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1 Supplementary Note 1

In this work, we use CheMBL [1] as the pre-trained dataset. CheMBL is a chemical database of bioactive

molecules with drug-like properties and it is a free database open to the public. [2] The CheMBL26 is the

current version of ChEMBL, updated in March 2020. There are over 1.9 million molecules in the CheMBL26

dataset.

Supplementary Table 1: The summary of all datasets.

Datasets Task Total Train Validation Test

Unlabeled data
CheMBL Pre-training 1936342 1926342 10000 -

(pre-train)

LD50∗[3] Regression 7413 5931 - 1482

Labeled data IGC50[4, 5, 3] Regression 1792 1434 - 358

(fine-tune) LC50†[3] Regression 823 659 - 164

LC50DM†[3] Regression 353 283 - 70

LogP [6] Regression 8605 8199 - 406

FreeSolv[7] Regression 643 513 65 65

Lipophilicity[7] Regression 4200 3360 420 420

BBBP[7] Classification 2042 1631 204 204

*The LD50 dataset was originally from https://chem.nlm.nih.gov/chemidplus/ and used in Ref. [3];

†LC50 and LC50DM datasets wereoriginally from http://cfpub.epa.gov/ecotox/ and used in Ref. [3]

For downstream tasks, four toxicity datasets were studied in our work, namely oral rate LD50, 40 h

Tetrahymenapyriformis IGC50, 96 h fathead minnow LC50, and 48 h Daphnia Magna LC50DM, the basic

information of toxicity datasets are shown in Supplementary Table 1. Among them, LD50 measures the

number of chemicals that can kill half of the rats when orally ingested. The LD50 represents the amount

of chemicals that can kill half of the rats when orally ingested. It was originally from https://chem.nlm.

nih.gov/chemidplus/. IGC50 records the 50% growth inhibitory concentration of Tetrahymena pyriformis

organism after 40h.[4, 5] LC50 reports at the concentration of test chemicals in the water in milligrams

per liter that cause 50% of fathead minnows to die after 96h. The last one is LC50DM, which represents

the concentration of test chemicals in the water in milligrams per liter that cause 50% Daphnia Magna

to die after 48h. LC50 and LC50DM were originally from http://cfpub.epa.gov/ecotox/. The unit of

toxicity reported in these four data sets is −log10 mol/L. The sizes of these four data sets vary from 353

to 7413, which poses a challenge for a predictive model to achieve consistent accuracy and robustness. For

the partition coefficient, the octanol-water partition coefficients, prediction task, the training set contained

8199 molecules and the test set included 406 components. All components in the test set were approved as

organic drugs by the Food and Drug Administration (FDA). The logP values, for all training and test sets

were compiled by Cheng et al.[6], and all logP values ranged from -4.64 to 8.42 (Supplementary Table 1).

The three datasets Free Solvation (FreeSolv), Lipophilicity, and the Blood–brain barrier penetration

(BBBP) are derived from the work of MoleculeNet[7]. ESOL contains 1128 molecules paired with aqueous

solubility. This dataset has been used to estimate aqueous solubility directly from molecular structure.[8].

The FreeSolv dataset contains 643 compounds, and the labels include both experimental and calculated

hydration free energy of small molecules in water.[9] The unit of the label is kilocalorie per mole (kcal/mol).

Lipophilicity is a dataset contains 4200 compounds, which are derived from ChEMBL database[10]. The

measured octanol/water distribution coefficient (logD) of the compound was used as the label. In this study,

we applied for different random numbers and split the dataset into training, validation, and test datasets

10 times according to the ratio of 80/10/10. The split ratio of the dataset is the same as that used by

MoleculeNet[7]. For the task of classification, the Blood-brain barrier penetration (BBBP) dataset is used in

this study. BBBP contains 2042 small molecules and original from a study on the modeling and prediction of
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the barrier permeability.[11] The binary labels for compound permeability properties are used in this study.

Following MoleculeNet[7], scaffold splitting is used to split the BBBP dataset into training, validation, and

test set follows the ratio of 80/10/10.

Supplementary Table 2: A total of 51 symbols are used to split SMILES strings

Index 0 1 2 3 4 5 6 7 8 9

Symbol c C ( ) O 1 2 = N @

Index 10 11 12 13 14 15 16 17 18 19

Symbol [ ] n 3 H F 4 - S Cl

Index 20 21 22 23 24 25 26 27 28 29

Symbol / s o 5 + # . \ Br 6

Index 30 31 32 33 34 35 36 37 38 39

Symbol P I 7 Na % 8 B 9 Si 0

Index 40 41 42 43 44 45 46 47 48 49

Symbol Se K se Li As Zn Ca Mg Al Te

Index 50

Symbol te

Additionally, we statistic the length of SMILES for all molecules. As listed in Supplementary Table 2,

a total of 51 symbols are used to split these SMILES strings. The distribution of SMILES string lengths in

the CheMBL is shown in Supplementary Figure 1a, and the majority of SMILES are within 254 in length.

Therefore, in this work, we choose data with SMILES length no greater than 254 to pre-train. The exact

number in the training set is 1,926, 342, and 10 thousand SMILES strings were randomly selected as a

validating set. The basic information of CheMBL used in pre-training is shown in Supplementary Table

1. The distributions of SMILES string lengths for toxicity and logP datasets are shown in Supplementary

Figure 1b. Only one SMILES string on the LD50 dataset has a length of more than 254, with a length of

284. Therefore, in the downstream tasks, we truncate these sequences that exceeded the limit length and

input only the first 254 symbols. All these datasets are also available at https://weilab.math.msu.edu/

DataLibrary/3D/.

Supplementary Figure 1: The distributions of SMILES string lengths. a. The ChEMBL database. b Four toxicity datasets.
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2 Supplementary Note 2

In this work, three different evaluation metrics, including the squared Pearson correlation coefficient

(R2), root mean squared error (RMSE), and mean absolute error (MAE), were used to evaluate the perfor-

mances of different regression model.

The Pearson correlation coefficient is are defined as below:

R =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(1)

where xi is the value of the x variable in ith sample, x̄ is the mean of the values of the x variable, yi is the

value of the y variable in the ith sample, ȳ is mean of the values of the y variable. The squared Pearson

correlation coefficient (R2) explains the relationship between the x variable and y variable.

The root mean squared error (RMSE) is defined as below:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

where yi and ŷi are predicted value and true value of ith sample respectively.

The mean absolute error (MAE) measures the mean difference between the prediction and the true

value,

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

where yi and ŷi are predicted value and true value of ith sample respectively.

For classification task, the accuracy is simply the rate of correct classification. The receiver operating

characteristic (ROC) curve is a graphical plot that illustrates the diagnostic ability of a binary classifier

system as its discrimination threshold is varied. The false positive rate (FPR) and true positive rate (TPR)

are used as the axis. FPR and TPR are defined as follows:

FPR =
false positive

false positive + true negative
(4)

TPR =
true negative

true negative + false negative
(5)

The area under the receiver operating characteristic convex hull (AUC-ROC) is used in this work to evaluate

the performance of the classification model.
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3 Supplementary Note 3

3.1 Input processing

In this work, all input SMILES strings for bidirectional transformer need to be processing. A total of

51 symbols, as listed in Supplementary Table 2, are used to split these SMILES strings. We add a ‘< s >’

symbol and a ‘< \s >’ at the beginning and end of each input SMILES, which represent the beginning and

the end of each input, respectively. Besides, the ‘< unk >’ is used to represent some undefined symbols.

Since the length of SMILES varies from molecule to molecule, the ‘< pad >’ is used as a padding symbol to

fill in short inputs to reach the preset length. For the self-supervised learning (SSL) -based pre-training, the

15% symbol of the input SMILES needs to be operated. Among these 15% symbols, 80% of symbols were

masked, 10% of the symbols were unchanged, and the remaining 10% were randomly replaced.

3.2 Bidirectional transformer model parametrization

Supplementary Figure 2: The whole structure of the bidirectional encoder from transformers used in pre-training.

SSL-based pre-training Similar with the architecture of bidirectional encoder representations from trans-

formers (BERT)[12], our pre-training model is a multi-layer bidirectional transformer encoder, as shown in

Supplementary Figure 2. Each transformer layer contains two sub-layers. The first is a multi-head self-

attention layer, and the second is a fully connected feed-forward neural network. The residual connection is

applied to each of the two sub-layers, followed by layer normalization.[13] Each transformer layer maps the

output features from the former transformer layer or the embedded features from the input into different

nonlinear space. The attention mechanism used in the transformer encoder is scaled dot-product attention

and it is formulated as follow,

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V. (6)

The Q, K, and V , named query matrix, key matrix, and value matrix, are mapping from input data. The

dot products of the query matrix and key matrix are divides by the scaling factor
√
dk, where the dk is

the embedding dimension. In practice, a multi-head self-attention mechanism is applied in the transformer

encoder, where different heads could pay attention to various aspects and improve performance. On the

top of the N transformer encoder layers, there is a linear layer transforming the embedding dimension into
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the vocabulary size. Finally, the softmax function is used to select the maximum probability value of each

masked location and report the corresponding prediction result.

The proposed model is based on Fairseq [14], which is a Sequence-to-Sequence Toolkit written in Python

and PyTorch [15], and slightly modified so that it can be used for molecular analysis. In this work, the pre-

training bidirectional transformer model contains 8 Transformer encoder layers, the embedding dimension is

set to 512, the number of self-attention heads is 8, and the embedding size of fully connected feed-forward

layers is 1024. The maximum sequence length is set to 256, including the start and terminate symbols. For

better convergence, the Adam optimizer [16] is used in the pre-training and fine-tune, the Adam betas are

(0.9, 0.999), and the weight decay is 0.1. Besides, a warming-up strategy is applied for the first 4000 updates

and the total update steps are one million, the maximum learning rate is set to 0.0001 in this strategy. The

cross-entropy was applied to measure the difference between the predicted symbols and the real symbols

at the masked position. The model is trained on six Tesla V100-SXM2 GPUs and the maximum sequence

number in each GPU is set to 64.

SSL-based and SL-based fine-tuning There are two strategies to be used in the fine-tuning stage: self-

supervised learning (SSL) -based fine-tuning of task-specific data without using their labels and sequential

supervised learning (SL) -based fine-tuning of task-specific data with their labels. For SSL-based fine-tune,

the pre-trained model is fed with the input data of the downstream task-specific datasets, including both

training sets and test sets. For each SMILES string, we randomly select 15% symbols to be a training-

validation set in our loss function. Only 50% symbols of the set were masked and the remaining 50%

symbols of the set were unchanged. A warming-up strategy is also applied for the first 500 updates. The

total update steps are 2000. The maximum learning rate is set to 0.00001 in this stage. In the last hidden

layer, the embedded vector of length 512 correspondings to the first special symbol < s > is used for molecular

property prediction. Supplementary Figure 3 shows the workflow of generating molecular fingerprints from

the SSL-based fine-tuned model.

Supplementary Figure 3: Workflow for generating molecular fingerprints from the pre-trained and SSL-based fine-tuned model.

Three two mask operations, ’mask‘ and ’no changing‘, are retained in the self-supervised fine-tuning stage. The labels of task-

specific data are disregarded in the SSL-based fine-tuning stage. Here, < s > is a special leading symbol added in front of every

input SMILES, and < \s > is a terminating symbol. At the stage of fingerprints generation, < s >’s embedding vector from

the bidirectional encoder is utilized to represent the molecular fingerprint (BT-FP).

For sequential SL-based fine-tuning, the labels of task-specific data are utilized. The pre-trained model

will be fed with data from the training set of the task-specific dataset, and no additional ’mask’ operations

are required for the input SMILES. The Adam optimizer is set as the same as that of pre-training. The

maximum learning rate is set to 10−5. The warming-up strategy is used for the first 500 updates and the total

update steps are 5000 for each dataset. The mean square error is used in this fine-tuning stage, as shown

in Supplementary Figure 4. All models were trained on six Tesla V100-SXM2 GPUs and the maximum

sequence number in each GPU is set to 64.
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Supplementary Figure 4: Workflow for generating molecular fingerprints from the pre-trained and sequential supervised learning

(SL) fine-tuned model. Labeled task-specific data are employed in the sequential SL-based fine-tuning stage. At the stage of

fingerprints generation, < s >’s embedding vector before last linear layer is utilized to represent the molecular fingerprint

(BTs-FP).

3.3 Algebraic graph model parametrization

In order to select a general AG-FP for all four toxicity data sets, we need to combine the kernel function

and graph matrix type properly. For the sake of convenience, we use the notation AGMΩ,β,τ , to indicate the

AG-FPs generated by using interactive matrix type M with kernel function ω and corresponding kernel

parameters β and τ . Here, M = {Adj, Lap} represents a set of adjacency matrix and Laplacian matrix.

ω = {E,L} refers to a set of generalized exponential and generalized Lorentz kernels. In addition, the kernel

parameter β = κ if ω = E, and β = υ if ω = L. And τ is used such that ηk1k2 = τ(r̄k1 + r̄k2), where k̄k1 and

r̄k2 are the van der Waals radii of element type k1 and k2, respectively. Kernel parameters β and τ as selected

based on the cross validation with a random split of the training data. It has been shown that multiscale

information can boost the performance of predictor. [17, 18] In this work, we consider at most two kernels.

As a straightforward notation extension, two kernels can be parametrized by AGM1,M2

ω1,β1,τ1;Ω2,β2,τ2
. To attain

the best performance using AG-FP, the kernel parameters need to be optimized. We vary β, both τ and κ,

from 0.5 to 6 with an increment of 0.5, while τ values are chosen from 0.5 to 6 with an increment of 0.5. The

high values of the power order such as β ∈ {10, 15, 20} are also considered to approximate the idea low-pass

filter.[19] We use the method of 5-fold cross-validation (CV) to select the kernel hyperparameters M, Ω, β

and τ . Supplementary Figure 5a shows the CV results of the single-kernel model (AGM1

ω1,β1,τ1
), and R2 is

used as the evaluation metrics. Then based on the optimal kernel parameters in the single-kernel model, the

two-kernel model, AGM1,M2

ω1,β1,τ1;Ω2,β2,τ2
, can be optimized by using 5-fold CV on training sets. Supplementary

Figure 5b in the supplement material reports the best models with associated R2 in this experiment. All

cross-validations were performed for toxicity training sets, and the scores were based on the mean value of

R2 in the four training sets.

For the toxicity and logP datasets, there are 10 commonly occurring element types, i.e., {H, C, N,

O, F, P, S, Cl, Br, I}, which means 100 element interactive pairs will form based on the combinations of

these 10 element types in molecules. For adjacency matrices, only positive eigenvalues are considered. Note

that Laplacian matrices are positive semidefinite. As discussed in the Methods section, we can compute

nine descriptive statistical values, namely the maximum, minimum, average, summation, median, standard

deviation, and variance of all eigenvalues. Another two values are the number of considered eigenvalues

and the sum of the second power of eigenvalues. This gives rise to a total of 900 features for one kernel,

which means that we can get an 1800 dimension AG-FP for each molecule if we use two-kernel information.

The optimal two-kernel algebraic graph models are AGLap,Lap
L,10,0.5;L,20,0.5, and the average R2 of all four toxicity

datasets is 0.631.

For the partition coefficient dataset, we also use two-kernel information as the final AG-FPs. There are
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Supplementary Figure 5: Squared Pearson correlation coefficients (R2) from 5-fold cross-validation of AGMΩ,β,τ , and

AGM1,M2
ω1,β1,τ1;Ω2,β2,τ2

on the training data of four toxicity datasets are plotted against different values of τ and β. a. The best

hyperparameters and R2 for these one-scale models are found to be (AGAdj
E,1.5,0.5, average R2 = 0.616), (AGAdj

L,4.5,0.5, average

R2 = 0.616), (AGLap
E,5.5,0.5, average R2 = 0.610) and (AGLap

L,10,0.5, average R2 = 0.620) from left to right separately. b. Based on

the best one-scale model, the best hyperparameters and R2 for these multiscale models are found to be (AGLap,Adj
L,10,0.5;E,6,0.5, av-

erage R2 = 0.628), (AGLap,Adj
L,10,0.5;L,20,0.5, average R2 = 0.629), (AGLap,Lap

L,10,0.5;E,6,0.5, average R2 = 0.627) and (AGLap,Lap
L,10,0.5;E,20,0.5,

average R2 = 0.631) from left to right separately.

the same 10 element types as for toxicity datasets and there are also 100 element interactive pairs that will

form in each molecule. As shown in Supplementary Figure 6a, we firstly selected the best hyperparameters for

these one-scale models, which are AGAdj
E,4.5,1.0 (R2 = 0.798), AGAdj

L,2.0,1.0 (R2 = 0.799), AGLap
E,1.5,1.0 (R2 = 0.81),

and AGLap
L,10,1.5 (R2 = 0.811). Based on the optimal one-scale model (AGLap

L,10,1.5), the best multiscale model

is found to be AGLap,Adj
L,10,1.5;E,5,4, as shown in Supplementary Figure 6b, the value of R2 is 0.831. The gradient

boosting decision tree (GBDT) is used to select optimal algebraic graph model hyperparameters. The

parameters of GBDT vary with the size of the training set, which are listed in Supplementary Table 3.

For the FreeSolv dataset, we use two-kernel information as the final AG-FPs. There are the same 10

element types as for toxicity datasets and there are also 100 element interactive pairs that will be constructed

for each molecule. As shown in Supplementary Figure 7a, we firstly select the best hyperparameters for these

one-scale models. Based on the optimal one-scale model (AGAdj
L,10.0,0.5, R2 = 0.92), the best multiscale model

is found to be AGAdj,Adj
E,6.0,0.5;E,6,0.5, as shown in Supplementary Figure 7b, the value of R2 is 0.935. The

gradient boosting decision tree (GBDT) is used to select optimal algebraic graph model hyperparameters.

The parameters of GBDT vary with the size of the training set, which are listed in Supplementary Table 3.

For the lipophilicity dataset, we use two-kernel information as the final AG-FPs. There are the same

10 element types as for toxicity datasets and there are also 100 element interactive pairs that will form

in each molecule. As shown in Supplementary Figure 8a, we firstly selected the best hyperparameters for

these one-scale models. Based on the optimal one-scale model (AGLap
E,3.5,0.5, R2 = 0.672), the best multiscale

model is found to be AGLap,Lap
E,3.5,0.5;E,2.5,0.5, as shown in Supplementary Figure 8b, the value of R2 is 0.688. The

gradient boosting decision tree (GBDT) is used to select optimal algebraic graph model hyperparameters.

The parameters of GBDT vary with the size of the training set, which are listed in Supplementary Table 3.

For the BBBP dataset, we still use two-kernel information as the final AG-FPs. The deviation (DEV)
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Supplementary Figure 6: Squared Pearson correlation coefficients (R2) from 5-fold cross-validation of AGMΩ,β,τ , and

AGM1,M2
ω1,β1,τ1;Ω2,β2,τ2

on the training data of partition coefficient data sets are plotted against different values of τ and β.

a. The best hyperparameters and R2 for these one-scale models are found to be (AGAdj
E,4.5,1.0, R2 = 0.798), (AGAdj

L,2.0,1.0,

R2 = 0.799), (AGLap
E,1.5,1.0, R2 = 0.81) and (AGLap

L,10,1.5, R2 = 0.811) from left to right separately. b. Based on the best

one-scale model, the best hyperparameters and R2 for these multiscale models are found to be (AGLap,Adj
L,10,1.5;E,5,4, R2 = 0.831),

(AGLap,Adj
L,10,1.5;L,0.5,5.5, R2 = 0.829), (AGLap,Lap

L,10,1.5;E,0.5,1, R2 = 0.823) and (AGLap,Lap
L,10,1.5;E,1,4.5, R2 = 0.826) from left to right

separately.

is used in parameter selection. There are the same 10 element types as for toxicity datasets and there

are also 100 element interactive pairs will form in each molecule. As shown in Supplementary Figure 9a,

we firstly selected the best hyperparameters for these one-scale models. Based on the optimal one-scale

model (AGLap
L,20,0.5, DEV = 0.797), the best multiscale model is found to be AGLap,Adj

L,20,0.5;L,20,0.5, as shown in

Supplementary Figure 9b, the value of DEV is 0.795. The gradient boosting decision tree (GBDT) is used

to select optimal algebraic graph model hyperparameters. The parameters of GBDT vary with the size of

the training set, which are listed in Supplementary Table 3.

3.4 Feature fusion

Based on a large amount of unlabeled data, BT-FP can capture the overall information of molecules

after pre-training and fine-tuning. AG-FP, on the other hand, as insight based on physical and chemical

knowledge, can obtain more detailed information of molecular structure, including dihedral angle and relative

distance of atoms, with the help of algebraic graph theory. The proposed AGBT-FP in this work is a fusion

of BT-FP and AG-FP. The random forest (RF) is used to fuse BT-FP and AG-FP. First, we combine BT-FP

and AG-FP. Then the RF algorithm was used to select top 512 features. The parameters of RF vary with

the size of the training set. All parameters are listed in Supplementary Table 3. The final AGBT-FP’s

dimension is set to 512, which is the same as that for BT-FP’s.

3.5 Downstream machine learning algorithms

To compare the AGBT and other fingerprints’ performance on specific tasks, three machine learning

algorithms are used: gradient boosting decision tree (GBDT), single-task deep neural network (ST-DNN),
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Supplementary Figure 7: Squared Pearson correlation coefficients (R2) from 5-fold cross-validation of AGMΩ,β,τ , and

AGM1,M2
ω1,β1,τ1;Ω2,β2,τ2

on the FreeSolv data sets are plotted against different values of τ and β. a. The best hyperparame-

ters and R2 for these one-scale models are found to be (AGAdj
E,6.0,0.5, R2 = 0.907), (AGAdj

L,10.0,0.5, R2 = 0.92), (AGLap
E,2.5,1.0,

R2 = 0.899) and (AGLap
L,4.5,0.5, R2 = 0.899) from left to right separately. b. Based on the best one-scale model, the best

hyperparameters and R2 for these multiscale models are found to be (AGAdj,Adj
E,6.0,0.5;E,6,0.5, R2 = 0.935), (AGAdj,Adj

E,6.0,0.5;L,15,0.5,

R2 = 0.917), (AGAdj,Lap
E,6.0,0.5;E,6,0.5, R2 = 0.929) and (AGAdj,Lap

E,6.0,0.5;E,3.5,10, R2 = 0.923) from left to right separately.

and multitask deep neural network (MT-DNN).

Gradient boosting decision tree (GBDT). GBDT is a robust machine learning regressor. In this

approach, individual decision trees are successively combined in a stage-wise fashion to achieve the capability

of learning complex features. It uses both gradient and boosting strategies to reduce model errors. Compared

to the deep neural network (DNN) approaches, this ensemble method is robust, relatively insensitive to

hyperparameters, and easy to implement. Moreover, they are much faster to train than DNN. In fact,

for small data sets, GBDT can perform even better than DNN or other deep learning algorithms.[20, 21]

Therefore, GBDT has been applied to a variety of QSAR prediction problems, such as toxicity, solvation,

and binding affinity predictions.[22, 23]

The GBDT is used to predict the toxicity and logP in this work and implemented by the scikit-learn

package.[24] In this work, there are five data sets with their training data size varying from 283 to 8199. To

better compare feature performance, we set only two sets of parameters according to the size of the training

set for GBDT. The detailed values of these hyperparameters are given in Supplementary Table 3.

Single-task deep neural network (ST-DNN). A DNN mimics the learning process of a biological

brain by constructing a wide and deep architecture of numerous connected neuron units. A typical deep

neural network often includes multiple hidden layers. In each layer, there are hundreds or even thousands

of neurons. During learning stages, weights on each layer are updated by backpropagation. With a com-

plex and deep network, DNN is capable of constructing hierarchical features and model complex nonlinear

relationships. ST-DNN is a regular deep learning algorithm. It only takes care of one single prediction

task. Therefore, it only learns from one specific training dataset. A typical four-layer ST-DNN is showed

in Supplementary Figure 10a, where Ni (i = 1, ..., 4), represents the number of neurons in the ith hidden

layer.

Multitask deep neural network (MT-DNN). The multitask (MT) learning technique has achieved
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Supplementary Figure 8: Squared Pearson correlation coefficients (R2) from 5-fold cross-validation of AGMΩ,β,τ , and

AGM1,M2
ω1,β1,τ1;Ω2,β2,τ2

on the Lipophilicity data sets are plotted against different values of τ and β. a. The best hyperpa-

rameters and R2 for these one-scale models are found to be (AGAdj
E,4.0,0.5, R2 = 0.657), (AGAdj

L,15.0,1, R2 = 0.659), (AGLap
E,3.5,0.5,

R2 = 0.672) and (AGLap
L,20,2, R2 = 0.659) from left to right separately. b. Based on the best one-scale model, the best hyperpa-

rameters and R2 for these multiscale models are found to be (AGLap,Adj
E,3.5,0.5;E,5,1, R2 = 0.685), (AGLap,Adj

E,3.5,0.5;L,20,5, R2 = 0.694),

(AGLap,Lap
E,3.5,0.5;E,2.5,0.5, R2 = 0.683) and (AGLap,Lap

E,3.5,0.5;E,2.5,0.5, R2 = 0.688) from left to right separately.

much success in qualitative Merck and Tox21 prediction challenges.[25, 26, 27] In the MT framework, multiple

tasks share the same hidden layers. However, the output layer is attached to different tasks. This framework

enables the neural network to learn all the data simultaneously for different tasks. Thus, the commonalities

and differences among various data sets can be exploited. It has been shown that MT learning typically can

improve the prediction accuracy of relatively small data sets if it combines with relatively larger data sets in

its training. Supplementary Figure 10b is an illustration of a typical four-layer MT-DNN for training four

different tasks simultaneously. Suppose there are totally T tasks and the training data for the tth task are

(Xt
i , y

t
i)
Nt
i=1, where t = 1, ..., T , i = 1, ..., Nt, where Nt is the number of samples in the tth task, and Xt

i is

the feature vector for the ith sample in the tth task, yti is the label value of the ith sample in the tth task,

respectively. The purpose of MT learning is to simultaneously minimize the loss function:

argmin

T∑
t=1

Nt∑
i=1

L(yti , f
t(Xt

i , θ
t)), (7)

where f t is the prediction for the ith sample in the tth task by our MT-DNN, which is a function of the

feature vector Xt
i , L is the loss function, and θt is the collection of machine learning hyperparameters. A

popular cost function for regression is the mean squared error, which is formulated as:

L(yti , f
t(Xt

i , θ
t)) =

1

Nt

Nt∑
i=q

(yti − f t(Xt
i , θ

t))2. (8)

In this work, MT-DNN is only applied to predict the toxicity. The ultimate goal of MT-DNN learning

is to potentially improve the overall performance of multiple toxicity prediction models, especially for the

smallest dataset that performs relatively poorly in the ST-DNN. More concretely, it is reasonable to assume

11



Supplementary Figure 9: The deviation (DEV) from 5-fold cross-validation of AGMΩ,β,τ , and AGM1,M2
ω1,β1,τ1;Ω2,β2,τ2

on the BBBP

data sets are plotted against different values of τ and β. a. The best hyperparameters and DEV for these one-scale models

are found to be (AGAdj
E,10,4, DEV = 0.829), (AGAdj

L,20,0.5, DEV = 0.804), (AGLap
E,15,6, DEV = 0.823) and (AGLap

L,20,0.5, DEV =

0.797) from left to right separately. b. Based on the best one-scale model, the best hyperparameters and DEV for these

multiscale models are found to be (AGLap,Adj
L,20,0.5;E,3,6, DEV = 0.836), (AGLap,Adj

L,20,0.5;L,20,0.5, DEV = 0.795), (AGLap,Lap
L,20,0.5;E,20,4.5,

DEV = 0.835) and (AGLap,Lap
L,20,0.5;E,20,0.5, DEV = 0.796) from left to right separately.

that different toxicity indices share a common statistic pattern so that these different tasks can be trained

simultaneously when their feature vectors are constructed in the same manner. For our toxicity prediction,

four different tasks (LD50, IGC50, LC50, LC50DM data sets) are trained together. This leads to four output

neurons in the output layer, with each neuron being specific to one of four tasks.

The performance of deep neural network models depends on their architecture, input data dimension,

and hyperparameters. For BT-FP and AGBT-FP, the feature sizes are both 512, which means that the

network with the same architecture can be used to train these two sets of features. The input layer contains

512 neurons, followed by four hidden layers with 1024, 512, 512, and 512 neurons, respectively. For the

present regression problem, only one neuron in the final output layer. For AG-FP, it contains 1800 features,

and thus a more complex network structure is required. In this case, we set 1800 neurons in the input layer,

followed by 5 hidden layers with 2048, 1024, 512, 512, and 512 neurons, respectively. The output layer has

one neuron. Other network parameters are all the same for these three kinds of molecular features. The

stochastic gradient descent (SGD) with a momentum of 0.5 is used as an optimizer. We use 2000 epochs

to train all the networks. The mini-batch size is set to 8. The learning rate is set to 0.01 in the first 1000

epochs and 0.001 for the rest epochs. These hyperparameters are applied to both ST-DNN and MT-DNN.

All the DNN models are built and trained in Pytorch.[15]
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Supplementary Table 3: RF and GBDT parameters for different toxicity training-set sizes

Training-set Szie RF Parameters GBDT Parameters

> 1000 n estimators = 10000 n estimators = 10000

criterion = ‘mse’ max depth = 8

max depth = 8 min samples split = 4

min samples split = 4 learning rate = 0.01

min samples leaf = 1 subsample = 0.3

min weight fraction leaf = 0.0 max features=‘sqrt’

< 1000 n estimators = 10000 n estimators = 10000

criterion = ‘mse’ max depth = 7

max depth = 7 min samples split = 3

min samples split = 3 learning rate = 0.01

min samples leaf = 1 subsample = 0.2

min weight fraction leaf = 0.0 max features=‘sqrt’

Supplementary Figure 10: ST-DNN and MT-DNN framework. a) An illustration of a typical ST-DNN. Only one dataset is

trained in this network. Four hidden layers are included, ki (i = 1, 2, 3, 4) represents the number of neurons in the ith hidden

layer and Ni,j is the jth neuron in the ith hidden layer. Here, O1 is the single output for the model. b) An illustration of a

typical MT-DNN training four tasks (datasets) simultaneously. Four hidden layers are included in this network, ki (i = 1, 2, 3,

4) represents the number of neurons in the ith hidden layer and Ni,j is the jth neuron in the ith hidden layer. Here O1 to O4

represent four predictor outputs for four tasks.
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4 Supplementary Note 4

Supplementary Figure 11: Data and results of AGBT. a, Predicted results of AGBT-FPs with MT-DNN model for LD50

dataset (R2=0.671, RMSE=0.554 log(mol/L)). The box plots statistic R2 values for n=1482 independent samples examined

over 20 independent machine learning experiments. b, Predicted results of BT-FPs with MT-DNN model for LC50 dataset

(R2=0.783, RMSE=0.692 log(mol/L)). The box plots statistic R2 values for n=164 independent samples examined over 20 inde-

pendent machine learning experiments. c, Predicted results of AGBTs-FPs with MT-DNN model for LC50 dataset (R2=0.905,

RMSE=0.615 log(mol/L)). The box plots statistic R2 values for n=406 independent samples examined over 20 independent

machine learning experiments. The detail statistic values of box plots are listed in Supplementary Table 5

Supplementary Figure 12: Consensus R2 values of BT-FP and AGBT-FP predictions on three machine learning algorithms,

GBDT, STDNN, and MTDNN. a LD50 dataset, b LC50 dataset, c LC50DM dataset.
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Supplementary Figure 13: The AGBT-FPs of the LD50 and LC50 datasets were ranked by their feature importance.a Sorted

feature importance for the LD50 dataset. The top three features are from AG-FP. b Sorted feature importance for the LC50

dataset. The top three features are from AG-FP. For both datasets, 188/512 of the AGBT features are from AG-FPs and the

remaining 348/512 are from BT-FPs.

Supplementary Figure 14: Distribution of molecules in the three most important features of AGBT-FP. a The distribution of

the IGC50 dataset. b The distribution of the LC50 dataset. c The distribution of the LC50DM dataset.
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Supplementary Figure 15: The ratio refers to the rate of variability (variance) of the data explained by each principal component

through principal component analysis (PCA). For AGBT-FP (orange), the first 112 components are needed to represent 90%

variance, whereas for AGBTs-FP (green), only the first 48 components are needed to represent 90% of the variance.

Supplementary Figure 16: Application of algebraic graph theory methods to the analysis of cis-trans structures. a and b

Illustration of Trans-1,2-Dichlorocyclohexane and Cis-1,2-Dichlorocyclohexane, these two molecules share the same canonical

SMILES. c and d The trans- and cis- molecular subgraph GCl,C for the conditions AGAdj
E,1.0,1.0.
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5 Supplementary Note 5

Tanimoto coefficient, SA,B , is used in this work to calculate the degree of similarity between two

molecules. A higher average SA,B of the two datasets implies a higher similarity. Tanimoto coefficient,

SA,B , is defined as follow:

SA,B =

∑N
i=1 xiAxiB∑N

i=1 x
2
iA +

∑N
i=1 x

2
iB −

∑N
i=1 xiAxiB

. (9)

In this study, the similarity between the largest dataset LD50, which contains 7413 molecules, with other

three datasets are list in Supplementary Table 4

Supplementary Table 4: Similarity between the Largest Dataset LD50 with the other three datasetsa

Fingerprints IGC50(1792) LC50(823) LC50DM(353)

Estate2 0.964 0.973 0.982

FP2 0.886 0.928 0.941
a The number in the bracket is the total size of the dataset.

Supplementary Table 5: The detail statistical values for box plots in Figure 2f, Supplementary Figure 11a, b. The box plots

statistic R2 values for n=1482 (LD50), 358 (IGC50), n=164 (LC50), n=70 (LC50DM), and n=406 (LogP) independent samples

examined over 20 independent machine learning experiments.

Datasets LD50 IGC50 LC50 LC50DM LC50DM

Minima 0.647 0.818 0.757 0.817 0.901

Maxima 0.659 0.839 0.798 0.84 0.906

Median 0.656 0.829 0.774 0.83 0.904

1st quartile 0.649 0.827 0.766 0.824 0.904

3rd quartile 0.656 0.836 0.778 0.832 0.904

Average 0.654 0.831 0.773 0.829 0.904
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Supplementary Table 6: Comparison of the reported R2 of various predicting methods on the LD50, LC50, IGC50, LC50DM,

and FDA Approved Small-Molecule, data sets.

LD50 LC50 FDA

Method R2 Method R2 Method R2

AGBT-FP 0.671 AGBT-FP 0.776/0.783a AGBTs-FP 0.905

MACCS[20] 0.643 BTAMDL2[21] 0.750 ESTD-1[28] 0.893

FP2[20] 0.631 ESTDS[3] 0.745 Estate2[20] 0.893

HybridModel[29] 0.629 Daylight-MTDNN[20] 0.724 XLOGP3[6] 0.872

Daylight[20] 0.624 Hierarchical[29] 0.710 Estate1[20] 0.870

BESTox[30] 0.619 Single Model[22] 0.704 MACCS[20] 0.867

BTAMDL1[21] 0.605 Estate1 MTDNN[20] 0.694 ECFP[20] 0.857

Estate1[20] 0.605 Group contribution[29] 0. 686 ESTD-2[28] 0.848

Estate2[20] 0.589 HybridModel[29] 0.678 XLOGP3-AA[6] 0.847

ECFP[20] 0.586 Estate2[20] 0.662 CLOGP[6] 0.838

Hierarchical[22] 0.578 FDA[20] 0.626 Daylight[20] 0.819

Nearest neighbor[22] 0.557 FP2[20] 0.609 TOPKAT[6] 0.815

FDA[22] 0.557 MACCS[20] 0.608 xlogp2[6] 0.800

Pharm2D[20] 0.443 ECFP[20] 0.573 alogp98[6] 0.777

ERG[20] 0.392 Pharm2D[20] 0.528 KOWWIN[6] 0.771

ERG[20] 0.348 HINT[20] 0.491

IGC50 LC50DM

Method R2 Method R2

AGBT-FP 0.842 AGBTs-FP 0.830

HybridModel[29] 0.81 HybridModel[29] 0.616

Hierarchical[22] 0.719 Hierarchical[22] 0.695

FDA[29] 0.747 Single model[29] 0.697

GroupContr.[29] 0.682 FDA[29] 0.565

NearestNei.[29] 0.6 GroupContr.[29] 0.671

Daylight-BTAMDL1[21] 0.724 NearestNei.[29] 0.733

Estate2[20] 0.742 Daylight-BTAMDL2[21] 0.700

Estate1[20] 0.735 Estate2[20] 0.623

Daylight[20] 0.717 Estate1[20] 0.684

FP2[20] 0.681 Daylight[20] 0.694

ECFP[20] 0.647 FP2[20] 0.357

MACCS[20] 0.643 ECFP[20] 0.452

Pharm2D[20] 0.384 MACCS[20] 0.434

ERG[20] 0.274 Pharm2D[20] 0.275

DG-GL[31] 0.781 ERG[20] 0.336
a only BT-FP is used as input;
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Supplementary Table 7: Performance of descriptors generated with the AGBT framework on 8 datasets. The 5 descriptors

generated by our method, AG-FP, BT-FP, BTs-FP, ABGT-FP, AGBTs-FP obtained, 1, 3, 4, 8, 7 best scores on 8 datasets for

23 evaluation metrics, respectively.∗

Datasets LD50 IGC50 LC50

Metric R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

AG-FP 0.647a 0.573a 0.423a 0.788d 0.454d 0.315d 0.713d 0.786d 0.535d

BT-FP 0.667d 0.557d 0.406d 0.839d 0.395d 0.284d 0.783d 0.692d 0.492d

BTs-FP 0.617d 0.602d 0.434d 0.798d 0.445d 0.313d 0.75d 0.734d 0.53d

AGBT-FP 0.671d 0.554d 0.401d 0.842d 0.391d 0.273d 0.776d 0.703d 0.491d

AGBTs-FP 0.612d 0.606d 0.435d 0.805d 0.437d 0.304d 0.75d 0.734d 0.525d

Datasets LC50DM LogP FreeSolv

Metric R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

AG-FP 0.75d 0.874d 0.611d 0.838d 0.805d 0.555d 0.935a 1.018a 0.622a

BT-FP 0.763d 0.855d 0.609d 0.895d 0.643d 0.332d 0.919c 1.125c 0.705c

BTs-FP 0.829d 0.747d 0.536d 0.903d 0.621d 0.294d 0.933c 1.036c 0.575c

AGBT-FP 0.781d 0.824d 0.604d 0.885d 0.677d 0.404d 0.933c 0.994c 0.594c

AGBTs-FP 0.83d 0.743d 0.527d 0.905d 0.615d 0.299d 0.931c 1.039c 0.583c

Datasets Lipophilicity BBBP

Metric R2 RMSE MAE AUC-ROC Accuracy

AG-FP 0.699a 0.664a 0.492a 0.677b 0.559b

BT-FP 0.726c 0.626c 0.466c 0.736c 0.642c

BTs-FP 0.774c 0.570c 0.411c 0.763b 0.632b

AGBT-FP 0.711c 0.663c 0.504c 0.738a 0.623a

AGBTs-FP 0.776a 0.579a 0.418a 0.761b 0.632b

* Best performances are produced on a GBDT, b RF, c STDNN, and d MTDNN;

Supplementary Table 8: Standard deviation of R2, RMSE, and MAE on FreeSolv and Lipophilicity datasets for 10 replicate

experiments. To eliminate systematic errors in the machine learning models, for each machine learning algorithm in each

experiment, the consensus of the predicted values from 20 different models (generated with different random seeds) was taken

for each molecule.

Datasets FreeSolv Lipophilicity

Metric R2 RMSE MAE R2 RMSE MAE

AG-FP ±0.030 ±0.275 ±0.106 ±0.035 ±0.029 ±0.018

BT-FP ±0.024 ±0.291 ±0.112 ±0.030 ±0.034 ±0.020

BTs-FP ±0.022 ±0.236 ±0.100 ±0.019 ±0.026 ±0.013

AGBT-FP ±0.027 ±0.217 ±0.090 ±0.038 ±0.029 ±0.020

AGBTs-FP ±0.020 ±0.197 ±0.090 ±0.024 ±0.019 ±0.010
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