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(57) ABSTRACT 
A computer-implemented process is disclosed for generating 
a labeled overhead image of a geographical area. A plurality 
of ground level images of the geographical area is retrieved. 
A ground level feature map is generated, via a ground level 
convolutional neural network, based on features extracted 
from the plurality of ground level images. An overhead 
image of the geographical area is also retrieved. A joint 
feature map is generated, via an overhead convolutional 
neural network based on the ground level feature map and 
features extracted from the plurality of ground level images. 
Geospatial function values at a plurality of pixels of the 
overhead image are estimated based on at least the joint 
feature map and the overhead image. The plurality of pixels 
of the overhead image is labeled according to the estimated 
geospatial function values. 

18 Claims, 4 Drawing Sheets 

Server Svstem 

20 

✓ 
Ground Li;vt:'d 

,, 
222 

Extracted Grol.!nd 
k: Leve! features Feature Map 

280 Ground 
Level lmage 

Source 

60 

Network 

80 

OvNhf;Jd Module 

400 

Ovr2rhead 

Module 

240 
lnte, pok1Hon Modu!e 

Joint 
Feature 

Map 

800 
Prediction Map 

Module Generation 
Module 

Overhead 
!mage 



(56) References Cited 

PUBLICATIONS 

US 10,755,146 B2 
Page 2 

Simonyan et al., "Very Deep Convolutional Networks for Large­
Scale Image Recognition", International Conference on Learning 
Representations, arXiv: 1409.1556v6 [ex.CV], Apr. 10, 2015, 14 
total pages. 
Bansal et al., "Pixelnet: Representation of the pixels, by the pixels, 
andforthepixels",arXiv: 1702.06506vl [cx.CV],Feb.21,2017, 17 
total pages. 

* cited by examiner 



U.S. Patent Aug. 25, 2020 Sheet 1 of 4 US 10,755,146 B2 

Figure 1 10 

40 

.; .; 
80 .; 20 

,J 



60 

Ground 

Ground Level 
Module 

200 

220 

Level lmagt I I :>I 

Source 

Ground 
Level Image 

Source 

60 

Network 

80 

CNN 

Overhead Module 

440~ 

420 

400 
Overhead 
Module 

Figure 2 

222 
Extracted Ground 

.k::' Level Features 

240 
Interpolation Module 

460 

480 
Joint 

Feature 
Map 

620 

600 
Prediction 
Module 

Server System 

20 

✓ 
Ground Level 
Feature Map 

280 

800 
Map 

Generation 
Module 

820 
Labeled 

Overhead 
Image 

e 
• 
00 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
N 

"'Ul 
N 
0 
N 
0 

rJJ 
=­('D 
('D ..... 
N 
0 .... 
.i;... 

d 
r.,;_ 

"'""' = "' -....l 
UI 

_,,u. 
"'""' ~ 
0--, 

= N 



Figure 3 

1000 ... 
, 

determine ground level images 

' ' 
2000 

extract feature values from ground level images 

" 
3000 

interoolate feature values 

" 
4000 

extract features from overhead images 

5000 
resize ground level feature map 

" 
6000 

integrate maps 

~ 

7000 
further combine extracted features 

J, 
8000 

estimate geo-spatial function values 

" 
9000 

label overhead image 

e 
• 
00 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
N 

'"Ul 
N 
0 
N 
0 

rJJ 
=­('D 
('D ..... 
~ 

0 .... 
.i;... 

d 
r.,;_ 

"'""' '"= -....l 
UI 

'.Ou. 
"'""' ~ 
0--, 

= N 



60 

Ground 
Level Image 

Source 

Ground 
Level Image 

Source 

60 

80 

Network 

220 

CNN 

Ground Level 
Module 

200 

Overhead Module 
440~ 

400 
Overhead 
Module 

Figure 4 
Extracted Ground 

Level Features 

222 
~ 

240 
Interpolation 

Module 

460 

, 

480 

Joint 
Feature 

Map 

228 
Kernel 

Bandwidth 

, 
600 

Prediction 
Module 

620 

/ 

800 
Map 

Generation 
Module 

Ground Level 
Feature Map 

280 

, 
820 

Labeled 
Overhead 

Image 

e 
• 
00 
• 
~ 
~ 
~ 
~ = ~ 

~ 
~ 
N 

'"Ul 
N 
0 
N 
0 

rJJ 
=­('D 
('D ..... 
.i;... 

0 .... 
.i;... 

d 
r.,;_ 

"'""' '"= -....l 
UI 

'.Ou. 
"'""' ~ 
0--, 

= N 



US 10,755,146 B2 
1 

NETWORK ARCHITECTURE FOR 
GENERATING A LABELED OVERHEAD 

IMAGE 

FIELD OF THE INVENTION 

The disclosed invention relates to systems and methods 
for generating a labeled overhead image. 

BACKGROUND OF THE INVENTION 

From predicting the weather to planning the future of our 
cities to recovering from natural disasters, accurately moni­
toring widespread areas of the Earth's surface is essential to 
many scientific fields and to society in general. These 
observations have traditionally been collected through 
remote sensing from satellites, aerial imaging, and distrib­
uted observing stations and sensors. 

These approaches can observe certain properties like land 
cover and land use accurately and at a high resolution, but 
unfortunately, not everything can be seen from overhead 
imagery. For example, Wang, et al., in "Torontocity: Seeing 
the world with a million eyes," arXiv: 1612.00423 (2016), 
evaluates approaches for urban zoning and building height 
estimation from overhead imagery, and conclude that urban 
zoning segmentation "is an extremely hard task from aerial 
views," that building height estimation is "either too hard, or 
more sophisticated methods are needed." 

2 
However, these proposals do not utilize novel techniques for 
proximate sensing, but rather utilize the prior approaches, in 
which standard recognition techniques are applied to indi­
vidual images, and then spatial smoothing and other noise 

5 reduction techniques are used to create an estimate of the 
geospatial function across the world. 

Meanwhile, remote sensing has used computer vision to 
estimate properties of the Earth from satellite images. Over­
head imaging is, however, markedly different from ground-

IO level imaging, and so remote sensing techniques have 
largely been developed independently and in task-specific 
ways. As such, a framework for estimating geospatial func­
tions via combining visual evidence from both ground level 

15 
and overhead images has not been pursued. 

Indeed, while it has been proposed to use visual evidence 
from ground level or overhead images or location context in 
order to improve classification or give context for event 
recognition in ground level or overhead images, these pro-

20 posals do not combine visual evidence from both ground 
level and overhead images to estimate geospatial functions. 

In contrast, the present invention is directed to a system 
that can estimate any given geospatial function of the world 
via integrating data from both ground level imagery (which 

25 often contains visual evidence that is not visible from the air) 
and overhead imagery (which is typically much more 
densely sampled), and which learns in an end-to-end way, 
avoiding the need for task-specific or hand-engineered fea-

More recently, the explosive popularity of geotagged 
social media has raised the possibility of using online user 30 

generated content as a source of information about geo­
graphic locations. This approach is sometimes referred to as 
image-driven mapping or proximate sensing. Mathemati­
cally, the result of this process can be represented as a 
geospatial function that takes as input a geographic location 35 

and generates as output a value of interest or a probability 
distribution over that value. 

tures. 

SUMMARY OF THE INVENTION 

Systems and methods are therefore disclosed, which 
utilizes deep convolutional neural networks (CNN) to 
extract features from both overhead and ground level imag­
ery so as to estimate geospatial functions. 

For the ground-level images, kernel regression and den­
sity estimation techniques are used to convert sparsely 

For example, online images from social network and 
photo sharing websites have been used to estimate land 
cover for large geographic regions, to observe the state of the 
natural world by recreating maps of snowfall, and to quan­
tify perception of urban environments. 

40 distributed feature samples into a dense feature map spa­
tially consistent with the overhead image. This differs from 
the traditional proximate sensing approach, which uses 
interpolation methods, such as kernel regression, to directly Despite differing applications, the prior approaches to 

proximate sensing each estimate the geospatial function, and 
view each social media artifact (e.g., geotagged ground- 45 

level image) as an observation of the value of this function 
at a particular geographic location. 

These typical approaches to proximate sensing (1) collect 
a large number of samples, (2) use an automated approach 

estimate the geospatial function. 
The ground-level feature map is then concatenated with a 

feature map generated an overhead image CNN. Pixel-level 
labeling is achieved by applying a CNN to the concatenated 
feature map, for example, via extracting multiscale features 
in the form of a hypercolunm, and using a small neural 

50 network to estimate the geospatial function of interest. to estimate the value of the geospatial function for each 
sample, and (3) use some form of locally weighted averag­
ing to interpolate the sparse samples into a dense, coherent 
estimate of the underlying geospatial function. This estima­
tion is complicated by the fact that observations are noisy 
because state-of-the-art recognition algorithms are imper­
fect, and therefore some images are inherently confusing or 
ambiguous, and the observations are distributed sparsely and 
non-uniformly. Accordingly, in order to estimate geospatial 
functions with reasonable accuracy, most techniques use a 
kernel with a large bandwidth to smooth out the noise. These 60 

approaches thus yield undesirably coarse, low-resolution 
outputs that are insufficient for many applications. 

For example, many recent studies have explored analyz­
ing large-scale image collections as a means of character­
izing properties of the physical world. 

Estimating properties of weather from geotagged and 
timestamped ground-level imagery has also been proposed. 

The inventive approach may also utilize a spatially vary­
ing kernel that depends on features extracted from the 
overhead imagery. 

The CNN architecture may further be trained end-to-end, 
55 so that all free parameters, including kernel bandwidths and 

low-level image features, are automatically tuned to mini­
mize the loss function. 

The CNN architecture may be used with most state-of­
the-art CNNs, and is easily adaptable for use with any 
sparsely distributed media, including geotagged audio, 
video, and text ( e.g., tweets). 

Other features and advantages of the present invention 
will become apparent from the following more detailed 

65 description, taken in conjunction with the accompanying 
drawings, which illustrate, by way of example, the prin­
ciples of the presently described embodiments. 
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BRIEF DESCRIPTION OF THE DRAWING(S) 

FIG. 1 is a schematic diagram of a computer-based system 
for generating a labeled overhead image of a geographical 
area according to at least one embodiment of the present 
invention; 

FIG. 2 is a schematic diagram of a server system of the 
computer-based system according to at least one embodi­
ment of the present invention; 

FIG. 3 is a flow-chart of a method for generated the 
labeled overhead image of the geographical area according 
to at least one embodiment of the present invention; and 

FIG. 4 is a schematic diagram of a server system of the 
computer-based system according to at least one embodi­
ment of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

The above described drawing figures illustrate the dis­
closed invention in at least one of its preferred, best mode 
embodiment, which is further defined in detail in the fol­
lowing description. Those having ordinary skill in the art 
may be able to make alterations and modifications to what 

4 
FIG. 1 schematically illustrates a computer-based system 

10 for generating a labeled overhead image of a geographi­
cal area in accordance with the principles of the invention 
described herein. The system generally includes a server 

5 system 20, which may be distributed on one or more 
physical servers, each having a processor, a memory, an 
operating system, an input/output interface, and a network 
interface, all known in the art, as well as an overhead image 
source 40 and a plurality of ground level image sources 60, 

10 each communicatively coupled to a network 80. 
An exemplary embodiment of the server system is shown 

in FIG. 2. The server system generally includes a computer 
application configured to generate a labeled overhead image, 

15 
which has encoded therein function value (or distribution 
over values) for every pixel in the overhead image. To 
accomplish this, the computer application utilizes a complex 
neural network ("CNN") architecture to combine features 
extracted from the overhead image and a plurality of ground 

20 level images, each image captured at a known geographic 
location 

The system generally includes a ground level module 200 
communicatively coupled to an overhead module 400, 
which is in turn communicatively coupled to a prediction 

25 module 600 that is in tum communicatively coupled to a 
map generation module 800. 

is described herein without departing from its spirit and 
scope. While this invention is susceptible of embodiment in 
many different forms, there is shown in the drawings and 
will herein be described in detail a preferred embodiment of 
the invention with the understanding that the present dis­
closure is to be considered as an exemplification of the 
principles of the invention and is not intended to limit the 
broad aspects of the invention to any embodiment illus­
trated. Therefore, it should be understood that what is 
illustrated is set forth only for the purposes of example and 
should not be taken as a limitation on the scope of the 35 

disclosed invention. 

The ground level module 200 is communicatively 
coupled to the one or more ground level image sources 60 
and to the overhead module 400, and is configured to 

30 generate a ground level feature map 280 from a set of ground 
level images received from the ground level image sources 
60. 

The ground level module 200 preferably includes a 
ground level convolutional neural network ("CNN") 220, 
which may comprise one or more such CNNs. The ground 
level module 200 is configured to utilize the ground level 

In general, the present invention attempts to estimate a 
spatially varying property of the physical world, which is 
modeled as an unobservable mathematical function that 
maps latitude-longitude coordinates to possible values of the 40 

property: 

CNN 220 to extract one or more ground level features 
222 1_N from each ground level image. 

The ground level module 200 also includes an interpola­
tion module 240. The interpolation module is configured to 
generate the ground level feature map 280 based on the 
extracted ground level features 222 1_N via an interpolation 
technique, e.g., kernel regression. The interpolation module 
may also receive as input the geolocations 224 1_N of the 

The range Y of this function depends on the attribute to be 
estimated, and might be categorical (e.g., a discrete set of 
elements for land use classification-golf course, residen­
tial, agricultural, etc.) or continuous (e.g., population den­
sity). The present invention estimates this function based on 
the available observable evidence, including data sampled 
both densely (such as overhead imagery) and sparsely (such 

45 ground level features 222 1_M a bounding box 226 and a 
kernel bandwidth 228. 

The overhead module 400 is communicatively coupled to 
the ground level module 200 and the overhead image source. 
The overhead module 400 is configured to receive the 
overhead image and the ground level feature map 280, and 
to generate a joint feature map 480 therefrom. 

as geotagged ground-level images). From a probabilistic 
50 

perspective, one can think of the task as learning a condi­
tional probability distribution: 

The overhead module 400 includes an overhead CNN 
420. The overhead module 400 is configured to use a subset 
of the convolutional layers of the overhead CNN 420 to 

55 extract meaningful features from the overhead image, and to 
generate a plurality of overhead feature maps 440 1 _n there­
from. 

P(F(Z)~ylSz, G(l)), 

where 1 is a latitude-longitude coordinate, S1 is an overhead 
image centered at that location, and G(l) is a set of nearby 
ground level images. 

Systems and methods are therefore disclosed, which fuse 
high-resolution overhead imagery and nearby ground-level 
imagery to estimate the value of a geospatial function at a 60 

target location. While the present disclosure focuses on 
images, the overall system architecture may be used with 
many sources of dense and sparse data. The system archi­
tecture allows the system to be trained in an end-to-end 
manner, which in turn enables the system to learn to opti- 65 

mally extract features from both the dense and sparse data 
sources. 

The overhead module 400 also includes a resizing module 
460. The resizing module is configured to resize the ground 
level feature map 280 received from the ground level 
module 200. The resizing module resizes the ground level 
feature map 280, e.g., via average pooling or similar method, 
so that the spatial extents of the feature maps are aligned. 

The overhead module is also configured to utilize the 
overhead CNN 420 to concatenate the ground level feature 
map 280 and the overhead feature maps 440 1 _n• The over­
head module is also configured to utilize the further convo-
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lutional layers of the overhead CNN 420 to further processes 
the concatenated feature maps so as to generate the joint 
feature map 480. 

The system still further includes a prediction module 600 
commutatively coupled to the overhead module 440. The 5 

prediction module 600 is configured to estimate the geospa­
tial function value at a pixel location based on the joint 
feature map 480. 

The prediction module 600 includes a labeling CNN 620, 
10 e.g., a small multilayer perceptron ("MLP"). The labeling 

CNN 620 is configured to receive the joint feature map 480 
and generate pixel-level labels for the overhead image based 
on a hypercolunm of one or more of the feature maps, in 
accordance with known techniques. In particular, each fea-

15 
ture map is resized to match, and the hypercolunm, consist­
ing of a set of features centered at the pixel location, is 
extracted from the resized feature maps. The geospatial 
function value is then estimated from the hypercolumn via 
the labeling CNN 620. The resulting pixel-level labels 20 

correspond to probability distributions of the value of the 
geospatial function at the geospatial location corresponding 
to each pixel location. 

The server still further includes a map generation module 
800 communicatively coupled to the prediction module 600. 25 

The map generation module 800 is configured to assign a 
unique visual indicator, e.g., a color, to the pixels of the 
overhead image according to the probability distribution at 
that pixel, thereby generating a labeled overhead image 820. 

30 For example, the pixel may be assigned the color blue, if 
there is a high probability that the geospatial function value 
at the pixel corresponds to water. This process is preferably 
automated. Because of the better accuracy of the probability 
distributions, the labeled overhead image 820 is generated, 

35 
which is more accurate and complete that prior such images. 

A method 1000 for labeling an overhead image in accor­
dance with at least one embodiment will now be described 
with reference to FIGS. 2-3. 

6 

where w,=exp(-d(l, l,; ~)2) is a Gaussian kernel function 
where a diagonal covariance matrix controls a kernel band­
width, and d(l, l,; ~) is the Mahalanobis distance from 1 to 
1,. 

Interpolation is preferably performed for each pixel loca­
tion of the overhead image. The result of the pixel-by-pixel 
interpolation is the ground level feature map having a size of 
HxWxm, where H and Ware the height and width of the 
overhead image in pixels, and m is the output dimensionally 
of the ground level CNN, fg(G,). 

The diagonal elements of the covariance matrix are rep­
resented by a pair of trainable weights, which pass through 
a softplus function (i.e. f(x)=ln(l+ex)) to ensure they are 
positive. In at least one embodiment, the value of the 
diagonal covariance matrix does not depend on the geo­
graphic location 1, i.e., it is spatially uniform. However, in at 
least one alternative embodiment, discussed further herein, 
the value of the diagonal covariance matrix does depend on 
the geographic location 1, i.e., it is spatially varying. 

In some embodiments, the ground level CNN corresponds 
a VGG-16 neural network, initialized with weights for Place 
categorization (m=205, layer name 'fc8'). In such embodi­
ments the result is an 820-dimensional feature vector for 
each location, which is further reduced to 50 dimensions. 
Initializing a VGG-16 neural network with weights for place 
categorization is generally known in the art. 

In some embodiments, the nearest ground-level image 
may be far away from the geographic location I. This may 
lead to later processing stages incorrectly interpreting the 
feature map at the geographic location I. Accordingly, in at 
least one embodiment, a kernel density estimate (i.e., kernel 
bandwidth 228) of the ground level image locations is 
concatenated to the ground level feature map, using the 

Ground Level Feature Map Construction: 
As discussed above, the ground level feature map is 

generated from the set of ground level images received form 
the plurality of ground level image sources 60. 

40 kernel defined above. The kernel density estimate concat­
enated to the ground level feature map may then be appro­
priately utilized by the labeling CNN in labeling the con­
catenated feature map. 

At step 1000, for a given geographic location 1, the ground 
level feature map module 200 determines a set ofN elements 45 

corresponding to the closest N ground level images to the 
location I. This set may be represented as G(l)={ (G,, l,)}, 
where (G,, 1,) is a ground level image and its respective 
geographic location. 

50 At step 2000, the ground-level CNN 220 extracts feature 
values f (G) from each image. Preferably, the ground level 

' g l' 

CNN 220 is trained to extract meaningful feature values 
from the ground level imagery, i.e., values for those features 
that are useful to the system to ultimately provide the desired 

55 
labels to the overhead image to produce the labeled over­
head image. For example, if the overhead image is to be 
labeled according to terrain, the feature values may include 
water, land, forest, etc. In some embodiments, the ground 
level CNN 220 is trained to accurately classify, i.e., extract 60 

meaningful features from, the ImageNet dataset. 
At step 3000, the features extracted by the ground level 

CNN are used by the interpolation module 240 to interpolate 
feature values for the ground level feature map 280. Pixel­
by-pixel interpolation is preferably accompli~hed usin? ke~- 65 

nel regression. In at least one embodiment, mterpolat10n 1s 
accomplished using Nadaraya-Watson kernel regression: 

The result of the concatenation is an HxWxN ground 
level feature map that captures appearance and distributional 
information of the ground level images, where N is the 
ground level feature dimensionality plus the kernel density 
estimate. In the embodiment discussed above, the result of 
the concatenation is an HxWx51 ground level feature map 
produced from the final convolutional layer of the ground 
level CNN. 

In some embodiments, the ground level images, G(l), 
include geo-oriented street-level panoramas. Accordingly, in 
at least one embodiment, extracting the ground level fea­
tures from each ground level image includes generating a 
feature representation for each panorama, G,. The panorama 
may be divided into a plurality of perspective images 
according to orientation ( e.g., North, South, East, and West), 
such that corresponding ground level images are generated 
at each location. The ground level image CNN, fg(G,), may 
then be replicated, and each such ground level image fed 
through separately. The individual outputs may then be 
concatenated to form a feature vector for the geographic 
location. In at least one embodiment, a linear projection, 
implemented as a convolutional operator, is added to reduce 
the feature dimensionality. 
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Overhead Feature Map Construction: 
As discussed above, the joint feature map is generated 

from the ground level feature map and the overhead image. 

8 
overhead image, based on the hypercolumn generated based 
on one or more of: the ground level feature map, the several 
overhead feature maps, and the joint feature map, but at least 
the joint feature map and the overhead feature maps. Any At step 4000, the overhead module 400 uses the overhead 

CNN 420 to extract features from the overhead image and to 
generate a plurality of overhead feature maps therefrom. As 
with the ground level CNN 220, the overhead CNN 420 is 
preferably trained to extract meaningful features from the 
overhead images. In some embodiments, the overhead CNN 
420 is trained to classify the ImageNet dataset. 

5 semantic labeling architecture may be used to estimate the 
geospatial function value at the pixel location. An exemplary 
semantic labeling architecture is PixelNet, described by 
Bansal et al., in "Pixelnet: Representation of the pixels, by 
the pixels, and for the pixels," arXiv preprint arXiv: 

10 1702.06506 (2017), incorporated herein by reference. 
In accordance with the feature extraction, at each of its 

convolutional layers, the overhead CNN 420 generates the 
plurality of overhead feature maps 440 1 _m each overhead 
feature map 440 1 _n associated with a corresponding convo­
lutional layer of the overhead CNN 420. 15 

For example, given the overhead image, Sz, the ground 
level feature map and the overhead feature map are used to 
estimate the value of the geospatial function: 

F(l(p))E 1 ... K 

where l(p) is the location of pixel p. The pixel may be at 
the center of the image for the image classification setting or 
any arbitrary pixel in the pixel-level labeling setting. Each 
feature map is resized to be HxW using bilinear interpola-

In some embodiments, the overhead CNN 420 may be 
based on the VGG-16 architecture. The VGG-16 architec­
ture has 13 convolutional layers, each using 3x3 convolu­
tions, and three fully connected convolutional layers. An 
exemplary VGG-16 architecture is disclosed by Simonyan et 
al., in "Very deep convolutional networks for large-scale 
image recognition," International Conference on Learning 
Representations (2015), which is herein incorporated by 
reference in its entirety. 

20 tion. The hypercolunm is then extracted. The hypercolunm 
consists of a set of features centered at the pixel location, p. 
The hypercolunm may be represented as: 

Preferably, the overhead module 400 utilizes a subset of 25 

available convolutional layers of the overhead CNN 420 to 
generate the overhead feature maps 440 1_n• This results in 
overhead feature maps 440 1_n of size H'xW'xN'. In some 
embodiments, only the convolutional layers typically 
referred to as conv-{1 1_2 , 21 _2 , 31 _2 , 41_2 , 51_J are used. This 30 

generates, for example, the plurality of overhead feature 
maps 440 1 _n of size 32x32x128. 

At step 5000, the ground level feature map 280 is intro­
duced to the overhead module 400, or more particularly, the 
overhead CNN 420, via the resizing module 460, which 35 

resizes the ground level feature map 280 to match the size 
of the overhead feature maps 440 1 _n• 

In other words, the size of the ground level feature map 
280 is changed from HxW to H'xW'. In some embodiments, 
the size of the ground level feature map 280 is changed via 40 

average pooling or extracting a subset of pixels, in accor­
dance with known techniques. For example, in some 
embodiments, an average pooling with a kernel size of 2x2 
and a stride of 2 is applied three times. This reduces the 
ground level feature map 280 to 32x32x51. Accordingly, in 45 

the above example, the ground level feature map 280 that 
was HxW just prior to resizing is resized to the 32x32 size 
of the overhead feature maps 440. 

At step 6000, the ground level feature map 280 is inte­
grated with the overhead feature maps 440 1 _n• In particular, 50 

the feature maps are concatenated as to dimensionality, i.e., 
the N value, or in the channels dimension. For example, the 
ground level feature map may be concatenated with the 
overhead feature maps at the seventh convolutional layer, 33 • 

As to the concatenating, since 51+128=179, the result is a 55 

32x32xl 79 concatenation. 

where c, is the feature map of the i-th layer. Preferably, 
hypercolunm features are extracted from the convolutional 
layers of conv-{1 1 _2 , 21 _2 , 31_2 , 41_2 , 51_J and the ground 
level feature map. The resulting feature map has a length of 
1,043. The hypercolumn is then passed to the labelling CNN 
620, e.g., the MLP, which provides the estimate of the 
geospatial function. For example, the labelling CNN may 
have three convolutional layers of size 512, 512 and K, and 
each intermediate layer may utilize a leaky ReLU activation 
function so as to estimate the geospatial function value at the 
pixel location, based on the hypercolunm. 

It has been observed that resizing all intermediate feature 
maps to be the size of the image is memory intensive. 
Accordingly, in at least one embodiment, the system sub-
samples images during training to increase the number (and 
therefore diversity) of images per mini-batch. At testing 
time, the system can generate the hypercolunm for all pixels 
to create a dense semantic labeling, or a subset to label 
particular locations. 

Labeling the Overhead Image: 
At step 9000, the map generation module 800 labels the 

overhead image for whose pixels the prediction module 600 
estimated the geospatial function value. In particular, a 
unique visual indicator, e.g., a color, is assigned to the pixels 
of the overhead image according to the probability distri-
bution at the particular pixel, thereby generating the labeled 
overhead image 820. This is done in accordance with known 
techniques for labeling overhead images, given estimated 
geospatial function values. 

Adaptive Kernel Bandwidth Estimation: 
In an alternative embodiment, shown for example in FIG. 

4, an adaptive approach may be used by the interpolation 
module 240 to predict the optimal kernel bandwidth param­
eters for each location in the ground level feature map. In 
other words, the interpolation module 420 may utilize a 

At step 7000, the overhead module 400 utilizes the 
remaining convolutional layers of the overhead CNN 420 to 
further combine the features extracted from the overhead 
image and the concatenated feature maps, thereby generat­
ing the joint feature map 480. In particular, the joint feature 
map 480 is the result of the final convolutional layer of the 
overhead CNN 420, as applied to the concatenated feature 
maps and the extracted features. 

60 kernel CNN (not shown) applied to the overhead image to 
estimate the kernel bandwidth parameters utilized in the 
above described interpolation. 

Geospatial Function Prediction: 
At step 8000, the prediction module 600 estimates the 

geospatial function value at the various pixel locations of the 

For example, the kernel CNN may share the first three 
groups of convolutional layers with the overhead CNN, e.g., 

65 conv-{1 i, ... , 3J. The output of these convolutions may 
then be passed to a sequence of three convolutional trans­
pose layers, each with filter size 3x3 and a stride of 2. These 
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convolutional transpose layers have output dimensionality 
10 

more processors to perform the operations described herein. 
It will be appreciated that software or instructions may also 
be transmitted over a transmission medium, as is known in 
the art. Further, software and/or hardware modules and/or 

of 32, 16, and 2, respectively. The final convolutional layer 
has an output size of Hx W x2, which represents the diagonal 
entries of the kernel bandwidth matrix, ~, for each pixel 
location. 

The softplus activation is applied to the output of the 
kernel CNN (initialized with a small constant bias) to ensure 
positive kernel bandwidth. The adaptive kernel bandwidth 
parameters are then used to construct the ground-level 
feature map (HxWx51), as described above. 

5 other appropriate means for performing the operations 
described herein may be utilized in implementing the func­
tionalities described herein. 

10 

The inventor's work entitled "A Unified Model for Near 
and Remote Sensing," which describes an experimental 
evaluation of the inventive approach with a large real-world 
dataset consisting of most of two major boroughs of New 
York City (Brooklyn and Queens), is submitted herewith and 15 

is hereby incorporated by reference in its entirety. The 
experimental results show that the inventive technique for 
fusing overhead and ground-level imagery is more accurate 
than either the remote or proximate sensing approach alone, 
and that the automatically-estimated spatially-varying ker- 20 

nel improves accuracy compared to one that is uniform. 
The embodiments described in detail above are consid­

ered novel over the prior art of record and are considered 
critical to the operation of at least one aspect of the invention 
and to the achievement of the objectives of the invention. 25 

The words used in this specification to describe the exem­
plary embodiments are to be understood not only in the 
sense of their commonly defined meanings, but also to 
include any special definition with regard to structure, 
material or acts that would be understood by one of ordinary 30 

skilled in the art to apply in the context of the entire 
disclosure. 

The definitions of the words or drawing elements 
described herein are meant to include not only the combi­
nation of elements which are literally set forth, but all 35 

equivalent structures, materials or acts for performing sub­
stantially the same function in substantially the same way to 
obtain substantially the same result. In this sense it is 
therefore contemplated that an equivalent substitution of two 
or more elements may be made for any one of the elements 40 

described and its various embodiments or that a single 
element may be substituted for two or more elements in a 
claim without departing from the scope of the invention. 

Changes from the claimed subject matter as viewed by a 
person with ordinary skill in the art, now known or later 45 

devised, are expressly contemplated as being equivalents 
within the scope intended and its various embodiments. 
Therefore, obvious substitutions now or later known to one 
with ordinary skill in the art are defined to be within the 
scope of the defined elements. This disclosure is thus meant 50 

to be understood to include what is specifically illustrated 
and described above, what is conceptually equivalent, what 
can be obviously substituted, and also what incorporates the 
essential ideas. 

The scope of this description is to be interpreted in 
conjunction with the appended claims. 

What is claimed is: 
1. A method for generating a labeled overhead image of 

a geographical area, the process comprising: 
retrieving a plurality of ground level images of the 

geographical area; 
generating, via a ground level convolutional neural net­

work, a ground level feature map based on features 
extracted from the plurality of ground level images; 

retrieving an overhead image of the geographical area; 
generating, via an overhead convolutional neural net­

work, a joint feature map based on the ground level 
feature map and features extracted from the overhead 
image; 

estimating geospatial function values at a plurality of 
pixels of the overhead image based on at least the joint 
feature map and the overhead image; and 

labeling the plurality of pixels of the overhead image 
according to the estimated geospatial function values, 

wherein the feature maps associate feature values with 
geolocations of the respective images. 

2. The method of claim 1, wherein generating the joint 
feature map includes: 

applying a subset of convolutional layers of the overhead 
convolutional neural network to extract features from 
the overhead image so as to generate a plurality of 
overhead feature maps therefrom, each overhead fea­
ture map corresponding to a respective convolutional 
layer; 

concatenating the plurality of overhead feature maps and 
the ground level feature map; and 

applying a remainder of the convolutional layers of the 
overhead convolutional neural network to the concat­
enated feature maps and the extracted features so as to 
generate the joint feature map. 

3. The method of claim 1, wherein generating the ground 
level feature map includes: 

interpolating feature values, via kernel regression, accord­
ing to one or more kernel bandwidths. 

4. The method of claim 3, wherein interpolating feature 
values includes: determining, for each geolocation, an opti­
mal kernel bandwidth. 

5. The method of claim 4, wherein determining the 
optimal kernel bandwidth is via applying a kernel convolu­
tional network to the overhead image so as to estimate the 
optimal kernel bandwidth. 

Furthermore, the functionalities described herein may be 55 

implemented via hardware, software, firmware or any com­
bination thereof, unless expressly indicated otherwise. If 
implemented in software, the functionalities may be stored 
in a memory as one or more instructions on a non-transitory 
computer readable medium, including any available media 
accessible by a computer that can be used to store desired 
program code in the form of instructions, data structures or 
the like. Thus, certain aspects may comprise a computer 
program product for performing the operations presented 
herein, such computer program product comprising a non- 65 

transitory computer readable medium having instructions 
stored thereon, the instructions being executable by one or 

6. The method of claim 1, wherein estimating the geo­
spatial function values includes: applying a semantic label­
ing architecture to a hypercolunm generated based on the 

60 ground level feature map and/or the overhead feature maps 
and/or and the joint feature map. 

7. A system for generating a labeled overhead image of a 
geographical area, the system comprising: 

ground level module configured to: 
retrieve a plurality of ground level images of the geo­

graphical area from at least one ground level image 
source, and 
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generate, via a ground level convolutional neural network 
a ground level feature map based on features extracted 
from the plurality of ground level images; 

an overhead module configured to: 
retrieve an overhead image of the geographical area from 5 

an overhead image source, and 
generate, via an overhead convolutional neural network a 

joint feature map based on the ground level feature m;p 
and features extracted from the overhead image; 

a prediction module configured to estimate geospatial 10 

function values at a plurality of pixels of the overhead 
image based on at least the joint feature map and the 
overhead image; and 

a map generation module configured to label the plurality 15 
of pixels of the overhead image according to the 
estimated geospatial function values, 

wherein the feature maps associate feature values with 
geolocations of the respective images. 

8. The system of claim 7, wherein generating the joint 
feature map includes: 

20 

applying a subset of convolutional layers of the overhead 
convolutional neural network to extract features from 
the overhead image so as to generate a plurality of 
overhead feature maps therefrom, each overhead fea-
ture map corresponding to a respective convolutional 
layer; 

concatenating the plurality of overhead feature maps and 
the ground level feature map; and 

applying a remainder of the convolutional layers of the 
overhead convolutional neural network to the concat-
enated feature maps and the extracted features so as to 
generate the joint feature map. 

25 

30 

9. The system of claim 7, wherein generating the ground 
level feature map includes: interpolating feature values, via 35 
kernel regression, according to one or more kernel band­
widths. 

10. The system of claim 9, wherein interpolating feature 
values includes: determining, for each geolocation, an opti­
mal kernel bandwidth. 

11. The system of claim 10, wherein determining the 
optimal kernel bandwidth is via applying a kernel convolu­
tional network to the overhead image so as to estimate the 
optimal kernel bandwidth. 

40 

12. The method of claim 7, wherein estimating the geo- 45 
spatial function values includes: applying a semantic label­
ing architecture to a hypercol= generated based on the 
ground level feature map and/or the overhead feature maps 
and/or and the joint feature map. 

13. A non-transitory computer readable storage medium 
storing one or more programs that, when executed by a 

12 
computer cause the computer to perform a method for 
generating a labeled overhead image of a geographical area, 
the method comprising: 

retrieving a plurality of ground level images of the 
geographical area; 

generating, via a ground level convolutional neural net­
work, a ground level feature map based on features 
e:'tr~cted from the pl?rality of ground level images; 

retnevmg an overhead image of the geographical area· 
generating, via an overhead convolutional neural n~t­

work, a joint feature map based on the ground level 
feature map and features extracted from the overhead 
image; 

estimating geospatial function values at a plurality of 
pixels of the overhead image based on at least the joint 
feature map and the overhead image; and 

labeling the plurality of pixels of the overhead image 
according to the estimated geospatial function values, 

wherein the feature maps associate feature values with 
geolocations of the respective images. 

14. The method of claim 13, wherein generating the joint 
feature map includes: 

applying a subset of convolutional layers of the overhead 
convolutional neural network to extract features from 
the overhead image so as to generate a plurality of 
overhead feature maps therefrom, each overhead fea­
ture map corresponding to a respective convolutional 
layer; 

concatenating the plurality of overhead feature maps and 
the ground level feature map; and 

applying a remainder of the convolutional layers of the 
overhead convolutional neural network to the concat­
enated feature maps and the extracted features so as to 
generate the joint feature map. 

15. The method of claim 13, wherein generating the 
ground level feature map includes: interpolating feature 
values, via kernel regression, according to one or more 
kernel bandwidths. 

16. The method of claim 15, wherein interpolating feature 
values includes: determining, for each geolocation, an opti­
mal kernel bandwidth. 

17. The method of claim 16, wherein determining the 
optimal kernel bandwidth is via applying a kernel convolu­
tional network to the overhead image so as to estimate the 
optimal kernel bandwidth. 

18. The method of claim 13, wherein estimating the 
geospatial function values includes: applying a semantic 
labeling architecture to a hypercolumn generated based on 
the ground level feature map and/or the overhead feature 
maps and/or and the joint feature map. 

* * * * * 
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