28]) 
 
# import quadrat data 
df_quad = pd.read_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad 
Work/" 
                      "Comparing Field Scan and Quadrat Models/statistical methods/" 
                      "annulus/statistical_analysis_obj1.xlsx",0) 
df_quad = df_quad.drop([87,91]) # remove outliers 
df_quad = df_quad.drop(list(range(19))) # remove 05-14-19 
df_quad = df_quad.reset_index(drop=True) 
df_quad = 
df_quad.drop(list(range(10,20))+list(range(29,39))+list(range(48,57))+list(range(67,73))) 
df_quad = df_quad.drop(columns=['std','25 perc','90 perc']) 
 
# import field scan data 
df_fs = pd.read_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad Work/" 
                      "Comparing Field Scan and Quadrat Models/statistical methods/" 
                      "annulus/statistical_analysis_obj1.xlsx",1) 
df_fs = df_fs[df_fs['field']==1] 
df_fs = df_fs.drop(columns=['std','25 perc']) 
df_3090 = df_fs[df_fs['FP']=='FP 30-90'] 
df_3090 = df_3090.drop(columns=['date','field','quadrat']) 
df_5090 = df_fs[df_fs['FP']=='FP 50-90'] 
df_5090 = df_5090.drop(columns=['date','field','quadrat']) 
df_5075 = df_fs[df_fs['FP']=='FP 50-75'] 
df_5075 = df_5075.drop(columns=['date','field','quadrat']) 
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df_combo = df_fs[df_fs['FP']=='FP 30/50-75/90'] 
df_combo = df_combo.drop(57) 
df_combo = df_combo.drop(columns=['date','field','quadrat']) 
 
dflst = [df_3090,df_5090,df_5075,df_combo,df_quad] 
 
# automated linear regression with cross validation 
for n in range(5): 
    data = dflst[n] 
    for i in range(1,5): 
         
        if data.iloc[0,0] == 'FP 30-90': 
            FP = '3090 ' 
            y = df_yield[['Yield (kg/ha)']] 
        elif data.iloc[0,0] == 'FP 50-90': 
            FP = '5090 ' 
            y = df_yield[['Yield (kg/ha)']] 
        elif data.iloc[0,0] == 'FP 50-75': 
            FP = '5075 ' 
            y = df_yield[['Yield (kg/ha)']] 
        elif data.iloc[0,0] == 'FP 30/50-75/90': 
            FP = 'combo '  
            y = df_yield_C[['Yield (kg/ha)']] 
        elif data.iloc[0,0] == 'F28T1_05-17-2019': 
            FP = 'quad ' 
            y = df_yield_Q[['Yield (kg/ha)']] 
             
        label = FP+data.columns[i] 
        x = data[[data.columns[i]]] 
        model = lr().fit(x,y) 
        intp = model.intercept_ 
        coeff = model.coef_ 
        ypred = model.predict(x) 
        k = 5 # k number of folds 
        cv = RepeatedKFold(n_splits=k,n_repeats=20,random_state=0) 
        scores = cross_validate(lr(),x,y,cv=cv,scoring=('r2','neg_root_mean_squared_error')) 
        r2=scores['test_r2'].mean() 
        rmse=-scores['test_neg_root_mean_squared_error'].mean() 
 
        # scatter plot and goodness of fit plot 
        fig,ax = plt.subplots(1,2,figsize=(8,4)) 
         
        ax[0].scatter(x,y) 
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        ax[0].plot(x,ypred,c='r',label = "model") 
        ax[0].plot([], [], ' ', label='y = '+str(round(float(coeff),2))+'x + 
'+str(round(float(intp),2))) 
        ax[0].plot([], [], ' ', label= 'R\u00b2: '+str(round(r2,2))) 
        ax[0].spines['right'].set_visible(False) 
        ax[0].spines['top'].set_visible(False) 
        ax[0].set_xlabel(f'{label} Canopy Height (m)') 
        ax[0].set_ylabel('Manually Measured Mean Canopy Height (m)') 
        ax[0].set_aspect('equal','box') 
        ax[0].legend() 
         
        ax[1].scatter(y,ypred) 
        ax[1].plot([0,y.max()],[0,y.max()],'r--',label='Perfect Prediction')  
        ax[1].spines['right'].set_visible(False) 
        ax[1].spines['top'].set_visible(False) 
        ax[1].set_ylabel(f'Predicted Mean Canopy Height from {label} (m)') 
        ax[1].set_xlabel('Observed Mean Canopy Height (m)') 
        ax[1].set_aspect('equal', 'box') 
        ax[1].legend()  
        fig.tight_layout() 
        fig.savefig("C:/Users/Tuck/OneDrive - University of Kentucky/Grad Work/FP 
paper/figures/sim_linear/"+label+'.png') 
        plt.close() 
         
        # Add models and model performance to excel file 
        stats = pd.read_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad 
Work/FP paper/yield_models.xlsx", 
                              'Sheet1', index_col=None, na_values=['NA']) 
        res = pd.DataFrame( 
            [['yield',label,float(intp),float(coeff),r2,rmse,'simple linear regression']], 
            columns=['response','predictor','intp','coeff','R2','RMSE','type']) 
        stats = stats.append(res,True) 
        stats.to_excel("C:/Users/Tuck/OneDrive - University of Kentucky/Grad Work/FP 
paper/yield_models.xlsx", 
                        sheet_name='Sheet1', index = False) 
 



68 
 

REFERENCES  

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). 
Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from 
UAV-Based RGB Imaging. Remote Sensing, 6(11). doi:10.3390/rs61110395 

Chang, A., Jung, J., Maeda, M. M., & Landivar, J. (2017). Crop height monitoring with 
digital imagery from Unmanned Aerial System (UAS). Computers and Electronics 
in Agriculture, 141, 232-237. doi:https://doi.org/10.1016/j.compag.2017.07.008 

Cherney, J. H., Smith, S. R., Sheaffer, C. C., & Cherney, D. J. R. (2020). Nutritive value 
and yield of reduced-lignin alfalfa cultivars in monoculture and in binary mixtures 
with perennial grass. Agronomy Journal, 112(1), 352-367. 
doi:https://doi.org/10.1002/agj2.20045 

Crommelinck, S., & Höfle, B. (2016). Simulating an Autonomously Operating Low-Cost 
Static Terrestrial LiDAR for Multitemporal Maize Crop Height Measurements. 
Remote Sensing, 8(3), 205.  

Cumo, C. (2013). Encyclopedia of Cultivated Plants: From Acacia to Zinnia [3 Volumes] 
: From Acacia to Zinnia. Santa Barbara, California: ABC-CLIO. 

Cunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale 
quantification of dryland vegetation structure with drone-acquired structure-from-
motion photogrammetry. Remote Sensing of Environment, 183, 129-143. 
doi:https://doi.org/10.1016/j.rse.2016.05.019 

Dvorak, J. S., Pampolini, L. F., Jackson, J. J., Seyyedhasani, H., Sama, M. P., & Goff, B. 
(2021). Predicting Quality and Yield of Growing Alfalfa from a UAV. 
Transactions of the ASABE, 64(1), 63-72. doi:https://doi.org/10.13031/trans.13769 

Eitel, J. U. H., Magney, T. S., Vierling, L. A., Brown, T. T., & Huggins, D. R. (2014). 
LiDAR Based Biomass and Crop Nitrogen Estimates for Rapid, Non-destructive 
Assessment of Wheat Nitrogen Status. Field Crops Research, 159, 21-32.  

Enciso, J., Avila, C. A., Jung, J., Elsayed-Farag, S., Chang, A., Yeom, J., . . . Chavez, J. C. 
(2019). Validation of agronomic UAV and field measurements for tomato varieties. 
Computers and Electronics in Agriculture, 158, 278-283. 
doi:10.1016/j.compag.2019.02.011 

Feng, A., Zhang, M., Sudduth, K. A., Vories, E. D., & Zhou, J. (2019). Cotton Yield 
Estimation from UAV-Based Plant Height. Transactions of the ASABE, 62(2), 393-
404. doi:10.13031/trans.13067 

Fricke, T., Richter, F., & Wachendorf, M. (2011). Assessment of forage mass from 
grassland swards by height measurement using an ultrasonic sensor. Computers 

https://doi.org/10.1016/j.compag.2017.07.008
https://doi.org/10.1002/agj2.20045
https://doi.org/10.1016/j.rse.2016.05.019
https://doi.org/10.13031/trans.13769


69 
 

and Electronics in Agriculture, 79(2), 142-152. 
doi:https://doi.org/10.1016/j.compag.2011.09.005 

Grev, A. M., Wells, M. S., Sheaffer, C. C., & Martinson, K. L. (2017). A comparison of 
reduced lignin and conventional alfalfa varieties and their potential for use as 
equine forage sources. Journal of equine veterinary science, 52, 100-100. 
doi:10.1016/j.jevs.2017.03.150 

James, M. R., & Robson, S. (2014). Mitigating systematic error in topographic models 
derived from UAV and ground-based image networks. Earth Surface Processes 
and Landforms, 39(10), 1413-1420. doi:https://doi.org/10.1002/esp.3609 

Jaud, M., Letortu, P., Théry, C., Grandjean, P., Costa, S., Maquaire, O., . . . Le Dantec, N. 
(2019). UAV survey of a coastal cliff face – Selection of the best imaging angle. 
Measurement, 139, 10-20. doi:https://doi.org/10.1016/j.measurement.2019.02.024 

Jimenez-Berni, J., Deery, D. M., Rozas-Larraondo, P., Condon, A. G., Rebetzke, G. J., 
James, R. A., . . . Sirault, X. R. R. (2018). High Throughput Determination of Plant 
Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR. 
Frontiers in Plant Science, 9(237).  

Lacefield, G. D. (1988). Alfalfa Hay Quality Makes the Difference. Retrieved from 
https://uknowledge.uky.edu/anr_reports 

Lacefield, G. D., Henning, J. C., Collins, M., & Swetnam, L. (1996). Quality Hay 
Production. Retrieved from https://forages.ca.uky.edu/foragepublications 

Lacefield, G. D., Henning, J. C., Rasnake, M., & Collins, M. (1997). Alfalfa The Queen of 
Forage Crops. Retrieved from https://www.google.com/url?client=internal-
element-
cse&cx=003398099011942252124:gmpps7ysdwm&q=http://www.ca.uky.edu/ag
c/pubs/agr/agr76/agr76.pdf&sa=U&ved=2ahUKEwiD_oa6xdvxAhXTKM0KHa2
wBvAQFjAAegQIAhAB&usg=AOvVaw2T2iB0YnIxkiQNdm7faWyu 

Lin, J., Wang, M., Ma, M., & Lin, Y. (2018). Aboveground Tree Biomass Estimation of 
Sparse Subalpine Coniferous Forest with UAV Oblique Photography. Remote 
Sensing, 10(11). doi:10.3390/rs10111849 

Lyons, T., Undersander, D., Welch, R., & Donnelly, D. (2016). Estimating Alfalfa Yield 
from Plant Height. Crop, Forage & Turfgrass Management, 2(1), cftm2015.0203. 
doi:https://doi.org/10.2134/cftm2015.0203 

Madec, S., Baret, F., Solan, B. d., Thomas, S., Dutartre, D., Jezequel, S., . . . Comar, A. 
(2017). High-Throughput Phenotyping of Plant Height: Comparing Unmanned 
Aerial Vehicles and Ground LiDAR Estimates. Frontiers in Plant Science, 8(2002).  

Martin, N. P., Russelle, M. P., Powell, J. M., Sniffen, C. J., Smith, S. I., Tricarico, J. M., 
& Grant, R. J. (2017). Invited review: Sustainable forage and grain crop production 

https://doi.org/10.1016/j.compag.2011.09.005
https://doi.org/10.1002/esp.3609
https://doi.org/10.1016/j.measurement.2019.02.024
https://uknowledge.uky.edu/anr_reports
https://forages.ca.uky.edu/foragepublications
https://www.google.com/url?client=internal-element-cse&cx=003398099011942252124:gmpps7ysdwm&q=http://www.ca.uky.edu/agc/pubs/agr/agr76/agr76.pdf&sa=U&ved=2ahUKEwiD_oa6xdvxAhXTKM0KHa2wBvAQFjAAegQIAhAB&usg=AOvVaw2T2iB0YnIxkiQNdm7faWyu
https://www.google.com/url?client=internal-element-cse&cx=003398099011942252124:gmpps7ysdwm&q=http://www.ca.uky.edu/agc/pubs/agr/agr76/agr76.pdf&sa=U&ved=2ahUKEwiD_oa6xdvxAhXTKM0KHa2wBvAQFjAAegQIAhAB&usg=AOvVaw2T2iB0YnIxkiQNdm7faWyu
https://www.google.com/url?client=internal-element-cse&cx=003398099011942252124:gmpps7ysdwm&q=http://www.ca.uky.edu/agc/pubs/agr/agr76/agr76.pdf&sa=U&ved=2ahUKEwiD_oa6xdvxAhXTKM0KHa2wBvAQFjAAegQIAhAB&usg=AOvVaw2T2iB0YnIxkiQNdm7faWyu
https://www.google.com/url?client=internal-element-cse&cx=003398099011942252124:gmpps7ysdwm&q=http://www.ca.uky.edu/agc/pubs/agr/agr76/agr76.pdf&sa=U&ved=2ahUKEwiD_oa6xdvxAhXTKM0KHa2wBvAQFjAAegQIAhAB&usg=AOvVaw2T2iB0YnIxkiQNdm7faWyu
https://www.google.com/url?client=internal-element-cse&cx=003398099011942252124:gmpps7ysdwm&q=http://www.ca.uky.edu/agc/pubs/agr/agr76/agr76.pdf&sa=U&ved=2ahUKEwiD_oa6xdvxAhXTKM0KHa2wBvAQFjAAegQIAhAB&usg=AOvVaw2T2iB0YnIxkiQNdm7faWyu
https://doi.org/10.2134/cftm2015.0203


70 
 

for the US dairy industry. Journal of Dairy Science, 100(12), 9479-9494. 
doi:https://doi.org/10.3168/jds.2017-13080 

Mathanker, S. K., Maughan, J. D., Hansen, A. C., Grift, T. E., & Ting., K. C. (2014). 
Sensing Miscanthus Swath Volume for Maximizing Baler Throughput Rate. 
Transactions of the ASABE, 57(2), 355-362.  

Mesas-Carrascosa, F.-J., García, M. D. N., De Larriva, J. E. M., & García-Ferrer, A. 
(2016). An analysis of the influence of flight parameters in the generation of 
unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. 
Sensors (Basel, Switzerland), 16(11), 1838. doi:10.3390/s16111838 

Mesas-Carrascosa, F.-J., Torres-Sánchez, J., Clavero-Rumbao, I., García-Ferrer, A., Peña, 
J.-M., Borra-Serrano, I., & López-Granados, F. (2015). Assessing optimal flight 
parameters for generating accurate multispectral orthomosaicks by uav to support 
site-specific crop management. Remote sensing (Basel, Switzerland), 7(10), 12793-
12814. doi:10.3390/rs71012793 

Noland, R. L., Wells, M. S., Coulter, J. A., Tiede, T., Baker, J. M., Martinson, K. L., & 
Sheaffer, C. C. (2018). Estimating alfalfa yield and nutritive value using remote 
sensing and air temperature. Field Crops Research, 222, 189-196. 
doi:https://doi.org/10.1016/j.fcr.2018.01.017 

O. Payero, J., M. U. Neale, C., & L. Wright, J. (2004). Comparison of Eleven Vegetation 
Indices for Estimating Plant Height of Alfalfa and Grass. Applied Engineering in 
Agriculture, 20(3), 385-393. doi:https://doi.org/10.13031/2013.16057 

Oke, V., & Long, S. R. (1999). Bacterial genes induced within the nodule during the 
Rhizobium–legume symbiosis. Molecular Microbiology, 32(4), 837-849. 
doi:https://doi.org/10.1046/j.1365-2958.1999.01402.x 

Pittman, J. J., Arnall, D. B., Interrante, S. M., Moffet, C. A., & Butler, T. J. (2015). 
Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat 
Using Ultrasonic, Laser, and Spectral Sensors. Sensors, 15(2). 
doi:10.3390/s150202920 

Rosell, J. R., & Sanz, R. (2012). A Review of Methods and Applications of the Geometric 
Characterization of Tree Crops in Agricultural Activities. Computers and 
Electronics in Agriculture, 81, 124-141.  

Schaefer, M. T., & Lamb, D. W. (2016). A Combination of Plant NDVI and LiDAR 
Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca 
arundinacea var. Fletcher). Remote Sensing, 8(2). doi:10.3390/rs8020109 

Smith, M. A. (2008). Robel Pole Technique and Data Interpretation [Extension Article]. 
Retrieved from 
https://www.wyoextension.org/publications/Search_Details.php?pubid=207&pub
=MP-111.10 

https://doi.org/10.3168/jds.2017-13080
https://doi.org/10.1016/j.fcr.2018.01.017
https://doi.org/10.13031/2013.16057
https://doi.org/10.1046/j.1365-2958.1999.01402.x
https://www.wyoextension.org/publications/Search_Details.php?pubid=207&pub=MP-111.10
https://www.wyoextension.org/publications/Search_Details.php?pubid=207&pub=MP-111.10


71 
 

Song, Y., & Wang, J. (2019). Winter Wheat Canopy Height Extraction from UAV-Based 
Point Cloud Data with a Moving Cuboid Filter. Remote sensing (Basel, 
Switzerland), 11(10), 1239. doi:10.3390/rs11101239 

Thompson, A. L., Thorp, K. R., Conley, M. M., Elshikha, D. M., French, A. N., Andrade-
Sanchez, P., & Pauli, D. (2019). Comparing Nadir and Multi-Angle View Sensor 
Technologies for Measuring in-Field Plant Height of Upland Cotton. Remote 
Sensing, 11(6). doi:10.3390/rs11060700 

Tu, Y. H., Johansen, K., Aragon, B., Stutsel, B. M., Ángel, Y., Camargo, O. A. L., . . . 
McCabe, M. F. (2021). Combining Nadir, Oblique, and Façade Imagery Enhances 
Reconstruction of Rock Formations Using Unmanned Aerial Vehicles. IEEE 
Transactions on Geoscience and Remote Sensing, 1-13. 
doi:10.1109/TGRS.2020.3047435 

Undersander, D. J. (2011). Alfalfa management guide. Madison, WI: Madison, WI : 
American Society of Agronomy : Crop Science Society of America : Soil Science 
Society of America. 

USDA-NASS. (2021). Crop Values Annual Summary.  Retrieved from 
https://usda.library.cornell.edu/concern/publications/k35694332 

Vittetoe, R. K., & Lang, B. J. (Producer). (2019). Estimate Alfalfa First Crop Harvest with 
PEAQ. Integrated Crop Management News.  

Watanabe, K., Guo, W., Arai, K., Takanashi, H., Kajiya-Kanegae, H., Kobayashi, M., . . . 
Iwat, H. (2017). High-throughput phenotyping of sorghum plant height using an 
unmanned aerial vehicle and its application to genomic prediction modeling. 
Frontiers in Plant Science, 8, 421-421. doi:10.3389/fpls.2017.00421 

Wiering, N. P., Ehlke, N. J., & Sheaffer, C. C. (2019). Lidar and RGB Image Analysis to 
Predict Hairy Vetch Biomass in Breeding Nurseries. Plant phenome journal, 2(1), 
1-8. doi:10.2135/tppj2019.02.0003 

Wijesingha, J., Moeckel, T., Hensgen, F., & Wachendorf, M. (2019). Evaluation of 3D 
point cloud-based models for the prediction of grassland biomass. International 
Journal of Applied Earth Observation and Geoinformation, 78, 352-359. 
doi:https://doi.org/10.1016/j.jag.2018.10.006 

Yanbo, H. (2016). Cotton Yield Estimation Using Very High-Resolution Digital Images 
Acquired with a Low-Cost Small Unmanned Aerial Vehicle. Transactions of the 
ASABE, 59(6), 1563-1574. doi:10.13031/trans.59.11831 

Yost, M. A., Coulter, J. A., Russelle, M. P., Sheaffer, C. C., & Kaiser, D. E. (2012). Alfalfa 
Nitrogen Credit to First-Year Corn: Potassium, Regrowth, and Tillage Timing 
Effects. Agronomy Journal, 104(4), 953-962. 
doi:https://doi.org/10.2134/agronj2011.0384 

https://usda.library.cornell.edu/concern/publications/k35694332
https://doi.org/10.1016/j.jag.2018.10.006
https://doi.org/10.2134/agronj2011.0384


72 
 

Zahawi, R. A., Dandois, J. P., Holl, K. D., Nadwodny, D., Reid, J. L., & Ellis, E. C. (2015). 
Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. 
Biological Conservation, 186, 287-295. 
doi:https://doi.org/10.1016/j.biocon.2015.03.031 

Zhang, H., Sun, Y., Chang, L., Qin, Y., Chen, J., Qin, Y., . . . Wang, Y. (2018). Estimation 
of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using 
Unmanned Aerial Vehicle. Remote Sensing, 10(6). doi:10.3390/rs10060851 

Zhang, L., & Grift, T. E. (2012). A LIDAR-based crop height measurement system for 
Miscanthus giganteus. Computers and Electronics in Agriculture, 85, 70-76. 
doi:10.1016/j.compag.2012.04.001 

 

 

https://doi.org/10.1016/j.biocon.2015.03.031


73 
 

VITA 

Stuart Tucker Sheffield 
 

EDUCATION 
Mississippi State University, Starkville, Mississippi 
BS in Agricultural Engineering Technology and Business August 2015 - May 2019  

• Concentration in Geographical Information Systems and Remote Sensing 
• 4.0/4.0 GPA (Summa Cum Laude) 

WORK EXPERIENCE 
University of Kentucky, Lexington, Kentucky 
Biosystems and Agricultural Engineering Research Assistant August 2019 - Present 
 
USDA-Agricultural Research Services, Starkville, Mississippi 
Student Technician for Sustainable Agriculture Division May 2018 - May 2019 
 
Brent Engineering Service, Starkville, Mississippi 
Field Crew and Draftsman May 2017 - May 2018  
 
SCHOLASTIC AND PROFESSIONAL HONORS 
Alpha Epsilon Engineering Honor Society, Univ. of Kentucky Lexington, Kentucky  
August 2020 - Present 
 
Stephen D. Lee Scholar, Mississippi State Univ. Starkville, Mississippi 
May 2019 
 
Gamma Sigma Delta Ag. Honor Society, Mississippi State Univ. Starkville, Mississippi 
August 2018 - May 2019 
 
Phi Kappa Phi Honor Society, Mississippi State Univ. Starkville, Mississippi 
January 2019 - May 2019 
 
PROFESSIONAL PUBLICATIONS 
Sheffield, S. T., Dvorak, J., Smith, B., Arnold, C. & Minch, C. (in press). Using LiDAR 

to Measure Alfalfa Canopy Height. Transactions of the ASABE.    
 
Minch, C., Dvorak, J., Jackson, J., & Sheffield, S. T. (2021). Creating a Field-Wide 

Forage Canopy Model Using UAVs and Photogrammetry Processing. Remote 
Sensing (Basel, Switzerland), 13(13), 2487–. https://doi.org/10.3390/rs13132487 

 
Minch, C., Dvorak, J., Jackson, J., & Sheffield, S. T. (2020). UAV How-To: Create a 

Forage Canopy Model with Photogrammetry. University of Kentucky Cooperative 
Extension. Available at: http://dept.ca.uky.edu/agc/pub_prefix.asp?series=AEN  


	ASSESSING THE USE OF LIDAR AND UAV TECHNOLOGY FOR MONITORING GROWING ALFALFA
	Recommended Citation

	TITLE
	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 2.1 Weed pressure evaluation scale
	Table 2.2 Insect and disease damage evaluation scale
	Table 2.3 Best linear models of average canopy height and their properties
	Table 2.4 Best models of yield and their properties
	Table 3.1 Flight parameters tested in each of the two fields.
	Table 3.2 Experimental variable for creating canopy height models
	Table 3.3 R2 values between statistical descriptors collected in field 1
	Table 3.4 R2 values between statistical descriptors collected in field 2
	Table 3.5 Average R2 matrix for flight parameters
	Table 3.6 Linear regression models of measured average canopy height with different statistical predictors from the 30-90  flight parameter
	Table 3.7 Linear regression models of measured average canopy height using the 50th percentile at different flight parameters
	Table 3.8 Different model types using the 50th percentile from the 30-90  flight parameter as a predictor for average canopy height
	Table 3.9 Highest performing models of yield

	LIST OF FIGURES
	Figure 2.1 This is a satellite image of field 1 at the University of Kentucky's North Farm. The yellow polygon denotes the boundaries of the field.
	Figure 2.2 This is a satellite image of field 2 at University of Kentucky's North Farm. The yellow shows the boundary of the field.
	Figure 2.3 This image shows one of the twenty 1 m2 quadrats that were used for data collection. The PVC structure is a square with an area of 1 m2, raised 1 m above the ground surface.
	Figure 2.4 This figure shows the orientation of the LiDAR sensor and the plane in which the sensor collects data points. The sensing plane is represented by a circle around the LiDAR sensor. The green portion of the circle represents the relevant data...
	Figure 2.5 This image depicts how the 3D scans of the canopy at each quadrat were collected. The LiDAR sensor was attached to a frame and mounted onto the quadrat to acquire each scan.
	Figure 2.6 The histograms show the distribution of the LiDAR-derived canopy height of quadrat 1 on 05/14/19: one with outliers (a) and one with the outliers filtered out (b).
	Figure 2.7 This plot shows the relationship between the 95th percentile LiDAR heights and observed average canopy heights.
	Figure 2.8 This is a goodness of fit plot between the observed average canopy height and the predicted average canopy height from the model described by Equation 2.1.
	Figure 2.9 This plot shows the relationship between the 95th percentile of LiDAR derived canopy height and manually measured yield. This plot also shows the predictions from the optimal yield model.
	Figure 2.10 This is a goodness of fit plot showing the relationship between the observed yield and the yield predictions from the optimal yield model
	Figure 3.1 This flowchart shows the process of creating CHMs from UAV imagery.
	Figure 3.2 This figure depicts the fields of view from two UAVs as they cross over a field from right to left. The UAV at the top of the figure is in a nadir imaging configuration, and the UAV at the bottom is in an oblique configuration.
	Figure 3.3 The image depicts field 1. The area highlighted in blue is the alfalfa field, and the green lines represent the path of the UAV.
	Figure 3.4 This is an aerial image of field 2. The region highlighted in blue shows the extent of field 2, and the green lines depict the flight path of the UAV.
	Figure 3.5 This time series plot shows the average stand density and standard deviation for field 1 and 2 during the summer of 2019.
	Figure 3.6 This time series plot shows the average yield and standard deviation for field 1 and 2 during the summer of 2019.
	Figure 3.7 This image shows one of the quadrats that was used in the data collection process. It is a simple PVC structure with a 1 m2 area elevated 1 m from the ground surface.
	Figure 3.8 This is a top view of a point cloud depicting a sampling area imaged with the UAV. The points in green represent the annulus of points that were segmented out from each dataset. The red points were disregarded and not used in any further an...
	Figure 3.9 The Gaussian curve plots show the probability density of UAV-derived canopy height of each flight condition for quadrat 7 in field 1 (a) and quadrat 20 in field 2 (b) on 06/04/2019.
	Figure 3.10 This figure shows two scatterplots depicting the simple linear regression model described in Equation 3.1 (a) and the goodness of fit for the model (b).
	Figure 3.11 This figure shows two scatterplots depicting the KNN yield model using the 95th percentile of canopy height acquired by a UAV at 50-75  (a) and the goodness of fit of that model (b).
	Figure 3.12 This scatterplot shows a profile view of the point cloud describing a sampling area in field 2 on 06/04/2019. The quadrat has been left in the point cloud to help visualize the stitching error due to a thin alfalfa stand. Points are color-...

	CHAPTER 1. Introduction
	CHAPTER 2.  Using LiDAR to Measure Alfalfa Canopy Height and Yield
	2.1 Introduction
	2.2 Methods
	2.2.1 Data Collection
	2.2.2 Data Processing
	2.2.3 Modeling

	2.3 Results
	2.3.1 Modeling Canopy Height
	2.3.2 Modeling Yield

	2.4 Discussion
	2.4.1 Predictive Models of Canopy Height
	2.4.2 Predictive Models of Yield

	2.5 Conclusion

	CHAPTER 3. Determining Stable Methods of Generating and Applying UAV Derived canopy Height Models for Alfalfa Monitoring
	3.1 Introduction
	3.2 Methods
	3.2.1 Field Conditions
	3.2.2 Photogrammetry Data Collection
	3.2.3 Data Processing
	3.2.3.1 Photogrammetry Software Processing
	3.2.3.2 Point Cloud Processing

	3.2.4 Statistical Analysis
	3.2.5 Predictive Modeling

	3.3 Results
	3.3.1 Canopy Height Model Stability
	3.3.2 Predictive Models of Canopy Height and Yield

	3.4 Discussion
	3.4.1 Canopy Height Model Stability
	3.4.2 Predicting Canopy Height and Yield

	3.5 Conclusion

	CHAPTER 4. Conclusion
	APPENDICES
	[APPENDIX 1. POINT CLOUD PROCESSING CODE]
	[APPENDIX 2. CANOPY HEIGHT PREDICTIVE MODELING CODE]
	[APPENDIX 3. YIELD PREDICTIVE MODELING CODE]

	REFERENCES
	VITA

