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ABSTRACT OF DISSERTATION 

 

 
PHYSICOCHEMICAL AND FUNCTIONAL PROPERTY MODIFICATION OF 

MYOFIBRILLAR PROTEIN BY PHENOLIC COMPOUNDS  
UNDER OXIDATIVE STRESS 

 
Polyphenol-rich spices and extracts of phenolic compounds are widely utilized in 

meat processing to modify product flavors. Chemically, polyphenols are reactive with 
myofibrillar protein (MP), the most functional fraction of all muscle proteins responsible 
for texture development in comminuted meat products. Such protein–polyphenol 
interaction is prevalent under oxidative conditions that are common in meat processing. As 
a large group of phytochemicals with diverse structures, phenolic compounds are known 
to interact with MP with varying efficacies. Yet, the structure-function relationship of 
polyphenols in eliciting modification of MP is poorly understood. The overall objective of 
this dissertation research was to elucidate the effect of structurally related phytophenols on 
the physicochemical properties of MP and resultant changes in protein functionalities, i.e., 
gelation and emulsification.  

To establish appropriate testing conditions, a mild oxidative environment was 
introduced using glucose oxidase (GOx), and the simplest phenolic compound, gallic acid 
(GA), was used to investigate the effect on the physicochemical and gelling behavior of 
MP. Compared with non-oxidized (control) MP, GOx-mediated oxidation facilitated both 
covalent and noncovalent interactions between GA (6, 30, and 60 µmol/g protein) and 
protein through promoting protein structural unfolding. Such modifications significantly 
enhanced the gelling capacity of MP, which was evidenced by up to 86% and 53% 
increases (P < 0.05) in gel elasticity (G′) and breaking strength, respectively.  

Based on the above observations, six structurally related monophenolic acids 
varying in hydroxyl substitution and sidechain groups, i.e., GA, syringic acid (SA), 
coumaric acid (CMA), caffeic acid (CFA), ferulic acid (FA), and chlorogenic acid (CA), 
were examined for their effects on MP conformation and gelation under GOx oxidative 
stress. The elasticity and breaking strength of MP gels were markedly enhanced by all 
phenolic acids, of which GA and CA induced the highest final G′ values of 291 and 281 Pa 
(P < 0.05), respectively, as compared with 214 Pa of the control MP sample without 
phenolic addition. Different reaction modes were evident for these two most effective 
phenolic acids in improving protein gelation. With the least structural hinderance, the 



     
 

smallest GA facilitated protein cross-linking through covalent adduction to amino acid 
sidechains. On the other hand, having a bulky sidechain group, CA was the most effective 
in promoting protein unfolding due to the multiple functional groups, including 5 hydroxyl 
groups and 1 extra hydrocarbon ring (quinic acid). The findings of structure-dependency 
of phenolic activity prompted the following experiment where phenolic compounds with 
more than one phenol structures were included to investigate their influence on MP 
functionalities.  

Here, in addition to three monophenols, i.e., GA, CA, and propyl gallate (PG), two 
diphenols, i.e., quercetin (QT) and catechin (CC), and one triphenol, i.e., (–)-
epigallocatechin-3-gallate (EGCG), were selected to further explore the structure-activity 
relationship of phenolic compounds on MP functionalities under GOx oxidation. MP-
stabilized oil-in-water emulsions were prepared to assess protein emulsifying properties, 
and an emulsion-filled composite gel system was adopted as a model to mimic comminuted 
meat products in which MP acted as both an emulsifier and a building block for the protein 
matrix within the gel.  In the emulsion system, phenolic compounds with less polarity, i.e., 
PG, QT, and CC, significantly improved the emulsifying capacity of MP by increasing 
protein partition at the oil-water interface by 15, 17, and 23%, respectively (P < 0.05). In 
the MP–emulsion composite gel system, all three monophenols (GA, CA, and PG) and the 
diphenol QT increased the MP gel strength to a greater extent than CC (diphenol) and 
EGCG (triphenol). The flavanol structure in CC appeared to interfere with gel structure 
development. The multiple phenol structures in EGCG caused protein aggregation so 
severe that both emulsifying and gelling properties of MP were weakened. Lipid oxidation 
was retarded by all phenols in MP–emulsion composite gels during storage at 4 °C for 7 
days with PG and QT being the most effective.  

The above findings established that the type and size of the sidechain groups, the 
number of hydroxyl attached to the benzene ring, as well as the number of the phenol 
moiety have an important role in affecting phytophenol–MP interaction and the protein 
functionality under oxidative condition. Small-sized phenolic compounds tend to promote 
MP gelation and emulsification, and larger sized (such as EGCG) exhibited negative effects 
due to the propensity to facilitate extensive protein aggregation.   

 
KEYWORDS: Myofibrillar Protein, Phenolic compound, Gelation, Texture, Lipid 
Oxidation 
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CHAPTER 1. INTRODUCTION 

Fresh and processed meats are an important part of the human diet in modern 

society, providing high-quality protein with a well-balanced amino acid profile as well as 

abundant micronutrients, including vitamin B12 and iron (Wood, 2017). The characteristic 

texture, mouthfeel, and flavor, which are unique to muscle tissue, are other essential 

contributing factors to its appeal (Romans, Costello, Carlson, Greaser, & Jones, 2000). 

However, muscle foods are prone to quality deterioration due to chemical and biological 

reactions, of which lipid oxidation is a primary mechanism when microbial spoilage is 

prevented. When the membrane of muscle cells is disrupted during processing, oxidation 

is initiated where prooxidants attack the double bonds in unsaturated fatty acids, which 

produces lipid peroxyl radicals and other oxygen species through free-radical chain 

reactions (Campo et al., 2006). Radical-initiated lipid oxidation generates secondary 

products, such as aldehydes, ketones, and esters, which can have a negative impact on the 

sensory and nutritional properties of meat products (Domínguez et al., 2019). Oxidative 

rancidity, warmed-over flavors, discoloration, destruction of vitamins, and formation of 

atherogenic toxins are common consequences of lipid oxidation (Kanner, 1994; Suman & 

Joseph, 2013). 

Antioxidants are a primary means to counteract undesirable changes induced by 

lipid oxidation in muscle foods (Ribeiro et al., 2019). Of different types of antioxidants 

available to meat processors, plant-derived phenolic compounds have become an 

increasingly attractive choice due to their wide abundance, efficacy, and perceived health 

benefits (Fernandes, Trindade, & Melo, 2018; Shah, Bosco, & Mir, 2014). Phenolic 

compounds have the basic structure of an aromatic ring attached by one or more hydroxyl 
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groups with diverse variations ranging from simple phenols to polymerized complex 

molecules. In addition to inhibiting lipid oxidation, polyphenols may modulate the 

oxidation of another major component in muscle foods: proteins. 

Phenolic compounds can interact with proteins directly through either non-

covalent interactions (reversible) or covalent bonds (irreversible). The latter usually occurs 

in an alkaline or oxidizing environment where the phenol ring is converted to a quinone 

form (Ozdal, Capanoglu, & Altay, 2013). The interaction between myofibrillar protein 

(MP) and phenolic compounds and its effect on protein functionality has been the subject 

of extensive investigations in recent years. Cao and Xiong (2015) applied chlorogenic acid 

and a Fenton-mediated oxidation system to modify MP, reporting that the gelling capacity 

of MP was significantly enhanced by 6–30 μmol/g of the phenolic compound. Li, Liu, Liu, 

Kong, and Diao (2019) claimed that emulsifying activity of MP was improved by the 

addition of sage extract. Jongberg, Terkelsen, Miklos, and Lund (2015) discovered that 

high dosages of green tea extract diminished the textural stability of meat emulsions. It is 

plausible that the diverse structure attributes of phenolic compounds are responsible for 

their various effects on the physicochemical and functional properties of MP. However, 

the role of phenolic structures in the protein–phenol interactions remain unclear.  

The aim of this research was to evaluate MP modification by phenolic compounds 

and elucidate the interaction mechanisms as affected by phenolic structures and oxidation. 

To simulate the commonly occurring oxidation stress in muscle food processing and 

convert phenolic species to their more reactive quinone derivatives, glucose oxidase 

(GOx)-mediated oxidation was used to provide a mild oxidative environment where free 
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radicals were produced in a progressive and controllable manner. The specific objectives 

of my dissertation research were: 

1. To investigate the impact of gallic acid (GA) on the gelling properties of MP 

under GOx-induced oxidation. 

2. To elucidate the effect of structure-activity relationship of phenolic acids on 

their roles in modifying physicochemical and gelling properties of MP. 

3. To evaluate and understand the effect of six structurally related mono-, di-, and 

triphenols on the structural properties of MP–emulsion composite gels. 

4. To study the effect of six structurally related phenolic compounds on the 

emulsifying properties of MP. 

  



 

4 
 

CHAPTER 2. LITERATURE REVIEW 

2.1 Myofibrillar protein (MP) and its functionalities 

In muscle foods, proteins have a primary role in the structure-forming process of 

cooked products. In particularly, gelation and emulsification are responsible for the fine 

texture, sliceability, water-binding, and adhesion properties of a variety of processed 

meats, such as frankfurters, bologna, and restructured ready-to-eat deli-style meat (Acton, 

Ziegler, Burge, & Froning, 1983). Of the three groups of muscle proteins (i.e., myofibrillar, 

sarcoplasmic, and stromal proteins), myofibrillar protein (MP), especially the myosin 

component, has been subjected to extensive studies due to its abundance in muscle tissue 

and structural role in processed meat (Asghar, Morita, Samejima, & Yasui, 1984).  

As shown in Figure 2.1, myosin is a fibrous and hexametric molecule composed of 

four light chains (15–27 kDa) and two identical heavy chains (200 kDa each) (Harrington 

& Rodgers, 1984). The rich content of sulfhydryl groups in myosin, over 40 in total 

(Reisler, 1982), gives rise to its excellent functionalities, including gelation and 

emulsification (Xiong, 1994). When thermally processed, as in the case of commercial 

production of comminuted meat products, individual MP molecules will undergo a series 

of structural changes leading to denaturation, aggregation, cross-linking, and ultimately, 

the formation of a three-dimensional gel network (Xiong, 1997). This process is critical to 

the textural properties of resultant muscle foods (Sun & Holley, 2011). Being the principal 

functional component in MP, thermal aggregation of myosin through head-head or tail-tail 

association has been widely studied. MP are mostly amphiphilic macromolecules 

comprised of hydrophilic and hydrophobic amino acid residues suitable for the formation 

of the interfacial membrane in emulsions. In an oil-in-water (O/W) meat emulsion, fibrous 
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myosin molecules are adsorbed as a monolayer at the interface where their nonpolar head 

anchors in the oil phase and the hydrophilic tail remains in the aqueous phase to 

thermodynamically stabilize the system (Jones & Mandigo, 1982). Such structural 

orientations are applicable to other myofibrillar components. The membrane formed in a 

typical meat emulsion is unique in that the monolayer of myosin is overlaid with a 

relatively thick layer of additional MP (Gordon, Barbut, & Schmidt, 1992). 

 

2.2 Natural phenolic compounds applied in meat processing 

Substances from plant materials, such as dry herbs and smoke, have been used to 

preserve meat since prehistoric times although the underlying mechanisms were not 

understood (Berdahl, Nahas, & Barren, 2010). It is now recognized that among the active 

compounds responsible for such preservative effects are phenolic substances. As 

ubiquitous secondary metabolites in plants, phenolic derivatives can promote plant growth 

and health by imparting a self-defense mechanism, which includes chemical reactions to 

protect against pathogens, parasites, and predators (Nayak, Liu, & Tang, 2015). Naturally 

occurring phenolic antioxidants are extremely diverse in chemical forms; representative 

categories include phenolic acids, flavonoids, stilbenes, coumarins, and tannins (Shahidi 

& Ambigaipalan, 2015). Even within the same category, there are numerous derivatives 

that vary in size and substituent groups in the aromatic rings. Indeed, over 8000 phenolic 

species have been discovered and the list is growing (Fernandes et al., 2018).  

In meat processing, phenol-rich herbs, seeds, and spices are commonly 

incorporated into the product formulation to enhance and complement flavor. This practice 

imparts an added benefit: the inhibition of oxidation. A myriad of phytophenols have been 
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identified in various plant materials commonly used in muscle food processing, e.g., 

catechin acid present in cinnamon, gingerol in ginger, gallic acid and eugenol in clove, and 

rosmarinic acid (RosA) in rosemary, basil, sage, oregano, and thyme (Milevskaya, 

Temerdashev, Butyl′skaya, & Kiseleva, 2017; Shan, Cai, Sun, & Corke, 2005). However, 

in these plant materials, the concentration of phenolic compounds is generally low, affected 

by farming conditions, post-harvest processing, handling, and storage (Fernandes et al., 

2018). Therefore, the use of pure phytochemicals is extremely expensive. Consequently, 

plant extracts, i.e., mixtures of phytophenols with different structures and activities, are 

commonly used instead (Wu et al., 2013).  Active antioxidants can be extracted from 

different parts of a plant, including leaves, roots, stems, fruits, seeds, and bark. It is both 

environmentally friendly and economically viable to extract phenolic materials in this way 

to produce value-added ingredients from the waste and by-products of plant materials 

generated during processing (Galanakis, 2018; Lorenzo et al., 2018). Because more than 

one active antioxidative compound is extracted, plant phenolic extracts are typically 

complex mixtures of phytophenols consisting of individuals with different structures and 

activities. The antioxidant activities of plant extracts have undergone extensive studies in 

recent decades. Several have been commercially available as natural antioxidants from 

sources such as grape seed, tea, and rosemary (Shah et al., 2014). The antioxidative efficacy 

of phytophenols has been found to be affected by their chemical structures. For example, 

the hydrogen atoms from the adjacent hydroxyl groups (ortho-diphenol) promote, whereas 

glycosylation inhibits, the antioxidant activity of phenolic compounds (Minatel et al., 2017; 

Shahidi & Ambigaipalan, 2015). 
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2.3 Interaction of phytophenols with MP 

The interactions between MP and plant phenols are governed by multiple 

mechanisms. Both reversible, non-covalent and irreversible, covalent bonds are involved, 

providing the driving force of such interactions in meat products and delivering measurable 

impact on muscle protein functionality and texture-related meat quality. Analytical 

measurement of these interactions can be focused on changes in protein amino acid side 

chains (e.g., -SH and -NH groups), conformation (e.g., surface hydrophobicity and intrinsic 

fluorescence), and formation of protein–phenol adducts (e.g., electrophoresis and mass 

spectrometry) (Table 2.1).  

2.3.1 Non-covalent interactions 

Four different types of non-covalent bonds can be formed between MP and 

phenolic compounds: hydrogen bonding, hydrophobic association, electrostatic attraction, 

and van der Waals forces. The relative contributions of these forces are related to the 

molecular structure of phenolic compounds, amino acid side chains of MP, polarity of the 

phenols, and processing conditions such as pH and redox status (Ozdal et al., 2013). 

Several proposed non-covalent interactions and the bonds involved are shown in Figure 

2.2 (Rohn, 2019; Strauss & Gibson, 2004). Hydrogen bonding is a dipole-dipole attraction 

occurring between an electronegative atom and a hydrogen atom bonded to another 

electronegative element such as N, O, and S. Thus, hydroxyl groups in a phenolic 

compound can form hydrogen bonds with protein sidechain carboxylic groups, amine 

groups, and sulfhydryls. Where steric hindrances are absent, phenolic hydroxyl groups may 

also form hydrogen bonds with peptide bonds (C=O or -NH). 
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Hydrophobic association is the tendency of nonpolar molecules in a polar solvent 

(usually water) to interact with one another to achieve thermodynamic stability. In the case 

of MP–phenol interaction, this could be formed through π-bonded complexes by 

overlapping hydrophobic amino acid side chains in MP, such as phenylalanine, and the 

aromatic ring structure in phenols. This is thought to be especially relevant for polyphenols 

with three or more phenol rings, such as tannins (Prigent et al., 2003). Electrostatic forces 

are the interaction between charged groups, which could occur between acidic or basic 

amino acid side chain groups in MP and negatively charged phenoxide ions after the 

oxidation of phenols. van der Waals interactions are attractive or repulsive forces formed 

through dipoles or induced dipoles via polarization of the electron cloud when atoms from 

phenol rings or phenolic side chains are in the proximity of protein backbones or polar 

amino acid side chains (Buitimea-Cantúa, Gutiérrez-Uribe, & Serna-Saldivar, 2018).  

2.3.2 Covalent interactions 

Irreversible interactions occurring between phytophenols and muscle proteins can 

be characterized by the formation of covalent linkages which usually take place in an 

oxidative environment. At alkaline pH, phenols can be readily oxidized to quinone 

derivatives that are capable of forming covalent bonds with MP. The mechanisms involved 

in such irreversible interactions are depicted in Figure 2.3. The orthoquinone structure with 

unsaturated diketone groups are deficient in electrons, thus, can oxidize cysteines to 

promote disulfide formation. In this process, it is reduced back to the phenolic form (eq. 

1). Alternatively, the electrophilic quinone, being a reactive intermediate, is easily attacked 

by nucleophilic amino acid, such as cysteine, in a protein chain (Kroll, Rawel, & Rohn, 

2003; Rohn, 2019). After covalent binding with a cysteine molecule (eq. 1’), the phenol 
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moiety could be regenerated, re-oxidized, and subsequently bound to another cysteine side 

chain, forming a protein–phenol–protein cross-link as shown in eq. 2 (Rysman, Van Hecke, 

De Smet, & Van Royen, 2016). In another possible pathway (eq. 3), two quinone–myosin 

adductions can dimerize through covalent linkages between quinones and produce a cross-

link through diphenols, as proposed by Strauss and Gibson (2004).  Therefore, a reduction 

in the quantity of the nucleophilic amino acid side chain, cysteine, can be viewed as indirect 

evidence for the presence of protein−quinone covalent adduction. Significant reductions in 

sulfhydryl (-SH) content with increasing amounts of treatment phytophenols have been 

reported in several studies (Cao, True, Chen, & Xiong, 2016; Jia, Wang, Shao, Liu, & 

Kong, 2017; Wang et al., 2018). In those assays, non-covalent interactions are disrupted 

by sodium dodecyl sulfate (SDS) or urea, so that changes in the quantity of these groups 

can be assigned to covalent bonds between quinone and reactive amino acid groups in 

proteins.  

Covalent interactions between MP and phytophenols are likely to form cross-linked 

protein polymers through mechanisms shown in Figure 2.3. Myosin, the most abundant 

and functional constituent in MP, is known to exhibit modified cross-linking properties 

upon the reaction with phytophenols (Choi & Kim, 2009). Experimentally, the cross-

linking can be detected by electrophoresis, which is a simple yet powerful tool to separate 

proteins based on their molecular weights. Quinone-induced protein polymers have higher 

molecular weights so their presence can be evidenced by the reduction in myosin heavy 

chain band and the concomitant appearance of bands in the stacking gel (Guo & Xiong, 

2019; Prodpran, Benjakul, & Phatcharat, 2012). Furthermore, to differentiate between 

disulfide protein–protein and quinone-mediated cross-links, reducing reagents are used to 
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cleave disulfide bonds so polymers formed through covalent MP–phenol adduction can be 

revealed. To semi-quantitatively determine the number of thiol groups covalently attached 

to MP, a thiol-specific staining, 5-iodoacetamidofluorescein (IAF), has been used to stain 

and visualize unreacted free sulfhydryl groups (Jongberg et al., 2015).  

 

2.4 Effect of phytophenol binding on MP gelation 

The interaction with phytophenols could modify the above physicochemical 

properties, thus, affecting the association and cross-linking of protein molecules in the 

gelation process. Several factors affecting protein–phytophenol interaction and the impact 

on protein gelation have been investigated, which include phenol concentration and type, 

oxidation, salt content, and the co-presence of other additives.  

2.4.1 Impact of oxidation 

The conditions under which muscle proteins and phytophenols interact are 

important for the outcome of protein gelation, and oxidation is one of recognized factors. 

Oxidation not only facilitates the formation of quinone derivatives and protein–quinone 

adducts but also modifies protein–protein interactions per se. Oxidized amino acid side 

chains in MP contribute to protein cross-linkages through disulfide bonds, dityrosine, the 

Schiff’s base, and other intermolecular bridges that affect protein aggregation and 

polymerization (Zhang, Xiao, & Ahn, 2013). Phenolic compounds can mediate these 

interactions by acting as anti- or pro-oxidants, depending on their chemical structure and 

concentration (Estévez, Kylli, Puolanne, Kivikari, & Heinonen, 2008). A specific myosin-

phenol binding mechanism is proposed in Figure 2.3. Non-covalent interactions are 

dominant in non-oxidizing environments. However, under oxidative stress, covalent 
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interactions occur when phenol molecules are converted to their more reactive quinone 

derivatives.  

Several methods have been employed to introduce oxidative stress in the study of 

MP–phenol interactions and consequential structure-related functionality. They include 

Fenton oxidation (Cao & Xiong, 2015; Chen, Diao, Li, Chen, & Kong, 2016; Feng et al., 

2017; Jia et al., 2017; Tang et al., 2017), enzymatic oxidation (Guo & Xiong, 2019; Vate 

& Benjakul, 2016a), malondialdehyde (MDA)-mediated oxidation (Lv et al., 2019; Lv et 

al., 2020), and processing-induced oxidation (Jiang et al., 2020; Pan et al., 2020). A general 

conclusion based on these investigations is that mild oxidation promotes gelation while 

strong oxidation jeopardizes the process (Figure 2.5). Fenton reaction has been the most 

commonly used oxidation method because •OH radicals are readily generated through the 

reaction between H2O2 and Fe2+. In a study conducted by Chen et al. (2016), MP were 

mixed with phenol-rich clove extract in a Fenton reaction system, and the gelling properties 

were compared at different incubation times. The oxidation was so strong that MP 

insolubilization and aggregation occurred, leading to a poor gel texture. Although clove 

extract provided some protective antioxidant effect, it was inadequate to counteract the 

overall negative impact induced by oxidation, especially during a long incubation time of 

5 h.  

Compared to chemical oxidation, enzyme-mediated oxidation is moderate, 

controllable, and has the propensity to enhance the gel-forming of MP. This is largely due 

to the progressive nature of H2O2 production and its conversion to •OH radicals to allow 

gradual protein structure unfolding and exposure of reactive groups in the process of 

building an ordered protein gel network (Wang, Xiong, Sato, & Kumazawa, 2016). The 
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rate at which protein matrices in a gel are formed is critical to the gel properties (Ziegler & 

Foegeding, 1990). As reported recently, in the presence of 60 μmol gallic acid, the gelling 

capacity of MP was markedly promoted by glucose oxidase for up to 86% in terms of 

storage modulus (G′) and 53% in gel strength, when compared with non-oxidized samples 

where the phenolic acid showed no remarkable effect (Guo & Xiong, 2019). Similarly, 

squid ink tyrosinase, a polyphenol oxidase, successfully improved gelling properties of fish 

surimi incubated with tannic acid (Vate & Benjakul, 2016b).  

Protein and lipid are usually coexistent in muscle food systems, therefore, MP are 

inevitably susceptible to modification by lipid oxidation products, such as MDA. Lv et al. 

(2019) compared textural properties of MP emulsion gels treated with varying 

concentrations of EGCG and MDA. They found that low and intermediate levels of MDA 

(3 and 6 mM) facilitated the gelation, but this effect was diminished by the presence of 0.5, 

1.0, and 2.0 mM EGCG. Interestingly, at a high concentration of MDA (12 mM), where 

the quality of the MP emulsion gels was otherwise decreased, the addition of 0.5, 1.0, and 

2.0 mM EGCG provided a protective effect on MP gelation under the oxidative condition. 

In a subsequent study, MP gels treated with an even higher MDA concentration (24 mM) 

showed a poor structure and the addition of EGCG at the same concentrations was found 

to exacerbate the textural deterioration caused by MDA (Lv et al., 2020).  

As processing techniques, ultraviolet irradiation (UVA) and ultrasonication have 

been applied to initiate free radical formation for the study of gelation of modified MP in 

the presence of phytophenols. Jiang et al. (2020) reported that under the treatment with the 

same amount (625 μmol/g protein) of phlorotannin extracts (PTE), the gel strength of 

UVA-irradiated MP was 74.97% higher than the control sample without irradiation. In the 
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same study, free radicals were only detected in UVA irradiated and PTE-treated MP and 

not in the control samples with only UVA or PTE, indicating that both UVA irradiation 

and PTE are required to generate and maintain free radicals. Similarly, ultrasonication, 

which produced •H, drastically increased gel storage modulus (G′) from 410 Pa to 14137 

Pa in MP treated with 5 μmol/g of gallic acid (Pan et al., 2020). Mass spectrometry analysis 

confirmed the formation of covalent adduction of oxidized GA to cysteine and lysine 

residues in proteins, which likely contributed to the improved gelling properties.  

In model systems without an artificially simulated oxidative condition, phenolic 

compounds are still able to modify MP gelling properties through non-covalent and 

possibly covalent interactions due to their anti-/pro-oxidative activities and auto-oxidation 

in situ. Jia et al. (2017) investigated the effect of catechin on MP gelling properties and 

reported that it caused an approximate 42% reduction in water-holding capacity and 80% 

loss in MP gel strength. Similar results were obtained by Cao, Ai, True, & Xiong (2018) 

who showed that EGCG drastically decreased gel strength, increased cooking loss, and 

reduced the viscoelasticity of emulsified MP gels in the absence of artificial oxidants. 

Moreover, Balange and Benjakul (2011) tested the effect of tannins on the gel strength of 

fish surimi gel without added oxidants but at various pH (3, 7, 8, and 9). They showed that 

alkaline pH significantly enhanced gel breaking force due to the interaction with quinones 

generated by the deprotonation of phenolic hydroxyl groups. At acidic or neutral pH, few 

quinone molecules are produced because the hydroxyl groups remained mostly in the 

reduced forms, hence, no improvement for surimi gelation was observed. 

Therefore, in research aimed at elucidating the impact of oxidation on polyphenol-

mediated MP gelation, it is important to not only include proper control(s), e.g., systems 
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free of oxidation, but also consider both the type and the potency of artificially produced 

oxidative conditions when simulating or mimicking the indigenous oxidation stress 

normally encountered in muscle food production. Moreover, it is necessary to evaluate the 

extent of quinone self-polymerization prior to, as well as during, the interactions with MP, 

because modification of the phenolic structures will conceivably affect their association 

with proteins. 

2.4.2 Influence of concentration and type of phytophenols 

During thermal gelation, MP begins with unfolding first to expose binding sites 

then aggregation follows through protein–protein interactions leading to gel matrix 

formation and development. To form an isotropic protein gel network, it is important that 

protein unfolding proceeds slowly enough to allow denatured protein molecules to orient 

and interact before the initiation of aggregation (Xiong, 1994). Therefore, moderate protein 

unfolding is beneficial for gelation while abrupt or severe unfolding is conducive to random 

aggregation thus hindering gel network formation. The extent of MP modification and the 

properties of resultant gels are dependent on the application level of phenolic compounds. 

In general, unfolding and cross-linking of MP at moderate phenolic treatment 

concentrations may aid in protein gelation due to the facilitation of orderly protein 

aggregation. However, if a large amount of polyphenols is added, the superfluous phenols 

would not only disrupt the structure of MP but also shield the reactive amino acid side 

chains (such as thiol and free amine), thereby interfering with gelation. Such concentration-

dependent “dual effects” have been observed in several studies. As an example, Cao et al. 

(2016) reported that 6 and 30 μmol/g GA significantly improved the elasticity and hardness 

of MP gels while 150 μmol/g impaired gelation due to excessive aggregation and 
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insolubility of proteins promoted by the high concentration of GA. Similar dose-

dependence phenomena have been noted for chlorogenic acid and tea polyphenols (Cao & 

Xiong, 2015; Li et al., 2020a). The effects of different concentrations (0.05, 0.25, and 1.25 

mM) of RosA on the gelling behavior of MP as well as the characteristics of covalent MP–

phenol adducts were evaluated by Tang et al. (2017). At low-to-medium concentrations 

(0.05 and 0.25 mM RosA), RosA–Cys and Arg/His–RosA–Cys adducts were formed, 

exerting a positive effect on the rheological attributes of the MP gels. At high RosA 

concentration (1.25 mM), however, RosA–Cys became the dominant type of cross-link, 

and the extensive blockage of the thiol groups (an important force in MP gels) impeded gel 

formation and produced a poor gel texture.  

In some reported studies, the effect of phytophenols on MP gelation only followed 

a single trend (promoting or suppressing) rather than both because either the particular 

phenols are inherently detrimental (or beneficial) to protein gelation or the optimal dosage 

level had not been attained in the concentration range tested. The specific structures of the 

phenolic compounds have a major influence on their functionality, hence, their unique 

concentration-dependence pattern. Epicatechin and EGCG are flavonoids with different 

numbers of phenol and hydroxyl groups. Li et al. (2019) reported that the elasticity (G′) of 

MP gels was positively correlated with epicatechin at concentrations of 0.1, 0.2, 0.5, 1, and 

2 mM. However, EGCG was found to impair MP gelation in the concentration range 10, 

50, 100, and 200 µmol/g protein from a prior study (Jia et al., 2017) and at 50, 100, 200, 

500, and 1000 mg/L in another study (Cao et al., 2018).  Variations among polyphenols in 

their efficacy are conspicuously related to the structural diversity as manifested by 

differences in molecular weight, hydrophobicity, molecular flexibility, methylation, 
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hydroxylation, glycosylation, and other attributes (Yildirim-Elikoglu & Erdem, 2018). The 

strong dose-dependence effect entails the establishment of an appropriate working 

concentration for an individual phenolic compound intended as a functional additive to 

produce a desired level of protein modification. A condition that favors MP gelation would 

allow an interactive internal structure and well-textured meat product. Continuing research 

is required to elucidate the underlying mechanisms and the structure–activity relationship 

of phenolic compounds applied to muscle food processing.   

Although the presence of certain high amounts of phytophenols can be detrimental 

to MP gelation, their widely recognized antioxidant potential provides the incentive for 

developing strategies to minimize the undesirable effects on protein gelation and structure-

forming potential. Cyclodextrins (CDs), a family of natural cyclic oligosaccharides with a 

high affinity for polyphenols, have been added to bind with excessive polyphenols and 

mitigate physicochemical deteriorations associated with extensive MP–phenol interaction. 

Zhang et al. (2018a) found that methyl-β-cyclodextrin (M-β-CD) was effective in 

increasing the polyphenol loading capacity by interfering with protein–phenol interactions. 

The increased cooking loss of the MP emulsion gel caused by high concentrations of 

EGCG was offset by the addition of M-β-CD in a dose-dependent manner. At the highest 

load of M-β-CD (160 µmol/g), the cooking loss was reduced to a similar level as the control. 

In a subsequent study (Zhang et al., 2018b), three chemically related cyclodextrins, namely, 

M-β-CD, β-cyclodextrin (β-CD), and (2-Hydroxypropy l)-β-cyclodextrin (2HP-β-CD), 

were compared for their ability to mitigate the negative impact of EGCG on MP gelation. 

It was found that at the application level of 80 μM/g protein, the CDs reduced cooking loss 

caused by EGCG and improved the structure of MP emulsion gel in the order of M-β-
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CD>2HP-β-CD>β-CD. The amphiphilicity of CDs coupled with the entrapping cyclic 

structure enabled the formation of CD–EGCG complexes through non-covalent association, 

thus, disrupting interactions between EGCG and proteins. Methyl and hydroxypropyl in 

the substituent groups increased hydrophobicity of CD so its binding affinity for EGCG 

was enhanced through hydrophobic forces. 

 

2.5 Effect of phytophenol binding on MP emulsification 

Polyphenol-induced physicochemical changes of MP could affect their ability to 

form an interfacial membrane, hence, emulsifying properties that play an important role in 

the textural properties of emulsified meat products. Indeed, both physicochemical and anti- 

or pro-oxidative changes induced by phenolic compounds were found to modify the 

emulsifying properties of MP (Estévez et al., 2008). Compared to control protein, a MP–

phenol complex tends to be more easily adsorbed onto the oil/water interface and increases 

the surface charge of the protein-membrane (Figure 2.4). This often leads to stronger 

electrostatic repulsions between particles hence a more stable emulsion with smaller oil 

droplets dispersed in the aqueous phase (Cheng, Zhu, & Liu, 2020; Li et al., 2019). Sage 

extract (100 μg/mL) increased the emulsion zeta potential (negative) from –18.7 mV to –

37.7 mV, and a thicker and more compact interfacial protein membrane which stabilizes 

oil droplets was revealed under the microscope (Li et al., 2019). On the other hand, the 

presence of certain large polyphenols, such as EGCG, especially in large quantities, can be 

detrimental to the emulsifying properties of MP. This is because extensive protein 

unfolding and aggregation incurred would result in less protein being adsorbed to the 

interfacial membrane (Cao et al., 2018; Feng et al., 2017). Nonetheless, in a moderate-to-
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strong oxidizing environment, EGCG can act as an antioxidant to inhibit protein 

aggregation and polymerization caused by oxidation, producing more stable emulsions (Lv 

et al., 2019). Therefore, the role of EGCG seems to be complex subjecting to the specific 

meat processing conditions. 

To mimic the composition of emulsified meat products, including frankfurters, 

bologna, and a wide variety of comminuted luncheon meats, emulsion composite gel model 

systems are frequently used in the investigation of the effect of phytophenols on those 

products (Feng et al., 2017; Lv et al., 2019; Wang et al., 2018). In these complex, 

heterogeneous systems, the physicochemical and structure-forming properties of 

phytophenol-modified MP are found to be affected by and can be assigned to the individual 

behavior of emulsified fat droplets and the continuous protein gel matrix. For example, the 

presence of 12 µM and 60 µM RosA modified functional amino acid side chains (free 

amine and sulfhydryl) and enhanced cross-linking of MP. Consequently, a firmer and more 

elastic MP composite gel was produced, in which smaller oil droplets were dispersed in a 

strengthened protein network (Wang et al., 2018). On the other hand, excessive protein 

aggregation and reduced surface hydrophobicity caused by the addition of 1000 ppm 

EGCG impaired the textural properties of MP composite gels with 40.5% cooking loss, 

versus 4.3% for the control (Feng et al., 2017). The microstructure of these composite gels 

exhibited oil coalesced into larger droplets and a high-degree shrinkage of the gel matrix 

in the continuous protein phase.  
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Figure 2.1. Diagram of the muscle sarcomere and the myosin molecule. HHM: heavy 
meromyosin, LLM: light meromyosin, ELC: essential light chain, RLC: regulatory 
light chain (Tang et al., 2017).   
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Figure 2.2. Proposed mechanism of non-covalent interactions between proteins and 
phenolic compounds (Le Bourvellec & Renard, 2012). 
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Figure 2.3. Proposed mechanism of covalent interactions between muscle proteins 
and phenolic compounds focusing on the role of protein thiol groups. 1: production 
of disulfide bond in redox reaction; 1’: adduction of quinone to -SH group in proteins; 
2: formation of cross-linking by another protein binding to the phenol derivative; 3: 
formation of cross-linking through quinone–myofibrillar protein adduct 
dimerization. 
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Figure 2.4. Schematic presentation of myosin-phenol binding and the effect on 
structure-forming functionality in processed muscle food systems.   
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Figure 2.5. Proposed effects of quinones on thermal gelling properties of myofibrillar 
protein (MP) under different oxidative (Ox) conditions. Mild oxidation promotes 
gelation while strong oxidation disrupts the gel texture.  
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Table 2.1. Common analytical methods for the characterization of interactions 
between myofibrillar protein (MP) and phenolic compounds. 
Techniques Principles 
Amino acid side chains 
 
Sulfhydryl and amine groups Nucleophilic side chain groups in MP, including 

sulfhydryl and amine, are attacked by 
electrophilic quinones   

Conformation 
 
Intrinsic fluorescence Protein structure unfolding caused by phenol 

interaction exposes tryptophan, tyrosine, and 
phenylalanine to a more hydrophilic (aqueous) 
environment, hence, fluorescence quenching 
 

Surface hydrophobicity Protein structure unfolding and hydrophobic 
interaction between MP and phenols modify the 
surface hydrophobicity 
 

Differential scanning calorimetry  Interaction with phenols alters MP 
conformational stability, which is reflected by 
the shift in thermal transitions (temperature and 
enthalpy) 
 

Circular dichroism  Protein–phenol interaction alters secondary 
structures of MP, which affects protein 
backbone absorption of polarized light 
  

Fourier transform infrared Protein–phenol interaction alters secondary 
structures of MP, which changes chemical bond 
vibration measured by absorption spectra  
 

Raman spectrometry Protein–phenol interaction alters secondary 
structures of MP, which changes molecular 
vibration measured by scattering spectra  

Phenol adduction and  
protein cross-linking  
Mass spectrometry Formation of protein–phenol adducts changes 

the mass-to-charge (m/z) ratio of protein 
fragments 
 

Electrophoresis  Formation of protein polymers is promoted by 
phenol-mediated conversion of free sulfhydryl 
to disulfide bonds; quinones act as bridges to 
dimerize or polymerize proteins 
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CHAPTER 3. GLUCOSE OXIDASE PROMOTES GALLIC ACID–MYOFIBILLAR 

PROTEIN INTERACTION AND THERMAL GELATION 

3.1 Summary  

The effect of glucose oxidase (GOx) catalytic oxidation on the efficacy of gallic 

acid (GA) to modify the chemical structure and gelling behavior of myofibrillar protein 

(MP) was investigated. In contrast to non-oxidized MP samples where GA induced very 

little changes, GA (0, 6, 30, and 60 µmol/g MP) under GOx treatment promoted sulfhydryl 

and amine loss (up to 58% and 49%, respectively). The attenuation of intrinsic tryptophan 

fluorescence in the GA/GOx-treated MP corroborated the finding. The gelling capacity of 

MP, corresponding to disulfide and non-disulfide bond formation in protein aggregates, 

was markedly enhanced by 60 µmol GA under GOx, up to 86% in gel storage modulus G′ 

and 53% in gel strength. The GOx-aided GA modification of MP could be a potential 

ingredient strategy in meat processing to promote textural attributes of cooked products.  
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3.2 Introduction 

Myofibrillar protein (MP), constituting up to 60% of muscle protein, is well-known 

for its vital role in texture characteristics of both fresh and processed meats. In particular, 

the ability of MP to form an adhesive gel in cooked muscle foods is responsible for meat 

and fat particle binding, water immobilization, and flavor entrapment, which contribute to 

palatability particularly mouthfeel, juiciness, and flavor (Sun & Holley, 2011). Of various 

processing factors that affect the gel properties of MP, oxidation is recognized as an 

important one (Xiong, Blanchard, Ooizumi, & Ma, 2010). Hence, modulating protein–

protein interactions and cross-linking via oxidative modification was considered as a 

possible strategy to produce processed meat products with modified texture (Xiong, 1996; 

Zhang et al., 2013).  

Phenolic compounds are one of the most widely occurring diverse groups of 

phytochemicals that have been incorporated to meat and meat products for preservation 

and flavor development (Balasundram, Sundram, & Samman, 2006; Falowo, Fayemi, & 

Muchenje, 2014). Moreover, the potential of synthetic food additives causing toxicological 

effects has led to a strong demand for natural substitutes in the consumer market as well as 

the meat industry. Thus, there has been a growing research interest in the interaction 

between phenolic compounds and proteins and its implication for protein functionality. 

Accordingly, studies have been conducted to investigate the effect of phytophenolics on 

the gelling potential of MP, and oxidation has been introduced as a processing factor. As 

found in a recent study (Cao et al., 2016), structural modification of MP by gallic acid (GA) 

under chemically induced oxidation altered inter- and intramolecular cross-linking of 

myosin in a GA concentration-dependent manner. Such protein–protein interactions as 
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well as the attachment of GA to MP had either a synergistic or antagonistic effect on MP 

gelation depending on the GA concentration. 

Previously, Balange and Benjakul (2009) reported that treatment of fish surimi (a 

protein concentrate) with oxidized phenolic acids could enhance the surimi gel strength 

while non-oxidized phenolics showed no such effect. However, Jia, Wang, Shao, Liu, and 

Kong (2017) noted that non-oxidized catechin was still able to modify protein 

conformation and impair the microstructure of pork myofibrillar protein gels. The latter 

observation supported the findings of Jongberg et al. (2015) who showed green tea extract 

disrupted meat emulsion gels by the suppression of protein S–S cross-linking. Nonetheless, 

covalent binding between phenolics and reactive amino acid sidechain groups, including 

amine and sulfhydryl, is facilitated under oxidizing conditions when the phenols are 

converted to their corresponding quinone derivatives (Bittner, 2006; Jongberg, Gislason, 

Lund, Skibsted, & Waterhouse, 2011; Kroll et al., 2003). 

Several methods have been developed to introduce an oxidative environment in 

model systems to explore MP–phenolic interactions, of which chemically induced Fe–

H2O2 Fenton reaction is the most commonly used. In these studies, hydrogen peroxide and 

ferrous ion are added directly to the systems to introduce oxidation by generating hydroxyl 

radicals (Cao et al., 2016; Tang et al., 2017; Wang et al., 2018). However, chemical 

production of H2O2 has the disadvantage that the sudden burst of •OH will cause severe 

conformational changes and aggregation of proteins, resulting in the insolubility and the 

tendency to lose functionality (Wang et al., 2016). Hence, oxidative conditions without 

direct use of hydrogen peroxide would be preferable. Glucose oxidase (GOx), a generally 

regarded as safe (GRAS) food additive, has been widely used as an oxidizing agent to 
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remove glucose by the conversion to gluconic acid or to produce H2O2 (Eq. (1)). The latter 

is the precursor of •OH (Eq. (2)) that promotes the oxidative transformation of sulfhydryls 

to disulfide bonds, which has found its use in strengthening the gluten network for bread 

texture improvement (Rasiah, Sutton, Low, Lin, & Gerrard, 2005; Wong, Wong, & Chen, 

2008). In our recent research, we have found that GOx was capable of aiding in the 

production of firmer and more elastic MP gels than the Fenton oxidation system, and this 

effect was attributed to the progressive production of H2O2 which was subsequently 

converted to •OH in a controllable manner (Wang et al., 2016; Wang, Xiong, & Sato, 2017). 

 

In the present study, we aimed to investigate the impact of gallic acid (GA), a 

simple yet common phenolic acid present in spices and herbs, on the gelling properties of 

MP under GOx-induced oxidation. Hydroxyl radicals generated from the enzymatic 

process were expected to oxidize gallic acid phenol into the more reactive quinone species 

(Eq. (3)). Our hypothesis was that by means of slow release of H2O2, GOx could promote 

the interaction between MP and GA thereby enhancing the viscoelastic properties of MP 

gels. Chemical, structural, and morphological analyses were performed to illustrate the 

underlying mechanisms.  
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3.3 Materials and methods 

3.3.1 Materials 

Longissimus lumborum muscle samples were collected from pork carcasses (24 h 

post-mortem) harvested at the University of Kentucky Meat Laboratory, a USDA-

approved facility. The loin muscle samples were cut into 1 cm chops before being 

individually vacuum-packaged and stored in a −30 °C freezer until use. Gallic acid (GA, 

purity ≥ 98.5%) was purchased from Sinopharm Chemical Reagent (Shanghai, China). 

Glucose oxidase was donated by Ajinomoto Co., Inc. (Kawasaki, Japan). All other 

chemicals were of at least analytical grade from Sigma–Aldrich (St. Louis, MO, USA) or 

Thermo–Fisher Scientific (Waltham, MA, USA). Double-deionized water (NANO pure 

Diamond, Barnstead, IA, USA) was used in all experiments.  

3.3.2 Sample preparation 

Extraction of MP. Frozen muscle samples were thawed at 4 °C overnight and then 

chopped into small pieces. MP was isolated from the minced muscle using an extraction 

buffer consisting of 10 mM sodium phosphate, 0.1 M NaCl, 2 mM MgCl2, and 1 mM 

EGTA at pH 7.0 (Park, Xiong, & Alderton, 2007). In the last washing step, the pH of MP 

suspended in 0.1 M NaCl was adjusted to 6.25. The MP pallet was kept on ice and utilized 

within 48 h. The preparation was conducted in a 4 °C walk-in cooler. Protein concentration 

was determined by the Biuret method using bovine serum albumin as a standard (Gornall, 

Bardawill, & David, 1949).  

Oxidation. The MP pellet was suspended in 50 mM piperazine-N,N′-bis(2-

ethanesulfonic acid) (PIPES) buffer containing 0.6 M NaCl (pH 6.25) to a final 

concentration of 20 mg/mL. This salt concentration–pH condition was selected because it 
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was a typical condition for meat processing. GA at four final concentrations (0, 6, 30, and 

60 μmol/g MP) were thoroughly mixed with the protein suspensions. Samples were then 

oxidatively modified with an enzymatic system (50 µg glucose and 8 µg GOx per mg of 

MP in the presence of 10 μM FeSO4, all final concentrations) by incubation at 4 °C for 8 

h. As a set of controls, MP samples with respective amounts of GA but no GOx were 

prepared for comparison. After the incubation, samples were immediately analyzed. 

3.3.3 Measurement of MP chemical changes 

Carbonyls. The carbonyl content was determined using the 2,4-

dinitrophenylhydrazine (DNPH) colorimetric method as described by Levine et al. (1990). 

MP samples were mixed with DNPH solution and precipitated with 20% TCA. Recovered 

protein was washed with ethanol/ethyl acetate (1:1, v/v) solution to exhaustively remove 

unreacted DNPH, and then dissolved in 6 M guanidine hydrochloride (pH 2.3) for re-

solubilization. The absorbance (at 370 nm) was read and a molar extinction coefficient of 

22,000 M−1 cm−1 was used for carbonyl content calculation. 

Sulfhydryls. The total sulfhydryl content was determined using the Ellman’s 

reagent (Jongberg et al., 2015). After reaction with the urea-SDS solution (8 M urea with 

3% SDS in 0.1 M phosphate buffer, pH 7.4), MP samples were incubated with 10 mM 5,5′-

dithiobis-(2-nitrobenzoic acid) (DTNB) reagent at 25 °C for 15 min. The absorbance at 412 

nm was read and a molar extinction coefficient of 13,600 M−1 cm−1 was used for 

calculation. Both reagent and sample blanks were run to correct for the background color. 

Free amines. The free amine content was measured following the method described 

by Adler-Nissen (1979). Protein samples were diluted to 4 mg/mL and mixed thoroughly 

with SDS solution (1% SDS in 0.2 M phosphate buffer, pH 8.2) and then reacted with 0.1% 
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2,4,6-trinitrobenzenesulfonic acid (TNBS) reagent in a water bath at 50 °C for 30 min in 

the dark. The reaction was terminated by adding 0.1 M sodium sulfite. The absorbance (at 

420 nm) was read and a standard curve of L–leucine was used for calculation. All samples 

were washed three times with prechilled deionized water and then re-dissolved in 50 mM 

PIPES buffer containing 0.6 M NaCl (pH 6.25) to avoid interference from GA.  

3.3.4 Determination of MP structural changes 

The intensity of intrinsic tryptophan fluorescence was measure using a FluoroMax-

3 fluorometer (Horiba Jobin Yvon Inc., Edison, NJ USA) with a dilute suspension of MP 

(0.4 mg/mL in 50 mM PIPE buffer, 0.6 M NaCl, pH 6.25). The emission spectra were 

recorded from 300 to 450 nm at an excitation wavelength of 283 nm. Background spectra 

under the same conditions were collected and subtracted from the respective spectra of the 

MP samples. The data of fluorescence quenching under either nonoxidizing or oxidizing 

conditions were analyzed using the Stern–Volmer equation: 

F0/F = 1 + Kqτ0[Q] = 1 + KSV[Q] 

where F0 and F are the fluorescence intensities before and after the addition of GA; Kq is 

the biomolecular quenching-rate constant; τ0 is the lifetime of the fluorophore in the 

absence of a quencher; [Q] is the concentration of the quencher; and Ksv is the Stern–

Volmer quenching constant. According to Lakowicz and Weber (1973), τ0 for biopolymer 

is 10−8 S−1. Ksv was determined by plotting linear regression F0/F against [Q]. 

3.3.5 Identification of protein cross-linking 

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was 

conducted to determine protein patterns in unheated (sol) and heated (gel) MP samples 

according to the method of Laemmli (1970) with a 3% polyacrylamide stacking gel and a 
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10% polyacrylamide resolving gel. To each diluted MP sample (2 mg/mL), 1 mM N-

ethylmaleimide (NEM, a thiol-blocking agent) or 10% β-mercaptoethanol (βME) was 

added before boiling for 3 min for the detection of protein aggregates via S–S bonds. 

Detailed SDS–PAGE sample preparation conditions were described by Balange and 

Benjakul (2009). For both oxidized and unoxidized MP samples, the degree of loss of 

myosin heavy chain (MHC), relative to MP control with neither GA nor GOx, was 

established using the UN–SCAN–IT software (Silk Scientific, Orem, Utah, U.S.A.) with 

the following formula:  

Relative loss (%) =  
pixel intensity in control − pixel intensity in sample

pixel intensity in control
× 100 

3.3.6 Gelling properties of MP 

Dynamic rheological properties. MP sols (20 mg/mL protein in 0.6 M NaCl, pH 

6.25) were de-aerated by centrifuging at 1000g for 1 min then subjected to oscillatory shear 

analysis using a Model CVO rheometer (Malvern Instruments, Westborough, MA, USA). 

Thermal gelation was achieved by heating sols loaded between the parallel plates (30 mm 

upper plate diameter, 1 mm gap) from 20 to 72 °C at a 1 °C/min heating rate. The exposed 

sample rim was covered with a thin layer of silicon oil to prevent dehydration. During 

heating, the storage modulus (G′) was recorded every 30 s at a fixed frequency of 0.1 Hz 

and a maximum strain of 0.02. 

Gel strength. MP sols (20 mg/mL protein in 0.6 M NaCl, pH 6.25) were de-aerated 

and then transferred to glass vials (18.0 mm inner diameter) and then heated in a water bath 

from 20 to 72 °C at a 1 °C/min heating rate. After reaching the final temperature, gels were 

immediately chilled in an ice slurry for 30 min and kept at 4 °C overnight. The set gels 

were then equilibrated at room temperature for 1 h and extruded with a stainlesssteel, flat-
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ended probe (10 mm diameter) attached to a Model 4301 Instron universal testing machine 

(Canton, MA, USA) at a crosshead speed of 20 mm/min until structural failure. The initial 

puncture force required to disrupt the gels was recorded as gel strength (N).  

Scanning electron microscopy (SEM). MP gels prepared with 40 mg/ml protein in 

0.6 M NaCl at pH 6.25 were used for SEM examination after fixation as described by Wang 

et al. (2017) with slight modifications. Gel cubes (approximately 3 mm3) were cut and 

fixed in 0.1 M phosphate buffer (pH 7.2) containing 3% glutaraldehyde for 24 h at 4 °C. 

Fixed samples were washed with 0.1 M phosphate buffer (pH 7.2) three times and then 

postfixed for 20 h in 1% osmium tetroxide. The postfixed samples were washed three times, 

each time with 0.1 M phosphate buffer (pH 7.2) and dehydrated in a series of ethanol (50, 

75, 90, 95, and twice 100%) for 30 min per solution. Samples were further dehydrated by 

critical point drying. Dried samples were sputter-coated with gold and examined under a 

Model S4300 Hitachi scanning electron microscope (Hitachi, Ltd., Tokyo, Japan) with 10 

kV accelerating voltage.  

3.3.7 Statistical analysis 

Experiments were conducted with three independent trials (n = 3) on different days, 

each with a new batch of isolated MP. Data were subjected to the analysis of variance using 

a general linear model’s procedure in Statistix software 9.0 (Analytical Software, 

Tallahassee, FL, USA). Significant (P < 0.05) differences between means were identified 

by LSD all-pairwise multiple comparisons. 
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3.4 Results and discussion 

3.4.1 Changes involving amino acid side chains 

3.4.1.1 Carbonyls 

Carbonylation is considered to be one of the most remarkable chemical 

modifications in oxidized proteins which has been widely used for the quantification of 

oxidation. Non-oxidized muscle proteins are free of carbonyl groups, but in oxidatively 

stressed proteins, carbonyls are always generated (Estévez & Heinonen, 2010; Xiong, 

1996). The most common precursors of carbonyl derivatives are sidechains of amino acid 

residues such as histidine, lysine, arginine, proline, and threonine (Stadtman, 2006; Zhang 

et al., 2013). As presented in Table 3.1, the carbonyl content (1.95 nmol/mg) in samples 

subjected to GOx-mediated oxidation doubled that of the non-oxidized control (P < 0.05). 

Hydrogen peroxide (H2O2) was simultaneously produced when GOx catalyzed the 

oxidative conversion of glucose to gluconic acid by utilizing molecular oxygen as an 

electron acceptor (Bankar, Bule, Singhal, & Ananthanarayan, 2009). Extremely reactive 

hydroxyl radicals (•OH) were then continuously generated from H2O2 in the presence of 

ferrous iron (Fe2+), resulting in MP oxidation and an increased carbonyl content (Wang et 

al., 2016). 

The addition of GA did not affect the carbonyl formation in either oxidized or non-

oxidized MP samples (Table 3.1). Plant phenolics could inhibit carbonyl-forming protein 

oxidation through two major pathways. One is donation of electrons to disrupt the 

oxidation cycle through scavenging free radicals; the other one is chelation of metal ions 

and removal of free radical initiators by nature of stabilizing them (Falowo et al., 2014). 

On the other hand, phenolic compounds could contribute to carbonyl formation when they 
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are oxidized to quinone species and catalyze the oxidative deamination of susceptible 

amino acids to form the corresponding semialdehydes (Estévez & Heinonen, 2010). The 

overall anti- or pro-oxidative effect of phenolic compounds is complicated depending on 

several factors, including chemical structure and concentration of the specific phenolic 

compounds, the pH of the food matrix, and the oxidizing agents (Utrera & Estévez, 2012; 

Zhou & Elias, 2013). In the present study, GA exerted no antioxidative effect on protein 

either with or without GOx, indicating that protein radicals were not scavenged by GA. 

3.4.1.2 Total sulfhydryls 

MP is rich in sulfhydryl (SH) groups (up to 42 per mole of myosin), which are 

susceptible to oxidation and can be readily converted to various thiol derivatives such as 

sulfenic acid, sulfinic acid, sulfonic acid, and disulfides. The disulfide bond (S–S) is among 

the most dominant products in oxidatively stressed MP (Liu, Xiong, & Butterfield, 2000; 

Lund, Heinonen, Baron, & Estévez, 2011). As shown in Table 3.1, the total SH content of 

MP decreased slightly from 55.1 nmol/mg to 43.4 nmol/mg after GOx oxidation (P < 0.05). 

The addition of GA further reduced the sulfhydryl content in a dose-dependent manner 

with a total loss of 58% at 60 µmol/g of GA treatment (P < 0.05). The further sulfhydryl 

loss could be caused by the adduction of the electrophilic quinone carbonyls produced by 

GA oxidation to the nucleophilic cysteine SH groups (Jongberg et al., 2011). Similar results 

were obtained from several other studies (Jia et al., 2017; Wang et al., 2018). On the other 

hand, low concentrations (6 and 30 µmol/g MP) of GA had negligible effect on total SH 

content in non-oxidized MP samples, apparently due to limited SH–quinone adduction 

(Prigent et al., 2003). Nevertheless, a slight but significant loss of SH (14%, P < 0.05) was 
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observed at a high GA concentration (60 µmol/g MP), which can be attributed to the auto-

oxidation occurring during the preparation of the mixed MP/GA samples.  

3.4.1.3 Free amines 

In both non-oxidized and oxidized MP samples, a continuous reduction (P < 0.05) 

in free amine content was observed when MP was incubated with increasing concentrations 

of GA (Table 3.1). However, the loss of amines was more pronounced in GOx-oxidized 

MP samples: from 69.5 to 44.2 nmol/mg when compared with 82.5 to 65.1 nmol/mg for 

non-oxidized MP (P < 0.05). It has been proposed that in an oxidative environment, readily 

accessible lysine residues can be deaminated and form the Schiff’s base adduct with 

carbonyl derivatives (Levine et al., 1990). The increased availability of protein carbonyls 

in GOx-stressed MP samples, as described above, would contribute to the loss of amines. 

Since 1% SDS was used in the assay of free amine content (which dissociates non-covalent 

aggregation), covalent interactions were responsible for amine loss in the present study. 

Furthermore, as aforementioned, in GOx-treated MP/GA mixture, quinone derivatives of 

GA would react with α- or ɛ-NH2 groups of amino acid sidechains forming quinone–protein 

adducts, further contributing to the decreased amine content (Kroll et al., 2003). The GA-

dose dependent loss of amines in GOx-oxidized MP samples supported this premise.  

3.4.2 Protein structures 

The photophysical properties of intrinsic tryptophan are highly sensitive to the 

polarity of its surrounding environment. For native folded proteins, tryptophan residues are 

embedded deep into a hydrophobic pocket, so they have a high quantum yield and high 

fluorescence intensity. When proteins unfold and tryptophan residues are exposed to a 

hydrophilic environment, the fluorescence will attenuate (Ghisaidoobe & Chung, 2014). 
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Therefore, the characteristics of intrinsic tryptophan spectra are commonly used as 

indicators of the tertiary structure of proteins. In the present study, the intrinsic tryptophan 

fluorescence in both non-oxidized and oxidized MP samples was suppressed by GA in a 

dose-dependent manner (Figure 3.1A), suggesting progressive MP unfolding with 

increasing GA content. However, the quenching of fluorescence by GA in GOx-oxidized 

samples was stronger than in non-oxidized samples. As shown in Figure 3.1B, the 

quenching constant Ksv rose from 1.6 × 103 M−1 to 2.7 × 103 M−1 by GOx-mediated 

oxidation. Without oxidation, the GA-induced structure change would mainly be attributed 

to non-covalent forces such as hydrophobic interactions between the aromatic ring of GA 

and aromatic amino acid residues, hydrogen bonds formed between hydroxyl groups in GA 

and hydrogen acceptors in MP, and van der Waals interactions (Buamard & Benjakul, 2015; 

Wu et al., 2011). Under GOx-mediated oxidation, additional covalent binding between MP 

and quinone derivatives of GA would facilitate protein structure change. It is also possible 

that the interactions between GA and MP were further promoted by exposed reactive 

groups preceded by protein unfolding under oxidative conditions. The quenching constant 

(Ksv, 2.7 × 103 M−1) of GA was at the same order but slightly lower than that found in 

another study (Ksv, 6.9 × 103 M−1) where the model system was oxidized by Fenton reaction 

(Cao et al., 2016). Compared to the strong and rapid release of •OH produced by chemically 

induced oxidation, progressive •OH production from GOx would enable less severe protein 

structure modification. Variations in quenching constants have been found to stem from 

other factors, including proteins sources, molecular weight and structure of phenolics, and 

temperature (Soares, Mateus, & De Freitas, 2007). 
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3.4.3 Cross-linking of MP 

MP cross-linking before and after thermal gelation was evaluated by SDS–PAGE 

(Figure 3.2). In non-oxidized and non-reducing MP sol (Figure 3.2A), no detectable 

difference in the intensity of protein bands was observed between GA-treated samples and 

the control (P > 0.05). However, when MP was subjected to GOx oxidation, the loss of 

myosin heavy chain (MHC) increased slightly from 36% to 46% with increasing 

concentrations of GA (6–60 µmol/g, P < 0.05). Under reducing conditions (+βME) where 

disulfide bonds were cleaved, the differences caused by GOx were largely diminished and 

MHC was mostly recovered in all samples (Figure 3.2B). Hence, S–S produced in myosin 

was the major force in the enhanced cross-linking of MP sol. 

After the heating process, the MHC band in GOx-treated MP gel samples became 

rather faint (over 90% reduction). Concomitantly, a significant amount of 

polymers/oligomers that were too large to enter the resolving gel appeared on the top of 

the porous stacking gel (Figure 3.2C). When treated with βME, some of the lost MHC was 

recovered. Yet, the amount of MHC that remained unrecoverable by the reducing 

compound increased from 20% (control) to 61% if the MP sample was previously treated 

with 60 µmol/g of GA (P < 0.05). The extra loss (41%) was evidence of covalent bonds 

other than S–S linkages (Figure 3.2D). The oxidation-induced polymers in the stacking gel 

were quantitatively related to the GA concentration. This could be explained because non-

disulfide covalent bonds such as di-tyrosine and Schiff’s base were formed under oxidative 

conditions, leading to enhanced MP cross-linking (Zhang et al., 2013). Another possible 

mechanism is that quinones derived from GA oxidation acted as bridges to produce protein 

polymers through thiol–quinone or amine–quinone adduction. These interactions were 
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intensified with thermal gelation where phenolic compounds or their quinone derivatives 

could bind more effectively (Balange & Benjakul, 2009). 

3.4.4 Gelling properties 

3.4.4.1 Dynamic rheological behavior of MP 

GA-induced changes in dynamic viscoelastic behavior of the MP during thermal 

gelation was assessed by measuring the storage modulus (G′) evolution (Figure 3.3). 

During heating, all MP samples exhibited a typical thermogram with two major G′ peaks 

(around 45 °C and 50 °C), corresponding to the association of denatured myosin head and 

tail groups, respectively (Xiong et al., 2010). Compared to the non-oxidized control sample, 

the addition of GA to GOx-oxidized MP drastically increased G′ of the second transition 

peak (up to 85% with 60 µmol/g GA), evincing stronger myosin tail–tail interaction. Upon 

heating to above 55 °C, the G′ increased steadily and especially in samples treated with 

GA, indicating networking of previously formed protein aggregates. The G′ reached a 

plateau toward the final heating temperatures, and the final G′ (72 °C) of the gel was 

enhanced by 86% when MP was treated with 60 µmol/g GA under GOx oxidation. In 

contrast, despite the tendency of increasing in the intermediate temperature range (45–

50 °C) by the presence of GA, the G′ development in non-oxidized samples was much less 

affected by GA treatments, which could be due to limited quinone production without GOx. 

Quinone derivatives of GA could promote the MP gelation by facilitating the SH/S–S 

interchange and conversion, itself acting as cross-linker through binding two polypeptides, 

or dimerizing after adduction with nucleophilic groups in proteins (Strauss & Gibson, 2004; 

Vate & Benjakul, 2016a). These results, in corroboration with the sulfhydryl, amine, and 

carbonyl measurements (Table 3.1), suggest that the production of quinone under GOx-
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mediated oxidation was necessary for the efficacy of GA in the development of a more 

elastic MP gel.  

3.4.4.2 Gel strength 

The gelling properties of MP were further analyzed by measuring the strength (the 

initial force required to rupture the structure) of set protein gels. The enhancement of gel 

strength by GA and GOx was in agreement with the rise in the final G′ value at 72 °C 

(Figure 3.3). Without the GOx oxidation, the gels prepared from GA-treated MP exhibited 

no obvious difference in gel strength (P > 0.05, Figure 3.4). However, upon oxidation, the 

gel strength tended to increase gradually with the GA concentration. The maximum gain 

was observed at the highest GA concentration level (60 µmol/g) where the gel strength 

showed a 53% increase (P < 0.05). The result supported Balange and Benjakul (2009) who 

found the breaking force of heated fish surimi only increased with the addition of oxidized 

ferulic acid while no change was noted when ferulic acid was not oxidized in advance. 

3.4.4.3 Microstructure of gels 

SEM was performed to visualize the detailed structure of MP gels. Compared with 

the rugged and uneven surfaces observed on the control MP gel, the GOx-treated gels 

displayed a denser and more uniform matrix with less pores (Figure 3.5). This compact 

structure could resist disrupting forces, thus, explaining the enhanced gel strength in Figure 

3.4. More obvious structural differences were revealed when GA (6 and 30 µmol/g) were 

added in combination with GOx: a filamentous gel network structure with fine strands 

(pointed by arrow) was formed while their non-oxidized counterparts had continuous and 

aggregated matrices (Figure 3.5). Oxidized GA enhanced myosin tail–tail association 
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(Figure 3.3) and cross-linking (Figure 3.2) during thermal gelation, which could contribute 

to the formation of such filaments formed within the protein gel. 

 

3.5 Conclusion 

In conclusion, the presence of GA under the GOx-mediated oxidation condition 

promoted the gelation of MP by modifying the chemical, structural, and cross-linking 

patterns of MP. Such effects were attributed to the covalent adduction between GA quinone 

derivatives and nucleophilic amino acid side chains, formation of disulfide and 

nondisulfide linkages, and progressive protein unfolding. Further studies are needed to 

identify and quantify the specific quinone–protein adducts and the site on myosin where 

cross-links occur. Moreover, phytochemicals from spices and plant extracts, which are 

commonly added to meat products, are a large family of natural compounds with various 

structures and activities. Therefore, the effect of these phenolics as individuals or a mixture 

on MP gelation under normal meat processing conditions should be investigated. 
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Table 3.1. Carbonyl, total sulfhydryl, and free amine contents in myofibrillar protein 
(MP) treated with various amounts of gallic acid (GA) under nonoxidizing (–Ox) or 
oxidizing (+Ox) conditions.1 
GA treatment 
(µmol/g MP) 

Carbonyl 
(nmol/mg MP) 

Sulfhydryl 
(nmol/mg MP) 

Free amine 
(nmol/mg MP) 

–Ox    
0 0.97±0.05a 55.1±3.2a 87.5±2.0a 
6 0.98±0.08a 59.6±0.8a 82.5±3.7ab 
30 0.93±0.06a 56.1±1.6a 71.8±1.8c 
60 0.98±0.13a 47.5±2.4b 65.1±2.1c 
+Ox    
0 1.95±0.07b 43.4±1.4b 72.6±4.8bc 
6 1.89±0.13b 42.9±1.1b 69.5±3.3c 
30 2.01±0.08b 33.6±1.5c 54.4±0.7d 
60 2.11±0.13b 23.3±2.0d 44.2±3.0e 

1 Oxidation was carried out with 8 µg GOx and 50 µg glucose (per mg of MP) and 10 μM 
FeSO4.  
a–e Means within the same column without a common letter differ significantly (P < 0.05). 
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Figure 3.1. Tryptophan fluorescence (A) and Stern–Volmer plots (B) of myofibrillar 
protein (MP) treated with various amounts of gallic acid under nonoxidizing (–Ox) 
or oxidizing (+Ox) conditions. The GA concentrations used for the Stern–Volmer 
plots (0, 2.4, 12, and 24 µM GA) were derived from the respective treatment 
concentrations (0, 6, 30, and 60 µmol GA/g MP) after a 50 times dilution. Oxidation 
was carried out with 8 µg GOx and 50 µg glucose (per mg of MP) and 10 μM FeSO4.   
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Relative reduction of MHC induced by GA and GOx oxidation 

 
 
 
Figure 3.2. Representative SDS–PAGE patterns of myofibrillar protein (MP) 
focusing on changes in myosin heavy chain (MHC). The MP samples were treated 
with various amounts of gallic acid (GA) under nonoxidizing (–Ox) or oxidizing (+Ox) 
conditions where oxidation was carried out with 8 µg GOx and 50 µg glucose (per mg 
of MP) and 10 μM FeSO4.  Protein samples were prepared in the presence (+βME) or 
absence (−βME) of 10% β-mercaptoethanol. Relative reduction of MHC = (pixel 
intensity in control − pixel intensity in sample) / pixel intensity in control × 100. Means 
in the same column without a common letter (a−c) differ significantly (P < 0.05). 
  

Gel 
 GA concentration (µmol/g MP) 

–Ox +Ox 
0 6 30 60 0 6 30 60 

(A) 0.0 8.0a 9.3a 11a 36b 36b 38b 46c 
(B) 0.0 5.5a 11b 13b 17bc 21c 11b 13b 
(C) 0.0 27a 46b 43b 94c 90c 95c 96c 
(D)  0.0 20a 28a 24a 20a 41b 55c 61c 
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Figure 3.3. Storage modulus (G′) development during thermal gelation of MP with 
various amounts of gallic acid (GA: 0, 6, 30, and 60 µmol/g MP) under nonoxidizing 
(–Ox) or oxidizing (+Ox) conditions. Oxidation was carried out with 8 µg GOx and 
50 µg glucose (per mg of MP) and 10 μM FeSO4. 
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Figure 3.4. Gel strength of MP treated with various amounts of gallic acid (GA) under 
nonoxidizing (–Ox) or oxidizing (+Ox) conditions. Oxidation was carried out with 8 
µg GOx and 50 µg glucose (per mg of MP) and 10 μM FeSO4. Means without a 
common letter (a−d) differ significantly (P < 0.05).  
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Figure 3.5. SEM images of gels made from MP (40 mg/mL protein) after treatment 
with various amounts of gallic acid (GA) under nonoxidizing (–Ox) or oxidizing (+Ox) 
conditions. Oxidation was carried out with 8 µg GOx and 50 µg glucose (per mg of 
MP) and 10 μM FeSO4. A filamentous network structure with fine strands is pointed 
by the arrow. 
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CHAPTER 4. EFFECT OF STRUCTURALLY RELATED PHENOLIC ACIDS ON 

THE GELLING PROPERTIES OF OXIDATIVELY STRESSED MYOFIBRILLAR 

PROTEIN 

4.1 Summary  

Six phenolic acids (PA) with different structures, i.e., gallic acid (GA), syringic 

acid (SA), coumaric acid (CMA), caffeic acid (CFA), ferulic acid (FA), and chlorogenic 

acid (CA), were compared for their effects on the gelling properties of myofibrillar protein 

(MP). Of the six PA, the smallest GA caused significant reductions of free amine and 

sulfhydryl content (by 26% and 7%, respectively) but introduced low fluorescence 

quenching. In contrast, the other PA showed no effect on amino acid side chains but more 

strongly enhanced fluorescence quenching. The largest molecule, CA, was the most 

effective which decreased the fluorescence intensity 38% and increased λmax from 338 nm 

to 350 nm. During thermal gelation, the GA-modified MP displayed the strongest cross-

linking. The elasticity (G′) and breaking strength of MP gels were markedly enhanced by 

the addition of PA and the final G′ value followed the order 

GA>CA>FA>CMA>SA>CFA.  
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4.2 Introduction 

Phenolic acids (PA) are a group of phytophenols ubiquitous in herbs and spices 

with gallic acid in cloves, caffeic acid in thyme, and coumaric acid in oregano being some 

of the common compounds (Embuscado, 2015). In meat processing, phenolic extracts are 

commonly incorporated into muscle foods to improve sensory attributes and oxidative 

stability (Kausar, Hanan, Ayob, Praween, & Azad, 2019). The additional nutrition and 

health benefits of PA as well as customers’ growing demands for naturally sourced 

ingredients rendered them a preferrable and promising replacement for synthetic 

antioxidants used in the meat industry (Ribeiro et al., 2019).  

PA are hydroxybenzoic or hydroxycinnamic acids with the basic structure of one 

or more hydroxyl groups and a carboxylic acid derivative attached to the benzene ring 

(Heleno, Martins, Queiroz, & Ferreira, 2015). The functional groups in PA are known to 

be readily interactive with the muscle proteins through both non-covalent (irreversible) and 

covalent (reversible) mechanisms (Guo & Xiong, 2021). Non-covalent forces, including 

hydrogen bond, hydrophobic association, and electrostatic attraction, can be introduced by 

hydroxyl groups, phenoxide ions, and the aromatic ring in PA (Ozdal et al., 2013). Under 

oxidative conditions, covalent adduction would occur between PA-derived electrophilic 

quinone species and nucleophilic amino acid side chains in proteins (Rohn, 2019). One of 

the major consequences of the protein–PA interactions is the modifications of the 

physicochemical and functional properties of myofibrillar protein (MP), which is the most 

important meat protein component responsible for textural properties of processed muscle 

foods (Xiong & Guo, 2021; Zhao, Xu, & Zhou, 2021). 
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The effects of PA on the physicochemical properties of MP have been subjected to 

extensive studies and different efficacies have been reported. As oxidation is generally 

introduced in meat processing due to mincing, chopping, and blending, many of the studies 

were conducted under oxidizing conditions. At low-to-medium concentrations, 

chlorogenic acid was found to promote the gel formation of oxidative stressed MP by 

enhancing protein unfolding and non-covalent association (Cao & Xiong, 2015). In 

comparison, gallic acid at the same addition levels not only facilitated MP unfolding but 

also induced protein cross-linking through the formation of intermolecular disulfide bonds 

(Cao et al., 2016). In another study, enhanced cross-linking was reported in caffeic acid-

modified MP while ferulic acid showed no such effect (Prodpran et al., 2012). The 

discrepancies observed between PA are likely related to structural differences, and the large 

number of structurally diverse natural PA compounds with different molecular 

arrangements warrant structure-activity relationship exploration. Some phenolic structures 

affecting the efficacy of protein modifications have been recognized, for example, the 

number and position of hydroxyl groups, size of substituent groups, and derivatization 

(methoxylation, hydroxylation, or glycosylation) (Guo, Jiang, True, & Xiong, 2021; Xiao 

et al., 2011). However, little is known about how these attributes affect their interactions 

with MP.  

The objective of the present study was to elucidate the effect of structure-activity 

relationship of selective PA on the roles in modifying physicochemical and gelling 

properties of MP. Six structurally related PA were compared, including two 

hydroxybenzoic acids and four hydroxycinnamic acid derivatives (Figure 4.1). Glucose 

oxidase (GOx), a food grade enzyme widely used in breadmaking for texture improvement, 
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was applied to imitate oxidative stress that would likely be encountered in meat processing 

(Wang et al., 2016). Their potential to modulate PA–MP interactions was specifically 

examined.  

 

4.3 Materials and methods 

4.3.1 Materials and reagents 

Protein Longissimus lumborum muscle samples were collected from pork carcasses 

(24 h post-mortem) harvested at the University of Kentucky Meat Laboratory, a USDA-

approved facility. The loins were cut into 1 cm chops which were individually vacuum-

packaged and stored in a −30 °C freezer until use. Glucose oxidase was donated by 

Ajinomoto Co., Inc. (Kawasaki, Japan). Gallic acid (GA, purity ≥ 99.0%), coumaric acid 

(CMA, purity ≥ 98.0%), and ferulic acid (FA, purity ≥ 99.0%) were purchased from J&K 

Scientific (Beijing, China). Syringic acid (SA, purity ≥ 97.0%) and caffeic acid (CFA, 

purity ≥ 98.0%) were purchased from TGI (Shanghai, China). Chlorogenic acid (CA, purity 

≥ 98.0%) was purchased from Spring & Autumn Co. (Nanjing, China). All other chemicals, 

all a minimum of analytical grade, were acquired from MilliporeSigma (St. Louis, MO, 

USA), Thermo Fisher Scientific (Waltham, MA, USA), or VWR (Radnor, PA, USA). 

Double-deionized water was used in all experiments. 

4.3.2 Sample preparation and treatment 

Extraction of MP. Frozen muscle samples were thawed at 4 °C overnight and then 

minced. MP was isolated using an extraction buffer consisting of 10 mM sodium 

phosphate, 0.1 M NaCl, 2 mM MgCl2, and 1 mM EGTA at pH 7.0 (Park et al., 2007). In 

the last washing step, the protein pellet was suspended in 0.1 M NaCl and the pH was 



 

52 
 

adjusted to 6.25. Purified MP pellet was kept on ice and utilized within 48 h. The entire 

MP sample preparation was conducted in a 4 °C walk-in cooler except for centrifugation 

(4 °C). Protein concentration was determined by the Biuret method using bovine serum 

albumin as a standard.  

Oxidation. The MP pellet was suspended in 50 mM piperazine-N,N′-bis(2-

ethanesulfonic acid) (PIPES) buffer containing 0.6 M NaCl (pH 6.25) to a final 

concentration of 20 mg/mL. PA at 60 μmol/g MP were thoroughly mixed with the protein 

suspensions and then oxidatively modified by incubation at 4 °C for 8 h with an enzyme 

system comprised of 50 µg glucose and 8 µg GOx per mg MP in the presence of 10 μM 

FeSO4 (Guo et al., 2021). Non-oxidized and oxidized MP samples without PA were 

prepared for comparison. Samples were immediately analyzed after the incubation.  

4.3.3 Protein chemical and structural changes 

Total sulfhydryls, free amines, and carbonyls. These selective amino acid sidechain 

groups and carbonyl derivatives were analyzed using colorimetric methods as described in 

detail in a previous study (Guo & Xiong, 2019). For sulfhydryls, the absorbance of the 

chromophore developed by the reaction of unfolded MP (in 8 M urea with 3% SDS) with 

5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) was measured at 412 nm, and a molar 

extinction coefficient of 13,600 M−1 cm−1 was applied to calculate total sulfhydryls. For 

free amines, MP samples (in 1% SDS) were reacted with 0.1% 2,4,6-

trinitrobenzenesulfonic acid (TNBS) at 50 °C for 30 min in the dark to form a 

chromophore, and the absorbance at 420 nm was fit in a standard curve of L–leucine to 

determine the amine concentration. For carbonyls, the absorbance of the chromophore 

formed between MP (washed with 1:1, v/v ethanol/ethyl acetate and resolubilized in 6 M 
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guanidine hydrochloride) and 2,4-dinitrophenylhydrazine (DNPH) was measured at 370 

nm. A molar extinction coefficient of 22,000 M−1 cm−1 was used for carbonyl content 

calculation. In all the analyses, reagent blanks were run to correct for the background color. 

Surface hydrophobicity. The protocol developed by Li-Chan, Nakai, and Wood 

(1985) was followed to measure MP hydrophobicity using an 8-anilinonaphthalene-1-

sulfonic acid (ANS) fluorescence probe and a FluoroMax-3 spectrofluorometer (Horiba 

Jobin Yvon Inc., Edison, NJ, USA). The excitation and emission wavelengths were set at 

390 and 470 nm, respectively.  

4.3.4 Detection of protein aggregation 

Turbidity scan. MP samples were diluted to 2 mg/mL in 50 mM PIPES buffer 

containing 0.6 M NaCl (pH 6.25). Thermally induced protein–protein association was 

determined by monitoring turbidity change of the protein solution during heating from 20 

to 72 °C at 1 °C/min, expressed as the absorbance at 500 nm recorded every 30 s using an 

8-Abs UV-VIS spectrophotometer (Shimadzu UV-2700, Kyoto, Japan) connected to a 

temperature controller (Quantum northwest, Liberty Lake, WA, USA). The differential 

change of the absorbance as a function of heating temperature (dAbs/dT) was calculated to 

determine the rate of protein aggregation.  

Particle size. Dilute MP samples (2 mg/mL in 50 mM PIPES buffer containing 0.6 

M NaCl, pH 6.25) were subjected to particle size measurement using a Nano-ZS ZetaSizer 

(Malvern Instruments, Worcestershire, UK) at room temperature under the following 

settings: measurement angle, 90°; equilibration time, 300 s; number of runs, 2; and number 

of measurements, 3. Since heating produced large particles that exceed the size limit for 

the measuring device, only unheated MP samples were analyzed.  
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4.3.5 Detection of protein cross-linking 

To identify covalent protein cross-linking, sodium dodecyl sulfate−polyacrylamide 

gel electrophoresis (SDS–PAGE) was conducted for unheated (sol) and heated (gel) MP 

samples with a 5% polyacrylamide stacking gel and a 10% polyacrylamide resolving gel. 

For the detection of non-disulfide linkages, 10% β-mercaptoethanol (βME) was added to 

cleave disulfide bonds. Detailed SDS–PAGE sample preparation has been previously 

described (Cao et al., 2016). 

4.3.6 Gelling properties of MP 

Two different tests were conducted to evaluate the gelling properties of MP samples 

treated with PA. In the first test, 20 mg/mL MP sols (in 50 mM PIPES, 0.6 M NaCl, pH 

6.25) were de-aerated and then subjected to dynamic oscillatory shear measurement using 

a Model CVO rheometer (Malvern Instruments, Westborough, MA, USA). Samples were 

gradually gelled by heating the sols from 20 to 72 °C at a 1 °C/min heating rate (Guo et al., 

2021). Storage modulus (Gʹ) was recorded every 30 s during the sol-to-gel transformation. 

In the second test, the gel breaking strength test, de-aerated 20 mg/mL MP sols were 

transferred to glass vials (18.0 mm inner diameter) and then heated in a water bath from 20 

to 72 °C (1 °C/min rate) to form set gels. The gels were extruded with a stainless-steel, flat-

ended probe (10 mm diameter) attached to a Model 4301 Instron universal testing machine 

(Canton, MA, USA) at a puncture speed of 20 mm/min. The initial force required to disrupt 

the gel structure was recorded as gel breaking strength (N). 

4.3.7 Statistical analysis 

Experiments were conducted with three independent trials (n = 3) on different days, 

each with a new batch of isolated MP. Results were subjected to the analysis of variance 
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using the procedure of the general linear model in the Statistix software 9.0 (Analytical 

Software, Tallahassee, FL, USA). LSD (least significant difference) all-pairwise multiple 

comparisons was used to identify significant (P < 0.05) differences between means. 

 

4.4 Results and discussion 

4.4.1 Amino acid sidechain groups 

Free radicals generated in an oxidative system can typically attack the sulfhydryl 

and amine groups in proteins and convert these reactive side chains into various oxidized 

products such as sulfenic acid, sulfinic acid and disulfides derived from -SH, and Schiff’s 

base adduct derived from -NH2 (Lund et al., 2011; Xiong & Guo, 2021). In the present 

study, GOx-mediated oxidation decreased total sulfhydryl and free amine content by 27% 

(Figure 4.2A) and 42% (Figure 4.2B), respectively (P < 0.05). A further reduction of 7% 

and 26% (P < 0.05) induced by GA was observed. The additional loss of the functional 

groups may be attributed to the adduction of electrophilic quinone derivative from GA with 

nucleophilic thiol and amine groups through covalent bonds (Rohn, 2019; Tang et al., 

2017). Compared with other PA, the small size of GA has the advantage of easier 

penetration to the inter-myofibrillar regions of MP to gain a close proximity of the reactive 

protein sidechain groups (Zhang, Cheng, Wang, & Fu, 2020). It is plausible that the least 

structural hinderance in GA could also facilitate covalent binding of GA with MP.  

4.4.2 Carbonyls 

Carbonylation, one of the most common consequences of oxidative stress, is a 

sensitive marker of protein oxidaiton (Suzuki, Carini, & Butterfield, 2010). As compared 

with the control sample (non-oxidized), GOx-mediated oxidation markedly increased the 
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MP carbonyl content, i.e., from 0.26 to 1.39 nmol/mg (P < 0.05, Figure 4.2C). With the 

exception of SA, at the treatment concentration tested (60 μmol/g protein), PA did not 

inhibit oxidation-induced carbonylation. Even though phenolic compounds are generally 

effective antioxidants against lipid oxidation, their role to mitigate protein oxidation is 

variable. Both anti- and pro-oxidation and the lack thereof can occur depending on the 

chemical structure and concentration of PA as well as the oxidative conditions (Cao et al., 

2016; Lund et al., 2011). The significant SA-induced carbonyl reduction (~20%) may be 

attributed to its strong scavenging activity of •OH radicals in aqueous media (Vo et al., 

2020).    

4.4.3 Surface hydrophobicity 

Surface hydrophobicity is an important predictor of protein gelling behavior 

because it measures the extent of exposures of protein hydrophobic domains (unfolding) 

and hence, possible hydrophobic association during the protein gel network formation (Li-

Chan et al., 1985). CA, the largest PA with most hydroxyl groups (5) and a bulky quinic 

acid group, was the only molecule that significantly decreased S0, from 150 to 131 (Figure 

4.2D, P < 0.05). This effect may result from the blockage of exposed hydrophobic groups 

in MP by the quinic moiety thereby decreasing the accessibility by ANS.  

4.4.4 Intrinsic fluorescence  

The intrinsic fluorescence is extremely sensitive to the microenvironment of 

fluorophores (aromatic amino acids), so it is commonly adopted to the evaluation of tertiary 

structural changes of proteins. Three fluorescencing amino acids, i.e., tryptophan, tyrosine, 

and phenylalanine, are buried in the hydrophobic core of native (folded) proteins so they 

yield a high fluorescence intensity after being excited (Royer, 2006). Protein unfolding 



 

57 
 

exposes the fluorophores to a hydrophilic (aqueous) environment, resulting in an attenuated 

fluorescence intensity and a longer maximum emission wavelength (λmax) (red shift) 

(Ghisaidoobe & Chung, 2014). The interactions between PA and MP promoted protein 

unfolding, which was indicated by the suppressed fluorescence and red shift (Figure 4.3). 

Covalent binding between electrophilic quinones and the nucleophilic indole group of 

tryptophan has bene suggested as another contributing factor for fluorescence quenching 

(Rohn, 2019). Compared with the two hydroxybenzoic acids (GA and SA), the four 

hydroxycinnamic acids (CMA, FA, CFA, and CA) were more effective in modifying the 

fluorescence spectra of MP. The strong reactivity potential of hydroxycinnamic acids with 

proteins might result from their ability to get easily oxidized and bound to MP (Rawel & 

Rohn, 2010). Consistent with our results, Li et al. (2020b) observed that the binding affinity 

of hydroxycinnamic acids for β-lactoglobulin was significantly higher than that of 

hydroxybenzoic acids. Compared with the simplest hydroxycinnamic acid, CMA, the 

additional methoxyl group in FA and hydroxyl group in CFA facilitated MP unfolding, 

suggested by their stronger suppressing effect on fluorescence intensity. It is noteworthy 

what the largest hydroxycinnamic acids with the most functional groups, CA, induced the 

greatest reduction of fluorescence intensity (38%) and the largest λmax shift (from 338 nm 

to 350 nm), in agreement with a previous finding (Cao & Xiong, 2015).   

4.4.5 Cross-linking of MP 

Heat-induced cross-linking of MP molecules is known to be affected by the 

interaction with phenoli compounds (Tang et al., 2017; Zhao et al., 2021). Covalently 

bound PA could promote protein cross-linking through acting as a bridge to connect two 

peptides or dimerizing through covalent linkages between two quinones (Strauss & Gibson, 



 

58 
 

2004). As shown in Figure 4.4D, GA caused noticeable loss of myosin heavy chain, and 

concomitantly, protein polymers were formed which was evidenced in the stacking gel 

where exceedingly large polymers were unable to enter the resolving gel. Since disulfide 

bonds were cleaved by β-mecaptoethanol during SDS–PAGE sample preparation, the 

presence of these polymers verified the formation of non-disulfide linkages in GA-treated 

MP, which could include quinone–MP adduction through NH2 or SH groups. The result is 

consistent with the most effective modifications that GA exerted on amine and sulfhydryl 

groups (Figure 4.2). Compared with other PA compounds, the stronger reducing potential 

of GA could facilitate its re-oxidation after one site adduction and subsequent formation of 

cross-linking (Cheng, Ren, Li, Chang, & Chen, 2002). Because phenol-induced protein 

cross-linking was promoted at high temperatures (> 60 °C) as shown previously (Guo et 

al., 2021), little differences were observed in the unheated MP sol samples under non-

reducing (Figure 4.4A) or reducing conditions (Figure 4.4B). For thermally gelled MP 

samples, however, covalently linked protein aggregates were produced under oxidative 

conditions, and they were too large to enter the stacking gel. Therefore, no protein patterns 

appeared for the oxidized and PA-treated samples prepared under non-reducing conditions 

(Figure 4.4C). 

4.4.6 Protein aggregation and particle size 

Turbidity is a simple method recommended for the detection of heat-induced 

protein–protein association (Hall et al., 2016). As shown in Figure 4.5A, the turbidity of 

all the MP samples, measured as optical density at 500 nm, was relatively stable before 40 

°C. The value increased gradually till 50 °C, rose rapidly to around 60 °C, and ascended 

slowly to the final heating temperature 72 °C. Note that before heating (at 20 °C), oxidized 
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MP samples, either with or without PA, were slightly more turbid and the particle size 

(Figure 4.5A inset) was larger than non-oxidized control (by 6.8–17%, P < 0.05). Oxidation 

induced unfolding and ensuing hydrophobic aggregation were responsible for the observed 

turbidity increase during heating. At the end of the heating process (72 °C), most PA treated 

samples exhibited higher turbidity than the control samples due to enhanced cross-linking. 

This was most remarkable for the GA treatment, which was the most effective in promoting 

protein aggregation in which non-disulfide covalent bonds were clearly involved (Figure 

4.4D).  

The rate of protein aggregation was compared by calculating the first derivative of 

the turbidity change. All samples showed two transition peaks around 45 °C and 58 °C 

(Figure 4.5B). They are attributed to, respectively, the association of heavy meromyosin 

(head) and light meromyosin (tail) of myosin (Wang & Smith, 1994). Based on the peak 

height of the major peak (~58 °C), the treatment with GA resulted in a slower protein 

aggregation rate than the other PA treatments, which showed no remarkable differences 

between them. A slower aggregation rate might be conducive to better gelling potential, 

because it allows sufficient time for protein aggregates to cross-link in an ordered manner 

leading to a viscoelastic gel matrix (Ziegler & Foegeding, 1990). The GA-mediated MP 

cross-linking by the galloyl moiety with three hydroxyls, presumably in the form of either 

protein–GA–GA–protein or protein–GA–protein (Guo & Xiong, 2019), may require 

relatively long time for the reaction to complete. For other PA, the fewer number of 

hydroxyl groups or the presence of methoxyl groups did not seem to promote cross-linking 

but instead enhanced protein unfolding (fluorescence quenching, Figure 4.3), enabling 

faster protein thermal aggregation.  
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4.4.7 Gelling properties 

During heating when MP sols were transformed into viscoelastic gels, two 

characteristic rheological transition peaks appeared in the temperature ranges of 40–50 °C 

and 50–60 °C (Figure 4.6A), corresponding to the association of denatured myosin head 

and tail groups, respectively (Figure 4.5). The Gʹ reached a plateau toward the final heating 

temperatures, and oxidation drastically enhanced the final Gʹ (72 °C) compared with the 

non-oxidized control. The addition of all PA resulted in a further improvement of the elastic 

attribute, and GA and CA were the most effective, increasing the Gʹ by 36% and 31%, 

respectively. The evidence of GA promoting protein cross-linking (Figure 4.4; Figure 4.5) 

or CA facilitating protein unfolding (Figure 4.3) coincided with their effects on gelation, 

indicating that the gel elasticity development is closely related to the PA-induced 

physicochemical modifications of MP. Consistent with the rheological measurement, the 

strength of set gels was slightly increased, i.e., 13% by oxidation and 15–22 % by PA 

additions (P < 0.05, Figure 4.5B). Overall, PA-induced gel strength modifications were not 

as remarkable as the rheological augmentation, probably due to the less sensitivity of the 

gel penetration test. The puncture force is a combination of compressive, tensile, and shear 

forces, which is far beyond the threshold of the elastic modulus (Gʹ) that only measures 

shear stress (Cao et al., 2016).  

 

4.5 Conclusion 

In conclusion, the interactions between PA and MP are affected by the structural 

characteristics of PA, including the number and position of hydroxyl, methoxyl, and other 

functional groups.  Smaller PA with less structural hinderance and more reducing potential 
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appear to be effective in promoting protein cross-linking while larger molecules with more 

substituent groups are better at facilitating protein unfolding. During thermal gelation, the 

protein aggregation rate is affected by the PA induced physicochemical modifications of 

MP, which is reflected in the protein gelling properties. Further studies are needed to 

evaluate the effects of PA on MP gelation in the presence of other major food components, 

e.g., lipids or additives, which more closely resembles a composite meat product system. 

The macro- or micro- molecules in gelled muscle foods might also participate in the 

interactions with PA and modify texture related quality attributes of meat products.  
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Figure 4.1. Six structurally related phenolic acids tested.   
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Figure 4.2. Total sulfhydryls (A), free amines (B), carbonyls (C), and surface 
hydrophobicity (D) of myofibrillar protein treated with different phenolics acids (60 
μmol/g protein) in an oxidative environment. Control samples (no phenolic acid) 
included both non-oxidized (–Ox) and oxidatively tressed (+Ox) protein. GA: gallic 
acid, SA: syringic acid, CMA: coumaric acid, CA: caffeic acid, FA: ferulic acid, CGA: 
chlorogenic acid. In the same parameter, means without a common letter (a−d) differ 
significantly (P < 0.05).  
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Figure 4.3. Intrinsic fluorescence intensity of myofibrillar protein treated with 
different phenolic acids (60 μmol/g protein) in an oxidative environment. Control 
samples (no phenolic acid) included both non-oxidized (–Ox) and oxidatively stressed 
(+Ox) protein. GA: gallic acid, SA: syringic acid, CMA: coumaric acid, CA: caffeic 
acid, FA: ferulic acid, CGA: chlorogenic acid. Max: maximum fluorescence intensity 
within the emission wavelength from 300 nm to 450 nm. 
 

  

Intensity (cps) × 105 
Line Treatment Max 
① –Ox 48 
② +Ox 47 
③ GA 45 
④ SA 43 
⑤ CMA 37 
⑥ FA 36 
⑦ CFA 34 
⑧ CA 29 
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Figure 4.4. SDS–PAGE patterns of myofibrillar protein in sols (A & B) and gels (C & 
D) treated with different phenolic acids (60 μmol/g protein) in an oxidative 
environment under non-reducing (–βME) or reducing (+βME) conditions. Control 
samples (no phenolic acid) included both non-oxidized (–Ox) and oxidatively stressed 
(+Ox) protein. MHC: myosin heavy chain, GA: gallic acid, SA: syringic acid, CMA: 
coumaric acid, CFA: caffeic acid, FA: ferulic acid, CA: chlorogenic acid, βME: β-
mercaptoethanol. 
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Figure 4.5. Turbidity (A) and the derivative of turbidity (B) of myofibrillar protein 
treated with different phenolic acids (60 μmol/g protein) in an oxidative environment. 
Control samples (no phenolic acid) included both non-oxidized (–Ox) and oxidatively 
stressed (+Ox) protein. GA: gallic acid, SA: syringic acid, CMA: coumaric acid, CFA: 
caffeic acid, FA: ferulic acid, CA: chlorogenic acid. The inset figure is protein particle 
size at 20 °C, and the two transitions are marked. Means without a common letter 
(a−c) differ significantly (P < 0.05).  
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Figure 4.6. Storage modulus (Gʹ) development (A) and gel strength (B) of myofibrillar 
protein treated with different phenolic acids (60 μmol/g protein) in an oxidative 
environment. Control samples (no phenolic acid) included both non-oxidized (–Ox) 
and oxidatively stressed (+Ox) protein. GA: gallic acid, SA: syringic acid, CMA: 
coumaric acid, CFA: caffeic acid, FA: ferulic acid, CA: chlorogenic acid. Means 
without a common letter (a−d) differ significantly (P < 0.05).  
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CHAPTER 5. MYOBIGRILLAR PROTEIN CROSS-LINKING AND GELLING 
BEHAVIOR MODIFIED BY STRUCTURALLY RELATED PHENOLIC 

COMPOUNDS 

5.1 Summary  

Protein gelation is an important phenomenon in processed meats. The present study 

investigated the structure−activity relationship of six phenolic compounds, that is, gallic 

acid (GA), chlorogenic acid (CA), propyl gallate (PG), quercetin (QT), catechin (CC), and 

(−)-epigallocatechin-3-gallate (EGCG) in a myofibrillar protein (MP) gelling system under 

controlled oxidative conditions. All phenolics induced unfolding and promoted cross-

linking of MP via sulfhydryl or amine groups. At an equal molar concentration, EGCG 

boosted the elastic MP gel network more than other phenolics except PG. However, all 

three monophenols (GA, CA, and PG) and the diphenol QT increased the MP gel strength 

more than CC (diphenol) and EGCG (triphenol). The flavanol structure appeared to 

interfere with the protein gel structure development. All phenolics retarded lipid oxidation 

in MP−emulsion composite gels during refrigerated storage with the least polar phenolic 

compounds, PG and QT, showing the greatest efficacy.  
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5.2 Introduction 

In muscle food preparation, synthetic phenolic antioxidants are commonly used to 

control lipid oxidation and minimize meat product quality loss, including off-flavor, 

discoloration, and nutrient loss (Oswell, Thippareddi, & Pegg, 2018). However, due to the 

increased awareness of potential toxicity of synthetic antioxidants, there is a growing 

demand for natural antioxidants to replace synthetic counterparts in meat product 

formulations. Natural phytophenols extracted from a wide range of plant materials are 

particularly promising due to their antioxidative efficacy, inhibition of toxicant formation 

in high-temperature meat processing, as well as potential health benefits (Shahidi & 

Ambigaipalan, 2015; Xiong, 2017). Plant-derived phenolics are a large family of chemical 

compounds made up of at least one phenol structure (an aromatic ring with hydroxyl groups 

attached) and various substituent groups. Both structural moieties play an important role in 

disrupting lipid oxidation chain reactions through scavenging free radicals, chelating 

transition metal, and stabilizing newly-formed hydroperoxides (Ribeiro et al., 2019). As 

such, the effectiveness of phytophenolics when acting as antioxidants is believed to be 

dependent upon their chemical structure (Papuc, Goran, Predescu, Nicorescu, & Stefan, 

2017; Shahidi & Ambigaipalan, 2015). 

One of the distinct features of meat processing, especially in the manufacture of 

comminuted products, is the addition of spices, herbs, and their extracts to modify the 

product flavor. These exogenous plant-based ingredients are an excellent source of reactive 

phenolics. It has been recognized that as multi-functional chemicals, phytophenolic can 

affect the physicochemical and structure-forming properties of proteins through both 

covalent and noncovalent interactions (Ozdal et al., 2013). They can interact directly with 
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proteins through reversible or irreversible pathways. In the reversible pathway, non-

covalent interactions (hydrophobic association, hydrogen bonding, and electrostatic 

attraction) occur between the aromatic ring structure, hydroxyl groups, and charged 

hydroxyl ions in phenolics and reactive amino acid side chains in polypeptides (Le 

Bourvellec & Renard, 2012). In the irreversible pathway, covalent linkages (S–S, C–N, C–

C, etc.) are formed. After the phenol ring structure is oxidized to electrophilic quinone 

derivatives, it can attack electron-dense amino acid side chain groups in proteins, 

particularly the amine group in lysine and sulfhydryl group in cysteine, forming protein–

quinone adducts (Rohn, 2019). Phenolic-induced physicochemical modifications of meat 

proteins may cause altered protein functionality, such as gelation, which is the most 

important texture-forming property in comminuted meat products (Jiang et al., 2020; 

Xiong, Srinivasan, & Liu, 1997). 

Several phenolics with distinct structural features have been tested for their efficacy 

to modify the gelling properties of myofibrillar protein. Gallic acid, the simplest phenolic 

compound, was reported to promote MP gelation through enhanced protein unfolding and 

cross-linking (Cao et al., 2016; Guo & Xiong, 2019). Catechin, a flavonoid with two phenol 

rings, however, impeded MP gelation due to extensive hydrophobic and covalent 

interactions between catechin and MP (Jia et al., 2017). On the other hand, (−)-

Epigallocatechin-3-gallate, a more complex flavonoid with three phenol rings, increased 

cooking loss of MP gel at low concentrations (Feng et al., 2017).  

The interest in structure-activity relationship has led to independent studies of the 

role of phenolic compound side groups in affecting protein functionalities, and some 

structural or size characteristics have been identified. For example, compared with ferulic 
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acid, catechin, and caffeic acid, tannic acid (a phenolic polymer) had the greatest impact 

on the film-forming properties of fish muscle proteins regarding the mechanical strength 

(Prodpran et al., 2012).  Xiao et al. (2011) claimed that the binding affinities between 

dietary polyphenols and milk proteins were weakened by methylation, glycosylation, and 

hydrogenation of the C2=C3 double bond of flavonoids but strengthened by hydroxylation 

on the A and B rings of flavones and flavonols. The reactivity of flavonoids was reported 

to increase with a larger number of hydroxyl substituents during the interaction with soy 

proteins (Rawel, Czajka, Rohn, & Kroll, 2002). Balange and Benjakul (2009) noted 

different microstructural characteristics of fish surimi gels modified by four oxidized 

phenolic compounds, implying structure-dependent activity of the specific phenolics. 

Despite these previous findings, there is scant information on how the structure of 

phenolics affects the gelling properties of muscle proteins when compared on an equal 

molar versus equal phenol basis.   

The objective of the present study was to investigate the effect of six structurally 

related mono-, di-, and triphenol compounds on the physicochemical (amino acid side 

chain groups, conformation, and cross-linking) and gelling behavior of myofibrillar protein 

(MP). The antioxidant efficacy of these phenolics on the MP–emulsion composite gels was 

subsequently evaluated. Glucose oxidase (GOx), used in the food industry to facilitate 

protein network formation in food through oxidative mechanisms, was applied to introduce 

an oxidative environment. The controllable nature of GOx catalysis would enable oxidative 

stress at levels that may be encountered during normal meat processing and storage (Wang 

et al., 2016). 
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5.3 Materials and methods 

5.3.1 Materials and chemicals 

Longissimus lumborum muscle samples were collected from pork carcasses (24 h 

post-mortem) harvested at the University of Kentucky Meat Laboratory, a USDA-

approved facility. The pigs were hybrid barrows of Large White × Duroc × Landrace raised 

at the university’s swine farm. Individual muscle samples were vacuum-packaged and kept 

in a –30 ± 2 °C freezer for less than 6 months before use. GOx, an FDA-approved enzyme, 

was donated by Ajinomoto Co., Inc. (Kawasaki, Japan). Canola oil was purchased from a 

local grocery store. Gallic acid (GA, purity ≥ 98.5%), chlorogenic acid (CA, purity ≥ 98%), 

and (−)-epigallocatechin-3-gallate (EGCG, purity ≥ 98%) were purchased from Sinopharm 

Chemical Reagent (Shanghai, China); Quercetin (QT, purity ≥ 94%) was purchased from 

Thermo Fisher Scientific (Waltham, MA); Catechin (CC, purity ≥ 96%) and propyl gallate 

(PG, purity ≥ 98%) were purchased from MilliporeSigma (St. Louis, MO). All other 

chemicals were acquired from MilliporeSigma (St. Louis, MO), Thermo Fisher Scientific 

(Waltham, MA), or VWR (Radnor, PA) and were of at least analytical grade. Double-

deionized water was used in all experiments. Six structurally related phenolic compounds 

(3 monophenols, 2 diphenols, and 1 triphenol) are shown below. PG, a widely used 

synthetic antioxidant in meat processing, was included for comparison with the five natural 

phytophenolics.  
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Quercetin (QT, 302 Da) Catechin (CC, 290 Da) Epigallocatechin gallate 
(EGCG, 458 Da) 

5.3.2 MP preparation 

Frozen muscle samples were tempered at 4 °C for 12 h before MP extraction using 

an isolation buffer of 10 mM sodium phosphate, 0.1 M NaCl, 2 mM MgCl2, and 1 mM 

EGTA (pH 7.0) (Park et al., 2007). The protein concentration was measured by the Biuret 

method using bovine serum albumin as the standard (Gornall et al., 1949). The MP pellet 

was kept on ice and used within 3 days.  

5.3.3 Stripping of oil 

The canola oil was stripped with alumina (MP Alumina N-Super I, MP Biomedicals, 

Graffenstaden, France) to remove tocopherols (Yang & Xiong, 2018). An aliquot of 15 g 

sorbent was mixed with 30 mL oil in a 50 mL-polypropylene centrifuge tube by vigorously 

shaking, followed by agitation in the dark at 4 °C for 24 h. The tubes were then centrifuged 

(2000g, 20 min) at 20 °C. Collected upper phase was centrifuged again under the same 

condition and transferred into amber glass vials after being placed under nitrogen flow for 

5 min. Vials were hermetically sealed and stored at –20 °C before use (Yang & Xiong, 

2018). 
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5.3.4 Phenolic treatment 

The MP pellet was suspended in 50 mM piperazine-N,N′-bis(2-ethanesulfonic acid) 

(PIPES) buffer containing 0.6 M NaCl (pH 6.25) to a final concentration of 20 mg/mL 

protein to form a viscous sol. Phenolic compounds (GA, CA, PG, QT, CC, and EGCG) 

were dispersed into the MP sol to obtain a final load of 60 μmol phenolics per g of protein 

(60 μmol phenolic/g MP). Because oxidation is commonplace in the manufacture of 

comminuted muscle foods (Domínguez et al., 2019), an oxidative environment was 

introduced by subjecting the MP-phenolic mixtures to 50 µg glucose and 8 µg GOx per mg 

of MP in the presence of 10 μM FeSO4 at 4 °C for 8 h (Wang et al., 2016). Moreover, the 

effects of different phenolics were compared on an equal phenol basis (60 μmol phenol/g 

MP) to determine the role of the phenol rings, and the test was conducted in a protein gel 

system (described later). 

5.3.5 Determination of physicochemical changes of MP 

Total Sulfhydryls. Total sulfhydryl content in MP samples was estimated according 

to Beveridge, Toma, and Nakai (1974). After being completely dissolved in a urea–SDS 

solution (8 M urea with 3% SDS in 0.1 M phosphate buffer, pH 7.4), the MP samples were 

incubated with Ellman’s reagent, 5,5′-dithio-bis (2-nitrobenzoic acid) (DTNB), at room 

temperature (20 ± 1 °C) for 15 min to develop the chromophore. The absorbance at 412 

nm was read. A molar extinction coefficient of 13,600 M−1 cm−1 was applied to calculate 

the sulfhydryl content. Reagent blanks were run to correct for the background color.  

Free Amines. Free amine content was measured using the procedure described by 

Adler-Nissen (1979). Before testing, MP samples were washed three times with cold 

deionized water and then re-suspended in 50 mM PIPES buffer containing 0.6 M NaCl (pH 
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6.25) to avoid color interference. The washed samples were diluted to 4 mg/mL protein 

and then mixed with SDS solution (1% SDS in 0.2 M phosphate buffer, pH 8.2) before 

reaction with 0.1% 2,4,6-trinitrobenzenesulfonic acid (TNBS) reagent in a water bath at 

50 °C for 30 min. The reaction was terminated by adding 0.1 M sodium sulfite. The 

absorbance at 420 nm was read, and a standard curve of L–leucine was used for the amine 

content calculation.  

Carbonyls. The carbonyl content was determined using the 2,4-

dinitrophenylhydrazine (DNPH) colorimetric method as described by Levine et al. (1990). 

MP samples were mixed with DNPH solution and precipitated with 20% TCA. Recovered 

protein was washed to remove unreacted DNPH and then dissolved in 6 M guanidine 

hydrochloride (pH 2.3) for re-solubilization. The absorbance (at 370 nm) was read and a 

molar extinction coefficient of 22,000 M−1 cm−1 was used for carbonyl content calculation. 

The absorbance from reagent blanks (including background phenolics) was subtracted 

from respective samples. 

Surface Hydrophobicity. MP samples were diluted to 0.1, 0.2, 0.3, 0.4, and 0.5 

mg/mL protein in 50 mM PIPES buffer (pH 6.25) containing 0.6 M NaCl. To 5.0 mL of 

the diluted solution, 25 μL of 8.0 mM 8-anilinonaphthalene-1-sulfonic acid (ANS) were 

added and thoroughly mixed. After 15 min of incubation at room temperature, the 

fluorescence intensity (FI) was measured using a FluoroMax-3 spectrofluorometer (Horiba 

Jobin Yvon Inc., Edison, NJ) with excitation and emission wavelengths set at 390 and 470 

nm, respectively (slit width 5 nm). The FI of sample blanks (diluted protein samples 

without ANS) was measured and subtracted from the respective samples. The initial slope 
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of the FI–protein concentration plot was calculated by linear regression analysis and 

defined as surface hydrophobicity (S0) (Cao et al., 2018). 

Tryptophan Fluorescence. Dilute suspensions of MP (0.4 mg/mL in 50 mM PIPES 

buffer, 0.6 M NaCl, pH 6.25) were used for the analysis. The intensity of intrinsic 

tryptophan fluorescence, an indicator of protein structural and conformational integrity, 

was determined using the FluoroMax-3 fluorometer. With an excitation wavelength of 283 

nm, the emission spectrum was recorded from 300 to 450 nm at a 1 nm/s scanning speed. 

The slit widths of both excitation and emission were set at 10 nm, and the data were 

collected at a 500 nm/min rate. Background spectra under the same conditions were 

registered and subtracted from the respective spectra of MP samples. 

5.3.6 Detection of protein cross-linking 

SDS–polyacrylamide gel electrophoresis (SDS–PAGE) was conducted to 

determine covalent protein aggregation in both unheated (sol) and heated (gel) MP samples 

according to Laemmli (1970) with a slab gel system comprised of a 3% polyacrylamide 

stacking gel and a 10% polyacrylamide resolving gel. To elucidate the possible 

involvement of disulfide bonds in oxidation-induced protein polymerization, regardless of 

phytophenolic treatments, 10% β-mercaptoethanol was added to the SDS–PAGE sample 

buffer before boiling for 3 min. Furthermore, as heating always promotes protein 

aggregation, the influence of temperature on phenolic-induced cross-linking was analyzed 

on MP samples treated with GA (as a model phenolic acid, 60 μmol phenol/g MP) after 

being heated to 20, 30, 45, 50, 55, 60, and 70 °C. The extent of myosin heavy chain (MHC) 

loss due to phenolic or heating treatments, relative to the respective MP controls, was 
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estimated using the UN–SCAN–IT software (Silk Scientific, Orem, UT) with the following 

formula:   

Relative loss (%) =  
pixel intensity in control − pixel intensity in sample

pixel intensity in control
× 100 

 

5.3.7 Preparation of MP–emulsion composite gels 

Emulsions were prepared at room temperature by homogenizing the MP suspension 

(20 mg/mL) and oil (25%, w/w) using a  Kinematica Polytron™ PT 10-35 GT blender 

(Brinkmann Instruments, Inc., Westbury, NY) equipped with a PT-DA 12/2 EC-B154 

probe at a speed of 17,500 rpm for 2 min. Fresh emulsions were immediately mixed with 

MP suspensions (40 mg/mL protein) in 50 mM PIPES buffer (pH 6.25) containing 0.6 M 

NaCl to obtain MP−emulsion composite sols with a final concentration of 30 mg/mL MP 

and 10% lipid. Phenolics at an equal molar (60 μmol phenolic/g MP) or equal phenol (60 

μmol phenol/g MP) concentration basis were thoroughly mixed with the MP–emulsion 

composite sol before incubation under the GOx-mediated oxidation at 4 °C for 8 h. 

5.3.8 Evaluation of gelling properties of MP–emulsion composite gels 

Two different tests were conducted to analyze the gelling ability and gel 

characteristics of MP samples treated with phenolic compounds: dynamic rheological 

measurement (which probes protein sol-to-gel transformation) and extrusion disruption 

testing (which assesses the mechanical properties of set gels) (Guo & Xiong, 2019). For 

the former, MP–emulsion composites were subjected to oscillatory shear testing using a 

Bohlin CVO 100 rheometer (Malvern Instruments, Westborough, MA). Thermal gelation 

was achieved by heating the MP sols loaded between two parallel plates (30 mm upper 

plate diameter, 1 mm gap) from 20 to 72 °C at a heating rate of 1 °C/min. The exposed 
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sample rim was covered with a thin layer of silicon oil to prevent dehydration. During 

heating, samples were subjected to shearing in an oscillatory mode with a fixed frequency 

of 0.1 Hz and a maximum strain of 0.02. The storage modulus (Gʹ) was recorded every 30 

s.  

For the extrusion test, aliquots of 5 g MP–emulsion composite sols were poured 

into glass vials (18 mm inner diameter), covered with aluminum foil, and then heated in a 

water bath from 20 to 72 °C at a 1 °C/min heating rate. After reaching the final temperature, 

gels were immediately chilled in an ice slurry for 30 min and stored at 4 °C overnight. The 

set gels were then equilibrated at room temperature for 1 h and extruded with a stainless-

steel, flat-ended probe (10 mm diameter) attached to a Model 4301 Instron universal testing 

machine (Canton, MA) at a crosshead speed of 20 mm/min until structural failure. The 

puncture force required to disrupt the gels was recorded as gel strength (N). 

5.3.9 Morphological examination of MP gels 

The microstructure of the MP–emulsion composite gels formed in the vials was 

examined under light microscope as described by Wu, Xiong, Chen, Tang, and Zhou 

(2009). Approximate 5 mm3 blocks of sample were excised from intact gels and fixed in 

8% paraformaldehyde overnight. The samples were then dehydrated in a series of ethanol 

(50, 70, 90, and 100%), treated with xylol–ethanol, and embedded in paraffin wax. Sections 

(8 μm thick) were cut using a microtome, and the slices were stained with Ehrlich’s 

hematoxylin. Specimen slides were observed under a MICROPHOT-FXA Nikon 

photomicroscope equipped with a built-in digital camera (Nikon Inc., Garden City, NY). 
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5.3.10 Assessment of oxidative stability 

Cooked MP–emulsion composite gels were stored in the refrigerator for up to 7 

days at 4 °C. Lipid oxidation during storage was checked on days 0, 3, and 7 by measuring 

the amount of 2-thiobarbituric acid-reactive substances (TBARS) produced (Salih, Smith, 

Price, & Dawson, 1987). Approximately 3 g gel samples were weighed and mixed into the 

assay solution containing trichloroacetic acid (TCA) and thiobarbituric acid (TBA) 

followed by boiling for 30 min. The supernatant of cooled solution was mixed with 

chloroform and centrifuged at 2000g for 10 min. The upper phase was further clarified with 

petroleum ether and centrifuged at the same conditions. Absorbance of the lower phase 

containing the pinkish TBA-malonaldehyde adducts was measured at 532 nm. The TBARS 

value, expressed as mg malondialdehyde (MDA) equivalent per kg gel sample, was 

calculated using the following equation:  

TBARS (mg/kg) =  (A532/𝑊𝑊𝑆𝑆)  ×  9.48 

where A532 is the absorbance at 532 nm, Ws is the sample weight (g), and the value 9.48 is 

a constant derived from the sample dilution and the absorption coefficient (15,600 M−1 

cm−1) of the TBA-malonaldehyde adduct.  

5.3.11 Statistical analysis 

Experiments were conducted with three independent trials (n = 3) on different days, 

each with a new batch of isolated MP. Data were subjected to the analysis of variance using 

a general linear model’s procedure in Statistix software 9.0 (Analytical Software, 

Tallahassee, FL, USA). Significant (P < 0.05) differences between means were identified 

by LSD all-pairwise multiple comparisons. 

 



 

80 
 

5.4 Results and discussion 

5.4.1 Modification of amino acid side chains and surface hydrophobicity 

Total sulfhydryl content decreased slightly, from 70 nmol/mg in the non-oxidized 

control sample to 63 nmol/mg in the oxidized control sample (Figure 5.1A). The addition 

of phenolic compounds further decreased the amount with EGCG causing the greatest 

reduction to 52% (P < 0.05). The free amine content of oxidized MP was 13% less 

compared with non-oxidized MP at 110 nmol/mg protein (P < 0.05), and samples treated 

with most of the phenolics displayed further amine reductions with various efficiencies 

(Figure 5.1B). EGCG and GA induced the largest loss (57% and 46%, respectively, P < 

0.05). CA was the only phenolic compound that did not significantly change the content of 

the amine groups (P > 0.05). Compared with the control (non-oxidized) MP, GOx-

mediated oxidation increased the carbonyl content of MP by 1.7 fold (P < 0.05), and this 

change was generally inhibited by the phenolics (Figure 5.1C). The inhibition was most 

effective with CC and EGCG which decreased the carbonyl production by 50% and 39%, 

respectively (P < 0.05). Moreover, under the GOx oxidation condition, protein surface 

hydrophobicity decreased slightly probably due to aggregation, and the presence of 

phenolic compounds further reduced the S0 (Figure 5.1D) suggesting less exposures of 

hydrophobic groups. Of the different phenolics tested, CC and EGCG caused the greatest 

S0 reductions, by 45% and 39%, respectively (P < 0.05). In a typical redox environment in 

muscle food processing, sulfhydryl groups from cysteine residues in MP can be converted 

to thiol derivatives, including sulfenic acid, sulfinic acid, sulfonic acid, and disulfides 

(Lund et al., 2011). Concurrently, some free amine groups from lysine residues are 

oxidized into carbonyls which subsequently react with primary amines to form the Schiff’s 
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base adduct (Levine et al., 1990). Phenolic compounds can protect MP from oxidative 

modification and inhibit the formation of carbonyls (Estévez & Heinonen, 2010). Their 

oxidized quinone derivatives, however, are electrophilic and will bind with –SH and –NH2 

to form protein–phenol complexes, thus, promoting the loss of these reactive amino acid 

side chain groups (Cao, Ma, Huang, & Xiong, 2020). Phenolic-induced modification of 

amino acid side chains can lead to stronger protein cross-linking through two possible 

pathways (Figure 5.8). One is quinones acting as a bridge to connect two peptides (protein–

quinone–protein) (Strauss & Gibson, 2004), and the other is the oxidative transformation 

of sulfhydryls to disulfide bonds. 

5.4.2 Changes in protein structure 

As shown in Figure 5.2, phenolic compounds quenched the fluorescence of MP and 

induced a red shift in λmax, indicating the occurrence of MP unfolding (exposures to a more 

polar environment) and protein–phenolic binding. In general, the fluorescence quenching 

effect followed the order of triphenol > diphenol > monophenol. GA, the smallest phenolic 

compound of all, reduced the fluorescence intensity by merely 8.7% while the largest, 

EGCG, caused a 34% reduction. Interestingly, CA, a medium-sized monophenol as an ester 

of caffeic acid and quinic acid, caused the most reduction in fluorescence intensity at 52%, 

and the largest red shift at 22.5 nm. 

Protein–phenolic interactions, both covalent and non-covalent, lead to unfolding, 

which can be measured by assessing quenching of intrinsic tryptophan fluorescence (Rawel, 

Frey, Meidtner, Kroll, & Schweigert, 2006; Royer, 2006). Tryptophan residues in native 

MP is buried in the hydrophobic core. When the protein tertiary structure is disrupted by 

phenolic binding, tryptophan residues are exposed to a more polar environment, leading to 
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a reduced fluorescence intensity and a larger λmax (red shift) as seen in Figure 5.2. Moreover, 

the conceivable stacking of the benzene ring(s) in phenolics and the indole structure in 

tryptophan is likely to contribute to the fluorescence quenching activity. Surface 

hydrophobicity is an important property of MP as it is closely related to protein 

functionalities (Li-Chan et al., 1985). It was measured based on the principle that the 

fluorescent probe ANS binds to the aromatic hydrophobic residues on the protein surface 

to emit strong fluorescence when excited (Alizadeh-Pasdar & Li-Chan, 2000). The 

interaction of MP with phenolics may result in the blockage of exposed hydrophobic sites 

available for ANS, thus, decrease S0. In addition, the attenuated S0 can result from 

phenolic-induced protein aggregation, which limits ANS binding to proteins by reducing 

the surface area as well as lowering the effective concentration of MP (i.e., free molecules). 

5.4.3 Protein cross-linking 

Polymers were formed in oxidatively stressed MP with or without the presence of 

phenolic compounds (Figure 5.3). Some of the polymers were conspicuously derived from 

myosin heavy chain (MHC), the major gelling component of MP, because of its 

concomitant diminishments. For MP sols, MHC bands were recovered almost completely 

after disulfide bonds were cleaved by +βME, so the results are not shown in Figure 5.3. 

For MP gel samples, covalently linked protein aggregates were too large to enter either the 

stacking gel or the separation gel during SDS–PAGE, hence, a reducing agent (+βME) was 

used to dissolve the gels and assess the role of non S–S linkages. Moreover, the relative 

loss of MHC induced by oxidation and phenolic treatments, as well as the impact of 

temperature, were analyzed to estimate the extent of protein cross-linking (displayed as 

inset tables beneath the SDS–PAGE images). In non-oxidized MP sols (Figure 5.3A), the 
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GOx-mediated oxidation significantly decreased the intensity of MHC, by 42 % (P < 0.05), 

and the addition of phenolics did not promote this change. Upon heating (Figure 5.3B), 

however, the MHC band in the oxidized MP gel samples under the reducing condition 

(+βME) were further diminished by the addition of phenolics. GA and EGCG induced the 

greatest attenuation, up to 64 % (P < 0.05). As to the temperature effect (evaluated in a GA 

model), heating from 20 °C to 70 °C (the common temperature range for meat processing) 

caused significant losses of MHC in reduced MP samples, i.e., from 12 % to 27 % (P < 

0.05, Figure 5.4A). When assessed under the reducing condition (+βME), within the same 

temperature range, a higher amount of MHC loss was observed in the GA-treated MP 

samples, i.e., from 29 % to 45 % (P < 0.05) (Figure 5.4B). The extra loss of MHC in +βME 

samples than in –βME samples was attributed to MP polymerization due to non-disulfide 

bonds. 

5.4.4 MP gelling properties 

All MP–emulsion composite samples displayed a typical rheological pattern during 

heating, which is highlighted by a transitional peak within 38–48 °C due to the transient 

hydrophobic association and molecular rearrangement of the myosin globular head (Figure 

5.5A). However, the development of Gʹ (the elastic modulus of the gel) varied between 

sample treatments. Oxidized MP had a markedly higher final Gʹ than the non-oxidized MP 

control (567 Pa vs. 279 Pa), and the presence of phenolics further increased this elasticity 

parameter. On an equal molar concentration basis (60 μmol phenolic/g MP), PG and the 

triphenol EGCG produced higher final Gʹ values than other monophenols (GA and CA) 

and the diphenols (QT and CC). Yet, at an equal phenol concentration (60 μmol phenol/g 

MP), MP samples with monophenols (same as 60 μmol phenolic/g MP) exhibited 



 

84 
 

consistently higher final Gʹ values than diphenols (30 μmol phenolic/g MP) while EGCG 

(20 μmol phenolic/g MP) remained to be a strong promotor of MP network formation.  

For set MP gels, there was no noticeable cooking loss for control and all treatments 

except for the EGCG-treated gels that exhibited considerable syneresis (data not shown). 

As to the measured strength of these set gels, all three monophenols, along with the 

diphenol QT, positively influenced the mechanical property of the MP gels with the gel 

strength improvements reaching 29–56 % when compared with oxidized MP (Figure 5.5B). 

However, MP samples treated with CC and EGCG either produced a weaker gel or had a 

similar gel strength when compared with the phenolic-free MP control, which was different 

from the effect on Gʹ. Visible coagulation and, as aforementioned, syneresis, were noticed 

in gels treated with EGCG. 

5.4.5 Morphology of MP gels 

In the microstructure of MP–emulsion composite gels, lipid droplets were 

surrounded by a protein membrane and embedded in a proteinaceous gel matrix (Figure 

5.6). Compared with the larger and round-shaped oil droplets found in the non-oxidized 

control sample, the gels made from oxidatively stressed MP displayed a denser and more 

uniform protein matrix, and lipid particles were smaller and irregularly shaped. Similar but 

more pronounced irregularities in the oil droplets morphology were noticeable when GA, 

CA, PG, and QT were present. For samples treated with CC and EGCG, however, fat 

droplets coalesced, leading to the occurrence of discontinuous patches. 

5.4.6 Lipid oxidative stability 

The formation and accumulation of TBARS as secondary lipid oxidation products 

in emulsion gel samples throughout the storage period of 0 to 7 days were monitored. As 
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presented in Figure 5.7, the concentration of TBARS in the non-oxidized control sample 

on day 0 was approximately 0.9 mg/kg, and the level increased to 3.6 mg/kg by day 7 (P < 

0.05). In comparison, in gel samples made from oxidatively stressed MP, there was less 

TBARS production (2.0 mg/kg by day 7) than in the non-oxidized control (P < 0.05). As 

expected, the presence of phenolic compounds, irrespectively of structures, significantly 

suppressed TBARS production. This phenomenon was most remarkable for the two highly 

nonpolar compounds, PG and QT, which reduced the TBARS content up to 94 % and 95 % 

on day 7, respectively (P < 0.05), when compared with the non-oxidized MP overall control 

gel. The 2,3-double bond in the C ring and the 4-oxo group in QT are known to contribute 

to its strong antioxidant activity (Minatel et al., 2017). 

5.4.7 Structure-activity relationship of phenolic compounds 

Compared with the oxidized phenolic-free control sample, the monophenols 

effectively improved the gel strength to a similar extent, but PG gave rise to a higher 

elasticity than GA and CA (Figure 5.5). The aliphatic propanol moiety in PG, combined 

with the lack of a carboxyl unit, might have promoted its hydrophobic partitioning at the 

interface of the emulsion, resulting in a stronger interfacial membrane and higher storage 

modulus (Gʹ) of the MP–emulsion composite gel. Consistent with the gelling property 

improvement, the morphology of these monophenol-treated gels displayed a heterogeneous 

membrane of the emulsion particles, which may be attributed to MP accumulation beyond 

the myosin monolayer at the oil surfaces (Wang et al., 2017). 

The two diphenolic flavonoids (QT and CC) showed a similar effect on –SH and –

NH2 as well as efficacy for increasing the gel elasticity (Gʹ) of MP whether on an equal 

molar (60 μmol phenolic/g MP) or equal phenol (30 μmol phenol/g MP) concentration 
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basis (Figure 5.5). However, CC decreased the surface hydrophobicity (Figure 5.1D) and 

induced stronger protein unfolding (Figure 5.2) and cross-linking (Figure 5.3), indicating 

that the flavanol structure (with asymmetrical C2 and C3) in CC had a higher binding 

affinity for MP than the flavonol structure in QT. The stronger CC–MP interaction led to 

a weaker gel when compared with the QT treatment, which was not surprising because 

coagulated oil droplets and a somewhat degraded gel structure were present in the CC-

treated gel samples (Figure 5.6). The latter effect could originate from extensive MP 

aggregation in CC treated samples, which generated insoluble aggregates and impeded 

emulsification. Similar results have been published where CC reportedly induced severe 

textural deterioration in MP gels (Jia et al., 2017). 

On the other hand, being the largest phenolic compound tested, EGCG (with three 

aromatic rings) induced the greatest loss of –SH and –NH2 groups. It is likely that the high 

electrophilicity of the pyrogallol structure of the B ring (epigallocatechin) as well as the 

phenol ring in the gallate unit of EGCG facilitated quinone adductions to MP through both 

electron dense protein sidechain groups. This premise is supported by several previous 

findings that EGCG was strongly reactive with amine and sulfhydryl groups (Cao et al., 

2018; Lv et al., 2019; Mori, Ishii, Akagawa, Nakamura, & Nakayama, 2010). Furthermore, 

the gallate moiety with multiple hydroxyl groups in EGCG are likely responsible for the 

triphenol’s strong efficacy in reducing the protein carbonyl content, since antioxidant 

activity of phenolic compounds usually increases with an increase in the number of 

hydroxyl groups (Fukumoto & Mazza, 2000).  In addition, the triphenol is capable of 

providing multiple protein binding sites, contributing to enhanced cross-linking by acting 

as a bridge. As a result, a more elastic (Gʹ) protein network was produced by EGCG-treated 
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MP than the monophenol (except for PG) and diphenol treatments. However, the 

interaction between MP and EGCG, which possesses trice (GA, CA, and PG) and twice 

(QT and CC) as many phenol rings on an equal molar concentration, was so strong that the 

MP gel structure became porous and discontinuous (Figure 5.6). The partial recovery of 

the lost MP gel strength in the equal-phenol EGCG treatment (as well as in the CC 

treatment) (Figure 5.5), where the molar concentration of the triphenol was reduced 3 fold, 

strongly suggests the deleterious gel structure-breaking effect at high concentrations. 

Similar results have been obtained from other studies where EGCG caused extensive 

protein aggregation at the emulsion interface, leading to the disruption of lipid globules 

and the migration of water, thus, an unstable gel structure (Cao et al., 2018; Lv et al., 2019).  

 

5.5 Conclusion 

In conclusion, the effect of phenolics on the physiochemical and gelling properties 

of MP is dependent on their structural attributes, including number of phenol rings, size, 

and polarity. For monophenols, molecules with less structural hinderance are more 

effective in promoting protein cross-linking whereas compounds with larger substituent 

groups are better at facilitating protein unfolding. Polyphenols with multiple phenol 

structures are likely to react more strongly with MP than phenolics with fewer phenol rings 

due to the presence of more reactive groups in their structures. Phenolic-induced 

physiochemical changes in MP are well reflected in the textural properties and oxidative 

stability of MP–emulsion composite gels. Further studies are needed to evaluate the 

cooperative effects of combined phenolic compounds on the properties of gelled muscle 

foods, because composition-optimized mixtures of different compounds with various 
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structures and activities are likely to provide a broad base for developing products with the 

most desirable characteristics. 
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Figure 5.1. Total sulfhydryl (A), free amine (B), carbonyl (C), and surface 
hydrophobicity (D) in MP treated with different phenolics (60 μmol/g MP) in an 
oxidative environment. Control samples (without phenolics) included both 
nonoxidized (–Ox) and oxidatively stressed (+Ox) MP. Monophenols: gallic acid 
(GA), chlorogenic acid (CA), and propyl gallate (PG); diphenols: quercetin (QT) and 
catechin (CC); triphenol: (−)-epigallocatechin-3-gallate (EGCG). Means with 
different letters (a–f) differ significantly (P < 0.05).  
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Figure 5.2. Tryptophan fluorescence intensity of MP treated with different phenolics 
(60 μmol/g MP) in an oxidative environment. Control samples (without phenolics) 
included both nonoxidized (–Ox) and oxidatively stressed (+Ox) MP. Monophenols: 
gallic acid (GA), chlorogenic acid (CA), and propyl gallate (PG); diphenols: quercetin 
(QT) and catechin (CC); triphenol: (−)-epigallocatechin-3-gallate (EGCG). Δ: 
maximum wavelength (λmax) shift from nonoxidized control. 

  

λmax shift 

Line Treatment Δ (nm) 
① -Ox      0 
② +Ox   2.5 
③ GA   2.0 
④ QT   2.0 
⑤ PG   2.5 
⑥ CC 10.5 
⑦ EGCG   4.5 
⑧ CA 22.5 
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Figure 5.3. Representative SDS–PAGE patterns of MP in sols (A) and gels (B) 
focusing on the changes in myosin heavy chain (MHC) induced by the interaction 
with phenolics. MP was treated with different phenolics (60 μmol/g MP) in an 
oxidative environment. Control samples (without phenolics) included both 
nonoxidized (–Ox) and oxidatively stressed (+Ox) MP. Monophenols: gallic acid 
(GA), chlorogenic acid (CA), and propyl gallate (PG); diphenols: quercetin (QT) and 
catechin (CC); triphenol: (−)-epigallocatechin-3-gallate (EGCG). βME: β-
mercaptoethanol. Means with different letters (a−c) within the same row differ 
significantly (P < 0.05).   

          Relative loss of MHC 

Gel Phenolic compound 
–Ox +Ox GA CA PG QT CC EGCG 

(A) 0.0 42a 29c 43a 42a 43a 35b 39ab 
(B) 0.0 28c 64a 36c 48b 27c 46b 64a 
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Figure 5.4. Representative SDS–PAGE patterns of MP focusing on changes in myosin 
heavy chain (MHC) induced by the interaction with gallic acid (GA, 60 μmol/g MP) 
at different temperatures. βME: β-mercaptoethanol. Means with different letters (a–
c) within the same row differ significantly (P < 0.05).   

                                               Relative loss of MHC  

Gel Temperature (°C) 
20 30 40 45 50 55 60 70 

(A) 0.0 12c 12c 18b 19b 18b 21b 27a 
(B) 0.0 29c 29c 27c 28c 35bc 38ab 45a 
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Figure 5.5. Storage modulus (G′) development during thermal gelation (A) and the 
gel strength (B) of the MP–emulsion composite (30 mg/mL protein, 10% fat) treated 
with different phenolics in an oxidative environment. Control samples (without 
phenolics) included both nonoxidized (–Ox) and oxidatively stressed (+Ox) MP. 
Monophenols: gallic acid (GA), chlorogenic acid (CA), and propyl gallate (PG); 
diphenols: quercetin (QT) and catechin (CC); triphenol: (−)-epigallocatechin-3-
gallate (EGCG). Phenolics were added at an equal molar concentration (–M; 60 
μmol/g MP) or an equal phenol concentration (–P; 60, 30, and 20 μmol/g MP for 
mono-, di- and triphenols). Means with different letters (A–D for equal molar; a−d 
for equal phenol) differ significantly (P < 0.05).    
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Figure 5.6. Light microscope images of MP−emulsion composite gels (30 mg/mL 
protein, 10% fat) treated with different phenolics (60 μmol/g MP) in an oxidative 
environment. Control samples (without phenolics) included both nonoxidized (–Ox) 
and oxidatively stressed (+Ox) MP. Monophenols: gallic acid (GA), chlorogenic acid 
(CA), and propyl gallate (PG); diphenols: quercetin (QT) and catechin (CC); 
triphenol: (−)-epigallocatechin-3-gallate (EGCG). The arrows point to the gel 
network discontinuity.  
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Figure 5.7. Lipid oxidation (TBARS) in MP–emulsion composite gels (30 mg/mL 
protein, 10% fat) treated with different phenolics in an oxidative environment during 
refrigerated storage (4 °C) up to 7 days. Control samples (without phenolics) included 
both nonoxidized (–Ox) and oxidatively stressed (+Ox) MP. Monophenols: gallic acid 
(GA), chlorogenic acid (CA), and propyl gallate (PG); diphenols: quercetin (QT) and 
catechin (CC); triphenol: (−)-epigallocatechin-3-gallate (EGCG). Phenolics were 
added at an equal molar concentration (60 μmol/g MP) or an equal phenol 
concentration (60, 30, and 20 μmol/g MP for mono-, di- and triphenols). In the same 
day, means with different letters (A–E for equal molar; a–e for equal phenol) differ 
significantly (P < 0.05).    
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Figure 5.8. Proposed reactions of phenolics with MP under oxidative conditions.   
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CHAPTER 6. ELECTRICAL CONDUCTIVITY: A SIMPLE AND SENSITIVE 

METHOD TO DETERMINE EMULSIFYING CAPACITY OF PROTEINS 

6.1 Summary  

Emulsifying capacity (EC) of proteins is a benchmark standard widely used to 

evaluate the quality of protein ingredients in emulsion foods. EC (mL of oil emulsified per 

g of protein) is usually measured by a sudden drop in electrical resistance (phase transition) 

with the continuous addition of oil to a specific protein solution. However, little is known 

about electrochemical mechanisms behind this process because resistance, measured with 

an ohmmeter, is not sensitive enough to monitor changes in the concentration of protein 

electrolytes. In this study, pea (PPI), myofibrillar (MPI), and whey (WPI) protein isolates 

were vigorously homogenized with oil at a series of oil/protein ratios to prepare emulsions 

with different final protein concentrations. The conductivity was closely monitored using 

a conductivity meter. A linear relationship was discovered between conductivity and the 

final protein concentrations. At higher oil fractions, the migration of proteins from the 

aqueous phase to the oil–water interface limited protein mobility, leading to a conductivity 

drop. EC was calculated from the regression lines; when the starting protein concentration 

was raised from 0.5% to 2.0%, the EC of PPI, MPI, and WPI decreased from 717, 782, and 

1339 to 219, 303, and 540 mL oil/g protein, respectively. The dependence of EC on the 

initial protein concentration and the sensitivity of conductivity to the depleting protein 

electrolytes suggest that protein concentration is an important factor to consider when 

determining EC for a given protein or comparing EC among different proteins. 
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6.2 Introduction 

Oil-in-water (O/W) emulsions are extremely important in the food industry because 

they are present in a wide range of food products, such as cream liqueur, ice cream, salad 

dressing, mayonnaise, and bologna meats. O/W emulsions are thermodynamically 

unstable. Hence, to facilitate the dispersion and prevent the separation into two immiscible 

phases (water and oil), a strong surfactant is required (Dickinson, 2019). As amphiphilic 

macromolecules, proteins can act as emulsifiers to lower the interfacial tension and form a 

protective membrane (Gohtani & Yoshii, 2018). A distinct advantage of protein emulsifiers 

when compared with small-molecule surfactants (phospholipids, Tween, etc.) is that 

protein-coated emulsion droplets are less susceptible to oxidation due to steric (shielding) 

effects and radical scavenging activity of the protein membrane (Hu, McClements, & 

Decker, 2003; Yang & Xiong, 2015). Protein-stabilized emulsion has drawn a copious 

amount of attention in scientific research, and this is well reflected in the number of recent 

publications. In 2020 alone, 15,700 papers related to “protein-stabilized emulsion” were 

registered in Google Scholar search.  

The efficiency of proteins to act as emulsifiers vary among different proteins due 

to inherent structural and surface activity differences (McClements, 2015). Emulsifying 

activity index (EAI) is commonly used to evaluate emulsifying properties of proteins 

(Pearce & Kinsella, 1978). However, it only describes the behavior of proteins at the 

interface and does not predict the potential of protein that can be applied to create a stable 

O/W emulsion. Therefore, emulsifying capacity (EC), expressed as the amount of oil (mL) 

emulsified per g of protein, is a valuable attribute of proteins relating to their potential for 

stabilizing oil in an emulsion system.  
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A common approach to assessing the EC of a protein involves dropwise addition 

of oil to a protein-water dispersion under constant mixing until phase inversion occurs 

which is indicated by a sudden change in electrical resistance (Webb, Ivey, Craig, Jones, 

& Monroe, 1970). While widely used for EC determination, this convenient method has its 

limitations since inconsistent results can derive from several factors in the procedure, such 

as the oil addition rate, blending speed, and homogenization duration (Akintayo, Esuoso, 

& Oshodi, 1998; Wang & Maximiuk, 2015). Moreover, dynamic electrical changes caused 

by increasing the oil content are not accurately reflected because resistance is not sensitive 

to ion concentrations. As evidence, the electrical resistance (in ohm or Ω) before the 

inversion point shows little change even though the protein content is largely diluted by oil 

titration (Webb et al., 1970). In comparison, electrical conductivity (in micro siemens per 

centimeter or µS/cm) is a direct function of dissolved ions, including charged proteins 

(macromolecular electrolytes) in the case of protein-based emulsions. Therefore, electrical 

conductivity may offer an insight into the underlying mechanisms of the phase inversion 

phenomenon.  

In this study, a simple and consistent method for EC determination was invented 

by measuring electrical conductivity of emulsions prepared with different oil/protein ratios 

and the mechanism of protein-induced conductivity change was elucidated. Various 

concentrations of representative proteins from different food groups were tested, i.e., 

isolated pea protein (PPI), myofibrillar protein (MPI), and whey protein (WPI). 
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6.3 Materials and methods 

6.3.1 Materials 

Longissimus lumborum muscle samples were collected from pork carcasses (24 h 

post-mortem) harvested at the University of Kentucky Meat Laboratory, a USDA-

approved facility. The loin muscle samples were cut into 1 cm chops before being 

individually vacuum-packaged and stored in a −30 °C freezer until use. Frozen muscle 

samples were thawed at 4 °C overnight and then chopped into small pieces. MP was 

isolated from the minced muscle using an extraction buffer consisting of 10 mM sodium 

phosphate, 0.1 M NaCl, 2 mM MgCl2, and 1 mM EGTA at pH 7.0 (Park et al., 2007). In 

the last washing step, the pH of MP suspended in 0.1 M NaCl was adjusted to 6.25. The 

MP pallet was kept on ice and utilized within 48 h. The preparation was conducted in a 4 

°C walk-in cooler. Protein concentration was determined by the Biuret method using 

bovine serum albumin as a standard (Gornall et al., 1949). Pea protein isolate (PPI) was 

donated by Roquette America Inc. (Geneva, IL, USA). Whey protein isolate (WPI) was 

donated by Davisco (Le Sueur, MN, USA). Sunflower oil was purchased from Kroger 

Supermarket (Lexington, KY, USA). All chemicals used were reagent or a higher grade 

obtained from VWR (Radnor, PA, USA) or Thermo Fisher Scientific (Waltham, MA, 

USA). Double-deionized water was used in all experiments. 

6.3.2 Preparation of protein stabilized emulsions 

MPI was suspended in 0.6 M NaCl (to ensure solubility) while PPI and WPI were 

dissolved in water to make 0.5, 1.0, 1.5, and 2.0% (w/v) protein solutions, and the pH was 

adjusted to 6.5. To each of the protein solutions, eight aliquots of oil at 20, 50, 100, 200, 

400, 600, 800, and 1000 mL oil/g protein were added, i.e., the same eight oil to proteins 
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ratios were prepared for proteins with different concentrations. The mixtures were 

homogenized using a PolytronTM PT 10-35GT homogenizer (Brinkmann Instruments, 

Inc., Westbury, NY, USA) with a PT-DA 12/2 EC-B154 dispersing aggregate at a speed 

of 17,500 rpm for 1 min. Freshly prepared emulsions were immediately subjected to EC 

measurement. 

6.3.3 Measurement of emulsifying capacity 

EC measurement by conductivity. Electrical conductivity of the emulsions was 

measured using a Model B30PCI benchtop multi parameter meter (VWR, Radnor, PA, 

USA). To process the data, electrical conductivity (µS/cm, y axis) was plotted against the 

corresponding final protein concentrations (mg/mL, x axis) calculated based on the initial 

protein concentration and the amount of oil added. A regression line was drawn within the 

linear region (before the deviating inflection point), which was then extrapolated to the x 

axis to approximate the final protein concentration (mg/mL) when the conductivity reached 

zero (Figure 6.1). Once the theoretical inversion point was established, the following 

formulas were used to calculate EC. Based on the protein volume as well as initial and final 

protein concentrations, Voil can be expressed as a function of V, c1, and c2 (eq. 1), from 

which EC value can be derived (eq. 2).   

c2 = c1V
V+Voil

, or Voil = (c1−c2)V
c2

                                                                           (1) 

EC (mL oil/g of protein) = Voil
m

= Voil
c1V

∗ 1000 = (c1−c2)
c1∗c2

∗ 1000                 (2) 

where Voil is the amount of oil added (mL), V is the starting volume of protein solution 

(mL), m is the protein weight (g), c1 is the initial protein concentration (mg/mL), and c2 is 

the final protein concentration (mg/mL) derived from the regression formula when 

conductivity becomes zero.  
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EC measurement by resistance. To compare the new conductivity method with the 

conventional resistance method, two copper electrodes of a Model Multiview 110 digital 

multimeter (Extech Instruments, Nashua, NH, USA) were suspended into the freshly 

prepared emulsions to measure electrical resistance.  

6.3.4 Microstructure of emulsion droplets  

The microstructure of emulsions made up with initially 1% protein (PPI, MPI, and 

WPI) and 20, 200, and 1000 mL oil/g protein was examined. A drop of each freshly 

prepared emulsion was placed in the center of a specimen slide and observed under a 

MICROPHOT-FXA Nikon photomicroscope equipped with a built-in digital camera 

(Nikon Inc., Garden City, NY, USA). 

6.3.5 Statistical analysis 

Experiments were conducted with two independent trials on different days, each 

with a new batch of protein isolates. Data were subjected to the analysis of variance using 

a general linear model’s procedure in Statistix software 9.0 (Analytical Software, 

Tallahassee, FL, USA). Significant (P < 0.05) differences between means were identified 

by LSD all-pairwise multiple comparisons. 

 

6.4 Results and discussion 

6.4.1 Emulsifying capacity measured by conductivity 

When the electrodes of a conductivity meter are submerged in a sample, a current 

is passed through the sample solution and ions carry the charge from one electrode to the 

appositively charged electrode to establish the current flow. The conductivity is determined 

by measuring the current which is proportional to the ion concentration because change in 



 

103 
 

the number of ions alters the amount of charge that can be carried between electrodes (Al-

Malah, Azzam, & Omari, 2000). As shown in Figure 6.2A, at pH 6.5 PPI was able to 

conduct electricity before the phase transition because it was present in the continuous 

phase and negatively charged. When the PPI concentration decreased progressively with 

the oil addition, a linear relationship between conductivity and final PPI concentration was 

observed. Since conductivity of the protein-stabilized emulsions was induced by the 

presence of mobile and charged proteins, the conversion from the oil-in-water (O/W) to 

the water-in-oil (W/O) emulsion was indicated by a theoretical zero conductivity value. 

The final protein concentration was therefore calculated from the regression equation 

derived for EC (mL oil/g protein). Compared with the resistance method, the advantages 

of the conductivity method include simplified equipment, easy procedure, and improved 

accuracy; it does not require the complex setup of the resistance method. The conductivity 

method, performed on quiescent emulsions, also eliminates variations inherent to 

continuous oil delivery and mixing in the resistance method that is operated on non-

equilibrium emulsifying solutions and hence prone to erroneous results. For example, the 

rate of oil addition and the blending speed must be controlled to a relatively low level (e.g., 

3,000 rpm) to ensure the turbulence does not impede the resistance measurement (Akintayo 

et al., 1998). As a result, un-emulsified oil could be dispersed in the continuous protein 

matrix phase resulting in an overestimation of EC (Wang & Maximiuk, 2015). Moreover, 

with the present conductivity method, which uses a high shear force homogenization 

(17,500 rpm) for emulsion formation, the change in conductivity due to varying the 

oil/protein ratio enables the monitoring and tracing of the electrolyte behavior leading to 
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the emulsion phase transition. Such information is not provided by the resistance method 

because of its insensitivity to the changes in emulsion composition. 

The electrical resistance method is based on the principle that oil is a nonconductor 

whereas the combination of protein and water is a good conductor. Therefore, when 

proteins are present in the continuous phase, the electrical resistance of the O/W emulsion 

remains relatively low until the protein-coated oil droplets begin to aggregate, at which 

time the resistance rises abruptly and a phase inversion point is reached (Firebaugh & 

Daubert, 2005; Wang & Maximiuk, 2015). As shown in Figure 6.2B, the resistance 

remained steady in the early stages of oil titration and lasted until the continuous phase of 

PPI solutions failed to support the dispersed oil phase. At this point, the system collapsed 

and the resistance of the emulsion increased drastically (exceeding the ohmmeter 

maximum range). Based on the oil content at the turning point (the inversion point), the 

estimation of EC is displayed in Figure 6.2. From the resistance test, the EC values of PPI 

at all four protein concentrations were lower compared to the results obtained using 

electrical conductivity. This was probably because the point of sudden increase in 

measured resistance was less affected by the residual free proteins than by the bulk of the 

added oil. Additionally, the number of samples tested (eight) was likely insufficient to 

reflect the actual inversion point. A continuous oil addition with timely resistance 

monitoring is necessary for EC determination using this method (Kato, Fujishige, 

Matsudomi, & Kobayashi, 1985). However, the less rigorous homogenization process that 

necessitates continuous emulsification may lead to an inaccurate EC estimation because 

when electrical resistance is recorded in a micro or macroscopically heterogeneous sample 

under turbulent conditions, non-emulsified flowing oil mixed in the continuous phase 
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would still account for resistance. This phenomenon has been described by Akintayo et al. 

(1998): when the emulsifying speed was increased from 1,500 rpm to 4,500 rpm, 

significant reductions in EC measured by the electrical resistance method were registered 

for legume proteins.  

Since electrical conduction results from ion movement, charge-carrying and mobile 

proteins in the continuous phase would exert superior conductivity over the proteins 

immobilized at the emulsion interface (Kaci et al., 2014). Consequently, at the same initial 

PPI concentration, the linear decline in conductivity with reducing PPI concentration 

implies that the interfacial protein load was proportional to the final protein content. On 

the other hand, at the same final PPI concentration, the emulsions prepared with a higher 

amount of initial protein exhibited a lower conductivity. This is because at the equivalent 

final protein concentration, more oil is stabilized than in samples with less concentrated 

initial protein, i.e., more protein became immobilized by virtue of covering the larger area 

of oil surfaces created. 

6.4.2 Emulsifying capacity of three proteins 

The conductivity plot for each of the tested protein concentrations consisted of 8 

data points corresponding to oil/protein ratios of 20, 50, 100, 200, 400, 600, 800, and 1000 

mL oil/g protein to allow for the comparison between different initial protein 

concentrations (Figure 6.3). At the same low oil/protein ratios, a similar pattern of 

conductivity change was observed between PPI and WPI. Namely, an emulsion with a 

lower initial protein concentration had a lower conductivity than those with a higher initial 

protein concentration (trended by the arrowed dash line). For instance, at the 20 mL oil/g 

protein ratio, by lowering the initial protein concentration from 2.0% to 0.5%, the 
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conductivity decreased from 184 µS/cm to 80 µS/cm for PPI and from 119 µS/cm to 53 

µS/cm for WPI (P < 0.05). However, the opposite trend was observed for MPI: at an equal 

20 mL oil/g protein, for example, the conductivity of the emulsions increased from 7.1 

mS/cm to 11.7 mS/cm (P < 0.05) when the initial protein concentration was lowered from 

2.0% to 0.5%. The lower conductivity likely resulted from the deposition of additional 

proteins onto the interfacial monolayer of myosin or actomyosin (Gordon & Barbut, 1990). 

Compared with MPI, the smaller and less flexible structure of globular WPI and PPI may 

limit their efficiency in covering the interfacial area created during emulsification by 

multilayer protein membranes (Hinderink, Münch, Sagis, Schroën, & Berton-Carabin, 

2019; Hunt & Dalgleish, 1994). It is noted that overall MPI had much higher conductivity 

values than the other two proteins throughout the process because it was suspended in ion 

rich NaCl solution whereas PPI and WPI were solubilized in double deionized water. 

The EC of proteins reported in the literature has been largely variable and the 

concentrations used seem to be arbitrary. Thus, it is important to establish the effect of 

initial protein concentration used for EC measurement. As shown in Figure 6.4, regardless 

of protein type, a higher initial concentration always produced a lower EC value. The same 

trend could be found in published reports on myofibrillar protein and pulse proteins from 

pigeon pea, lima bean, and yam bean when examining the specific protein concentrations 

used in those studies (Akintayo et al., 1998; Borderias, Jiménez-Colmenero, & Tejada, 

1985). In the estimation of EC in the present study and many others (Acton & Saffle, 1972; 

Eisele & Brekke, 1981), the maximum amount of oil that can be emulsified and stabilized 

is calculated based on per unit weight of proteins. Therefore, the initial amount of protein 

is an important factor which should be specified in EC-related research. The EC value of 
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the three proteins tested herein follows the order of WPI>MPI>PPI, which applied across 

all the four initial concentrations (0.5%, 1.0%, 1.5%, and 2.0%) (Figure 6.4). 

6.4.3 Microstructure of emulsions 

The accuracy of the conductivity method for EC measurement can be validified by 

the microstructure of the emulsions (Figure 6.5). At 20 mL oil/g protein, emulsions 

prepared with all the three proteins were far away from their inversion points so that round 

shaped oil droplets were distributed evenly in the matrix. When the emulsion-containing 

tubes were inverted, only MPI emulsion showed some residues adhering to the glass wall, 

indicating its higher viscosity than PPI and WPI emulsions due to differences in molecular 

size and structure. The fibrous myosin with a subunit molecular weight of 220 kDa is the 

major component in MPI, whereas in PPI and WPI, the major protein factions are β-

lactoglobulin and 11S/7S globulins of much smaller sizes, i.e., ~60 kDa and 18 kDa, 

respectively (Dreizen, Gershman, Trotta, & Stracher, 1967; Guo & Wang, 2016; Lu, He, 

Zhang, & Bing, 2020). When the oil content was increased to 200 mL oil/g protein, all 

emulsions became visibly less fluid; for WPI emulsions, some adhesions to the wall of the 

glass tube were noticed upon inversion, suggesting a viscosity effect. The maximum 

viscosity is usually found at the point of phase transition with the attainment of fine 

emulsions (Allouche, Tyrode, Sadtler, Choplin, & Salager, 2004). Therefore, the viscous 

emulsions with fine and crowded oil droplets dominated the microstructure (Figure 6.5). 

At the highest oil/protein ratio tested, 1000 mL/g, which appeared to have exceeded the 

capacity of any of these three proteins, the O/W emulsions presumably changed into a W/O 

type. The phase transition was also implicated by the color change from white to a slightly 

yellow appearance. The conversion from the O/W emulsion to a vastly different W/O 
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system occurred as a result of oil droplet fusion due to inadequate interfacial coverage by 

proteins, at which point the oil/protein ratio is equivalent to EC. For PPI, which had the 

lowest EC (351 mL oil/g protein, Figure 6.4) at the initial protein concentration of 1.0%, 

the 1000 mL oil/g protein ratio for emulsification was farther away from the structure-

breaking inversion point than it was for MPI (612 mL oil/g protein) and WPI (965 mL oil/g 

protein). This would explain why the apparent W/O emulsion for PPI was more 

homogeneous, in contrast to the structural disarray in the other two emulsions. 

6.4.4 Graphic illustration of emulsion conductivity change 

To further explain the oil-induced electrical conductivity change in a protein-

stabilized emulsion, a mechanistic event is proposed (Figure 6.6). When a current is applied 

between the electrodes, the movement of negatively charged proteins in the continuous 

phase would move towards the anode, enabling current conduction. In an O/W emulsion, 

protein molecules are either free in the aqueous phase to carry the electricity or 

immobilized or adsorbed in the oil–water interfacial phase with little conduction capability. 

Therefore, the conductivity of the emulsion is largely dependent on the amount of mobile 

protein in the dispersed phase. By increasing the oil portion, more interfacial areas will be 

covered, i.e., mobile protein electrolytes will migrate from the aqueous phase to the oil–

water interface for the system’s free energy reduction and stability. This dynamic process 

continues until all mobile proteins are consumed. When the conductivity reaches zero, a 

phase inversion occurs at which point all the proteins have presumably partitioned at the 

interface. It is also possible that at high initial protein concentrations, some proteins are 

still present in the dispersed phase and their mobility is restricted due to high viscosity. 
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6.5 Conclusion 

The electrical conductivity method described herein to measure protein emulsifying 

capacity enables the sensitive examination of dynamic protein-oil interaction leading to 

phase inversion. The method takes into consideration the mobility of electrical carriers 

(free polypeptides vs. low-mobility interfacial proteins); variations between proteins in 

molecular size, structure, and partitioning potential are recognized factors. Moreover, the 

protein concentration as an important viscosity effector is explained. Because the EC value 

is negatively related to the initial protein concentrations, food processors should consider 

this influencing factor when making meaningful comparisons between different proteins 

and attempting to choose appropriate proteins as oil emulsifiers. 
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Figure 6.1. Illustrative electrical conductivity change with decreasing protein 
concentration in O/W emulsions. Emulsifying capacity (EC) can be calculated from 
the initial (c1) and final (c2) protein concentrations where c2 is derived from the x-y 
regression line that intercepts at the x-axis (zero conductivity).  
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Figure 6.2. Electrical conductivity (A) or resistance (B) change with final pea protein 
isolate (PPI) concentration and emulsifying capacity (EC, mL oil/g protein) calculated 
at different initial protein concentrations. Eight aliquots of oil at 20, 50, 100, 200, 400, 
600, 800, and 1000 mL oil/g protein were added to yield 8 different final protein 
concentrations. 

  

Initial PPI concentration 
(%, w/v) 

0.5 1.0  1.5 2.0 

Conductivity method 717 351 269 219 
Resistance method 400 200 200 100 



 

112 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                 Conductivity (µS/cm) of 20 mL oil/g protein emulsions 

 
                                                                                                      

 
 
 
 
 
 
 
 
Figure 6.3. Conductivity change with final protein concentrations of pea protein 
isolate (PPI), myofibrillar protein isolate (MPI), and whey protein isolate (WPI) at 
different initial protein concentrations. For each, eight aliquots of oil at 20, 50, 100, 
200, 400, 600, 800, and 1000 mL oil/g protein were added to yield 8 different final 
protein concentrations (%, w/v). The dash line points to descending (PPI, WPI) or 
ascending (MPI) conductivity of the 20 mL oil/g protein ratio emulsions (circled) 
prepared with initial protein concentrations of 2.0, 1.5, 1.0, and 0.5 % (w/v).  

 

 

 

 

  

Protein 
type 

Initial protein concentration  
(%, w/v) 

 0.5 1.0 1.5 2.0 
PPI 80 135 160 184 

MPI (×103) 11.7 9.4 8.3 7.1 
WPI 53 76 104 119 
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Figure 6.4. Emulsifying capacity (EC, mL oil/g protein) of pea protein isolate (PPI), 
myofibrillar protein isolate (MPI), and whey protein isolate (WPI) at different initial 
protein concentrations. Means with different letters (A–D for the same protein; a–c 
for the same initial protein concentration) differ significantly (P < 0.05).   

  

Protein 
type 

Initial protein concentration  
(%, w/v) 

 0.5 1.0 1.5 2.0 
PPI 717 351 269 219 
MPI 782 612 524 303 
WPI 1339 965 724 540 
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Figure 6.5. Morphology of representative emulsions made with pea protein isolate 
(PPI), myofibrillar protein isolate (MPI), and whey protein isolate (WPI) at the same 
initial protein concentration of 1% (w/v) but different oil/protein ratios of 20, 200, 
and 1000 mL/g. Phase inversion (O/W→W/O) occurred between 200 and 1000 
oil/protein (mL/g) based on EC results (Figure 6.4).  
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Figure 6.6. Proposed mechanism of electrical conduction in protein-stabilized 
emulsions and the conductivity change with oil addition. 
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CHAPTER 7. EFFECT OF STRUCTURALLY RELATED PHENOLIC COMPOUNDS 

ON THE EMULSIFYING PROPERTIES OF MYOFIBRILLAR PROTEIN 

7.1 Summary  

Modifications of the emulsifying properties of myofibrillar protein (MP) by 

phenolic structures were investigated under glucose oxidase-induced oxidative condition. 

Six phenolic compounds with structural relevance were selected and compared, i.e., gallic 

acid (GA), chlorogenic acid (CA), propyl gallate (PG), quercetin (QT), catechin (CC), and 

(–)-epigallocatechin-3-gallate (EGCG). The polar monophenols, GA and CA, caused little 

change in protein emulsification, whereas the hydrophobic monophenol, PG, and two 

hydrophobic diphenols, QT and CC, induced more protein partition in the oil/water 

interface by 16%, 50% and 65%, respectively (P < 0.05). Consistent with the partition 

result, these three phytophenols also improved the emulsifying capacity of MP. However, 

the largest phenolic molecule, EGCG, was detrimental for protein emulsification due to the 

occurrence of extensive phenolic-induced MP aggregation and insolubility. TBARS 

analysis showed that the phenolic compounds tested had little effect on inhibiting lipid 

oxidation, except for QT, which significantly decreased TBARS content by 54% (P < 

0.05). 
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7.2 Introduction 

Comminuted muscle foods, e.g., Frankfurters, bologna, and luncheon meats, have 

a common microstructure of fat particles dispersed within a protein matrix (Acton et al., 

1983). Within these products, the most abundant and functional muscle protein component, 

myofibrillar protein (MP), acts as the amphiphilic emulsifier and readily adsorbs to the 

oil/water interface. The protein membranes formed around the lipids could reduce surface 

tension efficient enough to stabilize the emulsion system (Gordon et al., 1992). The 

emulsifying properties of MP play an important role in the quality of emulsified meat 

products because it is responsible for preventing the separation of water and fat. 

Fats in emulsified meat products are especially susceptible to oxidation because 

larger surface area is created during the comminution process, making lipids more 

accessible to the reactive oxidative species (ROS). Simultaneously, the oxidative stress, 

oxygen, is constantly introduced in the chopping, grinding, and blending steps (Domínguez 

et al., 2019). Extensive lipid oxidation is responsible for the development of discoloration, 

undesirable flavors, and rancidity, which negatively affects product quality and shelf-life 

(Bekhit, Hopkins, Fahri, & Ponnampalam, 2013). To counteract the quality deterioration 

caused by lipid oxidation, phenolic compounds as antioxidants are commonly incorporated 

into meat products. In recent years, the use of naturally occurring phenolic antioxidants has 

attracted tremendous interest in the meat industry due to customers’ concerns over the 

safety of synthetic antioxidants and the potential health benefits of phytophenols (Kumar, 

Yadav, Ahmad, & Narsaiah, 2015). Plant derived phenolic compounds have been 

commonly incorporated into meat products in the form of herbs and spices in home cooking 

for a long period of time. To improve their potency, plant extracts containing higher 
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concentrations of phenolic compounds than that in the plant materials have been being 

developed and some of which have become commercially available (Shah et al., 2014). 

Apart from being antioxidants, phenolic compounds are reported to be interactive with 

another major macromolecule, MP, and responsible for changes in its emulsifying 

properties. 

Several studies have been conducted to investigate the effect of phenolic 

compounds on MP emulsification, but various efficacies were discovered. EGCG at high 

concentrations (500 and 1000 mg/L) significantly reduced the emulsifying activity of MP 

by causing extensive protein–protein aggregation (Cao et al., 2018). Similarly, a large 

quantity of rosmarinic acid (300 μM/g) disrupted the emulsion structure in the MP 

composite gel and increased cooking loss from 58% to 77% (Wang et al., 2018). In another 

study where several mulberry polyphenols were tested for their effects on the emulsifying 

properties of MP (Cheng et al., 2020), most mulberry derived phenolic compounds, i.e., g 

cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, caffeic acid, and quercetin, jeopardized 

protein emulsification, whereas rutin improved emulsifying activity index (EAI) by 38%. 

The structural diversity in the large family of phytophenols could be responsible for their 

different efficacies in modifying MP. 

The objective of this present study was to investigate the effect of phenolic 

structures on their modifications of the emulsifying properties of MP. Six phenolic 

compounds with structural relevance were selected, i.e., three monophenols: gallic acid 

(GA), chlorogenic acid (CA), and propyl gallate (PG); two diphenols: quercetin (QT) and 

catechin (CC); and one triphenol: (–)-epigallocatechin-3-gallate (EGCG). 
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7.3 Materials and methods 

7.3.1 Materials 

Longissimus lumborum muscle samples were collected from pork carcasses (24 h 

post-mortem) harvested at the University of Kentucky Meat Laboratory, a USDA-

approved facility. The food-grade glucose oxidase (GOx) was donated by Ajinomoto Co., 

Inc. (Kawasaki, Japan). Canola oil was purchased from Kroger Supermarket (Lexington, 

KY, USA). Gallic acid (GA, purity ≥ 98.5%), chlorogenic acid (CA, purity ≥ 98%), and 

(−)-epigallocatechin-3-gallate (EGCG, purity ≥ 98%) were purchased from Sinopharm 

Chemical Reagent (Shanghai, China); Quercetin (QT, purity ≥ 94%) was purchased from 

Thermo Fisher Scientific (Waltham, MA); Catechin (CC, purity ≥ 96%) and propyl gallate 

(PG, purity ≥ 98%) were purchased from MilliporeSigma (St. Louis, MO). All other 

chemicals were of at least analytical grade from MilliporeSigma (St. Louis, MO), Thermo 

Fisher Scientific (Waltham, MA), or VWR (Radnor, PA). Double-deionized water was 

used in all experiments.  

7.3.2 Stripping of oil 

Tocopherols were removed from the canola oil with alumina (MP Alumina N-Super 

I, MP Biomedicals, Graffenstaden, France). An aliquot of 15 g sorbent was mixed with 30 

mL oil and vigorously shaken in the dark at 4 °C for 24 h. The mixtures were then 

centrifuged (2000g, 20 min) at 20 °C. The upper phase was collected and centrifuged again 

under the same condition. The aqueous phase, i.e., stripped canola oil, was immediately 

used for emulsion preparation (Yang & Xiong, 2018). 
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7.3.3 Emulsion sample preparation and treatment 

Extraction of MP. Frozen muscle samples were tempered at 4 °C overnight before 

MP isolation using an extraction buffer of 10 mM sodium phosphate, 0.1 M NaCl, 2 mM 

MgCl2, and 1 mM EGTA (pH 7.0) as described by Park et al. (2007). The protein 

concentration was measured by the Biuret method (Gornall et al., 1949). 

Phenolic treatment. The MP pellet was diluted with 50 mM piperazine-N,N′-bis(2-

ethanesulfonic acid) (PIPES) buffer containing 0.6 M NaCl (pH 6.25) to a final 

concentration of 10 mg/mL protein. Phenolic compounds, i.e., GA, CA, PG, QT, CC, and 

EGCG, were dispersed into the MP sol to obtain a final load of 60 μmol phenolics per g of 

protein. An oxidative environment was introduced by subjecting the MP-phenolic mixtures 

to a GOx-catalyzed oxidation at 4 °C for 8 h. The oxidation system was composed of 50 

µg glucose and 8 µg GOx per mg of MP in the presence of 10 μM FeSO4.  

Preparation of emulsions. After MP were incubated with phenolic compounds for 

8 h under oxidative stress, MP-stabilized emulsions were prepared by homogenizing 2 mL 

canola oil with 18 mL MP samples in 50 mM PIPES buffer containing 0.6 M NaCl (pH 

6.25) for 1 min at the speed of 17,500 rpm using a PolytronTM PT 10-35GT homogenizer 

(Brinkmann Instruments, Inc., Westbury, NY, USA) coupled with a low-foaming probe 

(PT-DA 12/2 EC-B154). 

7.3.4 Characteristics of MP partition  

Protein partition in the aqueous phase. The freshly prepared emulsions were 

centrifuged at 10,000g for 15 min at 4 °C and the cream layer was carefully removed. The 

amount of serum was recorded, and protein concentrations of both the whole emulsion and 
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centrifuged serum were determined. The MP partition in aqueous phase (%) was calculated 

using the following formula: 

MP in aqueous phase (%) =
𝐶𝐶𝑠𝑠 × 𝑉𝑉𝑠𝑠
𝐶𝐶𝑒𝑒 × 𝑉𝑉𝑒𝑒

× 100 

where Ce and Ve are the protein concentration and total volume of the whole emulsion, 

respectively; Cs and Vs are the protein concentration and volume of the centrifuged serum, 

respectively. 

Detection of protein cross-linking. After emulsion samples were centrifuged at 

10,000g for 15 min at 4 °C, the serum layer was collected and dissolved in the SDS–PAGE 

sample buffer at a 1:4 ratio. A 5% polyacrylamide stacking gel and a 10% polyacrylamide 

resolving gel system were used to determine protein patterns in the serum phase (Laemmli, 

1970). 

7.3.5 Measurement of emulsion particle size and morphology 

Particle size. The freshly prepared emulsions were diluted 50 times with 50 mM PIPES 

buffer containing 0.6 M NaCl (pH 6.25) after which the emulsion particle size was 

immediately analyzed using a ZetaSizer Nano-ZS (Malvern Instruments, Worcestershire, 

UK) as described by Yang and Xiong (2015). 

Microstructure of emulsions. A drop of freshly prepared emulsion sample was 

placed in the center of a specimen slide and the microstructure of MP-stabilized emulsions 

was examined under a MICROPHOT-FXA Nikon photomicroscope equipped with a built-

in digital camera (Nikon Inc., Garden City, NY, USA).  

7.3.6 Emulsifying capacity of phenolic modified MP 

A Model B30PCI benchtop multi parameter meter (VWR, Radnor, PA, USA) was 

used to measure electrical conductivity of the with oil to protein ratios at 20, 50, 100, and 
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200 mL oil/g protein. Electrical conductivity (µS/cm, y axis) was plotted against the 

corresponding final protein concentrations (mg/mL, x axis). A regression line was drawn 

and then extrapolated to the x axis to approximate the final protein concentration (mg/mL) 

when the conductivity reached zero. The emulsifying capacity (EC) was calculated using 

the following formula:   

EC (mL oil/g of protein) =
Voil
m

=
Voil
c1V

∗ 1000 =
(c1 − c2)

c1 ∗ c2
∗ 1000 

where Voil is the amount of oil added (mL), V is the starting volume of protein solution 

(mL), m is the protein weight (g), c1 is the initial protein concentration (mg/mL), and c2 is 

the final protein concentration (mg/mL) derived from the regression formula when 

conductivity becomes zero.  

7.3.7 Evaluation of lipid oxidation  

Lipid oxidation of the emulsions was evaluated by measuring the amount of 2-

thiobarbituric acid-reactive substances (TBARS) produced (Salih et al., 1987). The assay 

solutions containing trichloroacetic acid (TCA) and thiobarbituric acid (TBA) were mixed 

with 3 g emulsion samples and boiled in dark for 30 min. The supernatant of cooled 

solution was mixed with chloroform and centrifuged at 2000g for 10 min. The upper phase 

was further clarified with petroleum ether and centrifuged at the same conditions. 

Absorbance of the lower phase was measured at 532 nm and the TBARS value and 

calculated using the following equation:  

TBARS (mg/kg) =  (A532/W𝑆𝑆)  ×  9.48 

where A532 is the absorbance at 532 nm, Ws is the sample weight (g). 
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7.3.8 Statistical analysis 

Experiments were conducted with three independent trials (n = 3). Data were 

subjected to the analysis of variance using a general linear model’s procedure in Statistix 

software 9.0 (Analytical Software, Tallahassee, FL, USA). Significant (P < 0.05) 

differences between means were identified by LSD all-pairwise multiple comparisons. 

 

7.4 Results and discussion 

7.4.1 Protein partition 

Phenolic compounds are known to be interactive with MP through both non-

covalent and covalent pathways and alter the physicochemical properties of protein (Guo 

& Xiong, 2021), which would affect its partition in an emulsion system. As shown in 

Figure 7.1, the two polar monophenols, GA and CA, had little effect on protein partition, 

whereas the other less polar monophenol PG, and the two hydrophobic diphenols, QT and 

CC, introduced significant lower protein partitions in the aqueous phase than the control 

sample by 16, 50, and 65%, respectively (P < 0.05), indicating more proteins were present 

in the oil/water interface. MP-stabilized emulsions have a typical thick membrane with 

multilayers of protein molecules (Gordon et al., 1992), so a stronger protein–protein 

association induced by phenolics could be responsible for more protein disposition to the 

interfacial area. Phenolic compounds could facilitate protein aggregation by facilitating 

MP structural unfolding, which exposes the interior hydrophobic or reactive amino acid 

sidechain groups and enhance protein–protein interactions. The more hydrophobic nature 

of PG, QT, and CC than GA and CA would lead to their preferable distribution onto the 

O/W interface (Sasaki et al., 2010). Therefore, the larger amount of PG, QT, and CC 
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present in the protein membrane could promote protein aggregation in the interface, 

resulting in lower MP partition in the aqueous phase.  

In contrast to the other phenolic compounds, EGCG caused severe protein 

aggregation with visible coagulation and syneresis. As the largest triphenol with multiple 

functional groups in its structure, it is plausible that EGCG interacted with the protein so 

strongly that extensive protein aggregation occurred, and the protein membrane structure 

was disrupted. As a result, the emulsifying properties of MP were impaired. Similar results 

have been reported where EGCG drastically destabilized MP emulsions (Feng et al., 2017). 

However, EGCG treated MP had the lowest partition in aqueous phase (Figure 7.1A), 

corresponding to the least amount of protein displayed in the SDS-PAGE pattern (Figure 

7.1B). The discrepancy between compromised MP emulsification and less protein partition 

in the aqueous phase of the EGCG-treated sample might be attributed to the uneven protein 

distribution in the samples or the entrapment of large protein aggregates in the 

microcentrifuge tube. Both errors could result in less representative sampling, even though 

vigorous mixing was conducted in advance.  

7.4.2 Emulsion size and emulsifying capacity of MP 

As displayed in Figure 7.2A, all phenolic compounds tested, except for EGCG, 

produced emulsions with similar particle size (P > 0.05). On the other hand, the 

emulsifying capacity (EC, Figure 7.2B) of MP was significantly improved by PG, QT and 

CC from 704 mL oil/g protein to 1092, 1652, and 1957 mL oil/g protein, respectively (P < 

0.05). The increase was likely due to their higher partition rate in the oil/water interface 

(Figure 7.1A) because the charge-carrying phenolic compounds in protein membrane could 

introduce electrical repulsion between oil droplets, which prevents oil flocculation and 
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stabilizes the emulsions (Li et al., 2019). The multiple -OH groups in diphenols, QT and 

CC, could be readily deprotonated and carry more charges than the monophenols, 

contributing to the higher EC value of protein. Between the two diphenols, the flavanol 

structure in CC tends to have had a higher binding affinity for MP than the flavonol 

structure in QT, which might explain the slightly higher EC of CC-treated MP (Guo et al., 

2021).  

Among all samples tested, EGCG-treated emulsions had the largest droplet size of 

6783 nm, 91% higher than that of the control (P < 0.05), which could be attributed to the 

formation of large protein aggregates induced by strong EGCG–MP interactions (Cao et 

al., 2018).  

7.4.3 Microstructure of MP-stabilized emulsions 

Morphology of the MP-stabilized emulsions revealed a homogeneous texture with 

oil droplets distributed evenly in the continuous phase (Figure 7.3), indicating the 

formation of stable emulsions under the experimental conditions. Consistent with little 

difference in particle size between most samples (Figure 7.2A), the diameter of oil droplets 

and their range of variations in emulsions containing phenolic compounds appeared to be 

similar, with the exception of EGCG. The EGCG-treated emulsion sample had a less 

homogeneous morphology with a higher portion of large oil droplets than the other 

emulsions, corresponding to its largest particle size.  

7.4.4 Lipid oxidation 

Lipid oxidation of emulsions was evaluated by measuring the content of TBARS-

secondary by-products from lipid peroxidation (Figure 7.4). The non-oxidized control 

emulsion had an initial TBARS value of 0.24 mg/kg, which could be attributed to the 
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oxidative stress introduced during the homogenization process. Among all the phenolic 

compounds tested, QT was the only effective phenolic compound in inhibiting lipid 

oxidation which reduced TBARS content by 54% (P < 0.05). Since the partition of 

antioxidants in an emulsion system plays an important role in their efficiency, the stronger 

antioxidative activity of the hydrophobic QT may result from its more distribution in the 

oil/water interface (Costa, Losada-Barreiro, Paiva-Martins, & Bravo-Díaz, 2021). In 

addition, its strong radical scavenging and metal chelating activities could also contribute 

to the antioxidant activity (Afanas′ev, Dcrozhko, Brodskii, Kostyuk, & Potapovitch, 1989). 

 

7.5 Conclusion 

In conclusion, phenolic compounds had different effect on the emulsifying 

properties of MP and such modifications are related to the polarity, size, and structure of 

specific phenolic molecules. Before being applied to muscle foods for desirable product 

quality, the role of phytophenols in altering the emulsifying properties of MP can be 

predicted based on the phenolic strucutres. As multi-funtional ingredients, the antioxidant 

efficacy of polyphenols should also be carefully evaluted in addition to the altered MP 

functionalities. Future studies are warranted to explore methods to avoid phenolic-induced 

impairment of MP emulsification and assess the storage stability of phenolic treated 

emulsions. Furthermore, the combined effect of more than one phenolic compound is worth 

investigating because phytophenols are mostly used in the format of mixtures with the 

presence of multiple typeps of molecules, e.g., in plant extracts and seasonings.   
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Figure 7.1. MP partition (A) and SDS–PAGE patterns (B) of the aqueous phase.  MP 
was treated with different phenolics (60 μmol/g protein) in an oxidative environment. 
Control samples (no phenolics) included both nonoxidized (–Ox) and oxidatively 
stressed (+Ox) protein. Monophenols: gallic acid (GA), chlorogenic acid (CA), and 
propyl gallate (PG); diphenols: quercetin (QT) and catechin (CC); triphenol: (−)-
epigallocatechin-3-gallate (EGCG). Means with different letters (a−d) differ 
significantly (P < 0.05).  
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Figure 7.2. Particle size of emulsions (A) and emulsifying capacity of MP (B). MP was 
treated with different phenolics (60 μmol/g protein) in an oxidative environment. 
Control samples (no phenolics) included both nonoxidized (–Ox) and oxidatively 
stressed (+Ox) protein. Monophenols: gallic acid (GA), chlorogenic acid (CA), and 
propyl gallate (PG); diphenols: quercetin (QT) and catechin (CC); triphenol: (−)-
epigallocatechin-3-gallate (EGCG). MHC: myosin heavy chain. In the same 
parameter, means with different letters (a−c) differ significantly (P < 0.05). 
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Figure 7.3. Light microscope images of MP-stabilized emulsions treated with different 
phenolics (60 μmol/g protein) in an oxidative environment. Control samples (no 
phenolics) included both nonoxidized (–Ox) and oxidatively stressed (+Ox) protein. 
Monophenols: gallic acid (GA), chlorogenic acid (CA), and propyl gallate (PG); 
diphenols: quercetin (QT) and catechin (CC); triphenol: (−)-epigallocatechin-3-
gallate (EGCG). 

  



 

130 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.4. Lipid oxidation (TBARS) in MP-stabilized emulsions treated with 
different phenolics (60 μmol/g protein) in an oxidative environment. Control samples 
(no phenolics) included both nonoxidized (–Ox) and oxidatively stressed (+Ox) 
protein. Monophenols: gallic acid (GA), chlorogenic acid (CA), and propyl gallate 
(PG); diphenols: quercetin (QT) and catechin (CC); triphenol: (−)-epigallocatechin-
3-gallate (EGCG). Means with different letters (a–c) differ significantly (P < 0.05).  
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CHAPTER 8. OVERALL CONCLUSIONS 

Under the oxidative condition created using glucose oxidase (GOx), phenolic 

compounds exhibited strong interactions with myofibrillar protein (MP) and promoted 

protein structural unfolding and cross-linking. The phenol-induced modifications of 

protein functionalities, i.e., gelation and emulsification, were influenced by the structural 

attributes of specific phytophenols: The lack of structural hinderance in a smaller molecular 

would favor protein cross-linking and gel formation; A larger monophenol with more 

hydroxyl and hydrocarbon groups improved MP gelation by promoting protein unfolding; 

Phenolic compounds with less polarity tended to increase the emulsifying capacity of MP 

through more protein partition in the oil/water interface; Phytophenols with more than one 

phenol structures suppressed both emulsification and gelation due to extensive protein 

aggregation. 

Of the six phenolic acids tested for their effects on MP gelation, gallic acid induced 

the most increase in gel strength and elasticity due to its strong reactivity with functional 

amino acid side chains through covalent bonds. As a result, protein cross-linking was 

promoted by the formation of protein–phenol adducts. In the emulsion composite gel 

system where several phytophenols were compared, quercetin was the best at improving 

the overall quality of the model emulsion-gel products, because it not only enhanced 

protein gelation but also exhibited strong inhibition effect on lipid oxidation. Both the 

textural properties and oxidative conditions should be considered when applying phenolic 

compounds into comminuted muscle foods since antioxidant is another important role they 

play in these commodities. 
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Furthermore, the amount of phenolic added was an important factor affecting the 

outcome of protein modifications based on the dose-dependent effect observed in this 

study. At 60 µmol/g protein, all phenolic acids (monophenols) promoted gelation; for MP 

samples treated with different amount of GA, the gelling potential was improved at higher 

GA concentrations. In contrast, catechin (diphenol) and EGCG (triphenol) were 

detrimental for gelation and emulsification of MP at the same addition level. To prepare 

emulsion composite gels with less textural hindrances, it was necessary to reduce the 

quantity of catechin and EGCG to less than 30 µmol. Protein aggregation and insolubility 

caused by these large phenols, especially at higher concentrations, were responsible their 

less tolerance amount for MP gelation.   

The efficacy of phytophenols for improving MP functionality depends on oxidative 

conditions and specific phenolic molecules. Both texture-related properties and antioxidant 

activities should be considered when plant phenols are used in protein matrix-based and 

fat-containing processed meat. Because protein functionality changes are phenol 

concentration-dependent, it is essential to apply them at appropriate dosage levels to 

maximize the benefits and avoid unwanted consequences. Further application research is 

required to examine the behavior of phenolic compounds in real comminuted muscle food 

systems. Moreover, the combination effects of phenolic compounds with different 

structural characteristics should be investigated as in most processed meat products, total 

plant extracts or spices instead of individual compounds are utilized.  
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