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Abstract

Objectives: We set out to reprogram adult somatic oral epithelial keratinocytes into

pluripotent cells for regenerative dentistry.

Setting and Sample population: Immortalized murine oral keratinocyte cell (IMOK)

line raised from adult mouse mucosa were cultured in vitro in our studies.

Materials and Methods: Adult murine oral epithelial keratinocytes were chronically

treated with TGF-β1 in vitro, and the expression of Oct4, Nanog, Sox2 and Nestin, as

well as specific homeobox Gata and Pax gene family members were investigated.

Results: We documented the induction of stem factors linked with pluripotency

and/or the maintenance and regulation of stem-cell self-renewal in oral epithelial

keratinocytes by TGFβ1. Moreover, we discovered that this TGF-β1-induced increase

in Oct4, Nanog, Sox2 and Nestin was inhibited by SB431542, suggesting that TGF-

β1 signals via the TGF-βRI receptor to induce pluripotency and stemness.

Conclusions: Adult oral epithelial keratinocytes treated chronically with TGF-β1

acquired phenotypic characteristics consistent with pluripotent stem cells, highlight-

ing the facileness of reprogramming adult oral keratinocytes into an unlimited supply

of pluripotent stem cells.

K E YWORD S

dedifferentiation, oral epithelium, stemness, TGFβ

1 | INTRODUCTION

Regenerative dentistry efforts aiming to restore oral, dental and cra-

niofacial tissues impacted by injury or disease is a promising field with

future clinical applications. Considerable progress has been made in

producing whole teeth, or parts of a tooth, or even biomimetic dental

materials (Galler & D'Souza, 2011; Mitsiadis et al., 2015). Although

recent advances in the field of regenerative dentistry are promising,

one significant limitation continues to be the inadequate supply of

cells needed in tissue and organ regeneration (Niibe et al., 2017).

Therefore, the purpose of our study is to interrogate the repro-

gramming potential of adult oral epithelial keratinocytes, which

abundantly line the oral cavity, as a source of cells for regenerative

dentistry.

Recent studies suggest that adult somatic cells exhibit remarkable

plasticity, and can be reprogrammed to acquire pluripotency or stem

cell-like properties (Chakravarti et al., 2014). Such pluripotent cells

can then be differentiated towards lineage-specific cell types so as to

replace damaged or diseased tissues and organs (Chakravarti

et al., 2014). Pluripotent cells are a transient population of cells that

depend on transcription factors, such as Oct4, Nanog and Sox2, to

maintain pluripotency, whilst simultaneously repressing lineage speci-

fication (Chambers et al., 2007). Octamer-binding protein 4 (Oct4)

was the first master gene shown to be required for pluripotency of
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murine and human pluripotent stem cells (Zeineddine et al., 2014). As

such, Oct4 is well accepted as a core pluripotency factor in associa-

tion with its partner transcription factors, Nanog and Sox2 (Shi &

Jin, 2010). Genetic studies report that the core pluripotent genes,

Oct4, Nanog and Sox2, are highly expressed in stem cells (Huang &

Garcia-Godoy, 2017). Moreover, cells losing Oct4 during murine

embryonic development were found to differentiate into somatic cells

(Pesce & Scholer, 2001). Sox2 further plays an essential role in

maintaining cells in this undifferentiated state and facilitating lineage

commitment during embryonic development (Carrasco-Garcia

et al., 2016). The unique ability of Sox2 to cooperate with Oct4 at

specific binding sites is also critical for reprogramming fully differenti-

ated somatic cells into induced pluripotent cells (Aksoy et al., 2013).

Nanog also has been considered another key factor in the generation

of iPSCs, as addition of Nanog to Yamanaka factors (Hanna

et al., 2009), which include Oct4, Sox2, Klf4, and c-Myc, has been

shown to enhance the reprograming kinetics (Hanna et al., 2009). Yu

et al. (2007) demonstrated that Nanog and Oct4, along with Lin28

and Sox2, induced the de-differentiation of human fibroblasts into

pluripotent stem cells, with the full capacity to differentiate into any

cell type. In contrast, Nestin belongs to class VI intermediate filament

proteins, and is widely used as a marker of stem cells that are capable

of multilineage differentiation (Chen et al., 2006).

Transforming growth factor beta (TGF-β1) is considered a key

component of the stem cell niche in many different tissues and

appears to play an essential role in modulating epithelial cell plasticity

and pluripotency. TGF-β1 has been reported to upregulate

pluripotency transcription factors in adult somatic cell lines in vitro.

To this end, Au et al. (2015) showed that TGF-β1 induced the expres-

sion of Oct4 in primary human endometriotic stromal cells. Further-

more, TGF-β1 upregulated Nestin in human kidney proximal tubules

cells (Wen et al., 2012) and in ventricular fibroblasts (Hertig

et al., 2017). However, it remains unclear whether TGF-β1 can induce

pluripotency in adult oral epithelial keratinocytes.

In the present study, we investigated whether chronic TGF-β1 is

capable of reprogramming an immortalized murine oral keratinocyte

cell (IMOK) line developed from the oral mucosal specimens of adult

mice into a phenotype that expresses one or more of the key

pluripotency transcription factors, in vitro.

2 | MATERIALS AND METHODS

2.1 | Cell culture and reagents

The Immortalized Murine Oral Keratinocytes (IMOK) cell line was

kindly donated by Dr. Garrett-Sinha at SUNY-Buffalo (Parikh

et al., 2008) as part of NIH's Resource Sharing plan for funded investi-

gators. Specifically, the IMOK cells were raised from tissue containing

oral epithelium from the buccal and palatal regions were harvested

from 6 month old female 129Sv mice. Cells were seeded in serum-

free keratinocyte media (CnT-02; CELLnTEC; Advanced Cell System)

and maintained at 37�C in a humidified chamber containing 5% CO2.

Upon reaching 40% confluency, cells were treated with 5 ng/ml

recombinant mouse TGF-β1 (Bazina et al., 2021; Valcourt et al., 2005)

(R&D System), or equal volumes of vehicle, for 2-, 4, and 6-days. For

TGF-βRI inhibitory experiments, the solid anhydrous TGF-βRI kinase

inhibitor SB-431542 (TOCRIS) was added to the culture media

(10 μM final concentration).

2.2 | Immunofluorescence (IF)

Cells were cultured on Lab-Tek chamber slides (Nalgene Nunc Inter-

national) until 40% confluent before treatment with either TGF-β1 or

vehicle control, at the indicated time points. Cells were fixed with 4%

formaldehyde and processed for immunofluorescence microscopy

(Kyrkanides et al., 2012). Primary antibodies included Oct4 and Nanog

(Abcam), Nestin (Novus Biologicals), counter stained with DAPI

(Vector Laboratories). Images of cover slipped slides were captured

under 594 nm (red) and 350 nm (blue) wavelengths using a BX51

Olympus fluorescent microscope.

2.3 | Flow cytometry

Samples were prepared as described previously (Al-Attar et al., 2018).

Briefly, harvested cells were fixed with 2% paraformaldehyde, washed

with permeabilization buffer (BioLegend) and incubated with primary

antibodies: Oct4 (Chemicon), Nanog (Cell Signaling), Sox2 (Santa Cruz

Biotechnology), Nestin (Novus Biologicals), and Rabbit IgG (Abcam)

and chicken IgY isotype (R&D Systems) controls. After rinsing, cells

were incubated with an Alexa flour-488 goat anti-rabbit secondary

antibody (Molecular Probes), or a FITC goat anti-chicken IgY (Novus

Biologicals) isotype control. Stained samples were read on an LSR-II

cytometer using FACSDiva version 6 (BD Biosciences) and analyzed

by FlowJo Software (TreeStar; version 9.5). Data are represented as

geometric mean-fluorescence intensity (GMFI).

2.4 | Western blotting

Cells were processed for western blotting, as described previously

(Brouxhon et al., 2007). Briefly, samples were electrophoretically sepa-

rated using SDS-PAGE, and transferred to nitrocellulose membranes.

Membranes were blocked with 5% (w/v) nonfat dry milk to block non-

specific binding, and then incubated with TGF-βRI, TGF-βRII, Sox2 and

β-actin (Santa Cruz Biotechnology), Oct4 (Chemicon), Nestin (Novus

Biologicals), Nanog, TGF-βRIII, phospho-specific Smad2, Smad3, Smad2,

Smad3, and Smad4 (Cell signaling). Proteins were detected using appro-

priate HRP-conjugated secondary antibodies (Santa Cruz Biotechnol-

ogy). Immunoreactive bands were detected using the Clarity MaxTM

Western ECL Substrate (Bio-Rad), and visualized using the ChemiDoc

MP Imaging System (Bio-Rad). Western blot signals were normalized to

β-actin, using NIH Scion Image. Results are presented as fold increase

relative to controls in triplicate experiments.
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2.5 | Cytokine array

The secretion of cytokines was evaluated using a Cytokine Antibody Array

C1 Series (RayBiotech), according to the manufacturer's instructions. Briefly,

conditioned medium was obtained after culturing cells for 48 h in serum-free

medium at 37�C and 5% CO2. Each array was incubated with 1 ml of

undiluted medium at 4�C overnight, washed, and then incubated with a bio-

tinylated antibody cocktail, followed by an HRP-streptavidin incubation. To

determine the level of cytokines in the media, spot signal densities were mea-

sured using Image Studio™ Lite (LI-COR Biosciences), and data analysis was

performed using the RayBiotechMicrosoft® Excel-based analysis software.

2.6 | TGF-β1 ELISA

A commercial ELISA kit for secreted TGF-β1 (Biolegend) was used to

quantify concentrations in cell culture supernatants according to the

manufacturer's instructions.

2.7 | Stem cell gene array

A custom-plate Prime-PCR mouse-stem cell gene array (SAB target list-

M96; Bio-Rad) was used to analyze the expression of the stem cell

signaling-associated genes in IMOK cells, treated in the presence or

absence of TGF-β1. RNA was extracted from cells using the RNeasy Mini

Kit (Qiagen), and RNA reversed transcribed using the iScript Advanced

cDNA Synthesis kit (Bio-Rad). The reaction mix was prepared using the

Advanced Universal SYBR® Green Supermix (Bio-Rad), per the manufac-

turer's instructions. For real-time polymerase chain reaction (qRT-PCR), a

CFX96 Touch Detection System (Bio-Rad) was used. For data normaliza-

tion, stable reference genes, such as glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH), was embedded in the plate setup and employed for

Δ-Cq calculations. cDNA templates were assayed in triplicates, and results

presented as relative gene expression (ΔΔ-Cq Expression) in the TGF-β1

treated groups normalized to the corresponding vehicle control samples.

2.8 | Statistical analysis

All data are shown as the means ± SEM. To determine statistical dif-

ferences between or among means, a student's t-test was performed

where applicable. For all analyses, a p-value equal to or less than 0.05

was considered statistically significant.

3 | RESULTS

3.1 | Characterization of secreted cytokines from
naive IMOK cultures in vitro

We performed a comprehensive analysis of the secretome of IMOK

cells at baseline conditions using an antibody-based ELISA array. Our

results show that IMOK cells secrete into the conditioned media,

compared to control media, high levels of TGF-α (2.3-fold), IGFBP-4

(Insulin-like Growth Factor-Binding Protein 4; 2.5-fold), G-CSF

(Granulocyte Colony-Stimulating Factor; 2.6-fold), and SCFR (Stem

Cell Factor Receptor/c-Kit; 4.5-fold) (Figure 1a). We further assessed

TGF-β1 levels in conditioned media at the 2-, 4-, and 6- day time

points by ELISA. In agreement with the cytokine array, levels of TGF-

β1 were negligible (�40 pg/ml) at all-time points examined

(Figure 1b), suggesting that IMOK cells constitutively secrete low

levels of TGF-β1 under basal conditions.

3.2 | Chronic TGF-β1 induced the upregulation of
pluripotency markers in IMOK cells

We characterized the stem cell transcriptome of IMOK cells in

response to TGF-β1 by a quantitative real-time PrimePCR array (Bio-

Rad; custom-designed plates) including a panel of stem cell-associated

genes in total RNA extracted from TGF-β1 treated and vehicle control

groups, at the 2-, 4-, and 6-day time points. In our analysis, we

selected genes that showed at least a 1.5-fold up-regulation by TGF-

β1, compared to vehicle controls. Our results indicate that TGF-β1

upregulated 10 out of the 29 genes at the time-points examined. Spe-

cifically, TGF-β1 upregulated Pax6, Hoxb1, Hoxb13, and Hoxc12

F IGURE 1 Characterization of cytokines released by naïve IMOK
cells. (a) Array analysis of growth factors released in the supernatants
of naïve IMOK cells in culture compared to fresh media (control) at
2-days post seeding (n = 2). (b) The concentration of active TGF-β1
was assessed by ELISA collected from naïve IMOK supernatants at 2-,
4- and 6-days post seeding. The results are shown as the mean ± SEM
in triplicate experiments

BAZINA ET AL. 3



genes in 2-day cultures, while Hoxb13, Hoxd1, and Oct4 (Pou5f1)

genes were increased by day 4 (Figure 2a,b). Furthermore, the core

pluripotency markers Oct4 (Pou5f1) and Nanog, as well as other

stemness-related genes, including Hoxb1, Hoxb13, Hoxc4, Hoxc12,

Hoxd1, Pax9, and Gata1 were significantly increased by day

6 (Figure 2a–c). Notably, only Hoxb13 gene revealed a persistent

TGF-β1-induced up-regulation over the three-time points examined

(Figure 2d).

Changes in the stem cell transcription factors Oct4, Nanog, Sox2

and Nestin were next evaluated at the protein level by western blot-

ting, in response to chronic TGF-β1 treatment in IMOK cells at 2-, 4-,

and 6-days in vitro. Densitometric analysis of the immunoreactive

bands, normalized to their corresponding loading controls, revealed

that Oct4, Nanog, Sox2 and Nestin were significantly increased in

response to TGF-β1 (Figure 3a). Specifically, immunoblot analysis

showed a statistically significant increase in Oct4 levels, that peaked

at 4-days. In contrast, Nanog, Sox2 and Nestin peaked at the 6-day

time point. Next, we assessed the spatiotemporal localization of Oct4,

Nanog and Nestin after chronic TGF-β1 treatment by immunofluores-

cence. Consistent with our western blotting results, we observed an

intensification of immunostaining in response to TGF-β1 treatment

over time (Figure 3b). Additionally, Oct4 and Nanog demonstrated

F IGURE 2 Pluripotency,
Gata1 and Homeobox gene
changes in IMOK cells after
chronic TGF-β1 treatment. A
primePCR stem cells gene array
(BioRad) was used to evaluate
relative gene expression profiles
of IMOK cells after chronic TGF-
β1 treatment. (a) Clustergram
demonstrating differentially
expressed pluripotency, Gata1
and Homeobox genes in IMOK
cells treated with TGF-β1, or
vehicle control, for 2-, 4-, and
6-days after normalizing to
GAPDH. Red indicates greater
expression, green indicates lower
expression Cq > 30. The data of

the representative genes were
derived from three independent
experiments. (b) Bar graph
showing relative expression of
selected Gata1 and Homeobox
genes that have >1.5-fold
increase in the ΔΔCq expression
after 2-, 4-, and 6-days chronic
treatment with TGF-β1, versus
their corresponding vehicle
controls. (c) Gene levels of Oct4
and Nanog at the selected time
points. (d) Venn diagram
illustrating distinct and
overlapping gene expression for
the up-regulated genes in 2-day
(blue), 4-day (Orange), and 6-day
(Gray) TGF-β1 treated IMOK cells
relative to their vehicle control
group. Experiments were
conducted in triplicates. Data are
presented as mean + SEM;
*p < 0.05; **p < 0.01;
***p < 0.001
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strong nuclear staining in the TGF-β1-treated cells which peaked at

6-days, compared to controls. Similarly, Nestin immunostaining was

weak in control conditions, but demonstrated a strong TGF-

β1-induced nuclear and perinuclear localization at 4 days (Figure 3b).

Taken together, these data suggest that chronic TGF-β1 induces

phenotypical changes in adult oral keratinocytes associated with the

upregulation and nuclear localization of the key master transcription

factors Oct4, Nanog, Sox2, as well upregulation of other markers

involved in the maintenance of this undifferentiated state and regula-

tion of stem cell self-renewal.

F IGURE 3 Oct4, Sox2, Nanog and Nestin
induction in IMOK cells after chronic TGF-β1
in vitro. (a) Representative immunoblot and
analysis of the expression levels of Oct4, Sox2,
Nanog and Nestin in total cell lysates from IMOK
cells treated chronically with TGF-β1 versus
vehicle controls at the indicated time points by
western immunoblotting. Expression levels were
normalized to β-actin and quantitated by NIH

Scion Image. (b) Representative
immunofluorescence images for Oct4, Nanog and
Nestin (red) in control and TGFβ1-treated cells at
the indicated times. Nuclei were labeled with
DAPI (blue). Data are presented as mean + SEM.
*p < 0.05, **p < 0.01, versus corresponding
control (n = 3). Bar = 20 μm

BAZINA ET AL. 5



3.3 | Expression of TGF-β1 cognate receptors are
induced by TGF-β1 in IMOK cells

We examined whether chronic TGF-β1 modulates TGF-β receptor

family members (Miyazono et al., 1993) in IMOK cells by western

blotting. TGF-β1-treated IMOK cells showed a significant induc-

tion of TGF-βRI and TGF-βRII expression compared to controls

but exhibited no effect on TGF-βRIII at 2-, 4-, or 6-days

(Figure 4a–c). It is well established that TGF-β1 binds to the TGF-

β receptor complexes to activate downstream Smad signaling

(Parikh et al., 2008). Therefore, we next sought to determine

whether TGF-β1 signals via canonical Smad signaling by western

blotting in these cells. Our results show a statistically significant

increase in phospho-specific Smad2 levels at 2-days after TGF-β1

treatment, whereas no alterations were noted at the 4- and 6-day

time-points (Figure 4d). Similarly, phospho-Smad3 levels were sig-

nificantly increased at 2- and 4-days following TGF-β1 treatment

(Figure 4e).

3.4 | TGF-β1 upregulation of pluripotency markers
in IMOK cells is through TGF-βRI

We explored whether chronic TGF-β1 induces the upregulation of

pluripotency factors in IMOK cells through the TGF-βRI receptor

through the use of the selective antagonist SB431542 as follows:

(1) vehicle control; (2) TGF-β1; (3) TGF-β1 + SB431542; and

(4) SB431542 (10 μM) alone. Flow cytometry analyses confirmed that

TGF-βRI inhibitor SB431542 attenuated the upregulation of

pluripotency markers by TGF-β1 in IMOK cells (Figure 5a–d). Taken

together, our data suggest that chronic TGF-β1, via its cognate receptor

TGF-βRI, can induce stem cell factors in IMOK cells.

4 | DISCUSSION

A new source of cells with stem-like properties is required for regen-

erative dentistry in the future. In the present study, we evaluated

F IGURE 4 Modulation of the TGF-
β1-Smad2/3 axis in IMOK cells following chronic
TGF-β1 treatment. Representative western blots
and analysis of (a) TGF-βRI, (b) TGF-βRII and
(c) TGF-βRIII protein levels in whole lysates
prepared from IMOK cells, in the presence or
absence of TGF-β1. (d) Representative western
blots and corresponding analyses of
phosphorylated and total levels of Smad2 and
(e) Smad3 in IMOK cells, in the presence or
absence of TGF-β1. Protein levels were normalized
to β-actin and quantitated by NIH Scion image.
Data are presented as mean, SEM. *p < 0.05;
**p < 0.01; TGF-β1 versus control (n = 3)
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whether adult somatic oral epithelial keratinocytes, lining the oral cav-

ity, can be successfully reprogrammed to acquire pluripotent stem

cell-like properties, thereby providing a practically unlimited supply of

stem-like cells that could be differentiated into tissues for regenera-

tive efforts. For example, reprogrammed oral epithelial keratinocytes

can serve as the starting cell type in the generation of enamel-like bio-

mimetic material as recently described (Bazina et al., 2021).

A recent body of evidence suggests that similar to embryonic

stem cells, fully differentiated somatic cells can be reprogrammed into

a more primitive state, highlighting many questions about the

F IGURE 5 TGF-β1-induced stemness is mediated in part by TGFβ1-RI in IMOK cells in vitro. The stem cell markers (a) Oct4, (b) Nanog (c),
Sox2, and (d) Nestin were evaluated by flow cytometry in IMOK cells treated chronically with TGF-β1, in the presence or absence of the TGF-β1
receptor inhibitor SB431542 at the indicated time points. Bar charts analyses represent quantification of the GMFI means for each marker in the
vehicle-control (ctrl), TGF-β1, TGF-β1 with the TGF-β receptor inhibitor (TGF-β1 + SB431542) and the TGF-β receptor inhibitor (SB431541) only
conditions. Results are presented as mean ± SEM. n = 3. *Significant compared to control; #significant compared to TGF-β1 treated. Statistical
significance was evaluated by student's t-test (*, #p < 0.05; **, ##p < 0.01; ***, ###p < 0.001)

BAZINA ET AL. 7



reversible nature of somatic cell reprogramming and induction of

pluripotency (Takahashi & Yamanaka, 2006; Yu et al., 2007).

Reprogramming adult somatic cells into a pluripotent state can

yield iPSCs (Buganim et al., 2013). Intriguingly, iPSCs, which have

the capacity to differentiate into multiple cell types, have been

generated from adult somatic cells by ectopic expression of an

interconnected network of pluripotent transcription factors,

including but not limited to, Oct4, Sox2, Klf4, c-Myc, Nanog or

Lin28 (Takahashi et al., 2007; Takahashi & Yamanaka, 2006; Yu

et al., 2007). High levels of Oct4 during the initial reprogramming

stage was reported as sufficient to generate iPSCs from adult

somatic cells (Radzisheuskaya & Silva, 2014). In addition, Oct4

overexpression together with small molecule agents was sufficient

to reprogram fibroblasts into iPSCs (Salci et al., 2015) and cells co-

expressing Oct4 and Nanog exhibited a more stable pluripotent

state than cells individually expressing these factors alone

(Theunissen et al., 2011). Overexpression of Sox2 in mouse and

human fully differentiated fibroblasts, was further shown to estab-

lish multipotent-induced neuronal stem cells (Ring et al., 2012).

The unique ability of Sox2 to cooperate with Oct4 at specific bind-

ing sites is critical for the reprogramming of fully differentiated

somatic cells into iPSCs (Aksoy et al., 2013). Thus, together, Oct4

and Sox2 preserve an equilibrium in cell fate decisions, which ren-

ders pluripotency (Thomson et al., 2011). Although Nestin is not

considered one of the core stem cell transcription factors, human

and mouse Nestin-expressing stem cells in the hair follicle bulge

were able to produce neurons, glia, keratinocytes, smooth muscle

cells, blood cells and melanocytes in vitro (Yashiro et al., 2015)

suggesting a multipotent phenotype with putative therapeutic

potential.

Our data demonstrate that chronic TGF-β1 treatment of the

immortalized murine oral epithelial keratinocyte cell line IMOK

induced the expression of Oct4, Nanog, Sox2 and Nestin in vitro. Their

levels of expression varied at different time points, emphasizing the

requirement of their sequential induction during the reprogramming

of somatic cells to iPSCs (Brambrink et al., 2008). Published evidence

describes a later requirement of Nanog and Sox2, than the early

requirement for Oct4, to maintain pluripotency (Loh et al., 2006). Our

findings are in agreement with previous reports demonstrating an

early induction of Oct4, along with later expression of Sox2 and

Nanog expression (Jo et al., 2014; Mu et al., 2015). We evidenced

Oct4 in IMOK nuclei after TGF-β1 stimulation, consistent with the

known properties of Oct4 in cellular reprogramming and stemness

(Oka et al., 2013). Similarly, Nanog was shown to exhibit cellular shut-

tling, with nuclear localization detected in human embryonic stem

cells with transformed Hela and SH-SY5Y cells displaying cytoplasmic

localization (Rodrigo et al., 2017), as well as during enamel organ

development (da Cunha et al., 2013).

Furthermore, Hox, Gata and Pax genes, which control sets of

genes that define cellular fate conversion during morphogenesis and

stem cell self-renewal were increased by TGF-β1 (Alharbi et al., 2013;

Amsellem et al., 2003; Scialdone et al., 2016). To the best of our

knowledge, we are the first to report herein TGF-β1-mediated

induction of Hox, Pax, and Gata genes has yet to be reported in adult

somatic cells elsewhere.

We also report that TGF-β1 induced the expression of Oct4,

Nanog, Sox2 and Nestin in IMOK cells through activation of the TGFβ

receptor type I (TGFβR-I) and downstream Smad2/3 intracellular sig-

naling. Previous reports have shown that SB431542 led to a reduction

in Oct4 and Nanog expression, although Nanog expression was more

sensitive to this loss of signaling (Greber et al., 2008). In addition, inhi-

bition of TGF-β1 signaling, via SB-431542, was able to drastically

deprive “stemness features” of glioma-initiating cells and promote

their differentiation (Peñuelas et al., 2009; Valcourt et al., 2005). Addi-

tionally, the role of TGF-β1 in upregulating or maintaining

pluripotency markers, including Oct4 and Nanog, through Smad trans-

duction signaling has been reported in a number of transformed cell

lines (Bae et al., 2016). Noteworthy, both Oct4 and Nanog also form a

complex with Smad2, and/or Smad3 in mouse and human embryonic

stem cells (Mullen & Wrana, 2017).

The field of regenerative Dentistry has developed recently and

efforts to produce an abundant source of cells for the production of

stem-like cells has been the focus of several investigators. For exam-

ple, Yamasaki et al. (2014) were successful in developing human plu-

ripotent stem cells using as starting material dental pulp tissue.

However, the relative small amount of pulp tissue and the need to

sacrifice a healthy tooth for their harvest significantly limits the clinical

application of this method. In contrast, the facileness of harvesting

adult somatic cells, together with the versatility of generating pluripo-

tent cells with chronic TGF-β1, opens up exciting opportunities to

tackle regenerative challenges linked to the repair of enamel, or other

types of mineralized tissues. To this end, IMOK cells reprogrammed

by TGF-β1 have been successfully employed recently in the produc-

tion of an enamel biomimetic material (Bazina et al., 2021).
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