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ABSTRACT OF DISSERTATION

A Tropical Approach to the Brill-Noether Theory Over Hurwitz Spaces

The geometry of a curve can be analyzed in many ways. One way of doing this
is to study the set of all divisors on a curve of prescribed rank and degree, known
as a Brill-Noether variety. A sequence of results, starting in the 1980s, answered
several fundamental questions about these varieties for general curves. However,
many of these questions are still unanswered if we restrict to special families of curves.
This dissertation has three main goals. First, we examine Brill-Noether varieties
for these special families and provide combinatorial descriptions of their irreducible
components. Second, we provide a natural generalization of Brill-Noether varieties,
known as Splitting-Type varieties, that parameterize this decomposition. Lastly,
we provide purely combinatorial descriptions of these Splitting-Type varieties and
explore the geometric consequences of these descriptions. These results are based
upon and extend tools and techniques from tropical geometry.
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Chapter 1 Background and Motivation

This chapter will provide a list of definitions, methods, and questions underlying
chapters 2, 3, and 4. While not self-contained, hopefully there is enough background
material here to give the non-expert a starting point for everything that follows.
References will be provided in each corresponding section.

1.1 Algebraic Geometry

Algebraic geometry is the study of geometric objects using algebraic methods. I
suggest chapter 1 of [21] for a thorough introduction. The central geometric objects
of interest are algebraic varieties, simultaneous solutions to a set of polynomials.
Some simple examples occur with only one equation, known as hypersurfaces. For
example, consider the polynomial y − x. The associated variety V (y − x), depicted
in 1.1, is the set of all pairs (x, y) such that y − x = 0.

x

y

Figure 1.1: The variety V (y − x)

For an example with more than one equation we can look to linear algebra. Con-
sider the system of equations

f1 = 2x− y − x− 2,

f2 = −x+ 2y − 1,

f3 = −x+ 2z − 1.

The variety X = V (f1, f2, f3) is the set of all triples (x, y, z) such that f1(x, y, z) =
f2(x, y, z) = f3(x, y, z) = 0. By solving this system of equations we can see that X is
just the single point (3, 2, 2).
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When you encounter a variety X in the wild there are several fundamental ques-
tions that you might want to answer.

1. How “large” is X?

2. Can X be decomposed into “smaller” pieces?

3. Is X “smooth?”

The term we use to describe the size of a variety is its dimension. For example, a
finite collection of points, like V (f1, f2, f3) in the previous example, is 0-dimensional,
a 1-dimensional variety, like V (y − x), is known as a curve, and a 2-dimensional
variety is known as a surface. In chapter 3 we focus on computing the dimensions
of certain varieties associated to a curve. Then in chapter 4 we provide a method to
count the number of points they contain in the 0-dimensional case.

Decomposing an object is a common theme in many mathematical fields. Al-
gebraic geometry uses a notion known as reducibility. Given a variety X there is
a suitable topology one can place on it, known as the Zariski topology, where the
closed subsets of X coincide with subvarieties of X. X is called reducible if it can be
decomposed into a finite union X = X1 ∪X2 of distinct subvarieties X1, X2 * X. If
no such decomposition exists, then we say X is irreducible. For example, the variety
V (xy) ⊂ R2 is a reducible variety, and can be decomposed as the union of the x and
y-axis, which are the varieties defined by V (y) and V (x), respectively.

V (y)

V (x)

Figure 1.2: The reducible variety V (xy)

The line V (y), on the other hand, is irreducible since the only subvarieties of
V (y) are finite unions of points. In chapter 3 we produce decompositions of certain
varieties into irredicuble components.

Finally, smoothness appears in many contexts. Algebraic geometers measure
smoothness using tangent spaces. Every variety X is defined by a set of polyno-
mial equations. Apriori, this set may be infinite. However the Hilbert Basis Theorem
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says that there always exists a finite set f1, ..., fr of polynomials that cuts out the
variety X = V (f1, ..., fr). The importance of this fact here is that we can look at
the Jacobian matrix of first-order partial derivatives of f1, ..., fr and evaluate this at
a point p ∈ X. We say p is a singular point if the rank of this evaluated Jacobian
matrix is lower than the rank of another point p′ ∈ X. A singular point is a point
with no well-defined tangency. In the case of curves this says the tangent-line at the
point p does not exist. Otherwise we say that p is a non-singular or smooth point of
X. A variety with no singular points is called smooth. For example, the unit circle
V (x2 + y2 − 1) is smooth, but the cuspidal cubic V (y2 − x3) is not.

Figure 1.3: The smooth variety V (x2 + y2 − 1) and the singular variety V (y2 − x3)

An important development in algebraic geometry has been the study of moduli
spaces. A moduli space is a space parameterizing all varieties, or associated objects,
with a given set of properties. An important feature of this development is that these
parameter spaces are also varieties that convey information about the objects they
parameterize. The moduli space M g parameterizing all smooth, projective curves of
genus g is of particular importance in the study of algebraic curves. Chapters 3-4 focus
on questions arising from curves in another moduli space Hg,k which parameterizes a
particular family of genus g curves, known as k-gonal curves. When we say a curve
is general we’ll mean that it is contained in a dense open subset of one of these two
moduli spaces.

1.2 Brill-Noether Theory

For this section I, again, refer the reader to [21], in particular Chapter 4. An important
question that arises when one studies varieties is the following. Suppose I have two
varieties X1, X2, how I do tell them apart? One way to distinguish them is if they
have different dimensions, but what if their dimensions are equal? The next step
might be to consider the reducibility or smoothness of these varieties.

After some consideration, though, one might notice that these types of questions
also affect the functions defined on the varieties. This functional perspective is a
modern approach to the classification problem. We instead try to understand which
functions encode which geometric properties and then set about trying to understand
all functions defined on an object. Brill-Noethery theory is concerned with studying
maps of curves into projective space f : C ↪→ Pr.

3



If a curve has an embedding into projective space Pr we call it projective. If it
is also smooth we can equivalently phrase the study of all embeddings as the study
of divisors on our curve. A divisor D on a curve C is a finite, linear combination of
the points of C using integer coefficients. The degree of a divisor is the sum of the
coefficients appearing in this linear combination, and it is effective if the coefficients
are all non-negative.

A rational function f on a variety X is a function that can be expressed as a
quotient of polynomials f = h/g. One can associate a divisor to f in canonical way
by defining (f) =

∑
p∈X ordp(f)p, where ordp(f) is the order of vanishing of f at p.

If f has a zero at p, then this coefficient is positive, if it has a pole it’s negative, and
otherwise it’s zero. Two divisors are called linearly equivalent if their difference is the
divisor of a rational function.

The rank of a divisor D is defined to be the largest integer r such that D − E is
linearly equivalent to an effective divisor, for all effective divisors E of degree r. If D
is not equivalent to any effective divisor it has rank −1.

Given a curve C, the Picard group of C, Pic(C), is the group of all divisors on C
modulo this linear equivalence. Further, given a pair (r, d) of non-negative integers,
one can define a space W r

d (C) ⊂ Pic(C) consisting of all divisor classes on C of degree
d and rank at least r. This parameter space is known as a Brill-Noether variety.
These varieties stratify the Picard group of C, so developing an understanding of
Brill-Noether varieties is key to understanding all divisors on a curve. A sequence of
results in the 1980s answered the fundamental questions listed in the previous section
in the case that C is a general curve in M g. Specifically, when C is a general curve
in M g:

• (Griffiths-Harris, [18]) dimW r
d (C) = ρ(g, r, d) = g − (r + 1)(g − d + r), and

W r
d (C) is empty when this value is negative,

• (Fulton-Lazarsfeld, [16]) W r
d (C) is irreducible when ρ(g, r, d) > 0, and

• (Gieseker, [17]) W r
d (C) is smooth away from W r+1

d (C).

A key technique to these results is known as degeneration. Instead of studying
divisors on smooth curves one studies divisors on mildly singular curves. If you can
show that you have a complete understanding of divisors on these singular curves
and can regenerate to divisors on smooth curves, then you also have a complete
understanding of divisors on smooth curves. One reason to focus on the divisor theory
of these singular curves is that this analysis can be done purely combinatorially.

An important distinction to emphasize is that the preceding results concern gen-
eral curves, not all curves. To generalize to all curves one first needs another way of
distinguishing curves. Since we first classify divisors by rank and degree, we can start
by restricting to divisors of a given rank. Given a fixed rank r one can ask for the
minimum degree d such that the Brill-Noether variety W r

d (C) is non-empty. A special
case occurs when we fix r = 1, which we refer to as the gonality of C. Returning to
general curves, you can use the Brill-Noether number

ρ(g, r, d) = g − (r + 1)(g − d+ r)

4



to deduce that the gonality of a general curve is bg+3
2
c. From here on, when we refer

to a k-gonal curve we mean a curve with gonality k smaller than bg+3
2
c. The moduli

space of all curves of genus g and gonality k is the Hurwitz space Hg,k mentioned in
the preceding section.

The purpose of this dissertation is to develop tools and techniques to understand
the Brill-Noether varieties of k-gonal curves. We do this after a degeneration, where
instead of focusing on the divisors of smooth curves, or even mildly singular curves,
we focus on the divisor theory of a particular family of tropical curves. The divisor
theory on these curves may again be described completely combinatorially, as we
show, and introduces the field to rich, well-studied areas of combinatorics that may
now have unknown geometric implications.

1.3 Tropical Geometry

Tropical geometry is sometimes referred to as a combinatorial shadow of algebraic
geometry. Most of the definitions and language one sees in papers about tropical
geometry are natural combinatorial analogues of those found in algebraic geometry.
There also tend to be two distinct approaches one finds when reading papers, articles,
or books about the subject. While they may seem incomparable at first, there is an
important connection between them. In the end, one may view the difference between
these approaches as analogous to the difference between studying a variety with a
choice of embedding or an abstract variety.

The first approach involves the study of varieties defined over the tropical semiring,
(R∪{∞},⊕,⊗). For an appropriate introduction I suggest [28]. As a word of caution,
the symbols ⊕,⊗ are used differently in this section than any other section of this
dissertation. In the following sections ⊕ is the direct sum of line bundles and ⊗ is
their tensor product.

Given two elements x, y ∈ R ∪ {∞} we define

• x⊕ y = min{x, y}, and

• x⊗ y = x+ y.

All of the usual properties one desires of an addition and a multiplication hold except
for the existence of subtraction. That is to say, something like x⊕3 = 3 does not have
a unique solution. It is for this reason that (R ∪ {∞},⊕,⊗) is a semiring and not a
ring, or field. Tropical varieties are defined to be the solutions to sets of polynomials
in the tropical semiring, which is to say one must use the definitions of ⊕ and ⊗. A
first step to understanding tropical varieties is to start with tropical hypersurfaces.
In this case we have

V (f) = {w ∈ Rn|the minimum in f(w) is achieved at least twice}.

For example, consider f = x⊕ y ⊕ 0 = min{x, y, 0}. V (f), a tropical line, is

V (f) = {x = y ≤ 0} ∪ {x = 0 ≤ y} ∪ {y = 0 ≤ x}.

5



(0, 0)

Figure 1.4: A tropical line

The transition from algebraic to tropical geometry involves valuations. If K is a
field, a valuation on K is a function ν : K∗ → R ∪ {∞} satisfying the following1:

• ν(a) =∞ if and only if a = 0

• ν(a+ b) ≥ min{a, b}, and

• ν(ab) = ν(a) + ν(b).

The way we travel from algebraic geometry to tropical geometry is by picking our
favorite field K, a valuation ν on K, and our favorite subvariety X of the torus (K∗)n.
The tropicalization of X, trop(X), is

trop(X) = {(ν(x1), ..., ν(xn))|(x1, ..., xn) ∈ X}.

Tropical varieties are combinatorial objects known as polyhedral complexes, a collec-
tion Σ of polyhedra satisfying the following:

• If P is in Σ, then so is any face of P , and

• if P and Q are in Σ, then P ∩Q is either empty or a face of both P and Q.

A polyhedron P is the intersection of finitely many closed half-spaces, that is P =
{x ∈ Rn|Ax ≤ b}, where A is a d× n matrix and b ∈ Rd.

In particular, when X is an irreducible variety of dimension d trop(X) is of pure
dimension d and connected through codimension 1 ([28]). A polyhedral complex is
pure of dimension d if every polyhedron of Σ that isn’t a face of another polyhedron
has dimension d. It is additionally connectd through codimension 1 if for any two
d-dimensional cells P, P ′ of Σ there is a chain P = P1, P2, ..., Ps = P ′ such that Pi
and Pi+1 share a common facet Fi.

1There are two conventions for valuations one encounters, known as the “max” and “min”
conventions. The one introduced here is the min convention. The other uses the max by replacing
∞ with −∞ and flipping the necessary inequality, but there’s no substantial difference between the
two.

6



It is important to be aware that the converse of this statement is not true in
general. Not every polyhedral complex of pure dimension d that is connected through
codimension 1 is the tropicalization of a variety. This suggests the usage of the phrase
combinatorial shadow; what you see may not come from what you expect.

Establishing when a polyhedral complex satisfying these criteria is the tropical-
ization of a variety is an important question in this field. In order to accomplish this
you most commonly develop what are called lifting techniques, which are the tropical
analogs of regeneration theorems from Brill-Noether theory and other problems us-
ing degeneration arguments. In chapter 4 we establish that the tropical varieties we
study are of pure dimension d and connected through codimension 1. This suggest,
with other evidence, that they are the tropicalizations of their algebraic analogues.

Now for a brief discussion on the other flavor of tropical geometry one finds that
references Berkovich analytic spaces. For a much better description I highly recom-
mend [31]. First, let K be a nonarchimedean field, which is to say that K is a field
with a norm |−| that does not satisfy the archimedean property. Given a variety X =
V (f1, ..., fr) one can associate a seminorm on the ring K[X] = K[x1, ..., xn]/(f1, ..., fr)
to a point x ∈ X. A multiplicative seminorm is a function | − | : K[x] → R≥0 that
satisfies

• |fg| = |f ||g|, and

• |f + g| ≤ |f |+ |g|.

The seminorm associated to x ∈ X is |f |x = |f(x)|. For simplicity we restrict to the
cases when |− |x is actually the given norm |− | when restricting to K, in which case
we say | − |x extends the norm on K. Since the norm on K is nonarchimedean it
holds that | − |x also satisfies the ultrametric inequality

|f + g| ≤ max{|f |, |g|}, with equality if and only if |f | 6= |g|.

We then define the Berkovich analytification of X, Xan, to be the space of all semi-
norms on K[X] that extend the norm on K.

The connections between these two approaches was made precise in [30] and [15],
which show that the analytification of a variety X is the limit, in a technical sense,
of all tropicalizations of X. We focus on something known as the skeleton of Xan.
When X is a curve the analytification is a metric graph Γ. A metric graph can either
be viewed as a union of intervals of varying length, or a discrete graph with weights
associated to the edges.

One can form a theory of divisors on metric graphs analogous to that of divisors on
algebraic curves. Here rational functions on Γ are piecewise linear functions φ : Γ→ R
with integer slopes and ordv(φ) is the sum of the incoming slopes of φ at v. While
these definitions are for arbitrary metric graphs, we are interested in the case when
Γ is a chain of loops, as depicted in Figure 2.2. The reason we focus on this case is
that the chain of loops behaves much like the mildly singular curves discussed in the
preceding chapter.

Copyright© Kaelin J. Cook-Powell, 2021.
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Chapter 2 Preliminaries

The material for this preliminary chapter is drawn from the papers Components of
Brill-Noether Loci for Curves with Fixed Gonality and Tropical Methods in Hurwitz-
Brill-Noether Theory, both authored by Cook-Powell-Jensen. The first has been
accepted for publication in the Michigan Math Journal and the second is a preprint.

2.1 Splitting Types

In this section, we review the definition of splitting types and discuss some of their
basic properties. Let π : C → P1 be a branched cover of degree k and genus g, and
let L be a line bundle on C. The pushforward π∗L is a vector bundle of rank k on
P1, and every vector bundle on P1 splits as a direct sum of line bundles

π∗L ∼= O(µ1)⊕ · · · ⊕ O(µk).

The integers µ1, . . . , µk are unique up to permutation. We will assume throughout
that

µ1 ≤ µ2 ≤ · · · ≤ µk.

The vector µ = (µ1, . . . , µk) is known as the splitting type of the vector bundle, and
we write π∗(L) ∼= O(µ) for ease of notation. It is helpful to think of a splitting type µ
as a partition with possibly negative parts. This is because, for any `, the sum of the
` smallest entries of µ is a lower semicontinuous invariant. It is therefore natural to
endow the set of splitting types with a partial order, extending the dominance order
on partitions.

Definition 2.1.1. We define the dominance order on splitting types as follows. Let
µ and λ be splitting types satisfying

∑k
i=1 µi =

∑k
i=1 λi. We say that µ ≤ λ if and

only if
µ1 + · · ·+ µ` ≤ λ1 + · · ·+ λ` for all ` ≤ k.

The splitting type of π∗L determines the rank and degree of the line bundle L, as
well as the rank of all its twists by line bundles pulled back from the P1. This can be
seen by the Projection Formula, as follows:

h0(C,L⊗ π∗OP1(m)) = h0(P1, π∗L⊗OP1(m)) (?)

=
k∑
i=1

h0(P1,OP1(µi +m))

=
k∑
i=1

max{0, µi +m+ 1}.
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In particular, we have

h0(L) =
k∑
i=1

max{0, µi + 1} and

degL = g + k − 1 +
k∑
i=1

µi.

For ease of notation, we write these expressions as:

h0(C,L⊗ π∗O(m)) = xm(µ) :=
k∑
i=1

max{0, µi +m+ 1} (2.1)

h1(C,L⊗ π∗O(m)) = ym(µ) :=
k∑
i=1

max{0,−µi −m− 1}

degL = d(µ) := g − 1 +
k∑
i=1

(µi + 1).

This data suggests the following definition.

Definition 2.1.2. Let C be a k-gonal curve and µ a splitting type, then the splitting
type loci are the strata

Wµ(C) = {L ∈ Pic(C) | π∗L ∼= O(µ)}

W
µ
(C) =

{
L ∈ Picd(µ)(C) | h0(C,L⊗ π∗O(m)) ≥ xm(µ) for all m

}
.

Example 2.1.3. Let C be a trigonal curve of genus 5. We will show that W 1
4 (C) has 2

irreducible components, both isomorphic to C. First, there is a 1-dimensional family
of rank 1 divisor classes obtained by adding a basepoint to the g1

3. If D ∈ W 1
4 (C)

is not in this 1-dimensional family, then D − g1
3 is not effective. It follows from the

basepoint free pencil trick that the multiplication map

ν : H0(D)⊗H0(g1
3)→ H0(D + g1

3)

is injective. The divisor class D + g1
3 is therefore special. From this we see that the

Serre dual KC −D is a divisor class in W 1
4 (C) with the property that (KC −D)− g1

3

is effective.
We therefore see that W 1

4 (C) has two components, both isomorphic to C, as
pictured in Figure 2.1. One of these components consists of divisor classes D such
that D−g1

3 is effective, and the other component consists of the Serre duals of classes
in the first component. Since KC − 2g1

3 is effective of degree 2, we see that these two
components intersect in 2 points.

Alternatively, this analysis can be carried out by examining the splitting type
stratification of W 1

4 (C). By (?), we see that line bundles in the first component, in the
complement of the two intersection points, have splitting type (−2,−2, 1). Similarly,
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line bundles in the second component, in the complement of the two intersection
points, have splitting type (−3, 0, 0). Finally, the two line bundles in the intersection
have splitting type (−3,−1, 1). Notice that this third splitting type is smaller than
each of the previous two in the dominance order, and that the codimension of each
stratum in Pic4(C) is the magnitude of the splitting type.

W (−3,0,0)

W (−2,−2,1)

W (−3,−1,1)

Figure 2.1: Stratification of W 1
4 for a general curve of genus 5 and gonality 3.

Equation (2.1) above show thatWµ(C) is contained in W
µ
(C). The strataW

µ
(C)

are closed, whereas the strata Wµ(C) are locally closed. It is not necessarily the case
that W

µ
(C) is the closure of Wµ(C). This is the case, however, when all splitting

type loci have the expected dimension. (See [25, Lemma 2.1].)
The expected codimension of W

µ
(C) in Picd(µ)(C) is given by the magnitude

Definition 2.1.4. The magnitude of a splitting type µ is

|µ| :=
∑
i<j

max{0, µj − µi − 1}.

A consequence of (2.1) is that the sum of the ` largest entries of µ is an upper
semicontinuous invariant. This defines a natural partial order on splitting types.
Specifically, given two splitting types µ and λ such that d(µ) = d(λ), we say that
µ ≤ λ if

µ1 + · · ·+ µ` ≤ λ1 + · · ·+ λ` for all ` ≤ k.

If one considers a splitting type to be a partition of d(µ) with possibly negative parts,
then this partial order is the usual dominance order on partitions. This partial order
has the following interpretation.

Lemma 2.1.5. If µ ≤ λ, then xm(µ) ≥ xm(λ) for all m, hence W
µ
(C) ⊆ W

λ
(C).

Proof. Let m be an integer and J the minimal index such that λJ +m+ 1 ≥ 0. Since
µ ≤ λ, we have

µ1 + · · ·+ µk = λ1 + · · ·+ λk

µ1 + · · ·+ µJ−1 ≤ λ1 + · · ·+ λJ−1,
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which together imply that

µJ + · · ·+ µk ≥ λJ + · · ·+ λk.

Hence

k∑
i=1

max{0, λi +m+ 1} = (λJ +m+ 1) + · · ·+ (λk +m+ 1)

≤ (µJ +m+ 1) + · · ·+ (µk +m+ 1) ≤
k∑
i=1

max{0, µi +m+ 1}.

Maximal Splitting Types

For the remainder of this section, we fix positive integers g, r, d, and k such that
r > d− g. Among the possible splitting types of line bundles of degree d and rank at
least r on a k-gonal curve of genus g, we identify those that are maximal with respect
to the dominance order.

Definition 2.1.6. Let α ≤ min{r + 1, k − 1} be a positive integer. By the division
algorithm, there exists a unique pair of integers q, β such that

r + 1 = qα + β, 0 ≤ β < α.

Similarly, there exists a unique pair of integers q′, β′ such that

g − d+ r = q′(k − α) + β′, 0 ≤ β′ < k − α.

We define the splitting type µα as follows:

µα,i :=


−q′ − 2 if 0 < i ≤ β′

−q′ − 1 if β′ < i ≤ k − α
q − 1 if k − α < i ≤ k − β
q if k − β < i ≤ k.

Heuristically, µα is the “most balanced” splitting type of degree d and rank r,
subject to the constraint that precisely α of its entries are nonnegative. We show that
the expected codimension of Wµα(C) coincides with the dimensions of irreducible
components of W r

d (C) predicted by [33, Question 1.12].

Lemma 2.1.7. For any integer α, we have

g − |µα| = ρ(g, α− 1, d)− (r + 1− α)k.

Proof. First, recall that

|µα| =
∑
i<j

max{0, µα,j − µα,i − 1}.
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If i < j ≤ k − α, then µα,j − µα,i ≤ 1, so the pair (i, j) does not contribute to the
sum above. Similarly, if k − α < i < j, then µα,j − µα,i ≤ 1, so again the pair (i, j)
does not contribute to the sum above.

On the other hand, if i ≤ k−α and j > k−α, then the pair (i, j) does contribute
to the sum. There are precisely (k−α)α such pairs, each µα,i with i ≤ k−α appears
in exactly α of these pairs, and each µα,j with j > k − α appears in exactly k − α of
these pairs. It follows that we may rewrite the sum above as

|µ| = (k − α)
k∑

j=k−α+1

µj − α
k−α∑
i=1

µi − (k − α)α

= (k − α)(r + 1− α) + α(g − d+ r + k − α)− (k − α)α

= α(g − d+ α− 1) + (r + 1− α)k.

Subtracting both sides from g yields the result.

Recall that the integers g, r, d, and k are fixed. We will say that a splitting type
is maximal if it is maximal with respect to the dominance order among all splitting
types satisfying

k∑
i=1

µi = d+ 1− g − k

and
k∑
i=1

max{0, µi + 1} ≥ r + 1.

In the rest of this section, we show that the maximal splitting types are precisely the
splitting types µα, when either α ≥ k − (g − d+ r) or α = r + 1. We first prove the
following reduction step.

Lemma 2.1.8. A maximal splitting type µ satisfies

k∑
i=1

max{0, µi + 1} = r + 1.

Proof. For the purposes of this argument, we define

h(µ) =
k∑
i=1

max{0, µi + 1}.

Let µ be a splitting type satisfying

k∑
i=1

µi = d+ 1− g − k

and h(µ) ≥ r + 1. We will show, by induction on h(µ), that there exists a splitting
type λ such that µ ≤ λ and h(λ) = r + 1.
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Since r ≥ 0, we see that µk ≥ 0, and since h(µ) ≥ r + 1 > d − g + 1, we see
that µ1 < −1. There therefore exists an integer i such that µi > µi−1. Let j be the
smallest such integer and j′ the largest such integer. Since µ1 < −1 and µk ≥ 0,
either j < j′, or j = j′ and µj−1 < µj − 1. It follows that the vector µ′ obtained from
µ by adding 1 to µj−1 and subtracting 1 from µj′ is nondecreasing, and therefore a
valid splitting type. Moreover, we have µ < µ′. Since µj−1 < −1 and µj′ ≥ 0, we see
that h(µ′) = h(µ)− 1, and the result follows by induction.

We now show that every maximal splitting type is of the form µα for some α.

Lemma 2.1.9. Let µ be a splitting type satisfying

k∑
i=1

µi = d+ 1− g − k

and
k∑
i=1

max{0, µi + 1} = r + 1.

Let α denote the number of nonnegative entries of µ. Then µ ≤ µα.

Proof. By assumption, we have

k∑
i=k−α+1

µi = r + 1− α =
k∑

i=k−α+1

µα,i.

It follows that
k−α∑
i=1

µi = −(g − d+ r)− (k − α) =
k−α∑
i=1

µα,i.

Because the entries of µ are ordered from smallest to largest, for any ` ≤ k − α, we
see that ∑̀

i=1

µi ≤
`

k − α

k−α∑
i=1

µi =
−`(g − d+ r)

k − α
− `.

Similarly, for any ` ≤ α, we see that

k−α+`∑
i=k−α+1

µi ≤
`

α

k∑
i=k−α+1

µi =
`(r + 1)

α
− `.

By definition of µα, therefore, we have µ ≤ µα.

Corollary 2.1.10. If µ is a maximal splitting type, then µ = µα for some integer
α.
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Proof. Let µ be a maximal splitting type. By Lemma 2.1.8, we see that

k∑
i=1

max{0, µi + 1} = r + 1.

Let α denote the number of nonnegative entries of µ. By Lemma 2.1.9, we have
µ ≤ µα, but since µ is maximal, it follows that µ = µα.

We now show that, if α < min{k − (g − d+ r), r + 1}, then µα is not maximal.

Lemma 2.1.11. If α < min{k − (g − d+ r), r + 1}, then µα < µα+1.

Proof. Since g − d + r < k − α, by definition we have µα,k−α = −1. If r + 1 is not
divisible by α, consider the splitting type µ obtained from µα by adding 1 to µα,k−α
and subtracting 1 from µα,k−β+1. On the other hand, if r + 1 is divisible by α, then
since α < r + 1, we must have µα,k−α+1 > 0. In this case, consider the splitting
type µ obtained from µα by adding 1 to µα,k−α and subtracting 1 from µα,k−α+1. In
either case, we see that µ is a splitting type with α+1 nonnegative entries, satisfying
µα < µ. By Lemma 2.1.9, we have µα < µ ≤ µα+1.

Finally, we see that the remaining splitting types µα are maximal.

Proposition 2.1.12. The splitting type µ is maximal if and only if µ = µα for some
integer α satisfying either α ≥ k − (g − d+ r) or α = r + 1.

Proof. By Corollary 2.1.10, every maximal splitting type is of the form µα for some
integer α. By Lemma 2.1.11, if α < k − (g − d + r) and α 6= r + 1, then µα is not
maximal. It therefore suffices to show that, if α 6= γ are both greater than or equal
to k − (g − d+ r), then µα and µγ are incomparable.

Without loss of generality, assume that α < γ. We write

r + 1 = qαα + βα 0 ≤ βα < α

= qγγ + βγ 0 ≤ βγ < γ.

Since α < γ, we see that qα ≥ qγ. Moreover, since γ ≤ r + 1, we see that both qα
and qγ are positive. It follows that, if qα = qγ, then βα > βγ. Thus, if j is the largest
integer such that µα,j 6= µγ,j, then µα,j > µγ,j. If µα and µγ are comparable, then we
see that µα < µγ.

Since k − α ≤ g − d + r, we see by a similar argument that if j′ is the smallest
integer such that µα,j′ 6= µγ,j′ , then µα,j′ > µγ,j′ . It follows that if µα and µγ are
comparable, then µα > µγ. Combining these two observations, we see that µα and
µγ are incomparable.

2.2 Divisor Theory of Chains of Loops

In this section, we survey the theory of special divisors on chains of loops, as discussed
in [33, 34, 22]. We refer the reader to those papers for more details. For a more
general overview of divisors on tropical curves, we refer the reader to [3, 4]. For the
uninitiated, we will not require most of the material of these papers; we will use only
the classification of special divisors on chains of loops from [33, 34].
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Chains of Loops and Torsion Profiles

Let Γ be a chain of g loops with bridges, as pictured in Figure 2.2. Each of the g
loops consists of two edges. We denote the lengths of the top and bottom edge of
the jth loop by `j and mj, respectively. The Brill-Noether theory of chains of loops
is governed by the torsion orders of the loops.

`j

mj

Figure 2.2: The chain of loops Γ.

Definition 2.2.1. [34, Definition 1.9] If `j +mj is an irrational multiple of mj, then
the jth torsion order τj of Γ is 0. Otherwise, we define τj to be the minimum positive
integer such that τjmj is an integer multiple of `j +mj. The sequence τ = (τ1, . . . , τg)
is called the torsion profile of Γ.

For the remainder of this paper, we assume that the torsion profile of Γ is given by

τi :=

{
0 if i < k or i > g − k + 1
k otherwise.

This chain of loops with this torsion profile possesses a distinguished divisor class of
rank 1 and degree k, given by g1

k = kvk, where vk is the lefthand vertex of the kth
loop.

Remark 2.2.2. Note that, unlike [33, Definition 2.1], we do not require the first k−1
loops or the last k − 1 loops to have torsion order k. This choice does not affect the
gonality, or more generally the Brill-Noether theory, of this metric graph. A primary
reason for this choice is that the space of such metric graphs has dimension equal to
that of the Hurwitz space, namely 2g + 2k − 5.

In [34], Pflueger classifies the special divisor classes on chains of loops. This
classification generalizes that of special divisor classes on generic chains of loops in
[11]. Specifically, Pflueger shows that W r

d (Γ) is a union of tori, where the tori are
indexed by certain types of tableaux. While Pflueger’s analysis applies to chains of
loops with arbitrary torsion profiles, we record it only for the torsion profile above.
For ease of notation, given a positive integer a we write [a] for the finite set {1, . . . , a}.
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Definition 2.2.3. [33, Definition 2.5] Let λ be a partition. Recall that a tableau on
λ with alphabet [g] is a function t : λ→ [g] satisfying:

t(x, y) < t(x, y + 1) and t(x, y) < t(x+ 1, y) for all (x, y).

A tableau t is standard if t is injective. A tableau t on a partition λ is called a k-
uniform displacement tableau if, whenever t(x, y) = t(x′, y′), we have y− x ≡ y′ − x′
(mod k).

It is standard to depict a tableau on λ as the diagram of boxes (x, y) ∈ λ, where
the box in position (x, y) is filled with the symbol t(x, y). We draw our tableaux
according to the English convention, so that the box (1, 1) appears in the upper
lefthand corner.

Coordinates on Pic(Γ)

A nice feature of the chain of loops is that its Picard group has a natural system of
coordinates. On the jth loop, let 〈ξ〉j denote the point located ξmj units from the
righthand vertex in the counterclockwise direction. Note that

〈ξ〉j = 〈η〉j if and only if ξ = η (mod τj).

By the tropical Abel-Jacobi theorem [5], every divisor class D of degree d on Γ has a
unique representative of the form

(d− g)〈0〉g +

g∑
j=1

〈ξj(D)〉j,

for some real numbers ξj(D). Because this expression is unique, the functions ξj
form a system of coordinates on Picd(Γ). This representative of the divisor class D
is known as the break divisor representative [29, 1].

Definition 2.2.4. [34, Definition 3.5] Given a degree d and a k-uniform displacement
tableau t with alphabet [g], we define the coordinate subtorus T(t) as follows.

T(t) := {D ∈ Picd(Γ)|ξt(x,y)(D) = y − x (mod k)}.

Note that the coordinate ξj(D) of a divisor class D in T(t) is determined if and
only if j is in the image of t. It follows that the codimension of T(t) in Picd(Γ)
is the number of distinct symbols in t. The main combinatorial result of [34] is a
classification of special divisors on Γ.

2.3 Partitions and Tableaux

Throughout, we use the convention that N denotes the positive integers. By a slight
abuse of terminology, we use the term partition to refer to the Ferrers diagram of a
partition.
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Definition 2.3.1. A partition is a finite subset λ ⊂ N2 with the property that, if
(x, y) ∈ λ, then

1. either x = 1 or (x− 1, y) ∈ λ, and

2. either y = 1 or (x, y − 1) ∈ λ.

It is standard to depict a partition as a set of boxes, with a box in position (x, y)
if (x, y) ∈ λ. We follow the English convention, so that the box (1, 1) appears in the
upper lefthand corner. Given a partition λ, we define its transpose to be

λT := {(x, y) ∈ N2 | (y, x) ∈ λ}.

The corners of a partition will play an important role in our discussion.

Definition 2.3.2. Let λ be a partition. A box (x, y) ∈ λ is called an inside corner if
(x+ 1, y) /∈ λ and (x, y + 1) /∈ λ. A box (x, y) /∈ λ is called an outside corner if

1. either x = 1 or (x− 1, y) ∈ λ, and

2. either y = 1 or (x, y − 1) ∈ λ.

In other words, a box (x, y) ∈ λ is an inside corner if λr (x, y) is a partition, and
a box (x, y) /∈ λ is an outside corner if λ ∪ (x, y) is a partition.

Given a positive integer g, we write [g] for the finite set {1, 2, . . . , g}, and let
(

[g]
n

)
denote the set of size-n subsets of [g]. A tableau on a partition λ with alphabet [g] is
a function t : λ→ [g] satisfying:

t(x, y) > t(x, y − 1) for all (x, y) ∈ λ with y > 1, and

t(x, y) > t(x− 1, y) for all (x, y) ∈ λ with x > 1.

We depict a tableau by filling each box of λ with an element of [g]. The tableau
condition is satisfied if the symbols in each row are increasing and the symbols in
each column are increasing. We write Y T (λ) for the set of tableaux on the partition
λ. Given a tableau t on λ, we define its transpose to be the tableau tT on λT given
by

tT (x, y) = t(y, x) for all (x, y) ∈ λT .

We write Y Tk(λ) for the set of k-uniform displacement tableaux on the partition
λ. The k-uniform displacement condition is satisfied if the lattice distance (or taxicab
distance) between any two boxes containing the same symbol is a multiple of k. For
example, Figure 2.3 depicts a 3-uniform displacement tableau with alphabet [5]. Note
that the two boxes containing the symbol 3 have lattice distance 3, and any two of
the three boxes containing the symbol 5 have lattice distance a multiple of 3.
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1 3 4 5

2 5

3

5

Figure 2.3: A 3-uniform displacement tableau with alphabet [5].

The Jacobian of Γ has two natural systems of coordinates. The first uses the
theory of break divisors from [29, 1]. On the jth loop, define 〈ξ〉j to be the point
of distance ξmj from the righthand vertex in the counterclockwise direction. Every
divisor class D of degree d has a unique break divisor representative of the form

(d− g)〈0〉g +

g∑
j=1

〈ξj(D)〉j.

Because this representative is unique, the functions ξj : Picd(Γ)→ R/
(
mj+`j
mj

)
Z act

as a system of coordinates on Picd(Γ).
Alternatively, define an orientation on Γ by orienting each of the loops counter-

clockwise, and let ωj be the harmonic 1-form supported on the jth loop with weight
1. Given a divisor class D on Γ, define

ξ̃j(D) :=
1

mj

∫ D

〈0〉g
ωj.

By the tropical Abel-Jacobi theorem [5], since the set of 1-forms ω1, . . . , ωg is a basis

for Ω(Γ), the functions ξ̃j ∈ Ω(Γ)∗/H1(Γ,Z) form a system of coordinates on Jac(Γ).

In our combinatorial arguments, we tend to use the functions ξj more often that ξ̃j,

but the latter are useful due to their linearity. That is, ξ̃j(D1 +D2) = ξ̃j(D1)+ ξ̃j(D2).
It is straightforward to translate between the two systems of coordinates. Specif-

ically, we have ξ̃j(D) = ξj(D)− (j − 1). Since ξ̃j is linear, it follows that

ξj(D1 +D2) = ξj(D1) + ξ̃j(D2). (2.2)

In [34], Pflueger classifies the special divisor classes on Γ. This classification
specializes to the “generic” case where k = bg+3

2
c, studied in [11].

Definition 2.3.3. [34, Definition 3.5] Let a and b be positive integers and let λ be
the rectangular partition

λ = {(x, y) ∈ N2 | x ≤ a, y ≤ b}.

Given a k-uniform displacement tableau t on λ with alphabet [g], we define T(t) as
follows.

T(t) := {D ∈ Picg+a−b−1(Γ) | ξt(x,y)(D) = y − x (mod k)}.
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In the system of coordinates ξj, T(t) is a coordinate subtorus, where the coordinate
ξj is fixed if and only if the symbol j is in the image of t. The codimension of T(t)
is therefore equal to the number of distinct symbols in t. If the symbol j appears in
multiple boxes of the tableau t, then the k-uniform displacement condition guarantees
that the two boxes impose the same condition on ξj.

Theorem 2.3.4. [34, Theorem 1.4] For any positive integers r and d satisfying r >
d− g, we have

W r
d (Γ) =

⋃
T(t),

where the union is over k-uniform displacement tableaux on [r+ 1]× [g− d+ r] with
alphabet [g].

A consequence of Theorem 2.3.4 is that Γ has a unique divisor class of degree
k and rank 1, which we denote by g1

k. This justifies the terminology that Γ is a
k-gonal chain of loops. Specifically, the unique k-uniform displacement tableau on
[2]× [g − k + 1] with alphabet [g] contains the symbols 1, 2, . . . , g − k + 1 in the first
column and the symbols k, k + 1, . . . , g in the second column. In particular, we have

ξ̃j(g
1
k) =

{
0 if j ≤ g − k + 1
k if j > g − k + 1.

Copyright© Kaelin J. Cook-Powell, 2021.
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Chapter 3 Irreducible Components of Brill-Noether Loci

This chapter is taken from the paper Components of Brill-Noether Loci for Curves
with Fixed Gonality [10], authored by Cook-Powell-Jensen, which has been accepted
for publication in the Michigan Math Journal.

3.1 Introduction

We describe a conjectural stratification of the Brill-Noether variety for general curves
of fixed genus and gonality. As evidence for this conjecture, we show that this Brill-
Noether variety has at least as many irreducible components as predicted by the
conjecture, and that each of these components has the expected dimension. Our proof
uses combinatorial and tropical techniques. Specifically, we analyze containment
relations between the various strata of tropical Brill-Noether loci identified by Pflueger
in his classification of special divisors on chains of loops.

Recall from section2 that, given a curve C over the complex numbers, the Brill-
Noether variety W r

d (C) parameterizes line bundles of degree d and rank at least r
on C. Brill-Noether varieties encode a significant amount of geometric information,
and consequently are among the most well-studied objects in the theory of algebraic
curves. A series of results in the eighties concern the geometry of W r

d (C) when C is
general in the moduli space Mg. In this case, the locally closed stratum W r

d (C) r
W r+1
d (C) is smooth [17] of dimension

ρ(g, r, d) := g − (r + 1)(g − d+ r) [18],

and irreducible when ρ(g, r, d) is positive [16].
More recent work has focused on the situation where C is general in the Hurwitz

space Hk,g parameterizing branched covers of the projective line of degree k and
genus g. The Hurwitz space Hk,g admits a natural map to the moduli space Mg,
given by forgetting the data of the map to P1. When k ≥ bg+3

2
c, this map is dominant

and there is nothing new to show, so we restrict our attention to the case where k
is smaller than bg+3

2
c. We refer to a general point in the Hurwitz space Hk,g as a

general curve of genus g and gonality k. Our main result is the following.

Theorem 3.1.1. Let C be a general curve of genus g and gonality k ≥ 2. Then there
exists an irreducible component of W r

d (C) of dimension

ρ(g, α− 1, d)− (r + 1− α)k,

as long as this number is nonnegative, for every positive integer α ≤ min{r+1, k−1}
satisfying either α ≥ k − (g − d+ r) or α = r + 1.

We strongly suspect that Theorem 3.1.1 identifies all of the irreducible compo-
nents of W r

d (C), for a reason that we will explain in Section 3.1. Theorem 3.1.1 is a
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generalization of several previous results. In [33], Pflueger shows that the dimension
of W r

d (C) is at most

ρk(g, r, d) := max
α

ρ(g, α− 1, d)− (r + 1− α)k,

and asks whether every component has dimension ρ(g, α − 1, d) − (r + 1 − α)k for
some value of α. In [22], Ranganathan and the second author show that the maxi-
mal dimensional component has dimension exactly ρk(g, r, d). In [12], Coppens and
Martens exhibit components of dimension ρ(g, α− 1, d)− (r+ 1−α)k for α equal to
1, r, and r + 1. They further expand on this result in [13], constructing components
of dimension ρ(g, α− 1, d)− (r + 1− α)k for all α dividing r or r + 1.

The Splitting Type Stratification

The splitting type of π∗L determines not only the degree and rank of the line bundle
L, but also the rank of L⊗π∗O(m) for all integers m (see Section 2.1). In this way, the
varieties Wµ(C) stratify W r

d (C). The number of irreducible components of W r
d (C),

as well as the dimensions of these components, are predicted by theorem 3.1.2. We
refer the reader to Definition 2.1.1 for the definition of the partial order on splitting
types, and to Definition 2.1.4 for the definition of the magnitude of a splitting type.

For a given rank r and degree d, the maximal elements of the poset of splitting
types are in correspondence with positive integers α ≤ min{r + 1, k − 1} satisfying
either α ≥ k−(g−d+r) or α = r+1. (See Definition 2.1.6 and Proposition 2.1.12 for
details.) Let µα denote the splitting type corresponding to the integer α. Theorem
3.1.2 predicts that the irreducible components of W r

d (C) are precisely the closures of
the strata Wµα(C). We prove the following stronger version of Theorem 3.1.1.

Theorem 3.1.2. Let C be a general curve of genus g and gonality k ≥ 2. If g ≥ |µα|,
then Wµα(C) has an irreducible component of dimension g − |µα|. The closure of
this component is an irreducible component of W r

d (C).

Approach and Techniques

Our approach is based on tropical techniques developed in [11, 33, 34, 22]. Each of
these papers establishes results about Brill-Noether varieties by studying the divisor
theory of a particular family of metric graphs, known as the chains of loops. The
first of these papers [11] provides a new proof of the Brill-Noether Theorem. Key to
this argument is the classification of special divisors on chains of loops Γ with generic
edge lengths. Specifically, [11] shows that W r

d (Γ) is a union of tori T(t), where the
tori are indexed by standard Young tableaux t.

In [34], Pflueger generalizes this result to chains of loops with arbitrary edge
lengths. In this case, W r

d (Γ) is still a union of tori, but here the tori are indexed by a
more general type of tableaux, known as displacement tableaux. (See Definition 2.2.3
and Theorem 2.3.4.) In [33], Pflueger computes the dimension of the largest of these
tori, and thus obtains his bound on the dimensions of Brill-Noether loci for general
k-gonal curves.
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Instead of studying the tori of maximum dimension, we study the tori that are
maximal with respect to containment. The tableaux corresponding to maximal-
dimensional tori belong to a larger family, known as scrollar tableaux. (See Def-
inition 3.2.3.) There is a natural partition of scrollar tableaux into types, where
the types are indexed by positive integers α ≤ min{r + 1, k − 1} satisfying either
α ≥ k − (g − d + r) or α = r + 1. It is shown in [22] that, under certain mild
hypotheses, divisor classes corresponding to scrollar tableaux lift to divisor classes on
k-gonal curves in families of the expected dimension.

Our main combinatorial result is the following.

Theorem 3.1.3. Let Γ be a k-gonal chain of loops of genus g, and let t be a k-
uniform displacement tableau on [r+ 1]× [g− d+ r]. The torus T(t) is maximal with
respect to containment in W r

d (Γ) if and only if t is scrollar. In other words,

W r
d (Γ) =

⋃
t scrollar

T(t).

Outline of the Chapter

In Section 3.3 we discuss the relation between our combinatorial and geometric results,
and in particular show that Theorem 3.1.3 implies Theorem 3.1.2. In the final two
sections, which are purely combinatorial, we prove Theorem 3.1.3. In Section 3.4,
we show that if t is a scrollar tableau, then T(t) is maximal, and in Section 3.5, we
establish the converse.

3.2 Divisor Theory of Chains of Loops

In [34], Pflueger provides a description of W r
d (Γ) into a union of tori, where the union

is indexed by tableaux. Notably, Pflueger does not consider the containment relations
between the various tori T(t). These containment relations are the primary concern
of Sections 3.4 and 3.5. We note the following, which will be explored in more detail
in these later sections.

Lemma 3.2.1. Let t and t′ be k-uniform displacement tableaux on [a] × [b]. Then
T(t) ⊆ T(t′) if and only if

1. every symbol in t′ is a symbol in t, and

2. if t(x, y) = t′(x′, y′), then x− y = x′ − y′ (mod k).

Under Pflueger’s classification of special divisors, there is a natural interpretation
of Serre duality. Given a tableau t on [a]× [b], define the transpose tableau to be the
tableau tT on [b]× [a] given by tT (x, y) = t(y, x).

Lemma 3.2.2. [34, Remark 3.6] Let t be a k-uniform displacement tableau on [r +
1]× [g − d+ r] with alphabet [g], and let D ∈ T(t) be a divisor class. Then the Serre
dual KΓ −D is contained in T(tT ).
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Scrollar Tableaux

In [22], Ranganathan and the second author consider a special type of k-uniform
displacement tableaux, known as scrollar tableaux. Throughout this section, we fix
positive integers a and b, and a positive integer α ≤ {a, k − 1}, satisfying either
α ≥ k − b or α = a. As in Definition 2.1.6, we write

a = qα + β, 0 ≤ β < α

and
b = q′(k − α) + β′, 0 ≤ β′ < k − α.

Definition 3.2.3. Let t be a tableau on [a] × [b]. We define t to be scrollar of type
α if it satisfies the following three conditions.

1. t(x, y) = t(x′, y′) if and only if there exists an integer ` such that both

x′ − x = `α and y′ − y = `(α− k).

2. If α = a, then t(1, y) > t(a, y + a− k) for all y > k − a.

3. If α = k − b, then t(x, 1) > t(x+ b− k, b) for all x > k − b.

Remark 3.2.4. When k−b < α < a, Definition 3.2.3 agrees with [22, Definition 7.1],
but in the edge cases the two definitions disagree. This is because, when α is equal to
a or k−b, every standard tableau satisfies [22, Definition 7.1] trivially. In Sections 3.4
and 3.5, however, we will see that T(t) is maximal only for tableaux satisfying Defi-
nition 3.2.3. We note that when α < a, condition (1) implies an inequality analogous
to that of condition (2), because

t(1, y) = t(α + 1, y + α− k) > t(α, y + α− k).

Similarly, when α > k − b, condition (1) implies an inequality analogous to that of
condition (3).

For the reader interested in comparing the definitions in the two papers, we provide
a brief dictionary. The integer α appearing here is the same as n in [22]. The integer
β agrees with b in [22], and q is equal to b a

α
c = b r+1

n
c.

Example 3.2.5. A typical example of a scrollar tableau appears in Figure 3.1. Note
that the boxes in the first α columns necessarily contain distinct symbols, as do the
boxes in the last k − α rows. The symbols in the remaining boxes are obtained by
repeatedly translating the symbols in this L-shaped region α boxes rightward and
k − α boxes upward.
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1 2 4 5 10 11 12

3 7 8 9 13 16 18

5 10 11 12 15 17 20

9 13 16 18 19 22 23

12 15 17 20 21 24 26

Figure 3.1: A scrollar tableau of type 3, where k = 5.

Example 3.2.6. Figure 3.2 depicts three different 3-uniform displacement tableaux
on [3]× [2]. The first tableau t is scrollar of type 2. To see this, note that there is only
one pair of boxes whose x coordinates differ by a multiple of 2 and whose y coordinates
differ by the same multiple of −1, and these boxes contain the same symbol. The
second tableau t′ is scrollar of type 1, because it is standard, t′(2, 1) > t′(1, 2), and
t′(3, 1) > t′(2, 2). The final tableau t∗ is not scrollar of either type. Specifically, it
is not scrollar of type 1 because t∗(2, 1) < t∗(1, 2), and it is not scrollar of type 2
because t∗(3, 1) 6= t∗(1, 2). By Lemma 3.2.1, we see that T(t∗) ⊂ T(t).

t = 1 2 4

4 5 6
t′ = 1 3 5

2 4 6
t∗ = 1 2 3

4 5 6

Figure 3.2: Three different 3-uniform displacement tableaux. The first two are scrollar
of different types, and the third is not scrollar.

The following observation from [22] is central to our argument.

Proposition 3.2.7. Let t be a scrollar tableau of type α on [r+ 1]× [g− d+ r] with
alphabet [g]. Then g ≥ |µα| and

dimT(t) = g − |µα|.

Proof. By [22, Proposition 7.4], we have

dimT(t) = ρ(g, α− 1, d)− (r + 1− α)k.

The result then follows from Lemma 2.1.7.

Proposition 3.2.7 suggests a connection between scrollar tableaux of type α and
the splitting type µα. This connection will be established in Proposition 3.3.1 below.
The following lemma is key to the proof of Proposition 3.3.1.

Lemma 3.2.8. [22, Corollary 7.3] Let t be a scrollar tableau of type α, and let
D ∈ T(t) be a sufficiently general divisor class. Then

1. rk(D − qg1
k) = β − 1, and
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2. rk(D − (q + 1)g1
k) = −1.

Remark 3.2.9. In Lemma 3.2.8, when we say that the divisor class D ∈ T(t) is “suf-
ficiently general”, we mean that D lies in the complement of finitely many coordinate
subtori of codimension at least 1 in T(t). In particular, the set of divisor classes in
T(t) satisfying the conclusion of Lemma 3.2.8 is open and dense in T(t).

Much of [22] is devoted to a lifting result for divisor classes in T(t) when t is
a scrollar tableau. Unfortunately, [22] does not establish this lifting result for all
scrollar tableaux, but only for those that satisfy the following condition.

Definition 3.2.10. We say that a tableau t has no vertical steps if

t(x, y + 1) 6= t(x, y) + 1 for all x, y.

We note that if g ≥ |µα| and α > 1, then there exists a scrollar tableau of type α
with no vertical steps. For example, the transpose of the tableau defined in the proof
of [33, Lemma 3.5] has no vertical steps. Another example of such a tableau appears
in Figure 3.3.

1 2 3 7 8 9 13

4 5 6 10 11 12 16

7 8 9 13 14 15 19

10 11 12 16 17 18 20

13 14 15 19 21 22 23

Figure 3.3: A scrollar tableau of type 3, where k = 5, with no vertical steps.

The following proposition is one of the main technical results of [22]. In this
proposition and throughout Section 3.3, we let K be an algebraically closed, non-
archimedean valued field of equicharacteristic zero.

Proposition 3.2.11. [22, Proposition 9.2] Let t be a scrollar tableau of type α with
no vertical steps, and let D ∈ T(t) be a sufficiently general divisor class. Then there
exists a curve C of genus g and gonality k over K with skeleton Γ, and a divisor class
D ∈W r

d (C) specializing to D.

3.3 Connections Between Combinatorics and Algebraic Geometry

In this section, we demonstrate the connection between our combinatorial and ge-
ometric results. Specifically, we show that Theorem 3.1.3 implies Theorem 3.1.2.
To begin, we establish the connection between scrollar tableaux of type α and the
splitting types µα.
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Proposition 3.3.1. Let C be a curve of genus g and gonality k over K with skeleton
Γ. Let t be a scrollar tableau of type α, let D ∈ T(t) be a sufficiently general divisor
class, and let D ∈W r

d (C) be a divisor that specializes to D. Then D ∈Wµα(C).

Proof. Let µ denote the splitting type of π∗O(D). By Lemma 3.2.8, we have

rk(D − qg1
k) = β − 1,

rk(D − (q + 1)g1
k) = −1.

By Baker’s Specialization Lemma [3], it follows that

h0(D − qg1
k) ≤ β, (3.1)

h0(D − (q + 1)g1
k) = 0. (3.2)

Recall that, if tT denotes the transpose of t, then the Serre dualKΓ−D is contained
in T(tT ). Note that tT is also a scrollar tableau. By Lemma 3.2.8, therefore, since
KΓ −D is sufficiently general, we see that

rk(KΓ −D − q′g1
k) = β′ − 1,

rk(KΓ −D − (q′ + 1)g1
k) = −1.

By Baker’s Specialization Lemma, it follows that

h0(KC −D − q′g1
k) ≤ β′, (3.3)

h0(KC −D − (q′ + 1)g1
k) = 0. (3.4)

By (?), (3.2) implies that µk ≤ q and (3.1) implies that µk−β ≤ q − 1. It follows
that

µk−α+1 + · · ·+ µk−α+` ≤ µα,k−α+1 + · · ·+ µα,k−α+` for all ` ≤ α.

Similarly, (3.4) implies that µ1 ≥ −q′− 2, and (3.3) implies that µβ′+1 ≥ −q′− 1.
It follows that

µ1 + · · ·+ µ` ≥ µα,1 + · · ·+ µα,` for all ` ≤ k − α.

Putting these together, we see that µ ≥ µα. By Proposition 2.1.12, however, µα is
maximal, hence µ = µα.

Corollary 3.3.2. Let t be a scrollar tableau of type α with no vertical steps, and let
D ∈ T(t) be a sufficiently general divisor class. Then there exists a curve C of genus
g and gonality k over K with skeleton Γ, and a divisor class D ∈W µα(C) specializing
to D.

Proof. By Proposition 3.2.11, there exists a curve C of genus g and gonality k over
K with skeleton Γ, and a divisor class D ∈ W r

d (C) specializing to D. By Proposi-
tion 3.3.1, the divisor class D is in W µα(C).

We now show that Theorem 3.1.3 implies Theorem 3.1.2. We do this in two steps.
First, we obtain an upper bound on a particular component of W r

d (C).
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Proposition 3.3.3. Let C and D be as in Corollary 3.3.2, and let Y be any irreducible
component of W r

d (C) containing D. Then

dimY ≤ g − |µα|.

Proof. By [19, Theorem 6.9],

dimY = dim TropY .

By Baker’s Specialization Lemma, we see that TropY ⊆ W r
d (Γ). It follows that

dimY cannot exceed the local dimension of W r
d (Γ) in a neighborhood of D. By

Theorem 3.1.3, T(t) is maximal with respect to containment in W r
d (Γ), and since

D ∈ T(t) is sufficiently general, the local dimension of W r
d (Γ) in a neighborhood of

D is equal to that of T(t). Finally, by Proposition 3.2.7, we have

dimY ≤ dimT(t) = g − |µα|.

Proof that Theorem 3.1.3 implies Theorem 3.1.2. The case k = 2 is classical, so we
assume that k ≥ 3. Let α ≤ min{r + 1, k − 1} be a positive integer satisfying either
α ≥ k − (g − d+ r) or α = r + 1. If α ≥ k − (g − d+ r), then applying Serre duality
exchanges α with k − α, so we may assume that α > 1.

Since |µ| ≤ g and α > 1, there exists a scrollar tableau t of type α with no vertical
steps. Let D ∈ T(t) be a sufficiently general divisor class. By Corollary 3.3.2, there
exists a curve C of genus g and gonality k over K with skeleton Γ, and a divisor
class D ∈ W µα(C) specializing to D. If Y is an irreducible component of W µα(C)
containing D, then by Proposition 3.3.3, we have

dimY ≤ g − |µα|.

It therefore suffices to prove the reverse inequality.
The rest of the proof is identical to that of [22, Theorem 9.3], which we reproduce

here for the sake of completeness. Let Mk
g be the moduli space of curves of genus g

that admit a degree k map to P1, let Ck be the universal curve, and let Wµα be the
universal splitting-type locus over Mk

g . Let W̃µα be the locus in the symmetric dth
fiber power of Ck parameterizing divisors D such that π∗O(D) has splitting type µα.

We work in the Berkovich analytic domain of k-gonal curves whose skeleton is a
k-gonal chain of loops. By Corollary 3.3.2, the tropicalization of W̃µα, has dimension
at least

3g − 5 + 2k − |µα|+ r.

If π∗O(D) ∼= O(µα), then D has rank exactly r. It follows that Wµα has dimension
at least

3g − 5 + 2k − |µα|.

By Corollary 3.3.2, there is an irreducible component of Wµα whose tropicalization
contains pairs of the form (Γ,D) where Γ is a k-gonal chain of loops and D ∈ T(t) is
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sufficiently general. The image of this component inMk,trop
g has dimension 2g−5+2k.

It follows that this component dominatesMk
g , and the fibers have dimension at least

g − |µα|.
Combining the two bounds, we see that there exists an irreducible component Y

of Wµα(C), containing D, of dimension g − |µα|. If Z is a component of W r
d (C)

containing Y , then by Proposition 3.3.3, we see that

dimZ = dimY .

It follows that Z is the closure of Y .

3.4 Maximality of Scrollar Tableaux

Having established that Theorem 3.1.2 follows from our combinatorial results, it
remains to prove the combinatorial results. The goal of this section is to prove the
following.

Theorem 3.4.1. Let t be a scrollar tableau of type α on [a] × [b]. Then T(t) is
maximal with respect to containment.

Before proving Theorem 3.4.1, we first make two simple observations. These will
be useful because, if T(t) ⊆ T(t′), then by Lemma 3.2.1, for every box (n,m) in
[a] × [b], there exists a box (x, y) such that t′(n,m) = t(x, y). Our argument will
break into cases, depending on the location of (x, y) relative to that of (n,m).

Lemma 3.4.2. Let α be a positive integer and (n,m) any box in [a] × [b]. For any
box (x, y) in [a]× [b], there exists an integer ` such that one of the following holds:

1. x ≤ n− `α and y ≤ m+ `(k − α),

2. x ≥ n− `α and y ≥ m+ `(k − α), or

3. n− (`+ 1)α < x < n− `α and m+ `(k − α) < y < m+ (`+ 1)(k − α).

Proof. By the division algorithm, there exists an integer ` such that

n− (`+ 1)α < x ≤ n− `α.

If y ≤ m+ `(k − α), then case (1) holds. If y ≥ m+ (`+ 1)(k − α), or if x = n− `α
and y ≥ m + `(k − α), then case (2) holds. Otherwise, x 6= n − `α, and case (3)
holds.

Lemma 3.4.2 is illustrated in Figure 3.4. Boxes of the form (n− `α,m+ `(k−α))
are labeled with stars, and the three cases of Lemma 3.4.2 are depicted in gray. Note
that every box is contained in one of the three gray regions.
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Figure 3.4: The three regions described in Lemma 3.4.2.

Remark 3.4.3. If α is equal to either a or k − b, then the integer ` in Lemma 3.4.2
can be taken to be one of −1, 0, or 1, as illustrated in Figure 3.5. If ` = ±1, then
the box (n− `α,m+ `(k − α)) is not contained in [a]× [b].

(1)

?

(2)

Figure 3.5: When α = k − b, the integer ` can be taken to be one of −1, 0, or 1.

The following simple lemma is key to our argument.

Lemma 3.4.4. Let α be a positive integer, let (n,m) be any box in [a]× [b], and (x, y)
a box satisfying condition (3) of Lemma 3.4.2. Then

x− y 6≡ n−m (mod k).

Proof. Since
n− (`+ 1)a < x < n− `a

and
m+ `(k − a) < y < m+ (`+ 1)(k − a),

we have
(n−m)− (`+ 1)k < x− y < (n−m)− `k.

Hence x− y 6≡ n−m (mod k).

We are now prepared to prove the main result of this section, the maximality of
scrollar tableaux.

Proof of Theorem 3.4.1. Let t′ be a k-uniform displacement tableau such that T(t) ⊆
T(t′). We will show that t = t′. We first demonstrate, by induction, that t′(n,m) ≥
t(n,m) for all (n,m) ∈ [a] × [b]. The base case t′(1, 1) ≥ t(1, 1) holds because, by
Lemma 3.2.1, t′(1, 1) must be a symbol in t, and t(1, 1) is the smallest symbol in t.
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For our inductive hypothesis, suppose that t′(x, y) ≥ t(x, y) for all (x, y) such
that x ≤ n and y ≤ m, not both equal. We will show that t′(n,m) ≥ t(n,m).
By Lemma 3.2.1, there exists (x, y) ∈ [a] × [b] such that t′(n,m) = t(x, y). By
Lemma 3.4.2, there exists an integer ` such that one of the following holds:

1. x ≤ n− `α and y ≤ m+ `(k − α),

2. x ≥ n− `α and y ≥ m+ `(k − α), or

3. n− (`+ 1)α < x < n− `α and m+ `(k − α) < y < m+ (`+ 1)(k − α).

If (x, y) satisfies (3), then by Lemma 3.4.4, x− y 6≡ n−m (mod k), a contradiction
to Lemma 3.2.1. Hence (x, y) must satisfy either (1) or (2).

There are now two cases to consider – the case where the box (n−`α,m+`(k−α))
is contained in [a]× [b], and the case where it is not. We first consider the case where
(n− `α,m+ `(k−α)) is contained in [a]× [b]. Notice that, if α is equal to a or k− b,
then in this case we must have ` = 0. If (x, y) satisfies (2), then

t(x, y) ≥ t(n− `α,m+ `(k − α)) = t(n,m),

hence t′(n,m) ≥ t(n,m), as desired. If (x, y) satisfies (1) and (x, y) 6= (n − `α,m +
`(k − α)), we have either

t′(n,m) = t(x, y) ≤ t(n− `α− 1,m+ `(k − α)), or

t′(n,m) = t(x, y) ≤ t(n− `α,m+ `(k − α)− 1).

First, assume that n,m > 1. Since t is scrollar, we have

t(n− `α− 1,m+ `(k − α)) = t(n− 1,m) and

t(n− `α,m+ `(k − α)− 1) = t(n,m− 1).

By our inductive hypothesis, however, we have t(n−1,m) ≤ t′(n−1,m) and t(n,m−
1) ≤ t′(n,m − 1). This guarantees that either t′(n,m) ≤ t′(n − 1,m) or t′(n,m) ≤
t′(n,m− 1), a contradiction. It follows that

t′(n,m) = t(x, y) = t(n− `α,m+ `(k − α)) = t(n,m).

Now, suppose that m = 1 and n > 1. The case where n = 1 will follow from a similar
argument. Without loss of generality, let ` be the smallest integer such that (x, y) is
above and to the right of (n− `α,m+ `(k − α)). If x < n− `α, then the conclusion
follows from the argument above. On the other hand, if x = n− `α, then since

m+ (`− 1)(k − α) < y < m+ `(k − α),

we see that x− y 6= n−m (mod k), a contradiction to Lemma 3.2.1.
We now turn to the case where (n− `α,m+ `(k−α)) is not contained in [a]× [b].

First, suppose that (x, y) satisfies (2). In this case, either n−`α ≤ 0 or m+`(k−α) ≤
0, but not both. We will assume that n− `α ≤ 0; the other case follows by a similar
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argument. If ` is any integer satisfying n − `α ≤ 0, then (x, y) is below and to the
right of (1,m+ `(k−α)). We may therefore assume without loss of generality that `
is the minimal integer such that n− `α ≤ 0. If α is equal to a, then ` = 1. Because
t is scrollar, we observe that

t′(n,m) = t(x, y) ≥ t(1,m+ `(k − α)) > t(α,m+ (`− 1)(k − α))

≥ t(n− (`− 1)α,m+ (`− 1)(k − α)) = t(n,m).

Now, suppose that (x, y) satisfies (1). In this case, either b < m + `(k − α) or
a < n − `α, but not both. We will assume that b < m + `(k − α). The other
case follows by a similar argument. Without loss of generality, assume that ` is the
minimal integer such that b < m + `(k − α). As above, if α = k − b, then ` = 1. If
y ≤ m + (` − 1)(k − α), then by replacing ` with ` − 1, we may reduce to the case
where (n− `α,m+ `(k − α)) is in [a]× [b]. We may therefore assume that

m+ (`− 1)(k − α) < y ≤ b < m+ `(k − α).

This situation is illustrated in Figure 3.6. The boxes (n − `α,m + `(k − α)) and
(n− (`− 1)α,m+ (`− 1)(k−α)) are labeled with stars, the box (n− `α, b) is labeled
with a diamond, and the box (x, y) is located somewhere in the shaded region.

?

♦
?

Figure 3.6: An illustration of the case where (n− `α,m+ `(k − α)) is not contained
in [a]× [b].

If x = n− `α, then since

m+ (`− 1)(k − α) < y < m+ `(k − α),

we see that x − y 6≡ n − m (mod k), a contradiction to Lemma 3.2.1. We may
therefore assume that x < n− `α. Because t is scrollar, we have

t′(n,m) = t(x, y) ≤ t(n− `α− 1, b) < t(n− (`− 1)α− 1, b+ 1− (k − α))

≤ t(n− (`− 1)α− 1,m+ (`− 1)(k − α)) = t(n− 1,m).

By induction, however, we have t(n−1,m) ≤ t′(n−1,m), hence t′(n,m) ≤ t′(n−1,m),
a contradiction.

Thus, in every case we see that t′(n,m) ≥ t(n,m). We now show that t′(n,m) ≤
t(n,m) for all (n,m) ∈ [a] × [b]. Combining the two inequalities, we see that t′ = t.
Given a tableau t, define the “rotated” tableau tR as follows:

tR(x, y) = g + 1− t(a+ 1− x, b+ 1− y).

31



(See Figure 3.7 for an example.) Returning to our tableaux t and t′, we see that
by definition, both tR and t′R are k-uniform displacement tableaux, the tableau tR is
scrollar, and T(tR) ⊆ T(t′R). By the argument above, we see that t′R(n,m) ≥ tR(n,m)
for all (n,m) ∈ [a] × [b], hence t′(n,m) ≤ t(n,m) for all (n,m) ∈ [a] × [b], and the
conclusion follows.

1 2 4 5 10 11 12

3 7 8 9 13 16 18

5 10 11 12 15 17 20

9 13 16 18 19 22 23

12 15 17 20 21 24 26

26 24 21 20 17 15 12

23 22 19 18 16 13 9

20 17 15 12 11 10 5

18 16 13 9 8 7 3

12 11 10 5 4 2 1

1 3 6 7 10 12 15

4 5 8 9 11 14 18

7 10 12 15 16 17 22

9 11 14 18 19 20 24

15 16 17 22 23 25 26

Figure 3.7: To obtain the “rotation” of the tableau on the left, first rotate 180 degrees,
and then subtract each entry from g + 1.

3.5 Non-Existence of Other Maximal Tableaux

In this section, we prove the following.

Theorem 3.5.1. Let t be a k-uniform displacement tableau on [a]× [b]. Then there
exists a scrollar tableau t′ on [a]× [b] such that T(t) ⊆ T(t′).

Together with Theorem 3.4.1, this establishes Theorem 3.1.3.
To prove Theorem 3.5.1, we will describe an algorithm that, starting with t,

produces a scrollar tableau t′ by replacing certain symbols in t with other symbols in
t. We first introduce a statistic on the boxes in a k-uniform displacement tableau.

Definition 3.5.2. Let t be a k-uniform displacement tableau on [a] × [b]. Given a
box (x, y) such that x+ y ≥ k, we define a statistic St(x, y) as follows. Consider the
symbols appearing above (x, y) in column x and to the left of (x, y) in row y. Among
these symbols, the k − 1 largest ones form a hook of width α and height k − α. We
define St(x, y) to be α.

Remark 3.5.3. Note that if x + y < k, then St(x, y) is undefined. In this case the
box (x, y) is left empty. Additionally, the statistic α cannot appear in any box (x, y)
with x < α or y < k−α. In particular, for any k-uniform displacement tableau t, we
have St(α, k − α) = α.

Note also that St is well-defined. To see this let i be the smallest positive integer
such that t(x − i, y) = t(x, y − j) for some positive integer j. By the definition of a
k-uniform displacement tableau, i + j must be a multiple of k. It follows that the
hook from (x− i, y) to (x, y − j) contains at least k − 1 distinct symbols, all greater
than t(x− i, y).
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Example 3.5.4. Figure 3.8 depicts an example of a 5-uniform displacement tableau
t on [4]× [4]. The first figure is t, the second is St, and the last two depict example
hooks of width 2 and 3, respectively.

1 2 3 9

4 6 7 10

5 8 11 13

12 14 15 16

4

3 3

2 3 2

1 2 3 3

1 2 3 9

4 6 7 10

5 8 11 13

12 14 15 16

1 2 3 9

4 6 7 10

5 8 11 13

12 14 15 16

Figure 3.8: A 5-uniform displacement tableau, its associated statistics, and some
example hooks.

Before proceeding further, we will first need the following property of the statistic
St.

Lemma 3.5.5. Let t be a k-uniform displacement tableau. We have the following
inequalities on statistics:

St(x+ 1, y) ≤ St(x, y) + 1

St(x, y − 1) ≤ St(x, y) + 1

St(x+ 1, y − 1) ≤ St(x, y) + 1.

Proof. Let H be the hook containing the k−1 largest symbols appearing above (x, y)
in column x and to the left of (x, y) in row y. By the definition of St, H contains the
boxes

(x, y + 1− k + St(x, y)) and (x+ 1− St(x, y), y),

but not the boxes
(x, y − k + St(x, y)) or (x− St(x, y), y).

It follows that

t(x− St(x, y), y) < t(x, y + 1− k + St(x, y)) and

t(x+ 1− St(x, y), y) > t(x, y − k + St(x, y)).

If St(x+ 1, y) > St(x, y) + 1, then

t(x− St(x, y), y) ≥ t(x+ 2− St(x+ 1, y), y)

> t(x+ 1, y − k + St(x+ 1, y)) > t(x, y + 1− k + St(x, y)),

a contradiction.
Similarly, if St(x, y − 1) > St(x, y) + 1, then

t(x+ 1− St(x, y), y) < t(x− St(x, y − 1), y − 1)

< t(x, y − k + St(x, y − 1)) ≤ t(x, y − k + St(x, y)),
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a contradiction.
Finally, if St(x+ 1, y − 1) > St(x, y) + 1, then

t(x− St(x, y), y) > t(x+ 2− St(x+ 1, y − 1), y − 1)

> t(x+ 1, y − 1− k + St(x+ 1, y − 1)) > t(x, y − k + St(x, y)),

another contradiction.

Definition 3.5.6. Let t be a k-uniform displacement tableau on [a]× [b], and suppose
that a+ b ≥ k. An admissible path P of type α in t is a sequence of boxes

P = (x0, y0), (x1, y1), . . . , (xa+b−k, ya+b−k)

satisfying the following conditions:

1. (x0, y0) = (α, k − α) and (xa+b−k, ya+b−k) = (a, b).

2. For all i, (xi, yi) is equal to either (xi−1 + 1, yi−1) or (xi−1, yi−1 + 1).

3. If (xi, yi) = (xi−1 + 1, yi−1), then St(xi, yi) ≤ α.

4. If (xi, yi) = (xi−1, yi−1 + 1), then St(xi, yi) ≥ α.

In other words, an admissible path is a sequence of pairwise adjacent boxes starting
at (α, k − α) and ending in the bottom right corner of the tableau. Every time the
path moves right, the statistic in the new box must be at most α, and every time the
path moves down, the statistic in the new box must be at least α.

Example 3.5.7. Figure 3.9 depicts the statistics St for the tableau t from Exam-
ple 3.5.4, together with two admissible paths of type 3 shaded. Note that the first
path is admissible because the box labeled 2 is to the right of the previous box in the
path.

4

3 3

2 3 2

1 2 3 3

4

3 3

2 3 2

1 2 3 3

Figure 3.9: Two admissible paths of type 3

Note that an admissible path of type a is completely vertical, and an admissible
path of type k− b is completely horizontal. If there is an admissible path of type a in
a tableau t, then St(a, y) = a for all y ≥ k− a. It follows that t(1, y+ k− a) > t(a, y)
for all y > k− a, so t is scrollar of type a. Similarly, if there is an admissible path of
type k − b in a tableau t, then t is scrollar of type k − b.

The first main goal of this section is to prove the existence of admissible paths.
That is, given a k-uniform tableau t on [a]× [b], we show that there exists an integer
α and a admissible path P of type α. Our argument will require the following lemma.
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Lemma 3.5.8. Let t be a k-uniform displacement tableau. If P1 and P2 are two
admissible paths in t of types α1 and α2, respectively, then α1 = α2.

Proof. First, note that the last box in any admissible path is (a, b), so any two
admissible paths intersect. Let (x, y) be the box in the intersection that minimizes
x + y. Without loss of generality, assume that α1 > α2. Note that P1 starts at
(α1, k−α1), which is above and to the right of (α2, k−α2). Because (x, y) is the first
box at which the two paths cross, we see that P1 must contain the box (x, y− 1) and
P2 must contain the box (x− 1, y). By the definition of admissible paths, we have

α1 ≤ St(x, y) ≤ α2,

contradicting our assumption that α1 > α2.

We now prove that admissible paths exist.

Proposition 3.5.9. Let t be a k-uniform displacement tableau on [a]×[b], and suppose
that a+ b ≥ k. Then there exists an admissible path in t.

Proof. We proceed by induction on a+ b. In the base case b = k − a, the admissible
path consists of the single box (a, b).

If a + b > k, then by induction the tableau t1 obtained by deleting the last row
of t contains an admissible path P1 of type α1. Similarly, the tableau t2 obtained by
deleting the last column of t contains an admissible path P2 of type α2. We will show
that either the path P ′1 obtained by appending (a, b) to P1 or the path P ′2 obtained
by appending (a, b) to P2 is admissible. Note that P ′1 is admissible if and only if
St(a, b) ≥ α1 and P ′2 is admissible if and only if St(a, b) ≤ α2.

If St(a, b) < St(a, b− 1), then by Lemma 3.5.5, we have

St(a, b− 1) = St(a, b) + 1 and

St(a− 1, b) ≥ St(a, b− 1)− 1 = St(a, b).

It follows that either St(a, b) ≥ St(a, b − 1) or St(a, b) ≤ St(a − 1, b). We assume
that St(a, b) ≥ St(a, b− 1); the case where St(a, b) ≤ St(a− 1, b) follows by a similar
argument. If St(a, b) ≥ α1, then P ′1 is an admissible path of type α1, and we are done.
If P1 contains the box (a, b− 2), then St(a, b) ≥ St(a, b− 1) ≥ α1, by the definition of
an admissible path. We may therefore assume that P1 contains the box (a− 1, b− 1),
and St(a, b) < α1.

Now consider the path P2. If the paths P1 and P2 intersect, let (x, y) be a box in
the intersection, and let t3 be the tableau obtained by restricting t to [x]× [y]. The
restrictions of P1 and P2 to t3 are both admissible, and it follows from Lemma 3.5.8
that α1 = α2. Since St(a, b) < α1, we see that P ′2 is an admissible path.

If P1 and P2 do not intersect, then P1 lies entirely above and to the right of P2,
so α1 > α2. Let (x, b − 1) be the leftmost box of P1 in row b − 1. Because the two
paths do not intersect, the boxes (x − 1, b) and (x, b) must be contained in P2. By
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the definition of admissible paths, we have α1 ≤ St(x, b − 1) and α2 ≥ St(x, b). By
Lemma 3.5.5, however, we have

α1 ≤ St(x, b− 1) ≤ St(x, b) + 1 ≤ α2 + 1.

It follows that α1 = α2 + 1. Since St(a, b) < α1, we see that St(a, b) ≤ α1 + 1 = α2,
hence P ′2 is an admissible path.

Now that we know admissible paths exist, we can use them to construct a scrollar
tableau from an arbitrary tableau.

Example 3.5.10. Before proving Theorem 3.5.1, we first illustrate the idea with an
example. Figure 3.10 depicts the example of a 5-uniform displacement tableau t and
an admissible path of type α = 3 from Example 3.5.7. The proof of Theorem 3.5.1
provides us with an iterative procedure for constructing a scrollar tableau t′ of type 3
such that T(t) ⊆ T(t′). This procedure begins with the subtableau on [α]× [k−α] =
[3] × [2]. It then follows the admissible path, extending the tableau one row or one
column at a time. Every time we extend the tableau by a column, we replace each
symbol in the new column with the symbol appearing α boxes to the left and k − α
boxes below in the previous tableau. Similarly, every time we extend the tableau by
a row, we replace each symbol in the new row with the symbol appearing α boxes to
the right and k−α boxes above in the previous tableau. The definition of admissible
paths guarantees that this construction yields a tableau.

1 2 3 9

4 6 7 10

5 8 11 13

12 14 15 16

1 2 3

4 6 7

1 2 3

4 6 7

5 8 11

1 2 3 5

4 6 7 10

5 8 11 13

1 2 3 5

4 6 7 10

5 8 11 13

10 14 15 16

Figure 3.10: Construction of a scrollar tableau from a given k-uniform displacement
tableau and admissible path.

Proof of Theorem 3.5.1. First, note that if a + b ≤ k, then t is scrollar of type a for
trivial reasons. We therefore assume that a+b > k. By Proposition 3.5.9, there exists
an admissible path P in t of type α. We will prove, by induction on a+ b, that there
exists a scrollar tableau t′ of type α on [a]× [b] such that T(t) ⊆ T(t′). In addition,
we will see that t′(a− i, b) = t(a− i, b) for all i < α and t′(a, b− j) = t(a, b− j) for all
j < k − α. We assume that P contains the box (a− 1, b); the case where P contains
the box (a, b−1) follows by a similar argument. By the definition of admissible paths,
this implies that St(a, b) ≤ α.

Let t1 be the tableau obtained by deleting the last column from t. The restriction
of P to t1 is an admissible path of type α in t1. By induction, therefore, there exists
a scrollar tableau t′1 on [a − 1] × [b] such that T(t1) ⊆ T(t′1). Moreover, we have
t′1(a − 1 − i, b) = t1(a − 1 − i, b) for all i < α, and t′1(a − 1, b − j) = t1(a − 1, b − j)
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for all j < k − α. By Lemma 3.2.1, every symbol in t′1 is a symbol in t1, and if
t1(x, y) = t′1(x′, y′), then x− y = x′ − y′ (mod k).

We now define a tableau t′ on [a]× [b].

t′(x, y) =


t′1(x, y) if x < a
t′1(x− α, y + k − α) if x = a and y ≤ b− k + α
t(x, y) if x = a and y > b− k + α.

We first show that t′ is a tableau. Let (x, y) ∈ [a] × [b]. If x < a, then since t′1 is a
tableau, we see that t′(x, y) > t′(x− 1, y) and t′(x, y) > t′(x, y− 1). If y ≤ b− k+ α,
then because t′1 is a tableau, we have t′(a, y) > t′(a, y − 1), and because t′1 is scrollar
of type α, we have

t′(a− 1, y) < t′(a− α, y + k − α) = t′(a, y).

If y > b − k + α, then since t is a tableau and t′1(a − 1, y) = t(a − 1, y), we have
t′(a − 1, y) < t′(a, y). If y > b + 1 − k + α, then since t is a tableau, we have
t′(a, y − 1) < t′(a, y). Finally, since St(a, b) ≤ α, we have

t′(a, b− k + α) = t(a− α, b) < t(a, b+ 1− k + α) = t′(a, b+ 1− k + α).

To see that t′ is scrollar, we show that if b > k−α, then t′(x, y) = t′(x+α, y−k+α)
for all pairs (x, y). This is clear if x + α < a, because t′1 is scrollar of type α. On
the other hand, if x + α = a, then this holds by construction. If α = k − b, then
t′(x, 1) > t′(x+b−k, b) for all x < a because t′1 is scrollar, and t′(a, 1) > t′(a+b−k, b)
because St(a, b) ≤ α = k − b.

Finally, we show that T(t) ⊆ T(t′). Note that the symbol t′(x, y) is also a symbol
in t1 if and only if x < a or y ≤ b− k+α. By construction, every symbol in t1 is also
a symbol in t, and if

t′(x, y) = t1(x′, y′) = t(x′′, y′′),

then
x− y = x′ − y′ = x′′ − y′′ (mod k).

On the other hand, if y > b − k + α, then the symbol t′(a, y) = t(a, y) appears
only in one box, and there is nothing to prove. By Lemma 3.2.1, it follows that
T(t) ⊆ T(t′).

Copyright© Kaelin J. Cook-Powell, 2021.
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Chapter 4 Tropical Splitting Loci

This chapter is taken from the preprint Tropical Methods in Hurwitz-Brill-Noether
Theory [9], authored by Cook-Powell-Jensen.

4.1 Introduction

Recall from Chapter 2 that the Picard variety of a curve C is stratified by the sub-
schemes W r

d (C), parameterizing line bundles of degree d and rank at least r. The
study of these subschemes, known as Brill-Noether theory, is a central area of research
in algebraic geometry. The celebrated Brill-Noether Theorem of Griffiths and Harris
says that, if C ∈ Mg is general, then the varieties W r

d (C) are equidimensional of
the expected dimension, with the convention that a variety of negative dimension is
empty [18].

If C is not general, what can we say about its Brill-Noether theory? The gonality
of C is the smallest integer k such that W 1

k (C) is nonempty, and a consequence of the
Brill-Noether Theorem is that the gonality of a general curve is bg+3

2
c. If we assume

that C has smaller gonality than this, what effect does this assumption have on the
dimensions of W r

d (C) for other values of r and d? Along these lines, several recent
papers have focused on the Brill-Noether theory of curves that are general in the
Hurwitz space Hg,k, rather than the moduli spaceMg [12, 13, 33, 22, 25, 10, 27, 14].
The Hurwitz space Hg,k parameterizes degree k branched covers of P1, where the
source has genus g. If k < bg+3

2
c and (C, π) ∈ Hg,k is general, then the varieties

W r
d (C) can have multiple components of varying dimensions, prohibiting a naive

generalization of the Brill-Noether Theorem.
In this setting, however, the Picard variety of C admits a more refined stratifi-

cation. We say that a line bundle L ∈ Pic(C) has splitting type µ = (µ1, . . . , µk) if
π∗L ∼= ⊕ki=1O(µi). (See Section 2.1.) Since the splitting type of a line bundle deter-
mines that line bundle’s rank and degree, it is a more refined invariant. The splitting
type locus Wµ(C) ⊆ Pic(C) parameterizing line bundles of splitting type µ is locally
closed, of expected codimension

|µ| :=
∑
i<j

max{0, µj − µi − 1}.

In [25], H. Larson proves an analogue of the Brill-Noether Theorem for the strata
Wµ(C).

Theorem 4.1.1. [25] Let (C, π) ∈ Hg,k be general. If g ≥ |µ|, then

dimWµ(C) = g − |µ|.

If g < |µ|, then Wµ(C) is empty.
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Theorem 4.1.1 is proven by considering analogous closed strata W
µ
(C) containing

Wµ(C). We refer the reader to Section 2.1 for a precise definition. As in the original
Brill-Noether Theorem, the fact that the dimension of W

µ
(C) is at least g − |µ|

holds for all (C, π) ∈ Hg,k. This follows from standard results about degeneracy loci,
provided that W

µ
(C) is nonempty. Larson demonstrates the nonemptiness of W

µ
(C)

by showing that a certain intersection number is nonzero.
The fact that the dimension of W

µ
(C) is at most g − |µ| is much deeper. Here,

we give a new proof of this result using tropical and combinatorial techniques. Our
approach builds on earlier work exploring the divisor theory of a certain family of
tropical curves known as chains of loops [11, 33, 22, 10]. Theorem 4.1.1 is a conse-
quence of the following result.

Theorem 4.1.2. Let Γ be a k-gonal chain of loops of genus g. If g ≥ |µ|, then
W

µ
(Γ) is equidimensional and

dimW
µ
(Γ) = g − |µ|.

If g < |µ|, then W
µ
(Γ) is empty.

Tropical Splitting Type Loci

In her proof of Theorem 4.1.1, Larson uses the theory of limit linear series on a chain
of elliptic curves. Remarkably, however, her proof does not require a description of
splitting type loci on this degenerate curve. That is, it is not necessary for her to
classify those limit linear series that are limits of line bundles with a given splitting
type µ. In contrast, our proof of Theorem 4.1.2 follows from an explicit description of
W

µ
(Γ). This description is used to prove new results and formulate Conjectures 4.1.6

and 4.1.7.
Our description of W

µ
(Γ) builds on the earlier work of [11, 33, 22, 10] mentioned

above. The main technical result of [11] is a classification of special divisor classes
on chains of loops, when the lengths of the edges are sufficiently general. Specifically,
if Γ is such a chain of loops, then W r

d (Γ) is union of tori T(t), where each torus
corresponds to a standard Young tableau t on a certain rectangular partition. This
result was generalized in [34, 33] to chains of loops with arbitrary edge lengths. If
Γ is the k-gonal chain of loops referred to in Theorem 4.1.2, then W r

d (Γ) is again a
union of tori T(t) indexed by rectangular tableaux, but here the tableaux are non-
standard. Instead, the tableaux are required to satisfy an arithmetic condition known
as k-uniform displacement (see Definition 2.2.3).

Given a splitting type µ ∈ Zk, we define a partition λ(µ) in Definition 4.2.2. We
call a partition of this type a k-staircase. Our description of W

µ
(Γ) is analogous to

that of W r
d (Γ) mentioned above.

Theorem 4.1.3. Let Γ be a k-gonal chain of loops of genus g. Then

W
µ
(Γ) =

⋃
T(t),

where the union is over all k-uniform displacement tableau t on λ(µ) with alphabet
[g].
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We prove Theorem 4.1.3 in Section 4.2. The remainder of the paper uses this
classification to establish various geometric properties of the tropical splitting type
loci W

µ
(Γ). For example, we compute the dimension of W

µ
(Γ) in Section 4.4, proving

Theorem 4.1.2. In Section 4.5, we study the connectedness of tropical splitting type
loci.

Theorem 4.1.4. Let Γ be a k-gonal chain of loops of genus g. If g > |µ|, then
W

µ
(Γ) is connected in codimension 1.

Unfortunately, the connectedness of W
µ
(Γ) does not imply that of W

µ
(C) for

a general (C, π) ∈ Hg,k. Theorem 4.1.4 is nevertheless interesting for at least two
reasons. First, by [25, Theorem 1.2], we know that the locally closed stratum Wµ(C)
is smooth for a general (C, π) ∈ Hg,k, so it is irreducible if and only if it is con-
nected. Theorem 4.1.4 therefore suggests that Wµ(C) is irreducible if it is positive
dimensional, as predicted in [10, Conjecture 1.2]. Second, by [8, Theorem 1], the
tropicalization of a variety is equidimensional and connected in codimension one, so
Theorems 4.1.2 and 4.1.4 can be seen as evidence that W

µ
(Γ) is the tropicalization

of W
µ
(C) (see Conjecture 4.1.7 below).

Numerical Classes

These geometric results follow from a careful study of k-staircases and k-uniform dis-
placement tableaux. These combinatorial objects are explored in Section 4.3. Stair-
cases belong to a wider class of partitions, known as k-cores, which have been studied
extensively in other contexts. (See, for example, [23].) The set Pk of k-cores is a
ranked poset (Corollary 4.3.18), with cover relations given by upward displacements
in the sense of [32, Definition 6.1]. We write Pk(λ) for the interval below λ ∈ Pk. In
Section 4.6, we use these observations to compute the cardinality of zero-dimensional
tropical splitting type loci.

Theorem 4.1.5. Let Γ be a k-gonal chain of loops of genus g. If g = |µ|, then
|Wµ

(Γ)| is equal to the number of maximal chains in Pk(λ(µ)).

The number of maximal chains in Pk(λ(µ)) has received significant interest in the
combinatorics and representation theory literature, and has connections to the affine
symmetric group. More precisely, there is a bijection between such maximal chains
and reduced words in the affine symmetric group [24]. For this reason, several of
our results have equivalent formulations in terms of these groups (see Remarks 4.3.20
and 4.5.1). There is currently no known closed form expression for these numbers,
but they satisfy a simple recurrence (Lemma 4.6.3) that allows one to compute a
given number in polynomial time (Algorithm 4.6.2).

Theorem 4.1.5 has implications beyond the zero-dimensional case. In [25, Lemma 5.4],
Larson shows that the numerical class of W

µ
(C) in Pic(C) is of the form aµΘ|µ|, where

the coefficient aµ is independent of the genus. To compute the coefficient aµ, there-
fore, it suffices to compute the cardinality of W

µ
(C) in the case where g = |µ|. In

this way, Theorem 4.1.5 suggests the following conjecture.
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Conjecture 4.1.6. Let (C, π) ∈ Hg,k be general. The numerical class of W
µ
(C) in

Picd(µ)(C) is [
W

µ
(C)
]

=
1

|µ|!
· α(Pk(λ(µ))) ·Θ|µ|,

where α(P) denotes the number of maximal chains in the poset P.

At the end of Section 4.6, we provide evidence for Conjecture 4.1.6, in the form
of numerous examples where it holds. We also compute the number of maximal
chains in Pk(λ(µ)) for some infinite families of splitting types where the class of
W

µ
(C) is unknown. For such families, these numbers form well-known integer se-

quences, including binomial coefficients (Examples 4.6.7 and 4.6.13), geometric se-
quences (Example 4.6.8), Catalan numbers (Example 4.6.6), and Fibonacci numbers
(Example 4.6.9). Conjecture 4.1.6 would be implied by the following.

Conjecture 4.1.7. Let Γ be a k-gonal chain of loops, and let C be a curve of genus
g and gonality k over a nonarchimedean field K with skeleton Γ. Then the tropical-
ization map

Trop : W
µ
(C)→ W

µ
(Γ)

is surjective. Moreover, if g = |µ|, then it is a bijection.

Conjecture 4.1.7 is known to hold in several important cases. It is the main result
of [7] in the case where Γ has generic edge lengths (or equivalently, when k = bg+3

2
c).

The main results of [10] and [22] combined show that the tropicalization map is
surjective for the “maximal” splitting types µα of [10, Definition 2.5]. We do not,
however, know that it is bijective in the zero-dimensional case. Conjecture 4.1.7
remains open in many cases where Conjecture 4.1.6 is known to hold.

4.2 Tropical Splitting Loci

Given a splitting type µ ∈ Zk, we define the tropical splitting type locus

W
µ
(Γ) =

{
D ∈ Picd(µ)(Γ) | rk(D +mg1

k) ≥ xm(µ)− 1 for all m
}
.

Note that the tropical splitting type locus can be defined in this way for any tropical

curve Γ with a distinguished g1
k. By Lemma 2.1.5, if µ ≤ λ, then W

µ
(Γ) ⊆ W

λ
(Γ).

The following is a straightforward consequence of Baker’s Specialization Lemma.

Proposition 4.2.1. Let C be a curve of genus g and gonality k over a nonar-
chimedean field K with skeleton Γ. Then

Trop
(
W

µ
(C)
)
⊆ W

µ
(Γ).

Proof. Since the divisor of degree k and rank 1 on Γ is unique, it must be the tropi-
calization of the g1

k on C by Baker’s Specialization Lemma. If D ∈ Wµ
(C), then by

definition we have
h0(C,D +mg1

k) ≥ xm(µ) for all m.
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By Baker’s Specialization Lemma, we have

rk(Trop(D +mg1
k)) ≥ h0(C,D +mg1

k)− 1 ≥ xm(µ)− 1 for all m.

Thus, Trop(D) ∈ Wµ
(Γ).

In this section, we prove Theorem 4.1.3, which gives an explicit description of
splitting type loci on a k-gonal chain of loops. Before proving Theorem 4.1.3, we first
define a partition λ(µ) associated to each splitting type µ.

Staircases

Definition 4.2.2. Given a splitting type µ ∈ Zk and an integer m, we define the
rectangular partition

λm(µ) :=
{

(x, y) ∈ N2 | x ≤ xm(µ), y ≤ ym(µ)
}
.

We further define

λ(µ) =
⋃
m∈Z

λm(µ)

=
{

(x, y) ∈ N2 | ∃m ∈ Z s.t. x ≤ xm(µ), y ≤ ym(µ)
}
.

We call a partition of the form λ(µ) a k-staircase.

Example 4.2.3. Let µ = (−3,−1, 1). Figure 4.1 depicts the rectangular partitions
λ−1(µ), λ0(µ), and λ1(µ), together with λ(µ). Note that λm(µ) is empty for all m
other than −1, 0, or 1.

Figure 4.1: The partitions λ−1(µ), λ0(µ), λ1(µ), and λ(µ), where µ = (−3,−1, 1).

Remark 4.2.4. If µ = (µ1, . . . , µk) and µ′ = (µ1 +m, . . . , µk +m) for some m ∈ Z,

then there is an isomorphism between W
µ
(C) and W

µ′

(C), given by twisting by
π∗O(m). Correspondingly, we have λ(µ) = λ(µ′).

Remark 4.2.5. If µ ≤ µ′, then by Lemma 2.1.5, we have λ(µ′) ⊆ λ(µ).

If both xm(µ) and ym(µ) are positive, then the box (xm(µ), ym(µ)) is the unique
inside corner of the rectangular partition λm(µ), and one of the inside corners of
λ(µ). We define

αm(µ) = xm(µ)− xm−1(µ).
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Note that αm(µ) ≤ αm+1(µ) for all m, and ym−1(µ) − ym(µ) = k − αm(µ). We
say that an integer α is a rank jump in λ(µ) if α = αm(µ) for some integer m. We
say that α is a strict rank jump in λ(µ) if α = αm(µ) for some integer m such that
both xm−1(µ) and ym(µ) are positive. In other words, the strict rank jumps are
α1−µk(µ), α2−µk(µ), . . . , α−2−µ1(µ).

Tropical Splitting Type Loci

We now define the analogue of the coordinate tori from [34].

Definition 4.2.6. Let µ ∈ Zk be a splitting type. Given an integer m and a k-uniform
displacement tableau t on λ(µ) with alphabet [g], let tm denote the restriction of t to
the rectangular subpartition λm(µ). We define the coordinate subtorus T(t) as follows.

T(t) =
{
D ∈ Picd(µ)(Γ) | D +mg1

k ∈ T(tm) for all m
}
.

From the definition it appears that, if one wants to determine whether a divisor
class D is contained in T(t), one has to compute ξj(D+mg1

k) for all integers m. Using
(2.2), however, we can simplify Definition 4.2.6 as follows.

Lemma 4.2.7. Let µ ∈ Zk be a splitting type, and let t be a k-uniform displacement
tableau on λ(µ) with alphabet [g]. Define the function

Z(x, y) =

{
y − x if t(x, y) ≤ g − k + 1
y − x+mk if t(x, y) > g − k + 1 and xm−1(µ) < x ≤ xm(µ).

Then
T(t) := {D ∈ Picd(µ)(Γ) | ξt(x,y)(D) = Z(x, y)}.

Proof. Let m be an integer and let tm(x, y) = j. If j ≤ g − k + 1, then ξ̃j(g
1
k) = 0,

and by (2.2) we see that for any divisor class D we have

ξj(D) = ξj(D +mg1
k).

It follows that ξj(D) = y − x if and only if ξj(D +mg1
k) = y − x.

On the other hand, if j > g − k + 1, then we must first show that xm−1(µ) <
x ≤ xm(µ). The second inequality follows from the fact that (x, y) ∈ λm(µ). If
x ≤ xm−1(µ), then the k + 1 boxes in the hook

Hm = {(x, y) ∈ λ(µ) | x ≥ xm−1(µ), y ≥ ym(µ)}

are all below and to the right of (x, y). The two inside corners (xm−1(µ), ym−1(µ))
and (xm(µ), ym(µ)) have lattice distance k, so they are the only two boxes of Hm

that can contain the same symbol. It follows that Hm contains at least k distinct
symbols greater than or equal to j. Since j > g − k + 1, this is impossible, hence
x > xm−1(µ). Now, since ξ̃j(g

1
k) = k, by (2.2) we see that for any divisor class D we

have
ξj(D) = ξj(D +mg1

k)−mk.
It follows that ξj(D) = y − x+mk if and only if ξj(D +mg1

k) = y − x.
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As in Definition 2.3.3, the k-uniform displacement condition guarantees that, if
the symbol j appears in more than one box, then the boxes impose the same condition
on ξj. In particular, if j > g−k+1 and tm(x, y) = tm′(x

′, y′) = j, then the k-uniform
displacement condition guarantees that

(y′ − x′)− (y − x) = (m−m′)k,

so Z(x, y) = Z(x′, y′). As a consequence, we see that the codimension of T(t) is equal
to the number of distinct symbols in t.

Example 4.2.8. Figure 4.2 depicts a 3-uniform displacement tableau t on λ(µ),
where µ = (−3,−1, 1). Since the tableau contains g = 5 distinct symbols, T(t) is a
zero-dimensional torus. In other words, it consists of a single divisor class D, also
depicted in Figure 4.2. In this picture, the chips on loops 2 and 4 are located at the
points 〈1〉2 and 〈1〉4. By Theorem 4.1.3, the divisor class D is in W

µ
(Γ). That is,

D − g1
3 has rank 0, D has rank 1, and D + g1

3 has rank 3.

1 3 4 5

2 5

3

5

Figure 4.2: A 3-uniform displacement tableau on λ(−3,−1, 1) and the corresponding
divisor class.

Lemma 4.2.7 allows us to formulate the following analogue of [10, Lemma 3.6].

Lemma 4.2.9. Let µ ∈ Zk be a splitting type, and let t, t′ be k-uniform displacement
tableaux on λ(µ). Then T(t) ⊆ T(t′) if and only if

1. every symbol in t′ is a symbol in t, and

2. if t(x, y) = t′(x′, y′), then y − x ≡ y′ − x′ (mod k).

We now prove Theorem 4.1.3.

Proof of Theorem 4.1.3. We first show that

W
µ
(Γ) ⊇

⋃
T(t).
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Let t be a k-uniform displacement tableau on λ(µ), and let D ∈ T(t). By definition,
D +mg1

k ∈ T(tm) for all m. It follows from Theorem 2.3.4 that D +mg1
k has degree

d(µ)+mk and rank at least xm(µ)−1 for allm. By definition, we see thatD ∈ Wµ
(Γ).

We now show that
W

µ
(Γ) ⊆

⋃
T(t).

Let D ∈ W
µ
(Γ). By definition, D + mg1

k has degree d(µ) + mk and rank at least
xm(µ)−1 for all m. By Theorem 2.3.4, there exists a k-uniform displacement tableau
tm on the rectangular partition λm(µ) such that D + mg1

k ∈ T(tm). We construct a
tableau t on λ(µ) as follows. For each box (x, y) in λ(µ), define

t(x, y) = min
m∈Z s.t.

(x,y)∈λm(µ)

tm(x, y).

We first show that t is a tableau on λ(µ). To see that t is strictly increasing across
rows, suppose that x > 1 and t(x, y) = tm(x, y). Since (x, y) ∈ λm(µ), we see that
(x− 1, y) ∈ λm(µ) as well. It follows that

t(x− 1, y) ≤ tm(x− 1, y) < tm(x, y) = t(x, y).

The same argument shows that t is strictly increasing down the columns.
We now show that the tableau t satisfies the k-uniform displacement condition.

Suppose that t(x, y) = t(x′, y′). By construction, there exist integers m and m′

such that t(x, y) = tm(x, y) and t(x′, y′) = tm′(x
′, y′). Since D + mg1

k ∈ T(tm) and
D +m′g1

k ∈ T(tm′), we see that

ξt(x,y)(D +mg1
k) ≡ y − x (mod k)

ξt(x,y)(D +m′g1
k) ≡ y′ − x′ (mod k).

It therefore suffices to show that

ξj(D +mg1
k) ≡ ξj(D +m′g1

k) for all j.

This follows from (2.2) and the fact that ξ̃j(g
1
k) ≡ 0 (mod k) for all j.

Finally, we show that D ∈ T(t). For every box (x, y) ∈ λ(µ), there is an integer
m such that ξt(x,y)(D+mg1

k) = y− x. By Lemma 4.2.7, we have ξt(x,y)(D) = Z(x, y).
Since this holds for all (x, y) ∈ λ(µ), we see that D ∈ T(t) by Lemma 4.2.7.

Operations on Splitting Types

Several operations on splitting types have simple interpretations in terms of the cor-
responding partitions. The first of these corresponds to Serre duality.

Lemma 4.2.10. Let µ = (µ1, . . . , µk) be a splitting type, and let µT = (−µk, . . . ,−µ1).
Then λ(µT ) = λ(µ)T .
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Proof. Since both operations are involutions, it suffices to show that λ(µ)T ⊆ λ(µT ).
Let (x, y) ∈ λ(µ). Then there exists an integer m ∈ Z such that

x ≤
k∑
i=1

max{0, µi +m+ 1},

y ≤
k∑
i=1

max{0,−µi −m− 1}.

Setting m′ = −2−m, we see that

y ≤
k∑
i=1

max{0,−µi −m− 1} =
k∑
i=1

max{0,−µi +m′ + 1}

x ≤
k∑
i=1

max{0, µi +m+ 1} =
k∑
i=1

max{0, µi −m′ − 1}.

Thus, (y, x) ∈ λ(µT ).

As a consequence, we see that the set of partitions of the form λ(µ) is closed
under transpose. We now show that it is also closed under the operations of deleting
the top row or the leftmost column.

Lemma 4.2.11. Let µ ∈ Zk be a splitting type, let s be the minimal index such that
µs < µs+1, and let

µ+ = (µ1, . . . , µs−1, µs + 1, µs+1, . . . , µk).

Then λ(µ+) is the partition obtained from λ(µ) by deleting the first row. Moreover,
|µ| − |µ+| is equal to the largest strict rank jump in λ(µ).

Similarly, let s′ be the maximal index such that µs′ > µs′−1, and let

µ− = (µ1, . . . , µs′−1, µs′ − 1, µs′+1, . . . , µk).

Then λ(µ−) is the partition obtained from λ(µ) by deleting the leftmost column.
Moreover, |µ| − |µ+| is equal to k − α, where α is the smallest strict rank jump in
λ(µ).

Proof. We prove the statements about µ+. The statements about µ− follow from
Lemma 4.2.10, together with the observation that µ− = (µT

+)T . Let (x, y) ∈ λ(µ+).
Then there exists an integer m such that

x ≤
k∑
i=1

max{0, µ+
i +m+ 1} and

y ≤
k∑
i=1

max{0,−µ+
i −m− 1}.
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Since y is positive and µs is minimal, we see that m ≤ −2 − µs. It follows that
µ+
s +m+ 1 ≤ 0, so

x ≤
k∑
i=1

max{0, µ+
i +m+ 1} =

k∑
i=1

max{0, µi +m+ 1}

y + 1 ≤ 1 +
k∑
i=1

max{0,−µ+
i −m− 1} =

k∑
i=1

max{0,−µi −m− 1}.

So (x, y+1) ∈ λ(µ). An analogous argument shows that, if (x, y) ∈ λ(µ), then either
y = 1 or (x, y − 1) ∈ λ(µ+).

We now compute |µ| − |µ+|. If i, j 6= s, then µ+
j − µ+

i = µj − µi. If i < s, then
µ+
s − µ+

i − 1 = 0. Finally, if j > s, then µ+
j − µ+

s = µj − µs − 1. Thus,

|µ| − |µ+| =
∑
i<j

(
max{0, µj − µi} −max{0, µ+

j − µ+
i − 1}

)
=

k∑
j=1

(
max{0, µj − µs − 1} −max{0, µj − µs − 2}

)
.

On the other hand, the largest rank jump in λ(µ) is

α−µs−2(µ) =
k∑
j=1

(
max{0, µj − µs − 1} −max{0, µj − µs − 2}

)
.

4.3 Cores and Displacement

This section contains the main combinatorial arguments that will be used in our
examination of tropical splitting type loci. We study an operation on partitions
known as displacement, and a certain class of partitions known in the combinatorics
literature as k-cores, which includes the k-staircases. Because of Theorem 4.1.3,
we are interested in k-uniform displacement tableaux on partitions of this type. A
tableau t on a partition λ can be thought of as a chain of partitions

∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λn = λ,

where λj = {(x, y) ∈ λ|t(x, y) ≤ j}. This observation naturally leads us to study
posets of partitions, where the cover relations guarantee that the resulting tableaux
satisfy k-uniform displacement.

Diagonals and Displacement

Following [14], given a ∈ Z/kZ, we define the corresponding diagonal (mod k) to be

Da := {(x, y) ∈ N2 | y − x ≡ a (mod k)}.
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Definition 4.3.1. [32, Definition 6.1] Let λ be a partition. The upward displace-
ment1 of λ with respect to a ∈ Z/kZ is the partition λ+

a obtained from λ by adding
all outside corners in Da.

Similarly, the downward displacement of λ with respect to a ∈ Z/kZ is the parti-
tion λ−a obtained from λ by deleting all inside corners in Da.

Example 4.3.2. The operations of upward displacement and downward displacement
are not inverses. For example, consider the partition λ on the left in Figure 4.3, where
each box has been decorated with its diagonal (mod 4). The second partition in the
figure is λ+

2 , the upward displacement with respect to 2 (mod 4), and the third
partition is (λ+

2 )−2 , the downward displacement of the second partition, again with
respect to 2 (mod 4). Note that the first partition and the third partition do not
agree.

0 3

1 0

2

⇒ 0 3 2

1 0

2

⇒ 0 3

1 0

Figure 4.3: Upward displacement followed by downward displacement does not nec-
essarily yield the original partition.

There are important examples of partitions for which the concatenation of an
upward and a downward displacement is the identity.

Definition 4.3.3. A partition λ is called a k-core if it can be obtained from the empty
partition by a sequence of upward displacements with respect to congruence classes in
Z/kZ.

We write Pk for the poset of k-cores, where λ′ ≤ λ if λ can be obtained from λ′

by a sequence of upward displacements with respect to congruence classes in Z/kZ.
If λ ∈ Pk, we write Pk(λ) for the interval (or principal order ideal) below λ in Pk.

Example 4.3.4. Figure 4.4 depicts a Hasse diagram for P3(λ(µ)), where µ =
(−3,−1, 1). The diagram is drawn from left to right, rather than bottom to top,
to preserve space on the page. Note that λ(µ) is a 3-core, and that every maximal
chain in the interval below λ(µ) has the same length. As we shall see, the fact that
the length of a maximal chain is 5 corresponds to the fact that any 3-uniform dis-
placement tableau on λ(µ) has at least 5 symbols. The fact that there are 2 maximal
chains corresponds to the fact that there are 2 such tableaux with alphabet [5].

Remark 4.3.5. Recall that, if µ ≤ µ′, then λ(µ′) ⊆ λ(µ). It is not necessarily true,
however, that λ(µ′) ≤ λ(µ) in the poset Pk. For example, if µ = (−3,−1, 1) and

1This terminology is consistent with [32]. In that paper, partitions are depicted according to the
French convention, whereas ours are in the English style. Because of this, the upward displacement
adds boxes below the partition.
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Figure 4.4: A principal order ideal in P3.

µ′ = (−3, 0, 0), then µ ≤ µ′ but the partition λ(µ′), pictured in Figure 4.5, is not
contained in P3(λ(µ)), pictured in Figure 4.4.

Figure 4.5: The partition λ(µ′) is not in the principal order ideal of Figure 4.4.

We note the following simple observation.

Lemma 4.3.6. The transpose of a k-core is a k-core.

Proof. This follows directly from the fact that (λ+
a )T = (λT )+

−a.

We now define some invariants of partitions. Let λ be a partition and a ∈ Z/kZ
a congruence class. We define

Ca(λ) := max {y | ∃(x, y) ∈ λ ∩Da with (x, y + 1) /∈ λ} .

In other words, Ca(λ) is the height of the tallest column whose last box is in Da. If
no such column exists, we define Ca(λ) to be zero. We write

C(λ) = (C0(λ), C1(λ), . . . , Ck−1(λ)),

and further define
ρk(λ) :=

∑
a∈Z/kZ

Ca(λ).
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Example 4.3.7. Figure 4.6 again depicts the partition λ(µ), where µ = (−3,−1, 1).
Each column is labeled by the diagonal (mod 3) containing its last box. The tallest
column whose last box is in D0 has height 4, the tallest column whose last box is
in D1 has height 1, and there is no column whose last box is in D2. Therefore,
C(λ(µ)) = (4, 1, 0), and

ρ3(λ(µ)) = 4 + 1 + 0 = 5 = |µ|.

1 0

0

0

Figure 4.6: The partition λ(−3,−1, 1), with each column labeled by the diagonal
(mod 3) containing its last box.

Descent

We now provide an alternate characterization of k-cores. Most of the material in this
and the next subsection has appeared previously in the literature on k-cores. (See,
for example, [24, 23].) We nevertheless include these arguments here, as they are
fairly short and we wish to advertise these ideas.

Definition 4.3.8. We say that a partition λ satisfies k-descent if the following con-
dition holds for every congruence class a ∈ Z/kZ. Whenever (x, y) ∈ λ ∩ Da and
(x+ 1, y) /∈ λ, then Ca−1(λ) < y.

Example 4.3.9. The partition λ pictured on the left in Figure 4.3 does not satisfy 4-
descent, because the last box in the first row is in D3, and there exists a column whose
last box is in D2. In other words, (2, 1) ∈ λ ∩D3 and (3, 1) /∈ λ, but C2(λ) = 3 ≥ 1.

On the other hand, the partition λ(µ) pictured in Figure 4.6 does satisfy 3-descent.
There is no row whose last box is in D1. The last box in the first row is in D0, and
there is no column whose last box is in D2. The last box in the third row is in D2,
and C1(λ(µ)) = 1 < 3.

Remark 4.3.10. If λ satisfies k-descent, then there is a congruence class a ∈ Z/kZ
such that Ca(λ) = 0. Specifically, if (x, 1) is the last box in the first row, then by
definition C−x(λ) = 0.

Our goal for this subsection is to prove the following.

Proposition 4.3.11. A partition λ is a k-core if and only if both λ and λT satisfy
k-descent.
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To prove Proposition 4.3.11, we will need a few preliminary results. First, we
examine the behavior of inside corners in partitions that satisfy k-descent.

Lemma 4.3.12. Let λ be a partition that satisfies k-descent, and let a ∈ Z/kZ be a
congruence class. If λ has an inside corner in Da, then the tallest column whose last
box is in Da contains an inside corner.

Proof. Let (x, y) ∈ λ∩Da be an inside corner, and consider the tallest column whose
last box is in Da. If it doesn’t contain an inside corner, then the column immediately
to the right has the same height, and its last box is in Da−1. But the height of this
column is greater than y, contradicting the definition of k-descent.

Lemma 4.3.13. Let λ be a partition that satisfies k-descent. Then λ has an inside
corner in Da if and only if Ca−1(λ) < Ca(λ).

Proof. First, suppose that λ has an inside corner in Da. By Lemma 4.3.12, the tallest
column of λ whose last box is in Da ends in an inside corner. In other words, there
is an x such that (x,Ca(λ)) ∈ λ∩Da and (x+ 1, Ca(λ)) /∈ λ. Thus, by the definition
of k-descent, we see that Ca−1(λ) < Ca(λ).

Conversely, suppose that Ca−1(λ) < Ca(λ), and consider the tallest column of λ
whose last box is in Da. Let (x,Ca(λ)) be the last box in this column. By definition,
(x,Ca(λ) + 1) /∈ λ. Since Ca−1(λ) < Ca(λ) and (x + 1, Ca(λ)) ∈ Da−1, we see that
(x+ 1, Ca(λ)) /∈ λ. Thus, (x,Ca(λ)) ∈ Da is an inside corner.

Lemma 4.3.14. Let λ be a partition, and suppose that both λ and λT satisfy k-
descent. For any congruence class a ∈ Z/kZ, λ cannot have both an inside corner
and an outside corner in Da.

Proof. Suppose that (x, y) ∈ Da is an inside corner and (x′, y′) ∈ Da is an outside
corner. By definition, either y′ = 1 or (x′, y′− 1) ∈ λ∩Da−1, hence Ca−1(λ) ≥ y′− 1.
Since λ satisfies k-descent, we see that y′ − 1 < y. Similarly, since λT satisfies k-
descent, we see that x′ − 1 < x. Together, these inequalities imply that (x′, y′) ∈ λ,
contradicting our assumption that (x′, y′) is an outside corner.

Lemma 4.3.14 implies that, when restricted to partitions satisfying k-descent, the
operations of upward and downward displacement are inverses.

Lemma 4.3.15. Let λ be a partition, and suppose that both λ and λT satisfy k-
descent. If λ has an inside corner in Da, then λ = (λ−a )+

a . Similarly, if λ has an
outside corner in Da, then λ = (λ+

a )−a .

Proof. We show the first equality above. The second equality follows from an anal-
ogous argument. Note that λ ⊆ (λ−a )+

a . To see the reverse containment, let (x, y) ∈
(λ−a )+

a . If (x, y) /∈ Da or (x, y) is not an inside corner of (λ−a )+
a , then (x, y) ∈ λ−a ⊂ λ.

On the other hand, if (x, y) ∈ Da is an inside corner of (λ−a )+
a , then neither (x− 1, y)

nor (x, y − 1) are in Da, so either x = 1 or (x − 1, y) ∈ λ, and either y = 1 or
(x, y − 1) ∈ λ. It follows that either (x, y) ∈ λ or (x, y) is an outside corner of λ. By
Lemma 4.3.14, however, λ cannot have an outside corner in Da. Thus, (x, y) ∈ λ,
and (λ−a )+

a ⊆ λ.
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Crucially, the k-descent property is preserved by upward and downward displace-
ments.

Lemma 4.3.16. Let λ be a partition that satisfies k-descent. Then, for any a ∈
Z/kZ, λ+

a and λ−a also satisfy k-descent.

Proof. We prove the statement about λ+
a . The statement about λ−a holds by an

analogous argument. Suppose that (x, y) ∈ λ+
a and (x+ 1, y) /∈ λ+

a . By the definition
of k-descent, either (x, y) /∈ λ, or (x, y) ∈ λ and Cy−x−1(λ) < y. We first consider
the case where (x, y) /∈ λ. Since (x, y) ∈ λ+

a , this implies that (x, y) ∈ Da. Note
that (x− 1, y) ∈ λ ∩Da+1 and (x, y) /∈ λ. By the definition of k-descent, we see that
Ca(λ) < y. It follows that, if (x′, y′) ∈ λ∩Da−1 with y′ ≥ y and (x′, y′+ 1) /∈ λ, then
(x′, y′ + 1) is an outside corner, and thus in λ+

a . From this we obtain Ca−1(λ+
a ) < y.

On the other hand, if (x, y) ∈ λ, then Cy−x−1(λ) < y. We may assume that
(x, y) ∈ Da+1, because otherwise we have Cy−x−1(λ+

a ) ≤ Cy−x−1(λ). Then, since
(x + 1, y) /∈ λ+

a , we must have (x + 1, y − 1) /∈ λ. Since λ satisfies k-descent and
(x, y−1) ∈ λ∩Da, we see that Ca−1(λ) < y−1. Since Ca(λ) < y and Ca−1(λ) < y−1,
we see that Ca(λ

+
a ) < y.

We now establish that this is an alternate characterization of k-cores.

Proof of Proposition 4.3.11. First, let λ be a k-core. By Lemma 4.3.6, λT is a k-core.
It therefore suffices to prove that λ satisfies k-descent. By definition, λ is obtained
from the empty partition by a sequence of upward displacements with respect to
congruence classes in Z/kZ. We prove that λ satisfies k-descent by induction on the
number of upward displacements in this sequence. The base case is the empty parti-
tion, which satisfies k-descent trivially. The inductive step follows from Lemma 4.3.16,
which says that the upward displacement of a partition satisfying k-descent also sat-
isfies k-descent.

Now, let λ be a partition such that both λ and λT satisfy k-descent. We prove that
λ is a k-core by induction on the number of boxes in λ. The base case is the empty
partition, which is a k-core. If λ is non-empty, then there is an inside corner (x, y) ∈ λ.
By Lemma 4.3.16, the downward displacements λ−y−x and (λ−y−x)

T = (λT )−x−y satisfy
k-descent. By induction, λ−y−x is therefore a k-core, hence by definition, (λ−y−x)

+
y−x is

a k-core as well. By Lemma 4.3.15, however, λ = (λ−y−x)
+
y−x, so λ is a k-core.

Behavior of Invariants Under Displacement

A consequence of this characterization is that Pk is a graded poset. To see this, given
a vector C = (C0, C1, . . . , Ck−1) and a congruence class a ∈ Z/kZ, define the vector
C−a = (C−0a, C

−
1a, . . . , C

−
k−1a) by

C−ba =


Ca − 1 if b = a− 1
Ca−1 if b = a
Cb otherwise.

The notation is justified by the following proposition.
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Proposition 4.3.17. If λ ∈ Pk has an inside corner in Da, then C(λ−a ) = C(λ)−a .

Proof. It is straightforward to see that, if b 6= a, a − 1, then Cb(λ
−
a ) = Cb(λ). By

Lemma 4.3.12, the tallest column of λ whose last box is in Da contains an inside
corner, and by Lemma 4.3.13, Ca−1(λ) < Ca(λ). It follows that Ca−1(λ−a ) = Ca(λ)−1.

Now, suppose that (x, y) ∈ λ∩Da is the last box of a column. If y > Ca−1(λ), then
(x, y) is an inside corner of λ, because (x+1, y) ∈ Da−1 cannot be in λ by definition. It
follows that (x, y) /∈ λ−a , and thus that Ca(λ

−
a ) ≤ Ca−1(λ). We now show that equality

holds. If Ca−1(λ) = 0, then there is nothing to show. Otherwise, suppose that column
x is the tallest column whose last box is in Da−1. By Lemma 4.3.14, (x,Ca−1(λ) + 1)
cannot be an outside corner of λ, hence x > 1 and (x−1, Ca−1(λ) + 1) /∈ λ. It follows
that (x− 1, Ca−1(λ)) ∈ Da is the last box in its column. Since (x− 1, Ca−1(λ)) is not
an inside corner, it is contained in λ−a , so Ca(λ

−
a ) ≥ Ca−1(λ).

Corollary 4.3.18. The set Pk is a graded poset with rank function ρk.

Proof. Let λ ∈ Pk, and suppose that λ has an inside corner in Da. It suffices to show
that

ρk(λ) = ρk(λ
−
a ) + 1.

This follows from Proposition 4.3.17 by summing over all b ∈ Z/kZ.

Saturated Tableaux

Corollary 4.3.18 provides a natural interpretation for the function ρk. As we shall
see in Corollary 4.3.22, if λ ∈ Pk, then ρk(λ) is the minimal number of symbols in a
k-uniform displacement tableau on λ. Let C (P) denote the set of maximal chains in
a poset P . Given a partition λ ∈ Pk, we define a map

Φλ :

(
[g]

ρk(λ)

)
× C (Pk(λ))→ Y Tk(λ)

as follows. Let
s1 < s2 < · · · < sρk(λ)

be the elements of S ⊆ [g], and let

∅ = λ0 < λ1 < · · · < λρk(λ) = λ

be a maximal chain in Pk(λ). Define the tableau t = Φλ(S,~λ) by setting

t(x, y) = sj if (x, y) ∈ λj r λj−1.

For each j, every symbol in λj−1 is smaller than sj, so t is a tableau. Moreover, every
box containing the symbol sj is in the same diagonal (mod k), so t satisfies k-uniform
displacement. We say that a tableau t on λ is k-saturated if it is in the image of Φλ.
Note that every k-saturated tableau contains exactly ρk(λ) distinct symbols.

Theorem 4.3.19. Let λ be a k-core, and let t be a k-uniform displacement tableau
on λ. Then there exists a k-saturated tableau t′ on λ such that:
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1. every symbol in t′ is a symbol in t, and

2. if t(x, y) = t′(x′, y′), then y − x ≡ y′ − x′ (mod k).

Proof. We prove this by induction on ρk(λ). The base case is when ρk(λ) = 0, in
which case λ is the empty partition, and the result is trivial.

For the inductive step, suppose that h is the largest symbol in t. Note that any
box containing h must be an inside corner of λ, and every such box is contained in the
same diagonal Da. In particular, the symbol h does not appear in the restriction t|λ−a .
By induction, there exists a k-saturated tableau t′′ on λ−a such that every symbol in
t′′ is a symbol in t|λ−a , and if t(x, y) = t′′(x′, y′), then y − x ≡ y′ − x′ (mod k).

By Corollary 4.3.18, ρk(λ
−
a ) = ρk(λ) − 1, so the set S of symbols in t′′ has size

ρk(λ)− 1. By definition, there is a maximal chain

∅ = λ0 < λ1 < · · · < λρk(λ)−1 = λ−a

such that t′′ = Φλ−a
(S,~λ). Let S ′ = S∪{h}, let ~λ′ be the chain obtained by appending

λ to the end of ~λ, and let t′ = Φλ(S
′, ~λ′). In other words,

t′(x, y) =

{
t′′(x, y) if (x, y) ∈ λ−a
h if (x, y) /∈ λ−a .

Clearly, every symbol in t′ is a symbol in t. Since h is larger than every symbol
appearing in t|λ−a , we see that t′ is a tableau. Finally, since every box containing h is
in Da, we see that if t(x, y) = h, then y − x ≡ a (mod k).

Remark 4.3.20. Under the bijection between k-uniform displacement tableaux on
k-cores and words in the affine symmetric group, Theorem 4.3.19 is equivalent to the
statement that every word is equivalent to a reduced word.

Example 4.3.21. Given a k-uniform displacement tableau t on λ, the proof of The-
orem 4.3.19 provides an explicit algorithm for producing the k-saturated tableau t′.
At each step, find the diagonal Da containing the largest symbol in t. Replace every
inside corner in Da with this symbol, then downward displace with respect to a, and
iterate the procedure.

Figure 4.7 illustrates this procedure for a 3-uniform displacement tableau on λ(µ),
where µ = (−3,−1, 1). The tableau on the left uses 8 symbols. At each step, we
highlight in gray the downward displacement of the previous partition in the sequence,
replacing symbols as we go until we arrive at a tableau with ρ3(λ(µ)) = 5 symbols.

Corollary 4.3.22. Let λ be a k-core. The minimum number of symbols in a k-
uniform displacement tableau on λ is ρk(λ).

Proof. Let t be a k-uniform displacement tableau on λ. By Theorem 4.3.19, there
exists a k-uniform displacement tableau t′ on λ such that every symbol in t′ is a
symbol in t, and t′ has exactly ρk(λ) symbols. It follows that t has at least ρk(λ)
symbols.
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1 2 4 5

3 7

6

8

⇒ 1 2 4 8

3 8

6

8

⇒ 1 2 4 8

3 8

6

8

⇒ 1 2 4 8

4 8

6

8

Figure 4.7: Starting with the tableau on the left, we produce a 3-uniform displacement
tableau with only 5 symbols.

4.4 Dimensions of Tropical Splitting Type Loci

In this section, we compute the dimension of W
µ
(Γ), proving Theorem 4.1.2. In order

to do this, we first apply the results of Section 4.3 to k-staircases.

Lemma 4.4.1. Let µ ∈ Zk be a splitting type, and let c(µ) = −
∑k

i=1 µi. Then every
inside corner of λ(µ) is in Dc(µ).

Proof. Recall that the inside corners of λ(µ) are the boxes (xm(µ), ym(µ)). By defi-
nition, we have

ym(µ)− xm(µ) =
k∑
i=1

(
max{0,−µi −m− 1} −max{0, µi +m+ 1}

)
=

k∑
i=1

(
max{0,−µi −m− 1}+ min{0,−µi −m− 1}

)
=

k∑
i=1

(−µi −m− 1)

≡ −
k∑
i=1

µi (mod k).

If λ is a k-staircase, then there is a simple expression for the invariants Ca(λ).

Lemma 4.4.2. Let µ ∈ Zk be a splitting type. Then

Cc(µ)+i(λ(µ)) = y−µk−i(µ) =
k−1−i∑
j=1

max{0, µk−i − µj − 1} for all 0 ≤ i ≤ k − 1.

Proof. We first identify the congruence classes a ∈ Z/kZ such that Ca(λ(µ)) = 0.
Let (x, y) be the last box in a column of λ(µ). Then there exists an integer m such
that y = ym(µ) and xm−1(µ) < x ≤ xm(µ). Since (xm(µ), ym(µ)) ∈ Dc(µ), we see
that (x, y) ∈ Dc(µ)+i for some i in the range 0 ≤ i < αm(µ). Since αm(µ) ≤ αm+1(µ)
for all m, we may reduce to the case where m = −2 − µ1 is maximal. We see that
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Cc(µ)+i(λ(µ)) is nonzero for i in the range 0 ≤ i < α−2−µ1(µ) and zero for i in the
range α−2−µ1(µ) ≤ i ≤ k − 1. Note that α−2−µ1(µ) is the minimal index j such that
µj+1 ≥ µ1 + 2.

To establish the formula when Ca(λ(µ)) is nonzero, we proceed by induction on
the number of rows of λ(µ). The base case is when µj − µi ≤ 1 for all i < j, in
which case λ(µ) is the empty partition. In this case, Ci(λ(µ)) = y−µk−i(µ) = 0 for
all 0 ≤ i ≤ k − 1.

For the inductive step, recall from Lemma 4.2.11 that λ(µ+) is the partition
obtained by deleting the first row of λ(µ). It follows that

Ca+1(λ(µ+)) =

{
Ca(λ(µ))− 1 if Ca(λ(µ)) 6= 0
0 if Ca(λ(µ)) = 0.

Note that c(µ+) = c(µ)+1. If µk−i ≤ µ1+1, then Cc(µ+)+i(λ(µ+)) = y−µ+k−i
(µ+) = 0.

By induction, if µk−i ≥ µ1 + 2, then

Cc(µ+)+i(λ(µ+)) =
k−1−i∑
j=1

max{0, µk−i − µ+
j − 1} =

k−1−i∑
j=1

max{0, µk−i − µj − 1} − 1,

and the result follows.

Corollary 4.4.3. Let µ ∈ Zk be a splitting type. Then ρk(λ(µ)) = |µ|.

Proof. By Lemma 4.4.2, we have

ρk(λ(µ)) =
k−1∑
i=0

Cc(µ)+i(λ(µ))

=
k−1∑
i=0

k−1−i∑
j=1

max{0, µk−i − µj − 1}

=
∑
j<i

max{0, µi − µj − 1} = |µ|.

In order to use the results of Section 4.3, we must show that k-staircases are in
Pk.

Proposition 4.4.4. Every k-staircase is a k-core.

Proof. Let µ ∈ Zk be a splitting type. By Proposition 4.3.11, we must show that
λ(µ) and λ(µ)T satisfy k-descent. By Lemma 4.2.10, it suffices to show that λ(µ)
satisfies k-descent. Let (x, y) ∈ λ(µ) ∩ Da and suppose that (x + 1, y) /∈ λ(µ). We
will show that Ca−1(λ(µ)) < y. By assumption, there is an integer m such that
x = xm(µ) and ym+1(µ) < y ≤ ym(µ). Since (xm+1(µ), ym+1(µ)) ∈ Dc(µ), we see
that (x, y) ∈ Dc(µ)+i for some i in the range αm+1(µ) < i ≤ k. By Lemma 4.4.2, we
have

Cc(µ)−i−1(λ(µ)) = y−µk−i+1
(µ).
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If m+ 1 ≥ −µk−i+1(µ), then αm+1(µ) ≥ i, a contradiction. It follows that

y−µk−i+1
(µ) < ym+1(µ) < y.

We now prove the main theorem.

Theorem 4.4.5. Let Γ be a k-gonal chain of loops of genus g, and let µ ∈ Zk be a
splitting type. Then

W
µ
(Γ) =

⋃
T(t),

where the union is over all k-saturated tableaux on λ(µ) with alphabet [g].

Proof. Let t be a k-uniform displacement tableau on λ(µ). By Theorem 4.1.3, it
suffices to show that there is a k-saturated tableau t′ on λ(µ) such that T(t) ⊆ T(t′).
By Proposition 4.4.4, λ(µ) is a k-core. Thus, by Theorem 4.3.19, there is a k-saturated
tableau t′ such that every symbol in t′ is a symbol in t and, if t(x, y) = t(x′, y′), then
y − x ≡ y′ − x′ (mod k). By Lemma 4.2.9, we have T(t) ⊆ T(t′).

Proof of Theorem 4.1.2. Recall that the codimension of T(t) is equal to the number of
symbols in t. The result then follows from Theorem 4.4.5 because every k-saturated
tableau on λ contains exactly ρk(λ) symbols, and by Corollary 4.4.3, ρk(λ(µ)) =
|µ|.

We now explain the connection between the tropical geometry and classical al-
gebraic geometry. The following has become a standard argument in tropical ge-
ometry, for instance in [11, 33, 22, 10]. Recall that, if W

µ
(C) is nonempty, then

dimW
µ
(C) ≥ g − |µ|. We show the reverse inequality.

Proof of Theorem 4.1.1. By [33, Lemma 2.4], there exists a curve C of genus g and
gonality k over a nonarchimedean field K with skeleton Γ. By Proposition 4.2.1, we
have

Trop
(
W

µ
(C)
)
⊆ W

µ
(Γ).

By [19, Theorem 6.9], we have

dimW
µ
(C) = dim Trop

(
W

µ
(C)
)
≤ dimW

µ
(Γ) = g − |µ|,

where the last equality comes from Theorem 4.1.2.

4.5 Connectedness of Tropical Splitting Type Loci

In this section, we prove Theorem 4.1.4, which says that W
µ
(Γ) is connected in

codimension one. We borrow the ideas and terminology from [14, Section 4.2].
Let t be a k-uniform displacement tableau, let a be a symbol that is not in t, and

let b be either the smallest symbol in t that is greater than a or the largest symbol
in t that is smaller than a. If we take a proper subset of the boxes containing b
and replace them with a, then we obtain a k-uniform displacement tableau t′, with
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T(t′) ⊂ T(t) and dimT(t′) = dimT(t)− 1. If we instead replace every instance of the
symbol b in t with the symbol a, then we obtain a k-uniform displacement tableau
t′, with dimT(t′) = dimT(t), such that T(t) and T(t′) intersect in codimension one.
This procedure is called swapping in a for b.

Given a symbol b in t, we obtain a k-uniform displacement tableau t′ without the
symbol b, by iterating the procedure above. If there is a symbol a < b that is not in
t, then the resulting tableau can be described explicitly:

t′(x, y) =

{
t(x, y)− 1 if a < t(x, y) ≤ b
t(x, y) otherwise.

If there is a symbol a > b that is not in t, then t′ is obtained instead by increasing by
1 every symbol in t between b and a. Because t′ is obtained by a sequence of swaps,
we see that there is a chain of tori from T(t) to T(t′), such that each consecutive pair
of tori in the chain intersect in codimension one. This procedure is called cycling out
b.

Proof of Theorem 4.1.4. Let t, t′ be k-saturated tableaux on λ(µ). By Theorem 4.4.5,
it suffices to construct a sequence

t = t0, t1, . . . , tm = t′

of k-saturated tableaux, where T(ti) and T(ti+1) intersect in codimension one for all
i. Both t and t′ contain precisely |µ| symbols. By cycling out all symbols greater
than |µ|, we may assume that the symbols in t and t′ are precisely those in [|µ|]. In
other words, there exist maximal chains

∅ = λ0 < λ1 < · · · < λ|µ| = λ(µ),

∅ = λ′0 < λ′1 < · · · < λ′|µ| = λ(µ)

such that t = Φ([|µ|], ~λ) and t′ = Φ([|µ|], ~λ′). If ~λ and ~λ′ coincide, then t = t′, and
we are done.

We prove the remaining cases by induction, having just completed the base case.
Let j be the largest symbol such that λj−1 6= λ′j−1. Equivalently, the symbols j +
1, . . . , |µ| appear in the same set of boxes of t and t′. We will construct a sequence

t = t′0, t
′
1, . . . , t

′
n = t′′

of k-saturated tableaux, where T(t′i) and T(t′i+1) intersect in codimension one for all
i, and where each of the symbols j, . . . , |µ| appears in the same set of boxes of t′ and
t′′.

Since g > |µ|, either g = j + 1 or there exists a symbol in [g] that is greater than
j + 1. We let t̂ be the tableau obtained by cycling j + 1 out of t. In other words,

t̂(x, y) =

{
t(x, y) if t(x, y) ≤ j
t(x, y) + 1 if t(x, y) > j.
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We define

t̃(x, y) =

{
j + 1 if (x, y) ∈ λ′j r λ′j−1

t̂(x, y) otherwise.

To see that t̃ is a tableau, note that

λj = λ′j = {(x, y) ∈ λ(µ) | t̂(x, y) ≤ j},

and t̂ does not contain the symbol j+ 1, so every box in λ(µ)rλ′j contains a symbol
that is greater than j+1, and every box in λ′j−1 contains a symbol that is smaller than

j + 1. Note that t̃ contains one more symbol than t̂, so T(t̃) ⊂ T(t̂) has codimension
1. Applying the procedure of Example 4.3.21, we obtain a k-saturated tableau t̃′

such that T(t̃) ⊂ T(t̃′). Since i + 1 is the largest symbol in λ′i for all i ≥ j, we see
that t̃′(x, y) = t̃(x, y) for all (x, y) ∈ λ(µ) r λ′j−1. Finally, we let t′′ be the tableau

obtained by cycling out all symbols greater than |µ| from t̃′. By construction, each
of the symbols j, . . . , |µ| appears in the same set of boxes of t′ and t′′.

Remark 4.5.1. Under the bijection with words in the affine symmetric group, The-
orem 4.1.4 is equivalent to the statement that any two reduced expressions for the
same word can be connected via a sequence of “braid moves” (see [6, Theorem 3.3.1]).

Example 4.5.2. Figure 4.8 illustrates the procedure in the proof of Theorem 4.1.4.
The two tableaux t, t′ on the ends correspond to two maximal-dimension tori in
W

µ
(Γ), where µ = (−3,−1, 1). If g ≥ 6, we construct a chain of tori from T(t) to

T(t′) in this tropical splitting type locus, where each torus intersects the preceding
torus in codimension one. The largest symbol where t and t′ disagree is 4. We
therefore begin by cycling out 5, to obtain the second tableau in the chain. We then
place a 5 in each box where a 4 appears in t′, to obtain the third tableau in the chain,
using all 6 symbols. Applying the procedure of Example 4.3.21, we obtain the fourth
tableau. Finally, by cycling out 6, we arrive at t′.

1 2 3 5

3 5

4

5

⇒ 1 2 3 6

3 6

4

6

⇒ 1 2 5 6

3 6

4

6

⇒ 1 4 5 6

3 6

4

6

⇒

1 3 4 5

2 5

3

5

Figure 4.8: If g ≥ 6, then W
(−3,−1,1)

(Γ) is connected in codimension 1.
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4.6 Cardinality of Tropical Splitting Type Loci

We begin this section by proving Theorem 4.1.5.

Proof of Theorem 4.1.5. By Theorem 4.4.5,

W
µ
(Γ) =

⋃
T(t),

where the union is over all k-saturated tableaux on λ(µ) with alphabet [g]. Since
g = |µ|, each torus T(t) in this union is 0-dimensional, and therefore consists of a
single divisor class. Consider the composition of Φλ(µ) with the map sending a tableau
t to the unique divisor class in T(t). By the above, this composition surjects onto
W

µ
(Γ), and it suffices to show that it is injective. Let

∅ = λ0 < λ1 < · · · < λg = λ(µ)

∅ = λ′0 < λ′1 < · · · < λ′g = λ(µ)

be distinct maximal chains in Pk(λ(µ)), and let j be the minimal index such that
λ′j 6= λj. By definition, λj = λ+

j−1,a and λ′j = λ+
j−1,b for some a 6≡ b (mod k). It

follows that, if T(t) = {D}, then ξj(D) ≡ a 6≡ b (mod k), so D /∈ T(t′). Therefore,
every maximal chain in Pk corresponds to a distinct divisor class in W

µ
(Γ).

Algorithm for Computing Maximal Chains

The number of maximal chains in Pk(λ) is an important invariant of a partition
λ ∈ Pk, not only because of Theorem 4.1.5, but also because of its connection to the
affine symmetric group [24]. We would therefore like to compute this invariant in
examples. In order to simplify our arguments, we first show that a partition λ ∈ Pk
is uniquely determined by the vector C(λ).

Lemma 4.6.1. Let λ, λ′ ∈ Pk. If there exists a permutation σ ∈ Sk such that
Ca(λ) = Cσ(a)(λ

′) for all a ∈ Z/kZ, then λ = λ′.

Proof. We prove this by induction on ρk(λ) = ρk(λ
′). The base case is when ρk(λ) = 0,

in which case λ = λ′ is the empty partition. For the inductive step, let

y = max
a∈Z/kZ

Ca(λ) = max
a∈Z/kZ

Ca(λ
′),

and let x be the number of congruence classes a ∈ Z/kZ such that Ca(λ) = y. By
definition, the first x columns of both λ and λ′ must all have height y. If λ is nonempty
then it has an inside corner. This implies that x ≤ k− 1 by Lemma 4.3.13. It follows
that column x+ 1 of both λ and λ′ has height less than y, so (x, y) is an inside corner
of both partitions, and y = Cy−x(λ) = Cy−x(λ

′). By Proposition 4.3.17, there exists
a permutation π ∈ Sk such that

Ca(λ
−
y−x) = Cπ(a)(λ

′−
y−x) for all a ∈ Z/kZ.
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By Lemma 4.3.16, λ−y−x, λ
′−
y−x ∈ Pk, hence by induction, λ−y−x = λ′−y−x. Finally, by

Lemma 4.3.15, we have

λ = (λ−y−x)
+
y−x = (λ′−y−x)

+
y−x = λ′.

Lemma 4.6.1 allows us to simplify arguments by focusing on the vectors C(λ),
rather than the partitions λ. For example, Figure 4.9 depicts the Hasse diagram of a
principal order ideal in P6, where each partition λ is represented by the vector C(λ).

(0, 0, 0, 0, 0, 0)

(1, 0, 0, 0, 0, 0)

(0, 2, 0, 0, 0, 0) (1, 0, 0, 0, 0, 1)

(0, 0, 3, 0, 0, 0) (0, 2, 0, 0, 0, 1) (1, 0, 0, 0, 1, 1)

(0, 0, 3, 0, 0, 1) (2, 2, 0, 0, 0, 0) (0, 2, 0, 0, 1, 1)

(2, 0, 3, 0, 0, 0) (0, 0, 3, 0, 1, 1) (2, 2, 0, 0, 1, 0)

(0, 3, 3, 0, 0, 0) (0, 0, 0, 4, 1, 1) (2, 2, 0, 0, 0, 2) (2, 0, 3, 0, 1, 0)

(0, 3, 3, 0, 1, 0) (2, 0, 0, 4, 1, 0) (2, 0, 3, 0, 0, 2)

(0, 3, 0, 4, 1, 0) (0, 3, 3, 0, 0, 2) (2, 0, 0, 4, 0, 2)

(0, 0, 4, 4, 1, 0) (2, 0, 0, 0, 5, 2)(0, 3, 0, 4, 0, 2)

(0, 0, 4, 4, 0, 2) (0, 3, 0, 0, 5, 2)

(0, 0, 4, 0, 5, 2)

(0, 0, 0, 5, 5, 2)

Figure 4.9: A principal order ideal in P6.

Given a partition λ ∈ Pk, we provide an algorithm for producing the Hasse dia-
gram Pk(λ), as in Figure 4.9.

Algorithm 4.6.2. Step 1: Initialize with the vector C(λ).
Step 2: For each vector C, write below it the vectors C−a , for all a such that

Ca−1 < Ca.
Step 3: Iterate Step 2 for each vector that is written down, until exhaustion.
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By Lemma 4.6.1, the number of partitions in Pk or rank ρ is less than or equal to
the number of partitions of ρ with at most k − 1 parts. (In fact, these numbers are
equal, see [23, Proposition 1.3].) Together with the fact that each partition covers at
most k − 1 others, this implies that the algorithm terminates in polynomial time for
fixed k.

We introduce notation that will simplify our examples. Given λ ∈ Pk, we define
α(C(λ)) to be the number of maximal chains in Pk(λ). By Lemma 4.6.1, this is
well-defined. We further define α up to cyclic permutation; that is,

α
(
Ci(λ), Ci+1(λ), . . . , Ci−1(λ)

)
= α

(
C0(λ), C1(λ), . . . , Ck−1(λ)

)
.

Again, by Lemma 4.6.1, α is well-defined. Indeed, by Lemma 4.6.1, α could be defined
up to arbitrary permutation, but in practice it is important to keep track of which
values Ca are consecutive. This is because α satisfies the following recurrence.

Lemma 4.6.3. For any λ ∈ Pk, we have

α(C(λ)) =
∑

a∈Z/kZ s.t.
Ca−1(λ)<Ca(λ)

α(C(λ)−a ).

Proof. The number of maximal chains in Pk(λ) is equal to the sum, over λ′ ∈ Pk
covered by λ, of the number of maximal chains in Pk(λ′). By definition, λ′ ∈ Pk is
covered by λ if and only if λ′ = λ−a and λ has an inside corner in Da. By Lemma 4.3.13,
λ has an inside corner in Da if and only if Ca−1(λ) < Ca(λ). The result then follows
from Proposition 4.3.17.

Using Algorithm 4.6.2 and Lemma 4.6.3, one can compute α(C(λ)) recursively.
Start at the bottom of the Hasse diagram, note that α(~0) = 1, and then proceed up-
wards, summing the numbers that appear directly below each vector. These numbers
appear in the circles in Figure 4.9.

Examples

The remainder of the paper consists of examples, using Lemma 4.6.3 to compute
the number of maximal chains in Pk(λ(µ)) for various splitting types µ. In many
cases, we will see that this number agrees with the cardinality of W

µ
(C) for general

(C, π) ∈ Hg,k. In each case, we assume that g = |µ|. By Theorem 4.1.1, this implies
that Wµ(C) = W

µ
(C).

Example 4.6.4. If −2 ≤ µj ≤ 0 for all j, then λ(µ) = λ0(µ) is a rectangle, and
every k-uniform displacement tableau on λ(µ) is a standard Young tableau. The
number of such tableaux is counted by the standard hook-length formula:

|Wµ
(Γ)| = |µ|!

x0(µ)−1∏
j=0

j!

(y0(µ) + j)!
.

It is a classical result, due to Castelnuovo, that this formula also yields the number
of grd’s on a general curve of genus |µ|, where r = x0(µ)− 1, and d = d(µ) [2, p.211].
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Example 4.6.5. If µj is equal to either µ1 or µ1 + 1 for each j < k, then d(µ) =
kµk and up to cyclic permutation we have C(λ(µ)) = (|µ|, 0, 0, . . . , 0). For ease of
notation, we write this as C(λ(µ)) = (|µ|, 0(k−1)). We show that α(z, 0(k−1)) = 1.
This is easy to see by induction on z. It is clear that α(1, 0(k−1)) = 1, and by
Lemma 4.6.3, we have

α(z, 0(k−1)) = α(0(k−1), z − 1) = α(z − 1, 0(k−1)).

Now, if D ∈ Wµ
(C), then by definition, degD = kµk and D − µkg1

k is effective.
It follows that W

µ
(C) = {µkg1

k}. This splitting type locus therefore has cardinality
1, equal to that of W

µ
(Γ).

We note that Serre duality induces a bijection between W
µ
(C) and W

µT

(C).
Tropically, this corresponds to the fact that the number of maximal chains in Pk(λ)
is equal to the number of maximal chains in Pk(λT ). If we apply this observation to
Example 4.6.5, we see that if µj is equal to either µk or µk − 1 for each j > 1, then

|Wµ
(C)| = |Wµ

(Γ)| = 1.

A similar remark applies to each of the examples below.

Example 4.6.6. Let µ = (−3,−2, . . . ,−2, 0, 0). Then g = 2k − 2, and λ(µ) is the
partition depicted in Figure 4.10.

� 4

...
...

� 4

Figure 4.10: The partition λ(µ) of Example 4.6.6.

If t is a k-uniform displacement tableau on λ(µ), then the restriction of t to the
first two columns is a standard Young tableau. If t has precisely 2k − 2 symbols,
then we must have t(3, 1) = t(1, k − 1) and t(4, 1) = t(2, k − 1). (These are the
boxes labeled with a square and a triangle, respectively, in Figure 4.10.) It follows
that t(2, 1) < t(1, k − 1). Since the number of standard Young tableaux on the
first two columns is the (k − 1)st Catalan number Ck−1, and since there is a unique
such standard Young tableau t with t(2, 1) > t(1, k − 1), we see that the number of
k-uniform displacement tableaux on λ(µ) with precisely 2k − 2 symbols is Ck−1 − 1.

A general curve C of genus 2k − 2 has gonality k, and by Example 4.6.4, the
number of gonality pencils is precisely Ck−1. Such a pencil is in W

µ
(C) if and only if

it is not equal to the distinguished g1
k. It follows that |Wµ

(C)| = Ck−1−1, confirming
Conjecture 4.1.6 in this case.
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Example 4.6.7. If k = 2, then every splitting type µ satisfies the hypotheses of
Example 4.6.5. The first interesting examples, therefore, occur when k is equal to 3.
Let k = 3, and suppose that µ is not of the type considered in Example 4.6.5. In
other words, µ3 > µ2 + 1, and µ2 > µ1 + 1. Then g = 2(µ3 − µ1)− 3 is odd, and up
to cyclic permutation, we have

C(λ(µ)) = (2µ3 − µ2 − µ1 − 2, µ2 − µ1 − 1, 0).

We show that

α(2µ3 − µ2 − µ1 − 2, µ2 − µ1 − 1, 0) =

(
µ3 − µ1 − 2

µ2 − µ1 − 1

)
.

One way to see that this formula is invariant under transposition is to note that
µ2−µ1− 1 is equal to the number of strict rank jumps of size 2, whereas µ3−µ2− 1
is equal to the number of strict rank jumps of size 1. As in Example 4.6.5, we prove
this by induction. When µ2− µ1− 1 = 0, the result follows from Example 4.6.5, and
when µ3 − µ2 − 1 = 0, the result follows from the same example applied to λ(µ)T . If
z1 − 1 > z2 > 0, then by Lemma 4.6.3, we have

α(z1, z2, 0) = α(0, z2, z1 − 1)

= α(z2 − 1, 0, z1 − 1) + α(0, z1 − 2, z2).

This expression has the following interpretation. If C(λ(µ)) = (z1, z2, 0), then
C(λ(µ+)) = (z2 − 1, 0, z1 − 1) and C(λ(µ−)) = (0, z1 − 2, z2). In other words,
the number of k-saturated tableaux on λ(µ) is the sum of the number on a partition
with one fewer row and the number on a partition with one fewer column. Evaluating
this expression and applying induction, we see that

α(2µ3−µ2−µ1−2, µ2−µ1−1, 0) =

(
µ3 − µ1 − 3

µ2 − µ1 − 2

)
+

(
µ3 − µ1 − 3

µ2 − µ1 − 1

)
=

(
µ3 − µ1 − 2

µ2 − µ1 − 1

)
.

In [26, Theorem 1.1], Larson computes the cardinality of W
µ
(C) for a general

trigonal curve C of Maroni invariant n. Since g is odd, if (C, π) ∈ Hg,3 is general, it
has Maroni invariant 1. Larson’s formula then yields the binomial coefficient above,
confirming Conjecture 4.1.6 for k = 3.

Example 4.6.7 can be generalized to the case where k is arbitrary and

µ2 = µ3 = · · · = µk−1.

This is done in Example 4.6.13 below.

We now consider examples where k is equal to 4, 5, or 6. We do not consider
every splitting type in these cases, considering only the “maximal” splitting types in
which every strict rank jump has the same size α. If all strict rank jumps of µ have
size α, then all strict rank jumps of µT have size k − α, so it suffices to consider the
case where α ≤ k

2
. Since Example 4.6.5 is the case where α = 1, the first interesting

case occurs when k is equal to 4. We do not know if Conjecture 4.1.6 holds for these
splitting types, proving it in only a small number of cases.
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Example 4.6.8. Let k = 4, and suppose that α = 2. In other words, µ2 is equal to
either µ1 or µ1 + 1, and µ3 is equal to either µ4 or µ4− 1. In this case we see that, up
to cyclic permutation, C(λ(µ)) is either of the form (z, z, 0, 0) or (z + 1, z − 1, 0, 0).
We show, by induction on z, that

α(z, z, 0, 0) = α(z + 1, z − 1, 0, 0) = 2z−1.

The base case, when z is equal to 1, is covered by Example 4.6.5. For the inductive
step, by Lemma 4.6.3, we see that

α(z, z, 0, 0) = α(0, z, 0, z − 1) = α(z − 1, 0, 0, z − 1) + α(0, z, z − 2, 0)

= 2z−2 + 2z−2 = 2z−1

α(z + 1, z − 1, 0, 0) = α(0, z − 1, 0, z) = α(z − 2, 0, 0, z) + α(0, z − 1, z − 1, 0)

= 2z−2 + 2z−2 = 2z−1.

As in Example 4.6.7, the expressions on the right are equal to α(C(λ(µ+))) +
α(C(λ(µ−))).

In general, we do not know if Conjecture 4.1.6 holds in this case. It holds for z ≤ 2
by Example 4.6.4, and for z = 3 by Example 4.6.6. We will see in Example 4.6.12
below that it also holds for the splitting type µ = (−3,−3, 0, 0), in which case z = 4.

Example 4.6.9. Let k = 5, and suppose that α = 2. In other words, µ2 and µ3

are equal to either µ1 or µ1 + 1, and µ4 is equal to either µ5 or µ5 − 1. Up to cyclic
permutation, C(λ(µ)) is either of the form (z, z, 0, 0, 0) or (z + 2, z − 1, 0, 0, 0). We
show, by induction on z, that

α(z, z, 0, 0, 0) = F2z−2

α(z + 2, z − 1, 0, 0, 0) = F2z−1,

where Fn denotes the nth Fibonacci number. The base case, where z = 1, follows
from Example 4.6.5. For the inductive step, by Lemma 4.6.3, we have

α(z, z, 0, 0, 0) = α(0, z, 0, 0, z − 1) and

α(z + 2, z − 1, 0, 0, 0) = α(0, z − 1, 0, 0, z + 1),

so we will also show by induction that α(0, z, 0, 0, z−1) = F2z−2 and α(0, z−1, 0, 0, z+
1) = F2z−1. Again, the base cases follow from Example 4.6.5. Together with the
inductive hypothesis, by Lemma 4.6.3, we have

α(0, z, 0, 0, z − 1) = α(z − 1, 0, 0, 0, z − 1) + α(0, z, 0, z − 2, 0)

= F2z−4 + F2z−3 = F2z−2

α(0, z − 1, 0, 0, z + 1) = α(z − 2, 0, 0, 0, z + 1) + α(0, z − 1, 0, z, 0)

= F2z−3 + F2z−2 = F2z−1.

Conjecture 4.1.6 holds when −2 ≤ µj ≤ 0 for all j by Example 4.6.4, and when
µ = (−3,−2,−2, 0, 0) by Example 4.6.6. We will see in Example 4.6.12 below that
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it also holds when µ = (−3,−3,−2, 0, 0). We now show that it holds when µ =
(−3,−3,−2,−1, 0).

In this case, g = 7, C(λ(µ)) = (5, 2, 0, 0, 0), and α(5, 2, 0, 0, 0) = F5 = 8. For
(C, π) ∈ H7,5, we see that D ∈ Wµ

(C) if and only if D is effective of degree 2 and
KC − g1

5 −D has rank at least 1. By Riemann-Roch, the divisor class KC − g1
5 has

degree 7 and rank 2. The image of C under the complete linear series |KC − g1
5| is

a plane curve of degree 7, with
(

7−1
2

)
− 7 = 8 nodes. An effective divisor D satisfies

rk(KC − g1
5 −D) ≥ 1 if and only if the image of D under this map is a single point.

It follows that the divisor classes in W
µ
(C) are precisely the preimages of the nodes,

and thus that |Wµ
(C)| = 8.

Example 4.6.10. Let k = 6, and suppose that α = 2. Up to cyclic permutation,
C(λ(µ)) is either of the form (z, z, 0, 0, 0, 0) or (z + 2, z − 2, 0, 0, 0, 0). We show, by
induction on z, the following formulas:

α(z, z, 0, 0, 0, 0) = α(0, z, 0, 0, 0, z − 1) =
3z−1 + 1

2

α(z + 2, z − 2, 0, 0, 0, 0) = α(0, z − 2, 0, 0, 0, z + 1) =
3z−1 − 1

2
α(z + 1, 0, 0, z − 1, 0, 0) = 3z−1.

The base cases, when z = 1 on the first and third line, or when z = 2 on the
second line, follow from Example 4.6.5. The first equality on each of the first two
lines above follows directly from Lemma 4.6.3. For the inductive step, by induction
together with Lemma 4.6.3, we have

α(0, z, 0, 0, 0, z − 1) = α(z − 1, 0, 0, 0, 0, z − 1) + α(0, z, 0, 0, z − 2, 0)

=
3z−2 + 1

2
+ 3z−2 =

3z−1 + 1

2
α(0, z − 2, 0, 0, 0, z + 1) = α(z − 3, 0, 0, 0, 0, z + 1) + α(0, z − 2, 0, 0, z, 0)

=
3z−2 − 1

2
+ 3z−2 =

3z−1 − 1

2
α(z + 1, 0, 0, z − 1, 0, 0) = α(0, 0, 0, z − 1, 0, z) + α(z + 1, 0, z − 2, 0, 0, 0)

=
3z−1 + 1

2
+

3z−1 − 1

2
= 3z−1.

Conjecture 4.1.6 holds when z ≤ 3, and for the splitting type µ = (−2,−2,−2,−2, 0, 0)
by Example 4.6.4. It also holds for the splitting type µ = (−3,−2,−2,−2, 0, 0) by Ex-
ample 4.6.6. The splitting types µ = (−3,−3,−2,−2, 0, 0) and µT = (−3,−3,−1,−1, 0, 0)
will make an appearance in Example 4.6.12 below.

Example 4.6.11. Let k = 6, and suppose that α = 3. Up to cyclic permutation,
C(λ(µ)) is of the form (z, z, z, 0, 0, 0), (z + 1, z + 1, z − 2, 0, 0, 0), or (z + 2, z − 1, z −
1, 0, 0, 0). To formulate expressions in these cases, we first introduce the function

β(z) :=

{
2 if z ≡ 0 (mod 3)
−1 otherwise.
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Note that β(z − 1) + β(z) = −β(z + 1). By a similar argument to Examples 4.6.8,
4.6.9, and 4.6.10, we obtain the following formulas.

α(z, z, z, 0, 0, 0) = α(0, z, z, 0, 0, z − 1) =
23z−2 + (−1)zβ(z)

3

α(z + 1, z + 1, z − 2, 0, 0, 0) = α(0, z + 1, z − 2, 0, 0, z) =
23z−2 + (−1)zβ(z − 1)

3

α(z + 2, z − 1, z − 1, 0, 0, 0) = α(0, z − 1, z − 1, 0, 0, z + 1) =
23z−2 + (−1)zβ(z + 1)

3
α(z − 1, 0, z, 0, z + 1, 0) = 23z−2.

We will consider the splitting type µ = (−3,−3,−2,−1, 0, 0) in Example 4.6.12
below. The Hasse diagram pictured in Figure 4.9 is that of P6(λ(µ)).

Example 4.6.12. Let (C, π) ∈ H2k,k be general, and let L = KC − g1
k. By Riemann-

Roch, h0(C,L) = k + 1, and we consider the image of C in Pk under the complete
linear series |L|. We have

expdimH0(Pk, IC(2)) = dim Sym2H0(C,L)− dimH0(C, 2L)

=

(
k + 2

2

)
− (4k − 3).

The variety X4 parameterizing quadrics of rank at most 4 in Pk has dimension 4k−2,
so one expects the curve C to be contained in a finite number of rank 4 quadrics.
The expected number of rank 4 quadrics in H0(Pk, IC(2)) is

degX4 =

(
k+1
k−3

)(
k+2
k−4

)
· · ·
(

2k−3
1

)(
1
0

)(
3
1

)(
5
2

)
· · ·
(

2k−7
k−4

) [20].

Each rank 4 quadric is a cone over P1×P1, and the pullback of O(1) from each of the
two factors yields a pair of line bundles on C, each of rank 1, whose tensor product
is L.

Conversely, given a pair of divisor classes D,D′, each of rank 1, such that D+D′ =
L, we obtain a rank 4 quadric in Pk containing C. To see this, let s0, s1 be a basis
for H0(C,D) and t0, t1 be a basis for H0(C,D′). Then the entries of the 2× 2 matrix
Mij = (si ⊗ tj) are linear forms in Pk, and the determinant of this matrix is a rank
4 quadric that vanishes on C. In other words, each rank 4 quadric corresponds to a
pair of divisors in the set{

D ∈ Pic(C) | h0(C,D) = h0(C,L−D) = 2
}

=
( k−4⋃
i=0

W (−3(2),−2(i),−1(k−4−i),0(2))(C)
)
∪ {g1

k} ∪ {L− g1
k}.

Since (C, π) is general, the splitting type loci in the union above are all smooth
of dimension zero, and we see that

2 +
k−4∑
i=0

∣∣∣W (−3(2),−2(i),−1(k−4−i),0(2))(C)
∣∣∣ = 2

(
k+1
k−3

)(
k+2
k−4

)
· · ·
(

2k−3
1

)(
1
0

)(
3
1

)(
5
2

)
· · ·
(

2k−7
k−4

) .
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We now show that this expression holds for Γ when k ≤ 6. By Example 4.6.8, when
k = 4, we have

2 +
∣∣∣W (−3,−3,0,0)(Γ)

∣∣∣ = 2 + 23 = 10 = 2

(
5

1

)
.

By Example 4.6.9, when k = 5, we have

2 +
∣∣∣W (−3,−3,−2,0,0)(Γ)

∣∣∣+
∣∣∣W (−3,−3,−1,0,0)(Γ)

∣∣∣
= 2 + F8 + F8 = 2 + 34 + 34 = 70 = 2

(
6
2

)(
7
1

)(
1
0

)(
3
1

) .
By Examples 4.6.10 and 4.6.11, when k = 6, we have

2 +
∣∣∣W (−3,−3,−2,−2,0,0)(Γ)

∣∣∣+
∣∣∣W (−3,−3,−2,−1,0,0)(Γ)

∣∣∣+
∣∣∣W (−3,−3,−1,−1,0,0)(Γ)

∣∣∣
= 2 +

35 + 1

2
+

210 + 2

3
+

35 + 1

2
= 2 + 122 + 342 + 122 = 588 = 2

(
7
3

)(
8
2

)(
9
1

)(
1
0

)(
3
1

)(
5
3

) .
Example 4.6.13. We now consider the case where k is arbitrary and

µ2 = µ3 = · · · = µk−1.

The cases where µk ≤ µk−1 + 1 or µ1 ≥ µ2 − 1 are covered in Example 4.6.5, so we
assume otherwise. For ease of notation, we write z1 = (k−1)(µk−1)− (k−2)µ2−µ1

and z2 = µ2−µ1−1. Then C(λ(µ)) = (z1, z
(k−2)
2 , 0), and we will show in Lemma 4.6.14

below that

α(z1, z
(k−2)
2 , 0) =

(
(k − 2)(µk − µ1 − 2)

(k − 2)(µ2 − µ1 − 1)

)
.

This expression matches the cardinality of W
µ
(C) for general (C, π) ∈ Hg,k. To

see this, following [26, Lemma 2.2], we see that

Wµ(C) =
{
D ∈ Picd(µ)(C) | h0(D − µkg1

k) = h0(KC −D + (µ1 + 2)g1
k) = 1

}
.

In other words, D ∈ Wµ(C) if and only if D = µkg
1
k + E, where E is an effective

divisor of degree (k − 2)(µ2 − µ1 − 1), such that KC − (µk − µ1 − 2)g1
k − E is also

effective. Note that

deg
(
KC − (µk − µ1 − 2)g1

k

)
= (k − 2)(µk − µ1 − 2).

Since C is general, KC − (µk−µ1− 2)g1
k is equivalent to a unique effective divisor. If

this divisor is a sum of distinct points, then the set of divisor classes E satisfying the
conditions above is simply the set of subsets of these points of size (k−2)(µ2−µ1−1).
We therefore see that |Wµ(C)| is equal to the binomial coefficient above.

Lemma 4.6.14. Let z1 ≥ z2 ≥ 0 be integers, let ~zi(z2) = (z
(k−2−i)
2 , (z2− 1)(i), 0), and

let ~zij(z1, z2) be the vector obtained from ~zi(z2) by inserting z1 between entries j and
j + 1. Then

α(~zij(z1, z2)) =

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
.

68



Proof. Note that the expression (z1 + (k − 2)z2) is divisible by k − 1 if and only if
z1 ≡ z2 (mod k − 1). If C(λ) = ~zij(z1, z2), then this congruence holds if and only if
the partition λ′, obtained by deleting all columns of λ that are taller than z2, has an
outside corner in Dz1 . Since C(λ′) = ~zij(z2, z2), this holds if and only if j = k − 2.

We establish the above formula by induction. The base cases, where z1 = z2, or
z2 = i = 0, both follow from Example 4.6.5. If j = k − 1, then by Lemma 4.6.3, we
have

α(~zi(k−1)(z1, z2)) = α(~zi(k−2)(z1 − 1, z2)).

By induction, the expression on the right is equal to(⌊k−2
k−1

(
z1 + (k − 2)z2 − 1

)⌋
− i

(k − 2)z2 − i

)
.

Since j = k − 1, by the above we see that z1 ≡ z2 + 1 (mod k − 1), so the term
(z1 + (k − 2)z2 − 1) is divisible by k − 1. The expression above is therefore equal to

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
.

Otherwise, if j < k − 1, then by Lemma 4.6.3, we have

α(~zij(z1, z2)) = α(~zi(j−1)(z1 − 1, z2)) + α(~z(i−1)j(z1, z2)).

By induction, the expression on the right is equal to(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− (i+ 1)

(k − 2)z2 − (i+ 1)

)
+

(⌊k−2
k−1

(
z1 + (k − 2)z2 − 1

)⌋
− i

(k − 2)z2 − i

)

=

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− (i+ 1)

(k − 2)z2 − (i+ 1)

)
+

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− (i+ 1)

(k − 2)z2 − i

)

=

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
,

where the second line holds because (z1 + (k− 2)z2− 1) is not divisible by k− 1.

Copyright© Kaelin J. Cook-Powell, 2021.
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