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ABSTRACT OF DISSERTATION 
 
 
 

ASSESSMENT OF A DECENTRALIZED SOLUTION FOR WASTE PLASTIC 
MANAGEMENT IN DEVELOPING REGIONS 

 
Rapid population growth, urbanization and availability of pre-packaged consumer 

goods have led to increased generation and consumption of plastic – so much so that it has 
become ubiquitous in the environment. An affordable, durable, and lightweight material of 
construction, plastic is used in innumerable products in every country on earth. However, 
this explosion of consumption coupled with the material’s significantly low degradability 
have led to serious plastic accumulation challenges, which are now an imminent threat to 
terrestrial and marine species globally. These challenges are especially acute in developing 
countries, where capital and infrastructure constraints, poor governmental regulation and 
lack of waste management education have led to post-consumer use plastic simply being 
discarded in unregulated dumps, open plots of land, streets, and waterways. As plastic 
accumulates in the ecosystem it poses significant negative health consequences due to 
improper disposal, release of harmful toxins from open incineration, and bioaccumulation 
of microplastic in the food chain.  

To address this challenge, this research applies a holistic approach to waste plastic 
management in developing countries by incorporating the principles of sustainability, 
appropriate technology, and circular economy to develop a locally managed decentralized 
circular economy (LMDCE). In a LMDCE, communities in developing regions are 
empowered to manage waste plastic accumulation at the source of origin by encouraging 
and implementing locally engineered, simple, and low-cost solutions that reduce, reuse, 
repurpose, and recycle waste plastic for reentrance into the local economy. In this analysis, 
the trash to tank (3T) approach is advocated as a favorable LMDCE solution for eliminating 
waste plastic from the ecosystem altogether by converting it into plastic-derived fuel oil 
(PDFO) via thermal decomposition. The research further defines countries and 
communities most suitable for LMDCE; provides a tool for estimating waste plastic 
generation in regions lacking readily available waste management data; assesses the mass 
and energy balance of 3T in appropriate technology settings; assesses the composition and 
stability of PDFO; determines the generation and combustion emissions of PDFO; and 
identifies supply chain considerations necessary for sustainably implementing LMDCE 
and 3T. The proposed solution has also been tested in Kampala, Uganda as a case study. 
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CHAPTER 1. INTRODUCTION 

Rapid population growth, urbanization and availability of pre-packaged consumer 

goods have led to increased generation and consumption of plastic – so much so that it has 

become ubiquitous in the environment. An affordable, durable, and lightweight material of 

construction, plastic is used in innumerable products in every country on earth. However, 

this explosion of consumption coupled with the material’s significantly low degradability 

have led to serious plastic accumulation challenges, which are now an imminent threat to 

terrestrial and marine species globally. These challenges are especially acute in developing 

countries, where capital and infrastructure constraints, poor governmental regulation and 

lack of waste management education have led to post-consumer use plastic simply being 

discarded in unregulated dumps, open plots of land, streets, and waterways. As plastic 

accumulates in the ecosystem it poses significant negative health consequences due to 

leaching from improper disposal, release of harmful toxins due to open incineration, and 

bioaccumulation of microplastic in the food chain.  

To address this challenge, this research applies a holistic approach to waste plastic 

management in developing countries whereby incorporating the principles of 

sustainability, appropriate technology, and circular economy, a simple, low-cost, and 

locally managed solution is created to empower communities to manage their waste plastic 

at the point of origin. This is accomplished via the establishment of a locally managed 

decentralized circular economy (LMDCE) in conjunction with a trash to tank (3T) 

approach for converting waste plastic to plastic derived fuel oil (PDFO) via thermal 

decomposition, or pyrolysis. In return, the proposed solution eliminates waste plastic from 

accumulating in the ecosystem, and aims to provide rural, or low-income communities in 
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developing regions opportunities for economic growth, environmental well-being, and 

social equality. The proposed LMDCE and 3T solution has also been tested in Kampala, 

Uganda as a case study.  

1.1 Research Objectives 

The following objectives are proposed for this dissertation research: 

1. Develop a road map for changing the perception of post-consumer plastic from 

waste to valuable resource by educating and incentivizing communities to 

collect, reuse, repurpose, recycle, and manage waste plastic instead of 

unsoundly discarding it. This road map will be based on the establishment of a 

LMDCE (Chapter 3). In areas with limited infrastructure and capital, LMDCE 

alleviates burdens placed on waste management municipalities by empowering 

communities to engineer waste management solutions that can be implemented 

readily using local resources. Based on existent country-specific population 

demographics and waste management data, determine countries most suitable 

for LMDCE applications (Chapter 3). A country-specific highlight is also 

provided for Uganda, where the application of LMDCE in the capital city of 

Kampala is summarized. 

2. Determine how behavioral economics and sustainable behaviors support the 

establishment of LMDCE in developing regions and identify the benefits of 

LMDCE in terms of the three principles of sustainability (Chapter 4). This 

research objective underscores the importance of community participation in 

generating viable engineered solutions for waste plastic management that are 

posed for long-term success. 



3 
 

3. Determine the total impact of LMDCE implementation at a community level in 

regions lacking waste plastic generation data. This is accomplished through 

geographical information analysis and correlation of building density and size 

to population demographics, which in return influence plastic generation 

(Chapter 5). Subsequently, an open-sourced tool is developed for estimating 

waste plastic generation at a ~100m resolution in Sub-Saharan Africa. This tool 

can be used by researchers, recycling non-profit organizations, policy makers, 

and waste management municipalities to understand the breadth of waste plastic 

accumulation and how it can be appropriately handled. 

4. Design a low-cost, easy to operate, and easy to deploy, appropriate 

technology-based solution for managing waste plastic locally in developing 

regions utilizing readily sourced construction materials. This will be 

accomplished via the 3T process, which performs pyrolysis of waste plastic to 

PDFO (Chapters 6 & 7). The technology developed through this approach is 

termed the 3T processor, and has been tested in Kampala, Uganda to perform 

thermal decomposition of waste plastic (Chapters 4 & 7). 

5. Establish the environmental suitability of the proposed 3T process by 

determining the theoretical (Chapter 6) and actual (Chapter 7) carbon dioxide 

(CO2) emissions generated during theoretical and actual implementation of 3T 

process. This will be accomplished by determining the pyrolysis reaction 

energy, measuring the energy content and CO2 combustion emissions of PDFO, 

and by determining the mass and energy balance of the 3T process using 
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varying energy inputs. In return, the generation and combustion emission of 3T 

will be compared with traditional well-to-tank emissions of diesel. 

6. Optimize 3T process for PDFO production in appropriate technology settings 

by characterizing the effects of temperature and time on PDFO composition and 

stability (Chapter 8). Since PDFO produced in the 3T processor has tradeoffs 

in efficiency, sophisticated distillation and condensation mechanisms are not 

available. Therefore, this objective aims to quantify the impact of temperature 

and time in appropriate technology 3T settings.  

7. Establish the supply chain considerations needed for successfully implementing 

LMDCE via the 3T process in developing regions, including identifying the 

inherent uncertainty present in implementation. Consider the role of existent 

infrastructure, capital resources, waste plastic generation and management per 

population demographics, small-scale entrepreneurs, non-profit recycling 

organizations, PDFO use, operation costs, transportation logistics, and 

emissions generated for producing and combusting PDFO as variables in the 

supply chain management model (Chapter 9). 

1.2 Research Novelty 

This research offers a new, innovative, and simple method for effective waste 

plastic management in developing regions through the establishment and application of 

LMDCE. By considering waste management challenges, their sources, and their 

consequences in the rural or low-income regions of the developing world, LMDCE is built 

to reduce mismanaged waste plastic accumulation and help communities thrive 

economically, environmentally, and socially. In addition to advocating for LMDCE and 
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defining the sustainability of LMDCE, this research contribution assesses the 

implementation of LMDCE at both the global scale (by identifying countries most suitable) 

and at the community scale (by geographical analysis of specific regions).  

The LMDCE solution proposed in this research for eliminating waste plastic from 

the ecosystem is 3T, or conversion of waste plastic to PDFO via pyrolysis. Although, 

pyrolysis of plastics has been studied extensively, this research determines how pyrolysis 

can be conducted in an LMDCE and appropriate technology setting, including testing its 

implementation in Kampala, Uganda. Further, the PDFO is characterized in terms of its 

generation and combustion emissions, composition, and stability to understand its 

performance in comparison with traditional petroleum derived fuels, such as diesel and 

kerosene. Lastly, supply chain considerations of LMDCE and 3T are presented to assist 

future researchers in quantifying the overall impact and benefits of implementation.  
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

2.1 The Global Waste Plastic Challenge 

Plastics are used in every country on earth, and none is able to successfully collect 

and manage 100% of its waste plastic. Once produced, plastic enters the global supply 

chain and is used in all regions of the world. In fact, our world is generating, consuming, 

and discarding more plastic than ever, and the rates are increasing (Patni, et al., 2013, 

Rochman, et al., 2013, Wilcox, et al., 2015, Li, et al., 2016, Geyer, et al., 2017). The rate 

of plastic production has increased at 5% per year worldwide (Patni, et al., 2013). In 2010, 

approximately 270 million metric tons (MT) of plastic were produced, with 99.5 million 

discarded as waste by coastal populations living within 50 km of the coast (Jambeck, et al., 

2015). Additionally, it was estimated that of the waste plastic generated that year, 31.9 

million MT were mismanaged on land and 4.8–12.7 million MT entered the oceans 

(Jambeck, et al., 2015). If current trends continue, by 2050, 33 billion MT of plastic are 

likely to be produced, with approximately 12.2 billion MT disposed of as waste, 3.9 billion 

MT mismanaged on land, and 0.6–1.6 billion MT eventually entering the oceans 

(Rochman, et. al, 2013, Jambeck, et al., 2015). This is a 122-fold increase in a matter of 40 

years, meaning that global plastic production is increasing exponentially. Just between 

2015 and 2026, we will make as much plastic as has been made since its production began 

(Wilcox, et al., 2015). 

There are numerous potential resting spots for waste plastic, including disposal in 

landfills, recycling, incineration, and unregulated dumping. Disposal on land is the most 

common option with previous studies showing that globally 60% of plastic municipal solid 

waste (MSW) is discarded in open space or in landfills (Patni, et al., 2013). A key challenge 
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is that in much of the world, appropriate waste disposal options are unavailable, including 

properly managed landfills, leading to waste plastic simply being dumped on open 

unestablished plots, accumulating on sides of roadways, and on outskirts of rural residential 

areas and slums. This accumulation of waste plastic on land can become a breeding ground 

for mosquitoes, cause clogged waterways and drainages, and reduce the general aesthetics 

of the community (Patni, et al., 2013). As plastic can take thousands of years to decompose, 

both landfills and unregulated plots of land will remain unusable long after the dumping 

ends (Sarker, 2011, Sarker, et al., 2012), and if not managed properly, chemicals can leach 

from the plastic into surrounding habitats (Rochman, et al., 2013).  

Common waste management problems in many resource-constrained or 

infrastructure limited parts of the world affect how waste is disposed, include lack of 

effective governmental policy, lack of municipal solid waste (MSW) management 

administration and planning, insufficient household education, economic pressures, limited 

perspectives on hazards associated with waste accumulation, and scarce stakeholder 

involvement (Troschinetz, 2008, Sujauddin, 2008). Other factors include growing 

economies, urbanization, and increased standards of living, which led to rapid increases in 

waste generation in developing countries (Mingha, et al., 2009). In rural regions 

particularly, access to centralized collection and recycling methods are often unavailable. 

Consequently, uncontrolled growth coupled with lack of sufficient infrastructure and 

regulation in underdeveloped regions of developing countries compounds the waste 

management problem (Moghadam, et al., 2009, Kalanatarifard, et al., 2012, Seng, et al., 

2010, Mryyan & Hamdi, 2006). Because these factors include economic and social as well 

as environmental components, it is critical that proposed solutions include them as well.  
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Eventually, this waste plastic will be disposed of in, or migrate to surface waters, 

generating pollution and threatening both terrestrial and marine life. The impacts of plastic 

in the oceans are easily visible through natural ocean currents that have created 5 major 

gyres – huge rotating regions of open sea that collect floating waste materials (Jambeck, 

2015). Once waste enters one of these gyres it is essentially trapped. Much attention has 

been given to what has been called “The Great Pacific Garbage Patch”. This refers to waste, 

particularly plastic which has been trapped in the Pacific gyre. Although the Great Pacific 

Garbage Patch has received most of the attention, each of the ocean gyres is accumulating 

significant amounts of plastic (Jambeck, 2015). Current estimates suggest that the oceans 

hold more than 5 trillion pieces of plastic weighing more than 25,0000 tons (Eriksen, et al., 

2014). Between entanglement and ingestion of material that was mistaken for food, 

mismanaged waste plastic has been detrimental to marine and terrestrial life (Rochman, et 

al., 2013, Wilcox, et al., 2015, Li, et al., 2016, Javasiri, et al., 2013, Barnes, et al., 2009, 

Barnes, et al., 2011). In fact, it is estimated that 2/3 of the world's fish stock has ingested 

plastic (Wieczorek, et al., 2018). Unfortunately, a single piece of plastic can kill over and 

over. The animal killed by the plastic eventually decomposes, but the plastic remains and 

can continue to cause harm. Additionally, through the consumption of fish, as well as food 

packaged in plastic, humans are also adversely impacted (Parker, 2018). For instance, 

plastic chemicals absorbed by the body have been found to alter hormones (Knoblauch, 

2009). Another recent study from seven different European countries and Japan has 

revealed microplastics present in human feces (Parker, 2018). These findings verify the 

pervasiveness of plastic in the global environment. 
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Despite these concerns, plastic cannot be simply eliminated from the supply chain, 

nor is it practical or even always beneficial to do so. The alternatives to plastic goods and 

packaging include materials such as metals, glass, paper and cotton-based fabrics. As a 

result, an increased demand for metals would lead to increased mining and increased fuel 

demands for transportation of these heavy materials, resulting in increased prices and 

negative environmental impacts. Glass is heavy, energy intensive and prone to breaking. 

Increased cultivation of cotton and increased paper production will compete with land 

suitable for food crops, which is already in shortage due to population growth. 

Additionally, increasing land for cotton and paper production will lead to deforestation – a 

significant global threat. There are simply no suitable alternatives for plastic ready for 

deployment at an international scale, meaning that plastic is too cheap and efficient to be 

easily replaced. Thus, this phenomenon is currently leading to exponential growth in 

production, consumption, disposal, and accumulation of plastic, challenging its 

management globally. Therefore, without considering the three pillars of sustainability, 

waste plastic management solutions are unlikely to achieve long-term success. 

2.2 Principles Governing Waste Plastic Management Solution in Developing Regions 

This research applies the principles of sustainability, appropriate technology, and 

circular economy to generate the model of a locally managed decentralized circular 

economy (LMDCE) (Figure 2.1). Having sustainability and its applications, appropriate 

technology, and circular economy, as the foundation for the model, LMDCE aims to 

holistically target waste plastic management in developing regions by incorporating 

people, organizing tools to achieve prosperity, and working to benefit the planet. A detail 

overview of the core principles is presented in the following subsections. 
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Figure 2.1. Principles governing the development of a LMDCE 

2.2.1 Sustainability 

According to the National Environmental Policy Act of 1969 (NEPA), 

sustainability means “to create and maintain conditions under which humans and nature 

can exist in productive harmony, that permit fulfilling the social, economic, and other 

requirements of present and future generations” (USEPA, 2020). Sustainability is often 

known by its three pillars – economic, environmental, and social sustainability. Economic 

sustainability is associated with production, distribution, and consumption of goods and 

services, including the creation and maintenance of jobs, promotion of incentives, 

promotion of informed supply and demand accounting, improvement of natural resource 

accounting, and positive impacts of costs and prices in the lifecycle of a product or service 

(USEPA, 2015).  

Environmental sustainability relates to protection, maintenance, and restoration of 

ecosystems, air quality, water quality, and soil quality; reduction in environmental stressors 

such as pollutants and greenhouse gas (GHG) emissions; minimization of waste generation 

and importance of resource integrity; and design of processes, products, and services that 

are based on green engineering and chemistry (USEPA, 2015). Lastly, social sustainability 
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relates to increased community and stakeholder participation, improved well-being 

(prosperity, safety, public health, access to proper waste management, food, water, and 

energy security), resource conservation and increased use of recyclable materials in a way 

that promotes societal fairness (including a full account of cradle-to-grave lifecycle of 

products and associated social costs), improved social organization systems, and positive 

contributions to rural development (increased access to education, workforce training, and 

technology) (Mohamed and Paleologos, 2021, Tang and Huang, 2017, Gnansounou and 

Pandey, 2017). 

In the research included in this dissertation, the application of sustainability is 

deemed critical for design, maintenance, and longevity of waste plastic accumulation 

solutions. In particular, sustainable solutions modeling appropriate technology principles 

are favored to ensure that communities accept, use, and benefit from waste plastic 

management solutions. 

2.2.2 Appropriate Technology 

The concept of appropriate technology was first described by E.F. Schumacher in 

his book Small is Beautiful (Schumaker, 1973). This concept of appropriate technology is 

summarized by Hazeltine (Hazeltine, 1999) as “Technological choices and applications 

that are small scale, decentralized, labor-intensive, energy efficient, environmentally 

sound, and locally controlled.” Appropriate technology is simply technology suitable for a 

specific region, designed to meet specific needs of certain individuals or communities 

(Joshi & Seay, 2016). Though the details of what constitutes appropriate technology can 

vary between regions and applications, the description from Hazeltine (Hazeltine, 1999) 

generally holds true. Appropriate technology does however require tradeoffs. In most 
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cases, the tradeoffs include: efficiency for simplicity; convenience for low cost; and 

automation for manual operation. The key benefit of appropriate technology is that it is 

easily deployable because it does not rely on a sophisticated infrastructure. Appropriate 

technology is a way of achieving the societal benefits of sustainability, particularly in 

underdeveloped regions. This means that appropriate technology is not intended to 

reproduce industrial technology on a small scale but rather to design specific solutions 

appropriate for a given region or for a given community (Seay, et al., 2012). Appropriate 

technology is the mechanism by which LMDCE principles overcome infrastructure 

challenges in developing economies. 

2.2.3 Circular Economy 

Breaking the Take → Make → Waste paradigm is an underlying principle and the 

first step towards building a circular economy. A circular economy applies the 3R’s of 

sustainability (reduce, reuse, recycle) at the company or industry level by considering 

reducing resource consumption, reusing end-of-life products as feedstock, and/or recycling 

them back into the manufacturing supply chain. The circular economy’s goals consist of 

focusing on designing out of waste and pollution, keeping of products and materials in use 

to support a cradle-to-cradle approach, and regenerating natural systems (Ellen MacArthur 

Foundation, 2021). Thus far, circular economy models for various waste types have been 

considered and applied in regions with sufficient infrastructure to collect and sort valuable 

waste products to reuse, recycle, or re-enter them into their respective manufacturing 

supply chains on an industrial scale (World Economic Forum et al., 2016, Yuan, et al., 

2006). In addition to infrastructure, this approach requires capital and sophisticated 
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equipment to reprocess the materials into their building blocks for entrance back into 

consumer products. 

2.2.4 Locally Managed Decentralized Circular Economy 

Since these necessities of infrastructure, capital, and equipment are often lacking at 

the rural or developing region level, this research contribution promotes the creation of a 

locally managed and decentralized, or distributed, circular economy for recycling, 

remanufacturing, and repurposing valuable waste products. In an LMDCE model, existent 

infrastructure, capital resources, equipment, and education of the general population are 

utilized to create local solutions for MSW and waste plastic management at the community 

or neighborhood level. When the solutions are created with active community participation, 

by understanding and prioritizing the needs, skills, and challenges of the community, 

solutions are targeted specifically to the community. The primary stakeholder responsible 

for implementing the solution is the community, and the primary beneficiary of the 

economic, environmental, and societal gains is the community.  

Because communities differ in demographics, geography, size, and culture, 

LMDCE solutions for waste management are intended to vary from community to 

community. However, the general goal of achieving long-term, sustainable, appropriate 

technology-based solutions should be the focus of LMDCE implementations. Examples of 

LMDCE models for reducing plastic accumulation can include:  

• A network of informal waste pickers that collect, clean, shred, and sell waste 

plastic downstream to recycling facilities (Plastics for Change, 2021), 

• Building homes from waste plastic bottles (Upcycle Africa, 2021), 
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• Converting plastic into anti-slippery and recyclable floor tiles (the better 

home, 2021), 

• Turning waste plastic packaging into handbags, wallets, wall paintings, 

welcome mats, and folders (Varier, 2017), or 

•  Converting waste plastic into fuel oil (Joshi & Seay, 2016). 

Ultimately, by valuing waste, unsound consumption and disposal of waste is 

reduced at the local community level. In return, the diverse applications of LMDCE have 

the potential to benefit people, generate prosperity, and support the thriving of the planet.  

2.3 Conversion of Waste Plastic to Fuel 

Plastics commonly found in MSW such as High-Density Polyethylene (HDPE), 

Low-Density Polyethylene (LDPE), Polypropylene (PP), and Polystyrene (PS) can be 

converted into a liquid fuel oil via thermal decomposition, or pyrolysis. Plastics such as 

polyethylene terephthalate (PET) and poly vinyl chloride (PVC) are unfortunately not 

suitable for this process, due to the presence of oxygen and chlorine respectively in the 

polymers. The chemistry of converting plastics into a hydrocarbon fuel oil is simple and 

well established (Al-Salem, et al., 2009, Demirbas, 2004, DeNeve, et al., 2017, Joshi & 

Seay, 2016, Kumar & Singh, 2011, Miskolczi, et al., 2004, Panda, et al., 2010, Patil, et al., 

2017, Pinto, et al., 1999, Santaweesuk & Janyalertadun, 2017, Sarker, 2011, Sarker, et al., 

2012, Singh and Ruj, 2016, Wong, et al., 2015). Pyrolysis, or heating of the plastic in the 

absence of oxygen, is the most widely utilized approach for converting waste plastic, into 

fuel oil (Singh and Ruj, 2016, Demirbas, 2004, Pinto, et al., 1999, Al-Salem, et al. 2009, 

Kumar and Singh, 2011, Miskolczi, et al., 2004, Panda, et al., 2010, Sarker, et al., 2012). 

Since the molecules of this plastic are only made up of carbon-hydrogen chains, when 
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thermally heated to temperatures of approximately 400°C-500°C (DeNeve, et al., 2017, 

Joshi & Seay, 2016, Wong, et al., 2015, Kumar and Singh, 2011, Singh and Ruj, 2016), 

the hydrocarbon chains break, decomposing the polymer, and yielding a hydrocarbon gas, 

which is then condensed to obtain the fuel oil product. In this contribution, the fuel oil 

generated is termed as plastic-derived fuel oil (PDFO). An objective of this research is to 

design, fabricate, operate, and test an appropriate technology-based solution for reducing 

plastic in municipal solid waste through what is termed as the trash to tank (3T) approach 

(Chapter 7). 

2.3.1 Trash to Tank Approach 

The goal of the 3T approach is to reduce waste plastic accumulation by providing 

rural, resource-constrained communities suffering from lack of municipal solid waste 

(MSW) infrastructure to manage their waste locally. 3T helps to alleviate the pressure 

placed on managed landfills and seeks to eliminate the practice of dumping or incinerating 

waste plastic in open plots of land in rural regions, which has led to sanitation, human 

health, and environmental concerns (Komakech, 2014, Patni, et al., 2013, Rochman, et al., 

2013). In return, the eventual migration of unregulated waste plastic into waterways and 

oceans is reduced, decreasing endangerment of terrestrial and marine species (Geyer, 2017, 

Li, et al., 2016, Wilcox, et al., 2015). 

The 3T approach applies the principles of sustainability, appropriate technology, 

and LMDCE to perform slow pyrolysis of waste plastic trash, converting it into PDFO. A 

simple technology has been developed by the University of Kentucky Appropriate 

Technology and Sustainability (UKATS) research for thermal decomposition of waste 

plastic in rural regions, known as the 3T processor, which is nonautomated, low-cost 
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(approximately 800-1000 USD) and easily deployable, encouraging waste plastic 

management in small-scale solutions around the world (DeNeve, et al., 2017, Joshi & Seay, 

2016, Joshi, et al., 2020). Since 2017, the UKATS team, in partnership with Makerere 

University in Kampala, Uganda and Beyond Uganda, a U.S. based NGO, has implemented 

six 3T processors in Uganda (Joshi, et al., 2020). 

The PDFO produced from the 3T processor has characteristics similar to diesel and 

kerosene, and is suitable for use in diesel generators, kerosene cookstoves, and lamps. 

PDFO has an additional advantage over traditional petroleum derived fuels in that it is 

sulfur free and generates no sulfur oxide (SOx) emissions when combusted. This can be 

attributed to the polymer chemistry of polyolefin-based plastic, often used for 3T 

applications, which contain only hydrocarbon bonds. As the waste plastic is converted to 

PDFO, it is wholly consumed and eliminated from the ecosystem. 

Consequently, the 3T approach encourages waste plastic to reenter the LMDCE in 

underdeveloped regions by giving waste plastic a value. This promotes collection and 

management of waste plastic instead of simply discarding it. In addition, entrepreneurial 

opportunities are generated for sorting, collecting, and processing the waste plastic, 

providing a source of reliable, renewable energy for the community through its conversion 

to fuel oil. Since the plastic is converted to PDFO locally at an individual or community 

scale, an LMDCE for waste plastic is established. This practice has the potential to 

empower rural communities lacking capital, resources, technical education, and waste 

management infrastructure to repurpose the trash into valuable products, decrease MSW 

accumulation, and provide a roadmap for sustainable management of post-consumer 
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plastic. Hence, this contribution studies in detail the sustainability of LMDCE and 3T 

processors in developing regions. 

2.4 Tools Used to Assess LMDCE and Trash to Tank 

The following tools were used in this research to determine and quantify the 

implementation of LMDCE in developing regions by proposing 3T as a viable option for 

waste plastic management. 

2.4.1 Behavioral Economics and Sustainable Behaviors 

Humans have evolved in concert with our ecosystem; however, rapid 

anthropogenic ecosystem changes are outpacing our ability to adapt. Our species is adapted 

to work in our own immediate self-interest. Groundbreaking research by George Ainslie in 

the 1970s concluded that behaviors that have a short-term payoff are favored over ones that 

only have benefits in the long term (Ainslie, 1975). This is known as hyperbolic 

discounting (Ainslie, 1975). The problem we are now facing, however, is that our behaviors 

with regard to consumption are causing severe damage to our ecosystem. The 

consequences of this behavior are discounted significantly by the general population. These 

problems associated with hyperbolic discounting are amplified in developing countries, 

since people have more immediate needs with regards to survival. Unstable governments, 

lack of strong institutions and lack of food, water and energy security make acting in the 

global best interest difficult or impossible. 

Anthropogenic climate change, unsound waste disposal and loss of biodiversity are 

all happening at an alarming rate, but our global institutions have been unable to adequately 

address these problems. Much of the progress to date relies on altruistic behavior - 
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consciously consuming less than one otherwise could to minimize one's individual impact. 

Although altruism is a fundamental characteristic of human society (Brede, 2013), the 

problem with relying on altruistic behavior is twofold: first is the previously mentioned 

problem of our evolutionary predisposition to acting in our own self-interest, and second 

is the free rider problem. The free-rider problem describes our inherent distaste for others 

benefiting from our individual sacrifice. This problem has been observed in resistance to 

social programs, as well as resistance to sustainable consumption options that are perceived 

as being more expensive, less effective or less convenient than traditional options. Because 

of the issues that arise with both reliance on altruism and the fear of free-riders, many 

proposed solutions to environmental problems are rooted in the theory of neoliberal 

conservation. This theory posits individuals are rational actors who always act in their 

economic self-interest. Neoliberalism combines conservation with markets such that 

conserved land and resources become fungible commodities (Doane, 2014). The result of 

this line of thought is that economic incentives are required to advance environmental 

protection, however these practices do not necessarily benefit the poor, or the environment 

(Brockington & Igoe, 2006, Igoe & Brockington, 2006). This clearly indicates that a new 

model of behavior that benefits the rural poor is needed. 

The neoliberal approach to conservation and environmental protection is based on 

the assumption that individuals are rational actors. The principle of the rational actor is 

based on three tenets: that individuals are self-interested and attempt to maximize their own 

benefits; that they only respond to economic incentives; and that economic markets are 

free, mutual, and rational (Peterson & Isenhour, 2014). However, recent research has 

suggested that new approaches are needed to model human behavior with regard to 
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environmental protection (Doane, 2014, Isenhour, 2014, Peterson, 2014, Gowdy, 2007). 

This research argues that individuals are not simply motivated by economic gain alone. As 

asserted by Peterson (Igoe & Brockington, 2006), giving the ecosystem an economic value 

to ensure protection undermines the consideration of alternative values.  

Additional research states that monetary incentives may be counterproductive 

(Gowdy, 2007, Berkes, 2004, Frey, 1997, Frey & Oberholtzer-Gee, 1997). These economic 

incentives are not only counterproductive to individuals, but outcomes based on the rational 

actor model can erode communities (Peterson & Isenhour, 2014). Contrastingly, 

motivation is multidimensional (Peterson & Isenhour, 2014) and recent research has shown 

that equity and empowerment are often more important than monetary incentives (Berkes, 

2004). Therefore, to be effective, approaches must be rooted in all three pillars of 

sustainability, economic, environmental, and social equality. 

2.4.2 Sustainability Indicators and Geographical Analysis 

To determine which locations are suitable for LMDCE implementation, the 

behaviors associated with waste generation and disposal must be first understood to 

propose region specific management solutions. Previous research has highlighted waste 

and waste plastic generation at a global scale (Jambeck, 2015, Geyer, 2017, Eriksen, et 

al.2014). The data summarizes the behaviors associated with and the largest influencers of 

waste production at the global, or sub-continent scale (Hoornweg & Bhada-Tata, 2012, 

Kaza et al., 2018). This data is an excellent tool for driving global and continent-specific 

policies for reducing and recycling waste generation. However, to understand what actions 

must be taken at the country-scale, a clear understanding of the demographics of the 

population and the current waste management practices must be assessed. This task can be 



20 
 

challenging in developing countries where often waste management data is only available 

for urban cities and communities. Nonetheless, by correlating measured country-specific 

data such as gross domestic product, estimated total MSW generation, and population to 

the three pillars of sustainability, indicators alluding to the economic, environmental, and 

social well-being of a country can be inferred. By weighing the severity of a country’s 

challenges in each of the sustainability indicators, the waste generation behavior of the 

country can be concluded, and in return, the countries most suitable for LMDCE 

implementation can be identified. 

Furthermore, since LMDCE emphasizes a distributed, small-scale approach for 

implementation, the regions within a country most suitable for LMDCE implementation 

should also be identified. Often waste management is a priority in urbanized regions of 

developing countries, with little attention given to rural regions. As a result, the 

accessibility of waste generation data in rural, or low-income regions of developing 

countries is minimal. Challenges such as variation in income level, conditions of road 

infrastructure, and perception of communities toward waste, including education regarding 

hazards associated with waste influence the way waste is handled in rural and low-income 

regions. Specific waste management data such as the amount and composition of waste 

generated per region, along with the amount unsoundly disposed to the environment are 

often unknown.  

In this aspect, the waste management behaviors of a region can be inferred from a 

close-up geographical analysis of the region. Previous contributions in this field are 

minimal and have analyzed data at ~1km resolution and have reported the total amount of 

current and projected waste plastic generation for the country and global scale (Lebreton 
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& Andrady, 2019). However, the reported data is not broken into region-specific, city, or 

village scale data for ready use by local entrepreneurs, non-profit organization, or other 

agencies interested in implementing waste management solutions, such as LMDCE and 3T 

approaches in small-scale applications. Thus, this contribution studies open-sourced 

geographical data such as number of buildings and the size of buildings present in a region 

at a ~100m resolution to correlate population density and estimated waste plastic 

generation.  

2.4.3 Generation and Consumption Emissions of Trash to Tank PDFO 

Energy consumption is directly correlated with the economic development of a 

nation as measured by the gross domestic product (GDP) (Dritsaki & Dritsaki, 2014). 

Hence, as world economies develop, a peak in energy demand is forecasted. This is 

especially true for the transportation energy sector, where approximately 159 quadrillion 

kilojoules (kJ) of energy consumption are predicted for the year 2040, a 46 quadrillion kJ 

spike from 2015 (Energy Information Administration [EIA], 2017). Consumption of diesel, 

the primary transportation fuel for medium- and heavy-duty vehicles in OECD 

(Organization for Economic Co-operation and Development) and non-OECD countries is 

also anticipated to grow from approximately 87 quadrillion kJ, surpassing 105 quadrillion 

kJ by 2040 (EIA, 2017). Furthermore, with increased energy usage, greenhouse gas (GHG) 

emissions are likely to increase, unless additional regulations for controlling the emissions 

are enforced (Dritsaki & Dritsaki, 2014). For instance, diesel emissions, consisting of 

carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), 

polycyclic aromatic hydrocarbons, aldehydes, ketones, phenols, ammonia, carbonyl 

compounds, volatile organic compounds, and metals such as aluminum, calcium, iron, 



22 
 

magnesium, nickel, silicon, sodium and vanadium are likely to build up in the atmosphere 

without the addition of effective emissions management technologies (Maricq, 2007, 

Morgan, et al., 1997, Popovicheva, et al., 2015, Sarvi, et al., 2011, Wierzbicka, et al., 2014, 

Wu, et al., 2017, Zielinska, 2005).  

Regions currently motorizing at unprecedented rates are often lacking or have 

minimal availability of existing effective transportation emissions reduction technologies, 

thus challenging sustainable development. Another contributing cause is the use of 

cheaper, second-hand vehicles imported to developing countries after years of use. This 

practice is termed as “exporting pollution” or “environmental dumping” as poorer 

economies have become a “pollution haven” for old cars with reduced fuel efficiencies and 

safety standards, higher GHG and particulate matter emissions, leading to respiratory 

concerns and smog (Edwards, 2017, Khan, 2013, Hutchinson, 2011, Davis & Khan, 2011).  

One potential method for reducing the high rate of GHG emissions and particulate 

matter from diesel or petroleum derived fuels in developing countries is the use of fuel 

derived from waste plastic. This approach of trash-to-tank, or 3T, solves two problems 

simultaneously in developing economies – reduction of heavy metals from fuel combustion 

due to the hydrocarbon polymer chemistry of plastics and reduction in accumulation of 

waste plastic in areas with minimal waste management infrastructure through its 

conversion to PDFO. This contribution studies the environmental impact of PDFO from a 

LMDCE application, comparing it with the current standard, petroleum diesel. Previous 

studies have determined the emissions of plastic derived fuels obtained in a lab setting 

(Churkunti, 2015, Kalargaris et al., 2018, Kalargaris et al., 2017a, Kalargaris et al., 2017b, 

Kumar & Sankaranarayanan, 2016, Mani, et al., 2010, Rinaldinin, 2016). However, the 
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environmental analysis of plastic derived fuels in rural, developing communities has not 

yet been performed. As a result, this contribution determines and analyzes the CO2 

emissions for generating and combusting the 3T fuels, comparing them alongside WTT 

petroleum derived diesel fuel emissions. 

2.4.4 PDFO Composition and Stability 

To assess the similarities of PDFO with diesel and kerosene, the composition and 

stability of the fuel were measured. The analysis of PDFO was performed in a gas 

chromatograph-mass spectrometer (GC-MS) and a thermogravimetric analyzer (TGA) for 

determining the composition and stability, respectively, as a function of temperature and 

time in the absence of a catalyst. This approach is consistent with literature analysis of 

PDFO generated from a variety of plastic feedstocks (Aboulkas & Nadifiyine, 2008, 

Achilias, et al., 2007, Breyer et al., 2017, Budsaereechai, et al., 2019, Cai, et al., 2008, 

Chandrasekaran, et al., 2015, Miandad et al., 2017, Miandad et al., 2019, Phetyim & Pivsa-

Art, 2018, Rahman, 2018, Xing et al., 2019, and Zhou et al., 2006). However, these 

contributions primarily focused on the pyrolysis of plastic with catalysts (Achilias, et al., 

2007, Budsaereechai, et al., 2019, Chandrasekaran, et al., 2015, Kunwar et. al, 2021, Liu, 

et al., 2021, Miandad, et al., 2017, Miandad, et al., 2019), or coprocessing of plastic with 

oil producing biomass (Aboulkas & Nadifiyine, 2008 and Rahman, 2018), used lubrication 

oils (Phetyim & Pivsa-Art, 2018, Breyer et al., 2017), coal (Cai, et. al, 2008), and semicoke 

(Xing et al., 2019). 
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2.4.5 Supply Chain and Uncertainty 

To effectively implement LMDCE in a developing region via 3T, supply chain 

considerations and their associated risks, or uncertainty, need to be quantified. In its 

simplest definition, supply chain management involves the planning, sourcing, 

procurement, conversion, and logistics of processing raw materials to finished products, 

and their distribution to customers (Badurdeen et. al, 2009, and Lee and Billington, 1993). 

The plastic supply chain at the industrial manufacturing level has been previously studied 

(Jiuping et al., 2016, Vermeulen, et. al, 2016, Hongtao, et. al, 2019). However, in a 

LMDCE application, the waste plastic supply chain considerations more closely align with 

those of informal waste pickers in developing countries, who are a distributed network of 

individuals collecting, sorting, and selling recyclable materials to assist waste management 

practices in both urban and rural regions (Chikarmane, 2012, Dias, 2016, Gall et. al, 2020, 

Hayami, et. al, 2006, Medina, 2008, Moreno-Sanchez and Maldonado, 2006, and 

Navarrete-Hernandez and Navarrete-Hernandez, 2018). By incorporating individual, 

small-scale entrepreneurs such as informal waste pickers, local consumers, and recycling 

NGOs, the LMDCE supply chain considers the costs and benefits of gathering and 

transporting waste plastic within the community, converting it to PDFO via 3T, and selling 

it locally to the community. Additionally, the uncertainty present in the stochastic variables 

of the supply chain model is assessed to obtain the most probable outcomes for economic 

gains, jobs created, and emissions produced from generation and combustion of PDFO. 
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CHAPTER 3.  A PERSPECTIVE ON A LOCALLY MANAGED DECENTRALIZED 
CIRCULAR ECONONMY 

As Published in Environmental Progress & Sustainable Energy, 38(1), 3-11, 2019 

Chandni Joshi, Jeffrey Seay, and Noble Banadda 

3.1 Abstract 

Waste plastic accumulation, especially at the detriment of water and land resources, 

is a global problem. Unsound post-consumer disposal is the primary pathway of waste 

plastic into the ecosystem. One way of addressing this problem is through the establishment 

of a circular economy for waste plastic. Unfortunately, much of the unsound disposal 

comes from economically disadvantaged regions where waste disposal and recycling 

infrastructure is limited or unavailable. Therefore, to be impactful, in rural or economically 

disadvantaged regions, the establishment of a circular economy for waste plastic must be 

locally managed and decentralized, meaning that the disposal, collection, remanufacture 

and use of waste plastic must all occur within the same community. Therefore, we suggest 

that waste plastic abatement strategies be targeted to reduce, reuse and recycle waste plastic 

at the local level, establishing a circular economy appropriate for infrastructure limited 

regions. To be effective, technologies for recycling plastic must be low-cost, economically 

viable, socially acceptable and not adversely impact the environment, but also produce a 

product that has a ready market in the local community. This is critical because although 

environmental concerns are important, unless proposed solutions are also economically 

viable and socially appropriate, they are unlikely to be successful, especially in 

underdeveloped regions. Using big data analysis, a simple metric for identifying countries 

that will have the most potential to benefit from a locally managed decentralized circular 
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economy (LMDCE) for plastic has been developed. Country specific data on municipal 

solid waste (MSW) generation, percent of MSW consisting of plastic, extent of unsound 

waste disposal practices and total environmental stress, along with economic and 

population indicators were used to develop this analysis. The information obtained from 

this metric will help researchers and policy makers promote a LMDCE of waste plastic for 

managing the accumulation of plastic on land and its eventual migration into waterways. 

Additionally, we present a case study of a proposed LMDCE waste plastic abatement 

strategy in the MSW infrastructure limited country of Uganda. 

3.2 Introduction 

Plastics are used in every country on earth, and none is able to successfully collect 

and manage 100% of its waste plastic. Once produced, plastic enters the global supply 

chain and is used in all regions of the world. In fact, our world is generating, consuming, 

and discarding more plastic than ever, and the rates are increasing (Patni, et al., 2013, 

Rochman, et al., 2013, Wilcox, et al., 2015, Li, et al., 2016, Geyer, et al., 2017). The 

growth rate of plastic production has increased at 5% per year worldwide (Patni, et al., 

2013). In 2010, approximately 270 million metric tons (MT) of plastic were produced, with 

99.5 million discarded as waste by coastal populations living within 50 km of the coast 

(Jambeck, et al., 2015). Additionally, it was estimated that of the waste plastic generated 

that year, 31.9 million MT were mismanaged on land and 4.8 - 12.7 million MT entered 

the oceans (Jambeck, et al., 2015). If current trends continue, by 2050, 33 billion MT of 

plastic are likely to be produced, with approximately 12.2 billion MT disposed of as waste, 

3.9 billion MT mismanaged on land, and 0.6-1.6 billion MT eventually entering the oceans 

(Rochman, et. al, 2013, Jambeck, et al., 2015). This is a 122-fold increase in a matter of 40 
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years, meaning that global plastic production is increasing exponentially. Just between 

2015 and 2026, we will make as much plastic as has been made since its production began 

(Wilcox, et al., 2015).  

There are numerous potential resting spots for waste plastic, including disposal in 

landfills, recycling, incineration, and unregulated dumping. Disposal on land is the most 

common option with previous studies showing that globally, 60% of plastic municipal solid 

waste (MSW) is discarded in open space or in landfills (Patni, et al., 2013). A key challenge 

is that in much of the world, appropriate waste disposal options are unavailable, including 

properly managed landfills, leading to waste plastic simply being dumped on open 

unestablished plots, accumulating on sides of roadways and on outskirts of rural residential 

areas. This accumulation of waste plastic on land can become a breeding ground for 

mosquitoes, cause clogged waterways and drainages, and reduce the general aesthetics of 

the community (Patni, et al., 2013). Since plastic can take thousands of years to decompose, 

both landfills and unregulated plots of land will remain unusable long after the dumping 

ends (Sarker, 2011, Sarker, et al., 2012), and if not managed properly, chemicals can leach 

from the plastic into surrounding habitats (Rochman, et al., 2013). Eventually, this waste 

plastic will be disposed of in, or migrate to surface waters, generating pollution and 

threating both terrestrial and marine life. Specifically in major bodies of water, waste 

plastic is ingested by marine life and bird species, resulting in adverse health effects, 

entanglement, and death (Rochman, et al., 2013, Wilcox, et al., 2015, Li, et al., 2016, 

Javasiri, et al., 2013, Barnes, et al., 2009, Barnes, et al., 2011).  

Figure 3.1 shows plastic bags collecting in a drainage canal in Kampala, Uganda 

due to unregulated dumping. This is a common problem in many resource-constrained or 
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infrastructure limited parts of the world, where lack of effective governmental policy, 

MSW management administration and planning, along with insufficient household 

education, economic pressures, limited perspectives on hazards associated with waste 

accumulation and scarce stakeholder involvement affect how waste is disposed or managed 

(Troschinetz, 2008, Sujauddin, 2008). Other factors include growing economies, 

urbanization and increased standards of living, which have led to rapid increases in waste 

generation in developing countries (Mingha, et al., 2009). In rural regions particularly, 

access to centralized collection and recycling methods are often unavailable. Consequently, 

uncontrolled growth coupled with lack of sufficient infrastructure and regulation in 

underdeveloped regions of developing countries compounds the waste management 

problem (Moghadam, et al., 2009, Kalanatarifard, et al., 2012, Seng, et al., 2010, Mryyan 

& Hamdi, 2006). Because these factors include economic and social as well as 

environmental components, it is critical that proposed solutions include them as well. 

Therefore, in our view, without considering the three pillars of sustainability, MSW 

management solutions are unlikely to achieve long term success. 



29 
 

 

Figure 3.1. Waste plastic and other trash clog a spillway in Kampala, Uganda 

3.3 A Perspective on a Locally Managed Decentralized Circular Economy 

Unfortunately, there are currently no globally effective strategies to keep waste 

plastic out of the ecosystem that meet the challenges of both developed and developing 

countries. This is primarily because waste plastic is not a point-source pollutant. Since 

plastic enters the ecosystems from numerous points, it has been a major obstacle for control 

(Geyer, et al., 2017). Moreover, low-income and low-to-middle income countries lack the 

resources to address this problem. In fact, in addition to lack of waste collection and 

management infrastructure in underdeveloped regions, researchers have identified that 

simply the lack of convenient waste disposal containers can affect household waste 

disposal decisions (Moghadam, et al., 2009, Kalanatarifard, et al., 2012, Seng, et al., 2010, 

Mryyan & Hamdi, 2006, Tadesse, et al., 2008). If people have to walk long distances to 
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reach a suitable disposal location, they will simply dump the waste nearby on streets, 

underdeveloped plots of land, or burn it, leading to potentially toxic smoke, especially if 

plastics are present. This underscores our assertion that locally managed decentralized 

solutions – targeting waste where it is generated rather than focusing on centralized 

processing – may be more effective in communities where governmental waste solution 

efforts are minimal. This type of approach empowers individuals and small communities 

to adapt and invent solutions rather than waiting on central authorities to enact policies and 

regulations to address the problem. As a result, a LMDCE of plastic products is generated, 

encouraging direct users of plastic to consider and benefit from opportunities of providing 

waste plastic a value, or by generating new lifecycles for plastic products through a cradle-

to-cradle approach (Ellen MacArthur Foundation, 2017).  

We assert that a decentralized circular economy of plastic at the local level can have 

tremendous benefits in reducing the accumulation of waste plastic on land and its eventual 

migration to major bodies of water. An industrial circular economy replaces the produce-

consume-discard model by reusing, recycling or reentering products into their 

manufacturing supply chain on an industrial scale (Ellen MacArthur Foundation, 2017, 

Parker, 2018, Yuan, et al., 2006, Geng, et al., 2009, Matthews, et al., 2018, Preston, 2012, 

Preston & Lenhe, 2017, Geissdoerfer, et al., 2017, Kaur, et al., 2017). However, at the 

local level, especially in rural regions, remanufacturing of plastic products, or creating the 

infrastructure networks to reenter them into their respective supply chains is difficult. 

Traditional solutions, like centralized recycling of waste plastic, are also often impractical 

in remote regions, or regions lacking well developed infrastructure due to the transportation 

costs, making large-scale recycling operations uneconomical. Hence, a LMDCE functions 
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to manage waste on small-scale in rural regions, without the need of industrial technologies 

or developed infrastructure. Viable solutions are those that are low cost, can be 

implemented utilizing the region’s technical knowledge, and most importantly provide an 

incentive for local people to collect, reuse and recycle themselves.  

In many economically disadvantaged regions, an informal local recycling sector 

exists via a system of waste pickers that sort through dumpsites to collect saleable materials 

such as metals, plastics, glass and papers (Parker, 2018, Medina, 2007, Medina, 2008, 

Rathi, 2007, Bari, et al., 2012, Fergutz, et al., 2011). Often, waste pickers travel throughout 

communities of rural regions and cities to collect recyclables from house-to-house as well, 

or set-up recycling drop-off locations, paying individuals a small incentive for valuable 

materials. Afterwards, the waste pickers will sort through collected materials, clean and 

sell them to recycling companies for a profit. These companies then shred and process the 

materials as desired by manufacturing organizations. In this way, rural communities and 

heavily populated urban centers of developing countries benefit from a decentralized 

circular economy of recyclable materials, including plastics.  

However, not all plastics that are recyclable are of value to waste pickers due to a 

non-existent recycling market. For instance, polyethylene shopping bags are generated in 

large volumes globally, but are recycled in extremely low quantities (Parker, 2018), 

accumulating on sides of streets, dumps, and landfills in developing countries. Even in the 

United States, 380 billion plastic bags are consumed annually, with only 5.2% being 

recycled (Sarker, 2011, Sarker, et al., 2012). So, unless waste plastic items, such as 

polyethylene bags can be given a value, they will continue to be unsustainably used and 

discarded. Therefore, we assert that a LMDCE with informal recycling playing a vital role 
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in decreasing the accumulation of waste plastic is needed. Furthermore, we believe that 

including social and economic considerations in addition to environmental are critical to 

successful waste plastic abatement strategies in underdeveloped regions, which has been 

lacking in most plastic abatement strategies.  

In Figure 3.2, we propose a strategy for establishing a circular economy at the local 

level by applying the three principles of sustainability to decentralized waste plastic 

management. This strategy is thermal decomposition of waste plastic to fuel oil at 

temperatures of 400-450°C (Joshi & Seay, 2016, DeNeve, et al., 2017). High-density 

polyethylene, low-density polyethylene, polystyrene and polypropylene plastics [Sarker, 

2011, Sarker, et al., 2012, Joshi & Seay, 2016, DeNeve, et al., 2017, Santaweesuk & 

Janyalertadun, 2017, Patil, et al., 2017, Singh & Ruj, 2016, Demirbas, 2004, Pinto, et al., 

1999, Al-Salem, et al., 2009, Kumar & Singh, 2011, Miskolczi, et al., 2004, Panda, et al., 

2010, Wong, et al., 2015) can be easily converted to fuel similar in composition to diesel 

and kerosene by individual entrepreneurs utilizing appropriate technology (AT), providing 

a potential path to a LMDCE. AT is simple, non-automated technology requiring little to 

no electricity, designed for a specific region to meet specific challenges according to 

available resources (Joshi & Seay, 2016). An AT solution for thermal decomposition of 

waste plastic is the UKATS Processor (Joshi & Seay, 2016, DeNeve, et al., 2017). This 

invention is constructed locally utilizing existent construction materials, available 

infrastructure, technical knowledge of intended users and from easily acquired, locally 

generated waste plastics. For instance, the UKATS Processor is wood fired to allow for the 

skills of rural communities that operate wood fired cookstoves to be readily applied. 

Moreover, the desired plastics can be easily collected by waste pickers or entrepreneurs by 
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either identifying the plastic recycling numbers (2, 4, 5 and 6, respectively) or by 

performing a simple density test of the shredded plastics in water. That is, if the waste 

plastics float on water, they are suitable for reprocessing to fuel oil.  

 

Figure 3.2. LMDCE for waste plastic in infrastructure limited regions 

Consequently, a LMDCE gives waste plastic an economic value, which 

incentivizes people to collect and use it locally, reducing waste accumulation. It further 

significantly reduces the need for physical and technical infrastructure to implement an 

industrial circular economy of plastic by involving local community participation as shown 

in Figure 3.2. In addition, this approach is socially and environmentally appropriate. For 

instance, as accumulation of waste decreases, sanitation issues decrease, improving 

community health. Likewise, environmental benefits are reaped by decreasing waste 
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leachate into soil and reducing toxic hazards associated with incineration of waste plastic 

– a commonly practiced alternative to managing accumulation in rural regions and near 

slums (Singh & Ruj, 2016, Demirbas, 2004, Pinto, et al., 1999). The fuel oil itself also does 

not have sulfur dioxide emissions as sulfur is not present in the carbon-hydrogen plastic 

polymer chains, reducing greenhouse gas sulfur dioxide emissions in comparison with 

traditional petroleum derived fuels (Joshi & Seay, 2016). 

3.4 Identifying Regions of Greatest Potential for a Locally Managed Decentralized 

Circular Economy 

We propose that in order to identify countries that will have the greatest potential 

for a LMDCE, the three pillars of sustainability—environmental, economic, and social 

acceptability—should be incorporated. Hence, waste plastic abatement strategies cannot 

simply focus on the environment; they must also be economically viable and socially 

acceptable. We believe that unless solutions are targeted to be appropriate for the 

communities for which they are intended, they will ultimately be unsuccessful. To validate 

this perspective, we developed a simple metric that utilizes a big data approach to analyze 

countries’ outlook in each of the three pillars of sustainability, highlighting regions where 

a LMDCE for plastic is likely to have the highest positive impact. 

Today, data availability is better than it has ever been. Governments, private 

corporations, and NGOs are collecting ever increasing volumes of data, and much of that 

data is now publicly available and readily accessible via the Internet. This data is useful in 

conducting sustainability assessments for individual countries and regions. Here, it is 

organized and analyzed to identify countries which can potentially benefit from a plastic 

circular economy at the local level with decentralized waste plastic abatement strategies. 
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The purpose of this metric is therefore to identify countries that have specific challenges 

with any or all three of the pillars of sustainability in meeting their waste management 

challenges, in return directly affecting the way waste plastic is handled. 

Often waste management is a priority in urbanized regions of developing countries, 

with little attention given to rural regions. Challenges such as variation in income level, 

conditions of road infrastructure, and perception of communities toward waste, including 

education regarding hazards associated with waste influence the way waste is handled in 

both urban and rural regions. As a result, wealthy communities experience regular waste 

collection, while slums outside of a city are perceived as dumping grounds for waste. Thus, 

our approach considers the challenges facing each country or region, in terms of economic, 

social, and environmental concerns to propose decentralized waste plastic solutions that 

are tailored to the region’s availability of infrastructure, capital, and technical knowledge. 

Moreover, if community participation is prioritized, engineered AT solutions are more 

likely to be accepted, leading to intended uses and benefits, reducing the dependency on 

central waste collection and management for rural regions, specifically. 

In this metric, a list of 200 countries was analyzed using nine indicators, 

representing the three pillars of sustainability—eco-nomic, social, and environmental. 

These indicators are described in Table 3.1 and were chosen because they identify countries 

with widespread poverty, underdeveloped infrastructure, weak governmental institutions, 

and an existing MSW management problem—key indicators for determining the suitability 

of a LMDCE. The development of the metric (see Equation 3.1) considers assigning 

specific and global weighting factors to each of the nine indicators mentioned in Table 3.1 

to highlight the importance of each indicator and the environmental, economic, or social 



36 
 

outlook of the countries. As a result, a country’s specific and global weighting factors can 

be individually adjusted to ensure that the country’s outlook, challenges, and advantages 

are equally highlighted. Afterward, the sum of indicators and respective weighting factors 

results in a comparison score of each country’s viability for a LMDCE. Further details of 

this approach are described in the Appendix A. 

�  𝐺𝐺𝐸𝐸𝐸𝐸  [(𝐼𝐼𝐸𝐸𝐸𝐸1 ∗ 𝑆𝑆𝐸𝐸𝐸𝐸1) + (𝐼𝐼𝐸𝐸𝐸𝐸2 ∗ 𝑆𝑆𝐸𝐸𝐸𝐸2)] + 𝐺𝐺𝑆𝑆𝐸𝐸  [(𝐼𝐼𝑆𝑆𝐸𝐸1 ∗ 𝑆𝑆𝑆𝑆𝐸𝐸1) + (𝐼𝐼𝑆𝑆𝐸𝐸2 ∗ 𝑆𝑆𝑆𝑆𝐸𝐸2)
𝑛𝑛

𝑖𝑖=1

+ ( 𝐼𝐼𝑆𝑆𝐸𝐸3 ∗ 𝑆𝑆𝑆𝑆𝐸𝐸3)] + 𝐺𝐺𝐸𝐸𝐸𝐸 [(𝐼𝐼𝐸𝐸𝐸𝐸1 ∗ 𝑆𝑆𝐸𝐸𝐸𝐸1) + (𝐼𝐼𝐸𝐸𝐸𝐸2 ∗ 𝑆𝑆𝐸𝐸𝐸𝐸2) + (𝐼𝐼𝐸𝐸𝐸𝐸3

∗ 𝑆𝑆𝐸𝐸𝐸𝐸3) + (𝐼𝐼𝐸𝐸𝐸𝐸4 ∗ 𝑆𝑆𝐸𝐸𝐸𝐸4)] 

(3.1) 

Where: 

G = Global weighting factor 

I = Indicator type 

S = Specific weighting factor corresponding to an individual indicator 

Indicator Subscripts: 

EC = Economic 

SC = Social 

EV = Environmental
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Table 3.1. Indicators used to develop metric for identifying regions most suitable for a 

consumer-focused decentralized circular economy 

Sustainability Indicators Units Justification 
Economic 
Gross Domestic Product (GDP) Billion USD This indicator gives a general overview of the 

wealth of the country, which is directly associated 
with the availability of developed infrastructure.  

GDP per Capita USD Since GDP alone is not enough to characterize the 
economic wellbeing of a country’s population, this 
indicator was included as well. 

Environmental 
Estimated MSW Generation MT/day This indicator shows the magnitude of the MSW 

generated in a country. 
Environmental Stress MT 

MSW/km2 
This indicator shows the concentration of MSW by 
including the country’s land area. 

Estimated Waste Plastic in MSW MT/day This indicator is specific to the key focus of this 
perspective, which is waste plastic. 

Estimated Unsound Waste 
Disposal 

MT/day This indicator provides an overview of the 
suitability of a locally managed decentralized 
solutions targeted at mismanaged waste. 

Social 
Population capita This indicator shows how many people can be 

potentially impacted by proposed perspective and 
abatement solutions. 

Population below Poverty Line % This indicator shows the general wealth of the 
population and how likely they are to benefit from 
entrepreneurial opportunities associated with waste 
management. 

Population Density capita/km2 This indicator relates population to the rate of waste 
accumulation per land area, identifying hurdles of 
waste collection as crowded countries often have 
infrastructure challenges. 

This metric can be utilized by researchers, policy makers, and other users to achieve 

an in-depth understanding of a country’s waste management outlook, particularly with 

respect to the economic and social indicators, which are often over-looked. Users can adjust 

local or global indicator weighting factors according to a region’s unique challenges or to 

emphasize a specific category that contributes to waste plastic mismanagement. Hence, 

opportunities for managing waste can be identified, with a LMDCE being a 

viable approach. 
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3.5 Utilization of the Metric 

For the base case, all local and global weighting factors for each of the nine 

indicators were weighted equally. The results of the big data analysis metric for identifying 

key regions suitable for a LMDCE are illustrated in Figure 3.3. Darker colors represent 

countries that are most likely to benefit from this approach. It can be observed that sub-

Saharan Africa, East Asia, Southeast Asia, and South Asia are the most promising regions 

for applying decentralized solutions to waste plastic management. This information 

indicates that typically, developing highly populated low-middle to middle income 

countries are the most important targets for locally managed decentralized waste plastic 

abatement strategies. The reason being that even though the citizens of these countries 

generate less waste per capita, the consequence of higher population density results in an 

overall larger amount of MSW generation than developed regions. Coupled with limited 

financial resources, lack of infrastructure and reliable access to energy [20], waste is 

increasingly susceptible to unsound disposal in open dumps, streets, and waterways, 

especially in rural communities. Contrastingly, developing nations considered by the 

metric that may consume greater amounts of energy and generate higher amounts of MSW 

per capita are not ideal locations for a LMDCE due to the reasons of improved collection, 

strong waste management infrastructure, controlled waste disposal, and an existent 

centralized, industrial circular economy, leading to reduction in unsound waste disposal. 
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Full scale image available at https://doi.org/10.1002/ep.13086. 

Figure 3.3. Suitable regions for a LMDCE for waste plastic 

The usefulness of this metric can be additionally demonstrated by weighting one of 

the three sustainability categories greater than the rest as per the user’s interests. To 

illustrate this, the weighting of global sustainability indicators was varied by assigning a 

value of 50% to one, while the other two were set to 25%. This analysis is presented in 

Table 3.2 and signifies that when weighting the global economic indicator higher, countries 

with relatively low GDP per capita and high percentages of population living below the 

poverty line rise to the top as most suitable regions. In like manner, for social sustainability, 

countries with the greatest population numbers or population density are recommended. 

Meanwhile, estimated waste plastic in MSW 2016 and estimated unsound disposal of waste 

plastic in MT/day were found to be the biggest contributing factors for environmental 

sustainability highlighting regions suffering from uncontrolled waste accumulation. Lastly, 

the metric also depicts the impact of environmental stress, or the amount of waste generated 

per km2 of land. Countries that rank highly in this category include the United States, many 

western European nations as well as high-income Southeast Asian countries, such as Hong 
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Kong, Macao, and Singapore, which have significant environmental stress due to either 

high generation of MSW, population density, and/or limited land area (Central Intelligence 

Agency [CIA], 2017a, CIA, 2017b). 

As an example, India had the position of being 10th overall in this metric analysis, 

while being 52nd, 8th, and 5th most suitable country when global economic, social, and 

environ-mental indicators were respectively highlighted for implementation of a LMDCE. 

Therefore, it can be concluded that for India, the lack of waste management education, 

attitude toward environmental protection, and insufficient collection infrastructure 

combined with increased waste generation due to population density are the most probable 

causes of waste plastic accumulation, instead of capital constraints. It is also important to 

note that even though a circular economy is well established in China, the country currently 

practices a centralized industrial circular economy (Yuan, et al., 2006, Geng, et. al., 2009, 

Matthews, et al., 2018). Hence, it could likewise benefit from a locally man-aged 

decentralized circular economy approach in rural regions due to high waste generation 

associated large populations. 

Although this analysis may appear to simply reinforce well-established beliefs, 

these results are used to make the point that developing urban and rural regions around the 

world are different, in return requiring different strategies for MSW and waste plastic 

abatement. The information obtained from the analysis suggests that African nations vary 

in their economic, social, and environmental stance compared with developing regions of 

Asia. This fact in itself alters the way waste management is approached in these countries, 

as cultural norms associated with perception of waste management vary. Another example 

is the data highlighting importance of waste recycling in the Americas versus in Europe. 
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Even though both regions are developed, environmentally benign waste management is 

practiced in many European nations via a variety of waste-to-energy solutions, while a 

large portion of waste in the United States goes to the landfill. Hence, the data are used to 

make the case for designing and developing technologies based on each region’s outlook, 

suggesting a LMDCE in rural regions of developing countries. 

Table 3.2. Comparison of 20 countries most suitable for decentralized waste plastic 

solutions according to different sustainability category weightings 

Country 
Suitability 

Global Indicators 
Weighted Equally 

Economic 
Indicator Weighted 

Highest 

Social Indicator 
Weighted Highest 

Environmental 
Indicator 

Weighted Highest 

1 Bangladesh Burundi Bangladesh Bangladesh 
2 Burundi Malawi Burundi Pakistan 
3 Haiti Haiti Nigeria Vietnam 
4 Pakistan Rwanda Pakistan Nigeria 
5 Malawi Comoros Haiti India 
6 Nigeria Togo Malawi Philippines 
7 Rwanda Syria Rwanda Sri Lanka 
8 Syria Bangladesh India Syria 
9 Vietnam The Gambia Syria Haiti 

10 India Congo, Democratic 
Republic of the Philippines Guatemala 

11 Philippines Yemen Vietnam Burundi 
12 Guatemala South Sudan Guatemala Malawi 

13 Yemen Madagascar Congo, Democratic 
Republic of the Egypt 

14 Congo, Democratic 
Republic of the Pakistan Togo Rwanda 

15 Togo Sierra Leone Yemen China 
16 Sri Lanka Burkina Faso Ethiopia Yemen 
17 Cambodia Cambodia Sri Lanka Cambodia 
18 Ethiopia Afghanistan Egypt Thailand 

19 Comoros Benin Myanmar/Burma Congo, Democratic 
Republic of the 

20 Myanmar/Burma Liberia Nepal Myanmar/Burma 
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3.6 Uganda Case Study 

The country of Uganda is positioned 32nd in the metric assessment, meaning that 

it has great potential for a LMDCE with informal recycling waste management approaches. 

Uganda has a population of 38.3 million, with a growth rate of 3.22% in 2016 (CIA, 2017c). 

The size of the country is slightly smaller in area than the U.S. state of Oregon (CIA, 

2017a). The nation has abundant natural resources, fertile soil, sufficient rainfall, and small 

deposits of precious minerals and oil (CIA, 2017c). Consequently, agriculture and service 

sectors employ a combined 78.9% of the population, with coffee revenues accounting for 

the majority of the exports (CIA, 2017c). Nonetheless, the U.S. Central Intelligence 

Agency reports that Uganda is facing economic challenges due to sharp increase in 

refugees from South Sudan, high energy costs, inadequate transportation and energy 

infrastructure, insufficient budgetary discipline, and corruption (CIA, 2017c). Furthermore, 

during 2015 and 2016, the Uganda shilling depreciated 50%against the U.S. dollar (CIA, 

2017c). Moreover, the nation’s GDP per capita is equivalent to 2100 USD, with 9.4% 

unemployment rate and 19.7% of the population below poverty line (CIA, 2017c). This 

along with only 15% of the total population having access to electricity, and 19.1% 

population having access to sanitation facilities, has further led to very high risks of major 

infectious diseases (CIA, 2017c). Despite these challenges, the nation is poised as a good 

fit for implementation of decentralized waste management solutions, offering opportunities 

to recycle waste plastic locally, creating jobs and reducing the spread of diseases due to 

accumulation of trash. 

A case study conducted in Uganda at the Kiteezi landfill in the capital city of 

Kampala reveals some insight on how the proposed metric has been employed for this 
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region. In 2015, the population of Kampala was reported to be approximately 1.9 million, 

with 70% of the citizens living in informal settlements scattered around the city (CIA, 

2017c, Serukka, 2017). However, as the country’s capital, it is the home of major markets 

and a wide assortment of job opportunities which leads to a doubling of the city’s 

population during the day (CIA, 2017c), increasing waste generation. Therefore, small-

scale decentralized AT solutions to waste management are suggested for this city with both 

the community’s and waste pickers’ participation. 

Currently, the Kampala Capital City Authority (KCCA), a governmental solid 

waste management organization, provides collection and cleanup services to the city’s five 

divisions (a total 210 km2 area) (CIA, 2017c), contracting collection of waste from affluent 

areas to private companies (Serukka, 2017, Komakech, et al., 2014). Hence, the affluent 

areas are charged a waste collection fee, while the rest of the urban population is serviced 

by KCCA at no cost (Serukka, 2017). KCCA further manages the city’s 36-acre 25-m tall 

landfill site at Kiteezi, where both KCCA and private sector waste collection vehicles 

unload MSW, excluding industrial waste, free of charge (Serukka, 2017, Komakech, et al., 

2014). At present, a total of 1300–1500 MT of MSW per day are landfilled, about half of 

the total waste generated by the city (Komakech, et al., 2014). This means that the other 

half is openly dumped in areas inaccessible to waste collection vehicles, including drainage 

channels, wetlands, natural water courses, manholes, undeveloped plots, or on the roadside 

(Komakech, et al., 2014, New Vision, 2015, Whitaker, 2007). This is a strong indication 

that consumer involvement and decentralized solutions to waste accumulation are needed. 

The composition of the waste mainly consists of bio-degradable food and garden waste 

(71.4%), stones and debris (8.6%), plastics (7.8%), paper (2.7%), glass and metals (1.5%), 
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textiles (1.3%), and others (6.7%) (Patil, et al., 2017). KCCA spends approximately 13.4 

USD/MT for waste collection and disposal services (Serukka, 2017). 

Waste to energy solutions and organized recycling services are not yet offered by 

KCCA. Nonetheless, small independently operated recycling drop-offs exist in the city’s 

districts. As these recycling drop-offs are new to the city, each district only has one thus 

far, handling merely 3–4 tons of waste per week. Consequently, most of the waste is sent 

to the Kiteezi landfill, where it is informally sorted for recycling by waste pickers. With 

500 in number, the organized community of waste pickers who live surrounding the landfill 

collect any-thing that has a well-developed market, such as construction tarps, plastic 

bottles, paper, glass, and metals (Serukka, 2017). More specifically, the waste plastic that 

is recycled by the waste pickers is purchased by domestic and international organizations 

that pay the pickers 500 UGX/kg. A waste picker typically collects around 40 kg/day of 

plastic, earning 20,000 UGX/day, which is higher than the average city dweller, who earns 

around 4,500 UGX/day (Serukka, 2017). However, the waste pickers do not collect soft 

plastics (composition 3.8% of total MSW) (Komakech, et al., 2014) , such as polyethylene 

shopping bags—known locally as kaveeras—as they do not have a ready recycling market. 

Furthermore, despite the ban on production of plastic bags in the country, similar to 15 

other African nations (Environment News Service, 2012, Iwuoha, 2017, Barigaba, 2017), 

lenient governmental enforcement allows for illegal selling of the polyethylene bags 

(Barigaba, 2017). Consequently, the kaveeras are likely to continue to accumulate in the 

Kiteezi landfill in the coming years unless action is taken. 

Therefore, we recommend that close-coupled decentralized circular economy of 

plastic be encouraged via strategies such as conversion of polyethylene shopping bags and 
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other soft plastics to fuel oil and similar products through AT (Sarker, 2011, Sarker, et al., 

2012, Joshi & Seay, 2016, DeNeve, et al., 2017). This is a viable solution that can further 

create employment opportunities. Using the statistics previously mentioned, roughly 

49,400 kg of soft plastics are brought to the Kiteezi landfill per day. If 40 kg/day of soft 

waste plastic can be picked by an individual, a resulting 1235 additional jobs could be 

created at the Kiteezi site. Because the number of soft plastics brought to the landfill are 

only half of that generated within the city, a similar opportunity exists for local citizens, 

entrepreneurs, and communities to recycle the waste plastic to fuel, creating additional 

jobs. The amount of fuel generated could be used as a substitute for kerosene and diesel 

applications, especially for cooking, lighting, generators, and farming machinery (Joshi & 

Seay, 2016). This establishment of a LMDCE could potentially have a monumental impact 

on the accumulation of nondegradable soft plastic accumulation at the Kiteezi landfill and 

in the Kampala city, improving the aesthetics of the region, and providing entrepreneurial 

and job opportunities, which will eventually benefit the entire nation (Joshi & Seay, 2016). 

Thus, by employing the perspective metric established in this research, the results of this 

case study serve as an example for other nations. The metric’s use of sustainability-focused 

indicators can assist in identifying a region’s potential suitability for a LMDCE for waste 

plastic management. 

3.7 Conclusions 

In conclusion, even though all developing countries encounter similar challenges 

to economic development, waste plastic management practices are likely to vary from 

region to region, requiring a detailed analysis approach based on the principles of 

sustainability to determine which nations would most benefit from a LMDCE for waste 
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plastic. Often, due to lack of capital resources, centralized waste collection infrastructure, 

and the population’s awareness of the consequences of global waste accumulation, rural 

and developing communities suffer from major sanitation issues and pose serious 

environmental concerns. Thus, it is our view that decentralized or distributed approaches 

with high levels of local participation be proposed for waste plastic abatement strategies to 

be successful. The metric established in this research has been utilized to glean insight for 

validating this assertion on the importance of including infrastructural, economical, 

societal, and environmental constraints in deciding how waste abatement strategies and 

resources should be prioritized. Thus, focusing on simple low-cost technologies, like 

thermal decomposition, which can be employed at a local level via AT methods, enable the 

development of a LMDCEs. This approach promotes community-managed collection and 

recycle of waste plastic directly where it is generated in a sustainable manner. 

3.8 Supplementary Information 

Details discussing the generation of the metric presented in this study are outlined 

in Appendix A, Supplementary Information – Metric Generation. For additional 

information, visit https://doi.org/10.1002/ep.13086.  
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CHAPTER 4. BUILDING MOMENTUM FOR SUSTAINABLE BEHAVIORS IN 
DEVELOPING REGIONS USING LOCALLY MANAGED DECENTRALIZED 

CIRCULAR ECONOMY PRINCIPLES 

As Published in Chinese Journal of Chemical Engineering, 27(7), 1566-1571, 2019 

Chandni Joshi, Jeffrey Seay 

4.1 Abstract 

Despite the current threat from climate change, plastic collecting in the world’s 

oceans, and the steady loss of biodiversity, the world continually fails to take action with 

regard to our rapidly changing ecosystem. Unfortunately, waiting on governments to act is 

no longer a viable option. Rapid change is needed, and the pace of diplomacy is simply too 

slow. Democratic governments are reactionary and taking action to solve future problems 

is not a priority, even as the threat of potential ecological catastrophe draws ever closer. 

Change is in the hands of individuals, and it is our decisions and behaviors that will 

influence the future of our planet and our ability to inhabit it. Therefore, building 

momentum for sustainable behavior must begin with individuals. The neoliberal approach 

to environmental protection posits individuals are motivated by rational self-interest, and 

that economic incentives are necessary to achieve environmental goals. However, recent 

research suggests that monetary gain alone actually negatively impacts behavior, and often 

neglects the rural poor. As a result, models for projects designed to benefit the environment 

need more than just a monetary incentive, they must incorporate all three pillars of 

sustainability: environment, economy and society. One approach for building momentum 

for sustainable behavior with regard to municipal solid waste management, particularly in 

the developing world, is by implementing Locally Managed Decentralized Circular 

Economy (LMDCE) principles. This contribution will describe the role behavioral 
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economics plays in the choices made by producers and consumers. The results of a case 

study on applying LMDCE principles in Uganda to manage waste plastic accumulation by 

conversion to fuel oil will be presented. 

4.2 Environment and Waste Plastic 

4.2.1 Ecosystem Deterioration and the Tragedy of the Commons 

As the global population continues to grow, the impacts of human activities have 

overwhelmed the resiliency of the ecosystem. Climate is rapidly changing with serious 

adverse consequences (Intergovernmental Panel on Climate Change [IPCC], 2018) and 

mismanaged waste plastic has infiltrated every ocean (Jambeck, 2015) and every link of 

the food chain, including humans (Parker, 2018). This paradigm is well described by the 

scenario of the tragedy of the commons. This scenario was first described in 1833 by 

William Forster Lloyd (Hardin, 1968) and is based upon the public usage of common 

grazing land in England. The scenario unfolds with a herdsman as a rational being seeking 

to maximize his personal gain via his access to common grazing land. This is accomplished 

by adding more animals to his herd. The benefit to the herdsman is obvious – additional 

profit from a larger herd. However, the additional animals grazing on common land reduces 

resources available to everyone, including the herdsman himself. Nonetheless, the loss of 

grazing capacity is shared by everyone, whereas the benefit is gleaned by the herdsman 

alone. The outcome of course is that the use of common resources works well when there 

is plenty for everyone but leads to degradation and eventual conflict when the capacity is 

diminished. The tragedy of the commons is currently playing out with our current global 

ecosystem. For instance, in the past, lower human populations and less consumption meant 
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the ecosystem was able to easily absorb the impact of human activity and treating it as a 

common resource was sustainable. However, with the dual pressures of population growth 

and increasing consumption, the tragedy of the commons is becoming a global reality. 

4.2.2 The Global Plastic Challenge 

The impacts of plastic in the oceans are easily visible. Natural ocean currents create 

5 major gyres – huge rotating regions of open sea that collect floating waste materials 

(Jambeck, 2015). Once waste enters one of these gyres it is essentially trapped. Much 

attention has been given to what has been called “The Great Pacific Garbage Patch”. This 

refers to waste, particularly plastic which has been trapped in the Pacific gyre. Although 

the Great Pacific Garbage patch has received most of the attention, each of the ocean gyres 

is accumulating significant amounts of plastic (Jambeck, 2015). Current estimates suggest 

that the oceans hold more than 5 trillion pieces of plastic weighing more than 250,000 tons 

(Eriksen, et al., 2014). Between entanglement and ingestion of material that was mistaken 

for food, mismanaged waste plastic has been detrimental to marine life. In fact, it is 

estimated that 2/3 of the world’s fish stock has ingested plastic (Wieczorek, et al., 2018). 

Unfortunately, a single piece of plastic can kill over and over. The animal killed by the 

plastic eventually decomposes, but the plastic remains and can continue to cause harm. 

Additionally, through the consumption of fish, as well as food packaged in plastic, humans 

are also adversely impacted (Parker, 2018). For instance, plastic chemicals absorbed by the 

body have been found to alter hormones (Knoblauch, 2009). Another recent study from 

seven different European countries and Japan has revealed microplastics present in human 

feces (Parker, 2018). These findings verify the pervasiveness of plastic in the global 

environment.  
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Despite these concerns, plastic cannot be simply eliminated from the supply chain, 

nor is it practical or even always beneficial to do so. The alternatives to plastic goods and 

packaging include materials such as metals, glass, paper and cotton-based fabrics. As a 

result, an increased demand for metals would lead to increased mining and increased fuel 

demands for transportation of these heavy materials, resulting in increased prices and 

negative environmental impacts. Glass is heavy, energy intensive and prone to breaking. 

Increased cultivation of cotton and increased paper production will compete with land 

suitable for food crops, which is already in shortage due to population growth. 

Additionally, increasing land for cotton and paper production will lead to deforestation - a 

significant global threat. There are simply no suitable alternatives for plastic ready for 

deployment at an international scale, meaning that plastic is too cheap and efficient to be 

easily replaced. Thus, this phenomenon is currently leading to exponential growth in 

production, consumption, disposal, and accumulation of plastic, challenging its 

management globally. 

Previously, much of the world’s recyclable plastic was shipped to China to be re-

manufactured. However, in January 2018, the country announced that it would no longer 

be a “dumping ground” for what it calls “foreign garbage” from other countries (Cole, 

2017). China’s ban covers imports of 24 kinds of solid waste, including plastic. Prior to the 

ban, China had been processing much of the world’s exports of waste metals, papers and 

textiles, as well as more than half of the world’s plastic scraps at nine million metric tons 

per year (Cole, 2017, Freytas-Tamura, 2018). This sudden action has left Western countries 

scrambling to deal with a buildup of plastic and paper garbage while looking for new 

markets for the waste (Freytas-Tamura, 2018, Kottasova, 2018, Yosufzai, 2018). However, 
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the ban doesn’t only influence Western economies, developing economies have also been 

impacted. Unfortunately, infrastructure limitations have left governments in developing 

countries with no outlet for waste, an especially problematic scenario as previous research 

has demonstrated that many of the top 20 contributors to marine plastic debris are coastal 

developing countries (Jambeck, 2015). Hence, for waste plastic to be managed on land, 

governmental action is simply not enough. Waste plastic must be considered as an 

imminent threat to the environment by all individuals, who must be presented with readily 

accessible, viable solutions to target waste accumulation within their communities. 

Subsequently, the behavioral economics of individual citizens along with their interactions 

with, perceptions of, and influences on their community should be analyzed to propose 

viable solutions for plastic management.  

4.3 Economics & Sustainable Behaviors   

4.3.1 Behavioral Economics 

Humans have evolved in concert with our ecosystem; however, rapid 

anthropogenic ecosystem changes are outpacing our ability to adapt. Our species is adapted 

to work in our own immediate self-interest. Groundbreaking research by George Ainslie in 

the 1970s concluded that behaviors that have a short-term payoff are favored over ones that 

only have benefits in the long term (Ainslie, 1975). This is known as hyperbolic 

discounting (Ainslie, 1975). The problem we are now facing, however, is that our behaviors 

with regard to consumption are causing severe damage to our ecosystem. The 

consequences of this behavior are discounted significantly by the general population. These 

problems associated with hyperbolic discounting are amplified in developing countries, 
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since people have more immediate needs with regards to survival. Unstable governments, 

lack of strong institutions and lack of food, water and energy security make acting in the 

global best interest difficult or impossible. 

Anthropogenic climate change, unsound waste disposal and loss of biodiversity are 

all happening at an alarming rate, but our global institutions have been unable to adequately 

address these problems. Much of the progress to date relies on altruistic behavior - 

consciously consuming less than one otherwise could to minimize one's individual impact. 

Although altruism is a fundamental characteristic of human society (Brede, 2013), the 

problem with relying on altruistic behavior is twofold: first is the previously mentioned 

problem of our evolutionary predisposition to acting in our own self-interest; and second 

is the free rider problem. The free-rider problem describes our inherent distaste for others 

benefiting from our individual sacrifice. This problem has been observed in resistance to 

social programs, as well as resistance to sustainable consumption options that are perceived 

as being more expensive, less effective or less convenient than traditional options. Because 

of the issues that arise with both reliance on altruism and the fear of free-riders, many 

proposed solutions to environmental problems are rooted in the theory of neoliberal 

conservation. This theory posits individuals are rational actors who always act in their 

economic self-interest. Neoliberalism combines conservation with markets such that 

conserved land and resources become fungible commodities (Doane, 2014). The result of 

this line of thought is that economic incentives are required to advance environmental 

protection, however these practices do not necessarily benefit the poor, or the environment 

(Brockington & Igoe, 2006). Quoting Igoe and Brockington (Igoe & Brockington, 2007): 
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“... neoliberalism’s emphasis on competition, along with its rolling back of state 

protection and the social contract, create spaces in which local people are often not able 

to compete effectively.” 

This clearly indicates that a new model of behavior that benefits the rural poor is 

needed. 

4.3.2 Environmental Protection and the Fallacy of the Rational Actor Model 

The neoliberal approach to conservation and environmental protection is based on 

the assumption that individuals are rational actors. The principle of the rational actor is 

based on three tenets: that individuals are self-interested and attempt to maximize their own 

benefits; that they only respond to economic incentives; and that economic markets are 

free, mutual, and rational (Peterson & Isenhour, 2014). However, recent research has 

suggested that new approaches are needed to model human behavior with regard to 

environmental protection (Doane, 2014, Isenhour, 2014, Peterson, 2014, Gowdy, 2007). 

This research argues that individuals are not simply motivated by economic gain alone. As 

asserted by Peterson (Igoe & Brockington, 2006), giving the ecosystem an economic value 

to ensure protection undermines the consideration of alternative values. Gowdy (Gowdy, 

2007), further asserts that: 

“It is no longer tenable for economists to claim that the self-regarding, rational 

actor model offers a satisfactory description of human decision making.”  

Additional research states that monetary incentives may actually be 

counterproductive (Gowdy, 2007, Berkes, 2004, Frey, 1997, Frey & Oberholtzer-Gee, 

1997). These economic incentives are not only counterproductive to individuals, but 

outcomes based on the rational actor model can actually erode communities (Peterson & 



54 
 

Isenhour, 2014). Contrastingly, motivation is actually multidimensional (Peterson & 

Isenhour, 2014) and recent research has shown that equity and empowerment are often 

more important than monetary incentives (Berkes, 2004). Therefore, to be effective, 

approaches must be rooted in all three pillars of sustainability, economic, environmental 

and social. 

4.3.3 Breaking the Take → Make → Waste Paradigm 

When it comes to consumption, the traditional Take → Make → Waste paradigm 

is firmly rooted in our collective human behavior. If something can’t be immediately 

reused to our economic advantage, our first inclination is to dispose of it. As previously 

described, this behavior is well described by the concept of the tragedy of the commons 

(Hardin, 1968). In applying this principle, we see that the benefits to the individual of the 

Take → Make → Waste paradigm far outweigh the consequence to the individual since 

the adverse effects of ecosystem deterioration are shared among the entire population over 

an extended time horizon. This is particularly problematic with wastes which linger in the 

ecosystem, like plastic. Many researchers globally are studying the accumulation of waste 

plastic and its impact on marine and terrestrial life. A recent study complied data from 192 

countries bordering major bodies of water (Jambeck, 2015). This study concluded that 2.5 

billion metric tons of solid waste were produced in 2010 by these countries and of that 

waste, 8 million metric tons of plastic entered the ocean (Jambeck, 2015). This plastic 

threatens sea life, birds and human health (Jambeck, 205, Eriksen, et al., 2014, Knoblauch, 

2009). Without regulatory intervention, which seems increasingly unlikely, breaking this 

paradigm will fall on the backs of consumers. New models of production, consumption and 
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waste management that act in concert with, rather than in opposition to, established modes 

of human behaviors will be required. 

4.3.4 Building Momentum for Sustainable Behaviors 

Sustainable behaviors are those that are economically beneficial, environmentally 

benign and socially responsible. If we are able to move past the paradigm of the rational 

actor model, we can propose potential solutions that rely on more than economics alone as 

motivating factors. Successful strategies will include environmental protection and social 

responsibility as well. To achieve these goals, a LMDCE model is proposed for combatting 

the problems of wasteful consumption and mismanaged municipal solid waste. As will be 

described, LMDCE focuses on all three aspects of sustainability, meaning that it moves 

beyond the narrow confines of neoliberal conservation approaches. 

4.4 LMDCE Principles 

4.4.1 Impacts of infrastructure limitations on circular economy development 

Breaking the Take → Make → Waste paradigm is an underlying principle and the 

first step towards building a circular economy. Thus far, circular economy models for 

various waste types have been considered and applied in regions with sufficient 

infrastructure to collect and sort valuable waste products to reuse, recycle or re-enter them 

into their respective manufacturing supply chains on an industrial scale (World Economic 

Forum et al., 2016, Yuan, et al., 2006). In addition to infrastructure, this approach requires 

capital and sophisticated equipment to reprocess the materials into their building blocks for 

entrance back into consumer products. Likewise, a waste plastic circular economy is also 
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encouraged to reduce the production of virgin plastics. However, only 9% of plastics 

produced have been recycled (Geyer, 2017) by both developed and developing countries 

to date. Developing countries have relied on an informal recycling sector via waste pickers 

to sort through dumpsites and unmanaged landfills to collect recyclable waste plastics 

(Parker 2018, Medina, 2007, Medina, 2008]. These plastics were previously shipped to 

China for remanufacturing. However, due to the recent bans from China on “foreign 

garbage”, waste picker jobs are currently being jeopardized (Cole, 2017, Freytas-Tamura, 

2018, Kottasova, 2018, Yosufzai, 2018). 

Hence, there is a need for a locally managed and decentralized, or distributed, 

circular economy for valuable waste products in regions lacking infrastructure, capital and 

tools to erect an industrial circular economy. In spite of these constraints, the solutions to 

waste management must rely on the involvement of local consumers, encouraging them to 

take ownership of their waste management, instead of relying on governmental and 

industrial assistance. This further requires a fundamental change in behaviors of 

individuals and their perception of waste. To change behaviors, an incentive is needed - 

one that is locally available and pays dividends in the local community. However, many 

projects designed to benefit and protect the environment have neglected their subsequent 

impact on local communities, decreasing citizen involvement and ownership of the projects 

(Brockington & Igoe, 2006). This failure to consider the impacts on local communities has 

negatively affected municipal solid waste (MSW) management in developing countries.  

Due to infrastructure limitations, MSW often has no perceived value and is simply 

discarded after use. In return, this waste ends up on the streets, in waterways, or on open 

dumps. As a result, projects designed to manage MSW must give the waste a value so that 
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it is considered as a resource by communities and will not be discarded. Moreover, in 

resource limited regions, supply chain constraints favor local solutions. For the case of 

MSW, this means applying decentralized collection and decentralized utilization. To 

address the aforementioned challenges by inclusion of community members, the concept 

of a LMDCE is proposed, as shown in Figure 4.1.  

Using this approach, imported manufactured goods enter the circular economy 

cycle as the initial feed source. They are then used, reused, and collected after post use to 

generate value-added products. Here, the participation of waste pickers is highly 

recommended and needed to decrease waste accumulation. The waste products, then, serve 

as local raw materials to produce goods, which once sold back to the community, generate 

entrepreneurial opportunities and boost the local economy. The only output from this cycle 

is any waste that cannot be reused, collected, or recycled by the community. Therefore, the 

waste stream exiting to the environment from the community is reduced. Additionally, the 

key of this decentralized approach is that everything is local and waste management is 

designed around and operated by the community. That is, collection, production and use 

are all managed in the local community. Of course, this limits the scope of remanufacturing 

in rural regions, but this approach has a higher likelihood of success when implemented. 

The real benefit is that this approach does not require sophisticated infrastructure and 

provides needed locally focused incentives for decreasing waste accumulation.  
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Figure 4.1. Illustration of a LMDCE for infrastructure limited regions 

Using this approach, imported manufactured goods enter the circular economy 

cycle as the initial feed source. They are then used, reused, and collected post use to 

generate value-added products. The waste products, then, serve as local raw materials to 

produce goods, which once sold back to the community, generate entrepreneurial 

opportunities and boost the local economy. The only output from this cycle is any waste 

that cannot be reused, collected, or recycled by the community. Therefore, the waste stream 

exiting to the environment from the community is reduced. Additionally, the key of this 

decentralized approach is that everything is local and waste management is designed 

around and operated by the community. That is, collection, production and use are all 

managed in the local community. Of course, this limits the scope of remanufacturing in 

rural regions, but this approach has a higher likelihood of success when implemented. The 
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real benefit is that this approach does not require sophisticated infrastructure and provides 

needed locally focused incentives for decreasing waste accumulation.  

4.4.2 Appropriate Technology 

The concept of appropriate technology (AT) was first described by E.F. 

Schumacher in his book Small is Beautiful (Schumacher, 1973). This concept of AT is 

summarized by Hazeltine, (Hazeltine, 1999) as: 

“Technological choices and applications that are small scale, decentralized, labor-

intensive, energy efficient, environmentally sound, and locally controlled.”  

AT is simply technology suitable for a specific region, designed to meet specific 

needs of certain individuals or communities (Joshi & Seay, 2016). Though the details of 

what constitutes AT can vary between regions and applications, the description from 

Hazeltine (Hazeltine, 1999) generally holds true. AT does however require tradeoffs.  In 

most cases, the tradeoffs include efficiency for simplicity; convenience for low cost; and 

automation for manual operation. The key benefit of AT is that it is easily deployable 

because it does not rely on a sophisticated infrastructure. AT is a way of achieving the 

societal benefits of sustainability, particularly in underdeveloped regions. This means that 

AT is not intended to reproduce industrial technology on a small scale but rather to design 

specific solutions appropriate for a given region or for a given community (Seay, et al., 

2012). AT is the mechanism by which LMDCE principles overcome infrastructure 

challenges in developing economies. 
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4.5 Applying LMDCE Principles in Uganda 

4.5.1 Converting Waste Plastic to Fuel Oil 

A method that can potentially be deployed using the LMDCE approach is the 

conversion of waste plastic into fuel oil, suitable for use as an alternative to diesel or 

kerosene fuels. Polyolefin plastic polymers like High- and Low-Density Polyethylene and 

Polypropylene and be converted into a liquid fuel at temperatures of 400°C - 500°C via 

thermal decomposition in the absence of oxygen, or through a process called pyrolysis 

(Joshi & Seay, 2106, DeNeve, et al., 2017). This process does not require catalysts to 

breakdown the plastic polymer chains; instead, it simply utilizes a viable heating source to 

decompose the plastic. Using this process, 1 kg of waste plastic can be converted to 1 liter 

of fuel oil (Joshi & Seay, 2016). The chemistry is simple and via the application of AT, 

this process can be carried out on a small, local-scale in resource constrained regions (Joshi 

& Seay, 2016). Employing this chemistry and technology as a case study, the application 

of LMDCE principles are illustrated. 

4.5.2 LMDCE Case Study 

The University of Kentucky Appropriate Technology & Sustainability (UKATS) 

research group has designed and lab tested an AT based technology for converting waste 

plastic into fuel. This technology is completely non-automated, requires no electricity to 

operate and is designed according to the availability of resources, capital, infrastructure 

and technical knowledge of individuals in developing countries. The technology is 

constructed from repurposed metal (preferably stainless-steel drums) and has two parts – a 

batch retort vessel for conducting the thermal decomposition reaction that converts waste 
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plastic to fuel oil, and an efficient, institutional sized, biomass fueled cookstove that 

provides the necessary heat to drive the reaction. A photo of the process is illustrated in 

Figure 4.2. As can be seen, the retort (inner barrel) is housed inside the cookstove (outer 

barrel). The process is initiated by igniting waste wood or other biomass sources in the 

cookstove to generate a steady fire. The plastic then melts, decomposes and vaporizes in 

the retort according to the energy provided by the fire. Vapor phase products from this 

process exit through a vent pipe, as shown in Figure 4.2, and the pipe is submerged in water 

to condense the products to fuel oil. This process is well described in previous literature as 

well (Joshi & Seay, 2016, DeNeve, et al., 2017). 

Further, this process was tested for two years in Uganda at the Makerere University 

Agriculture Research Institute in Kabanyolo (MAURIK) to determine its feasibility and 

effectiveness. Specifically, operational and maintenance training was provided to local 

students, and the technology was tested to determine its success in converting locally 

sourced waste plastic, such as kaveeras (polyethylene grocery bags), jerry cans and plastic 

containers to fuel oil. The quality of the fuel generated was tested in a local multi-purpose 

utility vehicle operated by a diesel engine. The goal of the initial testing was to identify 

operational and maintenance issues, resolving them to prepare the technology for 

deployment in a real-life scenario, such as for use by an entrepreneur to establish a business 

in the local community based on this process. 

After initial testing, the process was provided at no cost to a local entrepreneur in 

the Mukono region, identified by the Rotary Club of Kampala, to convert post-consumer 

waste plastic into fuel oil. The process was typically operated 4-5 times per week by a 

homemaker, collecting on average 20-25 liters of fuel from a feedstock of 20-25 kg of 



62 
 

waste plastic. The temperature of the process was maintained between 450°C - 500°C. The 

plastic feedstock was collected from personal household waste or purchased from 

neighbors at a price of 500 UGX/kg. The biomass source utilized for heating the process 

was wood, purchased at 250 UGX/kg, and the fuel was sold to diesel truck drivers in the 

region at a price of 2500 UGX/liter. After performing a simple economic assessment by 

factoring the costs of raw materials and the revenue generated from fuel sales, a 158% 

profit was obtained on average. The profit earned was almost double the daily average 

income of citizens in the nearby capital city of Kampala, having a lasting positive societal 

benefit on the entrepreneur’s family. Furthermore, it is noteworthy to mention that since 

these were preliminary field trials, the fuel was sold at a 30% discount when compared 

with the retail price of petroleum derived diesel fuel in the city, meaning there is an even 

greater profit potential present in this process, making it economically viable. 

 

Figure 4.2. Photograph of the UKATS process for converting post-consumer waste plastic 

into fuel oil 
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4.6 A Sustainable Path Forward 

Finding a sustainable path forward for our global society is a significant challenge. 

However, this path forward must be firmly grounded in the three pillars of sustainability 

and must not rely on the outdated rational actor model. As illustrated in Figure 4.3, LMDCE 

provides a roadmap for this sustainable path forward. 

 

Figure 4.3. LMDCE principles provide a sustainable path forward for global waste 

management 

LMDCE is a potential path that results in benefits for rural or developing economies 

without relying on the tenets of neoliberal conservation. Each step in the LMDCE has a 

local benefit. The local economy, the local environment and the local community see a 

direct benefit from successful implementation of a LMDCE. It is this feature of the 

LMDCE approach that provides the best chance for success in MSW management in 

infrastructure limited regions. 

The waste plastic to fuel LMDCE provides a model for a sustainable path forward, 

as detailed in Figure 4.3. The case study clearly demonstrates this path. First, the process 
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provides entrepreneurial opportunities and direct benefits to the economy by incentivizing 

collection of waste plastic and through the sale of generated fuel. Next, it provides 

environmental benefits by decreasing waste accumulation. Lastly, it encourages the 

community to take ownership of waste management, providing societal benefits that are 

shared by the entire community.  

4.7 Conclusions 

In conclusion, it is not the planet that needs saving - the earth will continue to turn 

with or without us - it is we humans who need saving from ourselves. Without a new 

approach to conservation, the tragedy of the commons awaits us. As previous research in 

the field of behavioral economics asserts, economic incentives alone are not enough to 

ensure success of environmental protection projects. Projects must be rooted in the three 

pillars of sustainability: environmental protection, economic viability and social 

acceptability. LMDCE is an approach that departs from neoliberal conservation and the 

rational actor model and incorporates all three aspects of sustainability. LMDCE is 

particularly suited to environmentally focused projects. The case study conducted in 

Uganda on converting post-consumer waste plastic into an economically viable fuel oil 

illustrates how the LMDCE approach can be successfully deployed in an infrastructure 

limited region. The results of the case study therefore demonstrate a local homemaker 

converting waste plastic to fuel oil in rural setting utilizing an AT based non-automated, 

low-cost technology. In return, perception of waste plastic is likely to be changed from that 

of simply waste accumulating on the side of the street to something valuable that should 

be picked up and repurposed via LMDCE, benefiting the environment, the local 

community and the entrepreneur socially and economically.  
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CHAPTER 5. ESTIMATION OF WASTE PLASTIC GENERATION IN DEVELOPING 
CITIES UTILIZING GEOGRAPHICAL ANALYSIS 

5.1 Introduction 

In 2016, an estimated 174 million metric tons of waste was generated in Sub-

Saharan Africa by a population of approximately 1 billion people (Kaza et al., 2018). As 

the region continues to experience rapid population growth and modernization, waste 

generation is projected to increase to approximately 700 million metric tons annually by 

2050 (Kaza et al., 2018). Waste collection in rural areas, slums, and lower-income 

neighborhoods of urban cities is a significant challenge in Sub-Saharan African countries 

due to infrastructure constraints. The lack of proper waste disposal containers and waste 

management education for households, reduced access to narrow streets for door-to-door 

waste pickup by local municipalities, and haphazard dumping has led to 70% of the waste 

being openly dumped (Ayeleru et al., 2020).  

However, waste collection practices are slowly improving in Sub-Saharan Africa 

in pursuit of sustainable development, where landfilling and recycling practices are 

beginning to become more prevalent (Kaza et al., 2018). Through the investment of 

industry and an informal, decentralized, network of waste pickers, recycling of valuable 

materials such as plastics, glass, and metals is increasing. Yet, in order to determine the 

economic, environmental, and social benefits of recycling practices and decentralized 

solutions used for optimizing waste collection and disposal, region-specific waste 

generation data is needed. For instance, per capita waste generation varies from 

approximately 0.11 kg/day to 1.57 kg/day in developing countries of Sub-Saharan Africa 

based on the development of the region and the demographics of the population (Kaza et 
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al., 2018). In addition, local municipalities lack the capital resources needed to measure 

waste generation at specific pickup points throughout their regions of operation. In most 

cases, the amount of waste collected from a pickup route is only measured once the pickup 

vehicle arrives at the dumpsite (Komakech, et al., 2014, Kinobe, et al., 2015) reducing the 

clarity of how much waste is generated amongst business sectors and income groups. 

Therefore, this research presents a model that correlates population demographics 

(particularly income level) and geographical data of a region to estimate waste generation 

at a ~100 m resolution. In addition to municipal solid waste, corresponding waste plastic 

generation per capita is also estimated. This model was developed utilizing the capital city 

of Kampala, Uganda and is applicable for use in similar urbanized cities within Sub-

Saharan Africa. The model serves as a screening tool for local municipalities, private 

investors, non-profit organizations, and researchers interested in understanding total waste 

generation within a subset portion of an urban city for implementing targeted waste 

management solutions. The results of the model were validated using Entebbe, Uganda as 

a case study. 

5.2 Materials and Methods 

5.2.1 Materials 

5.2.1.1 QGIS Geographical Information System 

Quantum Geographical Information System (QGIS) is a free, open-sourced 

geographical information system (GIS) software (QGIS 2021a). An official project of the 

Open Source Geospatial Foundation, QGIS operates under the General Public License and 
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allows users to “create, edit, visualize, analyze and publish geospatial information” (QGIS 

2021b). For this research application, QGIS version 3.8 Zanzibar was used (QGIS 2019). 

5.2.1.2 OpenStreetMap 

OpenStreetMap is a free, open license world map operated by the OpenStreetMap 

Foundation. It is created by a global community of mappers that contribute to, maintain, 

and validate regional infrastructure data (OpenStreetMap, 2021). An OpenStreetMap 

extension was added to QGIS to analyze the regional, geospatial data of Kampala, Uganda.  

For the purposes of this research, free, widely available geographical data analysis 

tools were utilized to allow future implementation of the model in additional developing 

regions. 

5.2.1.3 Kampala, Uganda 

Waste generation and population data for Kampala, Uganda were used to develop 

and test the model. Kampala is the capital city of Uganda, located in the central region of 

the country on the shores of Lake Victoria. It is divided into five residential divisions 

namely: Central, Kawempe, Makindye, Nakawa, and Rubaga (also known as Lubaga). 

These divisions are further divided into 96 parishes, covering a total land area of 169 km2 

(Kampala Capital City Authority [KCCA], 2019). The city is a national center for 

administration, commerce, finance, education, services, culture, sport, and tourism 

(KCCA 2019).  

The residential, commercial, and industrial waste generated within the city is 

collected by KCCA and private waste collection companies. KCCA offers free waste 

pickup within the city to residential sectors and markets. Private companies generally 
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service affluent neighborhoods and businesses at a fixed rate. Waste collected from the city 

is transported to the Kiteezi landfill, which is operated and maintained by KCCA 

(Komakech, 2014, Kinobe, 2015). The overall waste collection efficiency for the city of 

Kampala is 64% (Aryampa et al., 2019).  

The waste generation data for Kampala was obtained from KCCA for the year 2017 

as published by Aryampa et al., 2019. The reported data states that KCCA collected 

263,126 metric tons of municipal waste throughout the five divisions of the city, while 

private waste collection companies collected 217,956 metric tons for a total of 481,081 

metric tons (Aryampa et al., 2019). Although KCCA details the amount of waste generated 

at the divisional level, waste disposed at Kiteezi landfill by private companies is generated 

from all divisions within the city and is not segregated at the landfill [Komakech, 2014]. 

Hence, waste generated from KCCA and private companies was combined as a single date 

point for the purposes of this study.  

The percentage of waste collected from low-income residential, upscale residential, 

markets, and commercial areas was estimated to be 62%, 18%, 9%, and 11%, respectively 

for the entire city of Kampala by Kinobe et al., 2015. The total percentage of plastics (hard 

and soft) in the municipal solid waste varied in literature from 3.72% to 11.8% at the 

Kiteezi landfill between 2006-2012 (Katusiimeh, 2012, Komakech, 2014, Kinobe, 2015). 

As a result, KCCA provided plastic composition of 7.8% was utilized for this study 

(Serukka, 2017). This estimate more closely aligns with World Bank data for Sub-Saharan 

Africa, which determined a plastic composition of 8.6% in 2016 (Kaza et al., 2018). 

The residential population data for Kampala’s divisions and parishes was obtained 

from Uganda Bureau of Statistics’ (UBOS) country-wide census in 2014 (UBOS 2019, 
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KCCA 2019). UBOS also provided population projections for 2015-2018 at the divisional 

level in Kampala (UBOS, 2019) The population projections at the parish level were linearly 

extrapolated from 2014 to 2017 utilizing UBOS divisional data. This translated to a 

residential population increase from 1,507,080 in 2014 to 1,590,100 in 2017. This account 

does not reflect the daytime population of the city, which doubles as citizens from 

neighboring regions migrate for employment, education, and entertainment (Gollin & 

Haas, 2016). However, since UBOS provided residential population projection for 2017, 

this data was correlated to the latest waste collection data provided by KCCA for 2017. 

Lastly, the administrative divisional boundaries and parish boundaries for Kampala 

were provided by KCCA in the form of GIS shapefiles for direct use in QGIS. 

5.2.2 Methodology 

The methodology for this model assumes that that an increased building density 

correlates to an increased residential density, and the size of a residential building is an 

indication of household income level. For instance, highly crowded small buildings in the 

outskirts of city centers signal slums, whereas large, fenced-in buildings with in-ground 

swimming pools in secluded neighborhoods indicate affluent communities, as depicted in 

Figure 5.1. Commercial and industrial sectors are classified based on a high density of 

businesses and the size of respective facilities. Hence, if the number and size of buildings 

could be determined for a given region, classification could be made as to whether the 

buildings are within a slum, lower-income, middle-income, upper-income, commercial, or 

an industrial sector. Multiplying the number of buildings in each classification by the 

average household size provides an estimation of population density. Here, the model 

further assumes that individuals employed in the commercial and industrial sectors 
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generate waste similar to residents of a household. Lastly, dividing the total waste 

generation of a region by the population density, provides estimated waste generation and 

waste plastic generation per capita. This approach was applied to the city of Kampala at a 

100 m resolution to correlate geographical data to waste generation. 

 

Figure 5.1. Building classification according to income level and business sectors. Image 

courtesy of Google Maps obtained 2019. 

5.2.2.1 Determining the Number and Size of Buildings 

The OpenStreetMap extension within QGIS enables viewing the buildings on a 

map as polygons. These polygons could further be counted using the OSM 

(OpenStreetMap) Downloader tool within QGIS, which downloads OpenStreetMap data 

into a QGIS vector file. Once downloaded, each polygon is assigned a unique numerical 

identifier, and the sum of the polygons is equivalent to the total number of buildings and 

geographical features present within the region. Since the application of this research 
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focused on counting buildings, non-waste generating features such as grasslands and 

bodies of water were excluded from the data analysis. 

Utilizing the QGIS Assign Geometry tool, the area and perimeter of each polygon 

in meters was calculated via an ellipsoidal projection of the data contained within the vector 

file. This procedure was repeated for each of the 96 parishes of Kampala at a resolution of 

100 m to determine the size of each building. Note, since QGIS relies on a top-view of 

each building, the area of the building is in reference to only length and width of each 

building; the height of the building is not considered. 

5.2.2.2 Classifying Buildings according to Building Size 

To determine the average range of building sizes within each classification 

category, 125 random 100 m x 100 m grids within Kampala were analyzed. These grids 

were selected using the Random Select in Extent tool present within QGIS. Each grid was 

assigned a predetermined classification according to the geographical representation in 

Figure 5.1, and by following the above-mentioned steps, the size (area) of each building 

within that grid was calculated. Compiling the data for the 125 grids, 95% confidence 

intervals were calculated for the building classifications: slums, lower-income, middle-

income, upper-income, commercial, and industrial. The calculated upper and lower 95% 

confidence intervals for building classifications are presented in Figure 5.2. Although not 

depicted in Figure 5.2, the building size range for the industrial sector was determined to 

be between 929.18 m and 1738.79 m2. 
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Figure 5.2. Building size ranges per 95% confidence interval of building areas in each 

classification 

5.2.2.3 Correlating Building Classifications and Population 

The buildings within each parish were classified according to the building ranges 

identified in the above section. This translated the total number of polygons into total 

number of buildings present within each classification in each parish of Kampala. The 

fraction of buildings in each classification were then calculated and multiplied by the total 

population of the parish. This yielded the number of people residing within in each building 

classification in each parish. The number of buildings in each classification were plotted 

against the calculated number of people residing within each classification for the 96 

parishes of Kampala, providing a set of equations that correlated the number of buildings 

to population per building classification (Figure 5.3). Outliers within the dataset were not 

removed as they represented actual parishes within the city that may be either more or less 

densely crowded based on the geography, scale of development, and use of the buildings. 

49.86 53.11

79.59
86.94

143.31

167.61
168.02

250.79

292.39

469.80

0

50

100

150

200

250

300

350

400

450

500

B
ui

ld
in

g 
Si

ze
 (m

2 )

Classification of Building Size

Slum Lower Income Middle Income Upper Income Commercial



74 
 

 

Figure 5.3. Model equations for estimating population from building size within each 

building classification 

5.2.2.4 Estimating Waste and Waste Plastic Generation 

Because the availability of waste generation data was limited to the city as a whole 

and not its individual parishes, similar to that available for population, model equations for 

plastic generation per building classification could not be easily developed without a high 

level of uncertainty. In fact, in this case, literature reported that the high population density 
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of Kampala contributes to a majority of the waste generation within the city (Aryampa, et 

al., 2019, Kaza, et al., 2-18, Kinobe et al., 2015, Serukka, 2017). Therefore, the literature 

reported waste generation percentages by Kinobe et al., 2015 were employed, where 62% 

of the waste generation was allocated to slums and lower-income neighborhoods, 18% to 

middle-income and upper-income neighborhoods, and 20% commercial and industrial 

sectors. Although, Kinobe et al., 2015 indicate that 11% is generated from businesses and 

9% from markets, these two categories are compiled into commercial and industrial sectors 

for this study as further clarity on type of businesses is not provided.  

After allocation of total waste generation into the generalized income and 

commercial/industrial categories, the amount of waste was divided by the total number of 

buildings within each category, i.e., 62% of total waste generated in Kampala was divided 

by the total number of buildings classified as slums and lower-income in Kampala. Further 

dividing the annual waste generation by the number of days in a year, waste generation per 

capita per day for slums/lower-income, middle/upper-income, and commercial/industrial 

sectors was calculated. Waste generation per capita was finally multiplied by a plastic 

composition of 7.8% for Kampala to obtain per capita waste plastic generation per day. 

5.3 Model Limitations 

Model limitations primarily involved the precision of data and tools used to 

calculate the geographical analysis model. First, the 2019-2020 version of OpenStreetMap 

was used for determining the total number of buildings within Kampala. As a result, the 

QGIS model is likely to include an increased number of buildings than those present in the 

base year 2017, reflecting the development within the city between 2017 and 2019. In 

occasions when high-quality base imagery is not available, as is in the case of slums, 
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OpenStreetMap also identifies objects as polygons. These objects were deleted from the 

building analysis when easily identifiable, but due to the low-quality resolution of the base 

maps, objects functioned as noise within the building-counting model. In like terms, in 

areas of new construction, OpenStreetMap may not have been updated in time to identify 

recently erected buildings as a polygon. In such cases, OpenStreetMap misses a very small 

portion of buildings.  

Second, the UBOS 2014 and 2017 population projections only represent the 

residential population of the city. Since the population of the city doubles during the day 

and aggregates in the business-centered regions of the city, the impact of migrating 

population in the commercial and industrial sectors is not accurately reflected. Instead, the 

amount of waste generated by the migrating population is averaged throughout both the 

residential and commercial/industrial sectors. 

Third, the lack of waste generation data at the parish level for 2017 reduces the 

efficiency of the model in predicting the impact of population demographics in waste 

generation. Although this model was simplified from four to two income categories, waste 

generation generally increases with income level (Kaza et al., 2018). Lastly, the waste 

generation data for all sectors within the city is primarily classified as municipal solid 

waste. Special wastes such as industrial, hazardous, and electronic waste are not 

distinguished in this model due to the lack of waste characterization data for these 

categories at Kiteezi landfill. 

5.4 Results & Discussion 

Using the equations developed for correlating Building Classifications and 

Population, the population of each of the five divisions of Kampala was calculated. The 
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calculated 2017 population varied 4.59% to 27.79% from the UBOS projected 2017 

population for the five divisions. Furthermore, the overall population of Kampala was 

calculated to be 1,380,595 which is 13.18% lower than the UBOS project 2017 population 

of 1,590,100. The difference in the calculated and UBOS projected population can be 

attributed to the R2 regression analysis values of the equations, which vary from 0.32 to 

0.89. The regression analysis suggests that the model is not a best fit for industrial areas 

(R2 = 0.32) and commercial sectors (R2 = 0.56). The probable cause for these trends is due 

to the high variability in the size and type of waste generated by industrial and commercial 

sectors. In like terms, the model predicted the lowest R2 (0.83) for slums in the residential 

sector. This can be attributed to the low-resolution of base map for slums, which reduce 

the accuracy in identifying individual buildings in densely crowded slums.  

Dividing the calculated population for slums/lower-income, middle-income/upper-

income, and commercial/industrial sectors by the waste allocated to those sectors, the per 

capita waste generation is 0.66 kg/day, 1.94 kg/day, and 12.12 kg/day, respectively; and 

the waste plastic generation is 0.05 kg/day, 0.15 kg/day, and 0.95 kg/day, respectively. 

These predictions are higher than the average and maximum waste generation per capita 

for Sub-Saharan Africa, which were reported to be 0.46 kg/day and 1.57 kg/day, 

respectively (Kaza et al., 2018). The global average for per capita industrial waste is 12.73 

kg/day but varies between 0.36 kg/day for low-middle income countries and 5.72 kg/day 

for middle income countries (Kaza et al., 2018).  

However, when doubling the UBOS 2017 projected population to account for the 

daytime population of Kampala, and by considering the 36% of uncollected waste 

generation within the city, the total waste generation of Kampala was estimated to be 
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654,271.38 metric tons/annum. Allocating this amount by the population estimated for 

each income level and business sector, the results presented in Table 5.1 were obtained. 

The resulting estimates more closely align with the reported per capita waste generation 

for Kampala at 0.46 kg/day (Aryampa et al., 2019). 

Table 5.1. Model estimations of waste and waste plastic generation per capita/day in 

Kampala, Uganda 

Classification 
Waste Generation/ 
Classification (%) 

Total Waste 
Allocation 
(tons/year) 

Waste 
Generation 

(kg/capita/day) 

Plastic 
Generation 

(kg/capita/day) 
Commercial/Industrial 0.2 130,854 8.24 0.64 

Upper/Middle 0.18 117,769 1.32 0.10 
Lower/Slum 0.62 405,648 0.45 0.04 

This model can be further improved and updated with most recent population and 

waste generation data at both the divisional and parish levels for Kampala to reflect current 

trends in income level and waste generation. Nonetheless, via the use of free, open-sourced 

geographical analysis tools and published population and waste generation data, the model 

can be similarly applied to additional Sub-Saharan urban cities to estimate waste generation 

for region-specific applications. This model reduces the need for in person collection and 

measurement of waste generation in areas with infrastructure limitations, providing a basic 

estimation of waste and waste plastic generation at the household level. 

5.5 Model Implementation in Entebbe, Uganda: A Case Study 

Entebbe is a small urban city located on a peninsula into Lake Victoria, 37 km south 

of Kampala. The city has two divisions, four wards, and 24 villages/cells, covering a total 

land area of 56.2 km2 (Entebbe Municipal Council, 2016). The city is home to Uganda’s 

international airport, Uganda Wildlife Education Center, and is the official residence of 
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Uganda’s President (Entebbe Municipal Council, 2016). Due to the international airport 

and the proximity of the city to beaches, the city features several hotels and shopping 

centers. The UBOS population of Entebbe was 69,958 for 2014 and the project population 

was 84,400 for 2017 (UBOS, 2019). Like Kampala, the daytime population of Entebbe 

doubles during the day. The estimated waste generation within the city was 150-200 metric 

tons/day in 2014-2015, with approximately 31% of the waste generation allocated to 

households, 46% to the international airport, and 23% to hotels and beaches (Entebbe 

Municipal Council, 2016). Waste generation in Entebbe is anticipated to increase to 250-

300 metric tons/day by 2021 (Entebbe Municipal Council, 2016).  

Via the implementation of the geographical analysis model developed for Kampala, 

the total number and size of buildings within Entebbe were determined using QGIS and 

OpenStreetMap. The base year of 2017 was chosen for this case study to reflect the 2017 

data inputs used for Kampala. The buildings were classified according to their sizes, and 

the population of each classification was calculated using the equations provided in Figure 

5.3. The model predicted that 59% of the population resided in slums, 18% resided in 

lower-income neighborhoods, 10% resided in middle-income neighborhoods, 8% in upper-

income neighborhoods, 4% in the commercial sector, and 1% in the industrial sector. The 

resulting calculated population estimate for 2017 was 85,011, which is 0.72% higher than 

the 2017 UBOS projected population. 

In multiplying the calculated population projections by the waste generation 

amounts determined for Kampala (in kg/capita/day for the UBOS 2017 residential 

population), waste generation for the residential population of Entebbe was estimated to be 

97.12 metric tons/day for slums/lower-income neighborhoods, 31.24 metric tons/day for 
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middle-income/upper-income neighborhoods, and 39.38 metric tons/day for 

commercial/industrial sectors. This is equivalent to a total of 7.58 metric tons/day of waste 

plastic for slums/lower-income neighborhoods, 2.44 metric tons/day of waste plastic for 

middle-income/upper-income neighborhoods, and 3.07 metric tons/day of plastic for 

commercial/industrial sectors. The total waste generation for Entebbe was determined by 

the model to be 167.74 metric tons/day for 2017. This is 13.02% less than the linearly 

projected, low estimate of 192.85 metric tons/day for the city (projecting 150 metric tons 

in 2014-2015 to 250 metric tons in 2021) (Entebbe Municipal Council, 2016). 

The 13% difference in waste generation in Entebbe can be attributed to the higher 

influence of the commercial sector within the city, especially in regard to the international 

airport and tourism. In contrast to Kampala, which receives merely 20% of its waste from 

the commercial/industrial sectors, Entebbe receives approximately 70% of its waste from 

the commercial sector. For this reason, the impact of household waste generation in 

Entebbe is minimized, leading to a 10% decrease in the model’s prediction of estimated 

waste generation. 

5.6 Conclusions 

The methodology presented in this research application allows local municipalities, 

private investors, non-profit organizations, and researchers to initially screen the amount 

of waste generated in a Sub-Saharan African region at an in-depth resolution of ~100m. 

The model serves to assist in making informed decisions on how to improve waste 

collection, disposal, and recycling in urban cities of Sub-Saharan Africa. By correlating 

geographical analysis with population demographics and waste generation data, the model 
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can be further applied to study the economic, environmental, and social impacts of waste 

management solutions at the regional level. 
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CHAPTER 6. TOTAL GENERATION AND COMBUSTION EMISSIONS OF 
PLASTIC DERIVED FUELS: A TRASH TO TANK APPROACH 

As Published in Environmental Progress & Sustainable Energy, 39(5), 2020 

Chandni Joshi, Jeffrey Seay 

6.1 Abstract 

Trash to Tank (3T) is a concept based on the conversion of waste plastic trash into 

a liquid fuel, suitable for use in any diesel or kerosene fuel application. This contribution 

compares total carbon dioxide (CO2) emissions from generation and combustion of 

petroleum derived diesel fuel with plastic derived fuel oil. Generation emissions for diesel 

are obtained from literature values for well-to-tank (WTT) CO2 emissions, while 3T CO2 

emissions for plastic are calculated based on a locally managed decentralized circular 

economy (LMDCE) for waste plastic management. Specifically, this analysis applies a 

novel approach based on local, small-scale decomposition of waste plastic to fuel in an 

appropriate technology setting, with consumption of the fuel locally in rural, developing 

communities to completely remove waste plastic from accumulating in the global 

ecosystem. Results from 3T CO2 emissions for both the generation and uses of the fuel oil 

are reported based on a combination of literature review, laboratory experiments and 

theoretical calculations. Four plastic derived fuels – low-density polyethylene, high-

density polyethylene, polypropylene and polystyrene – were individually compared with 

petroleum derived diesel fuel to depict a positive reduction in total CO2 emissions. Hence, 

this contribution will demonstrate that the 3T approach is a sustainable solution to waste 

plastic management in developing regions, where mismanaged waste plastic is an ongoing 

environmental and social challenge. Potential benefits to the global environment, 
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particularly in developing regions, from the use of plastic derived fuels as replacements for 

petroleum based is additionally discussed in this study. 

6.2 Introduction 

Energy consumption is directly correlated with the economic development of a 

nation as measured by the gross domestic product (GDP) (Dritsaki & Dritsaki, 2014). 

Hence, as world economies develop, a peak in energy demand is forecasted. This is 

especially true for the transportation energy sector, where approximately 159 quadrillion 

kilojoules (kJ) of energy consumption are predicted for the year 2040, a 46 quadrillion kJ 

spike from 2015 (Energy Information Administration [EIA], 2017). Consumption of diesel, 

the primary transportation fuel for medium- and heavy-duty vehicles in OECD 

(Organisation for Economic Co-operation and Development) and non-OECD countries is 

also anticipated to grow from approximately 87 quadrillion kJ, surpassing 105 quadrillion 

kJ by 2040 (EIA, 2017). Furthermore, with increased energy usage, greenhouse gas (GHG) 

emissions are likely to increase, unless additional regulations for controlling the emissions 

are enforced (Dritsaki & Dritsaki, 2014). For instance, diesel emissions, consisting of 

carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), 

polycyclic aromatic hydrocarbons, aldehydes, ketones, phenols, ammonia, carbonyl 

compounds, volatile organic compounds, and metals such as aluminum, calcium, iron, 

magnesium, nickel, silicon, sodium and vanadium are likely to build up in the atmosphere 

without the addition of effective emissions management technologies (Maricq, 2007, 

Morgan, et al., 1997, Popovicheva, et al., 2015, Sarvi, et al., 2011, Wierzbicka, et al., 2014, 

Wu, et al., 2017, Zielinska, 2005).  
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Regions currently motorizing at unprecedented rates are often lacking or have 

minimal availability of existing effective transportation emissions reduction technologies, 

thus challenging sustainable development. Another contributing cause is the use of 

cheaper, second-hand vehicles imported to developing countries after years of use. This 

practice is termed as “exporting pollution” or “environmental dumping” as poorer 

economies have become a “pollution haven” for old cars with reduced fuel efficiencies and 

safety standards, higher GHG and particulate matter emissions, leading to respiratory 

concerns and smog (Edwards, 2017, Khan, 2013, Hutchinson, 2011, Davis & Khan, 2011).  

One potential method for reducing the high rate of GHG emissions and particulate 

matter from diesel or petroleum derived fuels in developing countries is the use of fuel 

derived from waste plastic. This approach of trash-to-tank, or 3T, solves two problems 

simultaneously in developing economies – reduction of heavy metals from fuel combustion 

due to the hydrocarbon polymer chemistry of plastics and reduction in accumulation of 

waste plastic in areas with minimal waste management infrastructure. This 3T approach 

alleviates the pressure placed on regulated landfills and recycling facilities in urbanized 

areas, while providing rural, resource-constrained communities suffering from lack of 

municipal solid waste (MSW) infrastructure to manage their waste locally. 3T also helps 

to eliminate the practice of dumping or incinerating waste plastic in open plots of land in 

rural regions, which has led to sanitation, human health and environmental concerns 

(Komakech, 2014, Patni, et al., 2013, Rochman, et al., 2013). Because the waste plastic is 

converted to fuel and wholly consumed, 3T completely eliminates the accumulation of 

plastic in the ecosystem, which current recycling practices have failed to do with 

remanufacturing of recycled plastics. Thus, in current approaches, accumulation of waste 
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plastic is only delayed. Eventual migration of unregulated waste plastic to local waterways 

or discarding of the plastic in the ocean due to lack of landfill space is also reduced via 3T, 

decreasing endangerment of marine and bird species (Geyer, 2017, Li, et al., 2016, Wilcox, 

et al., 2015). 

Therefore, the 3T approach encourages waste plastic use in underdeveloped regions 

by giving waste plastic a value. This promotes collection and management of waste plastic 

instead of discarding it as the material holds an economic value. In return, entrepreneurial 

opportunities are generated for sorting, collecting and processing the waste plastic, 

providing a source of reliable, renewable energy for the community through its conversion 

to fuel oil. Plastic can be converted to fuel oil in rural and urban regions via the method of 

thermal decomposition, or pyrolysis. Waste plastic polymers, particularly low-density 

polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and 

polystyrene (PS) can be converted into fuel oil through this process (Al Salem, et al., 2009, 

DeNeve, et al., 2017, Joshi & Seay, 2016, Kumar & Singh, 2011, Miskolczi, et al., 2004, 

Panda, et al., 2010, Patil, et al., 2017, Santaweesuk & Janyalertadun, 2017, Sarker, 2011, 

Sarker, et al., 2012, Wong, et al., 2015). An example of such a simple technology has been 

developed by the University of Kentucky Appropriate Technology and Sustainability 

(UKATS) research for thermal decomposition of waste plastic in rural regions, known as 

the UKATS Processor, which is non-automated, low-cost and easily deployable, 

encouraging waste plastic management in small-scale solutions around the world (DeNeve, 

et al., 2017, Joshi & Seay, 2016, Joshi, et al., 2020). The fuel produced is similar in 

characteristics to petroleum-based fuels such as diesel fuel and kerosene. As a result, it can 

be directly used in diesel generators, kerosene cookstoves, lamps and motor vehicle 
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applications (Joshi & Seay, 2016). Since the plastic is converted to fuel oil locally at an 

individual or community scale, and the fuel has a ready market within the community, a 

locally managed, decentralized circular economy for waste plastic is established. This 

practice empowers rural communities lacking capital, resources, technical education and 

waste management infrastructure to repurpose the trash into valuable products, decreasing 

MSW accumulation.  

The novelty of this contribution lies in considering the environmental impact of 

plastic derived fuel from a locally managed, decentralized circular economy, comparing it 

with the current standard, petroleum diesel. Previous studies have determined the emissions 

of plastic derived fuels obtained in a lab setting (Churkunti, 2015, Kalargaris et al., 2018, 

Kalargaris et al., 2017a, Kalargaris et al., 2017b, Kumar & Sankaranarayanan, 2016, Mani, 

et al., 2010, Rinaldinin, 2016). However, the environmental analysis of plastic derived 

fuels in rural, developing communities has not yet been performed. As a result, this 

contribution determines and analyzes the CO2 emissions for generating and combusting the 

3T fuels, comparing them alongside WTT diesel fuel emissions. This analysis is essential 

for promoting the use of plastic fuel oil in rural regions to decrease MSW accumulation 

and its negative environmental and health consequences (Komakech, et al., 2014, Patni, et 

al., 2013, Rochman, et al., 2013, Geyer, et al., 2017, Li, et al., 2016, Wilcox, et al., 2015). 

6.3 Materials and Methods 

Figure 6.1 illustrates the overall methodology employed for calculating total CO2 

emissions from generation and combustion of plastic fuel types as well as petroleum diesel. 

The reaction energy, lower-heating value (LHV) and higher-heating value (HHV) were 

initially utilized to calculate the total process energy requirement, as shown by 
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Equation 6.1. This was combined with literature reported CO2 combustion factors and 

experimentally measured CO2 emissions to calculate the equivalent amount of CO2 

generated by the pyrolysis process using three different energy sources, wood, propane gas 

and recycled fuel oil. These three energy sources were selected because they are all readily 

available in underdeveloped or developing regions.  

 

Figure 6.1. Methodology chart depicting the approach taken to calculate total generation 

and combustion emissions for plastic derived fuels and diesel 

Next, 3T generation emissions for plastics were calculated according to Equations 

6.2-6.3, which consider the amount of CO2 released per process energy requirement by 

factoring in the CO2 combustion factors of each pyrolysis energy source. Diesel generation 

emissions were collected from literature values for WTT emissions, which were reported 

to be 20.43 g CO2/MJ fuel (Air Resources Board, 2009). Here, it is important to note that 

3T transportation emissions are excluded due to the locally managed, decentralized circular 

economy approach in rural communities. Meaning, the cost and emissions generated by 

transportation of raw waste plastic feedstock to a centralized processing facility, similar to 
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that present in petroleum derived diesel WTT considerations, is eliminated. Lastly, 

experimentally measured CO2 combustion emissions of plastic fuels and diesel were added 

to generation emissions to obtain total generation and combustion emissions. The details 

of this methodology are discussed in the following sub-sections, beginning with the 

production of fuel oil from waste plastic. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 =
𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑅𝑅𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸
𝐻𝐻𝐻𝐻𝐻𝐻 𝑃𝑃𝑜𝑜 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝑆𝑆𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃

 (6.1) 

3𝑇𝑇 𝐶𝐶𝑂𝑂2 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 𝑀𝑀𝑅𝑅𝑃𝑃𝑃𝑃 𝐵𝐵𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃

= 𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑅𝑅𝑃𝑃 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝑆𝑆𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝑂𝑂2 𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃

∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 

(6.2) 

3𝑇𝑇 𝐶𝐶𝑂𝑂2 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝐵𝐵𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃 =
𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑅𝑅𝑃𝑃 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝑆𝑆𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶02 𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃

𝐿𝐿𝐻𝐻𝐻𝐻 𝑃𝑃𝑜𝑜 𝐹𝐹𝑅𝑅𝑃𝑃𝑃𝑃 𝑂𝑂𝑅𝑅𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃
 (6.3) 

Where the units are: 

Process Energy Requirement:   kg Energy Source/kg Fuel Oil 

Pyrolysis Reaction Energy:   MJ/kg Fuel Oil Produced 

HHV of Energy Source:   MJ/kg Energy Source 

3T CO2 Emissions Mass Basis:  kg CO2 Emitted/kg Fuel Oil 

Pyrolysis Energy Source CO2 Factor: kg CO2/kg Energy Source 

3T CO2 Emissions Energy Basis:  kg of CO2 Emitted/MJ Fuel Oil 

LHV of Fuel Oil Produced:   MJ/kg Fuel Oil 

6.3.1 Waste Plastic Pyrolysis 

Fuel oil was produced from LDPE, HDPE, PP and PS plastic samples via slow 

pyrolysis at 450°C in a lab-scale apparatus using the methodology described by DeNeve, 

et al. (2017). An image of the four fuel oil samples studied along with the starting material 
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is shown in Figure 6.2. The LDPE fuel oil was produced from shredded plastic shopping 

bags, HDPE fuel oil was produced from shredded plastic milk jugs, PP fuel oil was 

produced from virgin pellets from a hobby store and PS fuel oil was produced from 

shredded plastic cutlery. 

 

Figure 6.2. Fuel Oil samples and starting waste plastic material 

A) LDPE fuel oil from shredded milk bags (obtained from research application in India), 

B) HDPE fuel oil from shredded milk jugs, C) PP fuel oil from hobby pellets and D) PS 

fuel oil from crushed test tubes. 

6.3.2 Reaction Energy Determination 

The total energy required for the thermal decomposition process includes the 

activation energy (Ea) for the reaction itself as well as the sensible heat required to raise 

the temperature of the plastic to the melting point, the heat of fusion and the sensible heat 

required to raise the temperature of the plastic to the reaction temperature. This process is 

described in Equation 6.4, below. Table 6.1 reports the compiled literature reported Ea 

values in kJ/mol (Sorum, et al., 2001, Westerhout, et al., 1997, Ceamanos, et al., 2002, 

Yang, et al., 2001, Peterson, et al., 2001, Aboulkas & Bouadili, 2010, Silvarrey & Phan, 
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2016, Encinar & Gonzalez, 2008, Wu, et al., 1993, Biswas, et al., 2013, Saha & Ghoshal, 

2007, Kim, et al., 2008, Tuffi, et al., 2018) and the kinetic methods utilized by the 

respective researchers. When given, the statistical uncertainty provided in the previous 

studies was included to capture the spread of the data. Results of this analysis are reported 

in Table 6.1.  

∆𝐻𝐻𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠 ∙ ∆𝑇𝑇𝑃𝑃𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠 + ∆𝐻𝐻𝐹𝐹 + 𝐶𝐶𝐶𝐶𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑠𝑠 ∙ ∆𝑇𝑇𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙𝑖𝑖𝑠𝑠 + 𝐸𝐸𝑎𝑎 

Where: 

∆HProcess = enthalpy required for thermal decomposition 

Cpsolid = solid average heat capacity 

Cpliqid = liquid average heat capacity 

∆Tsolid = Temperature change from ambient conditions to the melting point 

∆Tliquid = Temperature change from the melting point to the reaction 

temperature 

∆HF = Enthalpy of Fusion 

Εa = Activation Energy 

(6.4) 

To check for outliers in the data, statistical analysis was performed using five-

number summary (minimum, quartile 1-3 and maximum), inner quartile range, and upper 

and lower fence calculations. If data values exceeded upper and lower fence limitations, 

they were identified as outliers, and highlighted in blue as seen in Table 6.1. A box and 

whiskers plot representation of the gathered dataset and outliers is also shown in Figure 

6.3. Next, excluding the outliers, a new 95% confidence interval was calculated for the 

dataset. This was lastly converted from mol basis (kJ/mol) to mass basis (kJ/kg) using the 
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molecular weight of each polymer repeat unit (Crow, 2015a, Crow 2015b, Crow, 2015c). 

These results are represented in Table 6.2. 

Table 6.1. Literature reported Ea (kJ/mol) for pyrolysis reaction of pure plastic polymers 

after year 1990. 

 

Outliers present in the dataset are shaded. 

LDPE HDPE PP PS Refernce Method Notes
340.8 445.1 336.7 311.5 32 Model Fitting
241 244
201 188

248.7 34 Ozawa-Flynn-Wall

222 240 126 176 35 Model Fitting DTG (differential 
thermogravimetry) Curve Fitting

150
250

221 247 188
218 252 182
224 242 194
215 238 179
207 227 171
223 249 187
218 243 183
211 232 175
225 254 191

267.61 202.4 261.22 192.61
264.38 211.87 266.35 193.37
270.84 192.93 256.09 191.85

375.59
415.28
335.9

285.74 169.35 136.64 39 Model Fitting First Order Isothermal case only

206.27 233.05 183.68 171.96 40 Friedman Converted from kcal/mol to 
kJ/mol

171
223.1
118.9
175

125.27
224.73

120
168
130
111
149
99

97.4
100.6
227 205
225 202
229 208

Model Fitting Reduced-Time-Plot

Kissinger-Akahira-Sunose

95% confidence interval 
range utilized

95% confidence interval 
range utilized

95% confidence interval 
range utilized

PP range provided used as 
high and low values

38

41

Kissinger-Akahira-Sunose

Friedman

Kissinger-Akahira-Sunose

Ozawa-Flynn-Wall 95% confidence interval 
range utilized

Ea (kJ/mol)

95% confidence interval 
range utilized

Two samples of LDPE & 
PP were used

33

36

37

Model Fitting First Order

Vyazovkin

Friedman

Ozawa-Flynn-Wall

Kissinger-Akahira-Sunose

220 204

200

42

43

44

Vyazovkin

Low-temperature reactions 
(678-693K)

High-temperature reactions 
(723-738K)

95% confidence interval 
range utilized
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Figure 6.3. Box and Whiskers plot overview of literature reported Ea with outliers present 

Table 6.2. 95% confidence interval for Ea dataset excluding outliers, presented on a mol 

basis and the corresponding pyrolysis energy in mass basis 

 Plastic Type 
 LDPE HDPE PP PS 
Cpsolid (kJ/kg-K)1 1.65 1.65 1.64 1.21 
Cpliquid (kJ/kg-K)2 2.24 2.24 2.13 1.70 
∆Tsolid (K) 116 116 154 217 
∆Tliquid (K) 309 309 271 208 
Tmelt (K)1 414 414 452 515 
Trxn (K) 723 723 723 723 
∆HF (kJ/kg)2,3 146.52 146.52 206.75 80.36 
Ea (kJ/mol) 236.76 +/- 16.62 226.34 +/- 10.75 185.08 +/- 19.86 194.48 +/- 7.54 
Molecular Wt (g/mol) 28.05 28.05 42.08 104.15 
Ea (kJ/kg) 8440.57 +/- 

592.60 
8069.12 +/- 

383.34 
4398.22 +/- 

471.85 
1867.30 +/- 

72.38 
Process Energy (kJ/kg) 9468.29 +/- 

592.60 
9097.29 +/- 

383.34 
5433.66 +/- 

471.85 
2563.15 +/- 

72.38 
1Polymer Science, 2019. 2Wunderlich, 1990. 3Bangs Laboratories, 2019. 
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6.3.3 Heating Value Determination 

6.3.3.1 LHV 

LHV experiments were conducted in a Parr Model 1108 Oxygen Combustion 

Bomb Calorimeter. The calorimeter was calibrated using a 99.9wt% methanol standard 

from Sigma-Aldrich. A sample of each fuel was loaded into the oxygen bomb and 

pressurized with bottled analytical grade oxygen to a pressure of 50 psig. The sample was 

then ignited, and the resulting temperature and pressure increase was noted. From this 

information, LHV was calculated for each plastic derived and petroleum derived fuel 

sample using Equation 6.5. 

𝐿𝐿𝐻𝐻𝐻𝐻 = 𝑅𝑅𝑤𝑤𝐶𝐶𝐶𝐶𝐸𝐸∆𝑇𝑇 (6.5) 

Where: 

LHV = Lower Heating Value 

mw = mass of water in the calorimeter 

CpC = Heat capacity of the calorimeter 

ΔT = Temperature change of the water in the calorimeter 

 

The results of this experiment are shown in Table 6.3. All plastics have a 

comparable LHV to diesel fuel, indicating that they are similar in calorific value, with 

LDPE outperforming diesel. Thus, the application of fuel oil in developing countries for 

meeting energy demands is justified. 
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Table 6.3. Experimentally determined LHV of fuel types 

 

6.3.3.2 HHV 

To estimate the total energy requirement presented in Equation 6.1, determination 

of HHV of the energy sources used to drive the pyrolysis process is necessary. HHV of the 

selected pyrolysis energy sources - wood and propane gas - was obtained from reported 

literature values. These values are 17.48 mmBTU/short ton for wood and wood residuals, 

and 2.52x10-3 mmBTU/scf for propane gas (U.S. Environmental Protection Agency 

[USEPA], 2018). These values were converted to MJ/kg basis using conversion factors. 

For propane gas, the ideal gas law and molecular weight (44.1 g/mol) were employed using 

standard temperature and pressure (0°C and 1 ATM) to determine the total number of 

moles for converting scf to mol basis and then to mass basis. The resulting HHV values 

were 20.32 MJ/kg and 47.52 MJ/kg for wood and propane gas, respectively.  

Recycled fuel oil was the final energy source option considered for providing the 

required pyrolysis energy. The HHV of plastic fuel oils was calculated from experimental 

LHV utilizing Equation 6.6. The number of moles of water (H2O) for Equation 6.6 were 

determined by assuming complete stoichiometric combustion of each plastic polymer 

repeat unit to CO2 and H2O, according to Equation 6.7. Because the composition of the 

pyrolysis fuel oil is a function of plastic type, process temperature, pressure, and duration 

of time spent in the reactor, the key assumption that the researchers followed here is that 

LDPE HDPE PP PS Diesel
LHV        

(x103 kJ/kg)
44.94 40.98 40.03 39.14 41.5

Standard 
Deviation

0.78 0.94 1.31 0.88 1.30

Fuel Type
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the polymer decomposes to shorter polymer chains, represented by a collection of 

monomers. Subsequently, the monomer units were identical for LDPE and HDPE. The 

calculated HHV (MJ/kg fuel oil) for the LDPE, HDPE, PP and PS are 49.82, 45.87, 47.35 

and 48.91, respectively. 

𝐻𝐻𝐻𝐻𝐻𝐻𝐹𝐹𝑙𝑙𝑃𝑃𝑠𝑠 𝑂𝑂𝑖𝑖𝑠𝑠 =  𝐿𝐿𝐻𝐻𝐻𝐻𝐹𝐹𝑙𝑙𝑃𝑃𝑠𝑠 𝑂𝑂𝑖𝑖𝑠𝑠 + 𝐸𝐸𝐻𝐻2𝑂𝑂  ∙  ∆𝐻𝐻𝑣𝑣𝑎𝑎𝑣𝑣−𝐻𝐻2𝑂𝑂 (6.6) 

𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑅𝑅𝑃𝑃𝑃𝑃 𝑅𝑅𝑃𝑃𝐶𝐶𝑃𝑃𝑅𝑅𝑅𝑅 𝑈𝑈𝐸𝐸𝑅𝑅𝑅𝑅 +  𝑏𝑏𝑂𝑂2   𝑃𝑃𝐶𝐶𝑂𝑂2  +  𝑃𝑃𝐻𝐻2𝑂𝑂 (6.7) 

Where: 

HHVFuel Oil = HHV of plastic fuel oil 

LHVFuel Oil = Experimentally determined LHV of plastic fuel oil 

nH2O = number of moles of H2O present from stoichiometry balance 

∆Hvap-H2O = Enthalpy of vaporization of H2O at ambient conditions, 2.4417 MJ/kg [56] 

Polymer Repeat Unit = Plastic monomer unit: C2H4 (LDPE, HDPE); C3H6 (PP); C8H8 

(PS) 

b, c, d = Stoichiometry coefficients 

The results of this analysis are presented in Table 6.4 and compared with averaged 

literature reported measurements [39, 57-59]. Except PS, the reported data corresponds 

closely to the method utilized in this study. 

Table 6.4. Calculated and literature reported HHV comparison 

 

Method LDPE HDPE PP PS
Calculated 49.8 45.9 47.4 48.9

Literature Analysis 47.0 46.4 47.0 41.9
% Difference 5.67 1.23 0.79 14.32

HHV (MJ/kg Fuel)
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6.4 CO2 Emissions 

6.4.1 CO2 Combustion Factors 

The CO2 emissions from the energy needed to drive the pyrolysis reaction using 

traditional sources were determined from literature values for reported CO2 combustion 

factors (USEPA, 2018). For wood and propane gas, the respective values obtained were 

1,640 kg CO2/short ton and 0.1546 kg CO2/scf (USEPA, 2018). As described previously 

in the HHV calculations, these values were converted to kg CO2/kg energy source using 

conversion factors and ideal gas law. The resulting values were 1.81 kg CO2/kg wood and 

2.77 kg CO2/kg propane gas. CO2 combustion factors for recycled fuel oil were 

experimentally determined as discussed in the following section. Since the fuel oil is 

combusted to serve as a pyrolysis energy source and combusted for additional applications, 

experimentally measured CO2 emissions are utilized in 3T generation and combustion 

emissions.  

6.4.2 CO2 Emissions Experiments 

Experiments to measure CO2 emissions from the combustion of the fuel oil samples 

and diesel were conducted in the same a Parr Model 1108 Oxygen Combustion Bomb fitted 

with analog pressure and digital temperature measurement, as shown in Figure 6.4. After 

combustion, the gases were slowly vented to a Bacharach 10‑5000 Fyrite Gas Analyzer to 

measure the percent CO2 in the gas. 
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Figure 6.4. Modified oxygen bomb calorimeter and Fyrite device 

Assuming the resulting combustion products can be modeled as ideal gases, the 

total moles in the bomb were calculated using Equation 6.8. From these results, the total 

mass of CO2 released from the combustion was calculated using Equation 6.9. Results were 

corrected for the measured 75% thermal efficiency of the oxygen combustion bomb. 

𝐸𝐸𝑇𝑇 =
𝑃𝑃𝐻𝐻
𝑅𝑅𝑇𝑇

 (6.8) 

𝑅𝑅𝐸𝐸𝑂𝑂2 = 𝐸𝐸𝐸𝐸𝑇𝑇𝑀𝑀𝑀𝑀 (6.9) 

Where:  

nT = Total moles of gas 

P = Final pressure after combustion 

V = Volume of the oxygen combustion bomb 

R = Ideal gas constant 

T = Final temperature after combustion 

mCO2 = Mass of CO2 
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y = Mole fraction of CO2 

MW = molecular weight of CO2 

The total mass of CO2 released from combustion was further divided by the mass 

of fuel utilized in the sample to yield emissions in terms of mass basis, kg CO2/kg fuel. 

Additionally, this result was divided by the LHV of the fuel to obtain energy basis 

emissions, g CO2/MJ fuel. The results of this analysis are presented in Table 6.5. From the 

table, it can be observed that all plastic fuel oils, except PS have lower CO2 emissions than 

diesel fuel. This indicates a positive reduction in CO2 emissions compared with existent 

petro-fuels utilized in developing countries, improving environmental sustainability.  

Table 6.5.Experimentally determined CO2 emissions of fuel types 

 

6.5 Results & Discussion 

6.5.1 Process Energy Required 

The process energy requirement utilizing the total reaction energy and HHV of 

pyrolysis energy sources is reported in Table 6.6. As anticipated, wood requires the highest 

amount of energy input as it is lower in calorific value in comparison with propane gas and 

recycled fuel oil. The latter two fuels have similar calorific content, and therefore, have 

similar energy requirements. 

Mass Basis       
(kg CO2/kg Fuel)

Standard 
Deviation

Energy Basis               
(x10-3 kg CO2/MJ Fuel)

Standard 
Deviation (x10-3)

LDPE 3.12 0.05 69.33 1.15
HDPE 2.98 0.05 72.65 1.17

PP 2.98 0.04 74.65 1.32
PS 3.48 0.01 89.01 0.21

Diesel 3.16 0.10 76.01 2.48

CO2 Emissions
Fuel Type
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Table 6.6. Process energy requirement for pyrolysis of waste plastic to fuel oil using mean 

reaction energy and various pyrolysis energy sources 

 

6.5.2 3T Emissions 

The calculated generation CO2 emissions for 3T approach are reported in Table 6.7, 

utilizing the reaction energy mean from 95% confidence interval presented in Table 6.2. 

The emissions are presented in mass and energy basis. Analyzing the results, wood has the 

highest CO2 emissions due to its low HHV, followed by the recycled fuel oil and propane 

gas. Additionally, LDPE and HDPE fuels have highest emissions followed by PP and PS. 

Even though the four plastics have similar HHVs, since PP and PS have lower Ea for the 

pyrolysis reaction, the amount of fuel required to convert 1kg of plastic to fuel oil is lower 

than LDPE and HDPE, leading to lower CO2 generation emissions. In terms of LPDE and 

HDPE, LDPE is reported to have higher emissions in mass basis versus HDPE in energy 

basis. The reason for this occurrence is that LDPE has a higher CO2 combustion factor, 

whereas HDPE has lower calorific content.  

When comparing the 3T generation emissions with diesel WTT emissions, a 

reduction in CO2 emissions results, as shown in Figure 6.5. This reduction is due to the 

analysis of a LMDCE for waste plastic management in developing countries. Because the 

plastic is collected, separated and processed to fuel directly near or at dumpsites, along 

with at locations of waste plastic generation via appropriate technology solutions (DeNeve, 

LDPE HDPE PP PS
Wood 0.42 0.40 0.22 0.09

Propane Gas 0.18 0.17 0.09 0.04
Recycled Fuel Oil 0.17 0.18 0.09 0.04

Pyrolysis Process Energy Requirement                                     
(kg Energy Source/kg Fuel Generated)Energy Source
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et al., 2017, Joshi & Seay, 2016), the transportation of the raw feedstock to centralized 

recycling facilities or refineries is removed, resulting in significant decreases in CO2 

emissions for generation of fuel oil. This is opposite of crude petroleum derived diesel fuel, 

which is often transported long distances on ships and trucks, resulting in large contribution 

to the total supply chain emissions of WTT. 

Table 6.7. Calculated 3T generation CO2 emissions for plastic fuels using mean reaction 

energy 

 

 

Figure 6.5. Percent reduction in 3T generation emissions, compared with diesel WTT 

emissions (20.43 × 10−3 kg/MJ fuel) (Churkunti, 2015). 

LDPE HDPE PP PS LDPE HDPE PP PS
Wood 0.75 0.72 0.39 0.17 16.71 17.51 9.77 4.24

Propane Gas 0.49 0.47 0.26 0.11 10.94 11.47 6.40 2.78
Recycled Fuel Oil 0.53 0.52 0.28 0.13 11.75 12.78 6.91 3.40

Mass Basis (kg CO2/kg Energy Source) Energy Basis (x10-3 kg CO2/MJ Energy Source)  Pyrolsysis Energy 
Source

3T Emissions
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Previously obtained 95% confidence interval range for reaction energy is utilized to depict 

that for all values of reaction energy (low, average, and high), including various pyrolysis 

fuel sources, a positive reduction in CO2 emissions is noticed.  

Hence, the 3T emissions are only a function of the energy required for conversion 

of plastic to fuel via pyrolysis and the energy utilized for thermal decomposition. Energy 

efficient, high calorific energy sources with reduced CO2 combustion factors are preferred, 

leading to greatest percent reduction in CO2 emissions. Plastics such as PP and PS are also 

preferred for conversion but are likely to be present in slightly lower quantities than LDPE 

or HDPE (Geyer, et al., 2017). As a result, mixed plastics (LDPE, HDPE, PP and PS) are 

normally likely to be used for conversion to fuel oil in developing communities, which 

serve as an ideal source of reliable energy for regions lacking capital and waste 

management infrastructure while being an environmentally sustainable solution. 

6.5.3 Total Generation & Combustion Emissions 

Since the total generation emissions are lower than WTT for 3T, and combustion 

emissions are comparable to diesel, the total generation and combustion emissions are also 

lower for plastic derived fuels, as shown in Figure 6.6. Since this analysis is based on a 

function of combustion emissions and energy content of the plastic fuels, PP outperforms 

the remaining fuel oil types. Regardless, the reduction in GHG CO2 emissions for plastic 

fuels is significant, promoting its use as an alternative fuel in developing countries. 
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Figure 6.6. Total generation plus combustion emissions for plastic derived fuels in 

comparison with petroleum derived, diesel 

6.6 Conclusions 

The extended analysis of this article considers the addition of sensible energy 

alongside activation energy for determining the pyrolysis process energy requirements. 

The updated process energy requirements for each plastic type increased from previously 

reported conclusions. The reported percent increases are 12.18% for LDPE, 12.74% for 

HDPE, 23.54% for PP, and 37.27% for PS derived fuel oils.  

Taking these updates into consideration, the percent reduction in 3T generation 

emissions and the total generation plus combustion emissions for plastic derived fuels were 

recalculated. The results of this analysis show that all plastic derived fuels except PS fuel 

produced via wood fired pyrolysis yields a reduction in 3T CO2 emissions. That is, the 3T 

emissions for wood fired PS pyrolysis are 0.7% greater than that of diesel well-to-tank 



103 
 

emissions reported at 20.43×10-3 kg/MJ fuel (Churkunti, 2015). This outcome leads to a 

slightly higher generation emissions than diesel, but can be diverted using either propane 

gas or recycled fuel oil for meeting the pyrolysis energy requirement of producing PS fuel. 

In return, the total generation plus combustion CO2 emissions for all plastic derived fuels 

are still lower than that of diesel WTT plus combustion emissions, making the 3T process 

a viable option for reducing waste plastic accumulation globally. 
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CHAPTER 7. DESIGN AND OPERATION EMISSIONS OF A LMDCE 
TECHNOLOGY FOR CONVERTING WASTE PLASTIC TO PLASTIC DERIVED 

FUEL OIL 

7.1 Introduction 

To combat waste plastic accumulation in developing regions, the principles of a 

locally managed decentralized circular economy (LMDCE) were applied to design and test 

a simple technology that converts waste plastic to plastic derived fuel oil (PDFO). The 

technology, named as the Trash to Tank (3T) electric processor, performs slow-pyrolysis 

of polyolefin-based plastics (high density polyethylene [HDPE], low-density polyethylene 

[LDPE], and polypropylene [PP]) to generate PDFO that serves as an alternative source of 

petroleum fuels, used for diesel generators, farming equipment, and cook stoves (Joshi & 

Seay, 2016).  

The 3T electric processor is intended to be used in rural or highly populated, urban 

regions of developing countries struggling with proper waste management. Due to a lack 

of capital, infrastructure, education associated proper waste disposal, municipal solid waste 

and waste plastic generated in low-income regions and slums of developing countries are 

often discarded openly on undeveloped plots of land or burned in the open environment. 

As a result, the UKATS processor severs to alleviate waste plastic accumulation challenges 

in these regions by serving as an appropriate technology based, LMDCE solution for 

managing waste plastic locally by using local community participation and local resources. 

This research contribution assesses the viability of 3T electric processor in terms of 

its mass and energy balance, operation costs, and PDFO generation and combustion 

emissions. 
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7.2 Fabrication of the Trash to Tank Electric Processor 

As an LMDCE solution, the 3T electric processor has been conceived using 

appropriate technology principles. It is a simple, non-automated technology that can be 

operated by local individuals with minimal formal technical education. The processor can 

be constructed using scrap parts and non-standard materials of construction, being an 

affordable (~$800) yet effective solution for removing waste plastic from the ecosystem.  

Depicted in Figures 7.1 and 7.2, the 3T electric processor primarily consists of a 

simple retort, a condenser, piping, fittings, and an electric heating element.  

 

Figure 7.1. Schematic of the 3T Electric Processor 

The retort is fabricated using a 10-gallon rolled low carbon steel inner drum housed 

in a 20-gallon low carbon steel outer drum. The inner drum’s outer base is wrapped with a 

240-volt, 1900-watt heating ring that is connected via high temperature electrical wiring to 

a temperature controller. The temperature controller monitors the temperature of the 

process using a thermometer fitted in the inner barrel. The inner barrel is also fitted with a 

pipe screw cap for adding waste plastic to the retort, and an outlet pipe for venting PDFO 

gases. The space between the inner and outer drums is packed with high temperature 
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fiberglass insulation, and the outer barrel is covered with a lid (Figure 7.2) to reduce heat 

loss to the environment.  

 

Figure 7.2. Photograph of the 3T Electric Processor 

In general, the retort acts as a simple batch reactor that performs slow pyrolysis of 

waste plastic. As a result, it heats, melts and vaporizes the plastic polymers into shorter 

hydrocarbon chains, generating PDFO gases. The PDFO gases exit the retort through the 

outlet pipe, which is fitted with a pressure relief valve. The outlet pipe then connects to 

additional piping and fittings that carry the gases to a simple condenser. The condenser is 

fabricated using aluminum piping housed in a pail. The aluminum pipe is curled throughout 

the pail to maximize surface area for condensation. The PDFO gases are condensed using 

tap water in the pail, which exits at the top of the condenser via clear tubing. Meanwhile, 

the condensed PDFO fuel exits the bottom of the condenser through additional clear tubing 

that is connected to the end of the aluminum piping.  
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7.3 Determining the Mass and Energy Balance of the Trash to Tank Electric Processor 

After fabrication, the 3T electric processor was tested in a lab setting to determine 

its effectiveness in terms of a mass balance and an energy balance. Three runs were 

performed using PP plastic pellets. The weight of the plastic input, volume of PDFO output, 

density of PDFO, voltage and resistance of the heating element, and the time increment for 

which the voltage was applied to the processor were measured to calculate the mass and 

energy balances. 

7.3.1 Mass Balance 

Table 7.1 summarizes the mass balance results for the experimental runs. The 

density of the PDFO was determined to be 0.754 kg/L, which is lower than the literature 

reported density for kerosene and diesel (Speight, 2011, Engineering ToolBox, 2003). 

Overall, 65.82% mass balance efficiency was achieved, yielding 0.87 L of PDFO per kg of 

plastic used. 

Table 7.1. 3T electric processor mass balance results 

Run 

Type 
of 

Plastic 
Weight of 

Plastic (kg) 
Weight of 
Fuel (kg) 

Volume 
of Fuel 

(L) 

Efficiency (L of 
fuel/kg of 
plastic) 

Efficiency 
(%, Mass 

Basis) 
1 PP 1.70 1.00 1.33 0.78 58.99 
2 PP 3.10 1.76 2.34 0.75 56.79 
3 PP 3.00 2.45 3.25 1.08 81.68 

    Average 0.87 65.82 

 These results highlight the tradeoffs encountered when applying appropriate 

technology to the implementation of LMDCE in developing countries. For instance, due to 

the use of simple batch reactor type retort and a single-tube heat exchanger, the mass 

balance efficiency is reduced. The addition of a reflux column, or an advanced shell and 



108 
 

tube heat exchanger would improve the mass balance efficiency greatly, but the associated 

costs are not affordable in rural or low-income urban regions of developing regions. 

7.3.2 Energy Balance 

To ensure quality of PDFO product, the heating rate of the 3T electric processor 

must be maintained carefully to prevent wax generation. If heat is applied too rapidly, the 

slow pyrolysis of waste plastic is not sufficiently completed, resulting in wax. Therefore, 

the energy input to the 3T electric processor was incrementally increased during a run to 

ensure PDFO generation. These incremental increases in energy input were measured by 

increasing the voltage applied to the heating element and the time duration for which the 

voltage was applied. Equation 7.1 summarizes the energy balance calculation performed 

for each run. 

𝑁𝑁𝑃𝑃𝑅𝑅 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 (𝑘𝑘𝑘𝑘) =  𝑅𝑅𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂(𝑘𝑘𝐸𝐸) ∗ 𝑄𝑄𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂 �
𝑘𝑘𝑘𝑘
𝑘𝑘𝐸𝐸�

−�
𝐻𝐻𝑖𝑖2

𝑅𝑅

𝑛𝑛

𝑖𝑖=1

∗ 0.06𝑅𝑅𝑖𝑖  (𝑘𝑘𝑘𝑘) 
(7.1) 

Where: 

mPDFO = mass of PDFO (kg) 

QPDFO = lower heating value of PP fuel, as determined in Chapter 6 (40,027 kJ/kg) (Joshi 

& Seay, 2020) 

i = increment 

n = number of increments 

V = voltage (v) 

R = Resistance (Ω) 

t = time 
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Note, V2/R is power (W). Power multiplied by time yields energy consumption 

(kWh). In Equation 7.1, the use of a conversion factor, 0.06, represents conversion from 

W to kW and from kW to kJ/h.  

The results of the energy balance are presented in Table 7.2. Due to the calorific 

value of PDFO, the energy balance is positive for converting plastic to PDFO via the 3T 

electric processor. Thus, a value-added product is produced from waste plastic, which can 

in return be used by local communities in developing regions as an alternative source of 

petroleum fuel for diesel generators or kerosene cookstoves.  

Table 7.2. 3T electric processor energy balance results 

Run 
Fuel Energy Produced 

(kJ) 
Total Energy 

Input (kJ) 
Net Energy 

(kJ) 
1 40139.88 7565.28 32574.59 
2 70471.14 10676.23 59794.90 
3 98086.16 17513.50 80572.66 
 Average (kJ/kg of PDFO) 6918.31 33108.69 
 Average (kJ/L of PDFO) 5216.40 24963.95 
    

7.4 Cost of Operations for Trash to Tank Electric Processor 

To determine the economic viability of operating the 3T electric processor, the cost 

of energy input was assessed against the value of the fuel produced. Specifically, the cost 

associated with electricity consumption was compared to the value of PDFO as an 

alternative to diesel or kerosene. The results, presented in Table 7.3, indicate a positive 

return on investment. Per liter of PDFO produced, approximately 252% profit is incurred 

through the sale of diesel and 339% through the sale of kerosene. As a result, the 

implementation of the 3T electric processor in developing regions for combating waste 

plastic accumulation may present business opportunities for small-scale entrepreneurs and 

recycling organizations.  
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Table 7.3. Operation costs and economic gains from production and sale of PDFO 

Cost of Electricity ($/kWh) (Energy Information Association [EIA] 2021a) 0.132 
Price of Diesel ($/L) (EIA, 2021b) 0.674 

Price of Kerosene ($/L) (EIA, 2021c) 0.840 

Run 
Total Energy 
Input (kWh) 

Cost of Energy 
Input ($/L) 

PDFO Sold as Diesel 
Net Profit ($/L) 

PDFO Sold as Kerosene 
Net Profit ($/L) 

1 2.10 0.21 0.47 0.63 
2 2.97 0.17 0.51 0.67 
3 4.86 0.20 0.48 0.64 

 Average 0.19 0.48 0.65 

     

7.5 PDFO Generation and Combustion Emissions via the Trash to Tank Electric 

Processor 

To understand the environmental benefits of deploying 3T electric processors as an 

LMDCE solution for waste plastic management in developing countries, the total 

generation, or production, and combustion emissions of PDFO were determined. Because 

the 3T electric processor operates using electricity, the generation emissions are likely to 

vary based on the source of electricity generation. In Table 7.4, results of generation 

emissions as a function of various energy sources such as coal (lignite and bituminous), 

petroleum oil, natural gas, renewables, and nuclear are presented (World Nuclear 

Association, 2011). Combustion emissions are then added to generation emissions to yield 

total emissions. Equation 7.2-7.3 detail the calculation of generation emissions. The total 

emissions are compared with diesel generation and combustion emissions (Air Resources 

Board, 2009) to understand the impact of electricity source on total emissions.  

𝐺𝐺𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 (𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2)

= 𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝐼𝐼𝐸𝐸𝐶𝐶𝑅𝑅𝑅𝑅 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂 �
𝑘𝑘𝑀𝑀ℎ
𝑘𝑘𝐸𝐸 �

∗ 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 𝑃𝑃𝑜𝑜 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝑆𝑆𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 �
𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2
𝑘𝑘𝑀𝑀ℎ � 

(7.2) 
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𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 (𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2)

= 𝐺𝐺𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 + 𝐶𝐶𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 

(7.3) 

Where: 

Combustion Emissions = emissions associated with combustion of PDFO, as determined 

in Chapter 6 for PP (2.98 kg CO2/kg PDFO or 2.25 kg CO2/L PDFO) (Joshi & Seay, 2020) 

The results of this analysis indicate that electricity sourced from energy sources 

such as coal and petroleum to produce PDFO leads to higher total CO2 emissions than 

diesel. In contrast, energy sourced from natural gas, renewables, or nuclear power have 

lower emissions than diesel. Hence, although the 3T electric processor is considered an 

economically viable LMDCE solution, the source of electricity generation in developing 

countries will impact its environmental benefits.  
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Table 7.4. Generation and combustion emissions of PDFO produced via 3T electric processor as a function of energy source 

Diesel Generation + Combustion Emissions 4.01 3.40 

Electricity 
Source 

CO2 Emissions 
of Electricity 

Source 
(kg/kWh) 

Average PDFO 
Generation Emissions 

(kg CO2/ kg PDFO) 

Average PDFO 
Generation Emissions 

(kg CO2/L PDFO) 

Total Generation + 
Combustion Emissions 

(kg CO2/kg PDFO) 

Total Generation + 
Combustion 

Emissions (kg CO2/L 
PDFO) 

Lignite Coal 1.05 2.03 1.53 5.01 3.77 
Bituminous 

Coal 0.89 1.71 1.29 4.69 3.53 
Petroleum Oil 0.73 1.41 1.06 4.39 3.31 
Natural Gas 0.41 0.79 0.60 3.77 2.84 
Renewable* 0.05 0.09 0.07 3.07 2.31 

Nuclear 0.03 0.06 0.04 3.04 2.29 
*Renewable energy sources include the average of solar, biomass, hydroelectric, and wind 
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7.6 Conclusions 

In this contribution, an LMDCE solution for converting waste plastic to PDFO in 

developing regions was developed according to the principles of appropriate technology 

and tested in a lab scale operation. Termed as the 3T electric processor, the technology’s 

mass and energy balances were determined along with its cost of operation and 

environmental emissions. The mass balance indicated that tradeoffs from the 

implementation of appropriate technology principles reduce the overall efficiency of the 

process due to a lack of sophisticated distillation and condensation equipment. The energy 

balance and economic gains were positive indicating that the technology is feasible for use 

by small-scale entrepreneurs in developing regions. However, the source of electricity 

generation will greatly impact the environmental suitability of the 3T electric processor.  
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CHAPTER 8.  FUEL ANALYSIS OF PLASTIC DERIVED FUEL OIL AS AN 
ALTERNATIVE FOR DIESEL AND KEROSENE 

8.1 Introduction 

This research contribution’s proposed solution for reducing waste plastic 

accumulation in developing regions focuses on conversion of waste plastic into plastic 

derived fuel oil (PDFO) via slow pyrolysis using the principles of a locally managed 

decentralized circular economy (LMDCE) and appropriate technology. In return, a viable 

technology was developed to achieve this goal – the Trash to Tank (3T) electric processor, 

as detailed in Chapter 7. However, due to the use of low-cost construction materials that 

are simple, sourced locally by common citizens, and that can be operated with basic 

technical education of citizens, the 3T electric processor was designed to be non-

automated, lacking sophisticated distillation and condensation equipment for producing 

PDFO. Thus, the PDFO produced using the UKATS electrical processor is primarily a 

chemical mixture of hydrocarbon chains similar to those found in traditional diesel and 

kerosene (Joshi & Seay, 2016 and Budsaereechai, 2019).  

Nonetheless, PDFO has beneficial applications in developing regions as an 

alternative source for diesel and kerosene. Particularly, it can be used in diesel generators 

and kerosene cookstoves, serving as a reliable source of energy for lighting and cooking 

(Joshi & Seay, 2016). As a result, the objective of this research is to analyze the 

composition of PDFO and assess how it can be optimized in LMDCE applications, 

especially when implementing appropriate technology solutions such as the 3T electric 

processor. By studying the impact of temperature and time, the two variables that can be 

easily employed to adjust slow pyrolysis reaction chemistry in appropriate technology 
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settings, the composition and stability of PDFO as it relates to diesel and kerosene is 

measured.  

8.2 Materials and Methods 

8.2.1 Collecting PDFO Samples 

To understand the effect of temperature on the composition and stability of PDFO, 

the 3T electric processor was modeled using a bench-scale autoclave Parr pressure vessel 

reactor with a Parr 4843 controller, Figure 8.1. This setup was used to generate PDFO from 

polyolefin-based waste plastics, high-density polyethylene (HDPE), low-density 

polyethylene (LDPE), polypropylene (PP), and mixed plastic, which was an equal mixture 

of HDPE, LDPE, and PP by weight. These plastics were sourced from household waste, 

including milk jugs (HDPE), Ziploc® bags (LDPE), and food packaging containers (PP). 

The plastics were cleaned and cut to small pieces for insertion in the reactor. The 

temperature of the slow-pyrolysis experiments was varied between 370-400°C in 

increments of 10°C for each plastic type. This range was chosen to reflect optimum PDFO 

production as a function of temperature, i.e., in general, temperatures below 370°C 

produced minimal amount of PDFO, whereas above 400°C produced wax for plastics such 

as HDPE. The experiments were conducted in sets of at least 3-5 runs per plastic type and 

per temperature increment. The PDFO generated through slow-pyrolysis was condensed in 

a single -tube, shell and tube copper heat exchanger, cooled with tap water. 

To understand the effect of time on the composition and stability of PDFO, the Parr 

bench-scale reactor and controller setup was used to generated PDFO from HDPE and 

LDPE at temperatures of only 370°C and 400°C. These plastics were chosen due to time 
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constraints and their similarity in polymer chemistry; these temperatures were chosen to 

bookend the impact of temperature on the time-focused experimental runs. Hence, for 

observing the impact of time, fuel samples were collected at increments of approximately 

half an hour for 2 hours after observing the first drop of fuel, or after approximately 4.5 

hours of starting the experiment for HDPE and 3.5 hours for LDPE. The experiments were 

replicated in sets of three. 

 

Figure 8.1. Parr reactor and Parr 4843 controller setup for slow pyrolysis experiments 

8.2.2 Analyzing PDFO Samples 

The collected liquid PDFO samples were then analyzed using a gas chromatograph-

mass spectrometer (GC-MS) and a thermogravimetric analyzer (TGA). GC-MS studies 

were completed using an Agilent Technologies 7890 A gas chromatograph interfaced with 

an Agilent Technologies 5975 C mass spectrometer and triple-axis detector. Sample 

preparation involved taking 500 µL of each sample and diluting to 2.5 mL using pentanes. 

Injection volume for each sample was 5 µL. Analytes were separated using a capillary 
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column (Agilent Technologies HP-5MS, 30 m 0.25 mm; i.d. 0.25 mm) and ultra-high 

purity (> 99.999%) helium gas as a mobile phase. The initial oven temperature was set at 

60 °C, ramped to 200 °C at a rate of 10 °C/min, then ramped at 5 °C/min to 280 °C. The 

mass source, quadrupole, and injector were held at a constant temperature of 230 °C, 150 

°C, and 300 °C, respectively. Target analytes (C7 through C30 hydrocarbons) were 

identified based on the retention time and the most abundant signature m/z ion (also used 

for quantitation) for each signal. Next, to analyze the thermal degradation of PDFO, 

thermogravimetric analysis (TGA) studies were completed in triplicate on each sample (5-

8 mg) using a TA Instruments Q500 TGA with platinum pans. A heating rate of 10°C/min 

from 30 to 600 °C under a constant dry nitrogen flow (40 mL/min) was utilized. 

8.3 Results and Discussion 

8.3.1 Effect of temperature 

8.3.1.1 GC-MS Results 

The GC-MS results provided the total abundance of C7-C30 hydrocarbons present 

in each sample. As a result, the total number of hydrocarbons in the experimental runs of 

each plastic type at each temperature increment were averaged for the set of runs. The 

averages were then normalized to obtain percent relative abundance for each hydrocarbon 

number. The results of this analysis are present in Figure 8.2.  
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Figure 8.2. GC-MS results for PDFO as a function of temperature and plastic type 
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The results indicated that the hydrocarbons present in PDFO composition of all 

plastics analyzed are primarily aliphatic (alkanes and alkenes), or saturated and unsaturated 

hydrocarbons due to the depolymerization chemistry of the polyethylene (PE) and PP 

plastics, which undergo chain scission mechanism during pyrolysis (Achilias et al., 2007, 

Agboola et al., 2017, Budsaereechai et al., 2019, CROW, 2021, Demirbas, 2004, Gonzales 

et al., 1998, Miandad et al, 2017, and Zeus, 2005). For PE-based plastics, hydrocarbons in 

the range of C7-C30 were observed, whereas for PP-based plastics, branched hydrocarbons 

were predominantly present in the range of C8-C12. As a result, the PDFO obtained from 

mixed plastic was a combination of both straight chain and branched hydrocarbons. In fact, 

the percent relative abundance of branched hydrocarbons can be directly correlated to the 

mixed plastic samples by observing similar trends in the C8-C12 range in Figure 8.2. In 

comparison with petroleum derived distillates, diesel fuel (No. 2) contains approximately 

75-90% aliphatic alkanes and cycloalkanes, and 10-25% aromatics and olefins/alkenes 

(United States Department of Health and Human Services, 1995 and Rentar, 2018). 

Kerosene (diesel fuel No.1) is a light distillate primarily consisting of branched chain 

alkanes, cycloalkanes, and mixed aromatic cycloalkanes (Gad, 2014). 

In Figure 8.2, the percent relative abundance of predominantly present 

hydrocarbons for HDPE and LDPE shifts from left to right as temperature increases. For 

instance, the peak of the curves shifts from C12 at 370°C to C15 at 400°C for both plastics. 

In PP, an opposite effect is seen where the trough shifts slightly from C10 at 370°C to C11 

at 400°C. In mixed plastic, the predominant peak shifts from C9 at 370°C to C11 at 400°C. 

For the two inner temperatures of 380°C and 390°C, percent relative abundance shifts 

incrementally towards 400°C. Table 8.1 summarizes the predominant hydrocarbons 
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present in PDFO derived from each plastic at the two outer temperatures. As temperature 

increases, the fraction of heavier hydrocarbons in the PDFO composition increases. This 

phenomenon may be attributed to the boiling point of heavier hydrocarbons, which 

vaporize at higher temperatures. Note, literature reported diesel and kerosene hydrocarbon 

ranges are also reported on Table 8.1 (United States Department of Health and Human 

Services, 1995). However, these ranges vary widely in literature; diesel hydrocarbon 

ranges have been reported from C7-C24 and C8-C17 for kerosene (Rentar Fuel Catalyst, 

2019, International Energy Association-Advanced Motor Fuels [IEA-AMF], 2021, ALS 

Global, 2021, Gad, 2014, Gad, 2005).  

Table 8.1. Summary of predominant hydrocarbons in PDFO as a function of temperature 

and plastic type 

8.3.1.2 TGA Results 

Because TGA curves are a function of both temperature and weight loss, averages 

of TGA curves were not taken for the duplicate runs. Instead, best fit curves that 

summarized the trends observed at each temperature for the duplicate runs were chosen. 

Kerosene (C9-C16) 
Diesel (C11-C20) 

PDFO Type & 
Temperature 

PDFO 
Temperature (°C) 

Relative 
Abundance (%) 

Hydrocarbon 
Range 

HDPE 
370 81.17 C8-C18 
400 80.82 C9-C23 

LDPE 
370 80.45 C9-C18 
400 80.90 C9-22 

PP 
370 97.26 C9-C12 
400 88.99 C9-C12 

Mixed Plastic 
370 82.03 C8-C17 
400 81.34 C9-C21 
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The TGA results of PDFO thermal degradation as a function of temperature are presented 

in Figure 8.3. As temperature increased for all plastics analyzed under this study, an 

increase in thermal stability, or a decrease in volatility, of the PDFO was observed. These 

results allude that as the pyrolysis temperature increases, heavier and longer hydrocarbon 

chains are broken during the chain scission mechanism. (Rentar Fuel Catalyst, 2021) 

In addition, PP-based PDFO degraded at lower temperatures than PDFO generated 

from PE and mixed plastic as shown in Figure 8.4. These results can be attributed to several 

factors, including the PP polymer chains being comprised of tertiary carbons at every 

second carbon, which favors carbocation during thermal degradation; the lower activation 

energy of depolymerization of PP (182 kJ/mol) than PE (294 kJ/mol); and the presence of 

branched hydrocarbons in PP-based PDFO (Aboulkas and Nadifiyine, 2008, 

Budsaereechai, 2019, Cai et al., 2008, Chandrasekaran et al., 2015, CROW, 2021, Miandad 

et al., 2017, Miandad et al., 2019, Phetyim and Pivsa-art, 2018, and Zhou et al., 2006). 

Figure 8.4 also depicts the comparison of PDFO thermal degradation with that of 

diesel and kerosene. In general, the trend observed in terms of stability is kerosene < diesel 

< PDFO. However, at lower temperatures of 370°C, the rate of weight loss for PDFO is 

more similar to diesel and kerosene than at higher temperatures of 400°C. This further 

alludes to the increased presence of longer chain hydrocarbons present in PDFO at 

increased temperatures. 

The higher stability of PDFO also leads to an increased fuel quality, or the reduction 

in the degradation of the fuel at ambient conditions due to polymerization, acidity, 

oxidation, emulsion, and microorganism infestation (Corrosonpedia, 2018). However, as 

with diesel combustion, the efficiency of PDFO combustion is a function of the engine 
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technology (Rentar Fuel Catalyst, 2021). Albeit PDFOs offer an additional advantage than 

traditional petroleum fuels in that due to the polymer chemistry of PE and PP-based 

plastics, no Sulfur Oxide (SOx) is emitted during combustion.  

8.3.2 Effect of Time 

Using the analysis approach detailed in Section 8.3.1.1, the GC-MS results for 

studying the impact of sample time on composition are presented in Figure 8.5.  

The results portray that sample collection time does not have a significant impact 

on composition. Except for HDPE at 400°C, the peak hydrocarbon chain length increases 

by 1-2 carbon numbers from the first sample time to the final sample time. This implies 

that slightly heavier hydrocarbons are exiting the reactor at increased run times. However, 

a clear visible shift in composition is only noticed as temperature increases, that is the peak 

hydrocarbon chains for all sample run times shift from approximately C12 to C16 as 

temperature increases from 370°C to 400°C.  

As for the TGA results for the effect of sample time on the stability of PDFO, 

thermal degradation curves varied between duplicate runs and no significant trend was 

consistently observed as sample time increased. The results of all duplicate runs are 

provided in Appendix B. Additional analysis is required as initial results were inconclusive.  
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Figure 8.3. TGA results for PDFO as a function of temperature and plastic type 
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Figure 8.4. TGA results overlay of PDFO with diesel and kerosene 
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Figure 8.5. GC-MS results for PDFO as a function of sample time and plastic type 

Note, sample naming convention, “Temperature-Sample Number”; i.e., “370-1” indicates the first sample collected at 370°C.  
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8.4 Conclusion 

This research contribution considered the impact of temperature and time as two 

variables affecting the composition and stability of PDFO derived in appropriate 

technology based, LMDCE applications. The results yield that temperature has significant 

contribution on PDFO composition, and as temperature increases, the stability of PDFO 

increases with an increased production in heavier hydrocarbons. The effects of sample time 

on composition were determined to be minimal, and the results of thermal degradation for 

understanding fuel stability were determined to be inconclusive. 
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CHAPTER 9. SUPPLY CHAIN CONSIDERATIONS AND UNCERTAINTY 
ASSESSMENT OF LMDCE IMPLEMENTATION 

9.1 Introduction 

To assess the impact of a locally managed decentralized circular economy (LMDCE) 

in a developing region for combating waste plastic accumulation, it is necessary to evaluate 

the economic, environmental, and societal benefits of LMDCE applications. Two subset 

parishes of Kampala, Uganda were chosen as a case study. In this analysis, the use of the 

Trash to Tank (3T) electric processor for converting waste plastic to PDFO (see Chapter 7 

for details) is chosen as the LMDCE solution for managing waste plastic accumulation in 

an urban, developing region. Hence, the supply chain considers the financial costs and 

profits associated with collecting and converting waste plastic to PDFO (economic 

sustainability); the emissions produced from the transportation and conversion of waste 

plastic to PDFO plus the combustion emissions from using PDFO (environmental 

sustainability); and the number of jobs created while removing plastic from the ecosystem, 

in return alleviating waste management challenges and improving health within the 

communities (social sustainability). 

Note, in this analysis, the traditional supply chain optimization model (minimization 

of operating costs, transportation costs, and distribution costs) is modified to reflect 

LMDCE principles of local management of waste plastic on an individual and community 

level, especially in areas lacking proper infrastructure to manage waste (Troschinetz, 2008, 

Sujauddin, 2008). Therefore, a centralized plastic recycling facility that collects waste 

plastic from various sources and distributes the products to various customers is not 

evaluated. Instead, a review of the existing road infrastructure, methods of household waste 
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disposal, household income, and the demographics of the users of 3T electric processor are 

used to understand how LMDCE may be implemented throughout a developing urban 

community by quantifying its supply chain.  

Figure 9.1 depicts the two parishes studied in this analysis: Rubaga in Rubaga 

division and Kololo IV in Central division, which primarily represent lower-income/slum 

and upper/middle-income neighborhoods, respectively. In-country assessments with 

Kampala City Capital Authority (KCCA), the local waste management municipality, 

determined that Rubaga parish’s waste is collected by KCCA at no cost to the citizens from 

skips (dumpsters) located throughout the region. In contrast, Kololo IV parish’s waste is 

collected house-to-house by private waste collection companies that charge the citizens a 

small fee for waste disposal (Katusijmeh, 2012).  

Because the waste management practices, transportation infrastructure, and the 

population demographics of these two parishes vary in income and standards of living, two 

types of LMDCE applications were considered – a fully decentralized LMDCE and a 

partially decentralized LMDCE – to determine the optimum process for waste plastic 

collection and management. In a fully decentralized LMDCE, small scale entrepreneurs 

collect and process waste plastic locally and independently, whereas in a partially 

decentralized LMDCE, non-government recycling organization assist in collection of 

waste plastic and small-scale entrepreneurs process it to PDFO. Based on these two 

applications, three supply chain case studies were considered as summarized in Section 9.2 

to further study waste collection and transportation logistics based on the infrastructure of 

the parishes. An uncertainty assessment was then performed on the variables used in the 

supply chain case studies to understand the inherent uncertainty of the results. 
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Image basemap source: Quantum Geographical Information System (QGIS) 2019. 

Figure 9.1. Rubaga parish in the Rubaga division and Kololo IV parish in the Central 

division of Kampala, Uganda. 

9.2 LMDCE Supply Chain Considerations Case Studies 

9.2.1 Fully Decentralized LMDCE, Lower-Income/Slums 

The first LMDCE supply chain case study considers a fully decentralized approach 

in lower-income/slum regions of Rubaga parish where small-scale entrepreneurs locally 

collect waste plastic from their neighbors and process it via the 3T electric processor. The 

PDFO generated is sold locally as an alternate source of diesel to local consumers. In this 

approach, small-scale entrepreneurs are distributed equally throughout the Rubaga parish 

and buy sorted waste plastic from their neighbors (Figure 9.2). This approach highlights 

the infrastructure challenges faced by local waste collection municipalities in heavily 
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populated developing regions where narrow streets and unpaved roads hinder house-to-

house waste collection. The approach is therefore similar to informal scrap and waste 

collectors in developing countries that travel through neighborhoods with minimal or 

nonexistent waste collection to assist in overall waste management (Alluri, 2019). Due to 

size of the Rubaga Parish (3.3 km2), in this fully decentralized approach of LMDCE, it is 

assumed that no transportation costs are incurred by the small-scale entrepreneurs as they 

merely travel on foot to collect the desired amount of waste plastic. 

 
Image basemap source: QGIS 2019. 

Figure 9.2. Depiction of a fully decentralized LMDCE, lower-income/slums 

This supply chain case study therefore considers the annualized cost of the 3T electric 

processor, purchasing price of sorted waste plastic from consumers, and the selling price 

of the PDFO. Based on the amount of plastic available in the parish, the number of UKATS 

processors that can be supported, and the number of jobs that can be created are determined. 

The emissions associated with converting waste plastic to PDFO and the combustion 
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emissions of the PDFO are also determined and compared with traditional well-to-tank 

(WTT) diesel generation and combustion emissions. 

9.2.2 Partially Decentralized LMDCE, Lower-Income/Slums 

The second LMDCE supply chain case study considers a partially decentralized 

approach in Rubaga parish where a non-profit, non-governmental organization (NGO), 

serving as a collection facility, assists in waste plastic collection and shredding, in return 

selling the waste plastic to small-scale entrepreneurs for further converting to PDFO via 

the 3T electric processor. Utilizing the existent skip locations provided by KCCA, the NGO 

collects and buys sorted waste plastic from citizens. The waste plastic is then taken to a 

centralized NGO facility within the Rubaga parish from where it is resold to the 

community’s small-scale entrepreneurs (Figure 9.3). This approach reflects the current 

waste management practices followed in Rubaga parish by KCCA, where citizens travel to 

the skips to discard municipal solid waste. It relies on the existent road network and skip 

locations to collect the sorted waste plastic from citizens. This approach also models local 

NGOs that support waste management municipalities by collecting recyclables and selling 

them to downstream processing facilities for reentry into the plastic manufacturing supply 

chains (Plastics for Change, 2021, Varier, 2017). 

In this case study, the transportation costs associated with collecting the waste plastic 

from skip locations in Rubaga parish are optimized using a travelling salesman approach. 

The NGO’s operating costs for buying sorted waste plastic, shredding it, operator salaries, 

and overhead costs are further accounted. These costs are balanced with the amount of 

plastic that needs to be collected from the community and its selling price to the small-

scale entrepreneurs to breakeven. In return, the number of 3T electric processors supported 
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and the number of jobs created are determined. Finally, the emissions associated with the 

pickup and transport of waste plastic to the NGO’s facility, conversion of waste plastic to 

PDFO by entrepreneurs, and the combustion of PDFO are compiled to determine the total 

generation and combustion emissions. These emissions are compared with diesel WTT 

generation and combustion emissions. As with the fully decentralized approach, 

entrepreneurs are assumed to travel on foot to the NGO’s facility located within the Rubaga 

parish to purchase the shredded waste plastic. As a result, transportation emissions at the 

entrepreneurial level in a partially decentralized LMDCE model are assumed to be 

nonexistent. 

 
Image basemap source: QGIS 2019. 

Figure 9.3. Depiction of a partially decentralized LMDCE, lower-income/slums 

9.2.3 Partially Decentralized LMDCE, Upper/Middle-Income 

The third LMDCE supply chain case study considers house-to-house waste plastic 

collection from affluent neighborhoods in Kololo IV parish by an NGO, followed by 
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shredding and reselling of the waste plastic to small-scale entrepreneurs from the NGO’s 

facility located within the Kololo IV parish (Figure 9.4).  

 
Image basemap source: QGIS 2019. 

Figure 9.4. Depiction of a partially decentralized LMDCE, upper/middle-income 

This approach reflects developed and sufficient road infrastructure to allow waste 

management municipalities to travel house-to-house for waste pickup. It is also similar to 

house-to-house waste recycling in developed regions, where consumers sort recyclable 

materials and pay a small fee for having their recycling picked up by local municipalities 

or recycling organizations within the region. However, in this case study, three sub-factors 

were considered, where either the NGO buys the sorted waste plastic from the consumers, 

receives it for free, or charges for picking it up. These subfactors were considered to 

understand the NGO’s breakeven costs (as described in Sections 9.2.2 and 9.3) as a 

function of the sorted waste plastic purchasing costs, including the downstream effects of 

these costs when the waste plastic is resold to the small-scale entrepreneurs. In addition, 
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the jobs created, and the generation and combustion emissions of the approach are 

determined (as described in Section 9.2.2). 

9.3 Methodology 

The above-mentioned supply chain considerations case studies were developed using 

the equations provided in Sections 9.3.1 to assess the economic, environmental, and 

societal sustainability of LMDCE implementation in an urban, developing region. The 

amount of municipal solid waste (MSW) and waste plastic generated in each parish were 

determined using the geographical information system (GIS) model detailed in Chapter 5. 

Since the total waste plastic generation reflects all seven types of plastics (#1: polyethylene 

terephthalate [PET], #2: high-density polyethylene [HDPE], #3: polyvinyl chloride [PVC], 

#4: low-density polyethylene [LDPE] #5: polypropylene [PP], #6: polystyrene [PS], and 

#7: other), only polyolefin-based plastics (HDPE, LDPE, and PP) were considered for 

conversion to PDFO via slow pyrolysis (DeNeve, et al., 2017, Joshi & Seay, 2016, Wong, 

et al., 2015, Kumar and Singh, 2011, Singh and Ruj, 2016). The amount of polyolefin-

based plastic in the global waste stream is reported to be approximately 57% (Geyer, 2017). 

Table 9.1 reports the results of the GIS model and the respective amounts of polyolefin-

based plastics generated in Rubaga and Kololo IV parishes. 

Table 9.1. Parish overview: number of buildings, population, and waste generation 

Parish Rubaga Kololo IV 
Total Number of Building 8,778 410 
Total Population 29,218 3,530 
Municipal Solid Waste Generation (kg/day) 42,564.41 8,663.17 
Waste Plastic Generation (kg/day) 3,406.24 526.65 
Polyolefin Based Waste Plastic Generation (kg/day) 1,892.41 385.16 
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As mentioned previously, the 3T electric processor was used as the LMDCE 

solution for converting waste plastic to PDFO. Table 9.2 summarizes the daily feedstock 

capacity and PDFO production rate for the UKATS processor, as determined in Chapter 7. 

Table 9.3 provides the average cost of construction and equipment life of the 3T electric 

processor. In this preliminary analysis, it is assumed that a ready demand exists for PDFO 

in the parishes of interest, due to the ready application of PDFO as an alternative for diesel 

and kerosene, especially in diesel generators and kerosene cookstove. It is anticipated that 

a relatively low amount of PDFO will be generated in comparison with traditional diesel 

and kerosene, and the use of PDFO is not expected to replace these fuels. As a result, all 

PDFO generated is sold to the community. 

Table 9.2. 3T electric processor operations 

Waste Plastic Processed 10 kg/day 

PDFO Produced 7.78 L/day (0.78 L/kg of Waste Plastic) 

Energy Required 1.45 kWh/L of PDFO 

The following factors were considered in the fully and partially decentralized 

LMDCE supply chain case studies for small-scale entrepreneurs. To determine the 

number of entrepreneurs that can be supported in a region, it is assumed that all 

polyolefin-based waste plastic generated may be converted to PDFO. 

• Operation costs 

o Purchase price of sorted waste plastic from consumers 

o Cost of 3T electric processor 

o Electricity costs associated with operating the 3T electric processor 

• Selling price of PDFO 

• Income, or profit earned 
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The following factors were considered in the partially decentralized LMDCE supply 

chain case studies for sorted waste plastic collection organizations, or NGOs. In the 

partially decentralized, lower-income/slums case study, transportation costs are minimized 

using travelling salesman approach. In the partially decentralized, upper/middle-income, 

house-to-house collection case study, waste pickup from each street within the region is 

multiplied by a route planning factor to reflect the roads that are revisited for entrance/exist 

to and from neighborhoods. In both cases, the minimum amount of sorted waste plastic 

collection required by the NGO to breakeven is determined. 

• Operation costs 

o Purchase price of sorted waste plastic from consumers  

o Cost of industrial shredder 

o Electricity costs associated with operating the industrial shredder 

o Salaries for vehicle driver and industrial shredder operator 

o Overhead costs 

• Transportation costs 

o Distance travelled (travelling salesman or total distance of roads times route 

planning factor) 

o Vehicle type, year, weight, and volume 

o Vehicle fuel economy 

o Diesel fuel costs 

o Number of trips required based on the amount and bulk density of waste 

plastic collected 

o Vehicle maintenance and repair cost 
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• Selling price of shredded plastic  

• Income earned to breakeven (it is assumed that the NGO operates to generate only 

sufficient funds required to balance total incurred costs) 

The following factors were considered in the fully and partially decentralized LMDCE 

supply chain case studies for determining emissions (CO2) associated with conversion of 

waste plastic to PDFO and consumption of PDFO: 

• Generation emissions 

o Emissions from use of electricity 

 Source of electricity generation 

o Emissions from transportation (partially decentralized LMDCE cases only) 

 Vehicle emissions factor based on type and year of model 

• Combustion emissions 

o Emissions from combustion of PDFO 

9.3.1 Equations for Supply Chain Considerations 

Total Costs: 

𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝑛𝑛𝐸𝐸𝑃𝑃𝑃𝑃𝑣𝑣𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑙𝑙𝑃𝑃($)
= 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃 + 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃
+ 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 𝑂𝑂𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 

(9.1) 

𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖𝑃𝑃𝑛𝑛 𝐹𝐹𝑎𝑎𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝐸𝐸𝐹𝐹 (𝑁𝑁𝑁𝑁𝑂𝑂)($)
= 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃 + 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃
+ 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 𝑂𝑂𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 + 𝑇𝑇𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸
+ 𝐻𝐻𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅𝐸𝐸𝑃𝑃𝑃𝑃 & 𝑅𝑅𝑃𝑃𝐶𝐶𝑅𝑅𝑅𝑅𝑃𝑃 + 𝐸𝐸𝑅𝑅𝐶𝐶𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃 𝑆𝑆𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸
+ 𝑂𝑂𝐴𝐴𝑃𝑃𝑃𝑃ℎ𝑃𝑃𝑅𝑅𝑃𝑃 

(9.2) 

𝐸𝐸𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝑃𝑃 𝐸𝐸𝑛𝑛𝐸𝐸𝑃𝑃𝑃𝑃𝑣𝑣𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑙𝑙𝑃𝑃($) = 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂 𝑆𝑆𝑅𝑅𝑃𝑃𝑃𝑃($) − 𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝑛𝑛𝐸𝐸𝑃𝑃𝑃𝑃𝑣𝑣𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑙𝑙𝑃𝑃($) (9.3) 

𝐸𝐸𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝑃𝑃 𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖𝑃𝑃𝑛𝑛 𝐹𝐹𝑎𝑎𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝐸𝐸𝐹𝐹 (𝑁𝑁𝑁𝑁𝑃𝑃)($)
= 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑆𝑆𝑅𝑅𝑃𝑃𝑃𝑃 ($) − 𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑖𝑖𝑃𝑃𝑛𝑛 𝐹𝐹𝑎𝑎𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝐸𝐸𝐹𝐹 (𝑁𝑁𝑁𝑁𝑂𝑂)($) 

(9.4) 



 

138 
 

Operating Costs: 

𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃 ($) = 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 �
𝑘𝑘𝐸𝐸
𝑃𝑃𝑅𝑅𝐸𝐸

� ∗ 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 �
$
𝑘𝑘𝐸𝐸
� 

(9.5) 

𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 (𝑘𝑘𝐸𝐸)
= 𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐺𝐺𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃(𝑘𝑘𝐸𝐸) ∗ 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑜𝑜𝑜𝑜𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃𝐸𝐸 

(9.6) 

𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇𝑆𝑆 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑖𝑖𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,   𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃 �
$
𝑃𝑃𝑅𝑅𝐸𝐸

�

=  
𝐴𝐴𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃 𝐼𝐼𝐸𝐸𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃 ∗ 𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑅𝑅𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅

1 − 1
(1 + 𝐴𝐴𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃 𝐼𝐼𝐸𝐸𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃)𝑛𝑛

∗
1 𝐸𝐸𝑃𝑃𝑅𝑅𝑃𝑃

365 𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃
 

(9.7) 

𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 𝑂𝑂𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇𝑆𝑆 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑖𝑖𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ($)

= 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂 𝐶𝐶𝑃𝑃𝐸𝐸𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 �
𝑘𝑘𝑀𝑀ℎ

𝐿𝐿 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂
�

∗ 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 (𝐿𝐿) ∗ 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝐸𝐸 𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅 �
$

𝑘𝑘𝑀𝑀ℎ
� 

(9.8) 

𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 𝑂𝑂𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃  ($)

= 𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 (𝑘𝑘𝑀𝑀) ∗ 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝐸𝐸 𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅 �
$

𝑘𝑘𝑀𝑀ℎ
�

∗
𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 (𝑘𝑘𝐸𝐸)

𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑘𝑘𝐸𝐸ℎ �
 

(9.9) 

Transportation Costs: 

𝑇𝑇𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 ($)

=
𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝐸𝐸𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘𝑅𝑅) ∗ 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸 𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 ∗ 𝐹𝐹𝑅𝑅𝑃𝑃𝑃𝑃 �$

𝐿𝐿�

𝐹𝐹𝑅𝑅𝑃𝑃𝑃𝑃 𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑅𝑅𝐸𝐸 �𝑀𝑀𝑇𝑇 − 𝑘𝑘𝑅𝑅
𝐿𝐿 � ∗ �𝑀𝑀𝑃𝑃𝑅𝑅𝐸𝐸ℎ𝑅𝑅 𝑃𝑃𝑜𝑜 𝐸𝐸𝑅𝑅𝐶𝐶𝑅𝑅𝐸𝐸 𝐻𝐻𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑅𝑅𝐶𝐶 � (𝑀𝑀𝑇𝑇) 

∗ 𝑇𝑇𝑃𝑃𝑅𝑅𝐶𝐶𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 

(9.10) 

𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃
𝑇𝑇𝑃𝑃𝑅𝑅𝐶𝐶

=
𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃
𝑇𝑇𝑃𝑃𝑅𝑅𝐶𝐶𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃

 
(9.11) 

𝑇𝑇𝑃𝑃𝑅𝑅𝐶𝐶𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 (𝑘𝑘𝐸𝐸)

𝐻𝐻𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 𝐵𝐵𝑃𝑃𝑃𝑃 𝐻𝐻𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 (𝑅𝑅3) ∗ 𝑀𝑀𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐵𝐵𝑅𝑅𝑃𝑃𝑘𝑘 𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑅𝑅𝑅𝑅𝐸𝐸 (𝑘𝑘𝐸𝐸𝑅𝑅3)
 

(9.12) 

𝑀𝑀𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅𝐸𝐸𝑃𝑃𝑃𝑃 & 𝑅𝑅𝑃𝑃𝐶𝐶𝑅𝑅𝑅𝑅𝑃𝑃 ($)
= 𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝐸𝐸𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘𝑅𝑅) ∗ 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸 𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃

∗ 𝑀𝑀𝑅𝑅𝑅𝑅𝐸𝐸𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅𝐸𝐸𝑃𝑃𝑃𝑃 & 𝑅𝑅𝑃𝑃𝐶𝐶𝑅𝑅𝑅𝑅𝑃𝑃 𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 �
$
𝑘𝑘𝑅𝑅

� ∗ 𝑇𝑇𝑃𝑃𝑅𝑅𝐶𝐶𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 

(9.13) 
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Total Emissions: 

𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2)
= 𝐺𝐺𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2)
+ 𝐶𝐶𝑃𝑃𝑅𝑅𝑏𝑏𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2) 

(9.14) 

𝐺𝐺𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2)
= 𝑇𝑇𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2)

+ 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 �
𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2
𝑘𝑘𝑀𝑀ℎ

�

∗ 𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝐸𝐸 𝑈𝑈𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇𝑆𝑆 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑖𝑖𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃  (𝑘𝑘𝑀𝑀ℎ) 

(9.15) 

𝑇𝑇𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝐸𝐸 𝑈𝑈𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇𝑆𝑆 𝐸𝐸𝑠𝑠𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑖𝑖𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃  (𝑘𝑘𝑀𝑀ℎ)

= 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂 𝐶𝐶𝑃𝑃𝐸𝐸𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑅𝑅 �
𝑘𝑘𝑀𝑀ℎ

𝐿𝐿 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂
�

∗ 𝑃𝑃𝑃𝑃𝐹𝐹𝑂𝑂 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 (𝐿𝐿) + 𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 (𝑘𝑘𝑀𝑀)

∗
𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 (𝑘𝑘𝐸𝐸)

𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑆𝑆ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑘𝑘𝐸𝐸ℎ �
 

(9.16) 

𝑇𝑇𝑃𝑃𝑅𝑅𝐸𝐸𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑃𝑃𝐸𝐸 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃(𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2)
= 𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝐸𝐸𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘𝑅𝑅) ∗ 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸 𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃
∗ [𝑀𝑀𝑃𝑃𝑅𝑅𝐸𝐸ℎ𝑅𝑅 𝑃𝑃𝑜𝑜 𝐸𝐸𝑅𝑅𝐶𝐶𝑅𝑅𝐸𝐸 𝐻𝐻𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑃𝑃 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃](𝑀𝑀𝑇𝑇)

∗ 𝐻𝐻𝑃𝑃ℎ𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝐸𝐸𝑃𝑃 𝐹𝐹𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃 �
𝑘𝑘𝐸𝐸 𝐶𝐶𝑂𝑂2
𝑀𝑀𝑇𝑇 − 𝑘𝑘𝑅𝑅

� 

(9.17) 

The descriptions of the above-mentioned equation variables are detailed in Tables 

9.3 and 9.4.
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Table 9.3 defines the dependent variables; Table 9.4 details the independent variables, including stochastic and deterministic 

independent variables, their assumptions, sources, and range of values bookending uncertainty for supply chain considerations. 

Table 9.3. List of dependent variables 

Dependent Variable Description 

Total Cost Entrepreneur The total operating costs of the entrepreneur 

Plastic Purchase Costs associated with purchasing sorted waste plastic from local consumers 

Equipment Purchase Purchasing price of either the 3T electric processor or an industrial shredder 

Equipment Operation Costs associated with operating either the 3T electric processor or an industrial shredder 

Total Cost Collection Facility (NGO) The total operating and transportation costs of the collection facility, or NGO 

Transportation Transportation costs associated with operating a Class 6-7 medium heavy duty waste 
pickup vehicle for collecting waste plastic from the community 

Vehicle Maintenance & Repair Costs associated with maintenance and repair of a Class 6-7 medium heavy duty waste 
pickup vehicle used for collecting waste plastic from the community 

Earnings Entrepreneur The total income earned by the entrepreneur as profits 

Earnings Collection Facility (NGO) The total income earned by the collection facility, or NGO 

Plastic Collected The total amount of plastic collected from the community 

Equipment Purchase 3T electric processor, Shredder The annualized equipment costs associated with the purchase of either the 3T electric 
processor or an industrial shredder, averaged per day 

Equipment Operation 3T electric processor Costs associated with operating the 3T electric processor 

Equipment Operation Shredder Costs associated with operating the industrial shredder 
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Transportation Costs associated with collecting waste plastic from the community and transporting it to 
collection facility (NGO) location 

Plastic Collected/Trip Maximum amount of plastic that can be carried in the bed of Class 6-7 medium heavy 
duty waste pickup vehicle 

Trips Required Number of trips required by the Class 6-7 medium heavy duty waste pickup vehicle to 
fully collect amount of waste plastic generated within the region 

Total Emissions CO2 emissions produced from generation and combustion of fuels 

Generation Emissions CO2 emissions produced from transportation of waste plastic and equipment used to 
convert waste plastic to PDFO 

Total Electricity Usage 3T electric processor + 

Shredder 
Total amount of electricity used for operating the 3T electric processor and industrial 
shredder 

Transportation Emissions CO2 emissions associated with use of Class 6-7 medium heavy duty vehicle for 
collecting and transporting waste plastic 
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Table 9.4. List of independent variables 

Stochastic Independent Variables 

Variable Description Source Assumption(s) Range of 
Uncertainty 

Employee 
Salary 

Salaries of vehicle driver 
and industrial shredder 

operator 

Data Africa (2021), 

Paylab (2021) 

Average salary for population 
working as general laborers. It is 
assumed that the NGO employs 

2 people for collecting waste 
plastic and 1 person for 

shredding it. 

3.10 – 5.56 ($/day) 

PDFO Sale Selling price of PDFO 
generated from 3T electric 

processor 

GlobalPetrolPrices.com 
(2021a) 

PDFO sold at a discounted price 
of diesel fuel. Fluctuation in 
diesel prices is assumed to be 

20%. 

0.7 – 1.12 ($/L) 

Plastic Sale Selling price of shredded 
plastic to entrepreneurs as 

determined by NGO 

 Value of shredded plastic is 
higher than that collected from 

local consumers. Linearly 
increased according to plastic 

purchase price. 

0.18 – 0.24 ($/kg) 

Plastic 
Purchase Price 

Local plastic purchase 
price, which serves as an 

incentive for consumers to 
sort household waste 

plastic 

KCCA (Chapter 3, 
Section 3.6.) 

Based on price per kg of plastic 
collected by waste pickers at 
Kiteezi landfill in Kampala, 

Uganda. 

0.11 – 0.17 ($/kg) 
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Plastic 
Collection 
Efficiency 

Percentage of plastic 
collected from the total 

amount of plastic 
generated by the 

community.  

 Reflects the amount of education 
provided by the NGO to the 

general population for sorting 
and recycling waste plastic, and 

the participation rate of the 
community. 

Minimized to 
determine the 

percentage of plastic 
collection required 

by NGO to 
breakeven. 

Annual 
Interest Rate 

Annual interest rate to 
account for inflation within 

country 

Trading Economics 
(2021) 

 2.4 – 3.4 (%) 

Purchasing 
Price of 

Equipment 

Total purchase price of 
either the 3T electric 

processor or the industrial 
shredder 

Chapter 7, Section 7.2 

INTBUYING (2021) 

3T electric processor costs are 
determined based on quality of 

fabrication materials. 

3T electric 
processor: 700 – 900 

($) 

Shredder: 1,459 – 
1,659 ($) 

“n” Number of years  Lifespan expectancy of 3T 
electric processor and industrial 

shredder 

3T electric 
processor: 3 – 5 

(years) 

Shredder: 5 – 7 
(years) 

Electricity 
Cost 

Cost of electricity per hour GlobalPetrolPrices.com 
(2021b) 

Electricity use for small-scale 
entrepreneur is charged 

according to household rate (0.19 
$/kWh); whereas the NGO is 
charged according to business 

rate (0.16 $/kWh). Fluctuation in 

Household: 0.15 – 
0.22 ($/kWh) 

Business: 0.13 – 
0.19 ($/kWh) 
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electricity price is assumed to be 
20%  

Fuel Price of diesel fuel for 
operating waste pickup 

vehicle 

GlobalPetrolPrices.com 
(2021) 

Fluctuation in diesel prices is 
assumed to be 20%. 

0.82 – 1.23 ($/L) 

Fuel Economy Fuel economy of a Class 6-
7 medium heavy duty 
waste pickup vehicle 

Haven, P. and Gutin, O. 
(2015) 

Varied between 2016-2021 
vehicle models 

18.47 – 23 
(gallons/1,000 ton-

mile) 

“MT” Metric tons N/A N/A N/A 

Weight of 
Empty Vehicle 

Weight of empty Class 6-7 
medium heavy duty waste 

pickup vehicle 

Energy Efficiency & 
Renewable Energy 

(2010). 

 11,500 – 14,500 (lb) 

Vehicle Bed 
Volume 

Volume of a Class 6-7 
medium heavy duty waste 

pickup vehicle 

Hawley (2021)  10 – 16 (cubic 
yards) 

Waste Plastic 
Bulk Density 

Bulk density of waste 
plastic collected from 

household wastes 

WRAP (2009) Field work data for mixed plastic 
with film measured in a 7.5-15 

MT caged stillage with no 
compaction and measured as 28 

kg/m3.  

20 – 40 (kg/m3) 

Maintenance 
& Repair 

Factor 

Average maintenance and 
repair costs associated with 

driving a heavy duty 
vehicle 

McClusky, B. (2012) Heavy duty vehicle assumed to 
be 0.05 $/mile for a new vehicle, 
or 0.15 $/mile for a 5+ years old 
or 750,000+ miles driven vehicle  

0.05 – 0.15 ($/mile) 
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Combustion 
Emissions 

Emissions generated from 
use of PDFO. 

 PDFO derived from polyolefin 
plastics (HDPE, LDPE, and PP) 

as reported in Chapter 7. 

2.24 – 2.34 (kg 
CO2/L of PDFO) 

Vehicle 
Emissions 

Factor 

Amount of CO2 emitted 
from a Class 6-7 medium 
heavy duty waste pickup 

vehicle 

Haven, P. and Gutin, O. 
(2015) 

The vehicles in operation in 
Uganda are likely to be older, 

used models. Hence, emissions 
are based on 2014 vehicle 

models. 

210 – 250 CO2 
g/short ton-mile 

Deterministic Independent Variables 

Variable Description Source Assumption(s) Value 

Overhead Overhead costs associated 
with NGO’s operation 

 10% of plastic sale  10 (%) 

Total Plastic 
Generated 

Amount of plastic 
generated per parish as 

determined in Table 9.1. 

Chapter 5 Chapter 5 Rubaga parish: 
1,941.55 (kg) 

Kololo IV parish: 
300.19 (kg) 

PDFO 
Conversion 

Energy 
Requirement 

The amount of energy 
required to produce a liter 

of PDFO from waste 
plastic 

Chapter 7 Chapter 7 1.45 (kWh/L of 
PDFO) 

PDFO 
Produced 

Total amount of PDFO 
produced from waste 

plastic collected 

Chapter 7 Chapter 7 0.87 (L PDFO/kg 
plastic) 
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Shredder 
Power 

Required 

Amount of power required 
to operate industrial 

shredder 

INTBUYING (2021)  2.2 (kW) 

Plastic 
Shredded 

Plastic shredding capacity 
of industrial shredder 

INTBUYING (2021)  125 (kg/h) 

Distance 
Travelled 

Total distance travelled by 
waste pickup vehicle 

Section 9.3.3 and 9.4.1 Section 9.3.3 and 9.4.1 Rubaga parish, 
Travelling 

Salesman: 12.85 
(km) 

Kolol IV parish, 
House-to-House: 

14.01 (km) 

Route 
Planning 

Factor 

A multiplication factor that 
accounts for the distance 
repeated by waste pickup 

vehicle when 
entering/existing roads to 

collect waste plastic 

Section 9.3.3 Section 9.3.3 Rubaga parish, 
Travelling 

Salesman: 1 

Kololo IV parish, 
House-to-House: 1.5 

Electricity 
Emissions 

CO2 emissions produced 
from electricity generation 

World Nuclear 
Association, 2011 

Electricity in Kampala, Uganda 
is sourced from a hydroelectric 

plant.  

0.026 (kg CO2/kWh) 
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9.3.2 Minimizing Transportation Costs via Travelling Salesman for Partially 

Decentralized LMDCE, Lower-Income/Slums  

For the purposes of this research, KCCA assisted in determining the waste data 

collection points in Rubaga parish by georeferencing the location of existing skips. 

Epicollect5 version 2.0, a web, and mobile data collection application (epicollect5, 2019) 

was used to collect georeferenced data regarding the municipal solid waste collection 

points. KCCA sourced and employed individuals from Rubaga division to travel with 

KCCA waste pickup vehicle drivers to mark the skips’ locations using Epicollect5 in 

smartphones featuring a global positioning system (GPS). The data collectors were 

recruited based on the individuals’ knowledge of the geographical boundaries of the 

Rubaga division, interpersonal relationships, and smartphone literacy, and were trained on 

how to use the Epicollect5 mobile application to collect the data. 

After data collection, the georeferenced KCCA skip locations were then imported 

to a QGIS software (QGIS 2019) with OpenStreetMap (OpenStreetMap, 2021) to begin 

conducting a travelling salesman analysis for the NGO collecting waste plastic in the 

partially decentralized LMDCE, lower-income/slums case study. In the initial supply chain 

considerations, the NGO is assumed to be located within the parish. Therefore, an empty 

plot of land was surveyed using QGIS and OpenStreetMap and used as the assumed 

location for the NGO. An inbuilt, free, QGIS transportation logistics and mapping tool, 

known as ORS Tools, was utilized to determine the optimum transportation route for the 

NGO by performing the travelling salesman calculations. ORS Tools is a crowdsourced 

application programing interface (API) from openrouteservice (openrouteservices, 2021). 

By relying on the existing global geographical data coverage present in OpenStreetMap, 
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ORS Tools has the functionality to compute directions, time-distance matrices, isochrones, 

and route optimizations (openrouteservice, 2021).  

The georeferenced skip locations and the chosen NGO facility location were added 

within the ORS Tools interface and its inbuilt travelling salesman calculation was 

performed (present in Advanced Configurations menu in ORS Tools). The optimum route 

and total distance travelled for gathering waste plastic from collection points within 

Rubaga parish were determined. 

9.3.3 Transportation Costs for Partially Decentralized LMDCE, Upper/Middle-Income 

In the house-to-house waste collection case study for partially decentralized 

LMDCE, upper/middle-income, the waste pickup vehicle was assumed to travel all the 

main roads of the Kololo IV parish. QGIS and OpenStreetMap were also employed in this 

scenario to determine the total distance of road infrastructure present in the parish. By using 

in-built OSM Downloader tool, multiline strings were downloaded as a map layer from 

OpenStreetMap. These multiline strings converted the existing road infrastructure into 

simple polylines that could be measured (by applying QGIS Add Geometry Attributes tool) 

to determine the distance of each string. The summation of distance provided the total 

distance travelled by the waste pickup vehicle for collecting waste plastic from each house 

or business within the parish.  

To account for the roads that are travelled in both directions for waste pickup, or 

that must be revisited for entering/exiting the region, the total road infrastructure distance 

was multiplied by a route planning factor. In this analysis, this factor was assumed to be 

1.5, indicating that half of the roads within the parish were travelled twice for waste plastic 

collection. 
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9.3.4 Uncertainty Assessment 

To understand and quantify the inherent uncertainty present in the variables of the 

LMDCE supply chain factors, a lower and upper range was determined for the stochastic 

variables to bookend their approximate values in reality. This procedure was followed for 

all stochastic variable using the ranges of uncertainty presented in Table 9.3. By allowing 

Microsoft Excel to randomly select each stochastic variable’s value between the specified 

range and by performing 1000 iterations for the calculations in Equations 9.1-9.17, resulted 

the following average outputs and their respective standard deviations: 

• Fully decentralized LMDCE, lower-income/slums 

o Number of processors supported by the region = number of jobs created for 

small-scale entrepreneurs 

o Small-scale entrepreneur earnings 

o PDFO generation and combustion emissions 

• Partially decentralized LMDCE, lower-income/slums 

o NGO earnings (minimized to breakeven) 

o Number of processors supported 

o Number of jobs created (small scale entrepreneurs and NGO employees) 

o Small-scale entrepreneur earnings 

o PDFO generation and combustion emissions 

• Partially decentralized LMDCE, upper/middle-income 

o NGO earnings (minimized to breakeven) 

o Number of processors supported 

o Number of jobs created (small scale entrepreneurs and NGO employees) 
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o Small-scale entrepreneur earnings 

o PDFO generation and combustion emissions 

Initially, the plastic collection efficiency was randomly varied with the other 

stochastic variables. This led to the earning of the NGO being higher than the breakeven 

point, or a profit was generated. For this reason, the plastic collection efficiency was 

minimized to determine the breakeven point for the NGO. In return, the amount of 

educational training required in the community for promoting waste plastic recycling is 

determined. The results of this analysis are presented in Section 9.4. 

9.4 Results and Discussion 

9.4.1 Travelling Salesman Results 

The optimized route for collecting waste plastic from skip locations in Rubaga 

parish for the partially decentralized LMDCE, lower-income/slums case study is presented 

in Figure 9.5. The total distance travelled by the waste pickup vehicle was 12.85 km. 

9.4.2 House-to-House Transportation Distance Results 

The total distance travelled by the waste pickup vehicle for collecting waste plastic 

from house-to-house for the partially decentralized LMDCE, upper/middle-income case 

study was determined to be 14.01 km, represented in Figure 9.6 for Kololo IV parish. 
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Figure 9.5. GIS results of travelling salesman approach for collecting waste plastic from 

Rubaga parish 

 

Figure 9.6.GIS results of house-to-house waste plastic collection for Kololo IV parish 
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9.4.3 Supply Chain Considerations and Uncertainty Assessment Results 

Table 9.5 reports the results of the fully and partially decentralized LMDCE case 

studies. In the fully decentralized LMDCE, lower-income/slums case study, the increased 

population density resulted in a greater amount of waste plastic being displaced from the 

ecosystem. Since this approach aims to identify the total LMDCE implementation potential 

by assuming 100% waste plastic conversion to PDFO, approximately 189 small-scale 

entrepreneur jobs were created with an average daily earning of $3.57. This is slightly 

higher than the average general labor rate of $3.10/day (Data Africa 2021). In this case 

study, the entrepreneur incentivizes community sorting of waste plastic by paying the local 

consumer $0.14/kg for the sorted waste plastic. 

Next, in the partially decentralized LMDCE case studies, both for the 

lower-income/slums and upper/middle-income regions, the amount of waste plastic 

collection from the community was minimized to determine the participation rate and 

waste management education requirements of consumers for breaking even. In the 

lower-income/slums region of Rubaga parish, a 20% participation rate was required for the 

NGO to purchase sorted waste plastic from consumers, collect it from the skip locations 

via travelling salesman approach, shred it, and sell it for an increased price to entrepreneurs. 

In doing so, the NGO earned approximately $1.56/day after all costs, and the entrepreneur 

earned $2.82/day. The NGO’s earnings are minimal since they reflect breakeven gains; 

however, as the entrepreneur pays a premium price for shredded waste plastic ($0.21/kg), 

the entrepreneur makes lower than the general labor rate (Data Africa 2021).  

A similar result is produced in the partially decentralized LMDCE for 

upper/middle-income parish of Kololo IV, where house-to-house waste collection by the 
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NGO and purchase of waste plastic from affluent consumers leads to significant upstream 

costs for the NGO. For instance, even if the NGO collects 100% of all waste plastic 

generated within the region, it experiences an average loss of $0.74/day without 

significantly increasing the selling price of plastic for the entrepreneurs. In return, the 

entrepreneur earns approximately $2.86/day for purchasing the shredded plastic at the 

premium price of $0.21/kg.  

As a result, two additional scenarios were tested for the partially decentralized 

LMDCE for upper/middle-income regions: 1) receiving the sorted waste plastic for free 

from consumers and 2) providing a plastic recycling service to the consumers by charging 

a fee for waste plastic pickup at $0.10/day per household (Table 9.5). Since the NGO 

doesn’t encounter any upstream plastic purchasing costs in these two scenarios, the NGO 

begins to breakeven in these two scenarios and the plastic collection efficiency decreases 

to 35% for free plastic pickup, and 20% for charged waste plastic pickup. The shredded 

plastic purchase price for the entrepreneurs is also reduced to $0.14/kg in these two 

scenarios. In return, the entrepreneurs’ earnings reflect those of the fully decentralized 

LMDCE case study.  

In general, as plastic collection efficiency decreases, the number of jobs created in 

the community decrease due to a decrease in demand for sorted waste plastic. A decrease 

in plastic collection efficiency further leads to an increase in CO2 generation emissions for 

implementing LMDCE in a partially decentralized case study. This is due to the waste 

pickup vehicle being primarily empty when collecting waste plastic from skips or from 

households at lower waste plastic collection efficiencies. Nonetheless, in all cases 

presented in Table 9.5, a net reduction in CO2 emissions is observed for generation and 
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combustion of PDFO via LMDCE, varying between 12.92-31.27%, with a standard 

deviation of 0.88-1.65% when compared with diesel WTT emissions.  

Lastly, the uncertainty assessment determined that by varying the independent 

stochastic variables considered in the supply chain case studies, the standard deviation for 

NGO earnings and small-scale entrepreneur earnings varied between 107.05-352.86% and 

31.93-39.51%, respectively. The high standard of deviation for the NGO’s earnings can be 

associated with the uncertainty of the community’s participation in waste plastic recycling 

and the NGO’s staffing approach, which contribute to approximately 95% of total 

operating costs. For instance, verifying if an incentive is needed for low-income/slums and 

upper/middle-income communities to sort the waste plastic and the price at which 

consumers are willing to sell the waste plastic to the NGO, will reduce upstream waste 

plastic collection costs and stabilize the size of the NGO’s outreach. Additionally, by 

stabilizing the average daily waste plastic collection and shredding operations, the staffing 

costs of the NGO may be reduced. For example, a set of individuals may be able to both 

collect the waste plastic from participating consumers and shred it in the same day, instead 

of hiring both vehicle drivers and operators for shredding the waste plastic.
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Table 9.5. Results of supply chain consideration and uncertainty assessment for fully and partially decentralized LMDCE case studies 

Case Study Fully Decentralized 
LMDCE, Lower-

Income/Slums, Plastic 
Purchased from 

Consumer 

Partially Decentralized 
LMDCE, Lower-

Income/Slums, Plastic 
Purchased from 

Consumer 

Partially Decentralized 
LMDCE, Upper/ 

Middle-Income, Plastic 
Purchased from 

Consumer 

Partially 
Decentralized 

LMDCE, Upper/ 
Middle-Income, Free 

Plastic Collection 

Partially Decentralized 
LMDCE, Upper/ Middle-
Income, Plastic Collection 

Fee Paid by Consumer 

Uncertainty Results Standard 
Deviation 

Results Standard 
Deviation 

Results Standard 
Deviation 

Results Standard 
Deviation 

Results Standard 
Deviation 

Plastic Collection 
Efficiency (%) 100 - 20 - 100 - 35 - 20 - 

Waste Plastic 
Displaced (kg) 1,892.41 - 378.48 - 385.16 - 134.81 - 77.03 - 

NGO Plastic 
Purchase Price 
($/kg) 

- - 0.14 - 0.14 - 0.00 - 
$0.10/day 

per 
household 

- 

Entrepreneur 
Plastic Purchase 
Price ($/kg) 

0.14 - 0.21 - 0.21 - 0.14 - 0.14 - 

3T electric 
processors 
Supported 

189 - 37 - 38 - 13 - 7 - 

Jobs Created 189 - 40 - 41 - 16 - 10 - 
NGO Earnings 
($/day) - - 1.56 1.67 0.74 1.79 0.70 2.47 1.07 1.92 

Small-Scale 
Entrepreneur 
Earnings ($/day) 

3.57 1.14 2.82 1.10 2.86 1.13 3.47 1.12 3.52 1.14 

PDFO 3T 
Emissions (% 
reduction from 
Diesel WTT 
Emissions) 

31.37 0.88 28.03 0.91 26.60 0.91 20.33 1.18 12.92 1.65 
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9.5 Application to Sustainability 

The economic sustainability of the LMDCE model is directly correlated to the 

amount of waste plastic present in a region, as depicted in Table 9.5. In the fully 

decentralized LMDCE for lower-income/slums region of Rubaga Parish, a total potential 

for 194 small-scale entrepreneur jobs existed. In the partially decentralized LMDCE for 

upper/middle-income region of Kololo IV, approximately 10-13 jobs could be supported 

based on the plastic collection efficiency. The profit earned by the entrepreneurs is 

primarily a function of the plastic purchasing price and the price of electricity, contributing 

to approximately 90% of the total operating costs. In like terms, breakeven costs for the 

NGO are impacted by the purchasing price of plastic and staffing requirements. However, 

as long as a demand exists for sorting and collecting waste plastic, and converting it into a 

meaningful recycled product locally, positive economic gains are anticipated from the sale 

of PDFO. 

The environmental sustainability of LMDCE is positive in all scenarios of fully and 

partially decentralized case studies. A net reduction in CO2 generation and combustion 

emissions is experienced when compared with WTT emissions for diesel. The CO2 

emissions are reduced from 12.92-31.27% for implementing LMDCE. This is because the 

waste plastic is sourced locally, transported locally, and converted to PDFO locally via a 

renewable form of electricity (hydroelectric power for Kampala, Uganda). In general, the 

fully decentralized model yields the highest emissions benefits as transportation emissions 

are eliminated. 

Defined as the measure of humanity’s welfare, in literature, social sustainability is 

indicated by protection of human health, participation and education of communities, 
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promotion of sustainable living, environmental justice, and resource security (Mohamed 

and Paleologos, 2021, USEPA, 2015). By considering these aspects, the societal 

sustainability of LMDCE implementation can be attributed to increasing rural and 

developing communities’ participation in recycling of valuable materials via a cradle-to-

grave approach that eliminates waste plastic from the environment. In return, the 

community benefits from improved health due to the reduction of waste plastic 

accumulation, and small-scale entrepreneurs experience increased standard of living that 

may further promote increased societal fairness. Specifically, the 3T electric processor can 

be operated by individuals with minimal technical education, including homemakers and 

single parents to either increase or supplement their daily income. 

9.6 Conclusion 

This research contribution analyzed the supply chain considerations of 

implementing LMDCE in a developing region for combating waste plastic accumulation 

via the 3T electric processor. Three LMDCE case studies were evaluated: 1) fully 

decentralized LMDCE in lower-income/slums with small-scale entrepreneurs individually 

collecting and processing waste plastic to PDFO, 2) partially decentralized LMDCE in 

lower-income/slum with NGOs serving as plastic collection facilities, collecting sorted 

waste plastic from skip locations, shredding and selling it to entrepreneurs for processing, 

and 3) partially decentralized LMDCE in upper/middle-income regions with NGOs 

collecting waste plastic from house-to-house, followed by the steps identified in part 2. 

Additionally, the impact of waste plastic collection efficiency, plastic purchase price, and 

range of uncertainty associated with stochastic variables were studied. Conclusively, the 

supply chain considerations and uncertainty assessment of LMDCE implementation in 
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developing regions yielded positive overall economic, environmental, and societal 

benefits. 
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CHAPTER 10. FUTURE WORKS 

The future works of this research contribution can be categorized into the following 

areas of further study, development, and analysis.  

10.1 Estimating Waste Plastic Generation Globally via Geographical Analysis 

This research utilized geographical analysis and availability of waste management 

data from Kampala, Uganda to estimate waste plastic generation for Sub-Saharan African 

regions at a community level. However, the Geographical Information System (GIS) and 

OpenStreetMap tools can be combined in a similar approach to estimate waste plastic 

generation for other developing regions globally, and will be especially beneficial in 

Norther Africa, South Asia, Middle East, South America, and Central America. By 

identifying data for a subset of these continents, waste plastic generation behavior can be 

predicted by the model to provide an estimated total waste plastic generation and the 

potential impacts of appropriate waste management solutions. 

10.2 PDFO Composition 

In this analysis, the effects of temperature and time on PDFO composition and 

stability were studied via gas chromatography-mass spectrometry (GC-MS) and 

thermogravimetric analyzer (TGA), respectively. However, PDFO composition can also 

be characterized using Fourier-transformed infrared spectrometry (FTIR), boiling point, 

and density. The results of these analysis can be similarly compared with diesel and 

kerosene to further assist in identifying optimum operating condition for generating a 

PDFO more similar to diesel or kerosene in appropriate technology applications.  
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The PDFO 3T processor also has the potential to serve as a simple, reflux column. 

Once PDFO has been generated by pyrolysis of waste plastic, it can be fed back in the 3T 

electric processor retort on a batch-scale to boil out distillates in the kerosene and diesel 

ranges according to the densities of traditional diesel and kerosene. This is an appropriate 

technology solution for fractioning PDFO, and its composition should be further verified 

using the analysis techniques mentioned above.  

10.3 Use of PDFO as an Alternative to Diesel and Kerosene 

Subsequently, the PDFO generated should be tested in a diesel engine or kerosene 

cookstove (based on PDFO composition) to determine its performance and emissions in 

comparison to traditional diesel and kerosene. The use of PDFO in diesel engines can ben 

modeled similar to previously published literature (Kalagaris, 2017a, Kalagaris 2017b, 

Kalagaris 2018, Kumar & Sankaranarayanan, 2016) to determine how PDFO produced in 

a locally managed decentralized circular economy (LMDCE) based appropriate technology 

setting differs from lab scale settings.  

To test the performance of PDFO in a kerosene cookstove as an alternative for 

cooking oil, the combustion emissions of PDFO should be assessed via U.S. Environmental 

Protection Agency (USEPA) methods 8260D (USEPA 2006) and 8270E (USEPA 2014), 

along with testing for particulates. USEPA method 8260D is industry standard for 

analyzing volatile organic compounds by gas chromatography-mass spectrometry 

(GC-MS) (USEPA 2006), while USEPA method 8270E analyzes semi-volatile organic 

compounds by GC-MS (USEPA 2014). Due to simple hydrocarbon chemistry of 

polyolefin-based plastics, PDFO does not generate sulfur oxide (SOx) emissions when 
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combusted. This advantage over traditional petroleum derived kerosene may lead to 

improved health for communities using kerosene as a source of cooking fuel.  
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APPENDIX A. SUPPLEMENTARY INFORMATION – METRIC 
GENERATION 

Methods 

In this study, we have established a metric based on the principles of sustainability 

to determine critical locations suitable for implementing locally managed decentralized 

solutions (LMDCE) for waste management, mainly targeting unsound disposal of waste 

plastic on land. A list of 200 countries were analyzed using 9 indicators, representing the 

three pillars of sustainability – economic, social and environmental. These indicators 

include, gross domestic product (GDP) (Billion USD), GDP per capita (USD), population, 

population below poverty line (%), population density (capita/km2), estimated MSW 

generation (MT/day), environmental stress (MT MSW/km2), estimated waste plastic in 

MSW (MT/day), and estimated unsound waste plastic disposal (MT/day). For a given 

nation, our goal was to understand how factors beyond environmental contributors, such 

as economic status and population growth impacted waste plastic generation and 

accumulation.  

To develop the metric, year 2016 was chosen as the basis for analysis since it is the 

latest available reported data. Country specific statistics for economic and social indicators 

were obtained from the U.S. Department of State and the U.S. Central Intelligence Agency 

(Central Intelligence Agency [CIA] 2017a, CIA 2017d, CIA 2017e, CIA, 2017f, U.S. 

Department of State, 2017). Environmental indicators, including of MSW generation per 

capita and % plastic in MSW were obtained from the World Bank (Hoornweg & Bhada-

Tata, 2012), while unsound MSW disposal information was obtained from Waste Atlas, an 

online crowdsourced MSW management database (Waste Atlas, 2017). Unsound MSW 
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disposal refers to open dumping or burning of waste in controlled or uncontrolled 

dumpsites. Hence, unsound waste plastic disposal was calculated based on percent of 

plastic present in MSW and percent of MSW unsoundly disposed. Additionally, total land 

area – excluding area occupied by major bodies of water – was used to calculate the 

population density and environmental stress, based on total population and MT of MSW 

generated per km2, respectively (CIA, 2017b).  

To address the problem of missing data for certain indicator categories for some 

countries, the World Bank income level (dependent on gross national income) and region 

classifications were used to group the countries and average the available reported data 

(Hoornweg & Bhada-Tata, 2012, Waste Atlas, 2017, World Bank, 2017). These averages 

were then substituted for the missing data. Grouping the countries based on these 

classifications simultaneously provided close approximations of current situations as 

countries in the same region with similar financial outlooks are likely to experience similar 

waste management challenges.  

These classifications were also used to determine the estimated percentage of waste 

plastic in MSW in 2016. To estimate this value, we linearly interpolated reported data on 

percent plastic in MSW for 2005 and 2025. The 2025 projections were based on income 

level; as a result, the nations with reported data for 2005 were assigned 2025 projection 

values. As mentioned previously, the countries with unreported percent plastic in MSW 

data for 2005, and hence, 2025, were estimated based on the grouping technique. This 

generated a complete list of percent plastic in MSW for 2005 and 2025, which was linearly 

interpolated for 2016. This final percent value was then multiplied by estimated MSW 

generation (MT/day) to obtain estimated waste plastic in MSW (MT/day).  
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Country Data 

The list of countries and regions was obtained from the U.S. Department of State 

(U.S. Department of State, 2017). This list accounted for a total of 202 established nations. 

This list does not include territories or islands occupied by several countries. From the list, 

Holy See, or Vatican City, and North Korea were removed due to lack of data in several of 

the economic, environmental, and social indicators, yielding a list of 200 nations. 

Palestinian territories were included, comprising of West Bank and Gaza Strip. 

Calculation Basis 

Three indicators were chosen as reference tools for estimating missing country-

specific data in each indicator type or as precursor data for calculating other indicators. All 

together they are:Income Level 2015, Region, and Land Area 2016 (km2). For each 

indicator, several countries, marked with an asterisk (*) were found to have insufficient 

data. Reported data in each indicator type was obtained from the same source for 

consistency. As a result, if the source did not report data for a given country, that country 

was marked with an (*).  

Income Level 2015 refers to income level thresholds as generated by The World 

Bank based on Gross National Income 2015 (World Bank, 2017), and includes Low 

Income (LI), Low Middle Income (LMI), Upper Middle Income (UMI) and High Income 

Countries (HIC). Region classifications include East Asia and Pacific (EAP), Europe and 

Central Asia (ECA), Latin America and the Caribbean (LCR), Middle East and North 

Africa (MENA), South Asia (SAR), Sub-Saharan Africa (AFR), and Organization for 

Economic Cooperation and Development (OECD) countries. However, the World Bank 
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(World Bank, 2017) reported Curacao, Nauru, Sint Maarten and Tuvalu as “other” in 

region-based classification. Consequently, for coherency, Income Level and geography of 

these regions were used to classify them. Curacao and Sint Maarten were classified as 

OECD, while Nauru and Tuvalu were identified as EAP.  

Data for (*) countries was estimated using Income Level and Region 

classifications. Again, based on the assumption that countries in the same region, with 

similar economic status are likely to face similar challenges and benefits, generated 

comparable data. Hence, in each group, an average of referenced available data was taken, 

which in return was used as a replacement for missing data. In some groups, referenced 

data was only available for one country, or only one country (with missing data) existed. 

In this case, an average of available countries in the overall Income Level category was 

taken as replacement for missing data. These methods were followed for all indicators, 

generating a complete set of data for the 200 countries evaluated in this study.  

The Land Area 2016 (km2) data was obtained from U.S. Central Intelligence 

Agency (CIA, 2017b). This category excluded area occupied by bodies of water in a 

country. However, for countries of Sudan and South Sudan, total area (land and water) was 

used, as this was the only information reported by the source. This calculation basis 

indicator was used to calculate Population Density (capita/km2) and Environmental Stress 

(tonnes of municipal solid waste/km2) indicators.  

Economic Indicators 

Gross Domestic Product (GDP) 2016 (Billion USD) and GDP per Capita 2016 

(USD) were used as economic indicators for this study. Data was obtained from U.S. 

Central Intelligence Agency (CIA, 2017d, CIA, 2017e, CIA, 2017f). Latest available data 
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was used as reported by the source. Countries with data prior to 2016 are footnoted. These 

economic indicators were used to identify developing, poverty-stricken countries where 

distributed solutions for waste plastic management can be used as entrepreneurial 

opportunities. 

Social Indicators 

The social indicators chosen for this study were based on population statistics. 

These include Population 2016, Population Below Poverty Line 2016 (%) and Population 

Density (capita/km2). The first two indicators were sourced from U.S. Central Intelligence 

Agency (CIA, 2017a, CIA, 2017e, CIA, 2017f). Population Density was calculated by 

diving Population 2016 by Land Area 2016 (km2). Countries with data prior to 2016 are 

footnoted. For Palestinian Territories, Population Below Poverty Line 2016 (%) was 

reported separately for West Bank and Gaza Strip. As a result, to obtain an average value 

of the overall region, the reported percentages for each region were multiplied by the 

respective population present to obtain total individuals living below poverty line in each 

region. These numbers were summed and divided by the total population of both regions, 

multiplied by 100 to obtain an average percentage value of Population Below Poverty Line 

2016 for Palestinian Territories. These social indicators were used to understand the impact 

of population on a country’s waste generation, how developed the population is, and the 

result of population density on determining the most feasible targeted solution to waste 

plastic management. 
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Environmental Indicators 

The Environmental indicators were specifically focused on waste accumulation. 

The indicators observed in this study include Estimated MSW Generation 2016 

(tonnes/day), Environmental Stress (tonnes MSW/km2), Estimated Waste Plastic in MSW 

2016 (tones/day) and Estimated Unsound Waste Plastic Disposal (tonnes/day). A 

publication by The World Bank, What a Waste, A Global Review of Solid Waste 

Management (Hoornweg & Bhada-Tata, 2012), reported the amount of MSW generated in 

kg/capita/day during 2005 and projected generation for 2025 for 161 countries (Hoornweg 

& Bhada-Tata, 2012). These two sets of data were linearly interpolated to estimate MSW 

generation in kg/capita/day for 2016. See Equation A.1. In addition, the missing data for 

the remaining 39 countries was obtained via average grouping as described in Calculation 

Basis. Lastly, this estimated MSW generation 2016 (kg/capita/day) was multiplied by 

Population 2016 and conversion factor of 1,000 from kg to tonnes to obtain Estimated 

MSW Generation 2016 (MT/day). Note, the total amount in tonnes/day for year 2016 is 

greater than that reported in What a Waste, Estimated Generation 2025 (MT/day) as the 

latter number only reports the amount of waste generated by the urban population of 2025.  

𝑌𝑌2 =
(𝑋𝑋2 − 𝑋𝑋1)(𝑌𝑌3 − 𝑌𝑌1)

(𝑋𝑋3 − 𝑋𝑋1)
+ 𝑌𝑌1,𝑃𝑃ℎ𝑃𝑃𝑃𝑃𝑃𝑃 𝑌𝑌2 𝑅𝑅𝑃𝑃 𝑅𝑅ℎ𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝑃𝑃𝑅𝑅𝐸𝐸𝑅𝑅 

(A.1) 

Environmental Stress (MT MSW/km2) is Estimated MSW Generation 2016 

(MT/day) divided by Land Area 2016 (km2), times 365 days. Furthermore, Estimated 

Waste Plastic in MSW 2016 (MT/day) was determined by using The World Bank data for 

145 countries, which reported % of MSW comprised of waste plastic for 2005 (Hoornweg 

& Bhada-Tata, 2012). The report moreover predicted the % increase in waste plastic 
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generation based on Income Level for year 2025. Hence, this data and Equation A.1 were 

used to generate % waste plastic for 2016, and remaining missing data was averaged based 

on available data, according to the method described previously. In conclusion, this % 

based result was multiplied by Estimated MSW Generation 2016 (MT/day) to obtain 

Estimated Waste Plastic in MSW 2016 (MT/day). Note, Turkey’s plastic composition % 

varied from 5-14% for year 2005; as a result, this data was treated as missing. The grouped 

average result for Turkey was 8.38%, which was concluded to be accurate in this case, and 

used for further calculations.  

Finally, an unsound disposal of MSW (%) category was added to estimate the 

amount of mismanaged waste. Waste Atlas, an online crowdsourced MSW management 

database was used as the source of this data (Waste Atlas, 2017). This data was reported in 

percentage and was directly correlated to the percent of unsound waste plastic disposal—

the target category, with the missing data being averaged according to grouping technique. 

This yielded Estimated Unsound Waste Plastic Disposal in (tonnes/day) after multiplying 

the percent unsound waste plastic disposed by Estimated Waste Plastic in MSW 2016 

(MT/day). This method of averaging data based on nearby regions was particularly helpful 

for this indicator. The reason being most of the missing data accounted for countries in the 

low or low-middle income level. In these regions, waste is disposed where convenient, and 

municipalities do not have resources to collect all the waste, let alone collect waste 

composition data, requiring for the data to be approximated based on similarity with nearby 

countries. Therefore, these are the countries in most need of and appropriate for a LMDCE 

as solutions to waste accumulation are managed by individuals, communities and waste 



 

169 
 

pickers rather than relying on governmental municipalities and established waste 

management infrastructure. 

Generation of Heat Map 

First, all countries in each economic, social and environmental indicator were given 

a value, or ranked, from 1 to 200. Countries that performed the poorest, were highly 

populated and generated the highest amount of waste were assigned low values, while the 

opposite were assigned top values. As a result, the lowest scoring country in each indicator 

type received a value of 1, while the best received the highest value. If in an indicator 

category, two or more countries had the same data value, they were given the same score. 

For instance, several OECD countries in the unsound disposal category reported 0% 

mismanagement of MSW. As a result, they were all assigned the same score. Therefore, in 

some indicator categories, the score did not reach up to 200.  

Furthermore, weighting factors were applied to each indicator type. Users can 

adjust global or indicator specific weighting factors according to a region’s unique 

challenges or to highlight a specific category that contributes to waste plastic 

mismanagement. Weighting factors were then multiplied by the country score, or rank. 

Both global weighting factors and indicator-specific weighting factors were considered. 

The purpose of the global weighting factors was to weigh the three pillars of sustainability 

(economic, social and environmental) equally. Likewise, the purpose of the indicator 

specific weighting factors was to weigh all indicators in each of the three pillars equally. 

Hence, initially, the global indicators were assigned values of 33.33%, while the 8 

individual indicators were given values of 50% (economic), 33.33% (social), and 25% 

(environmental). Lastly, the summation of each country’s indicator ranking multiplied by 
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its weighting factor, multiplied by the global weighting factor generated the data required 

for producing the heat map, as shown in Equation A.1 in the main body of the text. As a 

result, the country with the lowest total sum was noted to be the region where a LMDCE 

is likely to be successful. These regions are highlighted in the heat map with dark colors. 

In contrast, countries with highest total sum are likely to be economically developed, where 

waste management is currently occurring efficiently, and recycling practices are performed 

with a centralized circular economy, requiring minimal change, and were shaded with light 

colors on the heat map. The map was generated using mapchart.net online software 

(mapchart.net, 2018).
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APPENDIX B. TGA RESULTS OF PDFO AS A FUNCTION OF TIME 

 

Figure B.1 TGA Results for HDPE (370°C) as a function of time 

Note, sampling name convention is “PLASTIC Temperature-Run#-Sample#”, i.e., “HDPE 370-1-1” indicates the first sample for the 

first run of HDPE at 370°C. 

 

Figure B.2 TGA Results for HDPE (400°C) as a function of time 
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Figure B.3 TGA Results for LDPE (370°C) as a function of time 

 

Figure B.4 TGA Results for LDPE (400°C) as a function of time
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