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Abstract 

Salt marshes in the San Francisco Bay area provide essential ecosystem services from 

critical habitat to buffering coastal flooding and are the focus of substantial ecological 

restoration, necessitating improved restoration monitoring approaches. Metrics such as land 

cover classification, bare ground elevation, and vegetation height provide an understanding of 

the functionality and health of tidal wetlands. Unlike traditional monitoring methods, which rely 

on time and labor-intensive field surveys or macroscale remote sensing techniques, unmanned 

aircraft systems (UAS) provide site specific high spatial resolution data that is comparable to 

satellite and manned aircraft derived imagery. I compared published literature and provided 

primary data analysis to evaluate the ability for UAS to provide useful monitoring metrics for 

salt marsh restoration. I employ UAS derived point cloud data to analyze 3-dimensional (3D) 

data and find that UAS data can provide elevation and hydrological modeling in addition to 

vegetation height metrics. My comparative review findings suggest that UAS technologies can 

be deployed towards salt marsh monitoring using multiple approaches to increase overall 

accuracy of these collected data. Using basic visible spectrum data, I achieved an overall 

accuracy of 73% land cover classification, and with more powerful sensors and computing, 

upwards of 90% accuracy can be achieved. UAS provide a temporarily flexible way to collect 

data, providing restoration ecologists more options and freedom to target specific temporal 

environmental characteristics. With functional data acquisition capabilities and a greater 

flexibility in temporal resolution, UAS show promise as a practical tool for salt marsh restoration 

monitoring.  
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Chapter 1: Introduction 

San Francisco Bay area salt marshes and coastal wetlands serve as important ecological 

resources. The region is home to many endemic and endangered marsh species having evolved 

within the specific climate and habitat types of the Bay Area (Spautz et al. 2006). In addition, the 

Bay Area is a key stop over spot for great migrations of avian species. These seasonal species 

rely heavily on functioning wetland systems and respond well to restoration of salt marsh habitat 

(Athearn et al. 2009). Salt marsh degradation and coastal development is adding more stress to 

these species causing a widespread effect on ecological systems all along the Pacific coastline.  

San Francisco Bay has dramatically changed since the start of western development. 

Prior to the modern era, the bay was lined with approximately 220,000 ha of tidal marshland 

(Williams and Faber 2001). Today only a small fraction of tidal wetlands still exists with much 

being fragmented and providing poor ecosystem services. Due to the deteriorated condition of 

tidal wetlands in the Bay Area and a new understanding of the importance of these systems as 

buffers to climate change, there has been a push for salt marsh restoration.  

 Over the past 40 years, tidal wetland restorations have been implemented in the Bay Area 

with varying degrees of success. Most importantly, however, the definition of success has also 

changed in response to monitoring unanticipated evolution of these restorations (Williams and 

Faber 2001). These revolutions in salt marsh restoration can be attributed to a more developed 

understanding of the system brought on by decades of restoration monitoring.  

 Traditional methods of salt marsh restoration monitoring require trained biologists to 

collect data in situ. This method is effective at collecting very detailed data about the biotic and 

physical characteristics of sampling locations. With developments in airborne and satellite 

technology, remote sensing has become an additional tool that can provide much greater insight 

into site conditions over landscape levels (Zhang, M. et al. 1997). The benefit to this approach is 

the relative ease of data collection and the sheer amount of data available for analysis. In 

addition, remote sensing allows for more advanced temporal analysis such as comparison of salt 

marsh loss over multiple years (Campbell et al. 2017) 
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 The most recent advancement in remote sensing monitoring technology is the 

implementation of unmanned aircraft systems (UAS). Colloquially known as “drones”, UAS 

systems are small and portable aerial platforms that allow restoration practitioners to gather their 

own data. Examples of the benefits of this technology are the ease of access, relatively low entry 

level costs, repeatability, and high image resolution (Ridge and Johnston 2020). The advance in 

this technology makes real time data collection over natural ecosystems easier than ever to 

collect and is gaining traction as an informative tool in the environmental field.  

In this study, I aim to address following question: can remote sensing using imagery, 

collected by UAS, effectively monitor success metrics for salt marsh restoration within the San 

Francisco Bay area? I evaluate the effectiveness of UAS through two main sub-questions. 

Firstly, can UAS provide enough spectral and spatial resolution to develop a functional land 

cover classification of salt marsh environments? Secondly, can UAS provide similar data to 

established Light Detection and Ranging (LiDAR) data to effectively capture 3D metrics of salt 

marsh environments?  

I have gathered evidence to answer my questions by reviewing and comparing primary 

published literature. I further support these published studies with my own data analysis using 

UAS aerial data collected over the Corte Madera Ecological Reserve in Marin County, CA. I 

share these data analyses as proof-of-concept sections within my discussion sub-sections (land 

cover classification, UAS derived DTM, bare earth model, tidal channel modeling, and 

vegetation height metrics) to support evidence from the primary literature. However, current 

constraints of UAS limit its use as a full replacement for field-based or satellite-based imagery 

collection. Lastly, I provide recommendations as to the practical implementation of UAS 

technology today to monitor salt marsh restoration practices. 
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Chapter 2: Background 

Salt Marsh Restoration 
Coastal ecosystems have evolved with diurnal tide cycles that dictate the structure of 

vegetation habitats. Restored salt marshes are often returned to these tidal inundations after long 

periods of being cut off by levees (Williams and Orr 2002). In salt marshes, tidal inundation 

frequency and severity are related to small changes in elevation(Cahoon and Reed 1995). High 

marsh and low marsh vegetation communities may only be separated by small increments in 

elevation (Moffett et al. 2012). However, the low marsh has evolved mechanisms to deal with 

daily inundation twice a day for extended periods of times; whereas, high marsh communities 

can only tolerate infrequent inundation  (Silvestri et al. 2005). Low marsh species tell of different 

evolution pathways than established high marsh communities due to their different abilities to 

stay submerged in saline waters (Pennings and Callaway 1992). Plant communities, directly 

impacted by frequency and level of inundation create mosaic patterns that can be used as 

indicators of elevation, hydrology, and even soil conditions (Millard et al. 2013). In the San 

Francisco Bay region, Pacific cordgrass (Sporobolus foliosus, formerly Spartina foliosa) 

dominates the low marsh habitat where pickleweed (Salicornia pacifica) dominates the mid-

marsh habitat. Each community has unique traits that allow it to survive at specific tidal 

inundation levels. In turn, each community hosts different ecosystem services such as habitat for 

specialized species or ability to mitigate storm surge (Feagin et al. 2010, Rosencranz et al. 2018). 

Understanding the spatial distribution of these habitat types allows practitioners to better design 

restorations to achieve the most functionality.   

Salt marsh restoration project design are often influenced by the goals of the 

stakeholders. Often these restorations aim to provide ecosystem services through both habitat 

improvement and economic benefit for humans (Teal and Weishar 2005). This may include 

fishery restoration, habitat preservation, storm surge mitigation, or erosion control (Staszak and 

Armitage 2013). In addition, salt marsh restoration has been seen to increase the uptake of 

carbon dioxide, a potent greenhouse gas, through a process known as carbon sequestration 

(Wang, F. et al. 2021). Mature and diverse vegetation communities are better suited to provide 

these services than new and homogenous restorations. Composition of salt marsh vegetation 
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communities can reflect changes to salt marsh ecology from primary succession after initial 

restoration to a more mature system. Understanding small changes in elevation, salinity regimes, 

soil conditions, and hydrology can lead to a better understanding of restoration end goals 

(Pennings and Callaway 1992). Combing data gathered about salt marsh condition and the needs 

of the stakeholders ultimately determine what constitutes successful salt marsh restoration.  

A restoration with storm surge mitigation might seek to have a large mid-marsh zone 

with complete bands of low marsh at the shoreward edge. This would create two different habitat 

types to provide wave attenuation during storms (Anderson and Smith 2014). Alternatively, a 

restoration targeting reintroduction of salt marsh harvest mice (Reithrodontomys raviventris) 

might target mid-marsh habitats with non-fragmented pickleweed as a dominant vegetation type 

(Bias and Morrison 2006). Monitoring physical metrics at these restorations allow practitioners 

to evaluate the success of the restoration and provide adaptive management quickly to adjust the 

restoration to align with project goals. Quick and reliable monitoring data is crucial to ensure 

restoration success. 

Monitoring Restoration Success 

In-Situ Field Monitoring 
Traditional ground surveys require trained biologists to navigate the salt marsh site on 

foot to record data. Field biologists take measurements of vegetation and use instruments to 

record other physical data which are extrapolate over the entire project site to determine salt 

marsh conditions. Field based observation techniques are often slow, hindered by difficult 

navigation, and may not accurately convey data over the entire study site. Standardized 

vegetation survey methods utilize quadrat-based ground measurements and in-situ GPS 

measurements (Espriella et al. 2020). In addition, time, effort spent, and cost usually limit the 

repeatability of these surveys. For example, in the 1990’s it was estimated that the median marsh 

monitoring cost in the Northeast United States was over $3,000/acre, ranging from $2,000/acre 

to $90,000/acre (Louis Berger and Associates and United States. Environmental Protection 

Agency. Region, I 1997) In addition, in-situ data collection over entire marsh complexes can 

take weeks or months of effort. During this time, vegetation communities and characteristics can 

change seasonally making data difficult to accurately compare without remote sensing (Smith et 
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al. 1998). These limitations culminate in fewer repeated surveys and less accurate spatial data, 

however, provide more detailed species level identification.  

Considerations for the damage done during in-situ monitoring must also be considered 

when choosing to conduct field surveys over remote sensing techniques. Salt marshes are 

sensitive environments that can be easy disturbed by humans, particularly in California where 

90% of salt marshes have been lost. Field techniques require invasive entry into marshes that 

leave footprints, disturbance of vegetation communities, and potential negative effects on salt 

marsh specific fauna.  

Remotely Sensed Monitoring 
Land Classification 

Remote sensing, using aerial imagery has changed the way ecologists study landscape 

level ecosystems. This study of the Earth’s surface from an aerial perspective allows for large 

scale environmental monitoring. Metrics, such as land cover classification provide more 

complete details about site wide conditions that may be missed with boots on the ground surveys.  

Land cover classification helps to build a picture of the vegetation characteristics over the entire 

site within one snapshot in time (Sanchez-Hernandez et al. 2007). This allows the stakeholders to 

visualize overall site conditions, not just extrapolated data from a few data points. When viewing 

project sites using an aerial view, the monitors can more easily visualize changes in vegetation 

communities, habitat evolution, and even impacts from stressors such as sea level rise (SLR).  

Remote sensing of salt marsh vegetation communities has become a more efficient way 

to collect information for land cover classification. Remote sensing uses data, obtained by 

satellite or aircraft above the study area in an efficient and non-invasive manner (Yeo et al. 

2020). Using spectral signatures (specific reflected wavelengths of light), vegetation textures, 

analyst prior knowledge, and specialized software, these data can be analyzed by comparing like 

values and assigning them a classification. Often this requires input from the analyst to provide 

training samples in a technique known as supervised classification (Keuchel et al. 2003). Once 

training samples are determined, programs such as ArcGIS Pro can be employed to automatically 

assign each pixel of an image a value as compared to the training sample. This is repeated over 

the entire image, resulting in a land cover classification map. 
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Currently, pixel-based classification and object-based classification are the most common 

types of analysis. Pixel-based classification compares values of a single point of data to 

surrounding pixels. These pixels, a collection of single squares, contain data values for reflected 

light energy such as the visible or infrared spectrum. Software that can conduct land cover 

classifications compare the values of each pixel to the next to determine similarities or 

differences (Figure 1). Object-based classification groups similar pixels together into segmented 

images then compares these segments to the training samples to assign a classification value. 

Basic light sensors can detect in the visible light spectrum represented by Red, Green, Blue 

(RGB) spectrum. This is like a digital camera that captures images in the same way the human 

eye and brain see the world. Employing RGB to conduct these land cover classifications, data 

from three spectral bands are used differentiate the pixels from each other. Multi-spectral 

provides even more bands to conduct the analysis which usually provides more accurate 

classifications. Each pixel or group of pixels are analyzed and compared over an entire project 

site using these methods. 

One advantage to aerial based observations is that data can be collected over entire 

project sites at one time. This eliminates the need to extrapolate data over the project area and 

provide more a more complete spatial assessment. In addition, these surveys are repeatable with 

relative ease without taking large amounts of field time. Being able to repeat surveys as a time 

series allows the user to better understand salt marsh trends and change over time (Campbell and 

Figure 1: A satellite based remote sensing technique for land cover classification over salt marshes. Using site specific 
knowledge, training samples are created and fed into the software during a supervised classification analysis. A Digital 
Elevation Model (DEM) can add another layer of data to increase accuracy.  (Yeo et al. 2020) 
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Wang 2020a). This is especially important to understand the long-term impacts of anthropogenic 

stressors on a salt marsh complex. Land cover classification time series provides data to evaluate 

change in vegetation communities, biomass, and disturbances. Understanding these impacts 

allows stakeholders to assess change and risk factors affecting salt marshes (Campbell and Wang 

2020b). Remote sensing technologies provides researchers and restoration practitioners an 

effective and repeatable method to develop land cover classification.  

Three-Dimensional Data  

Three-dimensional monitoring is a useful dataset to better understand site conditions for 

salt marsh restoration. Traditional monitoring for 3D data is collected using LiDAR technology 

which employs active laser light from the sensor and records reflection times (Dubayah and 

Drake 2000). 3D data provides vertical detection points of an object in relation to the ground, the 

sensor, and other separate data points. By comparing these values to each other, valuable 

information such as ground elevation, slope, and vegetation heights can be measured. Examples 

of practical applications for this would be to understand where optimal elevation for tidal 

vegetation plantings can take place or to monitor and track soil erosion on exposed marsh edges. 

With SLR adaptation and resiliency as the basis of salt marsh design, understanding vertical 

structure of marshes is important. By analyzing 3D data over time, soil movement and erosion, 

accretion rates, vegetation communities, and above ground biomass (AGB) can be derived 

providing a better understanding of salt marsh changes.  

 Resilient salt marsh design focuses on maintaining a functional marsh system ahead of 

sea level predictions for the future. Salt marshes exist at specific elevations in relationship to 

tidal waters. As average tidal waters rise, salt marshes migrate both horizontally and vertically 

through accretion of sediments, deposition of dead organic matter, and landward migration. 

Understanding the 3D characteristics of salt marshes is more important to their recovery now 

more than ever, as available sediment loading in the SF Bay has dropped 36% in recent decades; 

although accretion rates are currently keeping pace with SLR through accumulated organic 

matter (Schoellhamer 2011, Callaway et al. 2012). Due to prior land use, urbanization, and 

management practices, many current tidal wetlands have little to no room for landward migration 

(Feagin et al. 2010). Island marshes may suffer from slowed accretion rates from fewer 

suspended sediments and often are impacted by erosion. Sound restoration design must take 
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these factors into account to plan for the environmental conditions of the future and to develop a 

system that can adapt with fewer human interactions.  

Remote Sensing Platforms 

Orbital Platforms 
Large orbital remote sensing platforms such as, Landsat 8 satellite system, carry 

advanced sensors that can capture large amounts of high-resolution data. Modern technology 

allows for high resolution aerial imagery, between 1-90 m pixel size (Timm and McGarigal 

2012). Image resolution is extremely important in achieving high accuracy during data analysis. 

At 1 m pixel resolution, it is possible to achieve 87% classification accuracy in salt marsh 

environments (Timm and McGarigal 2012). However, having too large of pixel resolution may 

not be able to detect small initial changes of restoration such as sparse recruitment of vegetation 

seedlings. These small changes may take years to develop into large enough features to be 

detectable if the pixel resolution is too large.  

Orbital platforms often carry multiple sensors that can detect a high range of spectral 

imagery. Prior to a component failure in 2019, Worldview-4 Satellite was able to collect data in 

the panchromatic wavelengths as well as multispectral in RGB and near infrared spectrum 

(Satellite Imaging Corporation 2021). More bands of light detection allow for more accurate 

identification of land features and can allow for more advanced analysis such as vegetation 

indices, spectral transformation used to enhance vegetation properties for comparison (Abdou et 

al. 1996). For example, different species of trees have unique spectral signatures that can be used 

to differentiate each species from one another (Al-Ali et al. 2020). With more data bands, ranges 

of spectral wavelengths, spectral differences are more easily detected. The more data available to 

be used in the program’s classification, the more accurately it can differentiate between cover 

classes.  

These larger commercial platforms allow for more cost-effective monitoring over large 

scales than field monitoring. The shortcoming of these data is related to scale. At small scale 

restoration site, finer resolution is often required to detect early growth in mudflats. Worldview 3 

data has a resolution of 1.24 m in eight bands of multispectral data (Al-Ali et al. 2020). Planet 

Labs, a modern multi-satellite commercial company, can provide 3.7 m multi-spectral resolution 

with its most up to date satellites (Planet Labs Inc. 2021). This advance in technology is a great 
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achievement but may still not be enough resolution to differentiate small new vegetation at the 

sub-meter scale. Real world marsh restorations often introduce vegetation plugs that range in the 

centimeter resolution ground coverage spaced out under half a meter (Hammond 2016). These 

plugs may take years to grow into patches of 0.5 m in diameter making them difficult to detect 

until several years after installation. Several years may be too long to wait to implement adaptive 

management to achieve restoration goals or to fulfill funding requirements.  

In addition to spatial resolution, temporal resolution is a major hurdle. Satellite and 

aircraft systems can be expensive to task; thus, redirection of these assets is less likely. For 

instance, for a given year of flights, there may only be a handful of suitable images addressing 

geography, weather, tidal cycle, and growing season. Often, satellite imagery does not capture a 

salt marsh project site during optimal low tidal inundation or optimal atmospheric conditions 

(Campbell and Wang 2020a). This leads to inaccurate land cover classifications and analysis of 

land cover area (Espriella et al. 2020, Campbell and Wang 2020a). As satellite technology 

advances, this hurdle may lessen but for now this is the reality of these platforms.  

More modern systems such as Planet Labs platform are based off hundreds of small 

micro-satellites that can provide almost daily monitoring (Planet Labs Inc. 2021). This platform 

provides a better temporal resolution but as previously noted, may not grant enough spatial 

resolution. Until satellite technology can provide both very high spatial and temporal resolution 

together, these platforms still have major deficiencies that make them impractical for smaller 

site-specific salt marsh restoration.  

Unmanned Aircraft Systems  
Unmanned Aircraft Systems can be employed today to achieve extremely high levels of 

spatial resolution and can be deployed to collect real time data. These systems comprise of both 

aerial flight platforms and light detecting sensors, communication units, and data sharing 

software. The aerial platforms are small, portable, and deployed at will making data collection 

very flexible and easily repeatable (Vergouw et al. 2016). The advantage of UAS to provide 

centimeter level spatial resolution while being able to collect temporally targeted data provides a 

great benefit to restoration practitioners. This technology sits perfectly between the very specific 

in situ monitoring and the broad scales of satellite platforms.  
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Two main components of UAS determine the usefulness in data acquisition. First, the 

UAS GPS accuracy greatly affects the spatial accuracy for vegetation classification. Modern 

consumer grade UAS have sub-meter accuracy. DJI advertises a 0.01 m horizontal and 0.015m 

vertical position accuracy for its mapping specific consumer drone (DJI 2021). Using ground 

control points allows for further calibration and reduces positioning error of UAS imagery by 

comparing ground-truthed GPS locations to the collected imagery (Martínez-Carricondo et al. 

2018). This process allows for calibration of highly accurate positioning. The second component 

that affects data accuracy and capability is the sensor system used to record data. Many entry 

level consumer grade UAS only come equipped with a sensor capable of recording in the visible 

spectrum. Data constricted to RGB are limited in scope as compared to multi-spectral and 

LiDAR acquisition.  

Several styles of UAS exist, including fixed wing and multi-rotor, which carry a wide 

array of light detecting sensors. Common off-the-shelf UAS systems bridge the gap between 

recreational flying and scientific data collection. These often are equipped with accurate GPS 

locators, the ability to collect data autonomously, and entry level RGB light capture sensors. The 

benefit to these systems is that costs are relatively low due to their commercial applications. 

Advanced systems increase the capability of UAS by extending flight times, increasing sensor 

resolution, and allow for capture of different light spectra including multi and hyper spectral and 

LiDAR. 

Unmanned Aircraft Systems also include the software that allows for easy data recording 

and transfer. Modern consumer grade UAS can be fully automated using basic smartphone 

applications such as Pix4D and DroneDeploy. These software take the users’ parameters and 

control the aerial platform to collect images without user input during flight. Post processing of 

these images often requires both UAS specific software and already established remote sensing 

software such as ArcGIS Pro.  

UAS systems can provide high spatial resolution while providing flexibility in data 

acquisition timing. This is beneficial to collecting high quality data for land cover classifications 

and 3D data. UAS collect a series of imagery and combine them together using specialized 

software. Much of this process is automated by third party software which makes this technology 

more accessible to a wide range of consumers. The process of overlapping individual photos into 
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one large image is known as photogrammetry (Fraser et al. 2016). A 0.018m ground resolution 

orthophoto can be achieved using photogrammetry and aerials collected from a UAS (Boon et al. 

2016). This resolution translates to each square pixel having a width of 0.018 m (1.8cm). This is 

greatly improved on Worldview-3 imagery where each pixel is 1.24 m (124 cm) in width.  

One important note is that UAS relies on small battery packs for power. The limitations 

in battery technology often limits flights to 20 mins of less. Large scale surveys might not be 

possible or may be inefficient with constant changing and charging of batteries. The time and 

resources required to employ UAS over large landscapes greatly limits its ability at these large 

scopes. A possible fix to this problem is using multiple UAS at the same time. However, this 

does increase the cost to operate. At large scales UAS may not bring any additional effectiveness 

to data acquisition compared to satellite data which is why UAS would be limited to small site-

specific projects.  
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Chapter 3: Methods 

Literature Review 
 I conducted a literature review of primary published literature of the usage of UAS as a 

tool environmental monitoring. Journal articles and conference briefings were gathered using 

academic search engines such as Scopus and Google scholar to identify peer reviewed literature. 

Journals were evaluated for rankings on Scimago to ensure the quality of these articles. I 

conducted a literature synthesis to evaluate my sub-questions and incorporated my own original 

data analysis of UAS imagery for a subset of remote sensing topics. I present these data as proof-

of-concept sub-sections within my discussion to highlight real world application of UAS 

technology for salt marsh restoration. 

Study Site 
UAS data acquisition was conducted over the Corte Madera Ecological Reserve (CMER) 

in Marin County, CA (Figure 2). Total area cover was 36.25 ha and focused on the linear 

shoreline habitats.  The UAS flight was conducted over open mud flat, open water, salt marsh, 

and upland transition zone. The flight was coordinated to coincide with a low tide to ensure that 

water levels would not cover marsh habitat. Typical vegetation found within the salt marsh 

portion of the study area include Pacific cordgrass (Sporobolus foliosus), Pickleweed (Salicornia 

pacifica), Saltgrass (Distischlis spicata), and Gumplant (Grindelia stricta). 

Corte Madera Ecological Reserve is a salt marsh complex comprised of a series of natural 

and restored salt marsh habitat situated at the mouth of Corte Madera Creek. Once part of an 

interconnected series of tidal creeks and coastal wetlands, CMER now is mostly isolated as an 

ecological reserve without any significant nearby tidal wetlands. It is situated in a mostly 

urbanized landscape with highly impacted upstream ecosystems and high erosion pressure from 

shoreward ferry traffic. Some areas of CMER have a mixed series of land use history, including 

diked rangeland and filled tidal marsh (Friends of Corte Madera Creek). CMER has undergone 

many phases of tidal marsh restoration ranging from the 1970s to a recent conversion of filled 

wetlands back to tidal action in 2020. 
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Figure 2: Study Area located within the Corte Madera Ecological Reserve, Marin County, CA. This is a portion of a salt marsh with much of it in different phases of passive 

restoration. 
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Data Acquisition 
All UAS data was generously donated to my project by the San Francisco Estuary 

Institute (SFEI). Flight permission was applied for by SFEI and granted by the California 

Department of Fish and Wildlife (CDFW). The UAS was piloted by Pete Kauhanen, MA., FAA 

permitted drone operator (part 107) and GIS manager with SFEI. In addition, Mr. Kauhanen 

conducted the post flight data analysis and quality control via the Site Scan software. This 

involved manual adjustment of ground control points (GCP) based upon LiDAR data as well as 

in situ surveying provided by the CDFW observer.  

I chose to conduct this study with an RGB equipped UAS to highlight the entry level 

consumer grade platforms that small scale restoration projects might employ. Advanced sensor 

systems could increase the performance of UAS data with a tradeoff of increased purchase 

pricing. Small scale restoration projects might not have the funding or ability to employ these 

professional level tools. Data collection was conducted in September 2019. SFEI employed a 

consumer-grade DJI Mavic 2 Pro with a stock RGB visible spectrum sensor. This unit had a 

vertical position accuracy of +/- 0.1 m and a horizonal accuracy of +/- 0.3 m.  

Automated flight and image capture were conducted using the Site Scan flight control 

application. Still images (780 in total) were captured over the study area and later imported to the 

Site Scan mapping software. The ortho-mosaic image was georeferenced using 11 GCP and had 

a mean RMS horizontal error of 0.006m. The output coordinate system was WGS 83/ UTM zone 

10N. Average pixel resolution was 1.45 cm. Point cloud data generated 118067701 3D densified 

points with an average density of 1013.62 points/m3.  

Data were transferred tome in January 2021, and I conducted further analysis in the 

spring of 2021. Vegetation analysis was conducted within the ArcGIS Pro program. 3D point 

cloud analysis was converted and analyzed within the LAStools software and further analyzed 

within the ArcGIS Pro program. Data used to produce figures within this paper include geo-

rectified ortho-mosaic imagery with three bands in the RGB light spectrum and a 3D point cloud 

dataset. 
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Vegetation classification 

Training Samples 
To train the ArcGIS software to automatically identify different land cover types, I 

created training samples to capture a range of spectral signatures unique to my pre-defined cover 

classes (Schmidt 2017). Training samples are vector format polygons that shared similar spectral 

signatures within cover classes (Oldeland et al. 2021). I defined class groups by employing my in 

situ experience and observational knowledge of major vegetation classes and land cover types 

within the study site and my knowledge of salt marsh ecology (Table 1). I converted the UAS 

derived ortho-mosaic imagery into a false color manipulation to highlight vegetation compared 

to other unique spectral signatures. I used this false color image and personal knowledge of the 

study site to create training polygons that represented each cover class. Signatures were 

compared to each other by graphing spectral values for the three RGB bands. Any training 

samples demonstrating spectral overlap were merged to streamline the process. Specific training 

samples from different classes that display too similar spectral signatures values were re-

evaluated for accuracy and either redrawn or removed. I did this to remove training samples that 

could lead to misclassification. This was repeated until differences in unique samples were less 

apparent. The samples were converted into vector files to be used in the image classification.  

Table 1: User identified vegetation cover classes. Cover classes were determined using user knowledge of the site conditions, in 

situ observations, and general knowledge of SF Bay area salt marsh species 

Land classification cover types 

Water 

Mudflat 

Cordgrass 

Cordgrass/Pickleweed 

Pickleweed 

Other wetland vegetation 

Gumplant 

Other Upland woody shrubs 

Unvegetated surface 

Upland transition zone 
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Classifying Land Cover 
Utilizing the training samples, I ran two methods of classification to assign a class value 

to each pixel according to its unique spectral signature. Once complete, a project wide land cover 

classification was produced. Two methods were chosen to improve the chances of developing an 

accurate vegetation classification for the site using only RGB imagery: pixel-based and object-

based classification (figure 1). 

Pixel-Based Classification 

I converted the training samples into unique a spectral signature file. This process takes 

the spectral signatures found within the vector shape of the training sample and records that 

value as a classification value. These signature files were then used in a classification process 

that analyzes the ortho-mosaic image pixel by pixel using a standard maximum likelihood 

classification method (Otukei and Blaschke 2010). Once complete, I conducted an accuracy 

assessment using 300 randomized points. These points were manually verified against aerial 

imagery and knowledge of the site and salt marsh vegetation (figure 3).  

Object Based Classification 

Using the classification wizard within ArcGIS Pro, I analyzed the imagery data using an 

object-based classification approach. The classification wizard segmented the imagery into like 

groupings of pixels based upon similar attributes (Figure 3). I chose to set my maximum pixel per 

object at 300 to increase resolution but still provide adequate pixels per object to not 

oversimplify the land cover classification. The tool then compared the training sample spectral 

signatures to the segmented objects using a support vector machine approach to produce a 

classification of the study area (Oldeland et al. 2021). I had the option to manually reclassify 

mis-classified objects within the wizard but chose not to due to the scope of this project and the 

lack of field verified sample points. Typically this step would be done to correct any 

misidentifications that the user could positively identify. Finally, an accuracy assessment was 

conducted using 300 randomized points (Figure 3). 
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Figure 3: Vegetation classification process. Two separate processes were chosen to increase potential for accurate vegetation 

classification. Both pixel-based and object-based methods are established remote sensing techniques for this purpose. 
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3D data analysis 
 Three-dimensional data analysis is a powerful tool to evaluate the vertical structure and 

condition of salt marsh restoration. LiDAR, the established method to capture 3D data, has been 

used to develop monitoring datasets such as elevation modeling. Active laser light return times 

are calculated and used to model point clouds (Dubayah and Drake 2000). Similarly, UAS 

imagery can be used to develop points clouds using photogrammetry. The results of this 

technique can be used to calculate vertical distribution of points which provides enough detail to 

create surface elevation models (Dai et al. 2018).  

Elevation modeling is a key tool used in the restoration design process. There are similar 

modeling terms that are often used interchangeably or are often confused with each other. In 

Table 2, I defined key terms of elevation models often derived for environmental monitoring.  

Table 2: General key 3D models derived from point cloud data (GIS Geography 2021) 

General 3D elevation models 

Digital Elevation Model DEM 
3D representation of only the land surface 

elevation above mean sea level  

Digital Terrain Model DTM 

Similar to a DEM, this layer represents land 

surface elevation, but is differentiated using 

augmentation by vector data that includes 

natural features such as ridges or rivers 

Digital Surface Model DSM 

3D representation of elevation including 

surface features such as trees, buildings, and 

other features 

Normalized Digital Surface Model nDSM 

Derived from the difference of DSM and DEM 

(DSM-DEM) to determine the height of a 

feature above the land surface 

 

Digital terrain modeling 
A bare earth model or digital terrain model (DTM) was developed using point cloud data 

gathered using the UAS and analyzed using the Site Scan software (Esri 2020). Ground points 

were isolated from the point cloud and used to create a raster (Figure 4). Void space was filled 

between ground points using a natural neighbor interpolation method.  

Using this same data, I applied a hillshade technique to the DTM and assigned a single 

unique color scheme to the model. The hillshade tools creates a shaded relief by artificially 
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considering an illumination source. This creates a shadow effect giving 3D texture to the visual 

model. 

Digital surface modeling 
I created a Digital Surface Model (DSM) using a dense point cloud provided by SFEI 

(Figure 5). Using ArcGIS, I filtered out surface points within the point cloud representing the 

topmost surface. These points were converted into a raster using a natural neighbor interpolation 

method to fill in voids between points. 

 

Figure 5: Three-Dimensional view of DSM point cloud developed from UAS data points 

Fill void space using 

interpolation 

Isolate Ground Point 

returns in ArcGIS Pro 

Convert ground point 

returns to raster 

UAS Point Cloud data in 

.las file format 

Figure 4: DTM modeling requires ground points to be filtered out using ArcGIS Pro software 
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Channel modeling 
 Understanding channel formation and placement helps restoration practitioners evaluate 

the maturation of restoration projects. LiDAR is typically employed to determine stream 

locations and watersheds on upstream riverine systems. The same technique that is applied to 

that modeling can be used to determine tidal channel locations within a marsh. UAS derived 

point clouds can be employed in much the same way to predict channel locations. This allows 

practitioners to develop these models using one UAS dataset instead of relying of traditional 

LiDAR returns.  

Using tools within ArcGIS Pro, channel networks can be modeled (Figure 6). The DTM 

raster was cleaned up and sinks removed using the Fill tool to create a depressionless DTM. 

Flow direction was then calculated by calculating negative change in z-value over distance. 

Next, flow accumulation was calculated. This used the flow direction to determine the number of 

pixels that would drain into each other pixel. The ArcGIS con tool allowed me to set a number 

value to a channel network and a null value for everything else that is not within the channel. For 

instance, a raster value of 1 = a channel network and a value of 0 = background non-channel. 

Lastly, a stream channel was created into a vector feature class allowing me to visually see 

channel networks and incorporated into other land modeling.  

Tidal channel order could also be determined using a similar method (Figure 7). This 

allowed me to clean up the data, eliminating small and short primary unconsolidated depressions. 

Flow accumulation is again calculated. This raster data was queried to remove smaller values to 

the accumulation layer. The raster calculator determined all values above and below my 

determined threshold, being a value of 75 for this modeling. Values above were given a new 

value of 1 and the rest a value of 0. This reduced the number of possible tidal channels to 

represent the major channel complexes instead of small unconsolidated channels. Using the 

stream order tool in ArcGIS Pro, the raster results and flow direction were used to create a raster 

layer of stream order according to the amount of cell values running into each tidal channel cell. 

This raster then was then converted into a feature class polyline.  
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Figure 6:ArcGIS Pro workflow for channel prediction. Outcome product is a layer file of predicted channelization networking within the marsh complex based upon flow direction 

between individual pixels. 

 

Figure 7: Stream order calculation methodology. This method requires user input to create a tidal channel layer. To present only lower order channels, higher order predicted 

channels can be removed during the process to provide only data on major channels complexes 
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Estimating vegetation height 
Using the DSM and DTM raster layers, a new nDSM raster was be created estimating vegetation 

height. These two datasets were needed to determine vegetation height. The DSM related to the 

topmost surface, including the top of vegetation biomass. The nDSM or height of vegetation was 

calculated using DSM-DTM (Pinton, Canestrelli, Angelini et al. 2020). Using Inverse Distance 

Weighted (IDW) interpolation, point cloud data were then transformed into a raster value 

(DiGiacomo et al. 2020). The smoothed raster values represented the top elevation of detected 

vegetation. I changed the symbology to a stretch type and manipulated to display height 

differences more clearly. 
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Chapter 4: Classification of Land Cover 

 Land classification monitoring is a useful tool for to understand the pre-conditions and 

evolution of salt marsh restoration projects. Classifying land cover provides insight into the 

change of cover classes such as the spread of planted salt marsh vegetation in newly constructed 

wetlands. This metric is important as a monitoring tool because vegetation cover is directly 

linked to salt marsh vegetation health and resiliency. In an era of SLR, this is especially 

important because vegetation presence and succession is directly linked to tidal inundation (Olff 

et al. 1997). Understanding land cover classification is an essential tool that allows restoration 

practitioners to better understand the system as it changes over time and to inform adaptive 

management should the restoration need it.  

Vegetation Classification: Case Study  

The case study that I conducted produced two separate land cover classification maps, 

pixel based (Figure 8) and object based (Figure 9). Both maps produced differentiation of major 

cover types. Basic RGB UAS data was successful in creating these classifications. Further 

analysis and computer modeling changed the outcomes and accuracy levels. For restoration 

practitioners looking to gauge vegetation trends UAS can provide useful amounts of information. 

The first method, pixel based supervised classification, produced a more detailed analysis 

(Figure 8) because each pixel is treated as a unique data point when comparing to the training 

samples. However, this level of detail can create a “salt and pepper” effect where many 

differently classified pixels dot the landscape (Weih and Riggan 2010) and create a more 

fragmented classification that can provide a more detailed but ultimately less useful map for 

restoration practitioners.   

When examining the map produced, vegetation zonation is clearly demarcated (Figure 8). 

Cordgrass and Cordgrass/Pickleweed are the dominant feature classes which anecdotally 

matches my vegetation knowledge of the site conditions. In addition, the major channel complex 

is easily distinguishable from the surrounding marsh plain. The level of detail provides a great 

overview of the current site conditions and can easily be employed by practitioners.
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Figure 8: Pixel based land cover classification conducts analysis on a pixel-by-pixel basis. This can create a highly detailed classification which provides more data for vegetation 

comparison but may overwhelm users with too much information needed for landscape level decision making.  
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Figure 9: Object-based classification conducts analysis on groupings of segmented pixels. This can create a more accurate classification than pixel-based classification. These 

accuracy results can be increased if more data, using multispectral imagery, is employed. 
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The second classification method I employed was an object-based classification which 

groups like pixels together prior to classifying them (Figure 9). This mapping method produced 

more “other wetland species” classifications. This may better capture non-dominant species than 

the pixel-based classification. As before, the channel complex is clearly distinguishable as are 

differing land cover classes. This approach also provides great overview visual data that is useful 

to practitioners who would benefit from monitoring land cover changes over time.  

High resolution RGB imagery alone can produce basic, yet, useful land cover 

classification. Pixel based and object-based classifications using only RGB imagery resulted in 

an overall accuracy of 62% vs 73%, respectively (Table 3). When examining the results of both 

methods, the greatest confusion of signatures is between pickleweed and mudflats. This is 

probably caused by similar spectral signatures, possibly from mud covering the low growing 

plants or just not enough data to more accurately distinguish between the two. Object-based 

classification is often seen to be more accurate when creating land cover classification maps, 

however, pixel-based classification provides higher resolution which is important if 

differentiation small species level individuals is important (Aldous et al. 2020, Correll et al. 

2019, Michez et al. 2016).  

 

Table 3: Accuracy comparison between two classification methods. Using RGB only UAS data, the greatest accuracy was 

produced using the object-based approach. This is generally consistent with other published literature in similar habitat types. 

Accuracy comparison: Object-based vs. Pixel-based 

Method 

Overall 

accuracy 

Kappa 

value 

Pixel-based Maximum Likelihood 61.70% 0.508 

Object-based Random Forest 72.80% 0.661 

 

Certain cover classes have much higher accuracy when only using RGB. For instance, 

water, mudflat, upland transition zone and unvegetated soils all had over 90% accuracy where 

upland shrubs, cordgrass/pickleweed, and other wetland vegetation all had accuracy below 50% 

(Table 4). These results suggest that RGB values provide adequate data to conduct classification 

where signatures are unique such as bare earth. However, in more similar spectral profile classes, 

RGB has a difficult time differentiating between the classes. Multispectral data has been seen to 
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improve upon these similar spectral classes (Boon et al. 2016, Fraser et al. 2016). Depending on 

the needs of the restoration project, RGB UAS data may provide enough information at a lower 

cost and easier entry into remote sensing data collection. 

Table 4: User accuracy by cover type. Water returns are assessed at 100% accuracy whereas upland woody shrub vegetation 

class returns are only 20% accurate. 

Object-based classification: User 

accuracy by classification type 

Classification 

User 

Accuracy 

Water 100% 

Mudflat 92% 

Cordgrass 70% 

Cordgrass/Pickleweed 44% 

Pickleweed 75% 

Other wetland vegetation 40% 

Gumplant 60% 

Upland transition zone 90% 

Upland woody shrubs 20% 

Unvegetated soils 90% 

 

Benefits of UAS in Land Cover Classification 
UAS can support field surveys by providing as needed aerial surveys. Just-in-time aerial 

imagery refers to imagery captured as close as possible to the optimal collection period for the 

project. Using these data in land cover classifications can provide similar land cover estimates to 

field based observations conducted concurrently. For example, Oldeland et al (2021) found that 

UAS object-based classification provided similar cover estimates to field based mapping of Sea 

couch grass (Elymus athericus), a native salt marsh grass to central Europe (Figure 10). 

Multispectral imagery was employed for this study and segments were limited to 20 pixels in 

size creating relatively small objects. This allowed for higher spatial resolution but can be time-

consuming and require great amounts of computer processing power. The field-based estimation 

produced a 6.29 ha cover estimate of Sea couch grass while UAS imagery produced a 6.22 ha 

cover estimate within the same site boundaries. This is an important study comparing UAS 

remote sensing and in situ monitoring because it highlights drawbacks with both approaches. 

Field based monitoring tended to overestimate cover due to physical limitations of viewing 
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vegetation over large polygons whereas UAS remote sensing tended to misclassify vegetation 

cover due to spectral variations (Oldeland et al. 2021). 

 

Figure 10: Comparing manual vegetation cover mapping vs. UAS derived remote sensing. Manual vegetation monitoring is more 

generalized and can be subject to over estimation. UAS remote sensing is more detailed but is subject to misclassification of 

individual pixels. (Oldeland et al. 2021) 

Needs Assessment for Upgrading From RGB 
Project needs dictate the necessity for upgrading UAS platforms from the basic entry 

level. The specific goals of a restoration project will determine if RGB is sufficient or if 

commercial grade technology is required. If vegetation indices or more specific species level 

identification are required for the project, RGB alone may not be the technology required. 

However, if a monitoring project requires counting of individuals in of cover class, for instance 

woody salt marsh species compared to grasses, then RGB does provide enough data (Hassler and 

Baysal-Gurel 2019).  Upgraded platforms can carry more expensive and specialized sensors such 

as multispectral or LiDAR. However, these sensors are very expensive compared to consumer 

grade electronics, often costing tens of thousands of dollars. The limitation of upgrade cost 

dictates the usefulness of UAS to restoration practitioners.  

Vegetation classification using UAS is very dependent on the physical characteristics of 

the salt marsh being monitored. The more complex the system and species cover types, the less 

accurate the remote sensing is (Husson et al. 2016). However, in favorable conditions, high 

levels of accuracy are possible. Smooth cordgrass (Sporobolus alterniflorus) patches have been 
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accurately classified with a 94% overall accuracy in China using UAS systems (Michez et al. 

2016). This is especially true in environments where classes have very distinct spectral 

signatures, such as cordgrass compared to mudflat. Despite low-cost and simple sensors, RGB 

based UAS have obtained accuracies in land cover classifications comparable to UAS 

multispectral classifications (Daryaei et al. 2020). These findings occurred within studies done 

on terrestrial systems but advances in computer processing such as random forest algorithm 

contributes to improved accuracy (Daryaei et al. 2020). RGB sensors can detect differences in 

textures of vegetation cover. Textures can be used to identify specific species with high accuracy 

(Michez et al. 2016). The low cost of RGB sensors compared to multispectral creates a need to 

develop better software and techniques to evaluate classification types.  

Multispectral data are more expensive to acquire but can be more useful depending on the 

research question. Instead of three bands of data of RGB, multispectral sensors usually capture 

between 5 and 12 bands (Hassler and Baysal-Gurel 2019). UAS can be fitted with these sensors 

which expand the detection capabilities of the platform to the same levels as satellite imagery 

(Al-Ali et al. 2020). The drawbacks are the cost of upgrade over entry level UAS and the limited 

battery life compared to orbital systems. UAS outfitted with multispectral sensors can cost 

$10,000 or more for the unit (MicaSense 2021). Small or single flight restoration projects may 

not warrant such a high cost. However, when the scale of the project, repeatability, or higher 

accuracy are needed, multispectral UAS data can be an invaluable asset.  

The quality of UAS multispectral airborne data is closely comparable to handheld 

spectral sensors. These data have a strong 1:1 correlation to in situ reflectance values in wetland 

habitats (Figure 11) (Doughty and Cavanaugh 2019). This makes UAS detection of multispectral 

data highly accurate. Vegetation indices, spectral transformations of multiple data bands, 

enhance different contribution levels of each of those bands. Changing the intensity value of 

each band in a series of data bands allows different values to be highlighted in an easy to view 

manner. For example, the normalized difference vegetation index (NDVI) index calculates 

differences in near-infrared (NIR) and red reflected light energy. A healthier plant absorbs more 

red light and reflects more NIR. When a project relies on this level of detail, multispectral 

analysis is key to accurate analysis and requires upgrading from basic sensor technology. 
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Figure 11: UAS derived reflectance values show strong correlation to in situ reflectance values in the visible spectrums. This 

allows for accurate land cover classifications to be developed using spectral signatures. (Doughty and Cavanaugh 2019) 

Benefits and Drawbacks of UAS Platform 
 UAS technology provide a great additional tool for ecological restoration monitoring. 

However, UAS are not a one stop shop for data collection. Additional benefits of UAS also must 

be weighed against drawbacks to this technology outside of cost. Negative aspects of UAS 

include limits in usability at large scales, additional expertise, and specialized software. Positive 

aspects include compatibility with established technologies and methodology, temporal 

flexibility, and a unique vantage for qualitative observations.  

Addition Expertise Needed 
Acquisition of imagery leads to increased data collection time and expertise when 

employing UAS as compared to purchasing ready to use commercial satellite imagery. UAS 

requires the user to collect their own data, post process it, and conduct quality checks prior to 

analysis. This increases time and cost. The benefit of temporal and spatial resolution may 

outweigh the extra time and effort needed. This, however, is case specific according to project 

goals. As a new technology, software support development is crucial to lowering logistical costs 

and generalize this technology to a broader user base.  
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Scope, Scale, And Time 
UAS have both benefits and drawbacks in relation to project scope, project scale, and 

time. Large satellite-based land cover classifications aim to generalize classes over the 

landscape. UAS provide the ability to focus on small areas within these generalized classes that 

would otherwise be missed or grouped into other classes by satellite data (Daryaei et al. 2020). 

The unparalleled spatial resolution is a major benefit to UAS. While not appropriate for large 

scale mapping, UAS are able to capture minute details and changes that would otherwise go 

unobserved (Boon et al. 2016). In salt marsh pannes, algal blooms can be misidentified as rooted 

salt marsh vegetation. Understanding the system and verifying with extremely high-resolution 

imagery can allow the analyst to correctly reclassify these areas. Combined with user 

background information and UAS derived imagery, anomalies can be better explained and 

monitored.  

In addition to improved spatial resolution, the at-will repeatability of UAS flights provide 

higher temporal resolution that might be required in intensive monitoring projects or to better 

capture seasonal fluctuations that might be missed using ground surveys or satellite based 

imagery (Al-Ali et al. 2020, Daryaei et al. 2020). In salt marsh habitats, this is especially useful 

due to the diurnal cycles that can cover the marsh plain with water. Observations at different 

tidal inundations can provide great insight into appropriate elevation and hydrology for 

restoration design.  

UAS can be implemented more effectively than satellite data due to the flexibility of 

flight times. For instance, knowledge of phenological stages of flowering plants can provide a 

more optimal timing for class differentiation of species if flowers are produced at seasonal times 

(Michez et al. 2016). In Bay Area salt marshes, Marsh gumplant (Grindelia sp.) produce bright 

yellow flowers in the fall which is very distinct from most all other salt marsh species. These 

distinct signatures can help to differentiate Marsh gumplant with higher accuracy.  

Negatively, remote sensing using UAS data can produce unpredictable results stemming 

from data being collected from a distance. Land cover classification accuracy between cover 

classes often differ due issues such as similar spectral signatures, user error in identification of 

training samples, or corrupted data. For instance, classification using UAS for three species, 

Impatiens glandulifera, Heracleum mantegazzianum, and Fallopia sachalinensis/Fallopia 
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japonica yielded a 72%, 97%, and 68% accuracy respectively (Michez et al. 2016). Heracluem 

mantegazzianum was accurately classified while the two other species were not. These 

inaccuracies do not provide great confidence in the entire classification model.  

Selecting between satellite and UAS derived remote sensing is truly subject to the goals 

and requirements of the specific project. Scalability and resolution are the two main factors that 

drive the preference of one technology over the other. Many studies conducted within the past 

five years conclude that with current technology and limitations, UAS cannot outright replace 

satellite derived or in situ data collection but act as complementary technology (Hassler and 

Baysal-Gurel 2019, Al-Ali et al. 2020). 

Increase Benefit in Conjunction Other Remote Sensing Platforms 
In the ecological restoration field, it is rare to only utilize one tool to gather all the 

necessary data for monitoring. Combing technologies and methodology often provide the most 

complete data. For instance, UAS data can improve the accuracy of satellite imagery analysis 

(Hassler and Baysal-Gurel 2019). The high resolution of UAS in smaller areas provides the 

ability for analyst to better identify land cover types which help to create training samples for 

satellite based remote sensing. In arid desert like habitat, UAS provide detailed training samples 

of riparian vegetation that would otherwise be misclassified on the landscape level (Daryaei et al. 

2020). A scenario in salt marsh restoration for this technique would be to use UAS data to 

classify newly colonized vegetation communities that might be misrepresented as mudflats 

without vegetation. These data can be used to train larger satellite data over large restoration 

sites. This represents a multi-temporal combined with multi-sensor approach to remote sensing 

to improve overall accuracy.  

A Picture is Worth a Thousand Words 
UAS provide the ability for restoration practitioners to gather data quickly and provide 

immediate feedback to address dynamic changes in salt marshes. UAS flights and analysis can 

provide almost real time data that is essential to deal with adaptive management issues 

(Papakonstantinou et al. 2020). In addition to quantitative data collection, video and still images 

acquired during UAS flights can provide reference photos, qualitative observations, and inform 

remote sensing users about ground conditions (Boon and Tesfamichael 2017). Restoration 

projects rely on land cover classifications; however, funders and stakeholders respond to visual 
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aids. A major component to successful restoration is continued public support. Visuals, both 

images and video, are a powerful tool to provide qualitative observations (figure 11).  

 

Figure 12: Qualitative observations are equally as important to restoration managers. Stakeholders and practitioners often 
acquire more positive feedback from a simple aerial photograph than statistics and numbers. Restoration of salt marshes is a 
balance of scientific study with achievable goals set by the public (Kerr 2019) 

Understanding your project goals will determine the usefulness of UAS to you. In 

consideration of land cover classifications, cost and efficiency are best evaluated by scale. 

Satellite data is more cost effective in large land classifications at broad scales. The cost and 

effort per acre are reduced. However, if the goal of the project requires more detailed 

information at smaller scales, than UAS can provide better value. Perhaps, then the best scenario 

at this time is a combination of the two technologies where UAS can help to improve satellite 

data by filling in the finer scale details. 
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Chapter 5: Three-Dimensional Data Monitoring 

 Salt marsh evolution prior and post restoration success depends heavily on ground 

elevation compared to tidal waters. Diurnal tidal cycles flood marshes with saline water, 

transport and deposit sediments, and control habitat structure and development. These functions 

are directly linked to the resiliency of salt marsh habitats to stressor such as SLR (Kirwan and 

Guntenspergen 2010). In addition, frequency of inundation controls vegetation colonization and 

elevation range (Silvestri et al. 2005, Balke et al. 2016). Three-dimensional data monitoring and 

remote sensing can provide insight into these ecosystem functions over site wide scales.  

UAS technology is the newest and rapidly evolving method for 3D data collection. More 

traditional remote sensing techniques using LiDAR technology, provide high accuracy while 

providing data over the entire study site (Collin et al. 2010). The drawbacks to LiDAR are costs 

involved with manned aircraft surveys and difficulties in repeated monitoring events. UAS 

technology provide reasonable 3D results as compared to LiDAR and can be a reliable 

alternative method for data collection (Yuan et al. 2018).  

 In this section, I aim to address the question whether UAS can provide enough high-

quality 3D data to help restoration practitioners better understand the vertical structure of salt 

marsh restorations. Data analysis that is useful for improving the understanding of the vertical 

structure of salt marshes includes ground elevation and elevational relationships, hydrologic 

feature modeling, and vegetation characteristics. Using UAS point cloud data, I provide proof of 

concept evidence to validate published literature for these applications of 3D data sets: 

• Bare earth modeling 

• Marsh surface elevation 

• Hydrological feature monitoring 

• Vegetation height 

Comparing my findings to published literature I seek to give clear examples of the usefulness 

and benefits of UAS technologies for improved monitoring of salt marsh restoration. 
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Marsh Surface Elevation Monitoring  
 Understanding marsh elevation for restoration of marshes is important as a preemptive 

design measure in addition to tracking sediment accretion. Salt marsh vegetation is adapted 

specifically to certain elevations where tidal influences have greater or lesser effect (Silvestri et 

al. 2005). Surface elevation modeling is a remote sensing technique that connects individual data 

points to create a continuous surface model. Digital elevation models can predict vegetation 

classes of salt marshes according to presence at specific surface elevations. Restoration 

ecologists often employ surface elevation modeling to better understand the system and track 

changes over time. 

Lidar Technology  
LiDAR data provides detailed vertical points that can be used to create highly accurate 

elevation models. These data are generally gathered using specialized equipment aboard aircraft 

tasked for general projects and over large land areas. GPS accuracy, along with closely calibrated 

equipment, allow for accurate positioning ranging from 0.5 m to 3 m horizontal accuracy 

depending on platform and data analysis methodology (Getmapping 2021). Remote sensing 

using LiDAR data is a cost-efficient tool to evaluate ground elevation over large landscape levels 

when compared to field-based methods. Examining the estimated cost difference between field-

based data collection to LiDAR remote sensing in forest ecosystems shows that LiDAR’s 

average cost is $2.29 / acre for 90,000 acres while field based study’s average is $2.46/ acre for 

5,280 acres (Hummel et al. 2011). Although, not directly comparable due to scope, LiDAR does 

provide an advantage when conducting landscape level monitoring.  

Drawbacks to Manned Aircraft Based LiDAR 
Although LiDAR based elevation models are ubiquitous in the environmental 

management field, the technology is not without fault. The drawbacks to manned aircraft LiDAR 

systems are scope dependent cost, resolution, and poor laser penetration in dense vegetation 

(Hladik and Alber 2012). LiDAR imagery requires specialized equipment, manned aircraft, 

correct weather windows and tidal conditions to be optimally implemented. The logistics and 

inherent cost to bring these systems online for small projects hinders repeatability. Often LiDAR 

data are very broad and expand over large land areas for multiple projects and do not specifically 

target single project boundaries. For instance, only two publicly available LiDAR data sets from 
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USGS are available for my study area, 2014 and 2020 (United States Geological Survey 2021).  

It is not uncommon to have only one LiDAR dataset available for an entire restoration project, 

limiting collection of useful monitoring data.  

Salt marshes are affected by environmental variables, many of which are difficult to 

predict. For instance, erosion due to wind driven wave action can change as-built surface 

elevations. Without repeated elevation modeling, it is difficult to determine the true extent of 

elevation loss prior to vegetation establishment. Real time data allows practitioners to evaluate 

this disturbance and mitigate the process immediately (Pethick 2002). Ultimately, this can 

culminate in salt marsh restoration failure or the need to spend more money. For instance, it 

would be difficult to measure the rate of yearly marsh loss due to shoreward erosion within my 

study area using LiDAR due to lack of annual LiDAR data. Marsh loss would need to be 

calculated and averaged using the 2014 and 2020 datasets or augmented with less precise visual 

estimations using aerial imagery. This could lead to an incomplete record of meteorological 

effects on erosion. California experienced a high amount of precipitation in 2017 after years of 

draught. Without yearly data, there is no way to determine if increased high tides brought on by 

intense flash urban runoff during this period increased the rate of erosion. Not being able to fully 

understand this stressor would set up for less than desirable erosion mitigation efforts to curb 

further erosion pressure.  

 LiDAR data acquisition often aim to gather elevational data over large landscapes which 

limit the vertical resolution due to data storage and processing limitations. Manned aircraft 

LiDAR systems typically have a 1 m spatial resolution (Pinton, Canestrelli, Wilkinson et al. 

2020). High vertical spatial resolution is extremely important in remote sensing analysis of salt 

marsh environments. While a 1.0 m accuracy provides great resolution on the landscape level, it 

may not be suitable for salt marsh habitats where micro changes in elevation (e.g., 10 cm) can 

change habitat communities.  

In addition to temporal and resolution issues, LiDAR data collection is currently not as 

accurate as in situ measurements due to physical limitations of laser penetrance of dense 

vegetation canopy. Salt marshes often included both bare ground and short dense vegetation. 

Due to the density of these low-lying vegetation and small differences in height off the bare 
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earth, LiDAR returns may confuse vegetation with ground points (Wang, C. et al. 2009, Pinton, 

Canestrelli, Wilkinson et al. 2020). When this happen, the top of vegetation is misidentified as 

the ground surface culminating in over estimation of elevation modeling and an underestimation 

of vegetation surface elevations (Zhou et al. 2018, Pinton, Canestrelli, Wilkinson et al. 2020). At 

salt marsh restoration sites, this underestimation poorly captures the true condition of the site. 

Elevation derived metrics such as vegetation height and biomass are then less desirable to 

evaluate marsh restoration success. 

To overcome for these limitations, LiDAR-derived DEM data must be corrected using 

algorithms or manual methods. Hladik and Alber (2012) published a study where overall mean 

error using LiDAR data for salt marsh vegetation elevation modeling was 0.10 m with individual 

species having errors up to 0.27 m (Table 5). After correction, mean error was reduced to 0.01 m 

as compared to in situ ground sampling points. (Hladik and Alber 2012). These corrections are 

important but are usually unique to each situation and require field verification to determine if 

they are accurate.  

In addition to penetration issues for low lying vegetation, tall grass species also display 

underestimation error. Taller grass species are less dense at the very top of their biomass. This 

reduced density makes it difficult for LiDAR laser beams to hit individual blades of grass and 

provide accurate returns, especially when spatial resolution is too broad.  
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Table 5: Unmodified vs. corrected vegetation heights. Mean accuracy errors displayed by marsh species. Different species have 

differing errors due to physical characteristics preventing accurate LiDAR penetration to ground. (Hladik & Alber, 2012) 

 

 

 LiDAR technology is a great tool for large scope landscape level data collection. This is 

extremely valuable for broad level environmental monitoring which can aid in salt marsh 

restoration design and monitoring. However, the drawbacks to LiDAR technology leave room 

for an intermediate technology that can improve on deficiencies based on the scale of projects.  

UAS Point Cloud Technology 
UAS technology provides a useful tool that bridges the gap between difficult to gather in 

situ monitoring and more broad scoped manned aircraft LiDAR technology. These newly 

developing technologies provide benefits that increase the data gathering potential for smaller 

scale projects while still achieving an overall remote sensing approach. Ultimately, the benefits 

of UAS compared to more traditional collection methods dictate that accuracy versus scale or 

cost must be weighed when considering the use of UAS.  
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Unlike LiDAR, UAS produce 3D point cloud data by comparing many overlapping still 

photos from different viewing angles in a process known as photogrammetry. This is the process 

of obtaining 3D spatial relationships between points by measuring and interpreting photographic 

images in relationship to each other(Dai et al. 2018, Fraser et al. 2016). This process relies on 

passive reflectance of light back to the UAS sensor which makes it less powerful than LiDAR 

which employs targeted laser light.  

UAS platforms provide enough spatial resolution to produce 3D data that can be 

developed into DTMs. UAS data, using Structure from motion (SfM) photogrammetry, a 

common form of UAS photogrammetry, can provide detailed point clouds of the mud surface 

(Dai et al. 2018). The points attributed to surface elevation can be filtered out and then converted 

into a single rasterized layer representing ground elevation. Accuracy is dependent on sensor 

resolution and flight elevation. Spatial accuracy has been published consistently under 10 cm of 

horizontal error with one study finding a 7.5 cm accuracy when compared to GPS-RTK in situ 

monitoring (Dai et al. 2018). UAS point cloud data’s horizontal accuracy is limited by several 

factors including limitations to light penetrance, detection of fine plant matter, sensor resolution, 

and image overlap during flight.  

UAS point cloud data provides comparable elevation modeling results to LiDAR derived 

data, while improving temporal resolution. Although LiDAR is currently more accurate, image-

based point cloud can still be useful for salt marsh restoration (Salach et al. 2018). UAS DTM 

can achieve a 0.29 m vertical resolution compared to 0.15 m LiDAR derived DEM. This allows 

for UAS DTM to have a 2.5 m contour while LiDAR can achieve a 1.0 m contour (Boon et al. 

2016). In addition, in low vegetation systems, LiDAR derived DEM was seen to achieve a 0.11m 

root mean square error (RMSE) compared to UAS image-based results with a 0.14m RMSE 

(Salach et al. 2018). Here, RMSE is the comparison between the remote sensing derived DTM 

and the in situ DTM values determined using field-based measuring systems. These similar 

accuracies suggest that UAS DTM can be used as an alternative to LiDAR system.  

The flexible nature of UAS data collection provides a benefit over traditional LiDAR. 

The ability for frequent repeatable data collection allows the users to take advantage of optimal 

temporal conditions to collect data. For instance, winter vegetation senescence can lead to better 
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image penetration to the marsh ground surface for elevation modeling or avoidance of poor 

meteorological conditions to allow for better detection of the tops of marsh grasses when 

creating DSMs (Zhou et al. 2018, Malambo et al. 2018). UAS tools allow restoration 

practitioners to be more flexible and gather the necessary data on their schedule and be less 

reliant on third party data collection partners. This is especially important for 3D data collection 

that relies on manned aircraft rather than satellite data. Lastly, the continual evolution of sensor 

technology will soon allow for cheaper advanced sensors to be placed on unmanned aircraft at 

ever decreasing costs. This includes adapting LiDAR systems to UAS increasing detection 

capabilities but preserving UAS flexibility. 

Proof of Concept: UAS Derived DTM 

 I developed a UAS derived DTM to illustrate the ability of photogrammetry derived 

points clouds to collect 3-D data. Broadly, the DTM can show elevation changes and differences 

of the salt marsh bare ground surface while incorporating other vector data such as raised ridges. 

For instance, Tidal channel complexes are clearly identifiable by elevation values (Figure 13). In 

addition, the tops of levees, where the elevation is highest are easily distinguishable from the 

sloping edges (Figure 13). Higher elevation values are depicted by the orange colorization and a 

spectrum displays change in elevation to the lowest, displayed in dark green. Understanding 

elevational relationships provide management level data that can educate practitioners on 

appropriate locations for vegetation establishment, channel development, and slope transitions 

(Williams and Faber 2001).  

My DTM model does highlight deficiencies of UAS data as mentioned previously. The 

resulting data show inaccuracies where the UAS was unable to detect points below dense 

vegetation. This is especially apparent where the DTM model clearly shows elevated surface 

where dense vegetation exists (Figure 13). This is most likely due to the inability to detect ground 

points below the vegetation at those locations. The modeling software automatically understands 

the lowest return values to be ground points. These points, which represent the lowest detections 

of the vegetation, are mistakenly incorporated into the raster development. These anomalies 

should be noted or manually corrected if this technology is to be employed. 
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Figure 13: DTM anomalies created by poor penetrance. UAS point cloud data is unable to detect true ground points under these 

patches of thick vegetation. The mis-identified points are included into the DTM raster layer but can be manually removed or 

filtered out with using additional data. 

Proof of Concept: Bare Earth Model Hillshade Manipulation 

I developed a hillshade manipulation of a bare-earth model, similar to DTM, to better 

visualize the underlying condition of the ground surface without vegetation cover. This 

manipulation provides an appealing visual representation of ground surfaces and soil attributes 

that would otherwise not be easily visible. In Figure 14, open mudflat is shown as a smooth 

surface. Evidence of soil erosion due to small tidal channel formation on the mudflat is 

highlighted as darker depressions. In addition, channel steepness and small topographic features 

are highlighted. The bank on the left side of the major channel is steeper with the right bank 

having a less steep elevation gain. This is important on its own to understand erosion and 

channel formation. 

An ecologist would use these tools and knowledge of marsh vegetation to better plan for 

planting designs that would maximize survivorship and increase ecosystem services for the 
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project goals. For instance, if habitat creation for California Ridgway’s Rail (Rallus obsoletus) is 

a restoration goal to mitigate loss of habitat, then channel vegetation is critical for foraging 

habitat and cover from predation (Zhang, H. and Gorelick 2014, Rosencranz et al. 2018). Using 

the DTM and hillshade manipulation, channel edges can be better identified, and a planting 

design can be developed to encourage growth. Elevations that support Pacific cordgrass can be 

identified as compared to reference sites within the same marsh complex. This is a powerful tool 

that increases the site knowledge that may not be as readily apparent during in situ monitoring.  

 

Figure 14: Bare earth modeling can provide valuable information. Ecologists can use these data, combined with ecological 

knowledge to better design and monitor salt marsh restorations to meet project goals. 

Slope Metrics 
Employing DTM data, slope metrics can be modeled over project sites. An important 

marsh characteristic for salt marsh SLR resiliency is having a consistent slope from tidal 

mudflats to upland transition zones. As tidal waters rise, they flood over the landscape. Shallow 

slope floodplains are better suited to absorb tidal inundation and storm surge over larger 

horizontal distances. Manmade structures that emulate these natural landscapes are known as 

horizontal levees (Cecchetti et al. 2020). Gradual slopes allow for marsh vegetation to migrate up 
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in elevation in response to SLR (Donnelly and Bertness 2001). Slope monitoring is critical to 

ensuring that horizontal levee construction meets the restoration goals.  

UAS data provides a great opportunity to better monitor and understand restoration 

success when considering project area slope. UAS DTM provides comparable estimation for 

slope rise comparable to satellite-based analysis. Boon et al. (2016) demonstrated that UAS 

derived DTM predicted a slope of 1.77% over their study area as compared to a slope of 2.4% 

derived from google earth. The easy repeatability of UAS data collection allows practitioners to 

monitor season stresses that affect restoration projects, especially in early phases prior to 

widespread vegetation propagation. For example, the Sears Point wetland project, located in 

Sonoma County, CA, built raised earthen islands prior to restoration to tidal action (Sonoma 

Land Trust 2021). However, erosion rates of the island were higher than expected and required 

adaptive management to maintain these elevation heights (Figure 15) (Charles 2018). Although 

UAS technology was not employed, this would have presented an opportunity to employ this 

technology to great benefit.  

 

Figure 15: Adaptive management of raised earthen mounds to address wind driven erosion at the Sears Point wetland 

restoration, 2021. Pacific cordgrass is being planted to promote rapid vegetation spread over the earthen mounds within the site. 
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Hydrology Monitoring 
Hydrological features allow for sediment transport throughout marsh complexes. As tidal 

inundation flood marsh plains, suspended sediments tend to settle near tidal creek banks. This 

elevates the areas adjacent to tidal channels at a greater rate than interior sections of marsh. If a 

marsh does not have adequate flow, sedimentation is limited to the shoreward edge and cannot 

make it to the interior of marshes. UAS derived surface modeling provides the ability to model 

channel system evolution. These data can inform stakeholders as to the progress of maturation 

for these younger restorations. As SLR intensifies, the interior of the marsh plain will continue to 

flood. This can lead to even more marsh elevation loss (Cornu and Sadro 2002). Eventually 

continued ponding will kill salt marsh plants that still require atmospheric air to live. This leads 

to even greater marsh loss due to the reduction of organic material introduced into the soil 

(Cahoon and Reed 1995). Understanding the hydrological connectively with restoration projects 

is vital for success.  

UAS can provide useful data to monitor hydrological features such as creeks, tidal 

channels, and wetland boundaries. Salt marsh hydrology is the culmination on the interactions of 

diurnal tidal cycles, bringing in daily inundation, mixed with freshwater input from upland 

sources and precipitation. These processes shape and dictate the function of salt marshes, which 

in turn act as a buffer to stressors such as storm surge or anthropogenic pollutants (King and 

Lester 1995, Möller, Iris et al. 2014, Spencer and Harvey 2012). Modern day salt marsh 

restorations target this buffering ecosystem service as a design criterion making the monitoring 

of hydrological features very important.  

Tidal Channel 
Using UAS point cloud data to evaluate tidal channel formation, the maturation of salt 

marsh systems can be monitored over time. Older remnant salt marshes in the SF Bay, such as 

China Camp in Marin County, CA, have a network of interconnected tidal channels (Fagherazzi 

et al. 2004). These channels provide a multitude of hydrological and geomorphological processes 

that help shape the productivity, vegetation structure, and resiliency (Wu et al. 2020). Diurnal 

inundation allows for low elevation channels to develop quickly where only extreme tidal 

inundation allows for higher elevation channel formation (Bayliss-Smith et al. 1979). Effective 

restoration designs should incorporate channelization and elevation metrics into their designs to 
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jump start these important processes (Zeff 1999). Being able to monitor channel growth and 

spread is important in restoration practices as these provide important insight into the overall 

connectivity of the marsh. 

UAS point cloud provide enough resolution between ground points to effectively model 

tidal channels. These 3D data, once analyzed, determine spatial relationships between points in 

the vertical axis (Ahmad et al. 2013). The modeling of tidal channels using UAS point cloud data 

is very similar to the common process of using LiDAR data to determine streams and 

watersheds. Understanding these relationships allow computer modeling to extrapolate the likely 

position of streams and channels relative to slope and probable water flow. This is extremely 

important in new marsh restoration where unvegetated mud surfaces are more prone to erosion 

and channel formation.  

Proof of Concept: UAS Derived Tidal Channel Modeling 

Using UAS point cloud data, I created a feature layer that models tidal channels within 

the study area (Figure 16). The results are polyline representations of channel networks pictured 

in blue. My findings were evaluated by comparing the channelization model with aerial imagery 

of large channel networks. Overall, the UAS point cloud was able to predict the established 

channel network when compared to aerial imagery. Further field verification could help develop 

accuracy statistics but that was not within the scope of this project. Being able to accurately 

monitor channel network using UAS provides a useful tool to understand the evolution of salt 

marsh restoration with real time data. Restoration practitioners can use these data to inform 

restoration design and to give real time feedback for adaptive management of a restoration site. 
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Figure 16: UAS point cloud derived tidal channel analysis. Using ArcGIS Pro, waterbodies and watersheds can be predicted 

using terrain, slope, and flow direction. 

Marsh Vegetation Height Monitoring 
 Monitoring height metrics for salt marsh restoration provides insight into productivity, 

resiliency, and ecosystem service potential. For restoration projects that target SLR resiliency 

and storm surge attenuation, height metrics play an important role. Relative tall canopy has a 

positive control on wave attenuation when compared to shorter salt marsh vegetation (Möller, I. 

2006). In addition, height data can be used to compute above ground biomass (AGB). 

Understanding ABG can lead to predictions of productivity and carbon sequestration. Capturing 

multiple datasets over a short period of time can provide real time insight into marsh growth or 

degradation (DiGiacomo et al. 2020). UAS provide a perfect platform to capture multiple 3D 

datasets per growing season. 

UAS Point Cloud Derived Vegetation Height 
UAS derived point cloud data can be used to determine height of salt marsh vegetation 

species. The results provide generalized trends but still suffer from light penetration of dense 

vegetation and detection of thin grass canopy. Published studies using UAS to determine salt 
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marsh and grassland height metrics find that there is a consistent underestimation of height 

compared to in situ vegetation monitoring (Pinton, Canestrelli, Wilkinson et al. 2020, Yuan et al. 

2018, DiGiacomo et al. 2020). A possible source for height underestimation for salt marsh 

species like Sporobolus spp. is that stem thickness and density tend to decrease with increased 

height. Fine leaf blades might not be detectable at the top of vegetation providing a source of 

error (DiGiacomo et al. 2020). These underestimations, however, have been seen to be consistent 

allowing the data to be corrected for increased accuracy. Like LiDAR corrections, manual or 

algorithm-based methods can increase the UAS vegetation height accuracy increasing the 

potential for suitable vegetation estimates.  

Proof of Concept: UAS Derived Vegetation Height Modeling 

My vegetation height model, using UAS data, illustrates the ability of UAS to determine 

height variation of high marsh and transitional zone habitat (Figure 17). Height values of large 

woody shrubs were calculated to be 8m tall as detailed by the bright red colorization. Due to 

inaccuracies in short and dense marsh vegetation, this tool did not prove useful within the 

cordgrass/pickleweed plain within the constraints of this project and computing resources. 

Published studies, employing corrective algorithms or methodology to better detect ground 

surfaces, have illustrated the ability for UAS to achieve high accuracy in low marsh vegetation. 

The methodology employed in those studies are outside the scope and time frame of this project.  
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Figure 17: High marsh and transitional zone shrubs heights can be calculated by subtracting the DSM from the DTM. The left side 

of the image displays the RGB UAS imagery of high marsh habitat. This habitat zone is dominated by woody shrubs and annual 

grasses. The right side of the image shows continuous imagery but displaying vegetation height estimates. Individual woody shrub 

height estimates show up clearly in the deep red color 

Accuracy Correction of UAS derived DTM 
Due to penetration limitations of dense vegetation and physical characteristics of 

grassland species, remote sensing techniques often require correction to resolve underestimation. 

Once complete, UAS height data becomes useful as a tool to measure vegetation height. This is 

traditionally executed by filtering out positively identified bare ground point cloud returns. Once 

a true bare earth DTM is created, mathematical algorithms can correct for discrepancies in 

vegetation height. These techniques are highly specific to the system they are analyzing. For 

restoration practitioners, this additional step to increase accuracy poses a management decision 

that must be made when comparing project goals, budget, and needs for data monitoring.  

In a study by DiGiacomo et al. (2020), three methods to extrapolate true ground points 

were examined (Table 6). First, vegetation indices were used to filter out non-vegetated locations 

by comparing differing spectral signatures. Secondly, manually identification of bare earth 

provides similar values but requires user input and knowledge of the project site. Lastly, LiDAR 
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bare earth returns are used, as is since they currently provide the most accurate bare earth data 

(DiGiacomo et al. 2020). However, as previously mentioned, these LiDAR data can be more 

expensive and difficult to acquire within the correct temporal parameters. 

Table 6: Methods for determining DTM to calculate vegetation height (DiGiacomo et al., 2020). 

 

Acquiring verified ground point data allows the user to query out false ground point 

returns that dense vegetation can create. Vegetation indices, such as NDVI, allows for detection 

of ground points compared to living vegetation. This is done by comparing green reflectance 

values. In salt marsh environments, non-detection of chlorophyll signatures (non-green) are 

assumed to be either dead vegetation or bare ground. These values, once queried from green 

vegetation, can be used to estimate areas of bare ground (DiGiacomo et al. 2020). The filtered 

ground points are then used to create a rasterized DTM. This technique, however, can lead to a 

loss of spatial resolution and smoothing over between ground points.  

All three methods produce statistically similar results in predicting true stem height. 

However, with similar small r2 values compared to in situ height measurements, all three 

methods suffer from underestimation of true stem height. Similar linear regression models of all 

three results indicate that all methods underestimate vegetation similarly. Multiple 

transformations and algorithms exist to correlate these data closer to true stem heights (Pinton, 

Canestrelli, Wilkinson et al. 2020, van Iersel et al. 2018, Yuan et al. 2018). Once transformed, 

the UAS point cloud method demonstrated similar predicted vegetation heights to that of the 

LiDAR (Figure 18). 
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Figure 18: Comparison of true stem height calculations between LiDAR, manual, and pointcloud derived DTM. All three show 

similar ability to compute true stem height. However, the spread of data points away from the mean is most limited in LiDAR 

data. (DiGiacomo et al. 2020) 

Accuracy fluctuations in differing vegetation height classes 
UAS point cloud data achieves better accuracy results for height measurements when 

individual specimens are clearly distinctive from the surrounding environment. Salt marshes are 

comprised of heterogenous vegetation communities that differ in average vegetation height. 

Frequently inundated zones tend to have short and dense vegetation whereas drier high elevation 

zones can support larger woody species (Moffett et al. 2012). It is possible that the low canopy 

and population densities of these woody species leads to more accurate vegetation height 

calculations. For restoration ecologists, understanding the average heights of larger woody 

species can provide insight into success metrics such as carbon sequestration, roosting habitat, 

and vegetation diversity.  

A study by Fraser et al. (2016) illustrates that shrub vegetation height can be accurately 

measured in low-Artic environments. This environment shares similarities to salt marshes in that 

woody shrubs make up the tallest vegetation in an environment mostly dominated by low 

herbaceous species. Due to the lack tall vegetation in this habitat type, a very dense UAS point 
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cloud is possible. By employing these point clouds of singular tall shrubs, an accurate height 

estimate can be made (Figure 19). In this study, the r2 value is equal to 0.9636 with a S. E. of 0.08 

(Figure 20). This result of close to a 1:1 remotely sensed height value compared to in situ 

measurements suggest that high accuracy is possible for Woody shrub species in open grassland 

environments. 

Furthermore, if you combine height measurements with RGB imagery, a practitioner can 

more accurately evaluate vegetation classes by employing height as another classification value. 

As previously explored, RGB data can be used to identify vegetation classification. Using plant 

heights as an additional metric can increase the accuracy of consumer grade sensors on UAS 

only capable of RGB detection (Fraser et al. 2016). 

 

 

Figure 19: Comparison of UAS point cloud data vs. in situ measurements of shrub species show similar height estimate using 

UAS derived imagery. The left photos are a visual representation of 3D point cloud data of these specific individuals. The right 

photos are in situ height measurement values (Fraser et al., 2016) 
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Figure 20: The regression model illustrates that UAS based canopy height almost has a 1:1 relationship to field measured 

heights. This provides evidence that UAS can provide accurate height measurements for woody shrub species (Fraser et al., 

2016) 

Marsh vegetation Above Ground Biomass (AGB) monitoring 
Above ground biomass is an indicator of success in salt marsh restoration as it conveys 

information regarding productivity, increases vegetation cover, carbon sequestration and 

resiliency to storm surge and SLR. Above ground biomass can be measured using in situ 

techniques; however, these are generally destructive to vegetation and can cause significant 

disturbance in the field. The technique is often extremely labor and time intensive requiring 

desiccation of plant material and measuring of dried tissue samples (Darby and Turner 2008). 

Remote sensing provides a way to create estimates of plant biomass on the landscape level. 

Although, not as accurate, these data can be analyzed over the entire study site and provide more 

generalized trends in productivity and carbon storage (Doughty and Cavanaugh 2019).  

Multi-temporal and Multispectral UAS imagery provide the ability to better detect 

seasonal variations in AGB. Using an NDVI vegetation index, normally employed to understand 

vegetation health, seasonal biomass measurements can be determined. When compared to other 

indices, NDVI is shown to have the most accurate biomass estimate with and R2 of 0.356 and a 

p-Value of <0.005 (Table 7) (Doughty and Cavanaugh 2019). By employing this technique, 

seasonal ecological patterns can be monitored within salt marshes (Figure 21). This is important 

in restoration practices where deviation from normalized patterns may indicate variations to salt 

marsh vegetation brought on by stress.  
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Table 7: Equations to convert vegetation indices to Above Ground Biomass estimates. NDVI has the largest R2 Value as 

compared to other vegetation indices. (Doughty and Cavanaugh 2019) 

 

 

Figure 21: Seasonal changes in AGB derived from NDVI index collected using multispectral sensors on UAS. Spring biomass is 

most abundant in salt marshes with these models due to increased green vegetation biomass in the spring season (Doughty & 

Cavanaugh, 2019). 



 | Kevin J. Eng 
 

MSEM 2021 54 
 

UAS multispectral imagery provides high resolution data that can better determine 

optimal elevations to produce maximum AGB. Compared to satellite imagery, UAS provides 

centimeter level precision compared to meter level. In salt marsh environments, significant 

changes to vegetation structure occur within this level of detection. For example, in Figure 22, 

peak biomass is estimated to occur at 1.6-1.8 m of elevation. For restoration projects aiming to 

increase AGB for habitat improvement or storm wave energy attenuation, understanding these 

target elevations is key to reaching project goals. Salt marsh design can target these elevations to 

ensure peak biomass.  

 

Figure 22: Peak biomass, for all seasons, is congregated between the 1.6 and 1.8 m elevation. (Doughty & Cavanaugh, 2019) 
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Chapter 6: Recommendations for UAS application 

UAS technology provide a new and relevant tool that can greatly benefit the ecological 

restoration practitioners. This technology provides a critical data collection technology that fits 

between in situ field surveys and large commercial grade aerial platforms. I present four 

recommendations for the usage of UAS that will allow for the best implementation of this new 

technology in salt marsh restoration.  

1) Combining technologies to overcome deficiencies in entry level UAS technology: 

If budget allows, combining multispectral and LiDAR sensors onto UAS platforms can 

provide high resolution and accurate data while providing the benefit of easy repeatability. 

Developments in sensor technology allows for more advanced sensors to be mounted onto 

smaller platforms. This increases the temporal and spatial resolution compared to manned 

aircraft systems and satellite platforms as UAS can fly at lower elevations which increases 

resolution (Fraser et al. 2016). Negatively, cost of data acquisition per acre is greatly increased 

due to expensive hardware. This can be compensated for if repeated flights are conducted, 

spreading out the cost hardware over multiple data collection events.  

2) Flexibility of temporal resolution improves time dependent data quality: 

UAS’ main benefit is flexibility in data collection timing improving on temporal 

resolution. Field based monitoring is time intensive and often does not offer site wide data for a 

single point in time. Satellite and manned aircraft surveys are often difficult to task for specific 

small-scale projects limiting when data can be collected. UAS are portable and on demand which 

allow for flexibility considering seasonal changes, weather conditions, and tidal inundation.  

UAS’ on demand data collection allows for targeted vegetation sampling during optimal 

morphological conditions. For example, Gumplant in Bay Area marshes is difficult to detect in 

land cover classifications due to its similar spectral signature to other marsh vegetation (Li et al. 

2005). In the fall, Gumplant has bright yellow flowers that make it more spectrally 

distinguishable. Targeted flights over the marsh complex during this time can allow for more 

accurate representation of Gumplant detection. 

3) Repeatable monitoring surveys improve the understanding of the marsh system: 
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UAS’ great strength is cheap and easy repeatable data collection. To fully utilize UAS 

and lower the cost per flight, restoration practitioners should employ this technology as often as 

possible to achieve their monitoring goals. Repeated data collection during different times of 

year provide data that captures seasonal changes that would otherwise be missed. Annual 

vegetation monitoring only captures a single snapshot of the marsh conditions. Multiple flights 

per year can capture different stressors or changes to the marsh. This is especially important in 

the Bay Area where our weather is dominated by wet cool winters and dry hot summers. Winter 

UAS flights can capture the effects of storms on the marsh while summer flights can capture the 

effects of hypersaline conditions.  

UAS, when continually employed from the initial phase of restorations can overcome the 

limitations of line-of-sight detection through vegetation. To create more accurate DTM, UAS 

data collection would ideally take place prior to vegetation growth or during the winter season 

when ABG is at its lowest (Zhou et al. 2018). For example, many salt marsh restorations start 

with unvegetated mudflats after earth moving activities. This will allow for the best penetrance 

to the marsh ground surface allowing for accurate baseline DTM elevations. UAS flights should 

be repeated to better capture changes in height metrics. These data will help adaptive 

management, ultimately increasing restoration success. 

The repeatable nature of UAS should be employed to capture external influences that can 

affect marsh vegetation communities. California experiences periodic drought conditions 

followed by periods of wet conditions. For instance, the Bay Area was in a historically long 

draught until 2017 when record rains fell. The impacts of these changes in rain affect vegetation 

communities by changing soil salinity. An invasive species prevalent in Bay Area marshes, 

Pepperweed (Lepidium latifolium), capitalizes in periods of lower salinity (Wigginton et al. 

2020). This results in a large expansion during wet seasons. Frequently repeated aerial surveys 

with UAS will provide restoration managers much needed data on spread of this invasive 

allowing for more effective adaptive management. 

4) Operational costs vary with scale of restoration projects: 

UAS technology provide a range of capabilities that change operational costs according 

to need. Small scale salt marsh restoration projects would benefit from entry level consumer 
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grade UAS while larger budget restorations will see better results from upgraded platforms. 

Upfront costs for UAS are a limiting factor to their widespread usage, especially when compared 

to the cost of one-time satellite imagery acquisition. This is a major consideration for a 

restoration project and must be evaluated prior to investment. Factors such as frequency of data 

collection, expertise to process UAS data, and staff time are all real-world logistics that 

determine the feasibility of UAS. An entry level consumer grade UAS and accompanying 

hardware generally costs about $2,000 USD. More advanced sensors can quickly add thousands 

of dollars to this.  

Low budget projects can benefit from entry level UAS technology. Basic RGB data can 

provide trend data such as vegetation spread, height metrics, and information to aid in restoration 

design and adaptive management. High budget, regulatory, or academic salt marsh studies 

should employ multispectral UAS data to provide higher accuracy due to more available spectral 

data. The increase in cost is offset by the higher precision data that can lead to more robust 

analysis used in modeling, regulations, and academic study. Lastly, since most of the costs are 

upfront, the more frequently UAS are employed, the lower the cost per flight.  
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Chapter 7: Conclusion 

Salt marsh restoration is an increasing practice due to our ever-evolving understanding of 

their importance as ecological features and for their benefits to humans. In the San Francisco 

Bay, this is especially important as much of the historic salt marsh habitat has been cut off from 

tidal flow or filled. The Bay Area is high urbanized up to the water’s edge which may cause 

significant issue with global climate change and SLR. Our understanding of tidal wetlands today 

has changed to where we understand their significance as a buffer from coastal flooding. The 

evolution of restoration practices can be linked to monitoring of successful and failed restoration 

attempts over the past 40 years. The evolution of monitoring of salt marsh restoration will allow 

us to evaluate restoration success, provide adaptive management, and continue to learn about 

these important processes. 

 The evidence collected in this study suggests that UAS technology is a valuable addition 

to more established monitoring techniques and technologies. While not being a complete 

replacement for technologies such as satellite imagery or airborne LiDAR, UAS provide similar 

results while being a more flexible data acquisition platform. UAS can be deployed at will of the 

practitioner to capture specific details of marsh restoration such as seasonal vegetation changes 

or differing tidal inundation. This is important to restoration practitioners who are more willing 

to have lesser quality data in trade for greater quantity and ease of access to repeatable data 

collection. 

 UAS technology can provide useful data to conduct land cover classifications over salt 

marsh environments. Entry level consumer grade UAS, outfitted with basic RGB sensors, can 

gather enough data to differentiate major land cover classes. Although these data may not 

contain enough information to detect species level classification, more broad classification 

mapping are highly useful. This is especially true when the desired data seeks to gain knowledge 

of metrics such as conversions of open soils to vegetated salt marsh. The potential to upgrade 

UAS sensors to include multispectral range increases the capability of the platform like top tier 

satellite imagery.   

 Using point cloud data processed by photogrammetry, UAS data can provide an 

alternative to LiDAR technology to capture 3D data. These data are dependent on passive light 
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reflection to gather data points. Due to the need for direct line of sight, UAS photogrammetry 

suffers from the same setbacks as LiDAR. This ultimately does not improve on LiDAR, 

however, does provide comparable data. The flexibility in temporal resolution allows restoration 

ecologists to gather better ground data during the winter season when vegetation canopy is less 

dense. If UAS are employed at the very beginning stages of restoration where bare soils are the 

primary cover, light penetration does not affect the accuracy of the creation of DTMs. This 

creates an accurate baseline DTM to base all future height metrics on. The repeatability of data 

capture allows for real time changes to be captured during the restoration timeline, not when 

other large scale LiDAR acquisition is planned. 

 When determining if UAS technology is right for a specific project, it is as important to 

understand the limitations of this technology as with the benefits. This study identifies that UAS 

can excel when the spatial scope of the project is limited. This is due primarily with the physical 

limitations of battery size and time to acquire imagery over large landscapes. Generally, 

consumer grade UAS can fly for about 20 minutes on each battery. Multiple batteries are usually 

required to capture study sites. If a large study area is required, then satellite imagery is more 

efficient, although resolution is reduced. This is especially true if repeated monitoring events are 

not necessary. Modern commercial satellite imagery is becoming more readily available at ever 

decreasing costs. UAS can compete with these newer satellite platforms because they provide a 

higher image resolution which is often needed in small scale salt marsh restorations. 

 The future for UAS in ecological monitoring is quickly evolving as evident in the 

trajectory of published literature. Ten years ago, this technology was novel. Today, ever more 

complex studies are making UAS technology more practical for real world implementation. The 

next evolution in UAS technology will most likely be the user interface where persons with little 

training can gain the information that today only trained analyst can provide. UAS may not be a 

one stop replacement for in situ monitoring or other remote sensing technologies, however, it 

does provide an exciting tool that provides flexibility to restoration practitioners.
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