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ABSTRACT OF DISSERTATION

PREDICTING MATERIAL PROPERTIES:
APPLICATIONS OF MULTI-SCALE MULTIPHYSICS

NUMERICAL MODELING TO TRANSPORT PROBLEMS
IN BIOCHEMICAL SYSTEMS AND CHEMICAL PROCESS ENGINEERING

Material properties are used in a wide variety of theoretical models of material be-
havior. Descriptive properties quantify the nature, structure, or composition of the
material. Behavioral properties quantify the response of the material to an imposed
condition. The central question of this work concerns the prediction of behavioral
properties from previously determined descriptive properties through hierarchical
multi-scale, multiphysics models implemented as numerical simulations. Applica-
tions covered focus on mass transport models, including sequential enzyme-catalyzed
reactions in systems biology, and an industrial chemical process in a common reaction
medium.
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Chapter 1 Introduction

1.1 Objective, Organization, and Notation

Engineering and the physical sciences use mathematical models to describe and pre-
dict the behavior of a system under study. These models define abstract concepts
representing real-world phenomena, and express principles governing the causal re-
lationships between these concepts. Many mathematical models include coefficients
referred to as material properties. These properties quantify various characteristics
of a material as it relates to a mathematical model.

Consider the following two types of material properties: descriptive properties
are those that define the nature, structure, or composition of a material. In contrast,
behavioral properties are those that quantify the response of the material to different
imposed conditions. For example, the chemical composition of a metal is a descriptive
property, while the rate at which it corrodes in air is a behavioral property dependent
on conditions of temperature, humidty, salinity, and others.

The object of this work is to investigate how to predict behavioral properties
from descriptive properties. In other words, from a quantitative description of what
a material is, can we predict how it behaves?

In practice, it may sometimes be more prudent to proceed in the reverse direction:
predicting descriptive properties by making use of previously established behavioral
ones. For example, the behavioral properties involved might be easier to measure
experimentally than the descriptive ones. Yet, even in such circumstances, the direc-
tion of causality is not reversed. The nature of a material governs its behavior simply
because existence precedes action.

In a situation where a material is already available and its properties can be
measured, there is no need to predict the properties. However, in situations where a
desired set of properties is specified and a material meeting these requirements must
be found, a model that can predict material properties can be helpful. Furthermore,
in some cases material properties are observed in measurements, and then investigated
theoretically to explain the measured results. Finally, there are some situations where
attempts to measure a property would interfere with the processes that give rise to
the property. This is the case in a biochemical system described in Chapter 3.

The distinction between descriptive and behavioral properties is often dependent
on the scale considered: a descriptive property at one scale may be a behavioral prop-
erty at a smaller scale. For example, the density of a solid is a descriptive property
at the macroscale, but the density is determined by the masses of its constituent par-
ticles and their equilibrium separation distances. The separation distances, in turn,
result from nanoscale interactions between the constituent particles of the solid.

These methods of prediction rely on two developing areas of mathematical model-
ing. First, a relevant model at one scale of observation can derive properties applicable
to another model appropriate at a larger scale, as further discussed in Section 1.2.
Secondly, the models used at each scale must incorporate all of the diverse physical
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phenomena that are relevant, as further discussed in Section 1.3.
The scope of this study focuses primarily on material properties relating to the

field of transport theory, as described in Sections 1.4, 1.5, 1.6, and 1.8. The primary
(though not exclusive) material property of concern is described in more detail in
Section 1.7.

The principal methods employed are reviewed in Chapter 2. Chapter 3 illustrates
an application from the area of systems biology. Chapter 4 applies these methods
to an industrial chemical process in a common reaction medium. Finally, Chapter
5 concludes with thoughts on possible areas of future investigation. Appendix A
contains a list of abbreviations used herein. A glossary of the notation used for
variables and operators is provided in Appendix B. A glossary of terms is provided
in Appendix C. Various mathematical derivations referenced in the text are detailed
in Appendix D.

The mathematical formulas presented herein are written with index notation [18,
93, 6]. Subscripts that are lowercase letters represent indices for dimensions of space
unless otherwise noted. Repeated spatial indices within a term imply a summation
over all spatial dimensions. Subscripts that are uppercase letters represent non-spatial
indices, and are excluded from implied summation. The units or dimensions of a
given quantity are expressed inside double square brackets. For example, dimensions
of length are shown as JLK. Names of software packages are written a typewriter font,
such as python, FEniCS, and gromacs.

1.2 Multi-scale Models

Material properties are often themselves the result of complex processes taking place
at smaller scales. A model of behavior at the smaller scale, which incorporates all of
the relevant physical phenomena, can be used to estimate the appropriate material
properties at the larger scale. Because the smaller-scale models may themselves
include material properties of their own, this process can continue downward to lower
and lower scales, eventually reaching the atomistic scale.

At the scale of electrons and nuclei, quantum mechanics is well-established as
the relevant mathematical model, and the necessary experimentally-derived material
properties, such as particle masses and charges, have already been measured to great
precision. For this reason, models that begin with quantum-mechanical interactions
of subatomic particles are often called ab-initio models.

Starting from ab-initio models, it is theoretically possible to derive properties
for models at larger and larger scales, eventually reaching material properties at
macroscopic scales of both length and time. In practice, this overall process is still
developing, as described by the Materials Genome Initiative [31]:

Materials scientists have developed powerful computational tools to pre-
dict materials behavior, but these tools have fundamental deficiencies that
limit their usefulness. The primary problem is that current predictive al-
gorithms do not have the ability to model behavior and properties across

2



multiple spatial and temporal scales; for example, researchers can mea-
sure the atomic vibrations of a material in picoseconds, but from that
information they cannot predict how the material will wear down over
the course of years.

Figure 1.1 illustrates different analysis scales and the methods described herein
relating to them. Similar figures, listing additional methods not included here, can
be found in Raabe et al. [103], Kim [75], and Horstemeyer [59].

Length (m): 10−12 10−9 10−6 10−3 100 103

Scales: Quantum

Nanoscale

Atomistic

Molecular

Mesoscale Macroscale

Methods:
Electronic

Structure

Molecular

Dynamics

and

Monte-Carlo

Finite

Difference

and

Finite

Element

Methods

Figure 1.1: Analysis scales and relevant methods.

Multi-scale analysis involves not only selecting appropriate analysis methods within
each scale, but also selecting appropriate methods of transferring information between
scales. Homogenization, described in Chapter 2, is the primary method used herein
for transferring information from a smaller scale to a larger one. Models where in-
formation passes only in this direction, from smaller scales to larger ones, are often
called hierarchical multi-scale models.

1.3 Multiphysics Models

Many mathematical models have been defined within a particular area of study, such
as Maxwell’s equations for electromagnetism, the theory of elasticity in continuum
mechanics, and the equations of General Relativity to describe the gravitational in-
teractions. Within the past few decades, a trend has emerged where models originally
defined in different areas of study are combined to describe a particular system. For
example, fluid dynamics and structural dynamics are both well-established areas of
study with their own literature. However, models coupling these two theories have
seen widespread use in the area of aircraft design for over 20 years [109]. This trend of
combining mathematical models from different fields of study has come to be known
as multiphysics.

The properties of a material are often governed by a set of phenomena that exhibit
this kind of multiphysics coupling. Specifically, the applications described in Chap-
ters 3 and 4 require consideration of coupled phenomena. The relevant combined
mathematical models are described therein.
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The topic of multiphysics simulations is very broad for two reasons: First, the
number of possible combinations of fields of study is much larger than the number of
fields to be combined. Additionally, a variety of different techniques are available to
couple originally separate mathematical models [72].

Other examples of applications where multiphysics approaches have been used
include coupling between mechanical strain and electronic behavior in devices [127],
coupling between the ocean and the atmosphere in geophysics [72], and the coupling
between deformation and fluid flow in a porous medium, which has applications in
fields as diverse as geotechnical engineering and cardiac modeling [115].

1.4 Heat and Diffusion Equations

Mathematical descriptions of behavior of materials are often called constitutive laws
or constitutive models. The simplest such laws are linear: they posit the response of
a material is directly proportional to an applied stimulus. In these cases, the material
property in question is the proportionality constant for this linear relationship.

The causal relationship between stimulus and response can often be reversed:
either quantity may be imposed on the material while maintaining the constitutive
relation. In thermodynamics, the terms forces and currents , respectively, are often
used instead [98, 38]. The term force is used here in a very general sense, as these
forces are not necessarily related directly to the time derivative of a momentum by
Newton’s second law [38].

The success of a linear model lies in making proper choices for the quantities to be
related. For a given physical phenomenon, some pairs of quantities are more suitable
than others. Some examples of successful linear constitutive models are listed in Table
1.1. Each of these models is often referred to as a law and named after a discoverer.
The force variable in the model is the negative gradient of a scalar field in each case.
Of course, many other linear constitutive models exist. The selection here is limited
to only the laws that are most similar to Fick’s Law, for the purpose of illustrating
the broader areas in which the techniques used here can also be applied.

If the material property is a scalar value, then the force and current vectors will
be anti-parallel. For a given force magnitude, the current magnitude will not vary
with the direction in which force is applied. This condition is known as isotropy. In
contrast, anisotropic conditions refer to situations where there is a dependence on
the direction. In anisotropic conditions, the material property is a matrix (a tensor
of rank 2) rather than a scalar value. The laws in Table 1.1 are written in a general
form that allows for anisotropic conditions. For isotropic conditions, the property
tensor is simply the identity matrix multiplied by a scalar value.

In practical analyses, constitutive laws must be combined with other governing
equations. The equations of Table 1.1 are often combined with conservation laws
expressed as continuity equations. The continuity equation corresponding to each
constitutive law is shown in Table 1.2.

The constitutive laws of Table 1.1 can be substituted into the continuity equations
of Table 1.2. In the case of the Fick’s Law, with the additional assumption of an
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Table 1.1: Common linear gradient constitutive laws.

Law Phenomenon Equation Property

Fick’s [47, 98, 120] Diffusion
ji = −Dij∂jc
ji = species flux
c = concentration

Dij =
Diffusion
Coefficient

Ohm’s [51, 65] Electrical
Conduction

Ji = −σij∂jΦ
Ji = current density
Φ = electric potential

σij =
Conductivity

Fourier’s [92, 16] Heat
Conduction

q̇i = −κij∂jT
q̇i = heat flux
T = temperature

κij =
Thermal
Conductivity

Darcy’s [11, 55] Groundwater
Seepage

qi = −Kij∂jH
qi = specific discharge
H = total hydraulic head

Kij =
Permeability

Table 1.2: Continuity equations.

Law Continuity
Equation

Time
Derivative

Conserved
Quantity

Fick’s [16, 34, 120] ∂tc = −∂iji c= concentration Number of
Molecules

Ohm’s [51, 65] ∂tρ = −∂iJi ρ = charge density Electric Charge
Fourier’s [8] ∂tu = −∂iq̇i u = specific energy Energy

Darcy’s [29, 129] ∂t (φρ) = −∂i (ρqi)
ρ = fluid density,
φ = porosity Mass

isotropic and spatially invariant diffusion coefficient, the result is Equation 1.1, often
known as Fick’s Second Law of Diffusion [120].

∂tc = D∂i∂ic (1.1)

A similar form of equation can be obtained for Fourier’s Law by defining the ther-
mal conductivity α = κ/ρC for isotropic and spatially invariant thermal conductivity
κ, mass density ρ, and heat capacity C. The result is Equation 1.2 [16, 8].

∂tT = α∂i∂iT (1.2)

Because Equations 1.1 and 1.2 have a similar form, other equations with this form
are often called heat-flow or diffusion equations. For mathematical convenience, the
constant within the equation is sometimes written as the square of another constant,
for a general form given by Equation 1.3 [6, 18].

∂tψ = α2∂i∂iψ (1.3)
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1.5 Fickian Diffusion

Within the context of the equations presented in Section 1.4, this work is concerned
mostly with applications of Fick’s Laws.

Fick’s First Law is the constitutive relation from Table 1.1 as shown in Equation
1.4. The relevant continuity equation from Table 1.2 is shown in Equation 1.5. In
the general case where the diffusion coefficient may vary in space and is potentially
anisotropic, Fick’s Second Law as described in Section 1.4 can be written as Equation
1.6.

ji = −Dij∂jc (1.4)

∂tc = −∂iji (1.5)

∂tc = ∂i (Dij∂jc) (1.6)

The variables of interest in Equations 1.4, 1.5, and 1.6 are the concentration
and the flux. These variables describe the location and net motion of individual
molecules, ions, or atoms suspended within a fluid or other medium. Herein, the
diffusing molecules, ions, or atoms will be referred to as diffusing particles . The
concentration, c, is a scalar field that represents the number of particles present
per unit volume. Equivalently, when normalized to unity, the concentration may be
considered as the probability density function for the location of a single particle,
assuming the system is ergodic. The normalization factor for this equivalency is the
total number of particles present within the system. For the continuity equation to
be valid, this value must be invariant. The flux, ji, is a vector field that represents
the net motion of the particles. The units involved can be inferred from the units
of concentration by unit analysis of the continuity equation. For example, if the
concentration is expressed in units of particles per cubic nanometer, and nanometers
are used for length and nanoseconds for time, then by the continuity equation the
vector flux must be in units of particles per square nanometer per nanosecond.

An extension of this model to include chemical reactions is presented in Appendix
D, Section D.1.

The term flux is also sometimes used to refer to the integration of the vector flux
over a surface. Herein, this will be termed the integrated flux , and denoted with JΓ

for the flux through surface Γ, and defined by Equation 1.7. The vector nΓi represents
the unit normal to the surface, which will vary in space if the surface is not flat. The
integrated flux represents the number of particles crossing the designated surface in
a given period of time. Accordingly, the units of the integrated flux are the number
of particles per unit time.

JΓ =

∫
Γ

dΓnΓiji (1.7)

In some cases, more than one diffusing species will be considered simultaneously.
In this, the variables will be given an uppercase species index, as in cS, jSi, and JΓS.
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Fickian diffusion presumes a continuum. At a lower scale, of course, the medium
through which any particles diffuse must itself be made of particles. For example, a
solute molecule diffusing through a liquid solvent is actually surrounded by solvent
molecules. At this discrete scale, diffusion is actually caused by Brownian motion
and can be modeled as a random walk [116, 47, 98]. Passing from this discrete
system to the continuum of Fick’s Laws is an example of the statistical approach to
multi-scaling.

Frequently, the steady-state solution of the diffusion equation will be desired, where
the concentration is constant with respect to time. The governing equation for the
steady-state condition is therefore given by Equation 1.8. Note that the fluxes can
still be nonzero for steady-state conditions: the derivative of the concentration with
respect to time is zero, but the spatial derivatives can be nonzero depending on the
problem boundary conditions.

∂i (Dij∂jc) = 0 (1.8)

1.6 The Nernst-Planck and Smoluchowski Equations

The Fickian diffusion equations of Section 1.5 describe the diffusion of the molecules
of a substance due to Brownian motion, as further described in Section 1.7. If, in
addition to Brownian motion, the molecules are also subjected to force arising from
a scalar potential, such as an electrostatic potential acting on ions, the diffusion
equation must be modified to couple the action of the potential as well. The diffusion
equation that includes the coupling to such a force is known in various references as the
Nernst-Planck equation or the Smoluchowski equation [85], though the former name
seems to be more strongly associated with an electrostatic potential and the latter
name with a potential of unspecified source. Complete derivations of the equation
are presented by Schulten and Kosztin [116] and Maex [86].

To include the effect of the potential, an additional term is added to the diffusive
flux of Equation 1.4. The resulting flux can be written in two mathematically equiv-
alent forms. The form that is linear in the potential is shown in Equation 1.9, and
the form that contains exponential functions of the potential is shown in Equation
1.10 [136]. The mathematical equivalence of these two forms is observed by use of
the product rule on the gradient in the exponential form, which ultimately leads to
a cancellation of the exponential factors.

ji = −Dij (∂jc+ βc∂jΨ) (1.9)

ji = −Dije
−βΨ∂j

(
eβΨc

)
(1.10)

While the exponential form may seem more complicated, it more readily lends
itself to a convenient simplification. Specifically, the flux can be expressed in a purely
Fickian form by means of the Slotboom transformation [85, 122]. The transformation
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and its inverse are presented in Equations 1.11 and 1.12, respectively. Equation 1.13
presents the flux in terms of the transformed variables.

Dij = Dije
−βΨ

c = ceβΨ (1.11)

Dij = Dije
βΨ

c = ce−βΨ (1.12)

ji = −Dij∂jc (1.13)

1.7 Diffusion Coefficient

Under general conditions, the diffusion coefficient is a matrix, Dij. That is, changes
in the coordinate axes of the problem transform the diffusion coefficient in the man-
ner established for tensors of second rank. However, under isotropic conditions, the
matrix can be expressed as a scalar D multiplied by the identity matrix. As isotropic
conditions are common, especially for diffusion through fluid media, many references
provide more information on the nature of the diffusion coefficient for this case. Ad-
ditionally, many such discussions also assume that the diffusion coefficient is spatially
invariant.

At the microscopic level, the process of diffusion results from Brownian motion of
the diffusing particles. The equation of motion for a single such particle is a Langevin
equation, which is a stochastic differential equation. That is, the equation of motion
includes a term which varies randomly in time, representing the force applied to the
particle from random collisions with solute molecules. This Langevin equation is
shown in Equation 1.14, from which the Einstein relation of Equation 1.15 can be
derived [98, 116].

M∂tvi = −ξvi + Fi (1.14)

where

M = particle mass JMK
vi = time-dependent particle velocity vector

q
L
T

y

ξ = coefficient of friction
q

M
T

y

Fi = force varying randomly in time JFK

D =
1

βξ
(1.15)

The coefficient of friction, ξ, depends on the size of the particle and the viscosity
of the solvent. For a spherical particle of radius a, diffusing through a fluid with
coefficient of viscosity η, ξ = 6πηa, which is known as Stokes’s Law [98, 108]. The
drift velocity of a diffusing particle subjected to a constant force of unit magnitude
is 1

ξ
[98].
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Furthermore, by considering the process of Brownian motion as a random walk,
it can be shown that the MSD of a Brownian particle grows linearly with time, with
the proportionality constant related to the diffusion coefficient, as shown in Equation
1.16. If, instead of the MSD, only one Cartesian coordinate, q, is evaluated, the result
is given by Equation 1.17 [98, 47].

∂t〈riri〉 = 2NdD (1.16)

∂t〈q2〉 = 2D (1.17)

By expressing the coordinate q as the integral with respect to time of the cor-
responding velocity component vq, Equation 1.17 can be used to show that D can
also be obtained by integration of the Velocity Autocorrelation Function (VACF), as
shown in Equation 1.18 [47].

D =

∫ ∞
0

dt 〈vq(t)vq(0)〉 (1.18)

Diffusion can also take place in porous media, where the diffusing substance travels
within gas or liquid-filled pores through a solid. The solids themselves are typically
considered to be impermeable, while the fluid within the pores has its own diffusion
coefficient, Dfluid. At a larger scale, the porous medium will have a different diffusion
coefficient than the fluid itself. This effective diffusion coefficient, Deff, will generally
be lower than Dfluid due to the obstructions imposed by the solid phase. An empir-
ical approach to obtaining Deff is illustrated in Equation 1.19, from Coutelieris and
Delgado [32].

Deff = Dfluid
εδ

τ
(1.19)

where

ε = effective porosity, dimensionless, ≤ 1
δ = constrictivity, dimensionless, ≤ 1
τ = tortuosity, dimensionless, ≥ 1

The three dimensionless factors in Equation 1.19 relate to phenomena that influ-
ence the value of Deff. Each is described in Coutelieris and Delgado [32] as follows,
along with empirical correlations. The effective porosity, ε, represents the reduc-
tion in the cross-sectional area of the pore space due to the obstruction from the
solid phase. The effective porosity therefore depends on the shape of the pores in
cross-section, perpendicular to the direction of flow. In contrast, the tortuosity, τ ,
depends on the shape of the pores along the direction of flow. Long, looping pores
will increase the distance that must be traveled, and thus reduce the diffusion rate
overall. Specifically, τ =

(
`eff
`

)2, where `eff is the effective path length and ` is the
linear distance between points within the medium. While illustrative, this formula
does not provide a means to actually evaluate the tortuousity for a given material.
The final dimensionless factor is the constrictivity, δ, which depends on both the size
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of the pores and the size of the diffusing particles. Diffusing particles taking up more
of the available space within the pore transport more slowly than smaller particles.

For simple, one dimensional problems, the effective porosity, ε, is equivalent to
the porosity, or free volume fraction, φ, of the material. The dimensionless value φ is
the ratio of the volume of the void space within a material to the total volume. The
value of φ thus ranges from zero, for a solid material, to unity, for a fluid with no
solid phase.

For more complicated problems, the effective porosity ε is not equal to φ, but can
sometimes be obtained through geometric analyses if the structure of the solid phase
is simple enough. However, no such approaches are known for the tortuosity and
constrictivity. Indeed, another empirical approach presented in Coutelieris and Del-
gado [32] dispenses with these latter variables, and instead simply uses an empirical
exponential value, m, on the effective porosity, as shown in Equation 1.20.

Deff = Dfluidε
m (1.20)

For these reasons, the methods employed herein do not attempt to predict Deff

through the porosity, tortuosity, and constrictivity. Instead, a multi-scale approach
is used as described in Chapter 2. Nonetheless, Equation 1.19 can be used to validate
the multi-scale approach in sufficiently simple materials.

Anisotropic conditions can arise in porous media simply through anisotropic ge-
ometry of the solid phase. For example, a porous medium consisting of horizontal
layers of different materials can be expected to have different transport behavior in
horizontal directions than in the vertical direction. This is the case, for example,
in the seepage of groundwater through soils, which often possess a layered structure
because of natural deposition or artificial construction methods [55].

For situations where the diffusion is not isotropic, the diffusion coefficient matrix is
generally symmetric [15]. However, as will be shown in Section 2.5, inhomogeneities
at larger scales can yield asymmetry of the effective diffusion coefficient at those
scales.

The diffusion coefficient matrix is not positive-definite, but is instead positive-
semidefinite. A positive-definite matrix Mij is one that where the product Mijxixj is
greater than zero for any nonzero vector xi [24]. For a positive-semidefinite matrix,
this product may be equal to zero for some nonzero vectors xi, but is greater than
zero for all others. That the diffusion coefficient must be positive-semidefinite is
most easily seen by first considering the isotropic case, where the flux vector and the
concentration gradient must be antiparallel. Consider the dot product of the flux
and the concentration gradient, ji∂ic. For the vectors to be antiparallel, this dot
product must be negative. The dot product could also be zero, for the case of zero
flux caused by an impermeable medium. For anisotropic conditions, the vectors are
no longer necessarily antiparallel, but the dot product must still be zero or negative.
From this requirement, the steps to demonstrate that the diffusion coefficient matrix
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is positive-semidefinite are shown in Equation 1.21.

Dot product described above: ji∂ic ≤ 0
Substitute Fick’s First Law (Equation 1.4) for flux: (−Dij∂jc)∂ic ≤ 0
Multiply by -1: (Dij∂jc)∂ic ≥ 0
Define vector xi = ∂ic: Dijxixj ≥ 0
Dij is positive-semidefinite by the definition above: Mijxixj ≥ 0
QED

(1.21)

A matrix which is symmetric and positive-semidefinite can be diagonalized . That
is, there exists a rotation of the coordinate system under which the diffusion coefficient
matrix consists of Nd scalar values on the diagonal of the matrix, with all off-diagonal
terms being zero. This coordinate system, and the associated diagonal values of the
matrix, can be found by obtaining the eigenvalues and eigenvectors of the matrix in
another coordinate system. The eigenvalues are the principal diffusion coefficients,
and the eigenvectors are the axes along which these coefficients apply. For a matrix
which is positive-definite, the eigenvalues are all positive numbers. The diffusion
coefficient matrix is positive-semidefinite, meaning that zero is a possible eigenvalue.
This would be the case for a medium which has at least one direction in which it is
impermeable.

Under particular conditions of anisotropy known as orthotropic conditions, the
principal axes of the diffusion coefficient are aligned with the coordinate axes, and
so the matrix is diagonal. In such a scenario, the isotropic D in Equations 1.17 and
1.18 would be replaced with the diagonal component Dχχ. Equation 1.16 would not
be valid in such a scenario.

1.8 Other Diffusion Models

The diffusion equations used in this work are only a subset of mass transport models
used in a wide variety of applications. This section briefly describes a small selec-
tion of the situations in which models other than those described herein might be
appropriate.

One common multiphysics generalization of Fickian diffusion includes convection-
diffusion systems. Examples of such systems include some chemical separation pro-
cesses and dispersal of atmospheric pollutants [57, 63]. In convection-diffusion sys-
tems, a substance diffuses through a medium which is itself also in motion, with
velocity field vi. In more complicated models, this velocity field may be coupled with
fluid dynamics models such as the Navier-Stokes equations. With a nonzero velocity
field, the total flux includes not only the diffusive flux as from Fick’s first law, but
also the advective flux [57]:

ji = ji,diffusive + ji,advective (1.22)

ji,diffusive = −Dij∂jc (1.23)
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ji,advective = vic (1.24)
In this work, the velocity field vi = 0, and so only the diffusive flux is nonzero.

Furthermore, the diffusion equations of Sections 1.5 and 1.6 generally refer to the
diffusion of a chemical species through a solvent also consisting of a single chemical
species. This condition can be described as binary diffusion, as only two chemi-
cal components are considered. Binary diffusion can also describe situations where
two substances mix in concentrations allowing mutual solvation. These models can
also be applied to multiple diffusing species withing a single solvent, provided their
concentrations are sufficiently low that Brownian interactions between the diffusing
species are unlikely. This is the case, for example, in Chapter 3. However, for other
situations, multi-component mass transport models may be more appropriate. One
such model includes the Maxwell-Stefan equations, presented in Equation 1.25 [15,
125].

∂ic̃S =

Nspecies∑
R=1

c̃SjRi − c̃RjSi
c†DSR

(1.25)

where

S,R = indices over chemical species
cS = concentration of species S

r
#

L(Nd)

z

c† =
∑Nspecies

S=1 cS = total molar density
r

#

L(Nd)

z

c̃S = cS
c†

= unitless molar fraction of species S J1K

DSR = Maxwell-Stefan diffusion coefficient for species S and R
r

L2

T

z

For ideal gases, the Maxwell-Stefan diffusion coefficients, DSR, are the same as
the binary Fickian diffusion coefficients. For non-ideal mixtures, this is no longer the
case, as the coefficients themselves vary with concentration [15, 125].

The Maxwell-Stefan equations have been used to study systems related to those
considered in Chapter 4 [54], but are not used herein.

Anomalous diffusion is another topic that requires models other than the Fick-
ian diffusion equations in Sections 1.5 and 1.6. As noted in Section 1.7, the Fickian
diffusion coefficient is related to the derivative with respect to time of the MSD of
a diffusing particle. This presumes that the derivative is constant, that is, that the
MSD grows linearly with time. In anomalous diffusion, however, the MSD grows in a
nonlinear manner with respect to time, so the Fickian diffusion coefficient cannot be
defined. Specifically, diffusive regimes are classified by the exponent µ in Equation
1.26 as shown in Table 1.3, taken from Balescu [9]. Applications of anomalous diffu-
sion include plasma and fusion physics [9], the motion of a single molecule through
a solid, polymer dynamics, and particles suspended in fluids subject to irregular flow
[99].

〈riri〉 ∝ tµ (1.26)
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Table 1.3: Anomalous diffusion regimes.

µ Regime
0 < µ < 1 Subdiffusive
µ = 1 (Normal) Diffusive
µ > 1 Superdiffusive

Another application of diffusion requiring different mathematical models than
those considered here is found in the design of pharmaceutical agents. There, a wide
variety of different mathematical models have been employed to describe the process
of drug release, which refers to the delivery of a therapeutic agent to its intended
location. In particular, controlled release systems are designed to maintain the con-
centration of the therapeutic agent at a desired level for a period of time. The mathe-
matical models used to design such systems must account for simultaneous processes
such as swelling and dissolution of solid delivery forms, and the subsequent diffusion
of the therapeutic agent. Anomalous diffusion is considered in some mathematical
models used in the design of these systems [21].

Copyright © Thomas G. Pace 2021
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Chapter 2 Principal Methods

2.1 Overview

This chapter introduces the methods used to explore the mathematical models de-
scribed in Chapter 1.

The techniques applicable to analyses at the atomistic and molecular scales are
briefly described in Sections 2.2 and 2.3.

The diffusion equations described in Sections 1.5 and 1.6 take the form of Partial
Differential Equations (PDEs). Unfortunately, analytical solutions to these equations
are not available for anything but the simplest geometries. Typically, only approx-
imate solutions are available. In particular, these approximate solutions often take
the form of computer-generated numerical data, leading to the terms numerical mod-
els and numerical methods . Section 2.4 briefly reviews the Finite Element Method
(FEM), which is the principal numerical method used in this work to generate ap-
proximate solutions to the PDEs described in Chapter 1.

Despite the power of the FEM, models must still be limited to fit into the memory
and time constraints of available computing resources. This becomes challenging for
problems spanning multiple scales of length and/or time. Multi-scaling techniques, as
described in Section 1.2, allow such problems to be solved efficiently using reasonable
amounts of computing resources. Details on homogenization, the primary multi-
scale method used in this work, is provided in Sections 2.5 and 2.6, for periodic and
stochastic systems, respectively.

2.2 Electronic Structure Calculations

As noted in Chapter 1, the mathematical model of quantum mechanics has been
well-established as an accurate description of the behavior of atoms, and the relevant
empirical properties are well-established. Atoms consist of electrons and nuclei, and
the masses and charges of these particles, and the strength parameters of the elec-
tromagnetic interactions, have all been measured to high precision. The quantum-
mechanical description of the motions of the nuclei and electrons is given by the
time-dependent Schrödinger Equation, shown here in Equation 2.1 [114, 119].

i~∂t|Ψ〉 = H|Ψ〉 (2.1)

where

i2 = −1
~ = h

2π
JETK

h = Planck’s Constant JETK
H = Hamiltonian operator JEK
|Ψ〉 = Quantum state of the electrons and nuclei

r
L−

Nd
2

z
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The pure states, |Ψn〉 associated with H are the eigenfunctions of H from the
eigenvalue equation, which is the time-independent Schrödinger Equation shown here
in Equation 2.2.

H|Ψn〉 = En|Ψn〉 (2.2)

For a system consisting of electrons and nuclei, the Hamiltonian operator includes,
in principle, the kinetic energy of each electron and each nucleus, and the potential
energy from the electromagnetic interaction of each particle with each of the others,
and with any externally applied electromagnetic potential. Thus, the Hamiltonian
depends on the position, momentum, and spin of each particle. However, the masses
of the nuclei are orders of magnitude larger than the masses of the electrons, so for
typical distributions of kinetic energy, the nuclei move much more slowly; there is a
natural separation in the time-scales of the nuclear and electronic motions. The sep-
aration of the Hamiltonian into nuclear and electronic motions, treating the electrons
as moving around fixed nuclei, is known as the Born-Oppenheimer approximation [20,
88, 124]. The search for the ground state of the electrons, assuming nuclei at fixed
positions, is known as the electronic structure problem. The accuracy of the Born-
Oppenheimer approximation has been questioned, and attempts have been made to
bypass the approximation, or correct for it in other ways [40, 91, 126]. Nonethe-
less, the electronic structure problem cannot be described without at least making
reference to this approximation.

The electronic structure problem can be solved for isolated atoms, ions, or molecules,
and in crystals consisting of atoms, ions, or molecules. Methods for solving the elec-
tronic structure problem are often called methods of quantum chemistry .

An oft-cited target for the level of accuracy in electronic structure calculations
is such that the calculations should predict energy differences that are within the
bounds of uncertainty for corresponding experimental measurements. This is often
taken to be an accuracy of 1 kcal per mole for predicted energies [10, 102], which
corresponds to approximately 0.04 electron-volts per particle, or, in atomic units,
approximately 1.6× 10−3 Hartrees. In practice, such a level of accuracy is not always
easily achieved.

Indeed, certain types of electronic structure calculations, and related problems,
have been shown to be NP-Complete [130, 131].

The difficulty of the electronic structure problem can be explained in terms of
optimization problems. The electronic ground state is the wave function, Ψ that
gives the minimum value for the energy (obtained by application of the Hamiltonian
operator, H). The wave function is itself a function of all electron positions and
spins. Thus, for a system with Nelec electrons, the wave function is a function of
3Nelec coordinates (for three-dimensional problems), andNelec spins. As the number of
electrons grows rapidly with the number of atoms, the optimization problem therefore
takes place within a highly multi-dimensional space.

In addition to the difficulty of the optimization problem, the electromagnetic
interaction between electrons also complicates the problem. In principle, even the
electrostatic potential at the location of any electron depends on the positions of
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all of the other Nelec − 1 electrons. Thus, the calculations required for electrostatic
interactions are of order N2

elec. Such calculations quickly become intractable, and so
approximations are often required to reduce the computational burden.

Another source of difficulty in the electronic structure problem is the requirement
that Ψ be anti-symmetric under the exchange of any two electrons. That is, such
an exchange results in a new Ψ that differs from the prior one only with regard to a
change of overall sign. This requirement is important, as without it the ground state
obtained would be the ground state corresponding to bosons rather than fermions
[45]. Various methods of dealing with this requirement are discussed below, but they
do result in additional computational difficulty.

A wide variety of methods for finding the ground-state electronic wave function,
Ψ, have been developed. These methods attempt to render the optimization problem
tractable, and deal with exchange requirements, by making various approximations
or assumptions. The methods briefly described herein are the Hartree-Fock (HF) and
Post-HF methods, Density Functional Theory (DFT), and Quantum Monte Carlo
(QMC) methods. Within these methods, different approaches for evaluating electro-
static interactions are also possible.

In the HF method, the ground state is approximated by a Slater determinant
of single-particle wave functions [20, 88]. The set of single-particle functions from
which the determinant is constructed is called the basis set of functions. A variety of
different basis sets have been developed. The nature of the determinant ensures that
the overall wave function is antisymmetric under the exchange of any two electrons.
HF is a variational procedure: the Slater determinant of the selected basis set is the
variational form. The HF procedure obtains the Slater determinant that minimizes
the ground state energy. The energy thus obtained is an upper bound for the ground
state energy. The variational form which produces the lowest upper bound produces
the most accurate estimate of the ground state energy. In general, the approximation
can be improved by using larger basis sets.

While the HF method ensures that the wave function will be antisymmetric under
exchange of particles, the use of only linear combinations single-particle wave func-
tions prevents correlation between different electrons. Indeed, the correlation energy
is defined as the difference between the exact energy and the HF energy in the limit
of a very large basis set [88, 124]. Various methods have been derived to resolve
this issue, by approximating the correlation energy. As these methods begin from
the HF approximation, they are broadly termed Post-HF methods. However, these
methods can differ from HF in significant ways other than just the quantitative re-
sults they produce. Some of these approaches, such as Configuration Interaction and
Coupled Cluster, use not just a single Slater determinant as the approximation to
the ground state, but rather a sum of such determinants. Other approaches, such as
Møller-Plesset Perturbation Theory, treat the difference between the operator which
is exactly solved by HF and the actual Hamiltonian as a perturbation. Hybrids of
these approaches also exist, leading to a wide variety of Post-HF methods, explained
in further detail in references such as Cramer [33] and Szabo and Ostlund [124].

DFT grew out of efforts to develop quantum mechanics in terms of the number
density of the electrons rather than a many-body wave function. Hohenberg and
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Kohn [58] demonstrated that the ground state energy of an electron gas is a unique
functional of the number density function. (The demonstration would seem to work
only for scalar potentials.) The electron density that minimizes the energy is the
density of true ground state. Kohn and Sham [76] developed a procedure for using
this functional to approximate the ground state. The dependence on the density
functional providing the energy is the source of the name for this method.

In the Kohn-Sham approach, the electron density is found as the sum of single
particle densities. This converts the many-body quantum mechanics problem to a set
of single particle equations, and a self-consistency requirement. This approximation
is easily extended to include spin polarization. In solids, Bloch’s theorem can be
applied, meaning that the electron density has the same periodicity as the lattice,
and so the Kohn-Sham Hamiltonian will as well. This property can be exploited for
DFT in a way that it cannot be in HF [121].

A practical form of the exact energy functional has never been found; DFT calcu-
lations make use of approximate energy functionals instead [100, 113]. Nonetheless,
DFT has been developed into a highly accurate and efficient means of solving the
electronic structure problem for a wide variety of cases [33]. One notable reason for
this efficiency is that while the many-body wave function is in principle a function
of NelecNd spatial coordinates, the electron number density is only a function of Nd

spatial coordinates. This is a tremendous dimensional simplification.
QMC is a developing approach to the electronic structure problem. This method

is thoroughly reviewed in Foulkes et al. [46]. As the name suggests, the method uses
random sampling to evaluate integrals. Because of the central limit theorem, the
accuracy of such an approximation improves as sampling points are added, without
regard to the number of dimensions over which the integral is taken. In highly multi-
dimensional spaces such as many-body wavefunctions, this is a significant advantage
over integration methods based on quadrature, where the number of sampling points
grows rapidly as the spacing diminishes in all the dimensions. The main obstacle
to QMC methods, though, is the anti-symmetry requirement for fermions. Without
imposing this requirement, the method would tend toward the boson ground state
rather than the fermion ground state [45]. This gives rise to the sign problem, which
is usually resolved by assuming a nodal hypersurface for the wave function. The
method is variational with regard to this assumed surface [25]. However, the nodal
hypersurface can be highly complex [27, 77], which poses difficulties for the QMC
approach.

2.3 Molecular Simulations

At the scale of length and time above the electronic structure problem, individual
atoms or ions become the smallest unit of consideration. The electronic structure
creates forces acting on these atoms or ions, and other forces are generated by long-
range electrostatic interactions, and collisions between molecules. These forces, of
course, vary with the positions of the atoms and ions, resulting in a dynamic system
where forces, velocities, and positions all vary over time in highly complex ways.
Two important simulation methodologies for this scale are MD and molecular Monte
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Carlo (MC). In both of these approaches, individual atoms or ions (or particles) are
subjected to classical forces, including forces arising from the underlying electronic
structure.

In MD, the equations of motion for the particles in the system are integrated over
time, using discrete steps of time and various numerical integration techniques. The
resulting record of particle positions and velocities over time is known as the trajectory
of the system. In contrast, MC does not involve the integration of equations of motion
over time. Instead, this approach evaluates integrals over the system phase space (or
subspaces thereof) using an approach based on the Metropolis algorithm [33, 89].
Where applicable, this approach can be highly efficient, as it systematically probes
the regions of phase space that contribute most to the resulting integral [47].

The forces due to electronic structure in MD and MC simulations are often rep-
resented by force fields . These are equations representing the force (or potential
energy) experienced by one particle based on its position relative to one or more
other particles. These forces are not exclusively associated with the covalent bonds
present within a given molecule, but can include other short-range inter-molecular
interactions as well. Long-range interactions are not usually included in the force
field. Forces can be defined in terms of bond distance, bond angles, bond torsion,
and combinations thereof. The effect of van der Waals interactions (also known as
London forces, or dispersion forces) can also be included in these equations [33]. The
equation forms and parameters for these forces are tabulated and published, and are
often incorporated into MD software packages. One of the key ideas to this approach
is transferability: the force parameters that apply to a bond in one molecule apply also
to the same bond in different molecules [33]. In practice, a variety of different force
fields have been derived for various types of molecules or crystals; a truly universal
force field has not been found. Furthermore, this approach generally requires that the
electronic structure remain constant throughout the simulation, or that anticipated
changes in the electronic structure are included in the force field in advance. This
poses difficulties when attempting to simulate systems involving chemical reactions.

While the force field in a molecular simulation includes the effects of the electronic
structure on short-range interactions, long-range interactions between the atoms or
ions, such as electrostatic force, must be evaluated separately. This portion of the
simulation can be very computationally demanding. Naively, the calculation of the
electrostatic force on a single ion in a molecular simulation would require comput-
ing the pairwise interaction with every other ion. Computing the electrostatic forces
for all ions in this way would require the evaluation of a number of pairwise inter-
actions growing as the square of the number of ions. Clearly, for simulations with
large numbers of ions, a more computationally efficient approach, with better scaling
behavior, must be used. One of the simplest such approaches is to simply truncate
the evaluation of the pairwise interactions at a selected cutoff distance. The electro-
static forces from distances beyond this cutoff distance are thereby approximated as
zero, which can lead to serious errors in some cases. More sophisticated approaches
are available such as Ewald summation, fast multipole methods, and particle-mesh
methods including Particle Mesh Ewald (PME) [47].

Many chemical systems, especially in biochemistry applications, are aqueous sys-
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tems. Simulations of such systems will therefore include large numbers of water
molecules. For this reason, the accuracy and efficiency of water molecules in the sim-
ulation is of particular importance. A variety of published water models are available
to address these concerns. Many non-aqueous systems will include a solvent other
than water, where attention to the model of this solvent will be of similar importance.

Because any system of interest will likely include large numbers of atoms, measur-
ing the statistical properties of the system becomes important. That is, the results
of MD and MC simulations are often expressed in terms of system averages (often
representing ensemble averages), and fluctuations around those averages. The pre-
processing and post-processing of MD and MC results therefore often involve con-
siderations from statistical mechanics. In MD, ergodicity is often assumed; ensemble
averages are approximated by taking averages over the system trajectory.

In particular, simulations are often desired under conditions of statistical ensem-
bles defined by Number, Volume, and Temperature (NVT) or Number, Pressure, and
Temperature (NPT), rather than strictly Number, Volume, and Energy (NVE). This
means that computational thermostats and barostats must be employed, to allow sta-
tistically appropriate variations in the total energy or total volume of the simulation.

2.4 The Finite Element Method

The Finite Element Method is a means of approximating the unknown solution to a
PDEs with a finite set of unknown variables. This type of procedure is commonly
known as discretization, as the problem is converted from a search for a function
to a search for discrete values. Other discretization methods, such as the Finite
Difference Method [28], are also often employed for these types of problems. Indeed,
the Finite Difference Method is often used for the discretization of time in time-
dependent problems.

The Finite Element Method has attained widespread use as a numerical modeling
tool, with a wide variety of commercial and public software packages providing im-
plementations. Introductory texts include Hughes [60] and Reddy [107]. A complete
survey of the method could fill multiple volumes, as the literature describing its de-
tails and variations is vast. However, some key points about the method are needed
for an understanding of how it is applied to the PDEs of Chapter 1.

Many FEM software packages are capable of solving only the PDEs defined within
their code. Such programs cannot solve user-defined PDEs. In contrast, the FEM
software package used in this work has no pre-defined equations for solution, but
instead allows users to enter equations in a symbolic format. The required form of
the equation is not the differential form of the equations presented in Chapter 1.
Instead, the required form is an integral form often called the weak or variational
form. Consequently, the PDEs of Chapter 1 must be converted to this form.

For a given PDE, the FEM approximates the solution in the form

ũ(xi) =

Ndof∑
M=1

cMφM(xi) (2.3)
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where

i = index over the spatial dimensions
xi = spatial coordinate vector

φM(xi) = known interpolation functions
M = index over the interpolation functions

Ndof = number of interpolation functions used
cM = unknown coefficients

Because the interpolating functions φM(xi) are known in advance, this approxima-
tion converts the problem of finding an unknown function into the problem of finding
unknown constants. Solving for Ndof unknowns requires a system of Ndof algebraic
equations, and so the unknown constants are the degrees of freedom in this algebraic
system.

There are various methods for deriving the system of algebraic equations for the
FEM. One such approach is the Galerkin Method of Weighted Residuals, which em-
ploys the calculus of variations. The following discussion illustrates this method for
a linear PDE.

Consider an arbitrary linear differential operator A and known function f in the
PDE

Au(xi) = f (2.4)

which can also be written as Au(xi) − f = 0. This latter form is multiplied by an
arbitrary test function, v(xi), and integrated over the problem domain (Ω), to obtain∫

Ω

dΩ [Au(xi)− f ] v(xi) = 0 (2.5)

By the fundamental lemma of variational calculus, this integral equation can only
be true if the term in square brackets is zero everywhere within the problem do-
main. This allows the PDE to be recovered directly from the integral form. Thus,
the integral form of the equation is effectively equivalent to the PDE form. Often,
additional algebraic manipulations of the integral are also possible. Integration by
parts is frequently performed to reduce the order of the differential operator applied
to u(xi), at the cost of applying a differential operation to v(xi) as well. The inte-
gral equation then requires a lower order of derivatives than the PDE, reducing the
continuity requirements on the unknown function. For this reason, the integral form
may be called the weak form: the continuity requirements have been weakened.

Substitution of the FEM approximation of the solution, ũ(xi) (Equation 2.3), into
the PDE will result in a residual error defined as

R(xi) = Aũ(xi)− f (2.6)

The weak form in Equation 2.5 can then be written as∫
Ω

dΩR(xi)v(xi) = 0 (2.7)
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TheNdof equations needed to solve for theNdof unknowns are provided by selecting
Ndof specific test functions, vL(xi). The Ndof equations thus obtained are of the form:

Ndof∑
M=1

cM

∫
Ω

dΩ (AφM(xi)) vL(xi) =

∫
Ω

dΩ fvL(xi) (2.8)

Defining the matrix element ALM as

ALM =

∫
Ω

dΩ (AφM(xi)) vL(xi) (2.9)

and the vector element bL as

bL =

∫
Ω

dΩ fvL(xi) (2.10)

the system of algebraic equations becomes

ALMcM = bL (2.11)

with implied summation over repeated indices, even though the indices are for the
algebraic degrees of freedom rather than spatial dimensions.

A similar procedure can be applied to nonlinear PDEs, but the resulting system
of algebraic equations will be nonlinear as well.

Finally, note that a given differential equation has a family of solutions. Choosing
a unique solution from this set requires the application of appropriate conditions on
the boundary of the problem domain. There are two forms of these boundary con-
ditions that are most commonly encountered. Dirichlet boundary conditions require
the unknown function to take on a specified value over some portion of the domain
boundary. In contrast, Neumann boundary conditions require the gradient of the
unknown function to take on a vector value that is perpendicular to the domain
boundary, and is also of specified magnitude. Other types of boundary conditions do
exist, and in fact are used within this work. Regardless of the classification, bound-
ary conditions must be expressed mathematically before they can be applied to the
problem.

There are two different ways in which boundary conditions are specified within
the FEM. Natural boundary conditions are those which must be included within the
weak form, while essential boundary conditions are those which must be explicitly
imposed on the approximate solution, ũ(xi) [107, 60]. In many cases examined herein,
Dirichlet boundary conditions will be essential boundary conditions, and Neumann
boundary conditions will be natural boundary conditions. However, situations where
this association is reversed can also be derived.

Weak forms for the PDEs of Chapter 1 are presented in Appendix D, Section D.2.

2.5 Periodic Homogenization

Homogenization is a multi-scaling (or coarse-graining) technique based on asymptotic
expansion. This form of expansion is similar to perturbation theory, as applied in
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quantum mechanics, for example. Homogenization consists of a formal procedure
described in Auriault et al. [7], Bensoussan et al. [12], and Zhikov et al. [134], which
can be applied to any PDE defined on regular lattice of unit cells. The procedure
transforms the PDE into a corrector problem which is solved on the unit cell, or
Representative Elementary Volume (REV). Solution of the corrector problem, with
periodic boundary conditions, yields the corrector function, χj. An integral of the
corrector function over the REV yields the effective value of the desired property at
the next larger scale of analysis. For sufficiently complex situations, the corrector
problem may require FEM analysis.

One key aspect of the homogenization procedure is that it requires adequate sep-
aration of the length scales. This requirement is quantified by defining characteristic
length scales `c and Lc for the smaller and larger scales of the analysis, respectively.
The separation of scales is expressed as their ratio ε ≡ `c

Lc
. For well-separated scales,

ε � 1. That is, the characteristic length for the larger scale should be much larger
than the characteristic length appropriate for the REV.

The corrector problem for a particular PDE can be obtained from an asymptotic
analysis by expanding in powers of ε. This is accomplished by expressing the spatial
variable in the PDE as two separate variables, one corresponding to the larger scale
and the other corresponding to the smaller scale. For example, consider x as a coor-
dinate measured in units of meters, and y as a coordinate in the same direction but
measured in units of nanometers. These variables are related by the scale separation
parameter, ε, allowing the asymptotic expansion of the PDE to be performed. This
process is applied to Fickian diffusion in Appendix D, Section D.3, following the re-
sults in Bensoussan et al. [12]. The corrector problem and the integral over the REV
are repeated here as Equations 2.12 and 2.13, respectively.

∂i (Dik∂kχj) = ∂iDij (2.12)

Deff
ij =

1

|Ω|

∫
Ω

dΩ (Dij −Dik∂kχj) (2.13)

The boundary conditions for the corrector problem of Equation 2.12 are that χj
must be periodic, with period matching the unit cell [12]. These boundary conditions
only determine the corrector function up to an additive constant. Such constants
have no effect on the effective diffusion coefficient, as Equation 2.13 depends on the
derivatives of the corrector function rather than its actual values.

The weak form of the corrector problem in Equation 2.12 is developed in Appendix
D, Section D.4. This allows for calculation of the effective diffusion coefficient using
the FEM described in Section 2.4.

Simple example problems that can be solved analytically both with and without
the use of homogenization theory are demonstrated in Appendix D, Sections D.5 and
D.6.

A similar procedure for finding the effective diffusion coefficient in porous media,
with the local diffusion coefficient constant within the pores, was derived in Chapter
V of Cushman [36], without directly using homogenization theory. A rigorous spa-
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tial averaging approach was used instead, resulting in an auxiliary PDE that must be
solved for a vector-valued function, which is then used in an integral over the unit cell
to obtain the effective diffusion coefficient. The results for idealized two-dimensional
unit cell geometries were also compared to various experimental data and the re-
sults of alternative theories. The approach that is similar to homogenization theory
performed well in that comparison.

As noted in Section 1.7, the diffusion coefficient matrix is generally symmetric.
However, Equation 2.13 is not guaranteed to produce a symmetric result. This is
demonstrated in Appendix D, Section D.7. An asymmetric diffusion coefficient matrix
poses additional challenges for interpretation and application of results. In particular,
the matrix can no longer be diagonalized, meaning that a coordinate system aligning
with the principal axes does not exist. Further discussion of this issue and possible
resolutions can be found in Zijl [135]. However, because the homogenization procedure
is an approximate method, the asymmetry of the matrix may simply be neglected in
some cases.

The homogenization procedure described above is based on the assumption that
the medium is an infinite, periodic repetition of the REV. Media with random struc-
ture would therefore be excluded from this treatment. As pointed out in Auriault
et al. [7], sufficient separation of scales can sometimes allow random media to be
approximated as periodic media. In general, though, the presence of non-periodic
geometry, such as random defects in a regular structure, must be treated with a
different approach. Such an approach is introduced in Section 2.6.

2.6 Stochastic Homogenization

Very few materials actually consist of a single unit cell that repeats perfectly and in-
definitely without alteration. Instead, most materials contain defects, domain bound-
aries, and similar spatial variations. Such variations include point defects, where an
atom or small group of atoms is displaced, or replaced, within a unit cell. Other
types of variations, such as dislocations or grain boundaries, may be linear or two-
dimensional. Indeed, there are many ways in which a periodic structure can be al-
tered. Further examples and classifications of these variations can be found in sources
such as Callister and Rethwisch [26].

The periodic homogenization approach from Section 2.5 can be extended or modi-
fied to properly account for random variations within an otherwise periodic structure.
Such extensions are usually termed stochastic homogenization. This section briefly
introduces some stochastic homogenization approaches.

The most obvious approach is to expand the REV from a single unit cell to multiple
unit cells, with the random variations included. That is, the defects, boundaries, and
other variations should be present in the REV with the correct spatial distribution.
In such an approach, the REV must theoretically contain an infinite number of cells
[4, 3], in order to account for even the most rare of possible variations. In practice,
this approach involves creating a supercell containing many unit cells, but not an
infinite number. The random variations are included by random generation of the
supercell. To properly account for low-probability defects, either the supercell must
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be very large, or multiple realizations of the supercell are required, using a Monte-
Carlo approach. Computationally, there is a time-memory tradeoff between the size
of the supercell and the number of randomly generated supercells required: larger
supercells require fewer random trials, but also require more memory to complete a
single calculation.

Fortunately, a more computationally efficient approach is available in some cases.
When the structure to be analyzed is very nearly periodic, the deviations can be
considered as a perturbation of the structure. This is most clearly demonstrated for
the case of point defects. Consider a structure where there is some probability η for
any given unit cell to contain a point defect. Thus, on average, the fraction of the
unit cells containing a defect is η, and the fraction of cells that do not contain a
defect is 1 − η. The structure is nearly periodic when η is small. This lends itself
to an asymptotic expansion in η. The effective diffusion coefficient is expressed as
a polynomial in η, and usually truncated at first or second order. This is shown in
Equation 2.14.

Deff = D0 + ηD1 + η2D2 + · · · (2.14)

The calculation of the terms in Equation 2.14 is explained mathematically in
Anantharaman and Le Bris [4]. Briefly, a functional description is provided here.
The zeroth-order term in the expansion, D0, is the result from periodic homogeniza-
tion. That is, the corrector problem of Equation 2.12 is solved for a single unit cell
without the defect, and the integral of Equation 2.13 is then performed to obtain D0.
No supercell is needed for D0. The first-order term requires the solution for a single
supercell, with one of the unit cells containing the defect. The corrector problem is
solved, and the integral is performed, using the supercell as the REV, to obtain D1.
The second-order term involves solving the problem for a number of supercells, but
these supercells are constructed deterministically rather than stochastically. Specif-
ically, each supercell must contain exactly two defective unit cells, with one as the
unit cell at the center of the supercell. The second defect is located in a different
unit cell within each realization of the supercell, with one realization for each possible
location. Thus, the number of supercells grows with the supercell size. The corrector
problem is solved for each supercell, and the integral is calculated separately for each
supercell as well. The average of the results for the supercells is used as D2. Clearly,
extending this procedure to third-order would involve an even larger number of su-
percells, such that the computational efficiency of the Monte-Carlo approach might
become competitive again.

Note that in this asymptotic approach, the defect probability, η, enters into the
results only in Equation 2.14. Each supercell problem is completely deterministic.
Additionally, the asymptotic approach matches the exact result in the limit of large
supercell size.

An alternative approach to an asymptotic series for nearly periodic structures is
presented in Costaouec [30]. While this alternative asymptotic expansion may be
more effective in particular cases, in general the two approaches would be expected
to perform similarly.
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Surprisingly, there is a stochastic homogenization problem for which an analytical
solution is available, making it a useful case for validation of numerical approaches.
This case is known as the random checkerboard. The problem domain consists of a
square tiling of the plane, with each square assigned one of two isotropic diffusion
coefficients, with equal probability. In this case, the effective diffusion coefficient is
the geometric mean of the two diffusion coefficient values [3, 134].

Copyright © Thomas G. Pace 2021
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Chapter 3 Sequential Enzymes in a Nanoscale Domain

3.1 Background

Biochemical systems do not involve “materials” in a traditional sense, but are relevant
to the discussion of mass transport properties because of the key role that diffusion
processes play in the phenomenon of signal transduction. Living cells use a highly
complex network of biochemical signals to function and adapt to changes in their
environment. In a typical such process, a ligand molecule in the medium surrounding
the cell interacts with a receptor on the cellular membrane. This interaction results
in changes in the receptor structure that can be detected inside the cell by second
messenger molecules. These molecules disperse from the receptor through diffusion,
and may undergo, or influence, reactions inside the cell, potentially changing concen-
trations of other biochemicals, which also diffuse through the cytosol. The complete
system of all such reactions, from the membrane receptors to alterations in the cellu-
lar behavior, is known as a signal transduction pathway. Diffusion is the mechanism
by which these pathways transmit information from one spatial location to another.

The rate at which a biochemical signal can be transmitted through a system
depends on both the transport properties of the chemical species involved, and the
rates at which the necessary reactions take place. Signal transduction pathways can
therefore be modeled as reaction-diffusion systems. In such systems, the reaction rate
coefficients and effective diffusion coefficients are behavioral properties.

The reaction-diffusion processes taking place in signal transduction pathways take
place in the spaces within and between cells. The geometry of these regions, confined
by cellular membranes and also occupied by other proteins, enzymes, and organelles,
can affect the kinetics of the reaction-diffusion processes. In particular, the diffusion
portion of the process can sometimes be the rate-determining step.

This chapter develops a model for steps in a signal transduction process that
can be used to investigate the kinetics of diffusion-limited reactions. The model
is developed in a series of steps, starting with a relatively simple model and then
increasing in complexity. This model generally follows the work of Kekenes-Huskey
et al. [68], Setny et al. [118], Kekenes-Huskey et al. [70], Kekenes-Huskey et al. [69],
and Kekenes-Huskey et al. [71].

3.2 Geometry of a Nanoporous Membrane

A nanoporous membrane was selected as the basic geometry to be used for this
study. This geometry consists of a thin membrane separating two fluid reservoirs.
Each reservoir contains the solute of interest at a given concentration level, which is
assumed to be generally uniform at sufficient distance from the membrane. When
the solute concentration in one reservoir is higher than the other, a concentration
gradient is established across the membrane. Nano-scale pores through the membrane
allow transport of the solute from the higher-concentration reservoir to the lower-
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concentration reservoir. This geometry was selected because, while relatively simple,
it can be adapted to represent confined interstitial spaces present within biological or
biomimetic systems.

The nanoporous membrane geometry can be represented in either two dimen-
sions, as shown in Figure 3.1, or three dimensions, as shown in Figure 3.2. In two
dimensions, the pores are slit-like, and the porosity of the membrane is controlled
by the pore width and spacing between them. In three dimensions, the pore shape
can also be varied; cylindrical pores were selected here. The membrane porosity in
this situation is controlled not only by the pore radius, but also by the pattern in
which the pores are placed on the membrane surface. Here, the pores are located on
a body-centered rectangular lattice.

H tm H

S

d

ΓA ΓB

ΓP

Figure 3.1: Two-dimensional geometry for a nanopore. When repeated periodically,
the system becomes a stack of obstructive layers separated by slit-like pores.

The geometric variables and model boundary domains shown in Figure 3.1 are:

H = Distance between membrane surface and model boundary JLK
tm = Membrane thickness JLK
d = Pore thickness JLK

ΓA = Model boundary surface A
ΓB = Model boundary surface B
ΓP = Model boundary surface inside pore

The geometric variables shown in Figure 3.2 are:

H = Distance between membrane surface and model boundary JLK
tm = Membrane thickness JLK
R = Pore radius JLK
Sx = Unit cell size in x-direction JLK
Lx = Half of unit cell size, for symmetric models JLK
Sy = Unit cell size in y-direction JLK
Ly = Half of unit cell size, for symmetric models JLK
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Figure 3.2: Three-dimensional geometry for a cylindrical nanopore. The pores
through the obstructive material are arranged on a body-centered lattice.

The two-dimensional model is symmetric about the centerline of the pore. This
line of symmetry could be used to reduce the finite element mesh to half of the
unit cell, by applying a zero-flux boundary condition along the line of symmetry.
Similarly, the three-dimensional model has two planes of symmetry. These can be
used to reduce the finite element mesh to one quarter of the unit cell, by applying a
zero-flux boundary condition on both planes of symmetry. In Section 3.5, inclusions
that can break the symmetry are introduced, requiring the mesh to represent the
entire model.

Figure 3.3 shows a finite element mesh for three-dimensional nanopore geometry.
The mesh includes a portion the reservoirs, as the concentration will vary in the
reservoir space close to the membrane. The reservoir space provided is adequate
when additional reservoir space does not affect the concentration gradient within
the pore. Both planes of symmetry are used, so only one quarter of the unit cell is
included in the model.
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Figure 3.3: Three-dimensional finite element mesh for nanoscale pore between reser-
voirs. Upper image: full mesh, including reservoirs. Lower image: view showing
center of pore. Both planes of symmetry are used, so only one quarter of the unit
cell is included. For the pore geometry shown, φ = 0.5. In these views, the mesh
elements are transparent, and element edges are colored by region.

3.3 Fickian Diffusion in a Nanoscale Pore

The Fickian diffusion equation was solved for the nanoporous membrane model de-
scribed in Section 3.2 under boundary conditions that imposed a concentration gra-
dient across the membrane. A concentration of 5 particles/nm3 was applied to the
model boundary in one reservoir, and a concentration of 1 particle/nm3 was applied at
the opposite reservoir. These concentrations are higher than would be found for many
solutes of interest in biological systems, and are only used here as a demonstration
of the model. For comparison, 1 particle/nm3 is 1.661 mol/L.

The finite element model was constructed and solved in FEniCS using second-order
polynomial elements. An example concentration solution field is shown in Figure 3.4.

The simulation was repeated for a number of different membrane geometries.
Specifically, the simulations were run with membrane thickness values of 25 nm and
75 nm, with pore radius values ranging from 0.5 nm to 11.5 nm in steps of 0.5 nm.
The five unit cell geometries used are presented in Table 3.1. Two different sets of
concentration boundary conditions were also applied, with a concentration of either
5 particles/nm3 or 10 particles/nm3 for one reservoir, and 1 particle/nm3 at the other.
In total, 236 different variations of the model were simulated. Two example concen-
tration profiles are shown in Figure 3.5. Note that the solute concentration values
used in these simulations are much higher than would be typical for biochemical sys-
tems. These concentrations were selected for the simulation only for demonstration
purposes. In fact, because the Fickian diffusion equation is linear, the concentration
values could be reduced by a constant scale factor and remain a valid solution.

For sufficiently simple geometries, the effective diffusion coefficient can be obtained
from analysis of the concentration field obtained by solving the Fickian diffusion
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Figure 3.4: Concentration field from solution of steady-state Fickian diffusion, for
a simulation with φ = 0.5. The model uses both planes of symmetry, so only one
quarter of the pore and reservoirs are shown. The concentration boundary conditions
are 5 particles/nm3 at the end of the upper reservoir, and 1 particle/nm3 at the end
of the lower reservoir. The concentration gradient extends beyond the pores into
the reservoirs, illustrating the need for including the reservoirs in the finite element
model.

Table 3.1: Unit cell geometries for the parametric variations of the nanoporous
membrane.

Variation Lx Ly
1 12 nm 12 nm
2 24 nm 6 nm
3 36 nm 4 nm
4 5 nm 5 nm
5 10 nm 5 nm

problem. Details of this procedure are provided in Appendix D, Section D.8. This
procedure was applied to the nanoporous membrane system, to estimate the effective
diffusion coefficient of the membrane for each parametric variation of the model. The
results are plotted against the porosity of the membrane in Figure 3.6. The porosity
was taken as the ratio of the area of the circular pore to the area of the membrane
in a unit cell: φ = πR2

SxSy
.

The results of Figure 3.6 show that, for this simple model, the porosity is all that
is needed to predict the effective diffusion coefficient, as the dimensionless ratio of the
effective diffusion coefficient to the diffusion coefficient in bulk fluid is identical to the
dimensionless porosity. This result owes entirely to the simplicity of the geometry and
the diffusion process modeled in these simulations. In comparison to Equation 1.19,
the effective porosity in this case is identical to the real porosity of the membrane,
and the tortuosity and constrictivity are both equal to 1. This result demonstrates
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Figure 3.5: Concentration profiles along pore centerline. Solid lines show the concen-
tration as a function of z, and the dashed lines show the limits of the pore. Left panel:
low porosity (φ-value). Right panel: high porosity. In both cases, the concentration
boundary conditions are 5 particles/nm3 at z = 175 nm and 1 particle/nm3 at z = 0
nm.

that the model can reproduce the results that are predicted by an empirically-derived
relationship. The model is therefore suitable as a basis for incorporating additional
complexities, such as the electrostatic interactions incorporated in Section 3.4.
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Figure 3.6: Influence of porosity on the effective diffusion ratio.

3.4 Electro-diffusion in a Nanoscale Pore

In this section, electrostatic interactions are added to the diffusion model of Section
3.3. Specifically, the purpose is to employ the Smoluchowski diffusion equation pre-
sented in Section 1.6 to the nanoporous membrane described in Section 3.2, with
an electrostatic potential. To this end, the diffusing solute is assumed to carry an
electrostatic charge. The solvent itself maybe electrolytic and capable of screening
the charge of the diffusing species. Provided that the total concentration of the dif-
fusing species is sufficiently low, changes in its spatial distribution may be assumed
to have negligible effect on the electrostatic potential. This electrostatic potential is
governed by the Poisson equation, subject to the boundary conditions of the problem.
If a Boltzmann distribution of charge is assumed, the nonlinear Poisson-Boltzmann
equation can be used to obtain the electrostatic potential [64]. Expanding this non-
linear equation in terms of the potential, and keeping only the first-order term results
in the Linearized Poisson-Boltzmann (LPB) equation, shown here in Equation 3.1
[87].

∂i∂iΦ = κ2Φ (3.1)

κ is a constant that depends on the ionic strength in the solute. The LPB equation
can also be expressed in terms of the Debye length, λD, which is the inverse of κ.
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For situations where the concentration of the diffusing species can affect the
electrostatic potential, the fully coupled Poisson-Nernst-Planck system of equations
would need to be solved instead, as presented in Section 1.6. Here, applications will
be limited to cases where the LPB equation remains valid. Thus, Equation 3.1 is first
solved for the electrostatic potential under the imposed boundary conditions, followed
by solution of the Slotboom-transformed steady-state Smoluchowski equation shown
in Equation 3.2.

∂i
(
Dij∂jc

)
= 0 (3.2)

Figure 3.7 illustrates an example potential resulting from the solution of the LPB
equation for the nanoporous membrane model. In this simulation, a potential of
25 mV was applied to the cylindrical surface within the pore and the external mem-
brane surfaces as well. The figure clearly shows the electrostatic screening of the
potential.

Figure 3.8 shows an example concentration field resulting from the solution of
the Smoluchowski equation, under the same potential field illustrated in Figure 3.7.
In this case, the electrostatic interaction between the membrane and the diffusing
species is repulsive. The effect of this repulsion can be seen by comparing with the
concentration field of Figure 3.4. In fact, near the down-gradient end of the pore the
model contains a region where the concentration is even lower than the concentration
boundary condition for the lower reservoir.

Figure 3.7: Electric potential from the solution of the Linearized Poisson-Boltzmann
equation. The model uses both planes of symmetry, so only one quarter of the pore
and reservoirs are shown. The electric potential boundary conditions are 25 mV at
the membrane surfaces.

The solutions shown in Figures 3.7 and 3.8 are plotted in Figures 3.9 and 3.10
as functions of distance along the pore centerline and radial distance from the pore
center, respectively.

In Figure 3.9, the solution of c resembles the solution of c from Figure 3.5, as
expected given the mathematical similarity of their respective governing equations.
Also, because D is constant, D depends only on the potential. This inverse relation-
ship between D and the potential can be seen by comparing their plots in Figure
3.9. The plot of the electrostatic potential shows that, within the pore, the potential
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Figure 3.8: Concentration field from solution of the Smoluchowski Equation. The
model uses both planes of symmetry, so only one quarter of the pore and reservoirs
are shown. The electrostatic interaction between the diffusing species and the pore
is repulsive. The concentration at the down-gradient end of the pore is lower than in
the corresponding reservoir.

remains relatively constant at less than 8 mV at the pore center, in contrast to the
25 mV boundary condition at the pore surface. Finally, the plot of c illustrates the
effect of the electrostatic barrier on the concentration within the pore, and shows how
the concentration at the down-gradient end of the pore is lower than in the adjacent
reservoir.

In Figure 3.10, the solution functions were computed at varying radial distances,
for a plane midway between the reservoirs. These results were generally found to be
radially symmetric within the pore, such that there was little to no variation with
respect to the polar angle. The value of c is constant with respect to radial distance,
and D once again depends only on the potential. The variation of the concentration
with respect to radial distance is much less pronounced than with respect to distance
along the pore. The electrostatic potential is seen to decay exponentially, as would
be expected for the form of Equation 3.1. The potential decays from the imposed
boundary condition of 25 mV at the pore surface to the center-line value just under
8 mV that was also evident in Figure 3.9.

For each of the 236 different pore geometries described in Section 3.3, the LPB
and Smoluchowski simulations were completed for three different charges assigned to
the diffusing species. Specifically, one set of simulations used a charge resulting in
electrostatic attraction between the solute and the membrane (q = −1), one set of
simulations used a neutral solute (q = 0), and one set of simulations used a charge
resulting in electrostatic repulsion between the solute and the membrane (q = +1).
This resulted in a total of 708 simulations.

The center-line concentration profiles for 6 of the 708 simulations are shown in
Figure 3.11, illustrating the effect of porosity and solute charge on the spatial dis-
tribution of the solute under steady-state conditions. The effect of the electrostatic
interaction is seen most strongly in membranes with low porosity, as most of the pore
volume is close to the charged surface. In contrast, large values of porosity tend to
suppress the effect of the electrostatic interactions on the concentration profile. Note,
however, that the concentration gradients are still affected by the electrostatic inter-
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Figure 3.9: Solution variables for Smoluchowski diffusion, taken along the model
centerline.

action at large porosity values, which in turn will result in changes to the effective
diffusion coefficient. Furthermore, the profiles along the pore centerline show the con-
centration at the farthest point in the pore from the pore surface. The concentration
at radial locations closer to the pore surface would still be affected more strongly by
the electrostatic interactions.

The results of the 708 simulations are plotted as effective diffusion coefficient
(normalized to the bulk value) versus porosity in Figure 3.12. The q = 0 case is
identical to the results of Figure 3.6. The q = +1 case, where the electrostatic
interaction is repulsive, shows suppression of the effective diffusion coefficient. This
can be thought of as the consequence of a restriction of the accessible fraction of the
pore volume, as the solute is forced away from the pore surface. However, in contrast
to the results of Figure 3.11, the effect seems to be more pronounced at larger porosity
values than at smaller ones. In the q = −1 case, where the electrostatic interaction
is attractive, the diffusion appears to be accelerated relative to the neutral case.
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Figure 3.10: Solution variables along radial lines. The dashed line shows the radius
of the pore boundary, and the dot-dashed line shows the position of the pore center,
at zero radius. The solutions are radially symmetric about the pore center.
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Figure 3.11: Concentration profiles along pore centerline. Solid lines show the con-
centration as a function of z, and the dashed lines show the limits of the pore. In all
cases, the concentration boundary conditions are 5 particles/nm3 at z = 175 nm and
1 particle/nm3 at z = 0 nm. The electric potential is set to 25 mV at the membrane
and pore surfaces, and zero at the reservoir ends.
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Figure 3.12: Influence of electrostatic interaction on relationship between effective
diffusion ratio and porosity. Compared to the case of no electrostatic interaction (q =
0), repulsive interactions (q = +1) suppress diffusion, while attractive interactions
(q = −1) accelerate it.
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3.5 Diffusion-Limited Reaction Kinetics of a Single Enzyme

Consider an enzyme-catalyzed reaction, where enzyme E accelerates the conversion
of chemical species A into species B: A

E−→ B. If this reaction is sufficiently diffusion-
limited, then the time required for the reaction to take place at the enzyme may be
assumed to be negligible relative to the time required for the substrate A to reach the
enzyme. That is, any amount of A in contact with E may be assumed to be instantly
converted to B.

To add this kind of reaction into the model developed in Section 3.4, the enzyme
is represented as a spherical inclusion within the pore. The reaction is implemented
in the form of boundary conditions applied to this inclusion. A similar approach is
used in Song et al. [123]. First, a Dirichlet concentration boundary condition of zero
for species A is applied to the entire surface of the sphere. Additionally, the flux
of species A and B through the surface are required to be equal and opposite, such
that the total number of particles is conserved and only the type is altered, matching
the stoichiometric coefficients of the reaction. Combined, these conditions result in
the situation where the spherical inclusion consumes species A, and produces species
B at the same rate. Mathematical details for this reactive boundary condition are
presented in Appendix D, Section D.9.

The spherical inclusion representing the enzyme is not required to be centered on
the centerline of the pore. This potentially breaks one axis of symmetry in the model.
For maximum flexibility in the placement of the sphere within the pore, no planes
of symmetry were used in these simulations; the entire unit cell was included in the
finite element model.

The behavioral property of interest in this system is not the effective diffusion
coefficient, but rather the rate at which the reaction takes place. This is quantified
by the integrated flux for either species at the surface of the enzyme, JEA = −JEB,
where JEA is the rate at which species A is consumed, and −JEB is the rate at which
species B is produced. The sign convention is such that a positive flux indicates a flux
that is outward from the model, while a negative flux is inward to the model. This
is related to the sign convention for the boundary surface normal vectors in FEniCS,
which are positive in the outward direction.

An analytical solution to the Fickian diffusion problem is possible when the reac-
tive sphere is placed in bulk fluid rather than confined to a nanopore. The problem is
spherically symmetrical, and so it can readily be solved in spherical coordinates. The
steady-state Fickian diffusion equation for this situation is shown in Equation 3.3.
The solution cA(r) for species A in the domain outside the sphere, with constants K1

and K2 determined by the boundary conditions, is given by Equation 3.4.

d

dr

(
r2dcA
dr

)
= 0 (3.3)

cA(r) = K2 −
K1

r
(3.4)
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For a sphere of radius a, the boundary condition at the surface of the sphere is
that cA(r = a) = 0. The other boundary condition needed for a unique solution to the
problem is the concentration at a large distance from the sphere. This is simply that
the concentration must return to the value it has in the bulk fluid in the absence of
the sphere, cA,bulk. This boundary condition is thus that cA(r →∞)→ cA,bulk. Under
these boundary conditions, the constants of Equation 3.4 are given by Equation 3.5.
The integrated flux over the surface of the sphere for these conditions, JEA,bulk, is
given by Equation 3.6.

K1 = cA,bulka
K2 = cA,bulk

(3.5)

JEA,bulk = 4πDacA,bulk (3.6)

If a linear reaction rate law is assumed for this system, the reaction rate coefficient
kE, would be defined by Equation 3.7. Thus, the result for the integrated flux can
be used to obtain a reaction rate coefficient, for which the analytical result for bulk
conditions is provided in Equation 3.8.

JEA,bulk = kE,bulkcA,bulk (3.7)

kE,bulk = 4πDa (3.8)

For a reactive sphere inside the nanopore rather than bulk fluid, the reaction rate
should approach the bulk result as the pore radius grows larger. Accordingly, a set
of simulations with increasing pore radius was conducted to validate the model of
the nanopore including a reactive sphere. The boundary conditions for the reservoirs
were that both reservoirs were set to a concentration of cA,bulk. Thus, there was no
concentration gradient applied to the membrane. Two different boundary conditions
were applied to the pore surface. In the “reflecting” boundary condition, no flux of
species A is allowed through the pore surface; this is a Neumann bondary condition
of zero flux. In the “concentration” boundary condition, the concentration of species
A along the pore surface is held constant; this is a Dirichlet boundary condition
with a concentration of cA,bulk. The results of this set of simulations are plotted
and compared to the result for the bulk condition in Figure 3.13. The reaction
rate coefficient for the pore condition is normalized to the analytical result for the
bulk condition. As expected, the results for both boundary conditions approach the
analytically derived result for bulk conditions as the pore radius increases. The rate
coefficient for the concentration boundary condition is larger than the bulk condition
result, because it brings a source of substrate closer to the enzyme. In contrast, the
rate coefficient for the reflecting boundary condition is smaller than the bulk condition
result, as the amount of substrate accessible to the enzyme is reduced. In addition to
serving as a validation of the model, these results also illustrate that reaction kinetics
of diffusion-limited reactions can be significantly affected by the geometry of their
environment, and by the extent to which adjacent structures compete for substrate.
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Figure 3.13: Reaction rate coefficent within the nanopore. The rate coefficient is
normalized by the analytical result for the bulk condition. For both of the boundary
conditions used for the pore surface, the results approach the bulk condition at the
pore radius increases. The results show how the geometry of the surroundings can
influence the reaction kinetics of diffusion-limited enzyme-catalyzed reactions.

3.6 Diffusion-Limited Kinetics of Sequential Enzyme-Catalyzed Reac-
tions

Adenosine Triphosphate (ATP) is highly notable in its role as “the universal cur-
rency of free energy in biological systems” [13]. Living cells use the hydrolysis of
ATP into Adenosine Diphosphate (ADP) and Adenosine Monophosphate (AMP) to
drive chemical reactions that would otherwise be thermodynamically unfavorable.
However, these nucleotides are used in biological systems as extracellular signaling
molecules as well. This hypothesis faced great skepticism (and even derision) before fi-
nally gaining acceptance in the 1990s [23]. Signaling pathways using these nucleotides
are now known to be involved in a variety of settings including the central nervous
system, blood vessel linings, immune and inflamation responses, and many others [19,
23, 39].

In this section, two sequential reactions are considered, where the product of
the first reaction is the reactant in the second. These two reactions are catalyzed
by the CD39 and CD73 enzymes, respectively. CD39 (also known as NTPDase1)
hydrolyzes ATP and ADP into AMP, while CD73 (also known as ecto-5′-nucleotidase)
dephosphorylates AMP into adenosine [39, 78]. The CD39 and CD73 enzymes are

41



expressed by immune cells and the endothelial cells lining blood vessels, and their
reaction sequence plays in important role in modulating inflammation [5, 39].

To investigate this system, the reactive enzyme model described in Section 3.5
was combined with the electrostatic interaction model of Section 3.4, within the pore
geometry described in Section 3.2. Two sequential enzyme-catalyzed reactions were
included: ATP

CD39−→ AMP and AMP
CD73−→ Adenosine. Two spherical inclusions were

therefore present within the pore, as shown in Figure 3.14. In this case, the cylindrical
pore represented an extracellular junction where the enzymes were present. The
overall system size was selected to match extracellular junctions such as synapses,
which are often less than 1 µm3 in volume [17].

Figure 3.14: Cut through finite element mesh with reactive inclusions. Upper image:
entire model, including reservoirs. Lower image: view showing left inclusion.

Parametric variations of the model parameters were used to study the effects of
the junction radius, proximity of the two enzymes to each other and to the junction
surface, electrostatic interactions between the nucleotides and the enzymes and junc-
tion surface, and interactions between the junction surface and the nucleotides. The
results of the study are fully reported in Rahmaninejad et al. [104]. The main findings
are briefly summarized here. First, in the absence of electrostatic interactions, the
confined volume of the junction reduces the amount of substrate accessible to the
first enzyme compared to a reaction in bulk conditions. However, the intermediate
molecules are also confined, increasing the rate of the second reaction and thereby
improving the efficiency of the sequence. Finally, within the volume of the junction,
attractive electrostatic interactions between the junction surface and the substrate
can increase the local concentration of substrate, potentially compensating for the
lack of accessible volume.
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The space inside living cells is frequently crowded with macromolecules, which
can have significant impacts on the diffusion and interaction of biochemicals within
their environment [42, 71, 110]. Extracellular spaces such as the junction considered
here may be similarly crowded environments. An extension of this study is currently
in progress, to investigate the effects of such crowding on the CD39/CD73 system.
To this end, the finite element mesh is modified to include additional spherical in-
clusions representing the macromolecular crowders, as shown in Figure 3.15. The
number of crowders and their electrostatic potential will be varied, to determine the
consequences of such variations on the efficiency of the sequential reaction.

Figure 3.15: Cut through finite element mesh with non-diffusive inclusions. Upper
image: entire model, including reservoirs. Lower image: view showing crowders in
half of pore. Element surfaces are shown, with coloring by model region. Each
spherical inclusion is made of eight curved surfaces.

3.7 Discussion and Conclusion

This chapter has illustrated the construction of a multiphysics model by starting with
a simple model and adding additional complexity in stages, validating the additions
at each step. Ultimately, the model was applied to a biochemical system to inves-
tigate the kinetics of sequential enzyme-catalyzed diffusion-limited reactions. Other
applications of this model may be found in the future. Indeed, the model is a ba-
sis for the multi-scale multiphysics model described in Chapter 4. Another possible
avenue for further development of the model would be searching for approaches that
can relax the requirement of considering only diffusion-limited reactions. This would
allow the model to be used for systems where the reaction and diffusion time scales
are more nearly comparable. Such a change might require a time-dependent model
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rather than a steady-state model. Time-dependence would complicate the interpre-
tation of the simulation results, as the reaction kinetics parameters used in Sections
3.5 and 3.6 were defined in terms of steady-state variables. Incorporation of atomistic
information into the continuum approximation, using MD approaches similar to those
discussed in Chapter 4 might be beneficial as well.

Other work to be done in the future with this model, and similar models, concerns
finding the limitations of the continuum approximation. To illustrate this issue,
consider the relative sizes of the nanoscale pore, which was on the order of 10 nm
in radius, and a single ATP molecule, which is almost 2 nm in its largest dimension.
This means the size of the diffusing particle is a significant fraction of the size of the
junction itself. Only a small fraction of an ATP molecule can be present in any cubic
nanometer the junction volume. In such a case, the continuum approximation is not
justified on the basis of scale separation or the number of ATP molecules present
alone. Instead, the continuum model must be considered to represent an ensemble
average over a large number of similarly prepared systems. While the principle of
an ensemble average justifies the continuum simulations, there may be unexpected
implications to this interpretation that have not yet been recognized. There may be
benefits to formalizing this interpretation of the model.

Copyright © Thomas G. Pace 2021
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Chapter 4 Transport Properties of Zeolites and Other Porous Silicates

4.1 Background

Methane is the primary component of natural gas and a byproduct of many industrial
chemical processes, including anaerobic digestion and shale oil extraction. Methane
is also a greenhouse gas more potent than carbon dioxide. For both economic and
environmental reasons, there is much interest in using waste methane as an energy
source, rather than merely venting or burning it where it is produced. Because
of the difficulties in transporting methane gas, conversion of methane to a liquid
hydrocarbon is desirable. Such conversion can be achieved using common catalyst
materials, but high temperature and/or pressure is required, which in turn increases
the energy demand of the process. A more efficient approach is desired.

BEA MFI

CHA ANA

Figure 4.1: Renderings of four different zeolite frameworks. Oxygen atoms are red,
and Silicon atoms are brown. The view direction of each crystal structure is selected
to show the full size of the largest straight pores. The three-letter identifier is shown
for each framework. Framework structures were collected from iza-structure.org, and
rendered in PyMOL.

One candidate for a more efficient conversion process is an aqueous approach
using hydrogen peroxide as the oxidant. This approach is described, for example, in
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Hammond et al. [53]. The catalyst in this approach is a zeolite material.
Zeolites are aluminosilicate materials commonly used as a catalyst medium in the

chemical processing industry. Zeolite catalysts are common because they are inexpen-
sive, porous, and highly adsorbent. There are many different zeolite materials; over
240 different crystal frameworks are presently known, and each of these frameworks
can have varying ratios of aluminum, silicon, and other elements, so that many differ-
ent materials can be composed from a single framework. The crystal frameworks are
given three-letter identifiers. Some representative renderings to illustrate the variety
of frameworks are shown in Figure 4.1.

Rational design of an aqueous methane conversion process would require an un-
derstanding of the transport properties of the methane reactant through the aqueous
environment in the zeolite material. The ultimate objective of this chapter is to
develop a multi-scale multiphysics model that will allow the effective diffusion co-
efficient to be obtained from knowledge of the zeolite structure and other relevant
process variables.

4.2 Theoretical Model

The theoretical model presented herein uses periodic homogenization to obtain an
effective diffusion coefficient for the unit cell. While some homogenization calculations
are performed here for validation or comparison purposes without information from a
smaller scale, one key objective is to incorporate information from atom-scale analyses
into the homogenization approach. Toward this end, MD simulations are performed
to obtain local values of the diffusion coefficient and potential at many points within
the unit cell. Spatial variation in the local diffusion coefficient can be included in the
homogenized Fickian diffusion equation or homogenized Smoluchowski equation, but
the homogenized Smoluchowski equation is required for calculations that incorporate
a potential.

The potential that is relevant in the continuum-scale simulation is not solely
an electrostatic potential, as the methane molecule has no net electric charge and
negligible electric dipole moment [95]. Rather, the potential of interest is the net
result of all inter-molecular interactions between methane and the surrounding water
(or even the silicate surface if close enough). In MD simulations, such potentials are
often considered for the purpose of estimating energy barriers to chemical reactions
or other transitions. For this reason, the potential energy surface is often measured
along a given reaction coordinate, which is not necessarily an atomic coordinate or
even a geometric parameter. In some cases, reaction coordinates can have more than
one dimension. For the transport problem considered here, the spatial location of the
methane molecule is the reaction coordinate of interest. The free energy of the system
(the Helmholtz or Gibbs free energy, depending on the thermodynamic ensemble) as
a function of the reaction reaction coordinate is called the potential energy surface,
or the Potential of Mean Force (PMF) [67, 97]. In MD simulations, the short-range
inter-molecular interactions are approximated by the force field. This means that
changes in the force field can result in changes to the PMF.
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The local diffusion coefficient is obtained from MD simulations using an approach
described in Daldrop et al. [37], based on earlier work in Hummer [61] and Woolf and
Roux [133], This approach was also previously used by Setny et al. [118]. The theory
behind this approach is described briefly here.

First, consider Brownian motion in a harmonic potential. The Langevin equation
for this condition is shown in Equation 4.1. Furthermore, consider the limit of strong
friction, where the oscillation of the particle in the harmonic potential is overdamped.
In the field of stochastic differential equations, this is known as an Ornstein-Uhlenbeck
process.

M∂t∂txi = −ξ∂txi − ∂iU(xi) + Fi (4.1)

where

M = particle mass JMK
xi = time-dependent particle position vector JLK

M∂t∂txi → 0 in the limit of strong friction (overdamped oscillator)
ξ = coefficient of friction

q
M
T

y

Fi = force varying randomly in time JFK
U = harmonic restraining potential JEK

= 1
2
K (xi − ai)2

K = spring constant defining harmonic potential strength
q

F
L

y

ai = position vector for center of harmonic potential JLK
∂iU(xi) = K (xi − ai) JFK

Because of the harmonic potential, the MSD will not be proportional time as it is
in the unrestrained case (see Section 1.7). Instead, it can be shown that for Brownian
motion in a harmonic potential, the coordinate MSD and position ACF are as shown
in Equations 4.2 and 4.3, respectively. A more detailed explanation of the source of
these equations is provided in Appendix D, Section D.10.

〈q2〉 =
1

βK
(4.2)

〈q(0)q(t)〉 = 〈q2〉e− t
τ

τ = ξ
K

(4.3)

Integrating the coordinate ACF with respect to time provides an estimate of τ ,
which can be used to obtain the local diffusion coefficient, D, through the Einstein
relation (D = 1/βξ), as shown in Equation 4.4. Relationships like this between
a transport coefficient and the integral with respect to time of a time-correlation
function are known as Green-Kubo relations [47].

∫ ∞
0

dt 〈q(0)q(t)〉 = 〈q2〉
∫ ∞

0

dt e−
t
τ = 〈q2〉τ = 〈q2〉 ξ

K
=
〈q2〉
DβK

=
〈q2〉2

D
(4.4)
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This approach is used in the simulations of methane diffusing through water by
applying a harmonic restraining potential to the methane molecule. In this case, the
PMF acts as an additional potential not included in Equation 4.1. Assuming that
the gradient of the PMF is small in comparison to the value of K for the restraining
potential, the procedure should remain valid. Furthermore, large values of K will
confine the methane to a smaller region around the center of the harmonic potential,
allowing variations in D to be defined with greater spatial precision. However, large
values of K can also invalidate the assumption of overdamping. This can result
in oscillatory behavior in the position ACF, making integration more difficult [37].
Here, the value of K for the harmonic potential was selected to be small enough to
maintain overdamped behavior, while remaining larger than reasonable magnitudes
for the PMF gradient. In the calculations, the actual MSD value is used rather than
the theoretical value for a harmonic potential, because the actual potential is the
superposition of the harmonic biasing potential and the PMF.

This work differs from previous research in some key ways. Hansen et al. [54]
considered the alkylation of benzene within a zeolite catalyst. The reaction and dif-
fusion were considered in the gas phase. Consequently, the Maxwell-Stefan diffusion
equations were used rather than Fickian or Smoluchowski diffusion. Information from
MD and kinetic Monte Carlo simulations was used to provide inputs to the contin-
uum diffusion model. No PMF was considered. The continuum diffusion model was
evaluated analytically rather than numerically. One key focus of the study was to
predict reaction rates agreeing with experiment, which is not attempted herein.

Another similar analysis was conducted by Bui et al. [22], where a channel of
one nanometer in width was studied in various materials, including silica. The study
computed the diffusion coefficient within the channel using the MSD of unrestrained
methane. This results in a coefficient value that does not distinguish spatial vari-
ations within the channel. No multi-scaling method was applied to the result. In
addition to using a metadynamics approach to evaluate the free energy variations
within the channel, umbrella sampling was also applied. Finally, the silica structure
of the Bui et al. [22] study does not appear to include silanol terminations at the
surface. The silanol groups present on the silicate surfaces studied herein would be
expected to increase the affinity for water molecules, leading to different results for
the water density within the channel, and consequently affecting the PMF and diffu-
sion coefficients. Similar to the results presented below, the study found anisotropy
in the diffusion coefficient, with differing coefficients for directions perpendicular to
the silica face than parallel to it.

4.3 Silicate Channel System

In addition to the zeolite framework geometries, a simpler system geometry was
developed to investigate the proposed theoretical model. The simpler system consists
of a silicate solid with parallel nanoscale channels, as shown in Figure 4.2. The silicate
structures provided in Emami et al. [43, 44] were used to construct this geometry in
the MD simulations.
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Figure 4.2: Geometry of the silicate channel model. a) Sketch showing key dimensions
and coordinate axes. b) Rendering of the 1.2 nm channel along the X-axis in the
fully protonated condition. c) Oblique rendering of the 2.0 nm channel with 27%
de-protonation after solvation and equilibration. d) Same view as (c) without water
molecules. The methane molecule is visible in white, near mid-channel.

The surface of the silicate structures differs chemically from the bulk silicate struc-
ture by the presence of hydrogen atoms bonded to the surficial oxygen atoms. These
silanol terminations on the surface would be expected to more favorably attract po-
lar solvents such as water, causing spatial variations in the water density near the
silicate surface. These silanol groups can also be chemically modified, by replacing
them with a different functional group. De-protonation is studied herein by replacing
the hydrogen atoms with sodium ions, which are allowed to migrate away from the
silicate face, leaving a negatively charged oxygen atom behind. Three different levels
of de-protonation are provided in the structures from Emami et al. [43]: 0%, 27%,
and 50%. Simulations were conducted for each of these de-protonation levels. By
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influencing the water density near the channel surface, such chemical modifications
are expected to alter the transport properties within the channel.

4.4 Methods

Molecular dynamics simulations were conducted in gromacs. The OPLS-AA SPC
water model was used for the explicit solvent. The united atom approximation was
selected for the methane molecule, on the basis of the results presented in Bhatia and
Nicholson [14]. The non-bonded force field parameters for methane were taken from
Jorgensen et al. [66], which used the same functional form for the 12-6 Lennard-Jones
potential as gromacs, so that only unit conversions of the parameters were required.
While the combining rule noted in Jorgensen et al. [66] is the geometric average, the
arithmetic average is used herein. The force field parameters for silica were taken
from Emami et al. [43, 44], and converted to the units and functional form used in
gromacs. Specifically, the functional form of the 12-6 Lennard-Jones potential for
non-bonded interactions in Emami et al. [43] is given by Equation 4.5, while the
functional form used by gromacs is shown in Equation 4.6. In both equations, E
is the interaction energy, and r is the separation distance between the two atoms.
The two functional forms can be used to represent the same interaction potential by
computing the gromacs parameters from the parameters provided by Emami et al.
[43] using the relationships of Equation 4.7.

E = εamber

((σamber

r

)12

− 2
(σamber

r

)6
)

(4.5)

E = 4εgromacs

((σgromacs

r

)12

−
(σgromacs

r

)6
)

(4.6)

εgromacs = εamber

σgromacs = 2−1/6σamber
(4.7)

To confirm the proper conversion of the non-bonded force field parameters, the
same method was used to convert the parameters from an AMBER input file to
the corresponding gromacs input file parameters for an AMBER force field. This
comparison involves an additional step, because the AMBER force field parameters
specify the van der Waals radius of each atom, and the depth of the potential well,
rather than specifying σamber and εamber directly. The additional calculation is rela-
tively simple, because the functional form of Equation 4.5 used by AMBER has a well
depth that is equal to εamber, with the point of minimum potential energy located at
r = σamber. At this minimum, the separation distance r between two identical atoms
would be twice the van der Waals radius. Thus, σamber is simply twice the specified
van der Waals radius, and εamber is equal to the depth of the potential well. Using
this information, the gromacs parameters for the AMBER96 and AMBER99 force
fields were successfully reproduced.

Following solvation, energy minimization was performed for 50,000 steps, and
then velocities were randomly assigned according to a Maxwell distribution. The
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system was equilibrated in the NVT ensemble for 0.1 nanoseconds, using the Nosé-
Hoover thermostat. This was followed by 0.1 nanoseconds of equlibration in the
NPT ensemble, using the Berendsen barostat and modified Berendsen thermostat.
Production runs followed, using the NVT ensemble with the Nosé-Hoover thermostat.
The production runs had a duration of 2 nanoseconds, except where noted otherwise.
In all analysis steps, electrostatic interactions were evaluated using the PME method.
The dynamic runs used a time-step of 2 femtoseconds, with hydrogen bonds converted
to constraints maintained by the LINCS algorithm.

The harmonic restraining potential applied to the methane molecule used a K
of 300 kJ/(mol nm2), for each direction. To prevent global translations, rotations,
or deformations of the silicate bodies within the simulation unit cell, each atom
of the silicate material was placed in a harmonic restraining potential with K of
1000 kJ/(mol nm2), for each direction. This includes the hydrogen atoms on the
surficial silanol groups, which may potentially have affected the solvent-surface inter-
actions under study.

Simulations of the solvated silicate channel without methane were used to calculate
the spatial variation of water density within the channel. Water density was calculated
from the water molecule trajectories using the MDAnalysis package [49, 90] (which
uses NumPy [128]). The production runs for the water density calculations were 128
nanoseconds in duration.

Based on the water density results, portions of the channel were selected for
detailed measurement of the local diffusion coefficient and PMF for methane. An
x-plane was chosen, with dimensions in the z-direction fully extending across the
channel from one silicate face to the other. The selected area also extended 0.6
nanometers in the y-direction. A different region was selected for each channel ge-
ometry and de-protonation level. The regions were chosen so as to include areas of
both high and low water density at the channel boundaries.

PMF values were computed using the two-dimensional version of wham [52] (Ver-
sion 2.0.10.1), which implements the Weighted Histogram Analysis Method (WHAM)
[79, 80, 112]. The y and z coordinates of the molecule were used as the reaction co-
ordinates in this approach.

Local diffusion coefficients were calculated using the integral in Equation 4.4. Po-
sition ACFs were calculated by gromacs, which returns the ACF function normalized
by the MSD as illustrated in Equation 4.8.

normalized ACF(t) =
1

〈q2〉
〈q(0)q(t)〉 (4.8)

Observations of typical normalized ACF results showed that, in addition to the
exponential decay predicted by Equation 4.3, there was also an short-duration Gaus-
sian superimposed on the ACF for small values of time. Accordingly, the functional
form in Equation 4.9 was selected as being a generally representative form, with fit-
ting constants A, α, and σ. The analytical integral of this form is shown in Equation
4.10.

normalized ACFfit(t) = Ae−t/σ + (1− A)e−αt
2

(4.9)

51



τ =

∫ ∞
0

dt (normalized ACFfit(t)) = Aσ +
1− A

2

√
π

α
(4.10)

Following calculation of a normalized ACF from methane trajectory data, a python
script using the NumPy package [128] fit the analytical function of Equation 4.9 to the
normalized ACF data. The analytical integration of the normalized ACF was then
calculated from Equation 4.10. To confirm a successful fit, the integral of the normal-
ized ACF was also obtained numerically using the trapezoidal rule over the first 25
picoseconds. Cases where the numerical and analytical integrations differed by more
than 25% were discarded from the data set.

As noted in Section 4.9, the diffusion coefficients computed from the methane
ACFs were generally consistent for the x and y directions, but different in the z
direction. Ultimately, the effective diffusion coefficient for only the x and y directions
is desired, as the z direction would be impervious. Furthermore, the channel itself is
identical in the x and y directions, so the expected results for these two directions
would be identical. Accordingly, the homogenization process used an isotropic local
diffusion coefficient, which was computed as the arithmetic average of the x and y
results from the MD simulations.

As noted in Section 4.5, the local diffusion coefficient results from MD were nor-
malized to the bulk value predicted by the same method. In any cases where the
normalized result was greater than 2.0, the result was limited to this value.

The finite element meshes for homogenization were created in gmsh [48]. The FEM
analysis was conducting with python code relying on version 2019.1.0 of the FEniCS
package [2, 84]. Homogenization of the Smoluchowski equation was implemented
with the assistance of the Slotboom transformation. Following this transformation,
the governing PDE has the same form as the Fickian diffusion equation. This allows
the same weak form presented for homogenized Fickian diffusion in Appendix D,
Section D.3 to be used here as well, with D used in place of D in both the corrector
problem and REV integral. As noted in Appendix D, Section D.11, this results in an
effective value of D, which changes when the potential is shifted by a constant value.
In contrast, a physically measureable diffusion coefficient would not be changed by
this operation. Accordingly, the transformation described in Appendix D, Section
D.12 to recover the gauge-independent effective diffusion coefficient was attempted.
Calculation of the effective diffusion coefficient using the integrated flux from the
solution of the Smoluchowski equation, as described in Appendix D, Section D.8, was
also used for comparison purposes.

In homogenization, the boundary conditions for the unit cell are that the cor-
rector function should be periodic, with period matching the unit cell [12]. The
python scripts using FEniCS were able to implement periodic boundary conditions
for two-dimensional problems. While FEniCS supports periodic boundary conditions
in three-dimensions, the programming effort required is considerably greater. Con-
sequently, periodic boundary conditions were implemented for two-dimensional unit
cells only. For three-dimensional unit cells, Dirichlet boundary conditions were used
instead, with the corrector set to zero at the boundaries. While this is technically
a periodic condition, it may be too restrictive for the corrector functions in some
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cases. Generally, this boundary condition is appropriate for situations where barriers
to diffusion within the unit cell are located away from the cell boundaries.

4.5 Validation Analyses for Molecular Simulations

MD simulations were conducted to validate the approach presented in Section 4.2 for
obtaining the local diffusion coefficient. These validation simulations include a single
methane molecule in bulk water, to facilitate comparison with experimental results
presented in Witherspoon and Saraf [132].

The validation simulation was conducted with two different force fields: the force
field described in Section 4.4 derived from Emami et al. [43], and the GROMOS 53A6
force field [94] used by Daldrop et al. [37] in their validation. Each simulation was 16
ns in duration, and was conducted at a temperature of 298 K.

The coordinate MSD values from the two simulations are shown with the theo-
retical value in Table 4.1. Both force fields gave MSD results that approximated the
theoretical result of 1/βK for a purely harmonic potential, and the two simulation
values were in agreement with one another.

Table 4.1: MSD results from simulations of methane in bulk water.

Direction
Theoretical

Result
(nm2)

Selected
Force Field

(nm2)

GROMOS 53A6
Force Field

(nm2)
x 0.0083 0.0081 0.0081
y 0.0083 0.0079 0.0081
z 0.0083 0.0083 0.0079

An example positional ACF curve from each simulation is shown in Figure 4.3.
The diffusion coefficient for methane in bulk water was then calculated in both sim-
ulations from the ACF and MSD for each direction. The results are shown in Table
4.2. The GROMOS 53A6 force field matches the experimental results quite well, as
reported by Daldrop et al. [37]. The selected force field overestimates the diffusion
coefficient by roughly 60%, because it gives a slightly lower curve for the ACF as
shown in Figure 4.3. Accordingly, local diffusion coefficient values computed using
the selected force field should be normalized by the bulk value presented here for cor-
rect interpretation. Specifically, the local diffusion coefficient values are divided by
3.0× 10−5 cm2/sec (equivalent to 3.0 nm2/nsec) to report the ratio of local diffusion
to bulk diffusion.
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Figure 4.3: Comparison of position Autocorrelation Functions using two different
force fields. The ACF values are normalized to their respective coordinate MSD
values. Both curves are for the z-direction. The selected force field is described in
Section 4.2. The results from the GROMOS 53A6 force field provide a diffusion
coefficient that matches the result from physical measurement.

Table 4.2: Diffusion coefficient results from simulations of methane in bulk water.

Direction
Experimental
Result [132]

(1× 10−5cm2/sec)

Selected
Force Field

(1× 10−5cm2/sec)

GROMOS 53A6
Force Field

(1× 10−5cm2/sec)
x 1.88 3.13 1.91
y 1.88 2.96 1.73
z 1.88 3.06 1.85

Mean Value 1.88 3.05 1.83
Sample Standard

Deviation n/a 0.09 0.09

Coefficient
of Variation n/a 3% 5%

As a further validation of the local diffusion coefficient, an alternative method
was also used for the simulation of methane in bulk water. In these simulations, the
methane was not restrained. As indicated in Frenkel and Smit [47], a diffusing par-
ticle without restraint is expected to have a MSD that increases linearly with time.
The derivative of the MSD with respect to time is 2NdD. For the simulations of
unrestrained methane in bulk water, the MSD was plotted against time and fit to a
linear increase, with the diffusion coefficient calculated from this fit. Results from
three trials (trial A, trial B, and trial C), are shown in Figure 4.4. The resulting
diffusion coefficients are shown in Table 4.3. Notably, the MSD approach for unre-
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strained methane exhibited greater variation in the diffusion coefficient than the ACF
approach for restrained methane.

Figure 4.4: Calculation of diffusion coefficient from MSD, for three different trials.
Each simulation had a duration of 16 ns.

Table 4.3: Diffusion coefficient results from unrestrained methane simulations in bulk
water.

Trial
Result from

MSD
(1× 10−5cm2/sec)

Trial A 2.39
Trial B 1.21
Trial C 4.51

Mean of Trials 2.70
Sample Standard Deviation 1.67
Coefficient of Variation 62%

Figure 4.5 summarizes the validation results by averaging over the directional
components. As noted above, the ACF calculation using the GROMOS 53A6 force
field agreed with the experimental results of Witherspoon and Saraf [132]. The ACF
and MSD approaches using the selected force field gave notably higher diffusion co-
efficient values, but were in general agreement with one another. Accordingly, the
selected force field is assumed to give diffusion coefficients that are proportional, but
not identical, to the expected results of experiment. This proportionality is applied
to the results by normalizing to the bulk water diffusion result as described above.

An additional validation can be performed using the simulation of methane in
bulk water. At sufficient distance from the restrained methane molecule, the number
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Figure 4.5: Comparison of diffusion coefficient for methane in bulk water from differ-
ent methods.

density of the water molecules should approach the bulk value. The water density
along a line passing through the center of the restraining potential for the methane
molecule is shown in Figure 4.6. Two different simulation durations are shown: 16
nanoseconds and 64 nanoseconds. Both results show that the water density is de-
pressed in the immediate vicinity of the methane molecule. But, as expected, the
bulk density is recovered at sufficient distance. The oscillations about this value are
slightly reduced in the longer simulation. Based on these results, a simulation du-
ration of 128 nanoseconds was selected for the water density calculations within the
methane channel.
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Figure 4.6: Water density along a line for simulations of a methane molecule in
bulk water, showing the results of simulations with two different durations. For
both simulations, the water density was calculated with a 1Å spatial resolution.
The depression in the middle is due to the exclusion area of the restrained methane
molecule.

4.6 Validation Analyses for Homogenization of Fickian Diffusion

A simple, idealized model was developed to confirm that the homogenization approach
can properly account for changes in the effective diffusion coefficient due to varying
porosity of the material. This model is sufficiently simple that the effective diffusion
coefficient can be readily obtained by other means. In particular, the objective was
to create a porous structure with tunable porosity that would have a predetermined
effective porosity in each direction. This can be achieved by a cubic unit cell with
one square pore in each direction, with the pores intersecting at the center of the
unit cell. This geometry, and a finite element mesh thereof, is shown in Figure 4.7.
The effective porosity in each direction is the ratio of the pore area to the area of the
corresponding face of the unit cell.

The homogenization calculation for Fickian diffusion was performed on this ide-
alized model with a variety of porosity values. The local diffusion coefficient was
isotropic and spatially invariant, with a value equal to the bulk diffusion coefficient.
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Figure 4.7: Unit cell for the idealized geometry, showing the finite element mesh of
the pore space.

Figure 4.8: Result of homogenization of the idealized geometry.

The results of this set of simulations is shown in Figure 4.8. The effective diffu-
sion coefficients predicted by homogenization matches the assigned effective porosity.
Thus, the homogenization procedure successfully produces the expected results for
this idealized system.
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4.7 Validation Analyses for the Homogenized Smoluchowski Equation

Having validated the homogenized Fickian diffusion model, a validation is needed
to confirm the correct solution and interpretation of the homogenized Smoluchowski
equation. A simulation of an infinite lattice of cylinders was used for this purpose.
This validation problem was previously used for the same purpose in Kekenes-Huskey
et al. [69]. Specifically, the problem domain consists of a two-dimensional, square unit
cell. A circular inclusion is centered within the cell. Homogenization of the Fickian
diffusion equation can predict the effective diffusion coefficient for the unit cell when
the inclusion is fully obstructive. This is shown by the black dots in Figure 4.9.
Note that the homogenization results are below the upper bounds obtained from
two different methods. First, an upper bound was taken assuming that the effective
diffusion coefficient (as a fraction of the bulk diffusion coefficient) increases linearly
with the porosity. This is an upper bound because the tortuosity and constrictivity
factors from of Equation 1.19 are both taken as unity in this approach. A better upper
bound can be obtained from the Hashin-Shtrikman bounds presented in Auriault et
al. [7], which are based on the earlier work in Hashin and Shtrikman [56]. To use
this model to validate the homogenized Smoluchowski equation, the fully obstructive
inclusion is replaced with a region of variable potential. For low potentials, the effect
of the circular region should be minimal, especially at high porosity. But as the
potential increases, the results should approach those of the obstructive case. The
results shown in Figure 4.9 match these expectations.

Figure 4.9: Validation of the homogenized Smoluchowski equation using diffusion
around a regular lattice of cylinders. As the potential is increased in the Smoluchowski
equation, the result approaches the Fickian homogenization result for obstructive
inclusions.
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In this example, the potential is zero at the boundary of the REV. Consequently,
the Ξ functional as described in Appendix D, Section D.12 would be 1. In such a
case, D and D are equivalent at the larger scale.

4.8 Results of Homogenization for Zeolites

Finite element meshes fo the pore space within the BEA and MFI zeolite frameworks
were constructed from the relevant crystal structure information files. This process
involved the use of GAMer [82, 81]. The resulting mesh for the BEA framework is
shown in Figure 4.10.

Homogenization of these meshes was successfully completed for the case of a spa-
tially invariant local diffusion coefficient. The results of this homogenization are
contrasted with the validation model in Figure 4.11. The difference between the ze-
olite homogenization results and the idealized geometry result at the same porosity
can be attributed to the geometry of the zeolite pores.

Figure 4.10: Face-on and oblique views of the finite element mesh for the BEA zeolite
framework.

The homogenization results can also be compared to the empirical predictions of
Equation 1.19. The constrictivity, δ, would be 1 in this case because the local diffusion
coefficient is equal to the diffusion coefficient in bulk fluid at all locations inside the
pores. In the strictest application of this equation, the geometry of the zeolite pores
would influence both the effective porosity, ε, and the tortuosity, τ , and both of these
factors could vary with direction. In this case, however it is more instructive to use
the porosity as the effective porosity in all directions, and attribute all remaining
geometrical factors to an effective tortuosity, τeff, as indicated in Equation 4.11.

Deff

Dfluid
=

φ

τeff
(4.11)

Using Equation 4.11, the effective tortuosity can be computed from the homoge-
nization results. The results of this calculation are shown in Table 4.4
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Figure 4.11: Results of homogenization of the zeolite meshes, with constant Dlocal.
The red line shows the results of the validation simulation for an idealized geometry
discussed in Section 4.6, which shows the effects of porosity alone. The difference
between the idealized geometry and the zeolite framework with constantDlocal reflects
the contribution of the tortuosity of the zeolite pores.

Table 4.4: Results of effective tortuosity calculation.

Component BEA MFI
xx 1.37 1.23
yy 1.34 1.22
zz 1.29 1.63

The results for the BEA framework are somewhat unexpected. In Figure 4.10,
the pores in the x and y directions appear to be generally continuous, while the pores
in the z direction have lateral offsets. In contrast, the homogenization results show a
higher effective diffusion coefficient (and less effective tortuosity) in the z direction.
This result is currently still unexplained. One possibility is that the unexpected
behavior is caused by issues with the finite element mesh, as described below.

The finite element mesh poses some challenges for the simulations. First, the mesh
boundary is some distance away from the framework supercell boundary, artificially
increasing the porosity of the mesh by some amount. Also, the mesh boundary is
non-conforming in a periodic sense, so that periodic boundary conditions cannot be
applied. Instead, Dirichlet boundary conditions are used as an approximation. If the
mesh boundaries are sufficiently far from obstacles to diffusion, this approximation
should provide reasonable accuracy. The mesh also contains multiple unit cells in
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order to reduce the impact of this issue.

4.9 Results of Molecular Simulations in Silicate Channel

Figure 4.12: Water density near the silicate face from the MD simulation with a
channel width of 1.6 nm. Top left: rendering of the silicate face. Top right: water
density results for the plane at z = 4.775 nm, which is approximately where the
water density values reach a local maximum in some areas. Bottom: scaled overlay
of the silicate structure and the water density data. The water molecule positions
are referenced to the center of their oxygen atoms, so the density is highest around
the silanol terminations of the silicate surface. The water density was calculated at
a spatial resolution of 0.5Å, from 128 nanoseconds of simulation data.

Figures 4.12 and 4.13 show the water density in the MD simulation for the 1.6 nm
channel. Figure 4.12 shows the water density calculated near the silicate face, and
illustrates that the oxygen atoms of the water molecules are generally attracted to the
silanol terminations on the silicate surface. Figure 4.13 shows the water density in the
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Figure 4.13: Water density in the MD silicate simulation with a channel width of
1.6 nm. The x = 5.75 nm plane is shown. The black areas of near-zero water density
are occupied by the silicate slabs. Large fluctuations in water density are seen around
the silicate. Bulk water density is observed through most of the remaining simulation
volume. The green rectangle shows the region of the channel selected for measurement
of the local diffusion coefficient and PMF. The water density was calculated at a
spatial resolution of 0.5Å, from 128 nanoseconds of simulation data.

plane used for subsequent data collection. From this data, a portion of the channel
that included areas of both high and low water density was selected for measurement
of the local diffusion coefficient and PMF. The portion of the plane selected for such
measurements is also shown in Figure 4.13.

Figure 4.14 shows the position ACF obtained at three locations within the 1.6 nm
channel. The curve for the bulk simulation described in Section 4.5 is also shown for
comparison purposes. The ACF curve for the bulk simulation is more smooth because
of the longer simulation duration, 16 ns, compared to 2 ns for the simulations in the
channel. The ACF curve that most nearly matches the bulk simulation result is from
a point near the middle of the channel. Figure 4.14 also shows the local diffusion
coefficient results versus position along the channel. Generally, the local diffusion
coefficient appears to approach the bulk value near the middle of the channel, and
drop off to roughly half this value at locations closer to the channel surfaces.

Figure 4.15 shows the PMF, local diffusion coefficient, and water density across the
1.6 nm channel. The values are averaged in the y-direction, to demonstrate the general
trend in values across the channel, rather than values at specific locations. The local
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Figure 4.14: Examples of local diffusion coefficient in the 1.6 nm channel. Left: Posi-
tion autocorrelation function of methane for three different positions in the channel,
compared with the bulk simulation result. The bulk simulation curve is more smooth
because of a longer simulation duration. Right: Local diffusion coefficient variation
across the channel, showing the values along a line across the channel, and also the
averages over lines parallel to the channel face. The coordinates are as shown in
Figure 4.2.

diffusion coefficient seems to be suppressed near the channel walls, and approaches,
but does not match, the bulk diffusion behavior near the center of the channel. This
variation in the local diffusion coefficient is symmetric about the channel. In contrast,
the PMF appears to be asymmetric within the channel, though still suppressed near
the surfaces. The water density seems to oscillate near the channel walls, likely due
to solvation layers around the silicate, but the strength of this oscillation reduces
quickly with distance from the surface. While not conclusive, these patterns suggest
that the local water density, and gradients or other functions thereof, may indeed be
a critical driver of variations in the PMF and local diffusion coefficient.

Contour plots of the water density, local diffusion coefficient, and potential of
mean force from the MD simulations are shown in Figures 4.16 through 4.20. Each
figure shows a different channel width or de-protonation level for the channel. The
water density calculation is from 128 nanoseconds of simulation data, at 0.5Å spatial
resolution. Dlocal is taken as the arithmetic average ofDxx and Dyy values, normalized
to the bulk D value. The PMF values are as computed by wham. There are similar
patterns in all cases. The water density is near its bulk value over most of the channel,
but has some localized areas of high water density at nearly consistent spacing along
the channel surfaces. This is most likely due to the presence of hydrophilic silanol
groups present on the surface in repeating patterns. The local diffusion coefficient
results show the same pattern as the results in Figure 4.14 and 4.15: the value is
highest near the middle of the channel, where the value is roughly the bulk diffusion
coefficient, and then suppressed closer to the channel surfaces. For the 1.2 nm channel
width, the local diffusion coefficient appears to be somewhat depressed even near the
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Figure 4.15: Spatial variation of averaged PMF, local diffusion coefficient, and water
density in the 1.6 nm channel. The values are averaged over 0.6 nm in the y-direction,
for a single value of x, showing the spatial variation in the z-direction (perpendicular
to the channel faces).

middle of the channel. The PMF results are generally highest at the channel walls,
and lower in the middle of the channel, although localized depressions in the PMF
seem to appear at the channel surface in a generally periodic arrangement. In general,
the magnitude of the differences in PMF between the highest and lowest values in
any channel appear to be larger than would have been expected.
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Figure 4.16: Water density, local diffusion coefficient, and potential of mean force for
a plane in the 1.2 nm channel, fully protonated. The imposed rectangle shows the
limits of data used in the finite element model within the plane.

Figure 4.17: Water density, local diffusion coefficient, and potential of mean force for
a plane in the 1.6 nm channel, fully protonated. The imposed rectangle shows the
limits of data used in the finite element model within the plane.
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Figure 4.18: Water density, local diffusion coefficient, and potential of mean force for
a plane in the 2.0 nm channel, fully protonated. The imposed rectangle shows the
limits of data used in the finite element model within the plane.

Figure 4.19: Water density, local diffusion coefficient, and potential of mean force for
a plane in the 2.0 nm channel, 27% de-protonated. The imposed rectangle shows the
limits of data used in the finite element model within the plane.
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Figure 4.20: Water density, local diffusion coefficient, and potential of mean force for
a plane in the 2.0 nm channel, 50% de-protonated. The imposed rectangle shows the
limits of data used in the finite element model within the plane.
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4.10 Effective Diffusion Coefficients for the Silicate Channel

The PMF results from MD presented in Section 4.9 require some further processing
prior to use in homogenization simulations. As noted in Section 2.5, homogenization
requires a periodic unit cell. However, the PMF and local diffusion coefficient data
from the MD simulations is not periodic over the unit cell selected for homogenization.
This can be addressed by reflecting the MD results across the cell boundaries, to
produce a symmetric data set. For a two-dimensional unit cell, this requires reflection
across two boundaries.

Based on the findings of Appendix D, Sections D.11 and D.12, the effective dif-
fusion coefficient coefficients for the silicate channels were calculated using different
methods. First, using the method described in Appendix D, Section D.8, a flux-based
calculation was performed by solving the steady-state Smoluchowski equation. Next,
the result from homogenization of the Smoluchowski equation using the Slotboom
transformation was also computed. The results of homogenization are presented here
both with and without division by Ξ as described in Appendix D, Section D.12.

Figure 4.21 presents the effective diffusion coefficient results for different channel
wall separation distances, and Figure 4.22 presents the results for different levels of
silica surface protonation.

The effective diffusion coefficient results computed by homogenization without the
application of the Ξ factor differ markedly from the results using the other approaches.
This is in agreement with the interpretation of the homogenization results as a gauge-
dependent effective D, rather than a physically measurable effective diffusion coef-
ficient. Indeed, the results from the flux-based calculation and the homogenization
results after application of Ξ are in much better agreement. Still, the results of the
flux-based calculation and the results of homogenization after the application of Ξ are
not identical. The possibility that the functional form of Ξ used here is not generally
valid cannot be ruled out, but the differences here are small enough that other possi-
bilities may be considered. In particular, Ξ depends on an exponential function of the
potential. Small differences between the actual potential and the FEM interpolation
of the potential could be greatly amplified by this exponential dependence, reducing
the accuracy with which Ξ can be be evaluated in the FEM approach. The difference
in the results for the 1.2 nanometer channel, however, seem larger than would be ex-
pected if this was the only source of disagreement. An alternative possibility is that
the definition of the average gradient used in the flux-based calculation of Appendix
D, Section D.12 is not compatible with the large-scale steady-state solution of the
Smoluchowski equation. An alternative definition would not only alter the results of
the flux-based calculation here, but might also give another form of Ξ that would be
more generally appropriate.

Overall, the results that use a constant PMF are physically reasonable, and the
different methods are in agreement. However, the results for the simulations that
use the MD-derived PMF values are not as physically reasonable. This is true for
both methods of evaluating the effective diffusion coefficient coefficient. As such, it
would seem that the PMF values obtained from the MD simulations are not physically
reasonable. As noted in Section 4.9, there was more variation in the PMF throughout

69



Figure 4.21: Predicted effective diffusion coefficient for a silicate channel as a function
of wall separation. Upper left: results from a flux calculation without homogenization.
Upper right: results from homogenization and application of Ξ. Lower left: results
from homogenization as gauge-dependent D, prior to application of Ξ. Lower right:
legend. For the case of a uniform diffusion coefficient, the problem can be solved
analytically (open squares). The results shown with red lines represent simulations
with a constant local diffusion coefficient, while results with blue lines represent sim-
ulations where the local diffusion coefficient was obtained from the MD simulations.
Dashed lines represent simulations where the PMF was constant (zero), while solid
lines represent simulations where the PMF was obtained from the MD simulations.

the channel than would have been expected. This results in larger forces on the
diffusing particles, leading to greater influence of the PMF on the effective diffusion
coefficient than would have been expected.
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Figure 4.22: Predicted effective diffusion coefficient for a silicate channel as a function
of de-protonation level. Upper left: results from a flux calculation without homoge-
nization. Upper right: results from homogenization and application of Ξ. Lower left:
results from homogenization as gauge-dependent D, prior to application of Ξ. Lower
right: legend. The results shown with red lines represent simulations with a constant
local diffusion coefficient, while results with blue lines represent simulations where
the local diffusion coefficient was obtained from the MD simulations. Dashed lines
represent simulations where the PMF was constant (zero), while solid lines represent
simulations where the PMF was obtained from the MD simulations.

4.11 Discussion and Conclusion

This chapter has illustrated the use of multi-scale modeling techniques in a multi-
physics setting. Again, the analyses used progressed from simple analyses that could
be validated using other approaches to applications in more complex settings. The
ultimate goal is the application of these techniques to the problem of methane con-
version into methanol in an aqueous reaction-diffusion system with zeolite catalysts.
Toward that end, there are additional features that will need to be included.

As noted in Section 4.8, the ability to create accurate and robust finite element
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meshes of the pore space in zeolite crystals is a critical requirement for the homoge-
nization analyses. The techniques to develop such meshes lie in the realm of computa-
tional geometry. While the gmsh software package might not be capable of producing
the desired meshes, other software packages such as CGAL could potentially be used.

The MD simulations used to generate the results in Section 4.9 were 2 ns in dura-
tion. Longer simulation durations could potentially reduce the amount of statistical
“noise” in the results. Towards this end, the adequacy of the simulation durations
could be assessed by using block averaging techniques to obtain estimates for the
uncertainty in the the local diffusion coefficient and PMF results. This information
would be helpful for investigations into why the PMF data gives physically unreason-
able effective diffusion coefficient results.

Common zeolite catalysts differ from the silicate channel not only in geometry,
but also in chemical composition. For example, one common zeolite material ZSM-5,
is an aluminosilicate zeolite of the MFI framework [74]. In fact, various chemical
compositions of ZSM-5 have been prepared [111]. The force field of Emami et al.
[43][44] does not have parameters for all the atomic species present in this wide vari-
ety of materials. For detailed computational studies of particular zeolitic materials,
material-specific force fields derived from electronic structure calculations may be
required.

One restriction of the ACF calculation method for the local diffusion coefficient
as presented in Sections 4.2 and 4.4 is that it can only compute the diagonal terms of
the diffusion coefficient matrix. This is not a significant issue for the silicate channel
geometry described in Section 4.3, as the principal axes of the diffusion coefficient
matrix are very likely to match the coordinate axes of the system, such that the
off-diagonal terms are indeed zero. However, the geometry of the zeolite frameworks
is more complicated, and so the principal axes may differ from the coordinate axes
at some locations in the system. Without an estimate of the off-diagonal terms, the
errors created by their omission cannot be detected. If an extension of the ACF cal-
culation procedure for off-diagonal terms cannot be found in the literature, there is
a relatively simple approach that can be used without excessive additional computa-
tion. Specifically, rotation of the coordinate system in which the methane trajectories
are expressed would allow calculation of the diagonal terms of the matrix in this ro-
tated coordinate system. The off-diagonal terms can be computed from estimates of
the diagonal terms in two different coordinate systems.

Copyright © Thomas G. Pace 2021
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Chapter 5 Summary, Conclusions, and Speculation

5.1 Summary and Review: Successes and Limitations of the Methods

This work has focused on the application of multi-scale multiphysics simulations
to diffusive transport models in biochemical systems and aqueous-phase chemical
processing. These same techniques can be applied to a wide variety of other systems,
and there are related techniques that are also available. The models described herein
were successful in some ways, but limited in others.

The FEM does provide an accurate, robust, and computationally efficient means
of solving not only the Fickian and Smoluchowski diffusion equations, but also the
corrector problems and REV integrals required by homogenization theory. The reac-
tive boundary condition provided a relatively simple means of incorporating chemical
reactions into a diffusion model. Difficulties encountered in the FEM solutions were
largely from specific limitations of the software and hardware, rather than general
issues with the approach itself. The success in the application of the FEM illustrates
why this approach has grown so incredibly popular in a wide variety of applications.

Homogenization theory was very successful here in obtaining effective diffusion
coefficients for purely Fickian diffusion problems. In settings with an imposed po-
tential that also influenced the transport behavior of the system, homogenization of
the Smoluchowski equation using the Slotboom transformation was complicated by
the need to reverse the Slotboom transformation for the larger-scale result. More
general methods for the post-homogenization inverse transformation require further
investigation.

While only limited use was made herein of MD techniques, the effectiveness of
MD approach can be assessed for the problems covered herein. With suitable tech-
niques for post-processing molecular trajectories, local properties of interest within
the system can be obtained using this technique. However, there were two signif-
icant limitations encountered. First, the force fields used by the MD simulations
are intended to work for obtaining certain types of results under particular sets of
conditions. As experienced here, using a force field under different conditions, or for
obtaining different result variables, can cause discrepancies with experimental obser-
vations. Secondly, the MD simulations were computationally demanding. Typical
MD performance rates encountered here were around 100 nanoseconds per node, per
day, using nodes with multiple CPUs and GPUs. Each simulation of a single methane
position had a duration of 2 nanoseconds. Over the various channel widths and de-
protonation levels, a total of 2380 different methane positions were simulated. The
total simulation time was thus 4.76 microseconds, requiring roughly 47.6 node-days of
computation. The actual calculation duration was shortened by the simultaneous use
of multiple nodes. As a ratio of two units of time, the unit of nanoseconds per day is
actually a dimensionless number. Specifically, as there are 8.64× 1013 nanoseconds in
24 hours, the unit of nanoseconds per day is a dimensionless value of approximately
1.16× 10−14. This means that a simulation running at a rate of 100 nanoseconds per
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day is running at a rate of 1.16× 10−12 times the speed of reality.

5.2 Speculation: The Possibility of Novel Algorithms

Force-field MD has proved to be a tremendously powerful technique, and is now rou-
tinely used to study biochemical systems as well as systems like the silicate channel
considered here. One limitation of this technique is that events such as chemical re-
actions, which alter the electronic structure, would also require a change in the force
field for proper evaluation. For example, models to assess the catalytic efficiency of
a given system at the macroscopic scale would encounter this limitation. While elec-
tronic structure investigations alone can provide useful insight into such systems, the
kinds of statistical information provided by MD simulations requires more particles
than can reasonably be included in an electronic structure calculation. Methods for
allowing force fields to accurately represent changes such as chemical reactions are
under active investigation [117]. An alternative approach is to combine the meth-
ods of electronic structure calculations into dynamic simulations of chemical systems.
This approach is known as ab-initio MD [62].

Of course, both electronic stucture calculations and MD simulations are computa-
tionally intensive. While the techniques employed in ab-initio MD calculations have
better computational efficiency than simple combinations of electronic structure and
MD simulations, the computational demands are still greater than for force-field MD,
which is already significant. The computational intensity of ab-initio MD restricts
the time and length scales to which it can be applied [1].

One possible way of attaining both greater accuracy and greater speed in molec-
ular simulations may be to incorporate multi-scaling techniques at the level of the
fundamental algorithms employed. For example, multi-scaling in the time domain, if
it could be achieved, might allow simulations to use significantly larger time-steps.
Multi-scaling in the spatial domain might allow the approximation of an array of dis-
crete particles by means of spatially-varying functions, which could then be treated
using FEM and similar approaches. One consequence of such techniques might be that
additional physical behaviors that currently emerge from the models would have to be
explicitly included instead, making use of concepts from multiphysics models. While
purely hypothetical, such ideas suggest that there may be meritorious approaches to
improving both accuracy and speed that have not previously been investigated.

For any such algorithm attempting to simultaneously improve both the accuracy
and speed of molecular simulations, the following features would be desirable. First,
the algorithm should be designed for implementation on parallel hardware (multiple
CPUs and possibly even GPUs). The era of single-process algorithms is rapidly
drawing to a close. Secondly, to the extent possible, the approximations employed
in the algorithm should be tunable, such that the end user can select the level of
approximation best suited for the computational resources available and the required
level of accuracy. Next, the effectiveness of the algorithm should be judged, at least
in part, by the scaling behavior of its time and resource requirements with respect
to the size of the simulated system. The system size includes variables such as the
number of particles, the system volume, and the duration of the simulation. Similarly,
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the effectiveness of the algorithm should also be judged by the the scaling behavior
of its time and resource requirements with respect to the reciprocal of some measure
of the allowable error in the calculation. For example, a calculation that halves the
error may double the time or memory requirements, but should not quadruple them.
Finally, an ideal algorithm would be applicable for simulations at both temperatures
above absolute zero and at temperatures approaching it, even if the computational
resources required are not the same for such calculations. These recommendations
could be considered as design goals in the development of algorithms.

An algorithm meeting the description above may not be possible. But search-
ing for such algorithms may not be substantially more difficult that searching for
continued improvements to the existing algorithms. The electronic structure and
MD algorithms that exist today are the result of decades of optimization. As such,
these algorithms may be approaching their eventual local optimum in terms of their
accuracy and computational efficiency. This would mean that continued efforts to
improve the existing algorithms might offer diminishing returns. Exploring the vast
search space of other possible algorithms may be the only way to continue to achieve
significant improvement. Such situations are known as an inventor’s paradox : some-
times more ambitious goals are easier to obtain than smaller ones [101].

5.3 Conclusion: Continuing the Search for Useful Approximations

The history of human civilization is sometimes divided into eras by the advancement
in the kinds of materials that could be created. These divisions are illustrated by
terms such as Stone Age, Bronze Age, and Iron Age, each of which is named after a
material newly available during the era [26]. While such divisions are not applied to
modern civilization, the ability to create materials with desired properties is critical
to many fields of engineering and technology.

The increasing need for advanced materials results in an increasing need to be
able to understand and predict their properties. The methods discussed herein are
one possible approach to this process: combining theories describing different physi-
cal phenomena and linking the predicted behavior at one scale of time and length to
characteristic properties at a larger scale. Other approaches include the direct formu-
lation of theories at a single scale to explain and predict observed phenomena. More
recently, machine learning and artificial intelligence techniques have been applied to
similar problems [35]. (In fact, some electronic structure calculations performed by
the author were used as training input for such a model by Khmaissia et al. [73].)

The chief advantage of the multi-scale multiphysics approach is that the necessary
physical laws are already well-established. The chief difficulties are the approxima-
tions necessary to render problems computationally tractable without sacrificing the
desired level of accuracy. Indeed, as noted by Dirac in 1929 [41]:

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It therefore be-
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comes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the
main features of complex atomic systems without too much computation.

Nearly a century later, the search for such approximate methods continues.

Copyright © Thomas G. Pace 2021
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Appendix A Glossary of Acronyms

ACF Autocorrelation Function . . . . . . . . . . viii, 47, 48, 51, 52, 53, 54, 55, 63, 72, 119
ADP Adenosine Diphosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 85
AMP Adenosine Monophosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 85
ATP Adenosine Triphosphate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 44, 85

DFT Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii, iv, 16, 17

FEM Finite Element Method iii, v, 14, 19, 20, 21, 22, 52, 69, 73, 74, 80, 83, 86, 87,
92, 95, 96

HF Hartree-Fock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 17, 85

LPB Linearized Poisson-Boltzmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32, 33, 34

MC Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 18, 19, 87
MD Molecular Dynamics . . iii, viii, 17, 18, 19, 44, 46, 47, 48, 52, 53, 62, 63, 64, 69,

70, 71, 72, 73, 74, 75, 85, 86, 87, 88
MSD Mean-Squared Displacement vii, viii, 9, 12, 47, 48, 51, 53, 54, 55, 83, 85, 119

NPT Number, Pressure, and Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 51
NVE Number, Volume, and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
NVT Number, Volume, and Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 51

PDE Partial Differential Equation . 14, 19, 20, 21, 22, 23, 52, 83, 85, 86, 87, 88, 91,
93, 101

PME Particle Mesh Ewald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 51
PMF Potential of Mean Force . . . . . . . . . . . . . . . . . 46, 48, 51, 63, 64, 65, 69, 70, 71, 72

QMC Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 17, 88

REV Representative Elementary Volume. . 22, 23, 24, 52, 60, 73, 82, 85, 86, 88, 92,
93, 94, 103, 109, 110, 112, 120, 121, 127, 128

VACF Velocity Autocorrelation Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

WHAM Weighted Histogram Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51, 89

Copyright © Thomas G. Pace 2021
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Appendix B Glossary of Mathematical Notation

Notation Description Page List
〈· · · 〉 Ensemble average of the quantity

within the brackets
9, 12, 47, 51, 83,
119, 120

J· · ·K Units or dimensions of the quantity
within the brackets

2, 8, 12, 14, 27,
47, 79, 80, 81,
82, 83, 84, 118,
119

|· · · | Magnitude or volume of the quantity
within the bars

22, 95, 109, 113,
120, 121, 125,
126, 129

# Units or dimensions of an integer quantity 12, 81, 82, 83
1 Units of a dimensionless quantity 12, 80, 83
E Units or dimensions of energy,

equivalent to
r

ML2

T2

z 14, 47, 79, 80,
118

F Units or dimensions of force,
equivalent to

q
ML
T2

y 8, 47, 118

L Units or dimensions of length 2, 8, 12, 14, 27,
47, 79, 80, 81,
82, 83, 84, 118,
119

M Units or dimensions of mass 8, 47, 79, 80, 118
Q Units or dimensions of electric charge 80, 84
T Units or dimensions of time 8, 12, 14, 47, 79,

80, 81, 82, 118
∂t Partial derivative with respect to time

q
1
T

y
5, 6, 8, 9, 14, 47,
90, 91, 92, 117,
118, 119

∂j Gradient operator in index notation
q

1
L

y
5, 6, 7, 8, 10, 11,
12, 22, 32, 33,
47, 90, 91, 92,
94, 95, 96, 97,
98, 99, 101, 102,
103, 104, 109,
110, 111, 112,
113, 114, 116,
117, 118, 120,
121, 125, 126,
127, 128
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Notation Description Page List
β 1

kBT
for Boltzmann constant kB

and absolute temperature T
q

1
E

y 7, 8, 47, 53, 91,
116, 119, 121,
123, 124, 125,
126, 127, 128,
129, 130

∂Ω The entire boundary of the problem domain, a
closed surface for Nd=3, a closed curve for Nd=2

117

ε Separation of scales parameter, `c
Lc

J1K 22
φ Free volume fraction (porosity), ratio of volume of

voids to total volume J1K
10, 29, 30, 31,
60, 87

φM(xi) Pre-defined basis function used in the FEM
approximation

19, 20, 21

Γ A specific boundary of the problem domain, a
surface for Nd=3, a curve for Nd=2

6, 81, 82, 92, 99,
129

ΓD A boundary surface of the problem domain with a
Dirichlet boundary condition imposed

92

ΓN A boundary surface of the problem domain with a
Neumann bondary condition imposed

92, 96, 97

κ A constant appearing in the linearized
Poisson-Boltzmann equation

q
1
L

y 32, 80

λD The inverse of κ JLK 32
ξ Friction coefficient for viscous drag force

q
M
T

y
8, 47, 118, 119,
120

Ξ Hypothetical conversion factor between effective
D and D from homogenization J1K

60, 69, 70, 71,
121, 129, 130

Φ Electric potential as a scalar field
r

E
Q

z
32, 116

wj The corrector function in the corrector problem
from homogenization, with opposite sign of χj JLK

95, 97

χj The corrector function in the corrector problem
from homogenization JLK

22, 80, 94, 95,
96, 97, 101, 102,
103, 104, 105,
109, 110, 111,
112, 113, 114,
120, 121, 125,
126, 127, 128

Ψ Potential energy field from unspecified source JEK 7, 8, 91, 121
Ω All space within the problem domain, a volume

for Nd=3, an area for Nd=2
20, 21, 22, 80,
91, 92, 94, 95,
96, 97, 109, 113,
117, 119, 120,
121, 125, 126

A Arbitrary linear differential operator 20, 21
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Notation Description Page List

c Concentration of a substance as a scalar fieldr
#

L(Nd)

z 5, 6, 7, 8, 10, 11,
33, 90, 93, 94,
98, 99, 100, 105,
106, 107, 108,
109, 122, 123,
124, 127

c Slotboom-transformed concentration field
r

#

L(Nd)

z
8, 33, 34, 122,
123, 124, 126,
127

cS Concentration of species S, as a scalar fieldr
#

L(Nd)

z 6, 12, 90, 91, 92,
116, 117

cS Slotboom-transformed concentration field of
species S

r
#

L(Nd)

z 116, 117, 118

dΓ Differential element for domain boundary Γ, area
for Nd=3, length for Nd=2

q
L(Nd−1)

y 6, 83, 92, 96, 97,
99, 117, 118, 129

dΩ Differential domain element, volume for Nd=3,
area for Nd=2

q
LNd

y 20, 21, 22, 91,
92, 95, 96, 97,
109, 113, 117,
119, 120, 121,
125, 126

D Fickian diffusion coefficient
r

L(Nd−1)

T

z
5, 6, 7, 8, 9, 11,
22, 40, 47, 48,
52, 60, 80, 91,
92, 93, 94, 95,
96, 97, 98, 99,
100, 101, 102,
103, 104, 105,
109, 110, 113,
114, 116, 121,
130

D Slotboom-transformed Fickian diffusion coefficientr
L(Nd−1)

T

z 8, 33, 34, 52, 60,
69, 70, 71, 80,
117, 120, 121,
123, 125, 127,
130

DS Slotboom-transformed Fickian diffusion coefficient
of species S

r
L(Nd−1)

T

z 116, 117, 118

Dlocal Diffusion coefficient at a given point in the pore
space of a porous medium

r
L(Nd−1)

T

z viii, 61, 64
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Notation Description Page List
Deff Effective diffusion coefficient for a porous mediumr

L(Nd−1)

T

z 9, 10, 22, 24, 60,
94, 95, 98, 99,
100, 101, 104,
105, 109, 110,
112, 113, 120,
121, 123, 125,
126, 127, 128,
129, 130

fR Functional form of rate law for reaction R (such
as a product of all reactant concentrations raised
to a power), units vary depending on the form of
the rate law, JkRfRK =

r
#

L(Nd)T

z

82, 90, 91, 92

gSj A generalization of the concentration gradient
vector for species S, used to provide a general
equation representing either Fickian or
Smoluchowski diffusion

r
#

L(Nd+1)

z

91, 92

i, j, k Index over spatial dimensions, starting at 1 unless
specified otherwise

5, 6, 7, 8, 11, 20,
33, 79, 91, 101

ji Flux of a substance as a vector field
r

#

L(Nd−1)T

z
5, 6, 7, 8, 10, 11,
98, 99, 100, 123

jSi Flux of species S, as a vector field
r

#

L(Nd−1)T

z
6, 12, 90, 91,
116, 117

JΓ Total flux of a substance through surface Γ as a
scalar value

q
#
T

y 6, 99

JΓS Total flux of species S through surface Γ, as a
scalar value

q
#
T

y 6, 39, 40

kR Reaction rate coefficient for reaction R, units vary
depending on the form of the rate law, JkRfRK =r

#

L(Nd)T

z

82, 90, 91, 92

`c Characteristic length for the smaller scale (REV)
in homogenization JLK

22, 80

Lc Characteristic length for the larger scale in
homogenization JLK

22, 80

M Index over the FEM interpolating functions 20
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Notation Description Page List
nΓi Unit normal vector to the boundary element dΓ

JLK
6, 92, 96, 97, 117

Nd Number of spatial dimensions J#K 9, 11, 12, 14, 17,
54, 80, 81, 82,
83, 119

Ndof Number of degrees of freedom in the algebraic
system of the FEM approximation J#K

19, 20, 21, 83

Nreactions Number of different chemical reactions considered
J#K

90, 91, 92

Nspecies Number of different chemical species in solution
J#K

12, 90, 91

pRS Stoichiometric coefficient for species S on product
side of reaction R, must be zero or larger J1K

83, 90

q The position of a particle in one of the Nd

Cartesian coordinate variables JLK
9, 47, 51, 83,
118, 119, 120

〈q2〉 Mean-Squared Displacement (MSD) of a single
coordinate for a particle JL2K

47, 51, 119, 120

R(xi) Residual error in the PDE from the FEM
approximation

20

R Index over the chemical reactions 82, 83, 90, 91, 92
〈riri〉 Radial Mean-Squared Displacement (MSD) of

particle JL2K
9, 12

rRS Stoichiometric coefficient for species S on reactant
side of reaction R, must be zero or larger J1K

83, 90

nRS Net toichiometric coefficient for species S in
reaction R, pRS − rRS, may be negative, zero, or
positive J1K

90, 91, 92

S Index over the diffusing species 6, 12, 81, 82, 83,
84, 90, 91, 92,
116, 117

u(xi) Exact solution to a PDE 20
ũ(xi) Approximate solution to a PDE 19, 20, 21

v(xi) An arbitrary test function 20, 95, 96, 97
vL(xi) One of Ndof test functions used in the FEM

approximation
21

vS Scalar test function associated with species S 91, 92, 117, 118
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Notation Description Page List
xi Spatial coordinate vector JLK 19, 20, 21, 47,

80, 83, 118
XS Chemical symbol for species S 90

zS Electric charge of species S JQK 116

Copyright © Thomas G. Pace 2021
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Appendix C Glossary of Terms

adenosine A nucleotide molecule, also used in ATP, ADP, and AMP. 41

adsorption A process where molecules are attracted to the surface of a solid, in
contrast to absorption, where the molecules are drawn into the bulk of the
solid. 46

anisotropy A condition in which behavior varies with direction. 4, 91, 92, 98

anomalous diffusion Diffusion where the MSD is not linearly proportional to time,
so a Fickian diffusion coefficient cannot be defined. 12

barostat In MD simulations, a procedure of varying the volume of the system to
maintain a constant pressure. 19

basis set A set of single particle wave-functions used to define many-particle wave-
functions. 16, 85

behavioral properties Material properties that quantify the response of a material
to different imposed conditions. 1

binary diffusion Diffusion involving only two chemical species. 12

CGAL “Computational Geometry Algorithms Library”, a software library for compu-
tational geometry (see https://www.cgal.org/). 72

coarse-graining An approach of solving a large-scale problem by reducing the res-
olution of the solution. 21

constitutive law A mathematical model that quantifies a relationship between a
condition imposed on a material and some response. 4

corrector function The solution of the corrector problem in homogenization. 22,
80, 94, 95, 97, 102

corrector problem A PDE to be solved on the REV in homogenization. 22, 24,
52, 80, 92, 94, 95, 96, 101, 114

correlation energy The energy difference between the true electronic ground state
and the HF ground state in the limit of a large basis set. 16

descriptive properties Material properties defining the nature, structure, or com-
position of a material. 1
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diagonalize To transform a symmetric, positive-definite matrix such that its only
nonzero entries are on the diagonal. 11

Dirichlet boundary condition A PDE boundary condition specifying the value of
the solution at a boundary location. 21, 40, 80, 92

discretization Transformation of a problem to find a continuous function to a prob-
lem of finding a finite set of discrete values. 19

effective diffusion coefficient The diffusion coefficient appropriate for use at a
larger analysis scale than the REV. 9, 22, 23, 24, 25, 29, 30, 35, 39, 46, 52, 58,
59, 69, 70, 72, 73, 92, 95, 97, 98, 99, 100, 101, 103, 104, 107, 109, 112, 113, 114,
120, 121, 122, 123, 124, 125, 126, 127

Einstein relation The relationship between the Langevin friction coefficient and
the Fickian diffusion coefficient, as discovered by Einstein. 8, 47

electronic structure The solution to the time-independent Schrödinger Equation
for the electrons of an atom, molecule, ion, crystal, etc. 15, 88

essential boundary condition A boundary condition imposed on the FEM solu-
tion through the selection or shifting of interpolating functions. 21

FEniCS A finite element software package useable from python
(see https://fenicsproject.org/). 2, 29, 39, 52

flux A vector describing the movement of a given quantity at every point in the
problem domain. 6

force field A group of relations defining forces applied to atoms due to covalent
bonds and other short-range interactions in molecular simulations. 18, 46, 88

free volume fraction Synonym for porosity. 10

gmsh A software package for creating finite element meshes (see http://gmsh.info/).
52, 72

gromacs A Molecular Dynamics software package (see http://www.gromacs.org/).
2, 50, 51

hierarchical multi-scale model A multi-scale model where information is trans-
ferred from smaller scales up to larger scales only. 3

homogenization Multi-scale technique based on asymptotic expansion. 3, 21, 88

integrated flux The net flux across a boundary surface (internal or external) in a
problem. 6, 39, 40, 123, 124

isotropy A condition in which behavior is the same in all directions. 4
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Langevin equation A stochastic differential equation of motion for a particle un-
dergoing Brownian motion. 8

material properties Coefficients of a mathematical model that quantify the de-
scription or behavior of a material. 1

MDAnalysis A software package for processing Molecular Dynamics simulation data,
useable from python (see https://www.mdanalysis.org/). 51

multiphysics The combination of mathematical models from different fields of study,
and the interactions between such models. 3

multi-scale A model or problem involve more than one relevant scale of length,
time, energy, etc. 3

natural boundary condition A boundary condition that must be included in the
weak form in the FEM. 21

Neumann bondary condition A PDE boundary condition specifying the normal
component of the gradient of the solution at a boundary location. 21, 40, 80,
92

numerical method A means of solving a numerical model. 14

numerical model A mathematical model using numerical data rather than only
analytical expressions. 14, 87

NumPy An array library for the python programming language (see https://numpy.
org/). 51, 52

order The power to which the reactant concentration is raised in the rate law for a
reaction. 90

orthotropy A conceptually simple anisotropic condition in which the principal di-
rections are all mutually orthogonal. 11

particle In this work, an atom, ion, or molecule undergoing diffusion or in MD or
MC simulations. 6, 18, 87

point defect Where an atom or small group of atoms within a unit cell is displaced,
replaced, or inserted. 23

porosity Ratio of the volume of voids to the total volume, φ. 10, 27, 30, 35, 59, 60,
86

porous media A solid interlaced with pore spaces. 9

PyMOL A software package for visualizing the structure of molecules and crystals (see
https://pymol.org/2/). 45
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python An interpreted computer programming language popular in the field of sci-
entific programming (see https://www.python.org/). 2, 52, 86, 87

quantum chemistry The field of chemistry concerned with the electronic structure
problem. 15

random checkerboard A two-dimensional stochastic homogenization problem with
square unit cells taking on one of two isotropic diffusion coefficients at random.
25

reaction coordinate An independent variable for a potential energy surface. 46,
51

signal transduction The processes by which biochemical information is transmit-
ted. 26

sign problem The difficulties involved in QMC due to the fermion antisymmetry
requirement. 17

steady-state A condition where concentration is constant with respect to time,
though it may still vary spatially. 7, 93

stochastic homogenization An extension of the homogenization technique to al-
low random variations of the otherwise periodic structure. 23

Stokes’s Law A formula for the Langevin friction coefficient of a sphere moving
through a viscous fluid. 8

supercell An REV consisting of multiple unit cells, rather than just one. 23, 24

test function An arbitrary function used in variational calculus. 20, 83

thermodynamic current One of the quantities related by a constitutive law (linear
combinations of state variables defining the entropy [38]) . 4

thermodynamic force One of the quantities related by a constitutive law (time
derivatives of state variables defining the entropy [38]) . 4

thermostat In MD simulations, a procedure for varying the total energy of the
system to maintain a constant temperature. 19

trajectory The record of atom and ion positions over time in MD simulations. 18

transferability The idea that force parameters for a given bond are the same for
all molecules containing that bond, a fundamental requirement for the validity
of force fields in MD simulations. 18

variational form See weak form. 19
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weak form A PDE converted to an integral problem by variational calculus. 19, 20,
22, 52, 88, 91, 95, 97, 116

wham A software package for conductingWeighted Histogram Analysis Method (WHAM)
calculations (see http://membrane.urmc.rochester.edu/?page_id=126). 51,
64
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Appendix D Mathematical Derivations

D.1 Reaction-Diffusion Systems

Consider a system in which species concentrations change not only due to diffusion,
but also due to chemical reactions. The chemical reactions add new terms to the
equation for ∂tc.

For Nreactions chemical reactions indexed by R, we write each reaction in the form

Nspecies∑
S=1

rRSXS −→
Nspecies∑
S=1

pRSXS (D.1)

where rRS and pRS are the stoichiometric coefficients of the reactants and products,
respectively, and XS represents species S.

Note that reversible reactions must be considered as two separate reactions: the
forward reaction and reverse reaction.

The rate of each reaction is described by its rate law. Rate laws are defined
here by both a rate constant, kR, and a rate function, fR, which is a function of the
concentration of all reactant species for the reaction. To provide a consistent set of
arguments to these functions, we consider the rate functions to potentially depend
instead on all species concentrations, writing them as fR = fR (c1, c2, . . .). Typical
rate laws include products of the reactant concentrations, with each concentration
raised to a power known as the order of the reaction for the given species. Because
of its dependence on the concentrations, fR will vary spatially.

Using this notation, the change in the concentration of each species due to the
presence of the chemical reactions alone is written as

∂tcS =

Nreactions∑
R=1

(pRS − rRS) kRfR (c1, c2, . . .) (D.2)

Defining a net stoichiometric coefficient nRS = pRS−rRS, which will be positive for
reactions producing a species and negative for reactions consuming it, this becomes

∂tcS =

Nreactions∑
R=1

nRSkRfR (c1, c2, . . .) (D.3)

For systems where both reaction and diffusion take place, the two processes are
usually assumed to be uncoupled: the change in concentration is simply the sum of
the change due to diffusion and the change due to reaction. That is,

∂tcS = −∂ijSi +

Nreactions∑
R=1

nRSkRfR (c1, c2, . . .) (D.4)
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D.2 Weak Forms for Unhomogenized Diffusion Equations

Chapter 1 introduced PDEs describing the diffusion of a chemical species through a
solvent. In D.1, this was extended to include production and consumption of new
molecules or ions of a given species through chemical reactions. Here, the general
weak form for these cases is derived. Both reaction and diffusion are included, and
the diffusion coefficient is permitted to be anisotropic and spatially variant.

First, we express the particle flux in a general form:

jSi = −DSijgSj (D.5)

where gSj is selected from the diffusion equation as follows:

for Fick’s Law: gSj = ∂jcS
for the Smoluchowski equation: gSj = ∂jcS + βcS∂jΨ
for the Smoluchowski exponential form: gSj = e−βΨ∂j

(
eβΨcS

) (D.6)

Substituting this definition of the flux into Equation D.4 for the time-derivative
of the concentration, we obtain the governing PDE:

∂tcS = ∂iDSijgSj +

Nreactions∑
R=1

nRSkRfR (D.7)

There is one such PDE for each species, S, forming a set of Nspecies equations
for the Nspecies unknowns, cS. Note that wether this equation is linear or nonlinear
depends on the linearity of gSj and fR. For example, a typical reaction rate law,
where the concentrations of the reactants are raised to various powers and multiplied
together, would result in a nonlinear PDE.

The weak form of the equation is obtained by multiplying by a species-specific
test function, vS.

∫
Ω

dΩ ∂tcSvS =

∫
Ω

dΩ ∂i (DSijgSj) vS +

Nreactions∑
R=1

nRSkR

∫
Ω

dΩ fRvS (D.8)

We seek to perform an integration by parts for the first term on the right hand
side. Applying the product rule,

∂i (DSijgSjvS) = ∂i (DSijgSj) vS +DSijgSj∂ivS (D.9)

Rearranging:

∂i (DSijgSj) vS = ∂i (DSijgSjvS)−DSijgSj∂ivS (D.10)

Integrating over the problem domain:

∫
Ω

dΩ ∂i (DSijgSj) vS =

∫
Ω

dΩ ∂i (DSijgSjvS)−
∫

Ω

dΩDSijgSj∂ivS (D.11)
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Applying the divergence theorem to the first term on the right hand side:

∫
Ω

dΩ ∂i (DSijgSj) vS =
∑

Γ

∫
Γ

dΓnΓiDSijgSjvS −
∫

Ω

dΩDSijgSj∂ivS (D.12)

where the sum is over all boundaries, Γ, of the problem domain, Ω.
If the boundary conditions consist only of Dirichlet and Neumann bondary con-

ditions, then the boundary condition term may be expressed as

∑
Γ

∫
Γ

dΓnΓiDSijgSjvS =
∑
ΓD

∫
ΓD

dΓnΓiDSijgSjvS +
∑
ΓN

∫
ΓN

dΓnΓiDSijgSjvS (D.13)

For the Dirichlet boundary surfaces, where the concentration, cS, is known, the
corresponding test function, vS, must be zero. Consequently, the Dirichlet boundary
surface terms drop out of the equation. The boundary condition sum is therefore
only over the Neumann boundary surfaces:

∫
Ω

dΩ ∂i (DSijgSj) vS =
∑
ΓN

∫
ΓN

dΓnΓiDSijgSjvS −
∫

Ω

dΩDSijgSj∂ivS (D.14)

The integration by parts of the term in Equation D.8 is now complete. Sub-
stituting this result into Equation D.8, the weak form of the general anisotropic
reaction-diffusion equation is:

∑
ΓN

∫
ΓN

dΓnΓiDSijgSjvS

−
∫

Ω

dΩDSijgSj∂ivS

+

Nreactions∑
R=1

nRSkR

∫
Ω

dΩ fRvS =

∫
Ω

dΩ ∂tcSvS

(D.15)

Weak forms suitable for use in FEM applications can be derived from Equation
D.15 by substitution of the appropriate expression for gSj from Equation D.6. Spe-
cial cases such as no reactions, isotropic diffusion, or a spatially invariant diffusion
coefficient can also be derived from Equation D.15.

D.3 Homogenization of Fickian Diffusion

Here, the homogenized corrector problem for steady-state Fickian diffusion, and the
REV integral to obtain the effective diffusion coefficient. The formulas derived here
allow for the local diffusion coefficient, D, to vary in space and be anisotropic. The
general formulas for similar equations are provided in Bensoussan et al. [12]. This
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section follows the same procedure, and specializes the general formulas to the prob-
lem Fickian diffusion. Note that Bensoussan et al. [12] uses different notation than
has been used herein. The equations in this section must necessarily make use of both
forms of notation, as the purpose is to equate the variables and operators appearing
in Bensoussan et al. [12] to those used herein. To reduce confusion, expressions or
equations coming directly from Bensoussan et al. [12] are enclosed in curly braces,
such as {Aε}.

In the two-scale homogenization procedure, x represents the large-scale coordinate
(such as distance measured in meters), and y represents the small-scale coordinate
(such as distance measured in nanometers). Accordingly, the REV is denoted by Y .
In this section, partial derivatives must explicitly indicate which coordinate scale they
are taken with respect to, as well as the direction thereof.

The PDE to homogenize is Fick’s law under steady-state conditions:

∂

∂xi

(
Dij

∂c

∂xj

)
= 0 (D.16)

The first step is to express Equation D.16 in the form of equation 1.1.5 of Ben-
soussan et al. [12]:

{Aεuε = f} (D.17)

By comparison, this requires:

{Aε} =
∂

∂xi

(
Dij

∂

∂xj

)
(D.18)

{uε} = c (D.19)

{f} = 0 (D.20)

From equation 1.1.3 of of Bensoussan et al. [12], {Aε} as{
Aε = − ∂

∂xi

(
aij

(x
ε

) ∂

∂xj

)
+ a0

(x
ε

)}
(D.21)

Consequently,
{aij} = −Dij (D.22)

{a0} = 0 (D.23)

Equation 2.2.3 of of Bensoussan et al. [12] provides{
A1 = − ∂

∂yi

(
aij(y)

∂

∂yj

)}
(D.24)

{
A2 = − ∂

∂yi

(
aij(y)

∂

∂xj

)
− ∂

∂xi

(
aij(y)

∂

∂yj

)}
(D.25)
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{
A3 = − ∂

∂xi

(
aij(y)

∂

∂xj

)
+ a0

}
(D.26)

Which, in this case, yields

{A1} = − ∂

∂yi

(
−Dij

∂

∂yj

)
(D.27)

{A2} = − ∂

∂yi

(
−Dij

∂

∂xj

)
− ∂

∂xi

(
−Dij

∂

∂yj

)
(D.28)

{A3} = − ∂

∂xi

(
−Dij

∂

∂xj

)
+ 0 (D.29)

And so, from equation 2.2.17 of Bensoussan et al. [12], the equation to solve on
the unit cell (Y ) for vector χ is{

A1χ
j = − ∂

∂yi
aij(y)

}
(D.30)

which becomes
− ∂

∂yi

(
−Dik

∂

∂yk

)
χj = − ∂

∂yi
(−Dij) (D.31)

∂

∂yi

(
Dik

∂χj
∂yk

)
=

∂

∂yi
Dij (D.32)

Equation D.32 is the homogenized corrector problem for Fickian diffusion, with
χj as the unknown corrector function. And from the homogenized result in equation
2.2.20 of Bensoussan et al. [12],{

− 1

|Y |

(∫
Y

(
aij − aik

∂χj

∂yk

)
dy

)
∂2u

∂xi∂xj
+

1

|Y |

(∫
Y

a0(y)dy

)
u = f

}
(D.33)

This becomes
Deff
ij

∂2c

∂xi∂xj
+ 0 = 0 (D.34)

with
Deff
ij = − 1

|Y |

∫
Y

dY

(
−Dij +Dik

∂χj
∂yk

)
(D.35)

Deff
ij =

1

|Y |

∫
Y

dY

(
Dij −Dik

∂χj
∂yk

)
(D.36)

Returning to the notation of Chapter 2, and with the REV as the problem domain,
Ω, Equations D.32 and D.36 become Equations D.37 and D.38, respectively.

∂i (Dik∂kχj) = ∂iDij (D.37)
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Deff
ij =

1

|Ω|

∫
Ω

dΩ (Dij −Dik∂kχj) (D.38)

Note that some references, including Anantharaman et al. [3], Anantharaman
and Le Bris [4], and Costaouec [30], use the opposite sign convention to define the
corrector function. That is, the corrector function may be defined as wj = −χj.
Provided that the appropriate signs are changed in both Equations D.37 and D.38,
the resulting expressions are equivalent:

−∂i (Dik∂kwj) = ∂iDij (D.39)

Deff
ij =

1

|Ω|

∫
Ω

dΩ (Dij +Dik∂kwj) (D.40)

D.4 Weak Form for Homogenized Fickian Diffusion

The objective of this section is to derive the weak form for the corrector problem of
Equation 2.12, so that the effective diffusion coefficient can be obtained from FEM
simulations described in Section 2.4.

Starting from Equation 2.12:

∂i (Dik∂kχj) = ∂iDij (D.41)

First, to obtain a scalar-valued functional, take the scalar product of a vector-
valued test function, vj, with the terms of this equation, and integrate the result over
the problem domain. ∫

Ω

dΩ vj∂i (Dik∂kχj) =

∫
Ω

dΩ vj (∂iDij) (D.42)

Numerical solvers often seek the roots of a given function, so it is convenient to
express this in the form of Equation D.43.∫

Ω

dΩ vj∂i (Dik∂kχj)−
∫

Ω

dΩ vj (∂iDij) = 0 (D.43)

While this weak form could be used, it has two undesirable features:

• A second derivative of χj is involved.

• Derivatives of the local diffusion coefficient, D, are involved, which is prob-
lematic when there are discontinuities in D, such as in the example of Section
D.5.

Accordingly, it is advantageous to apply integration by parts, to shift the gradient
operators to the test function.
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For the first term in Equation D.43, note the following product rule:

∂i (vjDik∂kχj) = (∂ivj) (Dik∂kχj) + vj∂i (Dik∂kχj) (D.44)

Rearranging,

vj∂i (Dik∂kχj) = ∂i (vjDik∂kχj)− (∂ivj) (Dik∂kχj) (D.45)

Integrating over the domain,

∫
Ω

dΩ vj∂i (Dik∂kχj) =

∫
Ω

dΩ ∂i (vjDik∂kχj)−
∫

Ω

dΩ (∂ivj) (Dik∂kχj) (D.46)

Applying the Divergence Theorem (Gauss’s Theorem) [6, 93] to the first term on
the right hand side, and rearranging the factors in the second term,

∫
Ω

dΩ vj∂i (Dik∂kχj) =
∑
ΓN

∫
ΓN

dΓnΓivjDik∂kχj −
∫

Ω

dΩDik (∂ivj) (∂kχj) (D.47)

For the second term in Equation D.43, note the following product rule:

∂i (Dijvj) = (∂iDij) vj +Dij (∂ivj) (D.48)

Rearranging,

(∂iDij) vj = ∂i (Dijvj)−Dij (∂ivj) (D.49)

Integrating over the domain,∫
Ω

dΩ (∂iDij) vj =

∫
Ω

dΩ ∂i (Dijvj)−
∫

Ω

dΩDij (∂ivj) (D.50)

Applying the Divergence Theorem to the first term on the right hand side,∫
Ω

dΩ (∂iDij) vj =
∑
ΓN

∫
ΓN

dΓnΓiDijvj −
∫

Ω

dΩDij (∂ivj) (D.51)

This completes the integrations by parts. Substituting the results of Equations
D.47 and D.51 into Equation D.43, the resulting weak form is:

∑
ΓN

∫
ΓN

dΓnΓivjDik∂kχj −
∫

Ω

dΩDik (∂ivj) (∂kχj)

−
∑
ΓN

∫
ΓN

dΓnΓiDijvj +

∫
Ω

dΩDij (∂ivj) = 0

(D.52)

Equation D.52 is a weak form of the corrector problem suitable for implementation
in FEM software.
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One special case of D.52 is when the local diffusion coefficient is isotropic: Dij =
Dδij. In this case, the weak form simplifies to Equation D.53.

∑
ΓN

∫
ΓN

dΓDnΓivj∂iχj −
∫

Ω

dΩD (∂ivj) (∂iχj)

−
∑
ΓN

∫
ΓN

dΓDnΓivi +

∫
Ω

dΩD (∂ivi) = 0

(D.53)

Note that an overall negative sign can be applied to this equation, and the result
would still be a valid solution. This can be a source of confusion when comparing weak
forms between different codes, and a source of errors when implementing extensions
to a given code.

This sign convention issue is further complicated by the possibility of an alternate
sign convention for the corrector function, wj = −χj, as noted in Section D.3. For
convenience of comparisons, the weak form from Equation D.53, under both of these
changes of sign, becomes

∑
ΓN

∫
ΓN

dΓDnΓivj∂iwj −
∫

Ω

dΩD (∂ivj) (∂iwj)

+
∑
ΓN

∫
ΓN

dΓDnΓivi −
∫

Ω

dΩD (∂ivi) = 0

(D.54)

D.5 Effective Diffusion Coefficient of Bi-Layered Media

As an example to demonstrate and verify the homogenization approach, consider
diffusion of a single chemical species through a medium consisting of alternating
layers of two isotropic materials. For simplicity, the problem is defined in only two
dimensions. The unit cell for such a medium is depicted in Figure D.1. The objective
is to obtain the effective diffusion coefficient for this medium. Naturally, this problem
could be generalized to multiple layers, but the essential features of the problem are
illustrated with only two layers, without the additional mathematical complications.
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DA

DB

t

αt

βt

Figure D.1: Unit cell for a medium consisting of two isotropic layers with diffusion
coefficients DA and DB. The total thickness of the unit cell is t, with layer thickness
values αt and βt.

Because of the layered structure, the medium may behave anisotropically. If the
coordinate system axes are aligned with the layer axes (that is, the axes are parallel
and perpendicular to the layers), the off-diagonal terms of the effective diffusion
coefficient, Deff

ij , should be zero. Consequently, Fick’s first law will have the form
shown in Equation D.55. [

j1

j2

]
= −

[
Deff

11 0
0 Deff

22

] [
∂1c
∂2c

]
(D.55)

Diffusion in the directions of the coordinate axes are thus decoupled, as shown in
Equation D.56.

j1 = −Deff
11∂1c

j2 = −Deff
22∂2c

(D.56)

Deff
11 and Deff

22 should depend only on the diffusion coefficients of layers, DA and
DB, and the relative thickness of the two layers. For a unit cell of thickness t, the
thickness values of the layers are αt and βt for materials A and B, respectively. Thus,
α + β = 1.

In this simple problem, the effective diffusion coefficient can be found without
homogenization theory. The approach used here is similar to the approach used for
the hydraulic conductivity of layered porous media in Bear [11].

First, solve for Deff
11 by considering diffusion in the direction parallel to the layers.

Because of the decoupling of the two directions, the concentration varies only in the
parallel direction as well. Thus, both layers are subjected to the same concentration
gradient, ∂1c but will have different fluxes, jA1 and jB1, as shown in Equation D.57.

jA1 = −DA∂1c
jB1 = −DB∂1c

(D.57)
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The total flux through the unit cell in the parallel direction, J1, can be obtained
by integrating the vector flux field over any line perpendicular to the layers.

J1 =

∫
Γ

dΓ j1 (D.58)

Because the flux is constant within each layer, this integral simplifies to

J1 = αtjA1 + βtjB1 (D.59)

In terms of the average flux, J1
t
, and substituting the expressions from D.57, this

becomes

J1

t
= −αDA∂1c− βDB∂1c (D.60)

Bringing out the common factors, this is

J1

t
= − (αDA + βDB) ∂1c (D.61)

The desired effective diffusion coefficient, Deff
11 , must satisfy

J1

t
= −Deff

11∂1c (D.62)

Comparing Equations D.61 and D.62, the effective diffusion coefficient is

Deff
11 = αDA + βDB (D.63)

The effective diffusion coefficient parallel to the layers is therefore simply the
weighted average of the isotropic coefficients of the layers.

Next, solve for Deff
22 by considering diffusion in the direction perpendicular to the

layers. In this case, the flux through each layer must be identical:

jA2 = jB2 = j2 (D.64)

Consequently, each layer must have a different value of the concentration gradient.
That is, the concentration will vary linearly within each layer, but the slope of this
linear variation will be different for each material.

From Fick’s Law within each material, then,

j2 = −DA (∂1c)A = −DB (∂1c)B (D.65)

Each concentration gradient is the total change in concentration within the layer,
divided by the layer thickness:

(∂1c)A = ∆Ac
αt

(∂1c)B = ∆Bc
βt

(D.66)
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And so Equation D.65 becomes

j2 = −DA
∆Ac

αt
= −DB

∆Bc

βt
(D.67)

The effective diffusion coefficient is defined by

j2 = −Deff
22

∆c

t
(D.68)

where the total change in concentration, ∆c, is the sum of the change in each layer:

∆c = ∆Ac+ ∆Bc (D.69)

and dividing this by the total thickness of the unit cell, t, results in:

∆c

t
=

∆Ac

t
+

∆Bc

t
(D.70)

Solving Equations D.67 and D.68 for the terms in Equation D.70,

∆Ac

t
= −j2α

DA

(D.71)

∆Bc

t
= −j2β

DB

(D.72)

∆c

t
= − j2

Deff
22

(D.73)

Substituting these expressions into Equation D.70:

− j2

Deff
22

= −j2α

DA

− j2β

DB

(D.74)

which simplifies to

1

Deff
22

=
α

DA

+
β

DB

(D.75)

Thus, the effective diffusion coefficient perpendicular to the layers is the inverse of
the sum of the inverses of the diffusion coefficients. This expression can be rewritten
as

Deff
22 =

DADB

βDA + αDB

(D.76)

In analogy to Ohm’s Law, when expressed in terms of conductance rather than
resistance, the effective diffusion coefficient adds linearly for layers in parallel, and
adds as the inverse of inverses for layers in series.
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The complete effective diffusion coefficient matrix for the two layers is

Deff
ij =

[
αDA + βDB 0

0 DADB
βDA+αDB

]
(D.77)

This same problem can also be solved using periodic homogenization, as described
in Section 2.5. The corrector problem is given in Equation 2.12. Within each layer,
the material is isotropic:

Dlayer
ij = Dlayerδij (D.78)

Under this condition, the corrector problem becomes

∂i
(
Dlayerδij∂kχj

)
= ∂iD

layerδij (D.79)

Applying the Kronecker deltas results in

∂i
(
Dlayer∂iχj

)
= ∂jD

layer (D.80)

The corrector problem in each direction is then

∂i
(
Dlayer∂iχ1

)
= ∂1D

layer = 0 (D.81)
∂i
(
Dlayer∂iχ2

)
= ∂2D

layer (D.82)

where ∂1D
layer = 0 because each layer is continuous in the parallel direction.

Expanding the implied sums:

∂1

(
Dlayer∂1χ1

)
+ ∂2

(
Dlayer∂2χ1

)
= 0 (D.83)

∂1

(
Dlayer∂1χ2

)
+ ∂2

(
Dlayer∂2χ2

)
= ∂2D

layer (D.84)

Applying the product rule, with ∂1D
layer = 0:

Dlayer∂1∂1χ1 +
(
∂2D

layer) ∂2χ1 +Dlayer∂2∂2χ1 = 0 (D.85)
Dlayer∂1∂1χ2 +

(
∂2D

layer) ∂2χ2 +Dlayer∂2∂2χ2 = ∂2D
layer (D.86)

Within a given layer, Dlayer is constant. However, at the interfaces between layers,
the derivative ∂2D

layer is not zero. In fact, because Dlayer changes abruptly at the
interfaces, ∂2D

layer does not exist at these locations. The corrector problem can
therefore be expressed as a set of PDEs within the layers, and a set of boundary
conditions applying at the interface between them. In fact, the PDE within a layer
is the same for both layers and both components:

Dlayer∂1∂1χj +Dlayer∂2∂2χj = 0 (D.87)
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Removing the common factor of Dlayer, this equation indicates that each compo-
nent of the corrector satisfies a Laplace equation within each material.

∂1∂1χj + ∂2∂2χj = 0 (D.88)

Because this Laplace equation is satisfied within each material, the equations for
the interface conditions may be simplified to

(
∂2D

layer) ∂2χ1 = 0 (D.89)(
∂2D

layer) ∂2χ2 = ∂2D
layer (D.90)

Because of the discontinuity, the partial derivatives ∂2, which do not exist at the
interfaces, must be replaced with differences across the interface:

∂2D
layer → D+ −D− (D.91)
∂2χj → χj

+ − χj− (D.92)

∂2∂2χj → (∂2χj)
+ − (∂2χj)

− (D.93)(
∂2D

layer) ∂2χj → D+ (∂2χj)
+ −D− (∂2χj)

− (D.94)

where the superscripts of plus and minus denote the quantities above and below the
interface, respectively.

The interface condition equations are therefore

D+ (∂2χ1)+ −D− (∂2χ1)− = 0 (D.95)

D+ (∂2χ2)+ −D− (∂2χ2)− = D+ −D− (D.96)

Note that these conditions allow χj itself to be continuous across the interfaces; only
∂2χj need have a discontinuity.

Furthermore, the equations for χ1 can be satisfied by a constant function, as
derivatives of zero satisfy the Laplace equation in each layer and the interface condi-
tion as well. Because the corrector function can be shifted by an arbitary constant,
zero is an acceptable value for the constant function itself.

χ1 = 0 (D.97)

Thus, only the solution of χ2 remains.
There are two interfaces:

• at x2 = βt, where material A is above the interface, and B is below (+ → A,
− → B), and

• at the unit cell boundary x2 = 0, which is periodically identical to x2 = t, where
material B is above the interface, and A is below (+→ B, − → A).
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Define the solution χ2 within layers A and B as χA2 and χB2, respectively. These
functions must satisfy the Laplace equations, the interface condition equations at
each interface, and the periodicity requirements.

within A: ∂1∂1χA2 + ∂2∂2χA2 = 0 (D.98)
within B: ∂1∂1χB2 + ∂2∂2χB2 = 0 (D.99)
at x2 = βt: DA (∂2χA2) |x2=βt −DB (∂2χB2) |x2=βt = DA −DB (D.100)
at x2 = 0 and x2 = t: DB (∂2χB2) |x2=0 −DA (∂2χA2) |x2=t = DB −DA (D.101)
at x2 = βt: χA2|x2=βt = χB2|x2=βt (D.102)
at x2 = βt: χA2|x2=t = χB2|x2=0 (D.103)

These equations define χ2 up to a shift by an arbitrary constant. The solution is

χA2 = −βM (t− x2)

χB2 = −αMx2

M =
DA −DB

βDA + αDB

(D.104)
(D.105)

(D.106)

The relevant partial derivatives are

∂2χA2 = βM ∂2χB2 = −αM (D.107)
∂2∂2χA2 = 0 ∂2∂2χB2 = 0 (D.108)

The solution is demonstrated by substitution into Equations D.98 through D.103:

within A: 0 + 0 = 0 (D.109)
within B: 0 + 0 = 0 (D.110)
at x2 = βt: DAβM +DBαM = DA −DB (D.111)
at x2 = 0 and x2 = t: −DBαM +DAβM = DB −DA (D.112)
at x2 = βt: −αβMt = −αβMt (D.113)
at x2 = βt: 0 = 0 (D.114)

Equations D.111 and D.112 are related by an overall negative sign. The simplifi-
cation of these equations, starting with the substitution of M , is

βDA (DA −DB) + αDB (DA −DB)

βDA + αDB

= DA −DB (D.115)

1 (DA −DB) = DA −DB (D.116)

Thus, the solution is confirmed.
Next, the solution for χj must be substituted into the REV integral of Equation

2.13, to obtain the effective diffusion coefficient matrix. Breaking the integral into the
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sum of integrals over the material layers, applying the condition of isotropy within
the materials (Dij = Dlayerδij), and noting that χj varies only in the x2 direction, the
expression for the effective diffusion coefficient becomes:

Deff
ij =

1

t

(
DA

∫ t

βt

dx2 (δij − ∂iχAj) +DB

∫ βt

0

dx2 (δij − ∂iχBj)
)

(D.117)

Applying the indices to evaluate all four terms of the effective diffusion coefficient:

Deff
11 =

1

t

(
DA

∫ t

βt

dx2 (δ11 − ∂1χA1) +DB

∫ βt

0

dx2 (δ11 − ∂1χB1)

)
(D.118)

Deff
12 =

1

t

(
DA

∫ t

βt

dx2 (δ12 − ∂1χA2) +DB

∫ βt

0

dx2 (δ12 − ∂1χB2)

)
(D.119)

Deff
21 =

1

t

(
DA

∫ t

βt

dx2 (δ21 − ∂2χA1) +DB

∫ βt

0

dx2 (δ21 − ∂2χB1)

)
(D.120)

Deff
22 =

1

t

(
DA

∫ t

βt

dx2 (δ22 − ∂2χA2) +DB

∫ βt

0

dx2 (δ22 − ∂2χB2)

)
(D.121)

Applying the Kronecker deltas and noting that χ1 = 0 and ∂1χ2 = 0:

Deff
11 =

1

t

(
DA

∫ t

βt

dx2 (1− 0) +DB

∫ βt

0

dx2 (1− 0)

)
(D.122)

Deff
12 =

1

t

(
DA

∫ t

βt

dx2 (0− 0) +DB

∫ βt

0

dx2 (0− 0)

)
(D.123)

Deff
21 =

1

t

(
DA

∫ t

βt

dx2 (0− 0) +DB

∫ βt

0

dx2 (0− 0)

)
(D.124)

Deff
22 =

1

t

(
DA

∫ t

βt

dx2 (1− ∂2χA2) +DB

∫ βt

0

dx2 (1− ∂2χB2)

)
(D.125)

Thus, the off-diagonal terms, Deff
12 and Deff

21 , are clearly zero. This matches the
result of the analytical solution. Only the diagonal terms of the matrix remain.

Taking the integrals in Equation D.122:

Deff
11 =

1

t

(
DA

∫ t

βt

dx2 +DB

∫ βt

0

dx2

)
(D.126)

=
1

t
(DAαt+DBβt) (D.127)

= αDA + βDB (D.128)

which matches the analytical result from Equation D.63.
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Substituting the derivatives of χ2 into Equation D.125:

Deff
22 =

1

t

(
DA

∫ t

βt

dx2 (1− βM) +DB

∫ βt

0

dx2 (1 + αM)

)
(D.129)

=
1

t
(DAαt (1− βM) +DBβt (1 + αM)) (D.130)

= αDA (1− βM) + βDB (1 + αM) (D.131)

Substituting the expression for M from Equation D.106:

Deff
22 = αDA

(
1− β DA −DB

βDA + αDB

)
+ βDB

(
1 + α

DA −DB

βDA + αDB

)
(D.132)

= αDA
βDA + αDB − β (DA −DB)

βDA + αDB

+ βDB
βDA + αDB + α (DA −DB)

βDA + αDB

(D.133)

Deff
22 = αDA

αDB + βDB

βDA + αDB

+ βDB
βDA + αDA

βDA + αDB

(D.134)

= αDA
DB

βDA + αDB

+ βDB
DA

βDA + αDB

(D.135)

=
αDADB + βDADB

βDA + αDB

(D.136)

=
DADB

βDA + αDB

(D.137)

which matches the analytical result from Equation D.76.
The homogenization prediction therefore matches the analytical result without

homogenization:

Deff
ij =

[
αDA + βDB 0

0 DADB
βDA+αDB

]
(D.138)

D.6 Effective Diffusion Coefficient in an Example with Spatially Varying
Dlocal

This section presents an example problem of homogenized Fickian diffusion in a two-
dimensional unit cell, where the local diffusion coefficient varies in space. Index
notation will not be used in this section.

The unit cell geometry is illustrated in Figure D.2. The side lengths of the unit
cell are denoted by the variables a and L, as shown. The boundary conditions are

c
(
x = −L

2

)
= cL

c
(
x = +L

2

)
= cR

(D.139)
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These conditions impose an average concentration gradient of

∆c

L
=
cR − cL
L

(D.140)

across the unit cell.

a

L

x
y

y = −a
2

y = +a
2

x
=
−
L 2

x
=

+
L 2

Figure D.2: Unit cell for the example Fickian diffusion problem.

First, consider a spatially varying diffusion coefficient of the form

Dlocal(x, y) = Dlocal(y) = D0

(
1 + α2y2

)
(D.141)

where D0 is the diffusion coefficient along the line y = 0, and α is a constant with
units of inverse length.

The steady-state Fickian diffusion equation for this situation is

∂

∂x

(
Dlocal

∂c

∂x

)
+

∂

∂y

(
Dlocal

∂c

∂y

)
= 0 (D.142)

For the given form of Dlocal,

∂
∂x

(Dlocal) = 0

∂
∂y

(Dlocal) = D02α2y
(D.143)

Following expansion of the outer partial derivatives and removal of D0 as a common
factor on all terms, the governing equation becomes

(
1 + α2y2

)( ∂2c

∂x2
+
∂2c

∂y2

)
+ 2α2y

∂c

∂y
= 0 (D.144)

The solution of this equation with the given boundary conditions is simply

c = cL +
cR − cL
L

x (D.145)
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That is, the concentration varies linearly between the left and right boundaries.
The flux of interest is

jx = −Dlocal
∂c

∂x
= −Dlocal

cR − cL
L

= D0

(
1 + α2y2

) cL − cR
L

(D.146)

Integrating this flux over a vertical line through the unit cell gives

J =

∫ a
2

−a
2

dy jx = D0
cL − cR
L

∫ a
2

−a
2

dy
(
1 + α2y2

)
= D0

cL − cR
L

a

(
1 +

α2a2

12

)
(D.147)

Using this flux in Equation D.223, the effective diffusion coefficient is

Deff
xx = −J

a

L

∆c
= −D0

cL − cR
L

(
1 +

α2a2

12

)
L

cR − cL
(D.148)

Deff
xx = D0

(
1 +

α2a2

12

)
(D.149)

In this case, the result is actually equivalent to the spatial average of Dlocal over
the unit cell:

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy Dlocal =
D0

a

∫ a
2

−a
2

dy
(
1 + α2y2

)
= D0

(
1 +

α2a2

12

)
(D.150)

This is analogous to one case presented in Section D.5, but this equivalence is not
generally true for all Dlocal variations, as will be shown by the following example.

Now consider a spatially varying diffusion coefficient of the form

Dlocal(x, y) = Dlocal(x) = D0

(
1 + α2x2

)
(D.151)

This form has partial derivatives

∂
∂x

(Dlocal) = D02α2x

∂
∂y

(Dlocal) = 0
(D.152)

After cancellation of the common factor D0, this results in a governing Fickian diffu-
sion equation of (

1 + α2x2
)( ∂2c

∂x2
+
∂2c

∂y2

)
+ 2α2x

∂c

∂x
= 0 (D.153)

This equation can be solved with c(x, y) = c(x), for which

∂c

∂y
= 0 (D.154)

Then, defining

f =
dc

dx
(D.155)
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the governing equation becomes(
1 + α2x2

) df
dx

+ 2α2xf = 0 (D.156)

df

dx
= − 2α2x

1 + α2x2
f (D.157)

The equation is thus separable.∫
1

f
df = −2α2

∫
x

1 + α2x2
dx (D.158)

A general form for the right-hand integral can be found in Gradshtĕın et al. [50], as
formula 2.103.5, for the case where α2 > 0, which requires only that α be real-valued.
The result of the integrals is therefore

ln |f | = − ln
∣∣1 + α2x2

∣∣+ lnK1 = ln
K1

|1 + α2x2|
(D.159)

Where lnK1 is the integration constant.
Exponentiating both sides, and taking the positive branch yields the solution

f =
dc

dx
=

K1

1 + α2x2
(D.160)

Separating variables again and integrating both sides,

c = K1

∫
1

1 + α2x2
dx (D.161)

This integral is also tabulated in Gradshtĕın et al. [50] or Leithold [83]. The solution
is

c(x) =
K1

α
arctan (αx) +K2 (D.162)

where K2 is the integration constant.
Applying the boundary conditions to solve for the integration constants,

K2 = cL+cR
2

K1 = cR−cL
2 arctan(αL2 )

α
(D.163)

The flux of interest is

jx = −Dlocal
∂c

∂x
= −D0

(
1 + α2x2

) cR − cL
2 arctan

(
αL
2

) α

1 + α2x2
(D.164)

jx = −D0
cR − cL

2 arctan
(
αL
2

)α (D.165)
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Integrating this flux over a vertical line through the unit cell gives

J =

∫ a
2

−a
2

dy jx = −D0
cR − cL

2 arctan
(
αL
2

)αa (D.166)

Again using the integrated flux in Equation D.223, the effective diffusion coeffi-
cient is

Deff
xx = −J

a

L

∆c
= D0

cR − cL
2 arctan

(
αL
2

)α L

cR − cL
(D.167)

Deff
xx = D0

αL

2 arctan
(
αL
2

) (D.168)

In this case, the result is not the spatial average of the diffusion coefficient, but
instead the inverse of the spatial average of the inverse:

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy
1

Dlocal
=

1

L

∫ L
2

−L
2

dx
1

D0 (1 + α2x2)
(D.169)

Using the same tabulated integrals as before, this is

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy
1

Dlocal
=

1

D0L

1

α
(arctan (αx)|x=L

2

x=−L
2

(D.170)

Because arctan is an anti-symmetric function, this is

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy
1

Dlocal
=

1

D0αL
2 arctan

(
αL

2

)
(D.171)

And the inverse of this matches the result above.
Both of these problems can also be solved analytically using homogenization the-

ory. From Equation D.38, the REV integral is

Deff
ij =

1

|Ω|

∫
Ω

dΩ (Dij −Dik∂kχj) (D.172)

For a case where Dlocal is isotropic,

Dij(x, y) = Dlocal(x, y)δij (D.173)

Under this condition, the REV integral becomes

Deff
ij =

1

|Ω|

∫
Ω

dΩDlocal (δij − ∂iχj) (D.174)

In this case, the desired component of the effective diffusion coefficient is the x-x
component:

Deff
xx =

1

|Ω|

∫
Ω

dΩDlocal (1− ∂xχx) (D.175)
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For the unit cell defined above, this is

Deff
xx =

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy Dlocal (1− ∂xχx) (D.176)

Only the x-component of the corrector is required by this integral.
From Equation D.37, the corrector problem is

∂i (Dik∂kχj) = ∂iDij (D.177)

For an isotropic local diffusion coefficient as described above, this becomes

∂i (Dlocal∂iχj) = ∂jDlocal (D.178)

The equation for χx is therefore

∂x (Dlocal∂xχx) + ∂y (Dlocal∂yχx) = ∂xDlocal (D.179)

For the condition where the local diffusion coefficient varies with y only, the partial
derivatives are

∂xDlocal = 0 (D.180)
∂yDlocal = 2D0α

2y (D.181)

The corrector problem is therefore

D0

(
1 + α2y2

)
(∂x∂xχx + ∂y∂yχx) + 2D0α

2y∂yχx = 0 (D.182)

This equation can be solved with ∂xχx = 0. The REV integral of Equation D.176 is
simply

Deff
xx =

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy Dlocal =
D0

a

∫ a
2

−a
2

dy
(
1 + α2y2

)
(D.183)

The result is therefore
Deff
xx = D0

(
1 +

α2a2

12

)
(D.184)

This matches the result from Equation D.149.
For the condition where the local diffusion coefficient varies with x only, the partial

derivatives are

∂xDlocal = 2D0α
2x (D.185)

∂yDlocal = 0 (D.186)

The corrector problem is therefore

D0

(
1 + α2x2

)
(∂x∂xχx + ∂y∂yχx) + 2D0α

2x∂xχx = 2D0α
2x (D.187)
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This equation is solvable with ∂yχx = 0. Defining

f = ∂xχx (D.188)

the corrector problem becomes the ordinary differential equation(
1 + α2x2

) df
dx

+ 2α2xf = 2α2x (D.189)

This equation can be re-arranged as

df

dx
+

2α2x

1 + α2x2
(f − 1) = 0 (D.190)

Defining
g = f − 1 (D.191)

and noting that
dg

dx
=
df

dx
(D.192)

the equation can then be expressed in the form

dg

dx
= − 2α2x

1 + α2x2
g (D.193)

This equation is separable: ∫
1

g
dg = −2α2

∫
x

1 + α2x2
dx (D.194)

The right-hand side can be integrated using formula 2.103.5 from Gradshtĕın et al.
[50]. After some further algebra, and selecting the proper branch of an absolute value,
the result becomes

g =
Q1

1 + α2x2
(D.195)

where Q1 is an integration constant. The value of this constant can be obtained from
the requirement that χx must be periodic.

χx =

∫
∂xχxdx =

∫
fdx =

∫
(1 + g) dx (D.196)

χx =

∫ (
1 +

Q1

1 + α2x2

)
dx = x+

Q1

α
arctan(αx) +Q2 (D.197)

where Q2 is an integration constant that does not affect the result. From this result,
the values of χx at the right and left boundaries are

χx

(
x =

L

2

)
=
L

2
+
Q1

α
arctan

(
αL

2

)
+Q2 (D.198)

χx

(
x = −L

2

)
= −L

2
+
Q1

α
arctan

(
−αL

2

)
+Q2 (D.199)
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Because arctan is an anti-symmetric function, the left boundary value is the same as

χx

(
x = −L

2

)
= −L

2
− Q1

α
arctan

(
αL

2

)
+Q2 (D.200)

For χx to be periodic, these values must satisfy

χx

(
x =

L

2

)
= χx

(
x = −L

2

)
(D.201)

which can also be written as

χx

(
x =

L

2

)
− χx

(
x = −L

2

)
= 0 (D.202)

Substituting the expressions for χx at the boundaries into this equation gives

L+ 2
Q1

α
arctan

(
αL

2

)
= 0 (D.203)

Solving for Q1, this yields

Q1 = − αL

2 arctan
(
αL
2

) (D.204)

The REV integral of Equation D.176 involves the expression

1− ∂xχx = 1− f = 1− (1 + g) = −g (D.205)

And so, the REV integral becomes

Deff
xx =

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy Dlocal (1− ∂xχx) = − 1

L

∫ L
2

−L
2

dxDlocalg (D.206)

Deff
xx = − 1

L

∫ L
2

−L
2

dxD0

(
1 + α2x2

) Q1

1 + α2x2
= − 1

L

∫ L
2

−L
2

dxD0Q1 (D.207)

And so the final result is

Deff
xx = −D0Q1 = D0

αL

2 arctan
(
αL
2

) (D.208)

which matches the result in Equation D.168.
This example problem with a spatially varying local diffusion coefficient has there-

fore illustrated that the same result for the effective diffusion coefficient can be ob-
tained from an integrated flux calculation and from homogenization theory.
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D.7 Conditions for Symmetry of the Homogenized Diffusion Coefficient
Matrix

The purpose of this section is to investigate conditions that would lead to the sym-
metry of an effective diffusion coefficient computed from Equation 2.13. A symmetric
effective diffusion coefficient must satisfy Deff

ij = Deff
ji . Equivalently, a symmetric

effective diffusion coefficient will satisfy ∆ij = 0, where

∆ij = Deff
ij −Deff

ji (D.209)

Substituting into this expression the domain integral of Equation 2.13,

∆ij =
1

|Ω|

∫
Ω

dΩ (Dij −Dik∂kχj)−
1

|Ω|

∫
Ω

dΩ (Dji −Djk∂kχi) (D.210)

Combining the integrals,

∆ij =
1

|Ω|

∫
Ω

dΩ (Dij −Dji +Djk∂kχi −Dik∂kχj) (D.211)

As noted in Section 1.7 the local diffusion coefficient, Dij, is usually symmetric.
(If not, there is little hope of symmetry at larger scales.) Thus, Dij −Dji = 0, and
so

∆ij =
1

|Ω|

∫
Ω

dΩ (Djk∂kχi −Dik∂kχj) (D.212)

In the strict sense, this is the necessary condition for symmetry of the effective dif-
fusion coefficient matrix. The integrand may change sign over regions of the problem
domain in unpredictable ways, so while this indicates that symmetry of the effective
diffusion coefficient matrix is possible, Equation D.212 does not provide a convenient
way to assess if a given problem will have a symmetric matrix or not.

Further insight may be gained by considering a condition that is not necessary,
but is sufficient for the symmetry of the matrix. Specifically, consider the condition
where the integrand is zero at all locations in the problem domain. That is, if

∆ij =
1

|Ω|

∫
Ω

dΩ fij (D.213)

where
fij = Djk∂kχi −Dik∂kχj (D.214)

then clearly fij = 0 is clearly a sufficient condition (though not necessary) for ∆ij = 0.
Note that fij is anti-symmetric:

fij = −fji (D.215)
fij = 0 where i = j (D.216)
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To illustrate that fij is not guaranteed to be zero, consider a two-dimensional
problem. In this case, f12 = −f21 is the only off-diagonal element. Expanding the
indices, this element is explicitly:

f12 = D2k∂kχ1 −D1k∂kχ2 (D.217)
= D21∂1χ1 −D11∂1χ2 +D22∂2χ1 −D12∂2χ2 (D.218)
= −D11∂1χ2 +D12 (∂1χ1 − ∂2χ2) +D22∂2χ1 (D.219)

While the condition f12 = 0 would result in a symmetric matrix for a two-
dimensional problem, the condition is complicated enough that it would not appear
to be true in general. Indeed, setting up a two-dimensional problem where this was
the case would not be easy.

In summary, there can be situations in which the effective diffusion coefficient
matrix is not symmetric, and the most convenient way to assess its symmetry is
to solve the corrector problem and then evaluate the effective diffusion coefficient
matrix directly. In some cases, such as the example in Section D.5, the result will be
symmetric. But in other cases it may not be. The symmetry of the effective diffusion
coefficient matrix cannot be guaranteed.

D.8 Effective Diffusion Coefficient from Solution of Fick’s Law

For sufficiently simple three-dimensional geometries, the effective diffusion coefficient
can be computed directly from the concentration and flux fields obtained by solution
of the Fickian diffusion problem at the smaller scale. This section presents the for-
mulas for such calculation. Because this procedure does not rely on homogenization,
it be used to verify homogenization results in some cases. For the purpose of this
section, index notation is not used.

To compute the effective diffusion constant, the three-dimensional diffusion prob-
lem is considered from the perspective of a simpler one-dimensional diffusion problem.
For the application of Section 3.3, the one-dimensional problem is diffusion across the
membrane. The Fickian diffusion equation in one dimension can be written as

j = −Dbulk
dc

ds
(D.220)

where:
s = position within the one-dimensional domain
j = j(s) = flux at any point, in units of

number of particles per unit area per unit time
Dbulk = diffusion constant of the medium, in units of area per unit time

c = c(s) = concentration at any point, in units of
number of particles per unit volume

dc
ds

= first spatial derivative of concentration
Note that in the one-dimensional problem, the flux j is a scalar rather than a

vector.
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The three-dimensional problem is converted to an equivalent one-dimensional
problem by integrating over the area of the unit cell, in the two directions perpendic-
ular to the one-dimensional diffusion problem. The total flux across the membrane
will be given by:

Jcell = −Dbulk

∫
cell
dA

∂c

∂s
(D.221)

Define the effective diffusion constant such that the integrated flux is the same,
when used with an the average concentration gradient across the membrane:

Jcell = −DeffAcell
∆c

∆s
(D.222)

where:
Jcell = integral of flux over the pore, in units of

number of particles per unit time
Acell = area of unit cell
Deff = unknown effective diffusion constant
∆c = change in concentration
∆s = distance over which concentration changes

Re-arranging this equation to solve for the unknown Deff:

Deff = − Jcell
Acell

∆s

∆c
(D.223)

The integrated flux, Jmodel, is calculated from the model by integrating the ion
flux over a surface parallel to the membrane surface. The result should be the same
for any such surface capturing the full extents of the model. That is, the integrated
flux should be the same when integrating over the model pore as when integrating
over the upgradient or downgradient boundary of the model.

Specifically, the integrated flux is calculated as:

Jmodel =

∫
model

dA
(
n̂ ·~j

)
= −Dbulk

∫
model

dA
(
n̂ · ~∇c

)
(D.224)

where n̂ is the directed normal to the surface, and c is the concentration field
found by solving the model.

The model of Section 3.3 used two planes of symmetry to reduce the mesh size.
Consequently, the flux obtained by integration is only one quarter of the total for
the unit cell. That is, Jcell = 4Jmodel. Using the distances defined in Section 3.2,
Acell = 4LxLy:

Deff = −4Jmodel

4LxLy

∆s

∆c
= −Jmodel

LxLy

∆s

∆c
(D.225)

For convenience, define the integral

Igc =

∫
model

dA
(
n̂ · ~∇c

)
(D.226)
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then the flux integral is simply

Jmodel = −DbulkIgc (D.227)

and the effective diffusion constant is

Deff = Dbulk
Igc
LxLy

∆s

∆c
(D.228)

This can also be written as

Deff

Dbulk
=

Igc
LxLy

∆s

∆c
(D.229)

The values of ∆c and ∆s are calculated by extracting the concentration result at
two points located symmetrically on opposite sides of the membrane. The difference
in concentration between these two points is ∆c, and the distance between them is
∆s.

Slightly different results for the value ofDeff could be attained by selecting different
pairs of symmetrically located points. The results in Section 3.3 were taken with these
two points located along the centerline of the pore, at both faces of the membrane.

D.9 Reactive Boundary Condition

The purpose of this section is to derive the weak form needed to implement the
reactive boundary condition described in Section 3.5. The method presented here is
similar to that of Song et al. [123].

First, assume the presence of an enzyme that catalyzes the reaction R+E→ P+E,
where R is the reactant, P is the product, and E is the enzyme. The reaction is rate-
limited by the diffusion of the reactants and products to and from the active site.
The reaction can therefore be simulated by equating the flux of reactant to the active
site and the flux of product away:

−jPi = jRi (D.230)

The flux of each species is related to its concentration through the Smoluchowski
equation, with the potential fully controlled by electrostatics. Assuming an isotropic
diffusion constant, D, which is the same for the two species, this gives:

jSi = −De−βzSΦ∂i
(
eβzSΦcS

)
(D.231)

The Slotboom transformation is given by:

DS = De−βzSΦ (D.232)

cS = cSe
βzSΦ (D.233)

Note that while D is the same for both species, DS is not, because it depends on
the species charge.
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Applying the Slotboom transformation, the flux definition for each species is:

jPi = −DP∂icP (D.234)

jRi = −DR∂icR (D.235)

The reactive boundary condition is therefore:

DP∂icP = −DR∂icR (D.236)

The general weak form for species S of the Smoluchowski equation is

∫
Ω

dΩ ∂t(cS)vS =

∫
∂Ω

dΓDSijnΓi∂j (cS) vS −
∫

Ω

dΩDSij∂j (cS) ∂i (vS) (D.237)

(Note that cS on the left hand side is not Slotboom-transformed.)
For isotropic diffusion, this simplifies to

∫
Ω

dΩ ∂t(cS)vS =

∫
∂Ω

dΓDSnΓi∂i (cS) vS −
∫

Ω

dΩDS∂i (cS) ∂i (vS) (D.238)

The complete weak form, including both species, is therefore

∫
Ω

dΩ ∂t(cP )vP +

∫
Ω

dΩ ∂t(cR)vR =∫
∂Ω

dΓDPnΓi∂i (cP ) vP +

∫
∂Ω

dΓDRnΓi∂i (cR) vR

−
∫

Ω

dΩDP∂i (cP ) ∂i (vP )−
∫

Ω

dΩDR∂i (cR) ∂i (vR)

(D.239)

For the reactive boundary, define a single boundary term, BT , that is the sum of
the boundary terms for the two species:

BT =

∫
Γreact

dΓDPnΓi∂i (cP ) vP +

∫
Γreact

dΓDRnΓi∂i (cR) vR (D.240)

BT =

∫
Γreact

dΓnΓi

(
DP∂i (cP ) vP +DR∂i (cR) vR

)
(D.241)

Substituting in the reactive boundary condition (DP∂icP = −DR∂icR), this be-
comes

BT =

∫
Γreact

dΓnΓi

(
−DR∂i (cR) vP +DR∂i (cR) vR

)
(D.242)

BT =

∫
Γreact

dΓDRnΓi∂i (cR) (vR − vP ) (D.243)
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This is the boundary term that should be included in the weak form for each
reactive boundary.

Using vector calculus notation, this term is

BT =

∫
Γreact

dΓDR (n̂ · ∇cR) (vR − vP ) (D.244)

Note that the term could be written equivalently as

BT =

∫
Γreact

dΓDP (n̂ · ∇cP ) (vP − vR) (D.245)

D.10 Langevin Dynamics in a Harmonic Potential

Consider a particle simultaneously subjected to Brownian motion and overdamped
harmonic oscillation, as discussed in Section 4.2. The applicable equation of motion
is a Langevin equation. Beginning with Equation 4.1:

M∂t∂txi = −ξ∂txi − ∂iU(xi) + Fi (D.246)

where

M = particle mass JMK
xi = time-dependent particle position vector JLK
ξ = coefficient of friction

q
M
T

y

Fi = force varying randomly in time JFK
U = harmonic restraining potential JEK

= 1
2
K (xi − ai)2

K = spring constant defining harmonic potential strength
q

F
L

y

ai = position vector for center of harmonic potential JLK
∂iU(xi) = K (xi − ai) JFK

In the limit of strong friction

|ξ∂txi| � |M∂t∂txi| (D.247)

Consequently, the overdamped condition may be expressed as

M∂t∂txi → 0 (D.248)

The Langevin equation is the same in each coordinate direction, and there are no
terms coupling orthogonal components, so each may be component may be considered
independently. Defining q = xi − ai such that U = 1

2
Kq2, and with f = Fi for

convenience, the equation of motion for a single direction may be expressed as

ξ∂tq = −Kq + f (D.249)
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The MSD can be obtained by assuming a steady-state condition. In this condition,
the probability distribution for the particle location will be a Boltzmann distribution.

p(q) = Ce−βU (D.250)

where

p(q) = probability density of particle at position q
q
L−Nd

y

C = normalization constant for probability density
q
L−Nd

y

The normalization constant can be found from the requirement that the integral
of the probability density is 1.

C

∫
Ω

dΩ e−
1
2
βKq2 = 1 (D.251)

This is a Gaussian integral. The solution is

C =

√
βK

2π
(D.252)

The MSD can be calculated directly from the probability distribution.

〈q2〉 =

∫
Ω

dΩ p(q)q2 (D.253)

〈q2〉 =

√
βK

2π

∫
Ω

dΩ q2e−
1
2
βKq2 (D.254)

This is another Gaussian integral.

〈q2〉 =

√
βK

2π

1

2

√
π

(
2

βK

) 3
2

(D.255)

〈q2〉 =
1

βK
(D.256)

This is the result presented in Equation 4.2. Other derivations of this MSD can
be obtained from the equipartition theorem [98, 108].

The ACF can be obtained directly from the Langevin equation. The procedure
shown here follows a similar procedure shown in Reif [108]. Equation D.249 is inte-
grated with respect to time over an interval ∆t starting at t = s.

ξ

∫ s+∆t

s

dt ∂tq = −K
∫ s+∆t

s

dt q(t) +

∫ s+∆t

s

dt f (D.257)

From the fundamental theorem of calculus, this is

ξ (q(s+ ∆t)− q(s)) = −K
∫ s+∆t

s

dt q(t) +

∫ s+∆t

s

dt f (D.258)

119



Multiply both sides of this equation by q(t = 0) and take the ensemble average.

ξ (〈q(0)q(s+ ∆t)− q(0)q(s)〉) = −K〈q(0)

∫ s+∆t

s

dt q(t)〉+〈q(0)

∫ s+∆t

s

dt f〉 (D.259)

The last term is zero because q is independent of f . Divide the remaining terms
by ∆t and take the limit ∆t→ 0.

ξ lim
∆t→0

〈q(0)q(s+ ∆t)− q(0)q(s)〉
∆t

= lim
∆t→0

−K
〈q(0)

∫ s+∆t

s
dt q(t)〉

∆t
(D.260)

ξ
d

ds
〈q(0)q(s)〉 = −K〈q(0)q(s)〉 (D.261)

The solution of this differential equation is

〈q(0)q(s)〉 = Ce−
K
ξ
s (D.262)

The integration constant can be found from the requirement that

〈q(0)q(s = 0)〉 = 〈q2〉 (D.263)

C = 〈q2〉 (D.264)

Replacing the variable s with t:

〈q(0)q(t)〉 = 〈q2〉e−
t
τ (D.265)

where

τ =
ξ

K
(D.266)

This is the result presented in Equation 4.3.

D.11 Gauge-Dependence in the Homogenized Smoluchowski Equation
with the Slotboom Transformation

This section illustrates how the effective diffusion coefficient result of the homogenized
Smoluchowski diffusion problem with the Slotboom transformation is affected by
shifting the potential by a constant value. The corrector problem for this situation is
shown in Equation D.267, and the REV integral is shown in Equation D.268.

∂i
(
Dik∂kχj

)
= ∂iDij (D.267)

D
eff
ij =

1

|Ω|

∫
Ω

dΩ
(
Dij −Dik∂kχj

)
(D.268)
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The potential is shifted by a constant value Λ:

Ψ −→ Ψ + Λ (D.269)

The effect on D is shown in Equation D.270.

Dij = Dije
−βΨ −→ Dije

−βΨe−βΛ = e−βΛDij (D.270)

Substituting this into the corrector problem,

∂i
(
e−βΛDik∂kχj

)
= ∂i

(
e−βΛDij

)
(D.271)

Because e−βΛ is spatially invariant, this becomes

e−βΛ∂i
(
Dik∂kχj

)
= e−βΛ∂iDij (D.272)

The exponential constant on both sides can be canceled out, and so the corrector
problem is unaffected by the shift of the potential.

Substituting into the REV integral, however,

D
eff
ij =

1

|Ω|

∫
Ω

dΩ
(
e−βΛDij − e−βΛDik∂kχj

)
(D.273)

D
eff
ij = e−βΛ 1

|Ω|

∫
Ω

dΩ
(
Dij −Dik∂kχj

)
(D.274)

Thus, Deff
ij is scaled by a factor that is exponential in the shift value of the potential.

This is consistent with an interpretation of the homogenization result as D, which is
a gauge-dependent quantity, rather than as D.

If the result of homogenization is D rather than D, how can the effective diffusion
coefficient be obtained from the homogenized Smoluchowski equation? One possible
solution would be to obtain a factor that performs the transformation between these
two quantities, analogous to the Slotboom transformation at the smaller scale.

Consider a factor Ξ such that

Deff = DeffΞ (D.275)

Presumably, Ξ would be a scalar constant for the larger scale, but would depend on
the potential at the smaller scale. That is, Ξ would be a functional of the potential.
If such a functional could be found, then after the homogenized D was obtained, the
desired effective diffusion coefficient would be obtained by

Deff =
Deff

Ξ
(D.276)

Further insight into this issue, and a possible form of the functional Ξ(ψ) is pre-
sented in Section D.12.
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D.12 An Example Problem for the Homogenized Smoluchowski Equation

This section presents an example problem of homogenized Smoluchowski diffusion,
where the potential includes an explicit additive constant. The problem is sufficiently
simple that an effective diffusion coefficient can also be obtained without the use of
homogenization theory. Comparing the results of the two methods provides insight
into the proper interpretation of the homogenization result.

The problem consists of a two-dimensional unit cell where a single chemical species
diffuses while subjected to a potential varying only in one direction. For the purpose
of clarity, index notation will not be used in this section.

The problem is illustrated in Figure D.3. The dimensions of the unit cell are a by
L, with a potential defined by Equation D.277, where A is a scaling coefficient, and B
is the explicit constant shift for the potential. Both of these constants may be freely
selected. In particular, changes to B should not affect any physically measurable
quantities, including the concentration, c, (although c will be affected), the flux, and
the resulting effective diffusion coefficient.

ψ(y) = Ay2 +B (D.277)

a

L

x
y

y = −a
2

y = +a
2

x
=
−
L 2

x
=

+
L 2 ψ(y)

y

B

x

c
cR

cL
ψ(y) = Ay2 +B

Figure D.3: Unit cell geometry, potential, and solution for the example Smoluchowski
diffusion problem.

The boundary conditions for the problem are given by Equation D.278 in terms
of the Slotboom-transformed variables. The resulting concentration field will give a
Boltzmann distribution for the concentration at each value of x, as shown in Equation
D.279 for the boundaries. The local diffusion coefficient, D, is isotropic and spatially
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invariant. Under these conditions, the solution of the Slotboom-transformed Smolu-
chowski diffusion problem is that c will vary linearly with y, as shown in Figure
D.3.

c
(
x = −L

2

)
= cL

c
(
x = +L

2

)
= cR

(D.278)

c
(
x = −L

2
, y
)

= cLe
−βψ(y)

c
(
x = +L

2
, y
)

= cRe
−βψ(y) (D.279)

The objective here is to obtain the effective diffusion coefficient for the x-direction,
Deff
xx. First, this can be done using the integrated flux as shown in Section D.8. For this

approach, the x-component of the flux, jx is needed. Starting from the Smoluchowski
flux definition, in Slotboom-transformed form,

jx = −D∂c

∂x
(D.280)

Substituting in the Slotboom-transformed diffusion coefficient and the constant slope
of c from above, this becomes

jx = −De−βψ(y) cR − cL
L

= D
cL − cR
L

e−βψ(y) (D.281)

The integrated flux of interest is

J =

∫ a
2

−a
2

dy jx (D.282)

Using the result for jx from above, this is

J = D
cL − cR
L

∫ a
2

−a
2

dy e−βψ(y) (D.283)

Applying the form of the potential from Equation D.277,

J = D
cL − cR
L

∫ a
2

−a
2

dy e−β(Ay
2+B) (D.284)

This simplifies to

J = D
cL − cR
L

e−βB
∫ a

2

−a
2

dy e−βAy
2

(D.285)

Defining the Gaussian integral

I(A) =
1

a

∫ a
2

−a
2

dy e−βAy
2

= 2

∫ 1
2

0

ds e−βAa
2s2 (D.286)

The integrated flux is

J = D
cL − cR
L

e−βBaI(A) (D.287)
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From Equation D.223, the effective diffusion coefficient is

Deff
xx = −J

a

L

∆c
(D.288)

The concentration gradient to be used in Equation D.288 should be the average
gradient over the unit cell. (Note: this definition of the large-scale gradient may be
inconsistent with the large-scale steady-state solution of the Smoluchowski equation.
An alternative definition of the large-scale gradient may be better. This issue is
unresolved at the time of this writing.) This can be obtained by taking the average
concentration over the boundaries and computing the gradient between these two
average concentrations, or by taking the gradient at each value of y and then averaging
the gradients over the unit cell. Both approaches give the same average gradient in
this case.

First, taking the average concentration at each boundary,

caverage(x) =
1

a

∫ a
2

−a
2

dy c(x)e−βψ(y) = c(x)
1

a

∫ a
2

−a
2

dy e−βψ(y) (D.289)

and so

∆c

L
=
caverage(x = L/2)− caverage(x = −L/2)

L
=
cR − cL
L

1

a

∫ a
2

−a
2

dy e−βψ(y) (D.290)

For the approach of taking the average of the gradients,

∆c(y) = c(x = L/2)− c(x = −L/2) = (cR − cL) e−βψ(y) (D.291)

and so the average of the gradient over the unit cell is

∆c

L
=

1

a

∫ a
2

−a
2

dy
∆c(y)

L
=

1

aL

∫ a
2

−a
2

dy (cR − cL) e−βψ(y) =
cR − cL
L

1

a

∫ a
2

−a
2

dy e−βψ(y)

(D.292)
As indicated above, this is the same result for the average gradient for both ap-
proaches. This expression can be further expanded as

∆c

L
=
cR − cL
L

e−βB
1

a

∫ a
2

−a
2

dy e−βAy
2

=
cR − cL
L

e−βBI(A) (D.293)

Using this average gradient and the integrated flux from Equation D.287 in Equa-
tion D.288, the effective diffusion coefficient is

Deff
xx = −J

a

L

∆c
= D

cL − cR
L

e−βBI(A)
L

−∆c
(D.294)

Deff
xx = D

cL − cR
L

e−βBI(A)
L

cL − cR
1

e−βBI(A)
(D.295)
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Deff
xx = D (D.296)

This result reflects the fact that the potential does not vary in the x-direction, so
there is no force applied to the diffusing particles in this direction. Consequently, the
potential has no effect on the effective diffusion coefficient in this direction.

For the homogenization approach, the end result in this case comes from the
integral

D
eff
xx =

1

|Ω|

∫
Ω

dΩ
(
Dxx −Dxx∂xχx −Dxy∂yχx

)
(D.297)

Because of the isotropic local diffusion coefficient, Dxx = D and Dxy = 0. Thus,

D
eff
xx =

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy
(
D −D∂xχx

)
(D.298)

This simplifies to

D
eff
xx =

1

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy D (1− ∂xχx) (D.299)

D
eff
xx =

D

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy e−βψ(y) (1− ∂xχx) (D.300)

Note that only the x-component of the corrector is needed, χx. (In fact, only one
of its partial derivatives is needed.) The corrector problem corresponding to this
component is

∂x
(
D∂xχx

)
+ ∂y

(
D∂yχx

)
= ∂xD (D.301)

Substituting in the expression for D, the constant coefficient D cancels out, leaving

∂x
(
e−βψ(y)∂xχx

)
+ ∂y

(
e−βψ(y)∂yχx

)
= ∂xe

−βψ(y) (D.302)

Applying the partial derivatives and the product rule,

e−βψ(y)∂x∂xχx + e−βψ(y)∂y∂yχx + ∂y
(
e−βψ(y)

)
∂yχx = 0 (D.303)

e−βψ(y)∂x∂xχx + e−βψ(y)∂y∂yχx − βe−βψ(y)∂y (ψ(y)) ∂yχx = 0 (D.304)

The exponentials cancel out as well, leaving

∂x∂xχx + ∂y∂yχx − β∂y (ψ(y)) ∂yχx = 0 (D.305)

This problem can be solved by χx of the form

∂yχx = Q1e
βAy2 (D.306)
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for constant Q1. (In fact, χx must be periodic, which requires Q1 = 0.) This solution
results in ∂xχx = 0. Substituting this result into Equation D.300, the result becomes

D
eff
xx =

D

a

∫ a
2

−a
2

dy e−βψ(y) (D.307)

This expands to

D
eff
xx = De−βB

1

a

∫ a
2

−a
2

dy e−βAy
2

(D.308)

In this case, this is equivalent to

D
eff
xx = D

1

|Ω|

∫
Ω

dΩ
(
e−βψ

)
(D.309)

However, this is not a general rule, as the next example will show.
Comparison of the results in Equation D.296 with those of Equation D.308 shows

that the result of homogenization depends on the potential, even though the potential
has no gradient in the direction of interest. In this case, the result for the effective
diffusion coefficient could still be obtained by scaling by the spatial average of the
exponential function of the potential. This, however, is not a general result.

The results of this problem are strikingly different for the case where the po-
tential varies in the x-direction, ψ(x, y) = ψ(x). In such a case, the steady-state
Smoluchowski equation simplifies to

∂2c

∂x2
− β∂ψ

∂x

∂c

∂x
= 0 (D.310)

Each term contains at least one derivative of c, and the boundary conditions allow c
to be constant with respect to y. Defining

f(x) =
∂c

∂x
(D.311)

the steady-state Smoluchowski equation becomes the ordinary differential equation

df

dx
− βdψ

dx
f = 0 (D.312)

The solution may be of the form

f =
dc

dx
= K1e

βψ (D.313)

where K1 is a constant determined by the boundary conditions. For boundary con-
ditions of constant c at the left and right boundaries as indicated above, the solution
is

K1 =
cR − cL∫ L
2

−L
2

dx eβψ
(D.314)
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This gives a flux of
jx = −DK1 (D.315)

and the resulting effective diffusion coefficient is

Deff
xx = DK1

L

∆c
(D.316)

In particular, for the potential

ψ(x) = Ax2 +B (D.317)

the boundary conditions are

cR = cRe
βψ(x=L

2 ) = cRe
βAL2

4 eβB

cL = cLe
βψ(x=−L

2 ) = cRe
βAL2

4 eβB
(D.318)

This gives a K1 value of

K1 =
(cR − cL) eβA

L2

4 eβB∫ L
2

−L
2

dx eβAx2eβB
(D.319)

Again, the large-scale gradient is based on the average of the concentration at the
boundary, which may be inconsistent with the large-scale steady-state solution of the
Smoluchowski equation. But with this assumption, the value of the effective diffusion
coefficient is

Deff
xx = D

LeβA
L2

4 eβB

eβB
∫ L

2

−L
2

dx eβAx2
= D

LeβA
L2

4∫ L
2

−L
2

dx eβAx2
(D.320)

Note that this result does not depend on the value of B. Thus, a shift of the potential
by a constant value would not affect this result.

For the homogenization approach, the relevant REV integral is

D
eff
xx =

D

aL

∫ L
2

−L
2

dx

∫ a
2

−a
2

dy e−βψ(x) (1− ∂xχx) (D.321)

and the relevant corrector equation is

∂x
(
D∂xχx

)
+ ∂y

(
D∂yχx

)
= ∂xD (D.322)

where
∂x
(
D
)

= D∂xe
−βψ = −βDe−βψ∂xψ = −βD∂xψ (D.323)

The relevant derivative of the potential is

∂xψ = 2Ax (D.324)

Defining
f = ∂xχx (D.325)
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and assuming χx varies only in the x-direction, the corrector problem becomes the
ordinary differential equation

−β2Axf +
df

dx
= −β2Ax (D.326)

The solution is
f = ∂xχx = 1−G1e

βAx2 (D.327)

where G1 is a constant that can be obtained from the boundary conditions. Specifi-
cally, χx must be periodic. In this case, periodicity is enforced by requiring χx to be
continuous across the unit cell boundaries.

χx =

∫
dx ∂xχx =

∫
dx f (D.328)

χx = x−G1

∫
dx eβAx

2

+G2 (D.329)

where G2 is an arbitrary constant that will not affect the results. The values of χx
at the right and left boundaries are

χx

(
x =

L

2

)
=
L

2
−G1

∫
dx eβAx

2

∣∣∣∣L2 +G2 (D.330)

χx

(
x = −L

2

)
= −L

2
−G1

∫
dx eβAx

2

∣∣∣∣−L2 +G2 (D.331)

The requirement of continuity at the boundary is

χx

(
x =

L

2

)
= χx

(
x = −L

2

)
(D.332)

or, equivalently,

χx

(
x =

L

2

)
− χx

(
x = −L

2

)
= 0 (D.333)

Substituting the expressions for χx at the boundaries into this equation gives

L−G1

∫ L
2

−L
2

dx eβAx
2

= 0 (D.334)

And so, G1 is thus obtained:

G1 =
L∫ L

2

−L
2

dx eβAx2
(D.335)

Substituting these results into the REV integral,

D
eff
xx =

D

L

∫ L
2

−L
2

dx e−βAx
2

e−βB (1− f) (D.336)
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D
eff
xx =

D

L
e−βB

∫ L
2

−L
2

dx e−βAx
2

G1e
βAx2 =

D

L
e−βBG1L = De−βBG1 (D.337)

And so the homogenized result is

D
eff
xx = De−βB

L∫ L
2

−L
2

dx eβAx2
(D.338)

A summary of the results of the above analyses, normalized to D, is provided in
Table D.1.

Table D.1: Results for the example Smoluchowski diffusion problem.

Potential
Deff
xx

D
from flux calculation

D
eff
xx

D
from homogenization

D
eff
xx

Deff
xx

ψ = Ay2 +B 1 e−βB
1

a

∫ a
2

−a
2

dy e−βAy
2

e−βB
1

a

∫ a
2

−a
2

dy e−βAy
2

ψ = Ax2 +B
LeβA

L2

4∫ L
2

−L
2

dx eβAx2
e−βB

L∫ L
2

−L
2

dx eβAx2
e−βBe−βA

L2

4

Is it possible to obtain a general rule for converting Deff
xx from homogenization to

the value of Deff
xx suitable for Fickian diffusion at the larger scale? The results of Table

D.1 suggest that it might be possible. Specifically, assuming that the results are of
the form

D
eff
xx = Deff

xxΞ (D.339)

where Ξ is a Slotboom transformation factor for the larger scale as discussed in
Section D.11, then there is an expression for Ξ that will give the correct results for
both examples presented here. Of course, this does not prove that this expression is
the general form of Ξ for all cases.

Specifically, the expression for Ξ that works in this example is an average over the
unit cell boundary perpendicular to the corrector component in question:

Ξ =
1

|Γx|

∫
Γx

dΓ e−βψ (D.340)

For this example problem, this is

Ξ =
1

a

∫ a
2

−a
2

dy e−βψ(x=L
2
,y) (D.341)

Note that the potential must be periodic for this expression to be valid.
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For the case of ψ = ψ(y) = Ay2 +B, this becomes

Ξ =
1

a

∫ a
2

−a
2

dy e−βAy
2

e−βB = e−βB
1

a

∫ a
2

−a
2

dy (D.342)

which is indeed the value required.
For the case of ψ = ψ(x) = Ax2 +B, Ξ is

Ξ =
1

a

∫ a
2

−a
2

dy e−βA
L2

4 e−βB = e−βBe−βA
L2

4 (D.343)

which is again exactly the value required to convert betweenDeff
xx from homogenization

and Deff
xx from the flux calculation.

In summary, Equation D.340 correctly performs the Slotboom transformation,
and its inverse, for the homogenized result in these example problems. While this
is not conclusive proof that the expression is more generally valid, it justifies fur-
ther investigation into this possibility. In particular, this example does not relate to
situations where an off-diagonal term in the diffusion coefficient matrix is nonzero.

Note that in a situation where the potential is zero over the entire unit cell bound-
ary, such as in the validation problem of Section 4.7, the resulting value of Ξ would be
1. In such a case, D and D would be equivalent at the larger scale. The dependence
of the homogenization result on shifts in the potential could therefore be interpreted
as a gauge-dependence, where the homogenization result, without modification by Ξ,
is D for cases where the gauge has been selected such that the potential is zero over
the unit cell boundary. For cases where the potential varies over the boundary, Ξ
would still be required.

As noted above, an alternative definition of the large-scale gradient for the flux-
based calculation might give different results that are more compatible with both the
large-scale Smoluchowski equation and the results of homogenization. This issue is
still under investigation at the time of this writing.

Copyright © Thomas G. Pace 2021
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