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ABSTRACT OF DISSERTATION 

 
 
 

NOVEL COMPUTATIONAL METHODS 
FOR CANCER GENOMICS DATA ANALYSIS 

 
Cancer is a genetic disease responsible for one in eight deaths worldwide. The 

advancement of next-generation sequencing (NGS) technology has revolutionized the 
cancer research, allowing comprehensively profiling the cancer genome at great resolution. 
Large-scale cancer genomics research has sparked the needs for efficient and accurate 
Bioinformatics methods to analyze the data. The research presented in this dissertation 
focuses on three areas in cancer genomics: cancer somatic mutation detection; cancer 
driver genes identification and transcriptome profiling on single-cell level.  

NGS data analysis involves a series of complicated data transformation that convert 
raw sequencing data to the information that is interpretable by cancer researchers. The first 
project in the dissertation established a robust, reproducible and scalable cancer genomics 
data analysis workflow management system that automates the best practice mutation 
calling pipelines to detect somatic single nucleotide polymorphisms, insertion, deletion and 
copy number variation from NGS data. It integrates mutation annotation, clinically 
actionable therapy prediction and data visualization that streamlines the sequence-to-report 
data transformation.  

In order to differentiate the driver mutations buried among a vast pool of passenger 
mutations from a somatic mutation calling project, we developed MEScan in the second 
project, a novel method that enables genome-scale driver mutations identification based on 
mutual exclusivity test using cancer somatic mutation data. MEScan implements an 
efficient statistical framework to de novo screen mutual exclusive patterns and in the 
meantime taking into account the patient-specific and gene-specific background mutation 
rate and adjusting the heterogenous mutation frequency. It outperforms several existing 
methods based on simulation studies and real-world datasets. Genome-wide screening 
using existing TCGA somatic mutation data discovers novel cancer-specific and pan-
cancer mutually exclusive patterns.  

Bulk RNA sequencing (RNA-Seq) has become one of the most commonly used 
techniques for transcriptome profiling in a wide spectrum of biomedical and biological 
research. Analyzing bulk RNA-Seq reads to quantify expression at each gene locus is the 
first step towards the identification of differentially expressed genes for downstream 
biological interpretation. Recent advances in single-cell RNA-seq (scRNA-seq) 



 
 

technology allows cancer biologists to profile gene expression on higher resolution cellular 
level. Preprocessing scRNA-seq data to quantify UMI-based gene count is the key to 
characterize intra-tumor cellular heterogeneity and identify rare cells that governs tumor 
progression, metastasis and treatment resistance. Despite its popularity, summarizing gene 
count from raw sequencing reads remains the one of the most time-consuming steps with 
existing tools. Current pipelines do not balance the efficiency and accuracy in large-scale 
gene count summarization in both bulk and scRNA-seq experiments. In the third project, 
we developed a light-weight k-mer based gene counting algorithm, FastCount, to 
accurately and efficiently quantify gene-level abundance using bulk RNA-seq or UMI-
based scRNA-seq data. It achieves at least an order-of-magnitude speed improvement over 
the current gold standard pipelines while providing competitive accuracy.  

 
 
KEYWORDS:  Cancer Genomics, Pipeline Framework; Somatic Mutation, Driver 
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CHAPTER 1. INTRODUCTION 

1.1 Cancer Biology 

The human body is made of approximately 40 trillion cells (Bianconi et al., 2013). 

Norm cells live harmoniously to form the basic units of life and together to form more 

complex tissues and organs. The functions of a cell are determined by the genetic material 

hosted within the cell in structures called chromosomes. Genes are contained in 

chromosomes that carry hereditary information stored in long strings of DNA bases, 

adenine (A), guanine (G), cytosine (C), and thymine (T). The DNA sequence in the gene 

precisely determines the unique structure and functions of each type of protein in the cell: 

DNA sequences are copied into RNA in a process called transcription; a gene that is 

transcribed is said to be actively expressed. The transcription of a gene yields an RNA 

molecule. And the base sequences in the RNA molecule are translated to synthesize 

protein. There are over 30,000 genes in the human genome. However, not all genes in a 

cell are expressed and translated into proteins. The expression of different combination of 

genes within individual cells creates structurally and functionally diverse cell types. 

Therefore, both DNA sequences and gene expression patterns control the protein synthesis 

which in turn determines the phenotypes of the cell. 

1.1.1 Cancer Genome 

Cancer arises as a result of genomic changes that have occurred in a cell. Similar 

to normal body cells, a cancer cell carries a copy of the genome from its progenitor 

fertilized egg. However, cancer cells acquire a set of different DNA sequences from the 

normal cell genome, called somatic mutations. They occur as a consequence of errors when 

cells divide or exposure to carcinogenic substances that damage DNA, such as certain 
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chemicals in tobacco smoke, radiation or ultraviolet rays from the sun. Somatic mutations 

may have several types of DNA sequence changes: 1) point mutations are single nucleotide 

variations (SNVs) affecting only one base of the gene; 2) insertions or deletions (INDELs) 

of segments of DNA; 3) copy number alterations (CNAs) are the loss or gain of genetic 

material from around 1000 bases of a chromosome to the whole chromosome; 4) 

chromosome rearrangements when a piece of a chromosome breaks and attacheds to 

another chromosome. These mutations affect the structure, function, and formation of the 

corresponding proteins. The abnormal proteins change the behavior of normal cells that 

cause healthy cells to become cancerous. For example, it iswell known that the p53 tumor 

suppressor gene is a major guardian of the cancer cell (Petitjean, Achatz, Borresen-Dale, 

Hainaut, & Olivier, 2007). p53 works actively in normal cell to prevent uncontrolled cell 

growth. But some types of mutations in the TP53 gene give rise to mutant p53 proteins that 

lose the tumor suppressive function. Cancerous cells take the advantage of the 

compromised protein function becoming more invasive, metastatic and resistant.  

1.1.2 Tumor heterogeneity 

The somatic mutations found in the genome of a cancer cell are the result of 

continuous acquisition of mutations and nature selection of cells with growth advantage 

during the lifetime of cancer development, analogous to Darwinian evolution framework. 

In cancer genomics, a clone is defined as a group of cells from the same ancestral cell. As 

a nonmalignant cell evolves to a malignant one through the continuous and random 

accumulation of genetic alterations, the stochastic nature of this process results in clones 

of cells with diverse phenotypes. Some of the changes are neutral rendering no 

consequences to the cells, while some may give rise to cell clones with different properties. 
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For example, a clone carrying errant mutations may activate growth factor signaling to 

promote survival or proliferation. Such clone can outgrow other surrounding cells causing 

the increase of the clone population. On the other hand, a clone with senescence signaling 

might be taken over by other clones leading to the declined or loss of the clone. Therefore, 

tumors are evolving overtime and space and composed of distinct cell clones, known as 

tumor heterogeneity (Burrell, McGranahan, Bartek, & Swanton, 2013). Tumor 

heterogeneity is one of the largest challenges in the cancer therapy development. Although 

there are many FDA approved cancer therapies, as well as the ones in clinical trials, there 

is no single drug likely to be effective for any cancer types. In many cases, a cancer initially 

responses to a therapy but acquires drug resistance clones over time leading to cancer 

relapse. Therefore, understanding the tumor heterogeneity is important in cancer research 

to overcome drug resistance and develop personalized medicine. 

1.2 Next-generation sequencing  

The rapid development in Next-generation sequencing (NGS) technology allows 

cancer research to comprehensively characterize the cancer somatic mutations and tumor 

heterogeneity with less cost. Traditional sequencing techniques such as the single-gene or 

array-based methods only allow the genomic exploration of limited targets in low-

throughput fashion (Meyerson, Gabriel, & Getz, 2010). For example, Sanger sequencing 

only sequences a single DNA fragment at a time. Researchers are limited to sequence small 

stretches of genomic DNA for a small number of samples due to the high cost and low 

throughput. NGS technique enables massive parallel sequencing of millions of DNA 

fragments providing a cost-effective way to screening genetic variants on thousands of 

gene with higher sensitivity, discovery power and sample throughput.  
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NGS DNA and RNA Sequencing technologies are complementary to each other in 

cancer research. Genetic mutations in cancer genome can be detected directly at DNA-

level with DNA sequencing. Since mutations on DNA-level have consequences on RNA 

transcription, gene expression analysis using RNA sequencing technique is often used to 

predict the functionality of genetic changes.  

1.2.1 DNA Sequencing 

The goal of DNA sequencing (DNA-seq) is to identify genetic irregularities on the 

genome, such as somatic SNVs, insertions, deletion, CNAs and structure rearrangement, 

that drive the growth of cancers. 

Depending on the sequencing library preparation procedures, DNA sequencing can 

be applied to the whole genome sequencing (WGS), whole exome sequencing (WES) and 

pre-selected regions of interests (gene panels). WGS provides the information of nearly 

complete DNA sequences of the genome (achieving around 95%-98% (Kamps et al., 

2017)). WES requires a library enrichment step for all exons. It offers a cost-effective way 

to survey all the protein-coding regions of the genome (known as the exome) which covers 

about 1% regions of WGS.  

WGS and WES platforms have been implemented in many large well-known 

national and international collaborations for the comprehensive characterization of the 

genomic landscape of human cancer. The Cancer Genome Atlas (Cancer Genome Atlas 

Research, 2013) (TCGA) has analyzed over 11,000 individuals representing 33 different 

types of cancers revealing common and cancer-specific somatic mutations and signaling 

pathways. International Cancer Genome Consortium(International Cancer Genome et al., 

2010) (ICGC) have collected and analyzed cancer samples globally, spanning over 76 
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projects. Such sequencing efforts have revealed genetic aberrations that promote tumor 

initiation, development, and metastasis, which has substantially advanced our knowledge 

in cancer biology. However, DNA-seq is limited in accessing the gene expression to 

evaluate the potential functional changes. 

1.2.2 RNA Sequencing 

RNA-seq addresses the limitation of DNA-seq on the transcriptome level. The 

conventional bulk RNA-seq, and most recently, single-cell RNA-seq (scRNA-seq) are used 

for sample level and cellular level gene expression profiling. The bulk RNA-seq measures 

the gene expression levels from the bulk population of millions of input cells. The resulting 

expression value for each gene is the average of all the input cells. It is often used in the 

comparative transcriptomics to measure the global gene expression changes under different 

conditions. The expression results can then be used for downstream analysis, such as cancer 

subtype classification or identifying significantly changed cancer pathways. However, 

there are also important biological questions that bulk RNA-seq is insufficient to answer. 

Cancer cells are composed of many distinct cell types and clones. It is hard to differentiate 

whether the gene expression changes are due to the cellular composition of the tumor 

sample or due to the underlying phenotype changes based on bulk RNA-seq. In these 

settings, scRNA-seq quantifying the gene expression at the single-cell level provides high-

resolution profiling for cancer studies. It has been increasingly used to discover new types 

and states of cells, and analyze the evolutionary patterns and resulting heterogeneity in 

cancer.  

The conventional RNA-seq technology has been developed more than a decade. 

The standard workflow begins with library preparation including RNA extraction, mRNA 
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enrichment, rRNA depletion and complimentary DNA (cDNA) synthesis, followed by 

NGS sequencing. It captures the expression levels of thousands of genes at once with high 

accuracy. Since RNA is extracted from groups of millions of cells, this technology is also 

known as bulk RNA-seq. Bulk RNA-seq measures the average expression level for each 

gene across all the cells. They provide vast amount of information for comparing gene 

expression differences in multiple conditions, e.g., tumor vs normal tissues, treated vs non-

treated response as well as identifying cancer biomarkers. Bulk RNA-seq design assumes 

that cells for a given tissue in question are homogenous and gene expression averages 

across a pool of cells. This process ignores cell-to-cell variability and drops cell-level 

information which makes it insufficient for studying the heterogeneous tumor cell system. 

In recent years, technical advancement in NGS and cell separation methods has 

made the gene expression profiling at cellular level possible using single cell RNA-seq 

(scRNA-seq). Several modern scRNA-seq platforms have been developed, such as 10X 

Chromium, DropSeq and Fluidigm C1, capable of profiling hundreds to thousands of 

individual cells at once. Those methods use Unique Molecular Identifiers (UMIs) and cell 

barcodes and have been optimized for single cell expression profiling with low starting 

amounts of RNA. One of the key steps in scRNA-seq is cell isolation where cells can be 

physically separated using fluorescence-activated cell sorting (FACS) or they can be 

trapped inside hydrogel droplets. Next, within each isolated cell, RNA molecules are 

extracted and tagged with UMIs and Cell barcodes. Then cells break to release the mRNAs 

for pooled PCR amplification and sequencing. The UMIs and Cell barcodes are important 

single cell specific information used in the data analysis. Each mRNA within a cell is 

tagged with a cell barcode. A cell barcode is unique to each cell, it tells which cell the 
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mRNA is from. In order to trace the cellular origin, each cDNA molecule from the same 

cell is labeled with a cell barcode, which is an oligonucleotide sequence unique to the cell, 

before pooled library preparation. This allows early pooling of thousands of samples and 

increases the sequencing throughput and allow to computationally recover the mRNAs for 

a specific cell after the pooled PCR amplification step. Moreover, due to the small amount 

of starting material in each cell, scRNA-seq requires a PCR amplification step for cDNAs. 

This procedure increases the sensitivity of the scRNA-seq, but on the other hand, PCR 

duplicates can not be identified simply based on the reads mapping position. By tagging 

the cDNAs with UMIs, sequences with the same UMI can be detected as PCR duplicates. 

Therefore, by adding UMIs and cell barcodes in scRNA-seq library preparation, PCR 

duplicates and cell origins can be computationally identified enabling sensitively measure 

the cellular-level expression differences. 

1.3 Current Computational Methods for Cancer Genomics Data Analysis 

Cancer genomics is a new research area that applies the rapid technological 

development NGS technology to identify the somatic mutations, cancer driver genes, 

understand cancer biology and find new methods for cancer diagnosis and treatment. NGS 

allows researchers to interrogate the cancer genome in great resolution, high accuracy and 

low costs.  In the past decade, many NGS approaches have been developed for cancer study 

to solve the puzzles in DNA and RNA levels. Parallel with the rapid advancement in NGS 

technologies is the development of novel algorithms for NGS data analysis. 

1.3.1 Somatic mutations analysis 

Identifying somatic mutations is the key step in cancer genomics for the 

characterization of a cancer genome. Majority of the somatic mutation calling protocols 
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require sequencing of matched tumor and normal samples from the same cancer patient 

using WES or WGS sequencing technique. Somatic mutation calling consists of mainly 

four components: read preprocessing, variant calling, variant filtering and variant 

annotation. 

Before mutation calling, the resulting FASTQ files are preprocessed to generate 

high quality analysis-ready Binary Sequence Alignment Map (BAM) file. The quality 

control (QC) step is performed on the raw FASTQ files to remove poor quality bases and 

non-biological sequences (not originated from the sample). Reads passing the QC are 

mapped to a reference genome using read alignment algorithms. PCR duplication, which 

are reads originating from the same fragment of DNA, can then be detected based on the 

alignment position in the BAM file. Reads are ranked by their base-quality scores to 

determine the primary and duplicate reads. Duplicate reads are marked with the 

hexadecimal value of 0x0400 in the BAM file and will not be included in the variant calling 

algorithms. The BAM files from the matched tumor and normal samples are subjected to 

local realignment around insertions and deletions to correct mapping errors resulted from 

the read aligner and the regions contain INDELs. Since many variant calling algorithms 

rely heavily on the per base quality score reported by the sequencer in the BAM files, base 

quality score recalibration is required to correct the over- or under-estimated base quality 

due to various sequencing technical errors from the sequencer. Pre-processed BAM files 

are passed to somatic variant calling algorithm for somatic mutation detection. There are 

various tools publicly available covering a wide spectrum of application in somatic point 

mutations, INDELs and CNAs calling. Post-filtering of candidate somatic mutations is 

often required to reduce false positive calls generated due to the NGS artifacts, read 



9 
 

alignment errors and low-quality samples. For example, reads generated by the Illumina 

platform are commonly affected by the strand bias artifacts, where the heterozygous 

genotype can only be observed on one specific strand (Guo et al., 2012). Many variant 

calling pipelines compute strand bias scores and use it as a filter to improve the specificity. 

1.3.2 Driver mutations 

Somatic mutation analysis pipeline for WES/WGS on an individual cancer reveals 

hundreds to thousands of somatic mutations present in the cancer genome. One of the major 

challenges is to prioritize those somatic mutations to identify the ones casually implicated 

in cancer. These mutations, known as driver mutations, contribute growth advantage in 

cancer initiation and development, turning on specific pathways promoting cancer. 

Deciphering driver mutations is the key to design rational therapeutics aimed at specific 

cancer phenotypes, predict patient response to traditional treatments, and expanding the 

pool of patients likely to benefit from existing treatments. However, beside the driver 

mutations, there are a larger fraction of somatic mutations that do not involve in the 

development of cancer. These non-functional mutations, often known as passenger 

mutations, happen randomly in cancer cells that have already acquired driver mutations in 

the cancer genome. They will be passed to descendants during the cancer cell divisions and 

present in the final cancer cells. Therefore, differentiating the driver mutations from 

passenger mutations is the main goal for many cancer studies. Despite a few exceptions, 

most driver mutations occur in only a small fraction of tumor samples. Therefore, 

identifying these low recurrent driver mutations that are buried among a vast pool of 

passenger mutations is challenging.  
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1.3.3 RNA-seq Analysis 

Analyzing RNA-seq reads to quantify expression at each gene locus is the first step 

towards any downstream biological interpretation. There are two popular gene expression 

estimation approaches for bulk RNA-seq: gene count and transcript abundance. Gene count 

is essentially the total number of reads sequenced within a gene. Many popular statistical 

differential expression methods such as DESeq2 (Love, Huber, & Anders, 2014) and edgeR 

(Robinson, McCarthy, & Smyth, 2010) take gene count as input. They model it as negative 

bionomial distribution to deal with biological variability and overdispersion and 

determines differential expression using exact tests (Seyednasrollah, Laiho, & Elo, 2015). 

Several tools such as featureCounts (Liao, Smyth, & Shi, 2014) and HTSeq (Anders, Pyl, 

& Huber, 2015) are used to obtain the gene counts. These tools require several 

preprocessing steps on the raw FASTQ file from the sequencing before performing read 

counts: 1) generally, a read trimming step is necessary to remove adapter sequences and 

low-quality bases from the FASTQ files (Bolger, Lohse, & Usadel, 2014; Martin, 2011a). 

This improves the mappability of the reads during the downstream alignment step. The 

quality trimming criteria, such as minimum base quality score or the number of bases to be 

trimmed on start or end of each read, are selected empirically by the users. 2) trimmed 

reads are aligned to either the reference genome or the reference transcriptome using RNA-

seq mappers, to generate the BAM files. 3) aligned reads in the BAM files are assigned to 

genes based on the genomic locations provided in the Gene Annotation File (GTF) for 

gene-/transcript-level read counts. Although there are some efficient algorithms available 

to summarize read counts from the BAM file, read alignment is computationally heavy, 

requiring large memory and CPU time. Alternatively, read counts can be estimated from 
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transcript abundance, by first assigning reads to transcripts using transcript-level 

annotation, and summarizing read counts at transcript-level. The gene-level expression can 

then be estimated using tools specially designed for summarizing the transcripts counts to 

gene counts correcting effective gene length differences across samples (Soneson, Love, 

& Robinson, 2015).  

The scRNA-seq gene expression analysis can safely borrow the tools and pipelines 

that have been developed for bulk RNA-seq. Similar to bulk RNA-seq, reads are first 

aligned to the reference genome/transcriptome, and then assigned to genes or transcripts 

depending on the selected algorithms. However, after the read assignment, there are 

additional single-cell specific steps required for carefully analyzing the data. By 

introducing UMIs for each cDNA molecule, reads originated from the same molecule will 

have the same UMI sequence, allowing computationally deduplicate reads to reduce the 

amplification bias. So instead of counting the number of reads assigned to each gene, 

scRNA-seq aims at counting the number of unique UMIs. The UMI collapsing procedure, 

in which reads assigned to the same gene with identical UMIs are only counted once, is 

performed. However, the UMI counts are often overestimated due to the sequencing/PCR 

errors within the UMI sequences. Therefore, error correction for UMIs is necessary before 

collapsing reads to UMIs. Another aspect that complicates the analysis is cell barcoding. 

cDNAs from the same cell are tagged with a cell-specific sequence, cell barcode, to identify 

cells and at the same time, allow the sequencing of thousands of cells in a single run. 

Sequencing errors on the cell barcodes not only overestimates the actual number of cells 

in the sample, but also may underestimate the UMI counts for the affected cell. Current 
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analysis pipelines will filter the low sequencing quality barcodes and barcodes with low 

read count to reduce such errors in the downstream analysis. 

1.4 Contribution 

The aims of the dissertation are to develop novel bioinformatics methods for 

resolving several challenges in large-scale cancer genomics study covering sample-level 

gene mutation analysis and single-cell level gene transcriptome analysis. We assess the 

performance of methods in the completed projects and demonstrate their application in 

cancer genomics research.  

High-throughput, robust and reproducible Bioinformatics framework for 

somatic mutation calling. We developed user-friendly Snakepipe framework for 

systematically processing the raw whole -exome/-genome sequencing data for 

somatic/germline mutation detection. Snakepipe abstracts the complexity of the analytical 

pipeline, parameters selection and computation environment deployment from the users. It 

ships with automated NGS best practices pipelines enabling direct “sequence-to-report” 

data transformation and requires minimun user configurations. All the analytical softwares 

are precompiled and packaged into Docker containers allowing cross-platform pipeline 

execution and built-in version controls for reproducibility. Snakepipe scales well to cloud 

and HPC infrastrutture for processing large-scale genomics data using distributed 

computation resources and parallel computing. Snakepipe provides automatic failure 

recovery in cases of unplanned hardware errors or system downtime. Moreover, new 

analytical modules can be easily developed and integrated to the existing pipelines. 

Efficent mututally exclusive testing for genome-wide drive mutation detection. 

We developed MEScan, one of the first tools to allow de novo screening of mutually 
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exclusive patterns at the genome scale. The core component of MEScan is a test statistic 

directly quantifies the discrepancy between the observed level of mutual exclusivity and 

the expected value due to the background, taking into accout for the backgroud mutation 

rate heterogeneity and unbalanced mutation patterns. Comparing to other methods, 

MEScan offers more power in detection of true mutually exclusive patterns even under the 

conditions with low read coverage and is at least two orders of magnitude faster than the 

existing methods. We extend MEScan with Markov chain Monte Carlo (MCMC) algorithm 

to efficiently screen for mutually exclusive gene sets at the genome scale with a 

summarization procedure to select high-confidence findings. MEScan has been applied to 

GBM, BRCA, LUSC, OV and PanCancer to identify cancer-specific driver mutations. 

 Alignment-free gene count quantification for bulk and single cell RNA-seq. 

RNA-seq has been widely used in cancer research for differential gene expression between 

samples using bulk RNA-seq and more recently for characterizing differential gene 

expression at cellular level and studying tumor heterogeneity using scRNA-seq. Although 

many algorithms have been published, they either have high computational costs in terms 

of time and resources, or they are designed for transcript-level abudance estimation which 

requires additional downstream processing for gene-level abudance conversion. Moreover, 

since most scRNA-seq library protocols have strong 5’ or 3’-end bias and are sequenced 

with low coverage, assigning reads to transcript-level features in scRNA-seq is much more 

difficult than for gene-level. Therefore, we developed a novel alignment-free gene 

expression quantification algorithm FastCount that performs gene-level expression 

analysis for both bulk and single cell RNA-seq . It avoids the time-consuming base-wise 

alignment step and classifies reads to gene using gene-specic k-mer signatures. Comparing 
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with other methods, it is over an order-of-magnitude faster than the existing gold standard 

algorithms  while achieves very competitive accuracy.  
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CHAPTER 2. Bioinformatics Framework for Characterization of Squamous Cell Lung 
Cancers from Appalachian Kentucky 

Comprehensive characterization of cancer genomics relies heavily on the 

bioinformatics pipelines to analyze the massive production of genomic, transcriptomic, 

epigenomic and proteomic NGS data. Currently pipelines are either not executable cross-

platform or not easily customizable to extend for new analysis modules. In this project, we 

present an open-source, modular computational framework to perform high-throughput, 

robust and reproducible bioinformatics analyses of cancer genomic data. It automates best 

practice data analysis pipelines, requires minimum configurations from the users and 

provides publication-ready figures. We have applied this framework for the 

characterization of squamous cell lung cancers from Appalachian Kentucky using WES 

data and have identified distinct genomic landscape and potential therapeutic markers. 

2.1 Introduction 

NGS has a broad spectrum of applications in cancer genomics, however, the 

bioinformatic analysis which involves in the transformation of the raw “ATGC” sequence 

to meaningful genomic information such as gene expression abundance or gene mutations 

is a non-trivial work. NGS generates millions of DNA sequences for a single sample. The 

raw DNA sequences are used as source input for cancer biologist to answer various 

biological questions. Bioinformatics pipelines, which consist of a series of computational 

software to systematically process the large number of genomic data, have become the 

power horse for cancer research. However, most researchers have no capacity to perform 

large-scale analyses on the NGS data sets using appropriate tools and pipelines. This has 

sparked the need for the development of various analysis pipelines and platforms. In the 

past few years, there are a variety of analysis pipelines being published such as Galaxy 
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(Goecks, Nekrutenko, Taylor, & Galaxy, 2010), bcbio-nextgen 

(https://github.com/bcbio/bcbio-nextgen), Taverna (Wolstencroft et al., 2013), Toil 

(https://github.com/bd2kgenomics/toil), The Cancer Genomics Cloud (Lau et al., 2017), 

DNAnexus (http://dnanexus.com), Firehose (http://firebrowse.org/) and many others. They 

differ in the analysis procedures, tools selection, parameter configurations as well as 

computational environment. Although current bioinformatics pipeline platforms provide 

good support to perform data analyses using the built-in modules, customizing and 

extending the pipelines to meet various research requirements are very difficult. Galaxy 

(Goecks et al., 2010) platform is a web-based approach that enables researchers with 

Internet access to perform genomic data analyses through a web page interface. Galaxy 

users can create analysis pipelines using the interactive, graphical editor by simply 

connecting software modules pre-wrapped by Galaxy. A similar web-based tool, Taverna, 

is a workflow management platform, that allows users to define and execute workflows 

from a web portal. Those platforms, though very helpful for scientists without 

programming or informatics expertise, have several limitations. For example, users are 

limited to the number of tools and analyses collected by the platforms; non-programmer 

users must wait for the platform updates to apply new algorithms on their data; 

programmatic access to service is not available for advanced users. bcbio-nextgen is a 

powerful python toolkit for users with extensive programming knowledge. bcbio-nextgen 

optimizes each analytical pipeline and software for improved computational performance 

handling job distribution, idempotent processing restarts and safe transactional steps. 

However, the pipeline customization and development are challenging and complicated 

even for users with programming background. Cloud-based commercial service providers, 

https://github.com/bcbio/bcbio-nextgen)
https://github.com/bd2kgenomics/toil
http://dnanexus.com/
http://firebrowse.org/
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such as The Cancer Genomic Cloud and DNAnexus, offer flexible high-performance 

computing resources for large-scale collaborative research national and international wise. 

Both web interfaces and programming APIs are available for users for conveniently 

submitting and monitoring automated large batch analyses. Users can rent the computing 

resources such as virtualized computers, data storage and bandwidth on demand and pay 

for the exact resources used. However, the cloud-based service is currently not an option 

for small labs or institutes with limited funding resources.  

NGS data analysis has been a very active research field. A large number of 

bioinformatics tools have been published covering every step in the data analysis pipeline. 

Novel algorithms have continuingly been developed to aid in discovery of new findings in 

the data, or to improve the performance of existing algorithms. It is challenging for caner 

biologists to appreciate all the steps and select appropriate tools necessary to conduct the 

data analysis properly. A basic somatic mutation calling pipeline based on WES would 

contain as few as 12 steps from raw sequence preprocessing to the final somatic mutation 

calling. For each individual step in the pipeline, there are collections of tools specially 

designed for accomplishing the data transformation. The number of bioinformatics tools to 

choose from can be overwhelming. In the past decades, over 30 somatic SNV callers have 

been published by different research groups (C. Xu, 2018). They differ considerably in 

terms of the core algorithms, filtering criteria, and output. Samtools (H. Li, 2011) uses 

Bayesian approaches to calculate the log-likelihood ratio of tumor and normal samples 

having the same genotype. Varscan2 (Koboldt et al., 2012) relies on heuristic approaches 

to identify variants with supporting reads meeting certain thresholds. Then it applies 

Fisher’s exact test on the contingency table of read counts to isolate somatic variants based 
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on the p-value. Samtools and Varscan2 can report both SNVs and INDELs. Varscan2 can 

also infer the relative copy number changes in tumor sample by performing pairwise 

comparison of the read depth between the tumor and its matched normal samples. Mutect 

(Kristian Cibulskis et al., 2013) is based on the Bayesian classifier approach, but instead 

of modeling the joint genotypes in the tumor and normal samples, it uses joint allele 

frequencies to take into account the presence of heterogenous subclones in the tumor 

sample. Therefore, a pipeline that employs the standardized best practices workflows and 

analytic tools provide a guide for cancer researchers. 

Lastly, analyzing data in large scale and collaborative studies requires a cross-

platform, scalable and reproducible pipeline management system. From 2012 to 2017, the 

amount of genomic data in the Sequence Read Archive (SRA) has doubled four times. 

Such data archives are comprehensive enough to allow researchers to ask and answer a 

broad range of sophisticated questions without generating new data. Re-analyzing large 

collection of data requires pipelines to be easily adapted on different commercial clouds 

such as Google Cloud Platform, Amazon AWS and Microsoft Azure or academic high-

performance computing (HPC) clusters. Large collaboration projects and consortiums 

require standardized and reproducible pipelines to make sure that each participant will 

produce the same outputs given the same input data. ICGC, for example, is a large 

collaboration on cancer research. More than 25,000 cancer omics data at the genomic, 

epigenomic and transcriptomic levels will be collected and analyzed globally to reveal the 

repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define 

clinically relevant subtypes for prognosis and therapeutic management, and enable the 

development of new cancer therapies (International Cancer Genome et al., 2010). 
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Reproducible analyses among the collaborators are non-trival. It requires a standard way 

to specify all the pipeline dependencies and execution environments for simplifying 

deployment, sharing and reusing of tools between research groups.  

Snakepipe provides a user friendly bioinformatics pipeline framework. It ships with 

automated NGS best practices pipelines for analysing WES and WGS data for 

germline/somatical mutation calling and requires mimimun configurations on the user end. 

Snakepipe enables direct “sequence-to-results” transformation. It natually determines the 

dependencies and tools for each individual steps and jobs are distributed to the work nodes 

for serialized or parallel processing. Once the analyses are complete, Snakepipe 

automatically collect the input source files, user configurations and results in a compressed 

format for backup and reproducible research collabration. New pipelines and functions can 

be easily developed and integerated to the existing ones in the Snakepipe framework by 

containerization of bioinformatics tools and job definitions in simple python-like scripts.  

The overall workflow for mutation calling is comprised of raw seqeuecning read 

preprocessing, mutation calling, significantly mutated genes identification, CNA calling, 

cohort comparison, clinical actionable mutation prediction as well as comprehensive 

results visualization. 

2.2 Pipeline management 

The pipeline framework adopts a modern workflow management engine, 

Snakemake (Koster & Rahmann, 2018) and docker containers. The Snakemake engine 

defines each pipeline in a “Snakefile” using a domain-specific language. It adopts the rule 

concept used by the GNU Make (Stallman RM, 1991), with extended functionalities and 

flexibilities. The analysis steps of a pipeline are composed of corresponding rule 



20 
 

definitions.  A regular rule expresses 1) input files 2) output files and 3) a shell command 

or scripts using other programming languages (such as Python or R scripts) which describes 

how the output files are generated given the input files. In order to naturally represent the 

plan of job executions and job dependencies in a workflow, Snakemake uses a directed 

acyclic graph (DAG), where a vertex is the execution of a job defined by a rule and a 

directed edge indicates the execution sequence of the 2 jobs. A job on the ending vertex of 

each edge requires the input from the job on the starting vertex of the edge. Therefore, a 

path which is the sequence of edges in the DAG serializes the execution order of the 

individual jobs in the workflow. Snakemake has the following properties: i) it 

automatically detects the rules required for the completion of the final workflow; ii) jobs 

on disjoint paths can be run in parallel; iii) it only executes rules with missing output files 

or changes of the input file modification time to avoid re-running the completed jobs and 

for failure recovery; and iv) jobs can be executed locally and distributed to accessible 

computing resources, such as cloud or HPC.  

2.3 Runtime environment deployment 

The analytical tools required in the workflow are managed using docker containers 

to simplify the deployment of the pipeline under different computing environments, for 

version control and research reproducibility. Each program and all its dependencies are 

packaged into a docker container tagged with a unique version id. The docker images are 

hosted on Docker Hub and can be easily shipped to any machine, either cloud or local. 

Setting up the tools from scratch only needs minimal configuration of Docker or 

Singularity. Snakepipe will infer the necessary container images based on the types of the 

NGS data and automatically pulls the images from the Docker Hub. The pipeline is portable 
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and robust that enables reproducibility, transparency and shareability. It can be easily 

deployed and executed cross-platform such as local workstations, HPC and cloud 

platforms. 

2.4 Best practice workflows 

Snakepipe WES/WGS data analysis pipeline for germline/somatic mutation calling 

(Error! Reference source not found.) is developed based on the recommended best 

practice from Broad Institute using the Genome Analysis Toolkit (Aaron McKenna et al., 

2010) (GATK). Sequencing reads were trimmed and filtered using Cutadapt (v1.4.1) 

(Martin, 2011b), then aligned to human reference genome b37/hg19 using BWA (v.0.7.9a) 

(H. Li & Durbin, 2010). PCR duplicates were removed using Picard 

(http://broadinstitute.github.io/picard/, v1.115). The Genome Analysis Toolkit (GATK 

v3.1-1) (A. McKenna et al., 2010) was used for local indels realignment and base quality 

recalibration. Somatic point mutations and indels were detected using MuTect (v1.1.4) (K. 

Cibulskis et al., 2013) and SomaticIndelDetector (GATK v2.3-9), respectively, with 

default settings. Mutations were annotated using Oncotator (v1.4.1.0) (Ramos et al., 2015). 

Significantly mutated genes were identified using MutSigCV (v1.4) (Michael S. Lawrence 

et al., 2013). Somatic copy-number alterations (SCNA) analysis was conducted using 

ExomeCNV (Sathirapongsasuti et al., 2011), an R statistical package. Exonic CNAs were 

inferred based on the depth-of-coverage ratio between matched tumor and normal samples. 

Then, CNAs calls were combined into larger segments using circular binary segmentation 

in DNAcopy (Venkatraman E. Seshan). Gistic2.0 (Mermel et al., 2011) with a confidence 

level of 0.95 was used on the copy ratio profiles to identify significantly amplified/deleted 

regions. To evaluate the clinical relevance of the somatic genomic alterations identified in 

http://broadinstitute.github.io/picard/


22 
 

our cohort, we downloaded the OncoKB database (Chakravarty et al., 2017) (accessed in 

December 2017) to identify FDA approved drugs for the FDA-recognized and standard 

care biomarkers. 

 

 
Figure 1 Whole exome sequencing data analysis pipeline for somatic mutation calling and 
copy number variation detection.  The pipeline contains two major parts: 1) preprocessing 
to prepare analysis-ready bam files from tumor and matched normal samples; 2) variant 
calling step. 
 
 
2.5 Results 

We applied the Snakepipe to analyze the WES of 51 SQCC patients from AppKY, 

which includes an overview of somatic alterations and copy-number variations, explores 

unique mutational patterns, and provides a clinically actionable assessment of mutations in 

this population.  Essential to this effort was the full sharing of the comprehensive genomic 

profile of lung SQCC in TCGA (The Cancer Genome Atlas Research Network, 2012), 
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which provided the comparison of the initial 178 subjects from a US genomic profile that 

does not focus on Central Appalachians.  

2.5.1 Overview of somatic alterations 

The mean coverage of WES across the targeted regions was 104× with 92% of 

targeted bases being covered at ≥ 30×. Raw sequencing data are available at dbGaP 

(Accession: phs001651.v1.p1). We identified 16,005 somatic single-nucleotide variants 

and 217 somatic insertions or deletions (indels) across 51 matched tumor and normal pairs 

in the protein coding regions. Of those mutations, 12,117 were predicted to be non-silent 

mutations resulting in an amino acid change. The mean mutation rate in our cohort was 

237 non-silent mutations per patient, corresponding to 8.5 mutations per megabases (Mb). 

Among non-silent mutations, transitions and transversions at CpG sites were the most 

commonly observed mutation types, with rates of 11.5 per Mb and 15.5 per Mb, 

respectively. For non-CpG sites, transitions were more frequently observed at C:G sites 

(3.2 per Mb) than at A:T sites (1.8 per Mb). Similarly, transversions were more frequently 

observed at C:G sites (8.0 per Mb) than at A:T sites (2.0 per Mb).  
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Figure 2. Significantly mutated genes in lung SQCC. Significantly mutated genes 
(FDR<0.2) from whole-exome sequencing of 51 samples from Appalachian Kentucky 
patients.The number and percentage of samples with mutations in each gene are shown on 
the left. Samples are displayed as columns, with the overall number of mutations, smoking 
status, and tumor stage plotted at the top. 

 

2.5.2 Significantly mutated genes 

We identified 3 genes that were significantly mutated (i.e., non-silent mutation rates 

higher than background mutation rates) in the AppKY cohort with an FDR < 0.2 using 

MutSigCV (Michael S. Lawrence et al., 2013): TP53, PCMTD1 and IDH1. To increase the 

statistical power of our analysis, we followed the approach of the TCGA SQCC report 

(2012) and performed a secondary MutSigCV (M. S. Lawrence et al., 2013; Michael S. 
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Lawrence et al., 2013) analysis to only consider genes causally implicated in cancer 

according to the COSMIC database (Futreal et al., 2004). This approach enabled us to 

identify 11 additional genes that were significantly mutated with an FDR < 0.2: PIK3CA, 

RNF43, MLLT10, STK11, NFE2L2, DEK, POT1, ATP2B3, HRAS, HOXA11 and HOXA13 

(Figure 2).  

 
Figure 3 GISTIC amplification (left) and deletion (right) plots of the G-scores (shown at 
the top of the figure) and q-values (shown at the bottom of the figure) across the entire 
region analyzed. 

 
2.5.3 Copy number variation analysis 

SCNAs were analyzed using WES data. We identified regions with significant 

SCNAs using Gistic2.0 (Mermel et al., 2011). There were 18 peaks of significant 

amplification and 34 peaks of significant deletions (FDR<0.25). Significantly amplified 

regions were 3q27 (MCF2L2), 8p11 (FGFR1, TACC1, WHSC1L1, LETM2, RNF5P1), 
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11q13 (CCND1-oncogene), 7q21.2 (CDK6), 19q13, 13q34, 5p15, 8q24 (MYC-oncogene) 

and deleted regions were 9p21 (CDKN2A-tumor suppressor, CDKN2B), 8p23, 10q23 

(PTEN, CFL1P1, KLLN), 17p13, 4q28.2 (VEGFC), 22q13.2 (CHEK2). Consistent 

amplification patterns were seen in certain related sets of genes, such as stem cell renewal 

genes. 

2.5.4 Comparative mutational analysis with other cohorts 

We first compared somatic mutations and SCNAs of AppKY lung SQCC to TCGA 

cohort (Campbell et al., 2016; Kim et al., 2014; C. Li et al., 2015; The Cancer Genome 

Atlas Research Network, 2012). We focused our comparison on significantly mutated 

genes in at least one cohort by the MutSigCV (M. S. Lawrence et al., 2013) analysis. Our 

comparative analysis presented here (Table 1) included somatic mutations (point mutations 

and indels) only in the calculation of gene alteration rate. Both cohorts showed similar rates 

of alterations for TP53 (68.6% AppKY, 80.9% TCGA, FDR q-value=1.000), PIK3CA 

(11.8% AppKY, 15.7% TCGA, FDR q-value=1.000), NOTCH1 (11.8% AppKY, 8.4% 

TCGA, FDR q-value=1.000) and PTEN (5.9% AppKY, 7.9% TCGA, FDR q-

value=1.000).  
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Table 1. Somatic alteration rate comparison between AppKY and TCGA of Lung SQCC.  
The comparison focuses on genes that were identified as significantly mutated based on 
the MutSigCV analysis in at least one of the two cohorts.  
 

Hugo Symbol* AppKY (%) TCGA (%) p-value§ q-value¥ 
IDH1○K  11.80% 1.10% 0.002 0.039 
PCMTD1○K  17.60% 3.90% 0.002 0.045 
DEK 5.90% 0.00% 0.011 0.200 
NFE2L2⊕ 3.90% 15.20% 0.032 0.584 
CDKN2A○T  3.90% 14.60% 0.050 0.830 
HOXA11 3.90% 0.00% 0.049 0.830 
TP53⊕ 68.60% 80.90% 0.082 1.000 
PTEN○T  5.90% 7.90% 0.770 1.000 
PIK3CA⊕ 11.80% 15.70% 0.655 1.000 
KEAP1○T  9.80% 12.40% 0.806 1.000 
KMT2D○T  9.80% 19.70% 0.142 1.000 
HLA-A○T  7.80% 3.40% 0.236 1.000 
NOTCH1○T  11.80% 8.40% 0.424 1.000 
RB1○T  2.00% 6.70% 0.307 1.000 
RNF43 5.90% 1.70% 0.126 1.000 
MLLT10 7.80% 3.90% 0.269 1.000 
STK11 3.90% 1.70% 0.309 1.000 
POT1 5.90% 2.20% 0.186 1.000 
ATP2B3 3.90% 2.20% 0.617 1.000 
HRAS 5.90% 2.80% 0.381 1.000 
HOXA13 3.90% 0.60% 0.125 1.000 

*○K : significantly mutated in AppKY only; ○T : significantly mutated 
in TCGA only; ⊕: significantly mutated in both cohorts 
§ The p-value was based on the Fisher’s exact test to compare 
percentages of samples that had somatic alterations (somatic mutations 
or SCNAs) in the two cohorts. 
¥ The q-value was based on the Benjamini–Hochberg procedure. 
Genes with significant differences (FDR<0.2) in the alteration rate are 
shown in bold. 

 

Significant differences in mutation rates between the AppKY and TCGA cohorts 

were observed. The IDH1 mutations were observed in 11.8% of patients in the AppKY 

cohort. In contrast, only 1.1% of patients in the TCGA cohort had IDH1 mutations (FDR 
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q-value=0.039). Similarly, the AppKY cohort also showed a higher rate of mutations in 

PCMTD1 (17.6% AppKY vs. 3.9% TCGA, FDR q-value=0.045). Even after adjusting for 

age, gender, stage, and smoking via exact logistic regression, mutation frequencies are still 

significantly different between the AppKY and TCGA cohorts for IDH1 (p-value=0.0024) 

and PCMTD1 (p-value=0.019).  

2.5.5 Clinically actionable mutations assessment 

We investigated the somatic mutations/SCNAs observed in our cohort in 

association with FDA approved agents or published or ongoing clinical trials for non-

small-cell lung carcinoma (NSCLC) or other tumor types. 5 subjects (10%) had actionable 

mutations, defined as FDA approved drugs (either for this indication or another cancer 

type), with a total of 8 somatic mutations/SCNAs events found in these 5 individuals. 

Additionally, we found that 33 out of 51 subjects (65%) had high (>20 mut/MB) or 

intermediate (6-20 mut/MB) tumor mutation burden (TMB), indicating an additional group 

of therapeutic choices for this population using checkpoint inhibitors. Overall, 65% of 

subjects had actionable mutations with FDA approved drugs and/or TMB that was high or 

intermediate.  Many others had mutations that are under clinical investigation (Table 2). 
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Table 2. Clinically actionable mutations identified for APPKY patients. 

Gene Patient Mutation Drug DrugLevel 

ERBB2 MCC-51 Amplification 

Trastuzumab;Neratinib; 
Lapatinib + Trastuzumab,  
Pertuzumab + Trastuzumab,  
Ado-trastuzumab emtansine, 
 Lapatinib, Trastuzumab 

1;3A;1 

KIT MCC-12 Amplification 
Imatinib;Sunitinib, Sorafenib; 
Regorafenib, Imatinib, 
Sunitinib 

2A;2A;1 

KIT MCC-36 Amplification 
Imatinib;Sunitinib, Sorafenib; 
Regorafenib, Imatinib, 
Sunitinib 

2A;2A;1 

KIT MCC-47 Amplification 
Imatinib;Sunitinib, Sorafenib; 
Regorafenib, Imatinib, 
Sunitinib 

2A;2A;1 

PDGFRA MCC-12 Amplification Imatinib 2A 
PDGFRA MCC-36 Amplification Imatinib 2A 
PDGFRA MCC-47 Amplification Imatinib 2A 
TSC2 MCC-7 Deletion Everolimus 2A 
HRAS MCC-7 c.181C>A Tipifarnib 4 

NF1 MCC-2 c.55G>T LTT462, Binimetinib, 
BVD523, Trametinib 4 

HRAS MCC-12 c.34G>A Tipifarnib 4 
BRAF MCC-19 c.1391G>T LTT462, BVD-523, KO-947 4 

KRAS MCC-25 c.40G>A 
LY3214996, KO-947, GDC-
0994; 
Binimetinib, Trametinib 

4;4 

PTEN MCC-47 c.367C>T GSK2636771, AZD8186 4 
HRAS MCC-49 c.37G>C Tipifarnib 4 
NOTCH1 MCC-21 Deletion PF-03084014 4 
NOTCH1 MCC-29 Deletion PF-03084014 4 
HRAS MCC-49 Amplification Tipifarnib 4 

KRAS MCC-37 Amplification 
LY3214996, KO-947, GDC-
0994; 
Binimetinib, Trametinib 

4;4 

PTEN MCC-2 Deletion GSK2636771, AZD8186 4 

KRAS MCC-12 Amplification 
LY3214996, KO-947, GDC-
0994; 
Binimetinib, Trametinib 

4;4 

KRAS MCC-10 Amplification 
LY3214996, KO-947, GDC-
0994; 
Binimetinib, Trametinib 

4;4 

HRAS MCC-40 Amplification Tipifarnib 4 
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PTEN MCC-9 Deletion GSK2636771, AZD8186 4 
BRAF MCC-19 Amplification LTT462, BVD-523, KO-947 4 
PTEN MCC-33 Deletion GSK2636771, AZD8186 4 
Note: The drug level is defined by OncoKB. Levels 1 and 2 are FDA approved drugs. 
  
2.5.6 Prediction of the effect of IDH1 mutations  

 

Figure 4. IDH1 and PCMTD1 mutations. (A) IDH1 mutations and their mutation 
frequencies (circles). (B) PCMTD1 mutations and their frequencies (circles). 

 

Mutations in IDH1 and its homolog IDH2 coding for cytosolic and mitochondrial 

isocitrate dehydrogenases, correspondingly, are common in gliomas (Yan et al., 2009) and 

myeloid neoplasms (Molenaar et al., 2015), but rare in lung cancer. We observed multiple 

IDH1 variants: R132H, V178A, A307S and L352P (Figure 4A), and the R132H variant 
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was confirmed by immunohistochemistry. The IDH1 variant R132H is reported in a variety 

of cancers and the role of various R132 missense substitutions has been studied 

extensively. These mutations are generally heterozygous, suggesting a gain-of-function by 

the enzyme, and supported by mechanistic studies demonstrating that the R132H variant 

protein has an aberrant enzymatic activity, converting α-ketoglutarate (2OG) to (R)-2-

hydroxyglutarate (2HG) (Dang et al., 2009). This enantiomer of 2HG acts as an 

oncometabolite and interferes with cell differentiation (Lu et al., 2012). 
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Figure 5. Functional analysis of IDH1 variants.  (A) Segments of multiple sequence 
alignment for representative IDH1 (upper set) and IDH2 (lower set) orthologs, showing 
conservation of Arg132, Val178, Ala207, and Leu352. Numbers are provided for a human 
IDH1 protein. A complete alignment and sequence accession numbers are shown in Figure 
7. Positions 132, 178, 307, and 352 are marked and highlighted in yellow, whereas 
substitutions in these positions are highlighted in blue. For all other positions, residues that 
are identical to those in the human IDH1 are highlighted in gray. Human, Homo sapiens; 
Frog, Xenopus tropicalis; Fish, Takifugu rubripes; Nematode, Caenorhabditis elegans, 
Worm, Saccoglossus kowalevskii; Lancelet, Branchiostoma floridae. (B) Effect of IDH1 
variants on enzyme activity. Left: effect of R132H and A307S mutants; Right: effect of 
V178A and L352P mutants. The two-sample t-test was performed to compare each IDH1 
mutant versus the wild type and the Bonferroni correction was used for multiple 
comparison adjustment. • Statistically significant reductions of NADPH production 
comparing IDH1 R132H versus wild type; ♦Statistically significant reductions of NADPH 
production comparing IDH1 L352P versus wild type. 
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To understand potential consequences of the other detected IDH1 variants (V178A, 

A307S, and L352P), we applied a recently developed evolutionary approach (Adebali, 

Reznik, Ory, & Zhulin, 2016), based on the principle that most deleterious, and hence 

potentially disease-promoting mutations, result in reduced evolutionary fitness and thus are 

selected against during evolution. Homologous genes derive from a common ancestor 

gene, while orthologous genes diverge after a speciation event in two different species; 

paralogous genes occur within a single species and diverge after a duplication event. Unlike 

orthologous genes, a paralogous gene evolves new function(s), making the distinction 

between the roles of orthologous and paralogous genes in disease critical for estimating 

disease risk using molecular conservation (Adebali et al., 2016). We have identified both 

IDH1 and IDH2 orthologs in representative genomes from all major eukaryotic 

supergroups and built a maximum-likelihood phylogenetic tree (Figure 6) from their 

multiple sequence alignment (Figure 7). Satisfactorily, we found that position 

corresponding to R132 in the human IDH1 protein is absolutely invariant, not only in 

orthologous sequences, but in all IDH homologs (Figure 6), which is consistent with 

deleterious effects of its substitution. Similar to R132, both A307 and L352 are also 

invariant residues in all IDH1 and IDH2 orthologs and all other IDH1 homologs with 

uncertain evolutionary history from all major eukaryotic supergroups (Figure 5A and 

Figure 7). Because no substitutions in these positions occurred since the last eukaryotic 

common ancestor, any changes in these positions were predicted to be disease-promoting. 

While position V178 is not invariable among all homologs, the only allowable substitutions 

are V178I (occasionally found in both IDH1 and IDH2) and V178C (occasionally found 

only in IDH2) (Figure 5A and Figure 7). No V178A substitution was ever detected in any 
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IDH homologs, including the most distant ones, and might be cancer-promoting. We 

therefore tested the activity of these mutations using an enzymatic activity assay.  
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Figure 6. Maximum likelihood phylogenetic tree of IDH1 and IDH2 proteins from a 
representative genome set.  Clades of definite IDH1 and IDH2 orthologs are highlighted in 
green and magenta, correspondingly. Multiple sequence alignment was used to construct 
the tree and sequence accession numbers are shown in Figure 7. Human proteins are 
marked by a star. 
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Figure 7. Multiple sequence alignment of IDH1 and IDH2 proteins from a representative 
genome set.  Sequence labels and the order of sequences correspond to that of the 
phylogenetic tree shown in Figure 6. Positions corresponding to K132, V178, A307, and 
L352 in the human IDH1 are highlighted. 

 

To test the function of IDH1 and the effect of different variants on IDH1 functions, 

we constructed plasmids with wildtype (WT) IDH1 and mutant IDH1 genes (pcDNA3.1-
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IDH1-A307S; pcDNA3.1-IDH1-R132H; pcDNA3.1-IDH1-V178A; and pcDNA3.1-

IDH1-L352P). We tested the enzymatic activity of the WT and each IDH1 variant by 

analysis of isocitrate dehydrogenase activity that directly tests NADPH production. We 

found that R132H and L352P mutations significant attenuated net NADPH production of 

IDH1 (Figure 5B), while A307S and V178 mutations had no significant effect. In the 

context of other R132 IDH1 studies, attenuation of net NADPH production by the R132H 

variant enzyme implies that production of 2HG in the oncogenic reaction consumes 

NADPH. These results suggest that R132H is a point mutation that disables or attenuates 

some enzymatic activity of IDH1.  

 

Figure 8. IDH1 mutations and IDH1 associated pathway analysis. 
Variant IDH1 may produce the oncometabolite 2HG that inhibits 2OG-dependent 
dioxygenases; the 2OG-dependent dioxygenases are highly sensitive to inhibition by 2HG. 
Mutations in IDH1 and 2OG dependent enzymes are mutually exclusive. The number and 
percentage of samples with mutations in each gene are shown on the left. Samples are 
displayed as columns. 

 

As previously mentioned, certain variants of IDH1 are known to produce the 

oncometabolite 2HG (Cairns & Mak, 2013; Ward et al., 2012), which showed inhibitory 
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effects on 2OG-dependent enzymes, with the histone demethylases (KDM) most sensitive 

to inhibition (Joberty et al., 2016). There are two classes of KDMs: 2OG-dependent and 

FAD-dependent. The biochemical function of both classes of KDMs is to demethylate 

specific lysine residues in histones, leading to regulation of gene expression (Labbe, 

Holowatyj, & Yang, 2013). KDMs may also regulate gene expression via demethylation 

of other residues on histones (Walport et al., 2016). Based on this information and our 

discovery of mutually exclusive mutational patterns between certain histone demethylases 

and methyl transferases, we proceeded to ask if mutations in IDH1 share a mutually 

exclusive pattern with 2OG-dependent enzymes in this lung SQCC population. We found 

that mutations in 2OG-dependent KDMs are mutually exclusive with IDH1 (Figure 8), 

suggesting that mutations in either IDH1 or the 2OG-dependent KDMs lead to a common 

inhibition of histone demethylation. The mutually exclusive mutational pattern involving 

IDH1 is statistically significant (P=0.018 based on the MEGSA (X. Hua et al., 2016) 

method). This mutual exclusion is a novel observation in lung SQCC, which has not 

previously been reported. More than 35% of AppKY patients have mutations in 2OG-

dependent protein demethylases, the vast majority of them in KDMs. Furthermore, when 

all lysine demethylases are included in the analyses, only one FAD-dependent, KDM1A, is 

found to be mutated in one case. These data suggest that IDH1 mutations may regulate 

gene expression via inhibition of 2OG-dependent KDMs. We further evaluated the 

mutations in the KDMs to see if they had functional consequences and found mutations 

possibly affecting a variety of specific regions in each of the different KDMs. The 

mutations in the KDMs are not localized to a specific region, are highly dispersive across 

each gene, and functionally affect protein-protein interactions, post-translational 
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modification sites, and metal-binding, suggesting a general loss-of-function. This loss-of-

function interpretation is further strengthened by the fact that IDH1 mutations responsible 

for the production of 2HG, which is inhibitory to KDMs (Joberty et al., 2016), are mutually 

exclusive with mutations in the above mentioned KDMs (Figure 8). The mutational 

patterns observed between IDH1 and KDMs suggest that restoring the KDM 2HG-

inhibited function in cases with certain IDH1 mutations may prevent cancer signaling 

through IDH1 (Mondesir, Willekens, Touat, & de Botton, 2016). 

2.5.7 Localization of PCMTD1 mutations  

PCMTD1 has an N-terminal canonical iso-aspartate methyl transferase (PCMT) 

domain, which in another protein has been shown to methylate iso-aspartate and aspartate 

residues on proteins including histone H4, and suggests a role in protein repair or turnover  

(Biterge, Richter, Mittler, & Schneider, 2014; McFadden & Clarke, 1982). PCTMD1’s C-

terminal domain is not well characterized, and the cellular function(s) of the gene-product 

are not known. In the AppKY dataset, mutations in PCMTD1 were always observed in the 

C-terminus coding region of the protein and never in the N-terminus region. These results 

are similar to other cancer studies including pancreatic cancer, melanoma, aggressive 

rhabdomyosarcoma and others (Figure 4B and Table 3). Therefore, the C-terminus coding 

region of PCMTD1 appears to be a mutation hotspot. 
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Table 3. PCMTD1 mutations. The PCMTD1 mutations reported in the literature are in the 
C-terminal SOCS Box. PCMTD1 mutations in cancers are rarely found in the PCMT 
domain. The vast majority of mutations (except 1 case in TCGA Lung SQCC and 1 case 
in Glioblastoma) occur in the SOCS Box. 
 
   SOCS Box (240-356)  

Study 
PMID Cancer PCMT 

(1-239) 
BC 
(~16) 

Spacer 
(~82) 

Cul5 
Box 
(~15) 

% of 
cases 

22960745 Lung SQCC Yes No Yes Yes  4% 

24793135 Aggressive 
Rhabdomyosarcoma No No Yes No 65% 

22622578 Melanoma No Yes Yes  Yes  28% 
22610119 Prostrate No No No Yes  1% 
24816255 Gastric Carcinoma No No Yes  No 7% 
25855536 Pancreatic Cancer No Yes  Yes  No 7% 
24120142 Glioblastoma Yes No Yes No 1% 

AppKY Lung SQCC No No Yes  Yes  18% 

 
A recent report indicates that lysine methyltransferases (KMTs), KMT2A and 

KMT2D, are upregulated by gain-of-function TP53 mutations (mutations in the DNA 

binding domain) (Zhu et al., 2015). PCMTD1 is also a methyltransferase (MT). As 

mentioned earlier, isoaspartate residues of TP53 have been shown to be methylated, and 

this in turn has been shown to regulate levels of TP53 as well as its function during DNA 

damage (Lee et al., 2012). CUL5, a PCMTD1 interacting protein is recruited to target the 

TP53 protein for proteasomal degradation (Okumura, Joo-Okumura, Nakatsukasa, & 

Kamura, 2016). We explored the connections between PCMTD1 and TP53, the most 

frequently mutated gene in the AppKY dataset (69%). TP53 mutations in this cohort 

showed a strong signature for a smoking-associated mutational pattern, with frequent 

mutations in the protein regions 157-159 and 192-193 (Halvorsen et al., 2016). We also 
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found that the mutations within the smoking signature, specifically the 157-159 region 

frequently co-occur with mutations in PCMTD1.  

2.6 Conclusion 

From our analyses and other studies, there is growing evidence that numerous 

pathways converge on protein modification enzymes, including MTs and protein 

demethylases, that function via direct protein modification, and in the regulation of gene 

expression via chromatin modification. Therefore, regulation of protein MTs and 

demethylases affects the methylation status of histones and other substrates such as 

signaling proteins50. For example, mutations in PI3K/AKT signaling regulate H3K4 

methylation through KDM5A (Hamamoto, Saloura, & Nakamura, 2015), and PIK3CA and 

AKT phosphorylate KDMs and KMTs, which alters their functions and renders them 

oncogenic5 (Hamamoto et al., 2015; K. Xu et al., 2012). Thus, these methyltransferases 

and demethylases may be promising targets in cancer therapy. 

The observation of a smoking-associated mutational signature in TP53 is not 

surprising (Schoenberg, Huang, Seshadri, & Tucker, 2015) given the high rate of smoking 

in AppKY, and this signature appears to frequently co-occur with mutations in PCMTD1. 

We hypothesize that PCMTD1 could function as a regulator of TP53, although further 

study will be needed to examine this hypothesis. In the AppKY population, concentrations 

of arsenic, chromium and nickel are higher than the US national levels (Johnson et al., 

2011). The toxicity of carcinogenic metals has been shown to be mediated by altering 

histone methylation via 2OG-dependent enzymes (Arita et al., 2012; Chervona, Arita, & 

Costa, 2012). In addition to the known link to tobacco exposure, we hypothesize that 

environmental exposures relevant to AppKY may be contributing to the development of 
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this (R)-2-hydoxyglutarate-specific cancer mechanism in our cohort. This could help 

explain the IDH1 and 2OG-dependent KDMs mutually exclusive pattern seen only in the 

AppKY cohort.  

This study is the first characterization of the genomic alterations in lung SQCC 

from AppKY residents. Our data shares several findings with the TCGA, namely high rates 

of TP53, NOTCH1, PTEN and PI3KCA, the complexity of genomic patterns, and well-

recognized pathways upregulated in SQCC lung cancer. However, the AppKY SQCC has 

a specific genetic signature characterized by an increased number of IDH1 and PCMTD1 

mutations, as compared to the TCGA. The findings in this study have important 

mechanistic implications for how SQCC lung cancers develop in AppKY residents and 

provide insights into treatment. The 10% potentially actionable mutations/SCNAs 

observed in our AppKY cohort (based on FDA-approved drugs) coupled with 65% of 

subjects with high or intermediate mutation burden indicates that a majority of these 

patients have potential molecular targets for treatment including ERBB2 amplification with 

FDA approved monoclonal antibodies and tyrosine kinase inhibitors; PDGFRA, and TSC2 

where targeted agents are approved in other tumor types; as well as other mutations with 

targeted therapies under active investigation (HRAS, KRAS, PTEN, NOTCH1, NF1, BRAF). 

The current study adds to the body of literature that supports drug development based on 

mutations in lung SQCC and highlights genomic population differences that are relevant. 

By utilizing therapies specific to actionable mutations that are common in our AppKY 

population, we can provide a more personalized approach through directed drug discovery 

targeting highly mutated genes, such as IDH1 and PCMTD1. 
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CHAPTER 3. MESCAN: A Powerful Statistical Framework for Genome-Scale Mutual 
Exclusivity Analysis of Cancer Mutations 

3.1 Introduction 

Cancer arises from somatically acquired genetic and epigenetic alterations. While 

large consortia like TCGA and ICGC have profiled genomic somatic mutations of 

thousands of tumor samples from various cancer types based on whole-genome/-exome 

sequencing, meaningful mechanistic interpretation of these gene variation results are still 

very limited. One basic yet challenging task is to distinguish driver mutations, which are 

causally implicated in cancer development, from passenger mutations, which occur 

randomly with neutral effect. Despite a few exceptions, most driver mutations occur in 

only a small fraction of tumor samples (Tamborero et al., 2013). Therefore, identifying 

these low recurrent driver mutations that are buried among a vast pool of passenger 

mutations is challenging.  Tremendous efforts have been spent on identifying driver 

mutations ((L. Ding et al., 2018); ICGC/TCGA Pan-Cancer Analysis of Whole Genomes 

Consortium, 2020). It has been suggested that assessing mutations in a set of related genes 

may enhance the power of the detection, since genes act together in various biological 

(regulatory, signaling, and metabolic) pathways (Leiserson, Blokh, Sharan, & Raphael, 

2013; M. D. M. Leiserson, H.-T. Wu, F. Vandin, & B. J. Raphael, 2015; Szczurek & 

Beerenwinkel, 2014; Vandin, Upfal, & Raphael, 2012). Mutations associated with genes 

within a pathway often show a mutually exclusive pattern across a cohort of patients, 

meaning that each patient carries just one mutation in the pathway, which is often sufficient 

to perturb the function of that pathway. Although the mutation rate for each gene in the 

pathway is often low, the mutually exclusive mutations among genes in the pathway 

provide a stronger combined signal that is easier to detect. This is due to the increased 
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mutation rate by considering the set of genes as a whole as well as the mutually exclusive 

pattern across genes that provides an additional signal for detection. 

Several bioinformatics methods have been developed for de novo discovery of 

mutually exclusive gene sets (Constantinescu, Szczurek, Mohammadi, Rahnenfuhrer, & 

Beerenwinkel, 2016; Li Ding et al., 2018; Xing Hua et al., 2016; Y.-A. Kim, S. Madan, & 

T. M. Przytycka, 2017; Leiserson et al., 2013; M. D. M. Leiserson, M. A. Reyna, & B. J. 

Raphael, 2016; M. D. M. Leiserson et al., 2015; Mina et al., 2017; Szczurek & 

Beerenwinkel, 2014; Vandin et al., 2012). However, there are still three major challenges. 

Firstly, the heterogeneity in background (or passenger) mutation rate needs to be adjusted. 

Lawrence et.al (Michael S. Lawrence et al., 2013) demonstrated large variation in the 

background mutation rate across genes and across patients of the same cancer type from 

TCGA data. Adjusting for a patient- and gene-specific background mutation rate has been 

shown as the key to reducing artifactual findings and improving the identification of driver 

genes (Korthauer & Kendziorski, 2015; Michael S. Lawrence et al., 2013; Youn & Simon, 

2011) . This is also true for dN/dS-style tests, where dS represents a proxy for background 

mutation rate (Nik-Zainal et al., 2016; Zhao et al., 2019). The heterogeneity in the 

background mutation rate can also affect identification of mutually exclusive mutational 

patterns, because spurious patterns are more likely to occur in genes and patients with high 

background mutation rates. However, only a few mutual exclusivity analysis methods have 

taken into account the heterogeneity in the background mutation rate, and adjustment 

approaches are limited. Hua et al. (X. Hua et al., 2016) used a likelihood-based approach 

to directly adjust for the background mutation rate. However, the method is based on the 

assumption that the relative mutation frequencies of genes in a mutually exclusive gene set 
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are proportional to the background mutation frequencies of those genes. It also assumed 

the same background mutation rate of a gene across patients. A few other methods (Y. A. 

Kim, S. Madan, & T. M. Przytycka, 2017; M. D. Leiserson, M. A. Reyna, & B. J. Raphael, 

2016; M. D. Leiserson, H. T. Wu, F. Vandin, & B. J. Raphael, 2015) used a conditional 

technique to indirectly adjust for the mutation rate heterogeneity. These methods used 

either permutation or a hypergeometric distribution method to make inferences by 

conditioning on the observed mutation frequencies of genes and patients. However, the 

conditional technique was unable to distinguish whether the observed mutation frequencies 

were due to random background noise or true signals that drive cancer development. 

Secondly, as pointed out by Leiserson et al. (M. D. Leiserson et al., 2015), a gene 

with a very high mutation rate plus a few other genes with very low mutation rates may 

show a mutually exclusive mutational pattern by random chance. The highly mutated gene, 

e.g. TP53 in several cancer types, could be a driver gene by itself. But other genes in this 

spurious mutually exclusive set may not be drivers and may be biologically unrelated to 

the highly mutated gene. Therefore, such an unbalanced pattern, which is dominated by the 

highly mutated gene, is less of interest as compared to a more balanced pattern, where each 

gene in the gene set has a non-negligible contribution to the overall pattern. Note that 

adjusting for the background mutation rate does not solve this problem. The highly mutated 

gene could be a driver whose mutation rate is much higher than the background so that the 

pattern would still be significant even after the background mutation rate adjustment. Many 

bioinformatics methods do not distinguish unbalanced and more balanced patterns, and 

therefore can lead to spurious results. Although a conditional method (M. D. Leiserson et 
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al., 2015) has been proposed to favor more balanced patterns, its power could still be 

affected by the presence of a highly mutated gene based on our simulations. 

Thirdly, computational efficiency is a major hurdle for genome-scale screening of 

mutual exclusive gene sets. Most methods (Constantinescu et al., 2016; X. Hua et al., 2016; 

Y. A. Kim et al., 2017; M. D. Leiserson et al., 2016; M. D. Leiserson et al., 2015; Szczurek 

& Beerenwinkel, 2014) are based on statistical tests to examine mutual exclusivity of gene 

sets. However, current statistical tests have high computational burden because they 

involve computationally intensive statistical modeling and/or require permutation to 

calculate p-values. Furthermore, the computational burden increases dramatically as the 

size of the candidate gene set increases. A few methods have been proposed to reduce this 

computational burden. WExT (M. D. Leiserson et al., 2016) used a saddlepoint algorithm 

to approximate the permutation test, but its computational efficiency was not sufficiently 

high. WeSME (Y. A. Kim et al., 2017) proposed a weighted sampling algorithm instead of 

permutation, but the algorithm was limited to examining two genes at a time. As a 

compromise, most methods only focused on genes with relatively high mutation rates 

and/or known to be cancer drivers. The number of genes they considered was typically less 

than 1000, or even less than 100, which limited their ability to perform genome-scale 

screening. 

Due to these major hurdles, current mutual exclusivity analysis methods have 

limited ability of analyzing the whole genome to identify novel driver genes, especially 

those with low mutation frequencies. In this project, we explore methods for removing 

those hurdles so as to unleash the power of mutual exclusivity analysis for genome-wide 

screening of driver gene mutations. To address the challenges mentioned in the cancer 
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driver mutation discovery, MEScan is developed based on a statistical test to de novo 

screen mutually exclusive patterns at the genome scale. The framework has the following 

key component: 1) the test statistic directly quantifies the discrepancy between the 

observed level of mutual exclusivity and the expected value due to the background, where 

a patient-specific and gene-specific background mutation rate is taken into account.; 2) it 

incorporates a gene-specific weight to adjust for gene mutation frequencies, favoring more 

balanced rather than unbalanced patterns; 3) test statistic only involves simple algebra, and 

thus is very fast to calculate. Equipped with this very fast test, MEScan implement a 

Markov chain Monte Carlo (MCMC) algorithm to efficiently scan for mutually exclusive 

gene sets at the genomic scale, a false discovery rate (FDR) adjustment procedure to control 

false positives, and a summarization procedure to select high-confidence findings. We 

demonstrate our test statistics outperforms several existing methods based on simulation 

studies. And our algorithm has been applied to TCGA data for genome-scale screening of 

mutually exclusive gene sets. 

3.2 MEScan Framework 

The overview of the MEScan framework is in Figure 9. Overview of the MEScan 

framework.. We propose a test statistic, TG, to examine whether a candidate gene set G 

pertains to a mutually exclusive mutational pattern. The TG  quantifies the difference 

between the observed potential of mutual exclusivity in G with its expected value due to 

background noise. A TG larger score indicates that the gene set is more likely to be mutually 

exclusive. As the background mutation rate varies across patients and genes, the TG 

incorporates a patient- and gene-specific background mutation rate in the calculation to 

adjust for the background noise. In addition, TG includes a gene-specific weight to down-
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weigh genes with very high mutation rates, which could lead to spurious unbalanced 

mutually exclusive patterns. As illustrated in the figure, the candidate gene set G =

(g2, g4, g5) appears to show a mutually exclusive mutational pattern. However, most of the 

mutations are from gene g2  while the other two genes, g4  and g5  , have very few 

mutations. The apparent mutually exclusive pattern is highly unbalanced and dominated 

by g2. To balance the impact of each individual gene on the overall pattern, our TG statistic 

includes a gene-specific weight, which is inversely correlated with the gene's mutation rate, 

to reduce the impact of g2. Furthermore, TG is very fast to calculate, which is critical for 

genome-scale screening over a vast number of candidate gene sets.  
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Figure 9. Overview of the MEScan framework.A key component of MEScan is a fast and 
powerful statistical test, TG, for assessing mutual exclusivity of a candidate gene set. This 
test accounts for a patient- and gene-specific background mutation rate (for illustration, 
darker blue indicates higher and lighter blue indicates lower background mutation rate). 
By using a gene-specific weight, the test also balances the impact of each gene on the 
overall significance of the gene set. Based on this test, our genome-scale screening follows 
a multi-step procedure. Starting from the observed mutation data matrix, an MCMC 
algorithm is used to screen across candidate gene sets, where the probability of a gene set 
being sampled is proportional to the TG score of that set. Next, significant gene sets are 
identified with the control of the FDR. Finally, high-confidence gene sets are selected 
based on the criteria that all subsets of them are also significant and they do not have 
substantial overlaps. 

Building upon this test, we use a multi-step procedure for genome-scale screening 

of mutually exclusive gene sets. Firstly, we use an MCMC algorithm to efficiently identify 

potential mutually exclusive gene sets at the genomic scale. According to the COSMIC 

database (Forbes et al., 2015), somatic mutations have been identified in over 20,000 genes. 

Given the vast number of candidate genes and numerous combinations of genes to form 

gene sets, examining all the possible gene sets is impractical. Therefore, for each size of 

candidate gene set, we construct a Markov chain such that the probability of sampling each 
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gene set is proportional to the TG score of that gene set. This method allows for more 

efficient screening and puts more focus on the gene sets that are more likely to be mutually 

exclusive. Secondly, we identify significant mutually exclusive gene sets by implementing 

an FDR control method. Finally, we select high-confidence mutually exclusive gene sets 

by investigating significant gene sets across different sizes. Roughly speaking, a high-

confidence mutually exclusive gene set satisfies that 1) itself and all its subsets are 

significant gene sets; and 2) it does not have substantial overlap with another high-

confidence mutually exclusive gene set. We expect these high-confidence mutually 

exclusive gene sets, which are strongly supported by the data and distinct from each other, 

are of most interest for further biological interpretation and investigation. 

3.3 Testing mutual exclusivity of a single gene set 

We have developed a new statistical test to examine the presence or absence of a 

mutually exclusive pattern for a gene set G based on mutation data from a cohort of n 

patients, while adjusting for patient- and gene-specific background mutation rate as well 

as the impact of highly mutated genes. Our test statistic quantifies the observed potential 

of mutual exclusivity beyond what is expected due to random background for each gene 

and patient, and then takes a summation across genes and patients. To favor more balanced 

patterns, each gene's contribution to the overall test is weighted by a factor inversely 

correlated with its mutation rate. 

Let 𝑈𝑈𝑖𝑖𝑖𝑖 take value 1 or 0 to indicate whether the ith patient satisfies the mutually 

exclusive mutational pattern and the mutation occurs in a gene g ∈ G, that is, 
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where Yig takes value 1 or 0 to indicate if gene g is mutated in patient i. Under the 

null hypothesis of no mutually exclusive pattern, the expectation of Uig is 

E�𝑈𝑈𝑖𝑖𝑖𝑖� = P�𝑈𝑈𝑖𝑖𝑖𝑖 = 1� = η𝑖𝑖𝑖𝑖 � (1 − η𝑖𝑖𝑖𝑖)
𝑖𝑖≠𝑖𝑖,𝑖𝑖∈𝐺𝐺

≡ θ𝑖𝑖𝑖𝑖 

where ηig is the background mutation rate for gene 𝑔𝑔 in patient 𝑖𝑖 calculated based 

on the MADGiC (Korthauer & Kendziorski, 2015) method. MADGiC considers a 

multiplicative model that quantifies the patient- and gene-specific background mutation 

rate by a product of parameters representing a number of factors that are known to affect 

the mutation rate. Those factors include patient-specific mutation rate, mutation type and 

dinucleotide context (the specific nucleotide change of the mutation and whether the 

mutation occurs in CpG dinucleotides), replication timing of the region and expression 

level of the gene. The empirical Bayes method is used to estimate the patient-specific 

mutation rate parameter, and the method of moments is used to estimate other parameters. 

We quantify the contribution of gene 𝑔𝑔  in patient 𝑖𝑖  to the mutually exclusive 

pattern by Zig = Uig�Uig − θig�,  which calculates the difference between the observed 

value of Uig and its expected value under the null hypothesis. By standardizing Zig and 

taking a weighted sum across genes in G, we obtain the following statistic to quantify the 

evidence of mutual exclusivity in the 𝑖𝑖th patient 
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 𝑇𝑇𝑖𝑖 = �𝑤𝑤𝑖𝑖
𝑖𝑖∈𝐺𝐺

×
𝑍𝑍𝑖𝑖𝑖𝑖

�𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑖𝑖𝑖𝑖� + 𝜆𝜆
, (1) 

where Var�Zig� = θig�1 − θig�
3
 is the variance of Zig, and λ is a small constant to 

mitigate the impact of extremely small θigvalues. Following the suggestion of (Tusher, 

Tibshirani, & Chu, 2001), we set λ to be the 5th percentile of all �θig's, where �θig is 

approximately the standard deviation of Zig because θig is usually much smaller than 1 so 

that �θig�1 − θig�
3 ≈ �θig. 

It is important to note that in Equation (1), we include a gene-specific weight, wg, 

to adjust for the difference in mutation rate of genes in G. Specifically,  

wg =
1/∑ Uig

n
i=1

∑ [1/∑ Uis
n
i=1 ]s∈G

. 

As wg is inversely correlated with the mutation rate of gene g, it down-weighs the 

impact of highly mutated genes, such as TP53, to the overall statistic, and therefore makes 

the statistic favor balanced patterns. The wg  removes the confounding effect of the 

difference in genes’ mutation rates by standardizing the statistic to a balanced pseudo-

population, where the number of subjects having mutations in 𝑔𝑔 but not other genes in =-

 G is the same for each g ∈ G. It is analogous to the inverse probability weighting in survey 

sampling (Little, 1991; Pfeffermann, 1996). 

Finally, we take the sum of 𝑇𝑇𝑖𝑖 over all patients and standardize it to obtain our test 

statistic, 𝑇𝑇𝐺𝐺, for mutual exclusivity of gene set 𝐺𝐺:  

 TG =
∑ Tin
i=1 − ∑ E(Ti)n

i=1

�∑ Var(Ti)n
i=1

 (2) 
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where the expectation and variance of Ti are  

E(Ti) = �
wgθig�1 − θig�

�θig�1 − θig�
3 + λg∈G

, 

and  

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇𝑖𝑖) = ∑𝑖𝑖∈𝐺𝐺
𝑤𝑤𝑔𝑔2𝜃𝜃𝑖𝑖𝑔𝑔(1−𝜃𝜃𝑖𝑖𝑔𝑔)3

��𝜃𝜃𝑖𝑖𝑔𝑔(1−𝜃𝜃𝑖𝑖𝑔𝑔)3+𝜆𝜆�
2 − ∑𝑖𝑖,𝑖𝑖∈𝐺𝐺,𝑖𝑖≠𝑖𝑖

2𝑤𝑤𝑔𝑔𝑤𝑤𝑠𝑠𝜃𝜃𝑖𝑖𝑔𝑔�1−𝜃𝜃𝑖𝑖𝑔𝑔�𝜃𝜃𝑖𝑖𝑠𝑠(1−𝜃𝜃𝑖𝑖𝑠𝑠)

��𝜃𝜃𝑖𝑖𝑔𝑔(1−𝜃𝜃𝑖𝑖𝑔𝑔)3+𝜆𝜆���𝜃𝜃𝑖𝑖𝑠𝑠(1−𝜃𝜃𝑖𝑖𝑠𝑠)3+𝜆𝜆�
 

The 𝑇𝑇𝐺𝐺 can be calculated very quickly because the formula only involves simple 

algebra. This high computational efficiency is key to enable screening over a vast number 

of candidate gene sets. 

3.4 Genome-wide screening 

The efficiency test TG makes it possible to perform genomic scale screening for 

mutually exclusive gene sets from thousands of genes. However, due to the vast number 

of candidate gene sets, it is still impractical to perform a mutual exclusivity test 

exhaustively on each of those gene sets. Therefore, we consider an MCMC method to 

screen candidate gene sets more efficiently and prioritize gene sets that are more likely to 

pertain the mutually exclusive pattern. We define a probability distribution on candidate 

gene sets satisfying that the probability of a candidate gene set is proportional to its TG 

score. A Markov chain is then constructed to have that probability distribution as its 

equilibrium distribution. Therefore, the MCMC algorithm favors sampling gene sets with 

large TG scores, which are more likely to be mutually exclusive sets. A similar approach 

was used in (M. D. M. Leiserson et al., 2015). 
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In the implementation, we consider a separate MCMC for each size of gene sets. 

For each MCMC, we use the following Metropolis-Hastings algorithm to obtain Monte 

Carlo samples. For a gene set G, we define NB(G) as a collection of its neighborhood gene 

sets who contain the same number of genes as 𝐺𝐺 and differ from 𝐺𝐺 by only one gene. We 

require that a gene set can only transit to its neighborhood gene sets. Specifically, at each 

MCMC iteration, the proposed state 𝐺𝐺' given the current state 𝐺𝐺 is a random sample from 

𝑁𝑁𝑁𝑁(𝐺𝐺). The Metropolis acceptance probability for 𝐺𝐺' is  

r(G, G′) = min�1, �
TG′
TG
�
τ

�, 

where τ is a tuning parameter to control the acceptance rate to be around 30%. 

3.5 Determining a cutoff value to control the FDR 

We identify significantly mutually exclusive gene sets by controlling the FDR<0.05 

based on the local fdr method from a previous publication (Efron, 2004b). The local fdr 

method considers the observed distribution of 𝑇𝑇𝐺𝐺  as a mixture of null and non-null 

distributions. It empirically estimates the null and non-null distributions for possibly non-

independent test statistics of large-scale simultaneous hypothesis testing. The FDR is then 

calculated based on the empirical null and non-null distributions.  A cutoff value of 𝑇𝑇𝐺𝐺 

corresponding to FDR < 0.05 is determined so that gene sets with 𝑇𝑇𝐺𝐺  scores larger than 

the cutoff value are considered as significantly mutually exclusive.  The cutoff value is 

determined for each size of gene sets separately. Note that the original method in (Efron, 

2004b) requires using the 𝑇𝑇𝐺𝐺 's of all candidate gene sets to estimate the empirical null and 

non-null distributions and determine the 𝑇𝑇𝐺𝐺  cutoff value, which is computationally 

intractable for our situation. As those gene sets are randomly selected, they are likely to 
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represent the distribution of  TG in all candidate gene sets. Therefore, instead of using all 

candidate gene sets, we randomly sample 107  gene sets to estimate the empirical null 

distribution and determine the TG cutoff value for each size of gene sets. Based on real data 

analysis, as shown in Figure 14. TG cutoff value estimation. For each size of candidate gene 

sets, the cutoff value of TG for controling FDR < 0.05 was estimated by sampling 107 (red 

square) or 108 (blue diamond) candidate gene sets., sampling 107 gene sets are sufficient 

to obtain stable cutoff values. 

3.6 Identifying high-confidence mutually exclusive gene sets 

By applying the TG cutoff value as described in the last subsection, we can identify 

a number of significant mutually exclusive gene sets with FDR < 0.05 for each size of gene 

sets. Let ℳ be a collection of the significant gene sets across all sizes.  

Based on our experience, there can be a large number of gene sets in ℳ and many 

of those gene sets overlap with each other. To promote more robust and focused inferences, 

we further define high-confidence mutually exclusive gene sets, satisfying that 1) all 

subsets are also significantly mutually exclusive; and 2) different gene sets do not have 

substantial overlaps. A two-step procedure is used to select high-confidence mutually 

exclusive gene sets. The first step identifies all maximal cliques in ℳ. A clique is defined 

as a gene set (size ≥ 3) such that itself and all of its subsets (size ≥ 2) are all in ℳ. A 

maximal clique is a clique that cannot be expanded by including any additional gene. These 

maximal cliques are likely to be real mutually exclusive sets because they are validated by 

all their subsets. Note that we do not consider gene sets of size 2 as cliques because they 

do not have subsets to validate. The second step removes largely overlapped maximal 

cliques of the same size. For maximal cliques of size > 3, if the number of overlapped genes 
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between two maximal cliques of the same size is > 50% of the size, we remove one of them 

with a lower TG score. For maximal cliques of size = 3, because the size is too small to 

define meaningful overlaps, we simply select the top 100 maximal cliques with the largest -

TG scores. After the two-step procedure, the remaining maximal cliques are considered as 

high-confidence mutually exclusive gene sets. 

3.7 Results 

3.7.1 Simulation studies 

We performed simulation studies to evaluate the performance of MEScan and 

compared to the following five existing methods: MEGSA, Dendrix (version 0.3), TiMEx 

(version 0.99.0), WExT (weighted-row exclusivity test, version 1.3.0) and CoMEt. For 

CoMEt, we used the WExT row-exclusivity test implementation as suggested by the paper 

(M. D. Leiserson et al., 2016). To mimic a real-world situation, the simulated datasets were 

generated based on the TCGA ovarian cancer dataset described in the Real data analysis 

subsection.  

3.7.1.1 Simulation studies to evaluate methods' performance in identifying subsets of a 

true mutually exclusive gene set without the presence of highly mutated genes 

As the goal of the analysis is to identify truly mutually exclusive mutation patterns 

while avoiding spurious patterns, the following simulation studies were conducted to 

evaluate and compare each method's performance in ranking candidate gene sets. We 

randomly selected 200 patients and 3 genes from TCGA ovarian cancer dataset and 

artificially added a mutually exclusive mutational pattern on 10%, 20%, 30%, or 40% of 

patients, which was referred to as the coverage. We considered two different mutually 

exclusive mutational patterns, one with a 1:1:1 ratio of mutation frequencies for the three 
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genes (equal number of mutations in each gene) and the other with a 3:2:1 ratio of mutation 

frequencies. We additionally included 17 other genes, each has at least 5 mutations in the 

TCGA ovarian cancer dataset, as “noisy” genes without any mutually exclusive pattern. 

We considered two different approaches to select those genes. One approach was to 

randomly select 17 genes from the real data. The other was to intentionally include TP53, 

which had a high mutation frequency of 94.6%, and randomly select the other 16 genes. 

This second approach aimed to assess each method's performance in the presence of a 

highly mutated driver gene but not part of the mutually exclusive pattern, where such a 

gene could yield spurious unbalanced mutually exclusive patterns by random chance.  

We first evaluated methods' performance in identifying the true 3-gene mutually 

exclusive gene set. Under each scenario, we applied each method (except for TiMEx) to 

all candidate gene sets of size 3 and identified the top-ranked gene set. Here, the candidate 

gene sets were ranked based on the TG score for MEScan, the weight W for Dendrix, the 

p-value for CoMEt, WExT and TiMEx, and the likelihood for MEGSA. Note that because 

TiMEx is computationally intensive, we only applied it to a smaller subset of candidate 

gene sets, i.e., the union of top 10 gene sets ranked by each of the other methods and the 

gene set with the true mutual exclusive pattern, which may bias the result in favor of this 

method. Our simulations were replicated 100 times and the frequency that the top-ranked 

gene set was the gene set containing the true mutually exclusive mutation pattern we 

generated was calculated, which was referred to as the power. 
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Figure 10. Comparison of power for identifying a true mutually exclusive gene set based 
on simulations.  Each simulated dataset contained 20 genes, including 3 genes with a true 
mutually exclusive mutational pattern and the other 17 genes without any pattern. 
Simulations were replicated 100 times and the power was calculated as the frequency that 
the top-ranked gene set was the 3-gene set with the true mutually exclusive mutational 
pattern. Four scenarios were considered. A) The ratio of mutation frequencies was 1:1:1 
for the 3 genes and the other 17 genes did not include a highly mutated gene; B) the ratio 
of mutation frequencies was 3:2:1 for the 3 genes and the other 17 genes did not include a 
highly mutated gene; C) the ratio of mutation frequencies was 1:1:1 for the 3 genes and the 
other 17 genes included a highly mutated gene; and D) the ratio of mutation frequencies 
was 3:2:1 for the 3 genes and the other 17 genes included a highly mutated gene. 

 
Figure 10 shows the simulation results. In all scenarios, MEScan had the highest 

power compared to other methods, especially when the coverage was low. For example, 

when a true mutually exclusive pattern with equal number of mutations in each of the three 

genes was presented in 10% of patients, MEScan was able to achieve 80% power (Figure 
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10A). In contrast, all other methods had power less than 25%. This is likely due to the 

adjustment of the background mutation rate by MEScan, which provides a better detection 

of true patterns against spurious patterns coming from random noise. 

3.7.1.2 Simulation studies to evaluate methods' performance in identifying subsets of a 

true mutually exclusive gene set with the presence of highly mutated genes 

We next assessed the impact of a highly mutated noisy gene (TP53) that was not 

part of the true mutually exclusive pattern. Figure 11. Comparison of power for identifying 

subsets of a true mutually exclusive gene set based on simulations. Each simulated dataset 

contained 20 genes, including 3 genes with a true mutually exclusive mutational pattern 

and the other 17 genes without any pattern. Simulations were replicated 100 times and the 

power was calculated as the frequency that the top-ranked 2-gene set was a subset of the 

true 3-gene mutually exclusive mutational pattern. Four scenarios were considered. A) The 

ratio of mutation frequencies was 1:1:1 for the 3 genes and the other 17 genes did not 

include a highly mutated gene; B) the ratio of mutation frequencies was 3:2:1 for the 3 

genes and the other 17 genes did not include a highly mutated gene; C) the ratio of mutation 

frequencies was 1:1:1 for the 3 genes and the other 17 genes included a highly mutated 

gene; and D) the ratio of mutation frequencies was 3:2:1 for the 3 genes and the other 17 

genes included a highly mutated gene. compares the power of each method in the absence 

(top panels) vs. presence (bottom panels) of TP53. MEScan was able to maintain the power 

after the addition of the highly mutated gene, indicating that it was robust to such a gene 

that could cause spurious unbalanced patterns by random chance. In contrast, the power of 

all other methods decreased. Dendrix did not have any power even when the coverage 

increased, which is as expected, because it was sensitive to unbalanced spurious patterns. 
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In fact, the top-ranked gene set from Dendrix was always a set containing TP53. CoMEt, 

which used a conditional method to reduce the bias towards unbalanced patterns, also had 

substantial decrease in power. Therefore, the conditional method appeared not adequately 

address the issue of unbalanced spurious patterns. 
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Figure 11. Comparison of power for identifying subsets of a true mutually exclusive gene 
set based on simulations. Each simulated dataset contained 20 genes, including 3 genes 
with a true mutually exclusive mutational pattern and the other 17 genes without any 
pattern. Simulations were replicated 100 times and the power was calculated as the 
frequency that the top-ranked 2-gene set was a subset of the true 3-gene mutually exclusive 
mutational pattern. Four scenarios were considered. A) The ratio of mutation frequencies 
was 1:1:1 for the 3 genes and the other 17 genes did not include a highly mutated gene; B) 
the ratio of mutation frequencies was 3:2:1 for the 3 genes and the other 17 genes did not 
include a highly mutated gene; C) the ratio of mutation frequencies was 1:1:1 for the 3 
genes and the other 17 genes included a highly mutated gene; and D) the ratio of mutation 
frequencies was 3:2:1 for the 3 genes and the other 17 genes included a highly mutated 
gene. 

3.7.1.3 Simulation studies to evaluate methods' performance in identifying the true 

mutually exclusive gene set across candidate gene sets of different sizes 

We adapted the same simulation scenarios and  applied each methods to all 

candidate gene sets of sizes from 2 to 6. We calculated the fraction of simulations that the 
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top-ranked gene set was exactly the true 3-gene mutually exclusive set, is a subset of the 

true set, contains the true set, or otherwise. Compared to other methods, MEScan yielded 

the highest fraction of simulations with the top-ranked gene set being the true mutually 

exclusive set when the coverage was low. It was also robust to the presence of a highly 

mutated noisy gene. Figure 12 Simulation results for applying MEScan, MEGSA, Dendrix, 

WExT and CoMEt across different sizes (2 to 6) of candidate gene sets. Bar graphs show 

the fractions of simulations that the top-ranked gene set is exactly the true 3-gene mutually 

exclusive set (green), is a subset of the true set (blue), contains the true set (yellow), or 

otherwise (red). Each simulated dataset contained 20 genes, including 3 genes with a true 

mutually exclusive mutational pattern and the other 17 genes without any pattern. 

Simulations were replicated 100 times. Four scenarios were considered. A) The ratio of 

mutation frequencies was 1:1:1 for the 3 genes and the other 17 genes did not include a 

highly mutated gene; B)  the ratio of mutation frequencies was 3:2:1 for the 3 genes and 

the other 17 genes did not include a highly mutated gene; C) the ratio of mutation 

frequencies was 1:1:1 for the 3 genes and the other 17 genes included a highly mutated 

gene; and D) the ratio of mutation frequencies was 3:2:1 for the 3 genes and the other 17 

genes included a highly mutated gene.shows the results for all the methods. For the 

scenarios that the ratio of mutation frequencies of the three genes in the true set was 1:1:1, 

MEScan had the largest fraction of simulations that ranked the true 3-gene set to the top 

among all methods when the coverage was 0.1 to 0.3, while CoMEt had the largest fraction 

when the coverage was 0.4. For the scenarios that the ratio of mutation frequencies of the 

three genes in the true set was 3:2:1, MEScan more frequently ranked a 2-gene subset of 

the true set to the top. This is as expected because one of the three genes had a low mutation 
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frequency, making it more dicult to be identied. For the purpose of identifying driver genes, 

MEScan was conservative since all genes in the top-ranked set were part of the true signal. 

In contrast, other methods tended to more frequently rank larger gene sets, containing some 

noisy genes in addition to genes in the true set, to the top, which was anti-conservative. In 

addition, MEScan was still able to identify the true 3-gene set in a fraction of simulations 

under low coverage situation (coverage = 0.1 or 0.2), where other methods were unable to 

identify the true set. Furthermore, MEScan's performance remained the same in the absence 

or presence of a highly mutated noisy gene, suggesting that MEScan was robust to the 

presence of such a gene. In contrast, the top-ranked gene sets based on Dendrix, WExT 

and CoMEt were almost always neither the true set nor a superset of the true set in the 

presence of a highly mutated noisy gene. 
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Figure 12 Simulation results for applying MEScan, MEGSA, Dendrix, WExT and CoMEt 
across different sizes (2 to 6) of candidate gene sets. Bar graphs show the fractions of 
simulations that the top-ranked gene set is exactly the true 3-gene mutually exclusive set 
(green), is a subset of the true set (blue), contains the true set (yellow), or otherwise (red). 
Each simulated dataset contained 20 genes, including 3 genes with a true mutually 
exclusive mutational pattern and the other 17 genes without any pattern. Simulations were 
replicated 100 times. Four scenarios were considered. A) The ratio of mutation frequencies 
was 1:1:1 for the 3 genes and the other 17 genes did not include a highly mutated gene; B)  
the ratio of mutation frequencies was 3:2:1 for the 3 genes and the other 17 genes did not 
include a highly mutated gene; C) the ratio of mutation frequencies was 1:1:1 for the 3 
genes and the other 17 genes included a highly mutated gene; and D) the ratio of mutation 
frequencies was 3:2:1 for the 3 genes and the other 17 genes included a highly mutated 
gene. 

3.7.1.4 Simulation studies to evaluate methods' performance in controlling the false 

discovery rate (FDR) 

We further evaluated the FDR control of our method. In the absence of a highly 

mutated noisy gene, the observed FDR was around the nominal FDR. In the presence of a 

highly mutated noisy gene, the observed FDR was smaller than thee nominal FDR. These 

results suggests that our method was able to control the FDR. We considered the same four 

simulation scenarios as described in the main text. We investigated all candidate gene sets 

of size 3, and calculated the observed FDR corresponding to the nominal FDR of 0.01, 

0.05, 0.1, and 0.2. Note that the null hypothesis for a mutual exclusivity test is that the three 

genes do not have any mutually exclusive pattern. The alternative hypothesis is that there 

is a mutually exclusive pattern, which includes both the case of a full mutually exclusive 

pattern among all the three genes and the case of a partial mutually exclusive pattern in two 

of the three genes. Both cases are considered as true positives in our calculation. In our 

simulations, the full and partial patterns are overlapping, and thus correlated with each 

other. Figure 12 Simulation results for applying MEScan, MEGSA, Dendrix, WExT and 

CoMEt across different sizes (2 to 6) of candidate gene sets. compares the nominal FDR 

versus the observed FDR. In the absence of a highly mutated noisy gene, the observed FDR 



66 
 

was around the nominal FDR. In the presence of a highly mutated noisy gene, the observed 

FDR was smaller than thee nominal FDR. These results suggests that our method was able 

to control the FDR.  

 

Figure 13 Evaluation of the FDR control based on simulations.  Each simulated dataset 
contained 20 genes, including 3 genes with a true mutually exclusive mutational pattern 
having a coverage of 0.2 and the other 17 genes without any pattern. Simulations were 
replicated 100 times. Four scenarios were considered. A) The ratio of mutation frequencies 
was 1:1:1 for the 3 genes and the other 17 genes did not include a highly mutated gene; B)  
the ratio of mutation frequencies was 3:2:1 for the 3 genes and the other 17 genes did not 
include a highly mutated gene; C) the ratio of mutation frequencies was 1:1:1 for the 3 
genes and the other 17 genes included a highly mutated gene; and D) the ratio of mutation 
frequencies was 3:2:1 for the 3 genes and the other 17 genes included a highly mutated 
gene. 
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Our proposed identification of high-confidence mutually exclusive gene sets 

provides a way to further select full patterns out of partial patterns. This is because a high-

confidence mutually exclusive gene set requires that all its subsets are also significantly 

mutually exclusive. For a gene set containing a partial pattern, some of its subsets may not 

contain >1 genes from the mutually exclusive pattern, and thus are likely to be non-

significant. Therefore, the identification of high-confidence mutually exclusive gene sets 

can potentially filter out those gene sets with partial patterns. To demonstrate this, we 

performed high-confidence mutually exclusive gene sets identification based on the 

simulated datasets. In all simulations, the true 3-gene set always remained in the high-

confidence sets as long as the high-confidence sets was non-empty.  For balanced pattern 

situations (scenarios A and C), in 44% to 50% of simulations, the high-confidence sets 

only  contains a single gene set, which is the true set, suggesting that our method was able 

to filter out gene sets with partial pattern. For less balanced pattern situations (scenarios B 

and D), our method was able to identify the single true gene set in 23% to 24% of 

simulations. The reduced percentage compared to balanced pattern situations was due to 

the fact that there was a gene with low coverage in the true set under less balanced 

situations, which was harder to detect. It should also be pointed out that in 20% to 50% of 

simulations, the resulting high-confidence set was empty, suggesting that the selection of 

high-confidence set was very stringent so that the true set could sometimes be filtered out. 

To sum up, the identification of high-confidence mutually exclusive gene sets appears to 

be a conservative approach to filtering out gene sets with partial patterns. 
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3.7.2 Time cost comparison 

Computational time is very critical for a mutual exclusivity test due to the vast 

number of candidate gene sets needing to be examined. We compared the computational 

time of MEScan, MEGSA, Dendrix, WExT and CoMEt for assessing 1000 candidate gene 

sets for each of the size 3 to 7 based on 200 patients randomly selected from the TCGA 

ovarian cancer dataset. Note that TiMEx was not included in the comparison, because it 

was substantially slower than other methods. Table 4 presents the running time of each 

method. MEScan was the fastest method. The only other method that was on the same scale 

as MEScan is Dendrix. However, as pointed out by Leiserson et al. (2015)  (M. D. 

Leiserson et al., 2015) and also observed in our simulations, Dendrix did not adjust for the 

impact of highly mutated genes, and therefore could lead to spurious results. Apart from 

Dendrix, MEScan was at least two orders of magnitude faster than the rest three methods. 

For example, it took MEScan only 0.017 seconds to analyze 1000 gene sets of size 3, while 

the other three methods took more than 8 seconds. In addition, MEScan only had a less 

than 2-fold increase in computational time as the size of gene set increased from 3 to 7. In 

contrast, CoMEt and WExT had a 10-fold increase in computational time. Therefore, 

MEScan provides a very fast and robust test that is instrumental for genome-scale screening 

of mutually exclusive gene sets. 

Table 4. Comparison of computational time. The reported computational time (in seconds) 
was for analyzing 1000 gene sets of a given size. 

Size of gene 
set  MEScan MEGSA Dendrix WExT CoMEt 

3 0.017 14.604 0.052 8.807 8.488 
4 0.021 18.166 0.056 12.791 12.701 
5 0.022 26.26 0.06 31.575 23.611 
6 0.023 37.285 0.061 50.402 46.922 
7 0.023 54.675 0.076 96.574 85.256 
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3.7.3 Choosing cutoff values of 𝑇𝑇𝐺𝐺 to control FDR 

In genome-scale screening, a cutoff value of TG  is determined based on the 

empirical distribution of TG (Efron, 2004a) to control for the FDR for each size of gene 

sets. As it is impractical to obtain TG for all candidate gene sets, we randomly selected a 

fraction of gene sets to estimate the empirical distribution of TG for each gene set size and 

then determine the cutoff value. To determine how large the fraction is needed to obtain 

stable cutoff values, Figure 14 compared the cutoff value calculated from 107  or 108 

randomly selected candidate gene sets for gene set sizes 3 to 7 based on the TCGA ovarian 

cancer dataset. The cutoff value determined using 107 gene sets was stable. Increasing the 

number to 108 did not lead to any notable change. As the computational time of calculating 

TG 's for 107  gene sets is acceptable in practice, we used this number in our real data 

analysis. 
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Figure 14. TG cutoff value estimation. For each size of candidate gene sets, the cutoff value 
of TG for controling FDR < 0.05 was estimated by sampling 107 (red square) or 108 (blue 
diamond) candidate gene sets. 

 
3.7.4 Whole genome data analysis 

We applied our method to TCGA glioblastoma (Brennan et al., 2013), squamous 

cell lung cancer (Cancer Genome Atlas Research, 2012), ovarian cancer (Cancer Genome 

Atlas Research, 2011), pan-cancer (Cancer Genome Atlas Research et al., 2013; Kandoth 

et al., 2013), and breast cancer (Cancer Genome Atlas, 2012) studies. All the data were 

downloaded from Synapse (syn1729383) (Kandoth et al., 2013). For each dataset, we 

limited our analysis to non-synonymous mutations and focused on non-synonymous 

mutations and filtered out genes with no more than one mutation. The filtered datasets 

contain 3193 to 16984 genes. We applied MEScan and searched for mutual exclusive gene 

sets of size between 2 and 7. For each gene set size, 4 independent MCMC chains, each 

having 108  iterations with 5 × 105  burn-in iterations, were generated using 4 different 
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random seeds and the results were pooled together. To control for FDR, we randomly 

selected 107 gene sets of a given size to estimate the empirical null distribution of TG and 

FDR. We chose the cutoff value of TG score such that FDR <  0.05 and called gene sets 

with TG scores higher than the cutoff value as significant mutually exclusive gene sets. 

Finally, high-confidence mutually exclusive sets were determined by investigating the 

consensus of mutually exclusive gene sets across different sizes. Below, we focused on 

some of these high-confidence mutually exclusive sets and explored their biological 

interpretations. The selection of these interesting cases was based on the biological 

importance and relevance of these gene mutations as well as the clinically actionable 

mutations of interest. 
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Figure 15. High-confidence mutually exclusive gene sets identified from real data analysis. 
MEScan was applied to identify high-confidence mutually exclusive gene sets based on A) 
TCGA glioblastoma (n=290); B) TCGA lung squamous cell carcinoma (n=174); C) TCGA 
ovarian cancer (n=314); and D) TCGA pan-cancer datasets (n=3205). One selected high-
confidence mutually exclusive gene set from each dataset was presented in this figure.  

 
3.7.4.1 Glioblastoma 

We identified a high-confidence mutually exclusive set with IDH1, EGFR, PTEN 

and PIK3CA (Figure 15A). Aberrant PI3K/Akt signaling is frequently observed in cancers 
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including glioma, which often is achieved by loss of the PI3K inhibitor PTEN (phosphatase 

and tensin homolog) or gain-of-function mutations of EGFR (X. Li et al., 2016; H. Xu et 

al., 2017) or PI3KCA (Carracedo & Pandolfi, 2008). IDH1 is a NADP-dependent enzyme 

that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) in the 

TCA cycle. IDH mutations are frequently present in gliomas and result in a gain of enzyme 

function of NADPH-dependent reduction of α-ketoglutarate to 2-hydroxyglutarate that 

promotes tumorigenesis (Philip et al., 2018). Mutant IDH1 activates mTOR signaling 

downstream of the PI3K/AKT/TSC1/2 pathway by inhibiting KDM4A, an α -KG-

dependent histone demethylase (Carbonneau et al., 2016). Thus, in glioblastoma, we have 

identified three regulators of PI3K/AKT/mTOR signaling.  

3.7.4.2 Squamous cell lung cancer 

A high-confidence mutually exclusive set we identified consists of three genes, 

kelch-like ECH-associated protein 1 (KEAP1), phosphatase and tensin homolog (PTEN) 

and nuclear factor erythroid-2-related factor 2 (NFE2L2/NRF2), see Figure 15B. NRF2 is 

a transcription factor and critical regulator of response to oxidative stress. KEAP1 is a 

negative regulator of NRF2, and in response to oxidative stress, NRF2 is released from 

KEAP1 where it travels to the nucleus and activates transcription of target genes, that are 

generally anti-oxidants. When KEAP1 is mutated, NRF2 accumulates (X. Chen, Zhang, 

Zhang, & Gao, 2019). Constitutive activation of NRF2, either through mutations in NRF2 

itself or the regulatory partner KEAP1, is recognized to increase tumorigenesis as well as 

drive resistance to chemotherapies. In addition, many lung cancers have constitutive NRF2 

activation in the absence of NRF2 and KEAP1 mutations (Kerins & Ooi, 2018). PTEN has 

recently emerged as a negative regulator of NRF2, and loss of PTEN is associated with 
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constitutive activation of NRF2 (Best et al., 2018). Therefore, our analysis has identified 

two regulators of a final common transcription factor, strongly implicated in tumorigenesis 

and resistance to chemotherapy.  

3.7.4.3 Ovarian cancer 

Breast cancer gene 1 (BRCA1), neurofibromatosis type (NF1) and cyclin-

dependent kinase (CDK) 12 was identified as a high probability mutually exclusive gene 

set in ovarian cancer (Figure 15C). CDK12 is transcriptional regulator of DNA damage 

response (DDR) genes including those involved in the homologous recombination (HR) 

like BRCA1 (Joshi, Sutor, Huntoon, & Karnitz, 2014; Paculov\'a & Kohoutek, 2017), via 

phosphorylation of the RNA polymerase II C-terminal domain. Loss of function mutations 

of CDK12 result in compromised DDR and homologous recombination, which is observed 

in ovarian cancers(Joshi et al., 2014). Neurofibromatosis is a hereditary syndrome in which 

individuals typically develop benign neurofibromas because of neurofibromin 1 (NF1) 

mutations, but are also at increased risk of breast cancer(Jeon, Kim, Lim, Choi, & Suh, 

2015). Recent work demonstrated an association between NF1 deletions and ESR1, the 

gene for the estrogen receptor (ER) expression and ER positivity (Dischinger et al., 2018). 

In breast cancer, NF1 binds to and represses ER and loss of function mutations of NF1 

activate ER transcriptional pathways (Chang et al., 2018). Like breast cancer, ovarian 

cancer is a hormone-responsive cancer with ER present in about 60–100% of ovarian 

cancers (Modugno et al., 2012). It’s likely that for ovarian cancers, there are two subtypes. 

One is driven by mutations in CDK12/BRCA signaling while the other is driven by 

mutations in NF1/ER signaling. Our gene set analysis has thus identified mechanisms of 

tumorigenesis of ovarian cancer. 
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3.7.4.4 Pan-cancer 

CDKN2A, NPM1, RPL22, SMC1A was identified as a high-confidence mutually 

exclusive gene set from TCGA pan-cancer data (Figure 15D). P53 is a well-established 

tumor suppressor in human cancer. CDKN2A encodes p14ARF, which inhibits MDM2 

and promotes p53 function such as cell cycle control, apoptosis and tumor suppression 

(Sherr, 2006). NPM1 (nucleophosmin) complexes with and stabilizes p14ARF (Sherr, 

2006). Mutated NPM1 fails to protect p14ARF from degradation and attenuates the ability 

of p14ARF to promote p53 function (Colombo et al., 2006) NPM1 also directly interacts 

with p53 and positively regulates the stability and transcriptional activity of p53 (Colombo, 

Marine, Danovi, Falini, & Pelicci, 2002). RPL22 (Ribosomal protein L22) is highly 

mutated in various human cancers. Studies have shown that RPL22 binds with and inhibits 

MDM2 E3 ligase and thus functions as a p53 positive regulator (Cao et al., 2017). Finally, 

SMC1A is a component of the cohesin complex that plays a crucial role during mitosis in 

holding sister chromatids together from DNA replication in S phase to anaphase to ensure 

proper chromosome separation. SMC1A mutations would impact cohesin functions 

(Hirano, 2006) and would theoretically result in error-prone chromosome replication and 

segregation, which may induce p53-mediated cell cycle control, although it has not been 

experimentally confirmed. The cohesin complex has been shown to bind to the 

transcription start sites of p53 and mdm2, and the knockdown of Rad21 (a cohesin 

component) increased their transcription (Rhodes et al., 2010). It is possible that SMC1A 

mutations would enhance p53 and mdm2 transcription. Thus pan-cancer mutations in 

CDKN2A, NPM1, RPL22, and SMC1A can be functionally connected through the 

p14ARF-MDM2-p53 tumor suppressor pathway.  
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3.7.5 Real world validation and comparison 

We used four real data sets to validate our method from different aspects. We also 

tried to compare our method to existing ones when possible. Note that we attempted to try 

existing methods on the whole-genome real data examples presented in the last subsection. 

However, all attempts with those methods failed to finish.  Dendrix ran out of computer 

memory (i.e > 64 GB of RAM).  MEGSA, CoMEt and WEXT did not finish after using 

over 6 days of CPU time.  Therefore, we compared our methods to others using a smaller 

scale real data example presented in the first validation study of this subsection, where 

some of the existing methods were able to generate results. 

Our first validation study considered the pan-cancer data on 299 driver genes from 

TCGA MC3 (Li Ding et al., 2018) to assess whether MEScan as well as other methods can 

identify the mutually exclusive patterns reported in the paper. Two sets of analyses were 

performed. The first set of analyses focused on examining all candidate gene sets of size 2.  

Ding et.al (Li Ding et al., 2018) reported 8 mutually exclusive gene sets  based on the exact 

Mantel-Haenszel test. MEScan was able to identify all those 8 gene sets as significantly 

mutually exclusive. In contrast, WExT was able to identify 7, CoMEt was able to identify 

1, Dendrix was unable to identify any of those gene sets, and MEGSA was unable to 

complete the analysis with 6 days of CPU time. The second set of analyses focused on 

examining candidate gene sets of size >2.  Ding et.al (Li Ding et al., 2018) reported 4 such 

gene sets.  MEScan was able to identify all of them as significantly mutually exclusive. In 

contrast, Dendrix was unable to identify any of those gene sets, and other methods were 

unable to complete the analysis with 6 days of CPU time. Our second validation study 
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considered the set of BRAF and NRAS, whose mutations are known to be mutually 

exclusive in melanoma (Akbani et al., 2015). We applied each method to TCGA melanoma 

data (Akbani et al., 2015) (n=253). We focused on all gene sets of size 2 and investigated 

whether a method was able to identify the gene set of BRAF and NRAS. MEScan gave a 

𝑇𝑇𝐺𝐺 score of 125.6 for the set of BRAF and NRAS, which is highly significant. In contrast, 

other methods were unable to finish after using over 6 days of CPU time.  Our third 

validation study used an independent large-scale cohort, PCAWG (Consortium, 2020), to 

validate the our findings from TCGA pan-cancer analysis. The PCAWG cohort contains 

1810 cancer patients after excluding overlapped patients between PCAWG and TCGA. 

After filtering out a few genes with no observed mutations in the PCAWG cohort, we 

examined a total of 149 high-confident mutually exclusive gene sets we identified from the 

TCGA pan-cancer cohort. 95% of those gene set were also significantly mutually exclusive 

in the PCAWG cohort. Our fourth validation study used an independent cohort of 2,433 

primary breast tumors (Pereira et al., 2016) to validate our findings from TCGA breast 

cancer analysis. Because the validation cohort sequenced a panel of 173 genes, we focused 

our analysis on high-confidence gene sets consisting of those genes. 84% of those gene 

sets remained significant in the validation cohort. These four validation studies suggested 

that MEScan was able to identify known mutually exclusive patterns and provide 

reproducible results. 

3.8 Discussion 

We have introduced a statistical framework, MEScan, for accurate and efficient 

genome-wide de novo discovery of mutually exclusive gene sets. Our framework uses a 

simple yet powerful statistical test for identifying mutually exclusive gene sets. The test 
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allows adjustment of background mutation rate, mitigates the impact of highly mutated 

genes, and is very fast to calculate. Coupled with this test is an MCMC algorithm to 

efficiently screen candidate gene sets at the genomic scale. MEScan is able to search 

through thousands of candidate genes without restricting to known cancer drivers or genes 

with high mutation rates. To reduce false positives, we use an FDR control procedure to 

identify significant gene sets and a summarization method to further select high-confidence 

mutually exclusive gene sets. Although our method focuses on detecting mutual exclusive 

patterns, it could potentially be extended to detect other important mutational patterns, such 

as co-occurrence patterns (Avivar-Valderas et al., 2018; Li Ding et al., 2018; Thomas et 

al., 2007), but the formula needs to be tweaked towards quantifying those specific patterns.  

Another important extension of our method is to include somatic copy number variations 

in the analysis. 

We noticed that mutual exclusivity could originate from different mechanisms. The 

focus of most current research is on mutations of genes from the same biological pathway. 

However, gene mutations specific to different cancer subtypes could also form a mutually 

exclusive pattern. For example, from TCGA ovarian cancer data, we identified a high-

confidence mutually exclusive gene set of BRCA1, NF1 and CDK12, which is likely to 

contain two different subtypes of ovarian cancer driven by CDK12/BRCA1 signaling and 

NF1/ER signaling, respectively. Therefore, a potential new use of mutual exclusivity 

analysis might be to identify cancer subtypes and subtype-specific gene mutations. Further 

research in this area will be of great interest. Furthermore, mutually incompatible mutations 

(e.g. synthetically lethal mutations) would also produce mutual exclusivity in mutation as 

possible. 



79 
 

One limitation of MEScan is that it does not account for intratumoral heterogeneity. 

Mutations identified using whole-exome bulk sequencing usually come from a mixture of 

multiple subclones within a tumor(McGranahan & Swanton, 2017). Delineating the 

intratumor heterogeneity (Schwartz & Sch\"a, 2017) could provide a cleaner signal to 

improve mutual exclusivity analysis. Furthermore, recent advances in single-cell 

sequencing technologies (Zhang et al., 2019) hold the promise of revealing intratumor 

heterogeneity at a much higher resolution. With the accumulation of such data, performing 

mutual exclusivity analysis at the single cell level will be an interesting topic for future 

research. 
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CHAPTER 4. FastCount: A Fast Gene Count Software for Single Cell and Bulk RNA-
seq Data 

4.1 Introduction 

4.1.1 Bulk RNA-seq gene quantification 

RNA sequencing (RNA-seq) has become one of the most commonly used 

techniques for transcriptome profiling in a wide spectrum of biomedical and biological 

research. Analyzing RNA-seq reads to quantify expression at each gene locus is the first 

step towards any downstream biological interpretation. 

There are two popular gene expression estimation methods: gene count and 

transcript abundance. Gene count is essentially the total number of reads sequenced within 

a gene. Many popular statistical differential expression methods such as DESeq2 (Love et 

al., 2014) and edgeR (Robinson et al., 2010) take gene count as input. They model it as 

negative binomial distribution to deal with biological variability and overdispersion and 

determines differential expression using exact tests (Seyednasrollah et al., 2015). Several 

tools such as featureCounts (Liao et al., 2014) and HTSeq (Anders et al., 2015) are used to 

obtain the gene counts. These softwares require several preprocessing steps on the raw 

RNA-seq reads before performing read counts: 1) generally, a read trimming step is 

necessary to remove adapter sequences and low-quality bases from the FASTQ files 

(Bolger et al., 2014; Martin, 2011a). This improves the mappability of the reads during the 

downstream alignment step. The quality trimming criteria, such as minimum base quality 

score or a number of bases to be trimmed on start or end of each read, are selected 

empirically by the users. The processing time ranges from 10 ~ 60 minutes depending on 

the different algorithms. 2) next, trimmed reads are aligned to either the reference genome 

or the reference transcriptome using RNA-seq mappers, such as Bowtie2 (Langdon) and 
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STAR (Bohnert, Vivas, & Jansen), to generate BAM files. 3) Aligned reads in the BAM 

files are assigned to genes based on the genomic locations provided in the Gene Annotation 

File (GTF) for gene-level read counts. Although there are some efficient algorithms 

available, such as featureCounts to summarize read counts from the BAM file, read 

alignment is computationally intensive, requiring large memory and CPU time. 

Alternatively, read counts can be derived from transcript abundance using tools specially 

designed for transcript-level abundance estimation. Transcript expression is first quantified 

using tools like RSEM (B. Li & Dewey, 2011), Kallisto (Bray, Pimentel, Melsted, & 

Pachter, 2016) and Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017), followed 

by additional gene-level expression estimation. RSEM, first performs read mapping using 

the read aligner mentioned above and uses the Expectation Maximization (EM) algorithm 

to estimate abundances at the isoform and gene levels. However, RSEM does not scale 

well due to the high computational requirements. Kallisto and Salmon on the other hand, 

are alignment-free algorithms where reads are not directly aligned but rather assigned to 

the most likely transcript that generated them using 𝑘𝑘-mers. Those methods avoid the time-

consuming read alignment steps and report expression abundance (Teng et al., 2016) on 

transcript levels. Gene-level read counts are estimated using the transcript-level expression 

by customized scripts or third-party tools to correct gene length changes from differential 

isoform usage {Soneson, 2015 #162}. Therefore, current methods suffer from the 

following problems: the accuracy of alignment-based methods depends heavily on the 

performance of the aligners (Baruzzo et al., 2017) and the scalability is poor in large scale 

study; assigning reads to transcripts is more challenging than to gene due to the repetitive 
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sequences among the transcripts (Teng et al., 2016); and no efficient tools that are specially 

designed to correctly derive gene-level abundance (Soneson et al., 2015). 

4.1.2 Single-cell RNA-seq gene quantification 

Bulk RNA-seq quantifies the overall transcriptome changes in a collection of cells 

with the assumption that cells are homogenous within the sample. However, more 

evidences have shown that (Michael S. Lawrence et al., 2013) (Burrell et al., 2013) tumor 

cells have highly distinct cell types with each types of cells at different cell states. Bulk 

RNA-seq averages out the gene expression profile leading to the cell-to-cell variability 

information unusable (Suva & Tirosh, 2019). The advent of single cell RNA-seq (Klein et 

al., 2015; Macosko et al., 2015; Zheng et al., 2017) enables scientists to characterize the 

transcriptomic response of cancer cells under different treatment, understand intratumor 

expression heterogeneity and infer pseudo-time ordering in cancer development. The 

increasingly usage of scRNA-seq in the cancer research community necessitates the 

development of efficient and accurate algorithm to handle the large amount of scRNA-seq 

data.  

The goal of scRNA-seq is to generate abundance × cell expression matrix that can 

be used for the downstream analyses. Similar to the bulk RNA-seq, the first step in 

analyzing scRNA-seq data is to assign reads to the reference transcriptome for quantifying 

gene expression level in each cell. In scRNA-seq , gene counts-based quantification which 

is the popular approach in bulk RNA-seq analysis (Conesa et al., 2016; Soneson et al., 

2015), is largely biased due to cDNA amplification step in the library preparation (Wang 

& Navin, 2015) leading to distorted estimation of single cells expression level. Recent 

scRNA-seq protocols (Klein et al., 2015; Macosko et al., 2015; Zheng et al., 2017) have 
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employed the unique molecular identifiers (UMIs) technique to label the original RNAs 

before the amplification step to mitigate the bias (W. Chen et al., 2018). Instead of using 

gene counts, many published statistical methods are focusing on UMI-based count matrix, 

which is the total number of UMIs associated with each gene, for a more accurate single 

cell characterization (Butler, Hoffman, Smibert, Papalexi, & Satija, 2018; W. Chen et al., 

2018). Several tools have been developed by reusing the bulk RNA-seq quantification 

methods and taking into account of the UMIs and cell barcodes information incorporated 

in the scRNA-seq protocols. Similar to bulk RNA-seq, scRNA-seq involves mapping read 

to the reference genome and assign mapped reads to gene features. 

The first challenge in scRNA-seq analysis is the amount of data that need to be 

processed. A single cell experiment generates 106 ~ 1010  reads for 103 ~ 106  cells 

(Svensson, Vento-Tormo, & Teichmann, 2018). Current methods for scRNA-seq analysis 

are mainly based on existing bulk RNA-seq tools for read mapping and assignment, with 

extended functions for UMI and cell barcode processing. Cell Ranger (Zheng et al., 2017), 

a toolkit developed by the commercialized scRNA-seq company 10X Genomics, is the 

gold standard to analyzed data generated by 10X Genomics Chromium library. It takes the 

paired-end FASTQs as input, extracts UMIs and cell barcodes for Read1 and aligns Read2 

to the reference genome using STAR (Bohnert et al.) aligner. Customized python scripts 

are provided for UMI/cell barcode correction, UMI deduplication, and UMI counting. Cell 

Ranger only counts reads that are confidently mapped to the exonic regions with valid 

UMIs and cell barcodes. zUMIs (Parekh, Ziegenhain, Vieth, Enard, & Hellmann, 2018) 

first filters reads with low-quality cell barcodes and UMIs and then mapped the rest of the 

reads to the genome using STAR (Bohnert et al.) (default setting) or other user-defined 
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mappers. It uses featureCounts (Liao et al., 2014) to summarize reads mapped to both exon 

and introns and then output the count table with UMI and cell barcode information to R to 

summarize read count. UMI-tools (Smith, Heger, & Sudbery, 2017) uses BWA to map 

reads to the reference transcriptome and only counts exonic reads. However, as read 

mapping is computationally heavy, the alignment-based methods do not scale well with the 

large number of cells that may be predicted. For example, Cell Ranger takes 31 hours to 

process 784M reads in the 8K PMBCs including around 8,000 cells.   

Another challenge in scRNA-seq data analysis is the scRNA-seq specific bias 

including 5’- or 3’- end read bias and low sequencing coverage in many of the droplet-

based or well-based protocols. During the library preparation, full-length mRNA sequences 

are processed for enzymatic fragmentation. It produces transcript fragments with different 

sizes. However, in the process of PCR amplification, the primers only recognize fragments 

that contains the oligo sequences added with primer sequences for sequencing. So only the 

5’ or 3’ portion of the transcript is retained after mRNA fragmentation (Klein et al., 2015; 

Macosko et al., 2015; Zheng et al., 2017). The alignment-free methods rely heavily on 

transcript coverage information to infer the likelihood of the transcripts of origin for each 

read (Bray et al., 2016) (Patro et al., 2017). The resulting library will only produce reads 

that are mapped to the first or the last exon of the gene, leading to biased gene body 

coverage (Ma et al., 2019). For transcripts differ primarily on the 5’ or 3’ end, accurately 

determination the transcripts of origin is difficult. Additionally, average read coverage 

from existing scRNA-seq protocols is low, around 50, 000 reads per cell. The low 

sequencing depth per cell results in reduced sensitivity for resolving transcript-level 

conflicts. Therefore, the 5’/3’-end read bias as well as the low read coverage in scRNA-
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seq make transcript-level quantification even harder due to the reduced information to infer 

the transcripts of origin in the alignment-free algorithms.  Recently benchmarking study 

has shown that alignment-free algorithms report method-specific artifacts and variances in 

the number of cells and genes detected. For example, Kallisto detects highly expressed 

genes in the Vmn and Olfr families in several of the 10X Genomics datasets, where such 

genes are known to be not expressed in the tissues.  

The third challenge in scRNA-seq analysis is to appropriately handle scRNA-seq 

specific information in the UMI and cell barcode sequences. Due to the small amount of 

RNA within each cell, a PCR amplification step is necessary to produce enough cDNA for 

the sequencing step.  The amplification bias can be corrected computationally in the 

downstream analysis using the UMI sequences. If reads with the same UMI sequences from 

the same cell are mapped to the same transcript sequence, we can conclude that they are 

technical duplicates from PCR amplification and should be collapsed. However, 

sequencing errors in the UMIs result in artefactual UMIs inflating the UMI counts (Smith 

et al., 2017). Existing methods include UMI correction step to identify multiple similar 

UMI sequences and treat them as instances of the same UMI. Cell Ranger, zUMIs and 

scPipe (Tian et al., 2018) uses a greedy algorithm comparing each UMI sequence to 

identify UMIs within certain hamming distance and collapse them to the higher count UMI. 

UMI-tools links UMIs by a single edit distance and aims to reduce the UMI network into 

a representative UMI. Salmon constructs a UMI graph to find a minimal set of transcripts 

for UMI deduplication (Srivastava, Malik, Smith, Sudbery, & Patro, 2019). Kallisto, on 

the other hand, does not perform UMI correction, and uses a naïve method to collapse reads 

that contain the same UMI. The sequencing process also introduces errors in cell barcodes. 
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Therefore, the correction of errors in cell barcodes is important in cell identification. Cell 

Ranger, zUMIs and Kallisto first compares the sequenced barcodes to a whitelist which 

contains the pre-defined barcodes in the library preparation kit. If a cell barcode is not in 

the whitelist but is 1-hamming distance away from a barcode in the whitelist, it will be 

corrected to the corresponding barcode from the whitelist. Salmon generates a putative 

whitelist by analyzing the cumulative distribution of barcode frequencies. UMI-tools only 

selects cell barcodes in the given whitelist. The various combinations of different read 

mappers, criteria of read assignments and UMI+cell barcode handling have big impact on 

the gene expression quantification rendering inconsistency in expression differences 

detection, cell clustering and trajectory analysis (Simonsen et al., 2018; Tian et al., 2019). 

4.2 FastCount algorithm 

Despite the existence of large number of tools for bulk and scRNA-seq gene 

quantification, these methods face the following challenges: existing methods do not scale 

well for large data set especially in the application for the single cell experiment where 

millions of reads are sequenced for a single sample; the alignment-free methods are 

sensitive to the sequencing read depth and gene body coverage; and the alignment-free 

methods provide at least 4 times speed improvement but with the tradeoff for accuracy.  

Therefore, we present FastCount, an alignment-free approach to directly assign 

read to gene-level features. FastCount skips the computationally intensive read mapping 

step and assign reads directly to genes of origin based on the gene-specific 𝑘𝑘 -mers 

information. We hypothesize that using gene-specific 𝑘𝑘-mers information simplifies the 

gene-level read assignment problem than transcript-specific information and improves the 

performance in terms of speed and accuracy.  
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FastCount is capable of alignment-free supports alignment-free UMI count 

summarization for scRNA-seq data and gene count quantification for bulk RNA-seq data 

leveraging gene-specific k-mers. Different from the alignment-based algorithms that 

include a computationally intensive read mapping step, FastCount assigns an RNA-seq 

read directly to the potential gene based on its k-mer origin information. FastCount uses a 

novel data structure, GeneOthello, to assign reads to the corresponding gene identifiers 

sharing approximately the same set of k-mers. It conducts read count in a gene without 

necessitating detailed read alignment information. FastCount is implemented to handle 

UMI and cell barcode information specific to scRNA-seq data, allowing a speedy 

assessment of scRNA-seq cell distribution using raw sequencing reads. We demonstrate 

through experiment that FastCount scRNA-seq application using 10X Genomics data and 

compare the performance to 10X Genomics' toolkit, Cell Ranger. FastCount is over an 

order of magnitude faster than Cell Ranger with very competitive accuracy. We also 

demonstrate that FastCount is about two orders of magnitude faster than the gold standard 

bulk RNA-seq tool, RSEM while achieves competitive accuracy. 

4.2.1 Gene 𝑘𝑘-mers signatures 

The term "gene count" typically refers to the number of reads sequenced in each 

gene within a given RNA-seq sample. Calculating gene count requires assigning each read 

to the gene it is sequenced from. Unlike read alignment, read assignment does not require 

high resolution base-by-base continuous matching between the read sequence and genomic 

reference. Instead, read assignment can be simplified to the identification of the gene that 

best matches the set of k-mers present in the read. When k = 21, the majority of k-mers 

(93.9% in GRCh38) are unique to the genes carrying them (Figure 16). Therefore, the gene-
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specific k-mers may serve as signatures for read classification problem. The rest of the k-

mers (6.1% in GRCh38) appear in more than one gene. FastCount leverages this property 

and turns gene count into a read assignment problem. 

The first step of FastCount method is to establish a mapping between k-mers and 

genes. The k-mers in RNA-seq are expected to be from mRNA transcriptome although 

these can be expanded to include other RNA species as well. Therefore, we extract all the 

k-mers present in the transcript sequences of each gene. These k-mers 𝑆𝑆 are divided into 

two categories: gene-specific k-mers and gene-clique k-mers. Each of the gene-specific k-

mers can uniquely identify one gene. Each of k-mers in a gene clique set is not unique to a 

gene and instead, is shared by a set of genes, which we refer to as a gene clique. Those k-

mers are often a result of repetitive sequences but provide useful information on handling 

reads that map ambiguously to multiple genes. Thus, we would like to establish a mapping 

between the set of transcriptome k-mers and their associated gene features. a). Formally, 

let 𝐺𝐺 be genes corresponding to gene-specific k-mers and 𝐶𝐶 be the set of gene cliques.  Let 

𝐹𝐹 be a feature set containing genes in 𝐺𝐺 and gene cliques in 𝐶𝐶, where 𝐹𝐹 =  𝐺𝐺 ∪  𝐶𝐶 and 

𝐺𝐺 ∩  𝐶𝐶 =  0  Thus, there exists a many-to-one mapping between 𝑆𝑆 ⟶  𝐹𝐹 , such that 

𝑚𝑚(𝑠𝑠)  =  𝐹𝐹. 
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Figure 16. Cumulative 𝑘𝑘 -mer percentage at different 𝑘𝑘 -mer occurrence from Human 

reference genome GRCh38.  

4.2.2 GeneOthello 𝑘𝑘-mers index 

The efficiency of gene count procedure relies on how fast one can quickly map a 

read to a gene. In our case, it is translated to how fast we can map a k-mer to a gene. To 

this end, we have adopted a hashing classifier, called Othello (Yu, Belazzougui, Qian, & 

Zhang, 2018), to facilitate the mapping between k-mers and the features 𝑆𝑆. Othello is a 

minimal perfect hashing algorithm (MPH) that provides key-to-value query in constant 

time. The othello algorithm has demonstrated great scalability in both memory and query 

speed in several Bioinformatics applications (Liu et al., 2018; Yu, Liu, et al., 2018). 

We build an index, named GeneOthello, in order to store the many-to-one mapping 

between the aforementioned transcriptome k-mers and gene features. We encode gene 

features 𝐹𝐹  as a set of l-bit integers 𝑉𝑉 = {0, 1 , 2, … , |G|, |G| + 1, |G| + 2, … , |G| + |C|}, 

where 0 is specially allocated for k-mers with occurrence > n and 𝑙𝑙 =  ⌈𝑙𝑙𝑙𝑙𝑔𝑔_2(|𝐹𝐹| + 1)⌉. 

GeneOthello O(S, V) maps the predefined set of k-mers S to the gene features in V. Let  T ∶

 S → V be the function that maps k-mers to the gene features in V, where T(k) indicates the 
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feature of a k-mer s ∈ S. GeneOthello maintains a query function τ: U → I that maps the 

universal set of k-mers, U (i.e., U = θk, θ = {A, G, C, T}) to the set of all l-bit integers, I =

{0,1, … , 2l − 1}. Therefore, S ⊂ U and V ⊂ I. GeneOthello has the following properties: 

1) given a k-mer s ∈ S, a GeneOthello querying τ(s) guarantees returning the correct gene 

feature id v; 2) for any alien k-mers, s′ ∉ S , GeneOthello has a higher probability to assign 

s' to a dummy feature τ(s′) ∈ I − V than a false positive feature 𝜏𝜏(𝑠𝑠′)  ∈  V (Yu, Liu, et al., 

2018). 

The GeneOthello structure includes a pair of hash function ⟨ha, hb⟩ and two arrays 

of l-bit integers A and B. The hash functions and the content of the integer arrays are 

precomputed during GeneOthello construction. The hash functions provide the mapping 

between the universal k-mer set and the corresponding index location in A and B, that is 

ha: U → {0,1, … , ma − 1}  and  hb: U → {0,1, … , mb − 1} . A query of a k-mer s on 

GeneOthello will first yield indices ha(s)  and hb(s) . The feature τ(s)  of k-mer s is 

computed by the integer values at A[ha(s)] and B[hb(s)] as τ(s) = A[ha(s)]⨁B[hb(s)]. 

The procedure only accesses two memory locations in A and B and a bitwise XOR 

operation, making the query execution extremely fast. 
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Figure 17 A toy example illustrating FastCount algorithm. The construction of 
GeneOthello index from the reference gene sequences. In this example, k-mers (k = 3) in 
the reference set are extracted from each reference transcript. Their occurrences within 
genes are tabulated and are categorized into gene signatures and cliques (Top). A 
GeneOthello index is constructed to store the many to one mapping between the k-mers 
and the gene feature indices (Bottom).  

4.2.3 Read assignment to genes  

One of the key steps in bulk and single cell RNA-seq analysis is to accurately assign 

read to the correct gene feature. To do this, FastCount first decomposes read into 

consecutive k-mers (Figure 18 Read assignment procedure.  k-mers in a read are extracted 

and queried against GeneOthello to obtain their gene features. Continuous k-mers with the 

same gene feature are clustered into feature windows. The gene assignment of a read is 
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determined by the gene that dominates the longest feature window.) and each k-mer is 

queried against the GeneOthello index to retrieve its gene feature. Ideally, the read 

assignment is straightforward when all k-mers pointing to the same gene. However, this 

process is often complicated by the presence of alien k-mers that are absent from the 

reference transcriptome. Alien k-mers can be a result of system artifacts during the RNA-

seq library preparation and sequencing, contamination or novel transcript isoforms (Levy 

et al., 2007; Taub, Corrada Bravo, & Irizarry, 2010). When querying on alien k-mers, 

majority of them can be easily detected using the dummy features returned by GeneOthello. 

But in the cases that an alien k-mer is falsely allocated to a reference gene feature, failure 

of detecting it may lead to a false positive read assignment. 
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Figure 18 Read assignment procedure.  k-mers in a read are extracted and queried against 
GeneOthello to obtain their gene features. Continuous k-mers with the same gene feature 
are clustered into feature windows. The gene assignment of a read is determined by the 
gene that dominates the longest feature window. 

FastCount tackles the challenge of alien k-mers using the following strategies: 1) 

when constructing GeneOthello index, we intentionally expand the size of I such that many 

alien k-mers are categorized into a group that is not overlapping with any valid 

transcriptome features I - V. Given the predefined V, we can increase the probability of an 

alien k-mer falls in I - V by increasing l, that is 

2l − |V|
2l

 

(Liu et al., 2018). 2) in the case that an alien k-mer is falsely assigned to the existing gene 

features, we require the presence of at least two consecutive k-mers returning the same 

gene feature to be considered as a feature segment for gene assignment. As the indices 
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queried by alien k-mers are random, the chance of seeing the same gene assignment from 

the two different alien k-mers is very low (Liu et al., 2018). 

FastCount performs read assignment with the following procedure: 1) it iterates 

through each k-mer along the read to retrieve its gene feature by querying against the 

GeneOthello index. With the presence of alien k-mers, gene features along the reads may 

be divided into section. We merge continuous gene features into feature segments and 

reject the dummy features from alien k-mers. Each feature segment is weighted by the wj =

dj2, where dj is the number of k-mers in the feature segment j, to take into account of the k-

mer spatial information on the read. 2) We filter feature segments with length < 2 from 

feature assignment to remove the possible alien k-mers query falsely return to the known 

features. 3) Gene segments are then ranked by the weights to identify the most dominant 

feature. 4) The rest of the feature segments are compared to the dominant feature. If there 

are no consensus gene feature among the segments, the read is removed from the 

assignment; if they all indicate a single consensus gene, the read is assigned to the gene 

feature; if they indicate to a set of genes, the case of multi-mapping read, we will not 

include this read for feature assignment. 

4.2.4 FastCount scRNA-seq implementation 

In scRNA-seq analysis, another key step is to appropriately handle the single-cell 

specific information in the cell barcode and UMI sequence. FastCount accepts sequencing 

FASTQ files that are expected to contain cell barcode and UMI information in one of the 

read files and the gene identity file in another. For example, a typical read 10X Genomics 

Chromium data is in the form of read pairs, read1 and read2 (Figure 19 Individual barcode 

identification and gene assignment for a paired-end read.). Read1 is the cell barcode 
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sequence that is used to tag the cell origin of the cDNA followed by the UMI sequence 

which labels the cDNA molecule. Read2 is the sequenced nucleotide bases from the cDNA 

segment used to determine the gene identity. FastCount algorithm integrates read pre-

filtering, read assignment, UMI correction and UMI counting steps. 

 

Figure 19 Individual barcode identification and gene assignment for a paired-end read.  
FastCount first removes read pairs with invalid CELL BARCODE or UMI sequences using 
read1. If read1 corresponds to valid CELL BARCODE and UMI barcodes, it proceeds to 
assign read2 to gene features using FastCount read assignment algorithm. 

FastCount first filters the low-quality cell barcode and UMI sequences. Due to 

potential sequencing and amplification errors in the cell barcode and UMI sequences, the 

number of detected cells and UMI counts are usually inflated. FastCount parses the cell 

barcode and UMI from the read1 and looking for any "N" bases. Read pairs with 'N's in 

either cell barcode or UMI will be skipped for the read assignment step. Cell 
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barcode+UMIs pass this filter will be further compared against the cell barcode whitelist 

which is the full list of all known cell barcode sequences that are available for cell tagging 

during the library preparation. Cell barcodes that more than 1-hamming distance apart from 

the whitelist are considered invalid. Otherwise, the reads with valid cell barcode+UMI 

sequences are assigned to its potential gene features based on its k-mers information using 

the FastCount read assignment algorithm.  
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Figure 20 Cell-level feature summarization.  Our method iterates through all the read pairs 
for gene-level assignment and keeps track of the number of reads assigned to each gene 
feature for individual cells using a CELL BARCODE+UMI counts matrix. It then corrects 
UMIs based on the UMI counts and UMI sequence differences for each gene feature. The 
final feature-barcode matrix summarizes the number of unique UMIs for each gene feature 
in each cell. 

FastCount keeps tracking the association between the UMIs and gene features for 

each individual cell and stores the UMI counts in a cell barcode+UMI counts matrix. After 

iterating through all the reads for the feature assignment, FastCount will try to further 

mitigate errors in UMIs using the cell barcode+UMI counts information (Figure 20 Cell-

level feature summarization.  Our method iterates through all the read pairs for gene-level 

assignment and keeps track of the number of reads assigned to each gene feature for 
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individual cells using a CELL BARCODE+UMI counts matrix. It then corrects UMIs 

based on the UMI counts and UMI sequence differences for each gene feature. The final 

feature-barcode matrix summarizes the number of unique UMIs for each gene feature in 

each cell.). The UMI correction is performed per cell per gene feature. FastCount compares 

one UMI against the rest of UMIs under the same gene feature within each cell looking for 

the ones that are 1-hamming distance apart. An UMI with lower count is corrected towards 

the higher count UMI. The UMI corrected counts matrix then undergoes UMI 

deduplication to group duplicate UMIs and collapse them into a single consensus one. 

Finally, FastCount counts the number of unique UMIs for each gene-level feature in each 

individual cell and reports the feature-barcode matrix in the Market Exchange Format for 

downstream analysis. 

4.3 Experimental results  

We assess the performance of FastCount on bulk RNA-seq and scRNA-seq data 

analysis separately. In order to benchmark its performance on bulk RNA-seq data, we 

generate a set of simulated data and compare the gene count reported by FastCount to the 

ground truth. For scRNA-seq, datasets published by 10X Genomics are selected as 

reference sets. The feature-barcode matrix quantified by the standard 10X data analysis 

pipeline, CellRanger, is used as the ground truth to evaluate the accuracy measurement.  

4.3.1 Bulk RNA-seq simulation datasets 

We benchmark the performance of FastCount on bulk RNA-seq using simulated 

data generated by rsem-simulate-reads program from RSEM (B. Li & Dewey, 2011). The 

parameterization of the dataset is learned from real data sets following the procedure used 

in Kallisto(Bray et al., 2016). Specifically, rsem-calculate-expression was run on 
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NA12716_7 from the GEUVADIS RNA-seq data to learn the model parameters from the 

real data. We simulated 20 different data sets with 30 million 75 bp paired-ends reads using 

rsem-simulate-reads. The gene-level expression estimations reported by this program for 

each simulation set are used as the true expression levels. We calculated the pearsons and 

spearmans correlation values between the estimated abundance and the ground truth. We 

further measure the accuracy using median relative difference (MRD)  (Bray et al., 2016) 

and 5% error fraction (EF) (B. Li & Dewey, 2011) statistics.  

4.3.2 scRNA-seq 10X Genomics datasets 

Due to the lack of ground truth scRNA-seq dataset, our evaluation focuses on the 

scRNA-seq data produced using the widely accepted 10X Genomics Chromium platform. 

The filtered feature-barcode matrix quantified by count function in the Cell Ranger pipeline 

is used as the reference dataset. We compare how well each tested method correlates with 

Cell Ranger's UMI counting results. We include six datasets to exam the performance of 

the different tools in terms of different species, tissue types, sequencing depth and library 

chemistry. Datasets pbmc_1k_v3 and pbmc_10k_v3 were derived from human peripheral 

blood mononuclear cells (PBMCs) and were prepared using the 10X Chromium v3 

chemistry. We also include heart_1k_v3 and heart_10k_v3 which are cells from whole 

heart of an E18 mouse. Additionally, pbmc4k and pbmc8k are chosen to evaluate the 

performance on data generated by 10X Chromium v2 chemistry. The number of cells in 

these datasets ranges from ~ 1,000 to ~ 8,000 per sample. They were processed by 10X 

Genomics using the standard Cell Ranger pipeline. The raw sequencing FASTQ files are 

analyzed by each tool using the recommended settings. The resulting feature-barcode 

matrices are compared with the reference datasets quantified by Cell Ranger count to 
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evaluate the concordance in gene- and cell-level expression as well as in the downstream 

biological inference. 

4.3.3 Comparison with other bulk RNA-seq tools 

We evaluate FastCount's performance in terms of accuracy and scalability on 

analyzing traditional bulk RNA-seq data. We compare its performance with three popularly 

used gene count pipelines: STAR (Dobin et al., 2013) in quantMode, featureCounts (Liao 

et al., 2014) (STAR aligner) and the gold standard RSEM (B. Li & Dewey, 2011) (STAR 

aligner).  

STAR was run in 1-pass mode with "quantMode" option enable to summarize the 

number of reads assigned per gene during the mapping procedure. featureCounts was run 

on the BAM file generated from STAR output and the General Transfer Format (GTF) file 

to summarize the read counts on the gene level features. RSEM was run with STAR aligner 

and the gene level expression estimates was used for the comparison. All the tools are ran 

using their default settings.  

For each of the simulated data, we quantify the gene abundances with the four tested 

methods and measure the accuracy of gene count estimates. Table 5 Accuracy of gene 

count quantification in terms of Pearson and Spearman correlation, MRD and 5% EF using 

simulated data. shows the median values of the Pearson, Spearman, MRD and 5% EF for 

each of the tested methods using the 20 simulated bulk RNA-seq data. In general, 

FastCount achieves a competitive and sometimes slightly better performance over the set 

of gene count tools in comparison. FastCount outperforms STAR 1-PASS and 

featureCount+STAR pipelines. One major reason for the lower performance in the two 

STAR related methods is likely due to that STAR and fetureCount do not handle read 
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mapped to multiple gene features. Such reads are dropped from gene counting. RSEM, on 

the other hand, uses the Expectation Maximization (EM) algorithm to estimate the 

abundance based on the uniquely aligned reads and multi-mapped reads. In FastCount, 

multi-mapped reads are allocated to genes in proportion to the gene count quantified using 

uniquely-mapped reads.  

Table 5 Accuracy of gene count quantification in terms of Pearson and Spearman 
correlation, MRD and 5% EF using simulated data.  

 

We then measure the speed and memory usage of FastCount on bulk RNA-seq. All 

the pipelines are run on a 16-core Intel Xeon E5-2670 @ 2.60 GHZ Linux server with 64 

GB of RAM using 10 threads. FastCount is approximately an order of magnitude faster 

than STAR 1-PASS and featureCounts+STAR and is about 2 orders of magnitude faster 

than RSEM+STAR (Figure 21 Speed and memory usage of FastCount and 3 other 

pipelines : RSEM+STAR, featureCounts+STAR and STAR 1-PASS mode on the 20 

simulated data sets. (a) Total runtime for processing all the 20 simulation datasets. (b) 

Median peak memory requirement.). Additionally, FastCount requires a maximum of 1.3 

GB of memory while any other pipelines requiring about 30GB memory due to the 

dependency of STAR alignment. 
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Figure 21 Speed and memory usage of FastCount and 3 other pipelines : RSEM+STAR, 
featureCounts+STAR and STAR 1-PASS mode on the 20 simulated data sets. (a) Total 
runtime for processing all the 20 simulation datasets. (b) Median peak memory requirement. 
 

4.3.4 Comparison with other scRNA-seq pipelines 

We assess the accuracy of FastCount in scRNA-seq quantification and compare its 

performance to Cell Ranger, Salmon-Alevin (Srivastava et al., 2019) and Kallisto (Bray et 

al., 2016). To make the evaluation comparable to Cell Ranger, we download the reference 

packages provided by 10X Genomics for human and mouse samples. We then subset the 

GENCODE (Frankish et al., 2019) transcript sequence files for either species (human 

GRCh38.p12 release 30, mouse GRCm38.p6 release M21) with the same set of transcripts 

used by CellRanger. The common transcripts are used to construct the reference indices 

for FastCount, Kallisto and Salmon-Alevin.  
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Table 6 UMI count concordance between different methods and Cell Ranger in terms of 
median Pearson, Spearman and MRD for the 6 datasets. 

  

Each of the six datasets is processed using default settings by the tested algorithms 

to generate the raw feature-barcode matrix. We then subset this matrix to keep the same 

set of features and cells reported by Cell Ranger. The filtered matrix is then compared 

against the reference Cell Ranger results.  

We first calculate the gene-level correlation of the UMI counts for each gene across 

all cells between the tested algorithms and Cell Ranger count using the pearson's 

correlation, spearman's correlation and median relative difference (MRD) statistics per cell 

(Table 6 UMI count concordance between different methods and Cell Ranger in terms of 

median Pearson, Spearman and MRD for the 6 datasets.). The results indicate that 

FastCount shows the highest degree of agreement to the reference results in all datasets 

(median pearson's correlation = 0.998, spearman's correlation = 0.973 and MRD = 0.033). 

In comparison, Alevin and Kallisto show a less degree of concordance with cell ranger 

especially with scRNA-seq from heart tissues.  

We next examine the correlation on cell-level expression in total UMI counts 

between the tested algorithms and Cell Ranger. We calculate the total mRNA abundance 

within each cell by the sum of the UMI counts for each expressed gene in a cell. The 

correspondence in the total UMI counts per cell between the tested methods and Cell 
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Ranger is presented in Figure 22 The scatter plots of the total number of UMI counts per 

cell. We see high agreements between the three alignment-free methods and Cell Ranger 

with points centered around the diagonal line in the scatter plots. FastCount has the highest 

degree of concordance in all the six tested datasets, while the total UMI counts by Alevin 

and Kallisto show larger variations from the Cell Ranger reference results. Kallisto 

consistently overestimates the total gene expression level in the cells. We also observe that 

many low-expressed cells in the two mouse heart tissue datasets (heart_1k_v3 and 

heart_10k_v3) are missing in Alevin while they are all identified by FastCount, Kallisto 

and Cell Ranger count. These findings agree with the benchmark paper reported by 

(Brüning, Tombor, Schulz, Dimmeler, & John, 2021). 

We further assess the cell-level concordance by calculating the pearson's 

correlation in the UMI count of the same cell between the tested methods and Cell Ranger. 

We plot the density of the correlation coefficient as a function of total UMI counts per cell 

in Figure 23 Pearson correlation of UMI counts within each cell as a function of total UMI 

counts per cell. Each point represents a cell and the points are colored based on the number 

of neighboring points indicating the overall distribution of the correlation. The pearson's 

correlation in the cell-level UMI counts between FastCount and Cell Ranger clustered into 

a much narrower range and most of the cells have correlation coefficiency close to 1. In 

contrast, many cells show relatively lower correlation in Alevin and Kallisto indicated by 

the much more spread-out points on the graphs. 
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Figure 22 The scatter plots of the total number of UMI counts per cell  between Cell Ranger 
and each of the tested algorithms (FastCount, Salmon and Kallisto) from the six 10X 
Genomics scRNA-seq datasets. 

 

 

Figure 23 Pearson correlation of UMI counts within each cell as a function of total UMI 
counts per cell using the six 10X Genomics scRNA-seq datasets. 
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Figure 24 Compatible t-SNE plots using the feature-barcode matrices generated by Cell 
Ranger, FastCount, Kallisto and Salmon for the six 10X Genomics scRNA-seq datasets. 

 
Lastly, to evaluate the the impact of the different cell gene count tools on 

downstream cell clustering analysis. We perform dimensionality reduction using t-

Distributed Stochastic Neighbor Embedding (t-SNE) for each dataset using scater package 

{McCarthy, 2017 #752}. Figure 24 Compatible t-SNE plots using the feature-barcode 

matrices shows that the t-SNE plots from Cell Ranger and FastCount are very similar 
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across all six data sets, retaining all the clustering structures and embedding shapes. In 

contrast, the distribution of clusters varies significantly using Alevins and Kallisto cell 

count results. The difference becomes more apparent when the composition of clusters is 

complex. 

4.3.5 Runtime comparison 

We benchmark the runtime used for each algorithm using the six testing datasets. 

All methods are evaluated on a 16-core Intel Xeon E5-2670 @ 2.60 GHZ Linux server 

with 64 GB of RAM using 10 threads. The result is shown in Table 7 Runtime comparison 

on 10X Genomics single cell gene expression datasets in different tools. In general, 

FastCount is at least 1.5 orders of magnitude faster than Cell Ranger count. For example, 

FastCount used only 4.1 minutes to process 1K PBMCs data set which contains around 

1000 cells and 66 million of reads, while Cell Ranger took 154.2 minutes. For 8K PBMCs 

which contains around 8000 cells and 784 million of reads, FastCount used only 46.5 

minutes, while Cell Ranger needed 31 hours. FastCount is around 3 times faster than 

Alevin except for the 2 mouse heart samples. This is because Alevin pre-filtered many 

(25.6% in 1K Heart, 26.8% in 10K Heart) cells before the read assignment and UMI 

quantification steps which largely reduced the number of reads required for processing. 

This pre-filtering step resulted in many cells missing from the final expression matrix. 

Kallisto is the fastest algorithm but the runtime between FastCount and Kallisto is quite 

close. 
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Table 7 Runtime comparison on 10X Genomics single cell gene expression datasets in 
different tools 

 

 

 

4.4  Conclusion 

In this chapter, we present FastCount, a novel alignment-free approach to quantify 

gene count in individual cells with scRNA-seq data. Comparing to the other alignment-

free algorithms, FastCount shows a higher degree of concordance with Cell Ranger's 

cellranger count in both cell-level and gene-level expression, in the meantime provides 

1.5 orders of magnitude speed improvement over Cell Ranger. 

FastCount assigns sequencing reads directly to genes using gene-specific and gene-

clique k-mers. It fully utilizes the cell barcode and UMI information in the sequencing 

reads to computationally allocate reads to the cells of origin while identifying technical 

artifacts from PCR amplification. We evaluate the accuracy of FastCount on scRNA-seq 

quantification using the results reported by Cell Ranger as the reference data sets. We 

observe that different quantification pipeline implementation influences the single cell 

experiment qualities in terms of genes/cells expression level and the downstream 

analysis.  
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The read processing step of scRNA-seq data is the first and most fundamental step 

during the scRNA-seq analysis pipeline. However, the commonly used Cell Ranger count 

often requires many hours of CPU times and extensive resources that are only available 

to computational servers. Being capable of processing 1,000 cells under 5 minutes on a 

regular laptop, Fastcount provides a lightweight but fast alternative, making it possible to 

combine cell count together with downstream analysis such as Seruat or Scanpy in one 

pipeline.   
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CHAPTER 5. Conclusion 

Cancer research is in the genomics era. Large-scale cancer genomics research has 

been focusing on comprehensive characterization of the cancer landscape using massive 

production of genomic, transcriptomic, epigenomic, and proteomic data. Bioinformatics 

methods have become one of the key components in cancer study that transform the 

sequencing reads generated by various Next Generation Sequencing assays into 

information that is interpretable by the biologist.  Accurate analysis of NGS data is a critical 

step upon which virtually all downstream interpretation process relies. Despite an active 

research field in the past decade, existing methods are still facing the challenge of high 

complexity and weakness in performance. This dissertation presents three novel 

computational methods for developing robust and reproducible NGS pipeline platform, 

efficient genome-wide driver mutation identification algorithm and alignment-free 

quantification algorithm for bulk RNA-seq and single cell RNA-seq .  

In the second chapter of the dissertation, I developed a robust, reproducible and 

scalable Bioinformatics pipeline framework that streamlines the DNA sequencing analysis 

workflow for cancer genomic mutation identification. It automates the best practice 

mutation calling pipelines to detect somatic single nucleotide polymorphisms, indels and 

copy number variation from DNA sequencing data and perform various downstream 

analyses. It integrates mutation annotation, clinically actionable therapy prediction and 

data visualization that simplifies the sequence-to-report data transformation. It has been 

applied to the real-world data that characterizes the genomic landscape of squamous cell 

lung cancer from Appalachian Kentucky using whole exome sequencing data. It is the first 

sequencing effort that provides an overview of the somatic alterations and copy-number 
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variations, explores unique mutational patterns comparing to the TCGA cohorts, and 

indicates clinically actionable assessment of mutations in this population. 

Large-scale sequencing efforts identify thousands of somatic mutations from 

cancer samples. Differentiating the driver mutations among a vast pool of passenger 

mutations is an important but challenging task in cancer research. In the third chapter, I 

developed MEScan, which is one of the first method that enables genome-scale driver 

mutations identification based on mutual exclusivity test using cancer mutation data. 

MEScan implements an efficient statistical framework to de novo screen mutual exclusive 

patterns and in the meantime taking into patient-specific and gene-specific background 

mutation rate and adjusting the heterogenous mutation frequency. It outperforms several 

existing methods based on simulation studies and is at least 2-fold of magnitudes faster 

than most of the tools. MEScan implements a Markov chain Monte Carlo (MCMC) 

algorithm to efficiently scan for mutually exclusive gene sets at the genomic scale, a false 

discovery rate (FDR) adjustment procedure to control false positives, and a summarization 

procedure to select high-confidence findings. Genome-wide screening using existing 

TCGA somatic mutation data discovers novel cancer-specific and pan-cancer mutually 

exclusive patterns.  

Recent advances in scRNA-seq technology allows cancer biologists to appreciate 

heterogeneous gene expression changes on the cellular level. scRNA-seq data processing 

using current methods is computationally challenging due to the volume of the data 

generated in a single cell experiment as well as the single cell specific information carried 

in the reads. In the fourth chapter, I designed and implemented a light-weight RNA-seq 

read classification algorithm based on gene-specific k-mers in the transcriptome. It 
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provides comparable accuracy to the current gold standard algorithm, but achieves around 

two orders of magnitude speed improvement. I further extended this read classification 

algorithm for single cell RNA-seq quantification by incorporating the cell barcode and 

UMI information. It quantifies 800 Million reads of 8,000 cells in less than 50 minutes 

which is over an order-of-magnitude faster than the classic 10X Genomics Cell Ranger (31 

hours) workflow while providing competitive accuracy in terms of UMI counts, cell 

clustering and differentially expressed genes.  

Cancer research has become increasingly data centric and relies heavily on the big 

data generated from various sequencing assays to interrogate genomic changes using multi-

Omics data. Cancer Bioinformatics research has become a key component in supporting 

the cutting-edge cancer research. Therefore, novel method development in Cancer 

Bioinformatics continues to be in high demand driven by novel biomedical applications. 

The works presented in this dissertation are expected to resolve some of the fundamental 

challenges faced by cancer researchers in analyzing large-scale cancer genomics data. 
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