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Abstract 

 Chemical homeostasis is a baseline requirement for any cell to survive. ATP-binding cassette 

(ABC) transporters play a vital role in homeostasis by importing nutrients and exporting toxins against their 

concentration gradients by utilizing the energy of ATP hydrolysis. Malfunctioning ABC transporters cause 

a variety of health problems, including cystic fibrosis, Stargardt’s disease (vision loss), and the development 

of drug-resistant tumors. An important step in solving these medical issues is to first understand the 

structure and mechanism of ABC transporters. Various studies have made great strides in depicting the 

structure and details of different ABC transporters and their mechanisms, however, many of these details 

were discovered with transporters in highly artificial environments using X-ray crystallography. This 

project aims to further understand the mechanism of the E. coli methionine importer MetNI using functional 

studies.  

 A fluorescence anisotropy assay was developed as a functional study that would assess the 

dissociation constant between MetNI and its periplasmic binding protein MetQ. ATP-binding by MetNI 

was found to be a prerequisite for MetNI-Q complex formation. MetNI saw a slightly higher affinity for 

apo MetQ (Kd = 281 nM ± 36 nM) than L-Met bound MetQ (527 nM ± 107 nM). These similar binding 

affinities support the hypothesis that MetNI follows two different mechanisms originally proposed by 

Nguyen et. al.; one for the preferred L-Met substrate, and one for L-Met derivatives in situations of L-Met 

scarcity. Preliminary trials investigating the dissociation constant between the MetNI C2 domains and L-

Met found a Kd dissociation constant between the MetNI C2 domains and L-Met of 484 nM. Moving 

forward, the ATP requirements for MetNI-Q complex formation will be investigated using MetNI 

transporters with nucleotide binding domain chimeras.  
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Chapter 1: Introduction 

 

1.1: The Lipid Bilayer and Membrane Proteins 

A crucial requirement for cell survival is maintaining an optimal internal chemical environment. 

The cell must consistently maintain homeostasis, which includes variables such as pH, ion and solute 

concentration, and redox state. To maintain the proper internal environment, the cell creates a semi-

permeable membrane to separate its intracellular compartment from the extracellular space. The membrane 

consists of a lipid bilayer, arranged with hydrophobic tails facing inward and hydrophilic heads facing 

outward. The bilayer forms a flexible yet strong barrier, approximately 3-4 nm thick and with remarkable 

fluidity in the lateral plane.1  

While small, nonpolar molecules such as oxygen and carbon dioxide gas move unassisted through 

the membrane, other molecules that are large or polar are unable to traverse the barrier by simple diffusion. 

To assist with molecular transport, cellular membranes contain a variety of integral membrane proteins that 

provide permeation pathways for the movement of specific substrates through the lipid bilayer. In general, 

integral membrane proteins are involved in a variety of tasks including intercellular adhesion, signal 

transduction pathways, enzymatic activity, and cell-to-cell recognition; however, substrate transport is the 

most vital activity in maintaining chemical 

homeostasis.2 This project focuses on membrane 

proteins that drive substrate transport. 

Approximately 10% of the E. coli genome 

plays a role in transport processes, suggesting a 

similarly significant ratio of genomic data tied to 

transport in all cell species.3 There are two main 

types of integral membrane proteins that support 

transport: passive and active transporters. Passive 

transporters, also referred to as channels, facilitate 

movement along concentration gradients by 

forming highly selective, regulated pathways 

through the membrane (Fig. 1-1).4 In many cases, 

channels can be activated or “gated” in response to stimuli, including certain ligands, changes in membrane 

potential, and physical membrane distortion. In contrast, active transporters require energy to move 

substrates against a concentration gradient. These intermembrane “pumps” utilize the energy stored in 

multiple forms, including photons, a secondary chemical gradient, or more commonly, ATP. The focus of 

this thesis falls under the branch of ATP-driven transporters.   

 

Figure 1-1: Passive and active transporters. Passive 

transporters are essential for facilitated diffusion while active 

transporters utilize ATP hydrolysis to import substrates 

against their concentration gradient. Image taken directly 

from (4).  



2 

 

1.2: ATP-Driven Transport 

At least 10% of the ATP requirements of bacterial and human cells are dedicated to substrate 

transport.2 There are four types of ATP-driven pumps: P-class, V-class, F-class, and ATP-binding cassette 

(ABC) transporters (Fig. 1-1).4 Each type of transporter is highly selective for particular substrates, and 

many of them are regulated in response to physiological needs and environmental availability. The 

divergence into four different types allows these ATP-driven pumps to perform a multitude of functions in 

various locations within the cell. ATP-driven pumps play diverse biological roles, including importing and 

exporting a variety of substrates, acidifying lysosomes that break down harmful antigens, generating the 

intracellular and extracellular ion concentrations crucial to neuron communication, and synthesizing ATP 

in the mitochondria.  

P-class pumps, often referred to as P-type ATPases, are responsible for the transport of many types 

of ions (Na+, K+, Ca2+, H+)  and phospholipid molecules. A prominent example of a P-type ATPase is the 

sodium-potassium pump, which maintains the electrochemical gradient necessary for transmission of nerve 

impulses. This class also includes several heavy metal pumps, which regulate metal homeostasis as well as 

metal resistance in several organisms.5 With P-class pumps, the transporter itself is covalently modified via 

ATP phosphorylation. When substrate is bound to the transporter, phosphorylation at a conserved aspartate 

residue triggers a conformational change. This structural rearrangement translocates the substrate from one 

side of the membrane to the other.4   

V-class and F-class ATPases are both responsible for proton transport and have similar structures.  

The most recognized example of the F-class ATPase is ATP synthase. In this transporter, energy is captured 

from the flow of H+ down its concentration gradient via a rotary structure. This rotary structure converts 

kinetic rotational energy into potential energy in the form of ATP. Conformational changes in the 

transporter bring ADP and inorganic phosphate together in the proper arrangement to form ATP. These two 

classes of transporter are also responsible for pumping H+ ions from the cytosol into lysosomes, acidifying 

and breaking down any contaminants the lysosome may hold.  

Lastly, ABC transporters transport a wide variety of substrates, ranging from individual ions to 

large siderophore compounds. Each transporter serves its unique purpose and is highly specific for its 

substrate or set of substrates. These transporters exist in all kingdoms of life, and the ABC superfamily is 

larger and more diverse than any other type of ATP-driven pumps.6 Hundreds of transporters have been 

found in organisms ranging from prokaryotes to humans [for a recent review, see (6)]. ABC transporters 

are divided into two main functional categories: importers and exporters. Importers, which are only found 

in prokaryotes, facilitate the uptake of molecules such as carbohydrates, amino acids, and vitamins against 

their concentration gradients. Exporters use the energy of ATP binding and hydrolysis to transfer 
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metabolites, toxins, and peptides out of the cell, likewise against their concentration gradients. Unlike the 

P-type pumps, not a single ABC transporter has been discovered that is both an importer and an exporter.6  

 

1.3: ABC Transporter Malfunctions and Their Consequences 

A total of 49 ABC transporters have been identified in the human body and several of these and 

several of these transporters are linked to various health conditions.7  Mutations in ABC transporters lead 

to diseases such as cystic fibrosis, Stargardt’s disease, and drug-resistant tumors8,9,10. Cystic fibrosis is 

caused by a malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) transporter. 

The CFTR transporter is present in epithelial cells lining the lungs and is the only known ABC transporter 

that serves as an ion channel. Interestingly, the ATPase functionality has been lost for CFTR, and thus it is 

sometimes referred to as a “broken” ABC transporter. The channel allows for proper anion flow between 

extracellular fluid and epithelial cells, which in turn mediates the amount of liquid that epithelial cells 

absorb. This process ensures the proper viscosity of mucus in the lungs. A mutation in the CFTR transporter 

leads to a decrease in anion flow, triggering epithelial cells to absorb water, but not anions, thereby 

thickening mucus in the lungs and decreasing its fluidity. Ultimately, this malfunctioning transporter results 

in a buildup of viscous mucus in the lungs that increases the risk of life-threatening bacterial infections.8  

A mutation of ABC transporter ABCA4 can lead to Stargardt’s disease, for which the main 

pathology is vision loss. The ABCA4 transporter exports harmful by-products of the visual cycle performed 

by cells within the retina. When the transporter malfunctions, these toxic by-products accumulate in the 

retina, ultimately causing cell death and a gradual loss in central vision.9  

Some ABC exporters are promiscuous in terms 

of their substrate specificity. These exporters, including 

P-gp, MRP, and BCRP, transport large hydrophobic 

compounds, such as chemotherapeutics, in tumor 

cells.10 This adaptation allows cancers cells to expel 

foreign, toxic molecules before they can accumulate at 

an effective intracellular concentration, a phenomenon 

termed “multi-drug resistance.” This deleterious 

adaptation works against a variety of anti-cancer drugs, 

making cancerous tumors even more difficult to treat 

(Fig. 1-2).11 If medicine is to ever cure the diseases 

caused by malfunctioning ABC transporters, 

researchers must first completely understand the 

structure and mechanisms of action of ABC transporters.  

Figure 1-2: A model of a mutated ABC exporter 

removing anticancer drugs from a tumor cell. Image 

inspired by (10).  
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1.4: Structure and Function of ABC Transporter Components 

1.4.1: General Structure 

ABC transporters consist of a minimum of four domains: two 

transmembrane domains (TMDs) embedded in the lipid bilayer, and 

two nucleotide binding domains (NBDs) located on the cytoplasmic 

side of the membrane where ATP is available for binding and 

hydrolysis (Fig. 1-3).6 Coupling helices connect the TMDs to the 

NBDs and are largely responsible for linking the conformational 

changes between each subunit. 

 

1.4.2: Nucleotide Binding Domains 

  The nucleotide binding domains (NBDs) are highly 

conserved regions of the transporter, meaning that the nucleic acid sequence in this region is nearly identical 

across the entire ABC transporter family. The NBD is responsible for ATP binding and hydrolysis. The 

two NBDs of an ABC transporter come together to form two ATP-binding pockets at the interface of the 

subunits (Fig. 1-4). Each NBD can be divided into two constituent domains: the RecA domain and the 

alpha-helical domain. ATP-binding sites are formed when the RecA domain of one NBD and the alpha-

helical domain of the other NBD come together. Overall, this forms two ATP-binding sites in the NBD 

region of one transporter.  

The RecA domain contains universally conserved regions 

such as the Walker A and B motifs, and H-motif. The Walker A 

motif, also known as the P-loop, binds the 𝛼 and 𝛽-phosphates of 

ATP. The Walker B motif and the H-motif are recognized for their 

role in initiating ATP hydrolysis (Fig. 1-5). The glutamate side 

chain from the Walker B motif, and the histidine side chain from 

the H-motif are candidates for the general base that polarizes a 

nearby water molecule to enable nucleophilic attack, leading to 

hydrolysis of ATP.12 This Walker B motif also anchors the Mg2+ 

that coordinates and positions the ATP molecule.13  

The alpha-helical domain is more diverse between ABC transporters; however, it contains three 

conserved regions: the ABC signature motif, the D-loop, and the Q-loop. The ABC signature motif 

(LSGGQ) plays a crucial role in ATP binding by forming hydrogen bonds to the 𝛾-phosphate of the ATP 

molecule (Fig 1-5). The D-loop consists of the amino acid sequence EATSALD. The N-terminal glutamate 

(E) engages one active site while the C-terminal aspartate (D) engages the P-loop of the opposite active 

 

Figure 1-3: General structure of an 

ABC transporter. For every transporter 

there are two NBDs, two TMDs, and 

coupling helices at each NBD-TMD 

junction.  Image taken directly from (6).   

Figure 1-4: A simplified structure of 

the nucleotide binding domain (NBD).  

See text for description. 
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site. With a connection to both active sites, researchers believe the D-loops play a crucial role in the 

communication between active sites.14  The third conserved region is the Q-loop, which interacts with the 

ATP binding site and plays a large role in coupling ATP hydrolysis with the movement of the 

transmembrane domain. The Q-loop is highly flexible and can adopt different structural conformations in 

response to ATP binding and hydrolysis. The conformation of the Q-loop transmits information about the 

nucleotide state of the NBDs to the TMDs.15 

 

1.4.3: Transmembrane Domains 

The transmembrane domains (TMDs) of the ABC transporter constitute the portion of the 

transporter that is embedded in the lipid bilayer and forms the permeation pathway for substrate transport. 

Alpha helices traverse the membrane several times, varying from 5 to 10 helices per TMD, for a total of 

10-20 helices for a complete transporter. There is considerable variation in the structure of the TMDs across 

different ABC transporters, which reflects the diversity in substrate specificity. Variability in the 

architecture of the transmembrane helices is the basis for the classification system of ABC transporters (see 

Section 1.5 for a more detailed description).  

A common feature of all TMDs is the interaction with the NBDs via “coupling helices.” These 

relatively flexible structures contain a universal three amino acid motif, EAA. The helices form non-

covalent interactions with the Q-loop of the NBDs and can thus reposition in response to structural changes 

in the NBDs. In effect, the nucleotide state and conformation of the TMDs are linked, or coupled, thereby 

capturing the energy in ATP to drive substrate transport.16 

A 

B 

Figure 1-5: Location of various conserved regions of the NBD. (a) Location of the Walker A, Walker B, Q-loop, ABC signature 

motif, and H-motif in the NBD’s primary structure. (b) Location of the Walker A (labeled as P), Walker B (B), H-motif (H), Q-

loop (Q), and ABC signature motif (ABC) in a crystal structure of a vitamin B12 (BtuCD) transporter. Images taken directly from 

(6).  
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1.4.4: Substrate Binding Protein  

A crucial component of ABC importers is their cognate substrate binding protein (SBP). The 

location of an SBP differs depending on the cell type in which it resides. SBPs in Gram-negative bacteria 

are untethered in the periplasmic space and bind to the transporter via non-covalent interactions. Substrate 

binding proteins in Gram-positive bacteria are either anchored to the lipid bilayer adjacent to the ABC 

transporter or are fused to the TMDs of the transporter itself.17 SBPs have a bilobal architecture, and the 

two lobes are maneuverable to change conformation depending on substrate conditions. The lobes rotate 

on a hinge, coming together when substrate binds in-between them separating once the substrate has 

dissociated.18 This conformational change is often referred to as the “Venus flytrap mechanism” for its 

similarity to the opening and closing of the carnivorous plant’s leaf.19 (Interestingly, integral membrane 

proteins related to ABC transporters translate the physical presence of an insect to an action potential that 

drives the closure of the leaf.) 

The highly specific SBPs are thought to sequester substrates in the periplasm and deliver them to 

the membrane-embedded transporter (see Section 1.6 for a more detailed description). While this model is 

the most intuitive, work by some groups suggests that SBPs for certain transporters may play different roles. 

For example, work by the Duong group demonstrated that the SBP is less likely to complex with the maltose 

transporter when substrate concentrations are high.20 This reduction in complex formation was proposed to 

serve as a method for limiting ATP hydrolysis when the cell has access to a sufficient amount of maltose 

in the periplasm. Whether or not the SBP has a similar responsibility in other ABC importer systems is an 

area of active research. 

To aid in the handoff of a substrate between the SBP and transporter, “scoop loops,” or short 

periplasmic helices covalently attached to the TMDs, binds substrates from the SBP (Figure 1-6). This 

interaction places the substrate in the transmembrane space of the transporter and moves the transport 

process forward. These scoop loops have been found in the maltose and vitamin B12 transporters, however, 

not all importers have these scoop loops as evidenced by the absence of a scoop-loop in the methionine 

importer.21,22,23 

The presence of an SBP adds an extra component to consider when dissecting the intermediate 

states during a transport cycle. 

Understanding how and when the 

SBP binds to the transporter is 

crucial to understanding the 

transporter mechanism. 

Functional studies thus far have 

been focused on determining the 

 

Figure 1-6: Structures of substrate binding proteins of type I ABC importers. 

MalE and BtuF have scoop loops while MetQ does not. Image taken directly from 

(22).  
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binding affinities of the SBP to its transporter using mutational analyses, different nucleotide states, and 

the presence and absence of substrate.22,24,25 

 

1.4.5: Regulatory Domains  

 An additional component of some ABC importers are intracellular inhibitory domains. An ABC 

importer uses the energy from ATP binding and hydrolysis to pump substrates against the concentration 

gradient. If the cell has an adequate supply of a particular substrate, further import would waste cellular 

energy. To prevent unnecessary import, transporters including the methionine and molybdate systems have 

regulatory domains fused to the NBDs.28 At high intracellular concentrations, a substrate binds to the 

regulatory domains and forces the transporter to adopt a conformation that prevents further ATP 

hydrolysis.26,27 This phenomenon, termed transinhibition, acts as a regulatory mechanism that maintains 

ideal concentrations of certain substrates inside the cell.  

 

1.4.6: Subunits Forming Complete Transporters 

 The formation of the transmembrane domains, nucleotide binding domains, and for importers, 

substrate binding proteins can require the production of five separate subunits: one subunit for each TMD 

and NBD, and one subunit to form the SBP. This is the case for the methionine, maltose, and vitamin B12 

transporters. However, there is a broad diversity in the number of subunits necessary to create a transporter. 

For example, in some transporters, such as the FhuBC2D transporter (which transports several different 

siderophores), the two TMDs are contained within one polypeptide. Some transporters, such as the TAP1 

transporter, consist of two polypeptides, each containing a TMD and NBD. Interestingly, the TMD subunits 

for the TAP1 transporter, which contribute to the process of exporting antigens in mammalian cells, are not 

identical.28 Each TMD subunit is unique, making for an asymmetrical transmembrane domain. There are 

also transporters, such as the P-gp transporter in human cells, that are entirely made from one unit. In 

summary, despite the number of ways a transporter may be composed, ultimately, these transporters have 

a base structure of two TMDs and two NBDs that come together to endergonically transport a diversity of 

substrates: uniting them into one ABC superfamily.  

  

1.5: ABC Transporter Types 

There are three distinct groups of ABC transporters that are determined by the structural 

architecture of the transporter. The transporters within each group not only share a similar structure, but 

often times share similarities in finer mechanistic details. A study suggesting a mechanism for a transporter 
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often suggests that the mechanism may 

apply to all of the transporters in its group. 

The three types of ABC  transporter are type 

I importers, type II importers, and ABC 

exporters which are defined by their 

transmembrane domain fold (Fig. 1-7).6  

 

1.5.1: Type I Importer 

Type I ABC importers, such as the 

molybdate, maltose, and methionine 

systems (ModABC, MalFGK, and 

MetNIQ, respectively), contain 5-8 helices 

per domain.  All but one of the helices are 

arranged perpendicular to the lipid bilayer. 

One transmembrane helix per domain lies 

more horizontally to the transmembrane cavity and wraps around the other helices, contacting each one. 

Type I importers tightly couple ATP usage with the transport of relatively small molecules, including 

sugars, amino acids, peptides, and compatible solutes.29,30,31,32 The TMDs contain a low-affinity binding 

site for the substrate located approximately halfway through the membrane.  The most well-studied type I 

importer is the maltose transporter, which has been captured in several intermediate conformations during 

the transport cycle. Crystal structures of this transporter reveal a distinct substrate binding site in the 

transmembrane space between the TMDs, where specific non-covalent contacts form between maltose and 

amino acid side chains within the permeation pathway.33  

 

1.5.2: Type II Importer 

Type II importers include the vitamin B12 transporter and various iron-containing transporters 

(BtuCDF, HI1470/1), where the substrates are much larger and hydrophobic than those of type I importers.37 

Type II ABC importers contain 10-12 transmembrane helices per domain, with all helices oriented parallel 

to the transmembrane cavity. TM helices 5 and 10 mainly constitute the interface between the two TMDs, 

which is responsible for forming the translocation pathway.34 These importers transport substrates that are 

more scarce than type I importer substrates. This difference can explain why type II transporters have higher 

substrate transport affinities than type I importers, with dissociation constants in the nano- to picomolar 

range, while type I importers have dissociation constants in the micro- to nanomolar range.35,36,37,38 In type 

II importers, the substrate is trapped in a non-specific hydrophobic cavity within the transmembrane 

Figure 1-7:  Model structures for type I importer, type II importer, 

and ABC exporters. Structure of transmembrane helices for Type I 

importer (MetI), Type II importer (BtuC), and exporter (Sav 1866) taken 

directly from (6). 
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domains, in contrast to the specific binding interactions seen in type I transporters. The type II 

transmembrane domains form two gates that regulate access to the interior hydrophobic pocket, termed the 

cytoplasmic and periplasmic gates, based on their position within the lipid bilayer. These gates open and 

close in a coordinated manner during substrate transport. When the periplasmic gates are open, substrate 

can enter the transmembrane cavity from the outside of the cell. The periplasmic gates close before the 

cytoplasmic gates open and release the substrate into the cell interior, and this coordinated opening and 

closing ideally ensures unidirectional transport across the membrane (for a visual summary and further 

description, see Figure 1-9 in Section 1.7.2). 

These transporters may be less efficient at energy usage than type I importers, as suggested by 

studies measuring the number of ATP molecules hydrolyzed per substrate transported. For example, for the 

type II vitamin B12 transporter BtuCD, ~100 ATP molecules were hydrolyzed per vitamin B12 molecule 

transported in vitro.39 The authors proposed that this large type II transporter may require numerous rounds 

of ATP hydrolysis to enable conformational changes. Another hypothesis is that substrate can escape into 

the extracellular matrix instead of passing through to the cytoplasm.40 With such a poor ATP to substrate 

ratio, previous researchers proposed that the substrate may be released on both the extracellular end of the 

transporter as well as the cytoplasmic end.  This unproductive leakage may account for the high ATP 

requirements for some type II importers.  

 

1.5.3: Exporters 

The third group of ABC transporter are the ABC exporters. They consist of 6 TM helices per subunit 

or 12 helices per transporter which are arranged parallel to the transmembrane pathway. There is no binding 

protein for ABC exporters, leaving the responsibility of substrate specificity solely up to the substrate 

binding site within the TMDs.  As with importers, the substrate forms noncovalent interactions with the 𝛼-

helices that line the transmembrane cavity in ABC exporters. There are a number of residues that can 

interact with substrate allowing for several combinations of non-specific interactions in the TMDs. For this 

reason, ABC exporters are often promiscuous in the substrates they export. Numerous molecules can be 

identified as substrates for a single exporter since there are a multitude of residues that interact with the 

substrate, allowing for a more diverse pool of substrates.41  

 

1.5.4: Further Classification of Human ABC Transporters 

The human genome contains 49 ABC genes that have been separated into seven subfamilies, 

labeled A-G, based on their genomic data. These ABC genes can be alternatively spliced to form a variety 

of transporters. Human transporters are often named based on their subfamily classification. For example, 

the ABC transporter whose malfunction is linked to Tangier disease is called ABCA1 as it is a part of the 
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ABC subfamily A. Each subfamily contains a number of transporters that do not necessarily share similar 

functions. A few subfamilies of note are subfamily B, which consists partially of transporters responsible 

for multidrug resistance in cancer cells, and subfamily C, which contains the CFTR transporter whose 

malfunction causes cystic fibrosis.42  

 

1.6: Prevailing Transport Mechanism: Alternating Access Model 

Transporters transition through multiple conformations per transport cycle, and two distinct 

conformations provide a starting point for understanding ABC transport mechanism (Fig. 1-7).43 In the 

inward-facing conformation, the TMDs are open to the cytoplasm, and the permeation pathway is 

inaccessible from the periplasmic side of the lipid bilayer. In contrast, in the outward-facing conformation, 

the TMDs are arranged with the permeation pathway open to the periplasm.  

Observations of the inward-facing and outward-facing conformations can be incorporated into an 

intuitive model for transport: the widely-accepted alternating access model. In this model, conformational 

changes in the TMDs are driven by changes in the nucleotide state of the NBDs. In the absence of 

nucleotide, the NBDs are separated, and the TMDs are in the inward-facing conformation. Binding of ATP 

at the interface between the two NBDs triggers the rearrangement of the TMDs to the outward-facing 

conformation. The energy from ATP binding is thought to provide the energy necessary to stabilize this 

conformation. Upon ATP hydrolysis, the NBDs separate, which is coupled to a transition back to the 

inward-facing conformation.43  

The alternating access model can be applied to both ABC importers and exporters. For an ABC 

importer, the SBP delivers the substrate to the transporter, driving formation of the ATP-bound outward-

facing conformation. Docking of the SBP and release of the substrate into the permeation pathway triggers 

ATP hydrolysis, which in turn drives the rearrangement from the outward-facing to inward-facing 

conformation. The substrate can then exit to the cytoplasm. The NBDs must release ADP and inorganic 

phosphate before the next transport cycle can occur. For ABC exporters, the cytoplasmic substrate accesses 

the TMDs in the inward-facing conformation. Substrate is transported once ATP binds to the NBDs, driving 

a rearrangement to the outward-facing conformation. Following substrate exit, ATP is hydrolyzed and the 

NBDs separate. ADP and inorganic phosphate are released, and the transporter returns to its inward-facing 

conformation to repeat the cycle.6  

In addition to the inward-facing and outward-facing conformations mentioned above, intermediate 

states have been isolated and characterized in crystallographic and solution-based studies of various ABC 

transporters. These intermediate conformations, include resting, pre-translocation, and post-hydrolysis 

states, have placed a spotlight on further understanding and elucidating the mechanisms for different ABC 

transporters.  



11 

 

 

 

1.7: A Diversity of Mechanisms For ABC Transporters       

While the alternating access model provides a starting point for understanding many ABC 

transporter mechanisms, the intermediate steps in between the inward-facing and outward-facing 

conformational states vary widely between transporters. Mechanisms can vary between different types of 

transporters, between transporters that share the same transporter type, and even for a single transporter that 

is studied in two different in vitro environments.    

        

1.7.1: Proposed Mechanisms of a Type I Importer (Maltose Transporter MalFGK2) 

The maltose MalFGK2 transporter is one of the most studied ABC transporters and is an example 

of an ABC transporter with more than one proposed mechanism. The mechanism depicted in Fig. 1-8a was 

proposed following studies with the transporter solubilized in the detergent n- dodecyl-β-D-maltoside. 46 In 

this model, the MalE SBP binds maltose with high affinity and specificity in the periplasm and delivers it 

to the membrane-embedded transporter. The SBP must bind maltose prior to binding to the transporter. 

Substrate-bound SBP then binds the transporter in its nucleotide-free state. Once substrate-loaded SBP 

forms a complex with the transporter, ATP binds to the NBDs and triggers the transition to the outward-

facing conformation via the coupling helices.  

This change in TMD conformation causes the SBP to pry open, and with the aid of the scoop loop, 

substrate is released to the transporter.23 The maltose substrate then binds to a low affinity binding site 

within the TMDs. The transport of maltose is complete once ATP is hydrolyzed, causing the NBDs to 

separate. Therefore, nucleotide hydrolysis drives the transporter into its inward-facing conformation, 

allowing substrate to pass through into the cytoplasm of the cell. 23   

 

Figure 1-8: Alternating access model for ABC transport. ATP binding at the NBDs drives the outward-facing conformation 

(left). The inward facing conformation is open to the cytoplasm (right). Substrate (red diamond) is transported across the membrane 

upon changes in nucleotide state. 
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The original mechanism (Fig 1-8a)has been questioned as it was primarily based on structural 

studies performed with the transporter in detergent micelles. In these crystallography studies, lattice 

contacts and detergent effects may stabilize conformations that do not exist in vivo.  Equilibrium studies of 

the maltose transporter in lipid nanodiscs, a more accurate mimic of the lipid bilayer, indicating a distinct 

mechanism for transport (Fig. 1-9b).44 Using crosslinking and fluorescence quenching experiments, Bao 

and colleagues reported that ATP binding alone is enough to convert the transporter from the inward-facing 

to the outward-facing conformation. Additionally, MalE can bind the transporter without maltose in the 

binding pocket. Following complex formation, substrate binds to the complex and later crosses the 

membrane upon ATP hydrolysis. However, in the presence of excess substrate, MalE sequesters substrate 

and dissociates from the transporter, inhibiting further substrate transport.45 

 

1.7.2: Proposed Mechanisms of a Type II Importer (Vitamin B12 Transporter BtuCD-F) 

The vitamin B12 transporter is the most well-studied type II importer, playing a key role in 

understanding the differences between type I and type II importers. One model for BtuCD-F transport was 

based on structural studies of the transporter in detergent (Fig. 1-10).46 Crystal structures of BtuCD in 

several intermediate states revealed three gates surrounding the hydrophobic cavity in the transmembrane 

region: two on the cytoplasmic side, labeled cyto gates 1 and 2 (Fig. 1-10), and one on the periplasmic side 

(peri gate). These gates block or allow substrate to pass through the transporter based on the nucleotide 

state and presence of substrate. In this proposed mechanism, substrate-bound SBP BtuF docks onto the 

transporter in its ATP-bound form (configuration 1 to 2). In this conformation, the cytoplasmic gates are 

closed but the periplasmic gates are open to allow substrate into the transmembrane cavity. Next, substrate 

is released from BtuF and trapped within the transmembrane cavity by cytoplasmic and periplasmic gates. 

ATP is subsequently hydrolyzed, opening the cytoplasmic gates and allowing the substrate to pass into the 

Figure 1-9. Possible mechanisms for maltose transport.  (a) This mechanism was proposed based on structural studies of the 

transporter solubilized in detergent. The image was taken directly from (45). (b) A second possible maltose transporter mechanism 

based on functional studies of the transporter in lipid nanodiscs. The figure was taken directly from (46).  

A B 
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cytoplasm (configuration 2 to 3). BtuF dissociates from the complex and ATP binds to the transporter to 

restart the transport cycle (configuration 4 to 1). 

In contrast, a separate study with the transporter in both detergent micelles and liposomes resulted 

in a different mechanism for BtuCD-F (Fig. 1-11).47 In this model, substrate-bound BtuF is able to bind to 

BtuCD in its nucleotide-free state (configuration I). Upon binding to the transporter, the substrate is released 

from BtuF, and vitamin B12 passes through the transmembrane domains while BtuF is still bound to BtuCD 

(configuration II). ATP-binding and hydrolysis is necessary to dissociate the BtuCD-F complex and return 

the transporter to its outward-facing, nucleotide-free state (configuration III and IV).  

 

 

 

 

Figure 1-11: Proposed mechanism for the type II BtuCD-F importer from functional studies. The figure was taken directly 

from (48).  

Figure 1-10: Proposed mechanism of the BtuCD-F importer based on structural studies. Yellow ball and stick represent 

nucleotides, red ball and stick depict vitamin B12, blue lines depict TM helices 5 in each BtuC subunit, which form the gate and 

cytoplasmic gate I. Magenta brackets depict cytoplasmic gate II, which is formed by the loop between TM helices 2 and 3, in each 

BtuC subunit. Image taken directly from (47).  
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1.8: Transporter of Focus: Type I Methionine Importer MetNI 

The focus of this thesis is to examine the mechanism of the Type I methionine importer MetNI, 

specifically under what nucleotide and substrate conditions MetQ complexes with MetNI (Fig. 1-11). 

Although the transporters linked to disease in humans are ABC exporters, ABC importers are seen as 

reliable models for exporter activity due to homology (25-30%) between the two classes of transporters, 

especially in the NBDs.48 Here we utilized the methionine transport system from Escherichia coli, which 

was first studied by Kadner and Watson in 1974.49  

 

                                            

1.8.1: MetN: The Nucleotide Binding Domain 

The nucleotide binding domain of MetNI is referred to as MetN. These subunits are identical to 

each other, however each is a separate polypeptide. To form a complete nucleotide-binding domain, the 

two polypeptides come together, associating to form a homodimer. There are a number of amino acids 

within the NBDs that interact with ATP, and two crucial amino acids are a glutamate at position 166 (E166) 

and a lysine at position 44 (K44). E166 is part of the Walker B motif (introduced in Section 1.4.2) and is 

necessary for ATP hydrolysis. The glutamate acts as a general base and polarizes H2O for nucleophilic 

attack of the 𝛾-phosphate. As depicted in Figure 1-13c, substituting glutamate with a glutamine (E166Q) 

residue hinders the ability to hydrolyze ATP without diminishing the binding of ATP (Fig. 1-13).50 

Glutamine is chosen as a substitute due to its similar size and structure to glutamate. The K44 amino acid 

located within the Walker A motif of MetNI has been proposed to play a central role in ATP binding. 

Substituting alanine for the lysine residue in the Walker A motif of the MJ0796 transporter reduces ATP-

MetI 

MetN 

MetQ B 

Figure 1-12: Crystal structures of the methionine importer MetNI. (a) The outward-facing conformation of MetNI in complex 

with the substrate-binding protein MetQ (22). MetQ is pictured in yellow, the TMDs are pictured in blue, and the NBD and C2 

domains are pictured in purple. (b) The inward-facing, transinhibited conformation of MetNI(53). 

A 
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binding by 15-fold.50 This NBD mutant is a key component in locking a MetNI transporter in its nucleotide-

free state.  

 An additional structural detail for the ATP-bound, outward-facing conformation of the MetNI 

transporter is the inability of the alanine-299 residues at the intersection of the adjacent NBDs to hydrogen 

bond(Fig. 1-13b) The distance between these residues is too far, allowing the transporter to remain in the 

outward-facing conformation. Once these residues come in closer proximity to each other (3 Angstroms or 

less), they initiate a hydrogen bonding complex that forces the transporter in the inward-facing 

conformation (for further details and images, see Section 1.8.3 and Figure 1-14).  

The ATP-binding pockets of MetN have a reported Km  of 330 ± 20 µM with ATP.27 The Km value 

is the concentration of substrate required for the transporter to achieve half of its Vmax value. In the case of 

ATP, a transporter’s Vmax value is the maximum number of ATP the transporter hydrolyzes per minute. For 

this system, the lower the Km value, the higher the affinity the transporter has for ATP.  With typical 

intracellular ATP concentrations between 1-10 mM, MetNI’s affinity for ATP is strong enough for the 

transporter to operate at its maximum capacity in vivo.51 ATP-binding between the MetN subunits has been 

found to be cooperative (n = 1.7 ± 0.1) meaning that the affinity for ATP increases when one of the binding 

sites has bound ATP. This cooperativity suggests that the two ATP sites communicate with each other 

during the transport cycle. 

 

1.8.2: MetI: The Transmembrane Domain 

 The two subunits that form the transmembrane region of MetNI are identical to each other (Fig. 1-

11, blue). Each MetI subunit is composed of 5 helices. Unlike other ABC transporters, there are no MetNI 

B 

C 

A 

Figure 1-13: Uninhibited, outward-facing conformation of MetNI. (a) Crystal structure of ATP-bound MetNI in complex 

with apo MetQ. The approximate location of the alanine-299 residues and the E166Q mutation are boxed in red and blue, 

respectively (22). (b) Adjacent alanine-299 residues are unable to hydrogen bond in the outward-facing conformation. (c) 

ATP𝛾S bound (right) bound to the E166Q residue (left) within the NBDs. All measurements are given in angstroms.  
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crystallographic structures with substrate bound within the TMD, however, there is a proposed binding site 

for L-methionine in the transmembrane region. The pathway through the membrane created by the interface 

between the two MetI subunits is thought to be selective for methionine derivatives.22  

 

1.8.3: C2 domain: The Inhibitory Domain of MetNI 

 An added feature for many ABC importers is regulation of transporter activity. In the case of the 

MetNI transport, unregulated activity could lead to unnecessarily high levels of intracellular methionine 

and wasteful usage of ATP. Regulation of transport was first observed in in vivo studies by Kadner and 

Watson in 1975, in which a rapid decrease in methionine transport was observed as intracellular methionine 

increased.52 Based on crystallography studies, a transinhibition mechanism was proposed, in which L-

methionine binding traps MetNI in the inward-facing conformation. This regulatory strategy was further 

supported by in vitro biochemical studies in which L-methionine was shown to act as a non-competitive 

inhibitor of ATP.53 The simplicity of this mechanism allows the cell to avoid more arduous regulatory 

processes, such as protein degradation and transcription regulation, which require longer response times 

and are energetically demanding processes. The presence of an allosteric regulatory mechanism prevents 

wasteful ATP hydrolysis and prevents the build-up of substrate inside of the cell.  

An arginine residue at position 295 in the C2 regulatory domain of MetNI is crucial for 

transinhibition.22 The side chain of arginine forms hydrogen bonds with the N-terminus of the L-methionine 

substrate (Fig. 1.14c), which in turn promotes a hydrogen bonding network between the peptide -NH and -

C 

Figure 1-14: Transinhibited, inward-facing conformation of MetNI. (a) Crystal structure of MetNI with L-Met bound to its 

C2 domains(53). The approximate location of the N299 and Q166 residues are boxed in red and blue, respectively. (b) Adjacent 

alanine-299 residues that hydrogen bond in the transinhibited conformation. (c) The N295A side chain from one C2 domain 

(gray) forms hydrogen bonds with L-Met (cyan). All measurements are given in angstroms. 
 

A B 
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CO groups on the alanine amino acids located at position 299 in the adjacent NBDs (Fig. 1.14b). In 

comparison, when there is no L-Met bound to the C2 domains, the adjacent alanine amino acids at position 

299 are too far to form a hydrogen bond (Fig 1-13, allowing the structure to more easily maneuver into the 

outward-facing conformation network locks the C2 domains together, preventing the NBDs from coming 

together to form the ATPase sites. A previously identified MetNI mutant N295A greatly reduces the binding 

affinity of L-Met for the C2 domains, nullifying the transinhibitory effect of intracellular methionine.22 

 

1.8.4: MetQ: The Substrate Binding Protein of MetNI 

 The MetNI transporter can be found in Gram-negative bacteria, and thus the substrate-binding 

protein of the transporter, MetQ, resides in the periplasmic space. MetQ preferentially binds L-Met over 

related methionine derivatives. MetQ from Neisseria meningitides has a very high affinity for L-Met, with 

a Kd value of 0.2 nM. The equilibrium constant Kd is a constant that quanitifies the affinity between two 

molecules. The lower the Kd value, the stronger the affinity between two molecules. For example, MetQ 

has a much stronger affinity for L-Met (Kd of 0.2 nM) than it does for substrate D-Met with a Kd of 3.5 

µM.54 This preference for L-Met over D-Met is likely due to the cell’s preference for L-oriented amino 

acids. All synthesized proteins are made with L- amino acids. Converting D-Met requires the presence of 

racemase enzymes that are not always present.  

MetQ, like other SBPs, binds substrate in a Venus flytrap mechanism (Fig. 1-15a).19,54  MetQ binds 

to MetNI in both its apo  and its substrate-bound form, although the technique used in this published study 

is not widely accepted by the biochemistry community. Nonetheless, L-Met bound MetQ a ~40-fold weaker 

binding affinity to MetNI than apo MetQ.55  The MetQ N229A mutant has a greatly reduced binding affinity 

to methionine derivatives and is often utilized as an easily producible apo MetQ substitute. MetQ N229A 

replaces the arginine amino acid at location 229 and replaces it with an alanine amino acid. The positively-

charged side chain on arginine has strong ion-dipole interactions with the sulfur atom of the methionine 

B 

Figure 1-15: L-Met bound MetQ. (a) Crystal structure of L-Met bound MetQ (55) . (b) Image of the hydrogen bonding 

interactions between residue N229 and L-Met (cyan).  

A 
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side chain (Fig. 1.15b). Replacing the arginine side chain with the alanine side chain causes the observed 

reduction in MetQ -methionine binding affinity.  

 

1.9:  Possible Mechanisms for Methionine Importer MetNI  

Two different mechanisms have been proposed for MetNI transport, as described below. These 

mechanisms are very similar to the seemingly opposed mechanisms of the maltose transporter, and it is 

hypothesized that both mechanisms may be utilized for methionine import. 

 

1.9.1: Canonical Model  

Cellular proteins only utilize L-amino acids to construct proteins. For this reason, cells largely 

prefer to import L-amino acids to conserve energy rather than reconfigure amino acid stereocenters. In the 

canonical model, L-methionine is the preferred substrate for delivery into the cell. The transport cycle 

follows the original model proposed for the maltose transporter based on studies of the transporter in 

detergent. In this model, MetQ scavenges the periplasmic space until it binds L-Met. L-Met loaded MetQ 

then delivers the substrate to membrane-bound MetNI in its nucleotide-free state (Fig. 1-16). Following 

MetNI-Q complex formation, ATP binds to the NBDs, driving the transporter into its outward-facing 

conformation. This conformational change triggers L-Met release into the permeation pathway. ATP is then 

hydrolyzed, allowing the transporter to return to the inward-facing conformation, thereby transporting L-

Met into the cell. Lastly, ADP dissociates from the NBDs and the transporter returns to the apo state, ready 

to engage in the next transport cycle.24  

 

 

 

Figure 1-16: The canonical model for the MetNI transporter. In this model, MetNI-Q transports substrate L-Met.  
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1.9.2: Non-Canonical Model 

A second possible mechanism involves the transport of methionine derivatives that have a lower 

binding affinity to MetQ, such as D-Met (Fig. 1-16). This mechanism, referred to as the non-canonical 

mechanism, is very similar to the mechanism proposed for the maltose transporter based on studies 

performed with the transporter in nanodiscs. The main difference between the canonical and non-canonical 

model is in steps 1 and 2. In the non-canonical model, apo MetQ binds to ATP-bound, MetNI before L-Met 

later binds to pre-complexed MetQ. D-Met arrives at the transporter-binding protein complex, where it is 

able to travel through a small pathway embedded in the MetQ protein. MetQ then twists 24° around an axis 

perpendicular to the interface between the two lobes of the protein. This twist creates an opening for D-Met 

to pass through MetQ, a mechanism not yet found in other ABC transporters, giving D-Met a path to the 

transmembrane cavity. From here, the mechanism behaves identically to the canonical mechanism in which 

ATP is hydrolyzed, driving the transporter to its inward-facing conformation and allowing substrate to 

travel into the cell.22  

The proposed non-canonical mechanism is one that complements the classical mechanism and does 

not necessarily contradict it. Nguyen and colleagues propose that in situations of L-Met scarcity, the 

transporter will be biased towards the non-canonical mechanism and import less desirable methionine 

derivatives.22 In this circumstance, the MetNI-apo MetQ complex is formed first and awaits arrival of a 

substrate molecule such as D-Met. Upon transport of D-Met, apo MetQ will dissociate from MetNI, 

rendering it available to roam the periplasm in search of more substrate. If L-Met becomes available, MetQ 

will bind to the substrate with high affinity and initiate the canonical mechanism. If L-Met is absent, apo  

MetQ will return to form a complex with MetNI, and pending L-Met derivative arrival, will begin the non-

canonical mechanism. The combination of the canonical and non-canonical pathways would allow the 

Figure 1-17: The non-canonical model of the MetNI transporter. This model is proposed to predominantly transport methionine 

derivatives such as D-Met (orange diamond).  
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MetNI transporter to rapidly adjust its substrate consumption, ensuring cell survival under different 

environmental conditions.22  

 

1.10: Experimental Approach and Key Questions Addressed in This Work   

Measuring binding affinities between an ABC transporter and its cognate binding protein is a key 

step in dissecting transport mechanisms. Our research efforts were focused on the requirements for the 

complex formation between the MetNI transporter and the MetQ substrate binding protein. We developed 

a solution-based technique to quantify the strength of this interaction under varying conditions, as detailed 

below. 

 

The development of fluorescence anisotropy as a robust technique to study ABC transporter mechanism.  

X-ray crystallography studies have been crucial in understanding ABC transporter function; 

however, these studies place the transporter in a highly artificial environment. Solution-based 

thermophoresis titrations assess ABC transporter binding affinities, however, the method has failed to reach 

widespread approval in the research community. Lastly, surface plasmon resonance has been utilized to 

assess binding affinities of other transporter complexes, but has failed to produce reliable data with the 

MetNI transporter.  

Another commonly used method to study binding affinities in biochemistry is fluorescence 

anisotropy. Briefly, this method relies on the relationship between the size of a fluorescent molecule and 

its change in polarized light emission. When a stationary fluorescent molecule is excited, it emits a photon 

of light that travels on the same axis as the excitation photon. However, molecules in solution are not 

stationary. In the elapsed time between light absorption 

and emission (10-9 to 10-15 seconds) the molecule 

tumbles in solution. The light emitted is consequently 

depolarized due to this rotation. The smaller the dye 

molecule, the more it will rotate in solution and the more 

depolarized the emitted light.56  

A fluorescence anisotropy study of the OppA 

ABC transporter system, which is responsible for the  

transport of the nine-amino-acid peptide bradykinin, had 

a series of precise binding affinities of two biomolecules 

in a variety of pH and temperature conditions. Following 

in their footsteps, our research aim was to measure the 

binding affinity between the MetNI transporter and the 
Figure 1-18: Schematic of anisotropy assay for the 

study of MetNI-Q complex formation. 
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MetQ SBP, (Fig. 1-17) using fluorescence anisotropy for the first time. We successfully measured the Kd 

of MetNI-Q complex formation under different conditions with a relatively small standard deviation in the 

results. Our results have suggested the presence of both the canonical and non-canonical model for 

methionine transport.  

 

Which nucleotide states promote MetNI - Q complex formation? 

In the proposed canonical mechanism for methionine import, MetQ binds to MetNI in its 

nucleotide-free state. This mechanism follows the original model for the maltose transporter, which was 

proposed based on studies performed in detergent. However, a crystal structure of the MetNI-Q complex in 

the apo nucleotide form has not been determined, and functional studies have not been able to support its 

possible existence. A more recent mechanism of the maltose transporter studied in lipid nanodiscs may 

provide more biologically relevant insight. In this mechanism, ATP-binding is a pre-requisite for the SBP 

to bind to the transporter.  

To examine the role of nucleotide state in MetNI-Q complex formation, we measured the Kd value 

of the MetNI-Q complex in the presence of various nucleotides. Using our fluorescence anisotropy assay, 

we report a significant difference in Kd values based on the nucleotide state, with complex formation 

showing a strong preference for the ATP-bound state. This finding sheds light on the role of ATP binding 

in methionine transport.  

 

Is MetQ bound to substrate prior to complex formation? 

The canonical model for transport proposes that MetQ is bound to L-Met prior to forming a 

complex with MetNI.  The affinity between MetQ and L-Met is extremely tight, with a Kd value of 0.2 

nM60, and the crystal structure of isolated MetQ bound to L-Met has been solved. However, the only 

existing crystal structure of the MetNI-Q complex was solved using a mutant form of MetQ that cannot 

bind substrate.  Microscale thermophoresis experiments determined that this interaction was approximately 

40 times stronger than with wild-type MetQ bound with L-Met (Kd = 27 ± 9 nM vs. 1100 ± 300 nM, 

respectively). While the discovery brought attention to the possibility of two different mechanisms for 

transport, the method used to determine the binding affinities has yet to be widely accepted, and thus these 

binding affinities are in question.  

To examine the difference in binding affinities between apo  and L-Met bound MetQ with MetNI 

in the presence of ATP, fluorescence anisotropy was utilized. We find a modest difference between the 

affinities of the two complexes, which can be incorporated into pre-existing models to explore the cellular 

preferences for L-methionine versus D-methionine.  
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Does binding of L-methionine to the C2 regulatory domains inhibit complex formation? 

 The elegant in vivo experiments conducted by Kadner demonstrated the transinhibition property of 

MetNI. Based on the crystal structure of MetNI, in conjunction with functional studies, it has been proposed 

that intracellular L-Met binds to the C2 domains of MetNI, forcing the complex into an inward-facing 

conformation. While the NBDs of the MetNI are separated in this conformation, it is unclear as to whether 

or not this arrangement precludes the binding of MetQ.  

In this study, we are able to detect the dissociation of the MetNI-Q complex upon addition of excess 

L-methionine. While this result is very preliminary, it suggests that the intracellular level of substrate can 

prevent the binding of MetQ on the periplasmic side of the cell. This mechanism, in conjunction with the 

physical separation of the NBDs, could work to limit the intake of excessive L-methionine. 

 

1.11: Summary 

ABC transporters are crucial to cell homeostasis and cell viability in all kingdoms of life. 

Malfunctions in these transporters are linked to a number of conditions including cystic fibrosis, Stargardt’s 

disease, and multi-drug resistance. In order to treat these ailments, scientists must first understand the 

mechanism of ABC transporters. A plethora of knowledge has already been discovered regarding ABC 

transporters, including their atomic structure, conformational states, and regulatory strategies. While the 

strides made to understand ABC transporters have been significant, there are details that have yet to be 

elucidated. To investigate these transporters, we address specific questions about the bacterial methionine 

importer MetNI. This importer contains the highly-conserved features found in human ABC exporters, and 

previous work has established robust expression and purification protocols. In this thesis, we specifically 

aim to determine the requirements for the formation of the transporter-substrate binding protein complex, 

MetNI-Q. Using a fluorescence anisotropy assay, we examine the nucleotide and substrate states that best 

promote complex formation and how the binding of L-Met to the C2 regulatory domains affects MetNI-Q 

stability. Our findings not only address these questions, but also offer more directions for future researchers 

to investigate.  
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Chapter 2: Methods 

 

2.1: Expression of MetNI and MetQ Proteins 

Previously published plasmids were gifts from Douglas Rees (Caltech) and were expressed in E. 

coli BL21-Gold DE3 cells (Agilent). MetNI and MetQ constructs were transformed by mixing 25 µL of 

cells with 1 µL of the respective plasmid (~100 ng/µL) and incubated 10 min on ice. The cells were heat 

shocked for 20 seconds in a 42°C bath and cooled for two min on ice. Two hundred µL of LB (Lysogeny 

Broth) media were added before shaking at 225 rpm at 37°C for 30 min. Two hundred μL of cells were 

grown on agar plates with 200 μg/mL ampicillin at 37°C overnight. 

 Five mL starter cultures were made with LB media inoculated with a single colony of the 

transformed cells. Starter cultures contained 200 µg/mL of ampicillin and were left to grow overnight at 

37°C and 225 rpm. Starter cultures were added to Fernbach flasks containing 1L of Terrific Broth media 

(24g/L yeast extract, 12 g/L tryptone, 72 mM K2HPO4, 17 mM KH2PO4 and 0.5% glycerol, autoclaved) 

with 100 µg/mL of ampicillin to begin large-scale growth. Large-scale growth was performed at 37°C and 

180 rpm. To check for growth, the optical density at 600 nm was monitored by checking the optical density 

of 1 mL samples. Once the optical density reached a value of 2, the cells were induced with a final 

concentration of 1 mM IPTG for 1 hour. Cultures were pelleted by centrifuging at 13,500 rpm at 4°C using 

a Beckman Avanti J-25 I floor centrifuge and a JLA 16.25 rotor. Pellets were stored at -80°C until protein 

purification was performed.  

 

2.2: Transformation of MetNI Double Mutants (Lm N295AE166Q Lu N295A & Lm N295A Lu 

N295A) 

The procedure for the expression of MetNI double mutants were identical to that above but with 

minor modification. One hundred μL of E. coli BL21-Gold DE3 cells were transformed with 2 µL of both 

the Lm and Lu plasmids (~100 ng/µL).  The mixture was set on ice for 10 min before being heat shocked 

for 20 seconds in a 42°C bath. The cells were then cooled on ice for 2 min before addition of 1 mL of SOC 

(Super Optimal broth with Catabolite repression) media and incubation at 37°C and 225 rpm for 1 hour. 

Two hundred μL of cells were plated onto an agar plate containing 200 μg/mL of ampicillin and kanamycin 

and left to grow overnight at 37°C. 

 

2.3: Purification of MetNI 

All strains of the MetNI transporter, as well as the MetQ SBP, were purified using an ÄKTA Pure 

FPLC System (GE Healthcare). The entire procedure was kept on ice or performed at 4°C unless noted 

otherwise. Fifteen g of cells were homogenized in 150 mL of MetNI buffer {50 mM 
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[tris(hydroxymethyl)methylamino]propanesulfonic acid (TAPS) pH 8.5, 250 mM NaCl, and 1% n-Dodecyl 

β-D-maltoside detergent (DDM; Anatrace)}. Deoxyribonuclease (10 µg/mL) (Sigma-Aldrich), lysozyme 

from bovine pancreas (10 µg/mL; Sigma-Aldrich), and PMSF (1µM) were added once the cells were 

homogenized in buffer. DDM detergent was added to a 1% mass-to-volume ratio (1.5g in 150 mL), not 

including the DDM present in the MetNI buffer, to the cell lysate.  

The lysate was stirred for 20 min before sonication with a flat tip sonicator (Branson Ultrasonics 

Sonifier), on ice, at 20% bursts of 50 kHz for 45 seconds followed by 90 seconds of cooling for 7 cycles, 

for a total of 5 min and 15 seconds of sonication. The solution was then centrifuged at 19,000 rpm for 20 

min in a Beckman Avanti J-25 I centrifuge and a JLA-20 rotor. Imidazole was added to the supernatant to 

a final concentration of 25 mM. The mixture was loaded onto a Ni-NTA HisTrap 5mL HP column (GE 

Healthcare) using MetNI buffer containing 25 mM imidazole at 2 mL/min as the mobile phase. The column 

was washed with MetNI buffer with 25 mM imidazole until the UV reading reached the baseline level at 

280 nm, and the same processes were repeated for with MetNI buffer containing 75 mM imidazole. Protein 

was eluted with MetNI buffer containing 350 mM imidazole. The eluent was injected onto a HiPrep 26/10 

Desalting column (GE Healthcare). Collected peak fractions (10-12 mL) were pooled and frozen in liquid 

nitrogen before storing at -80°C overnight.  

Sixteen hours later, the eluent was centrifuged in 5 min intervals at 3500 rpm and concentrated to 

5 mL or less with an Amicon Ultra-15 centricon tube with a 100 kD cutoff (Millipore) in an Eppendorf 

Centrifuge 5804R. The concentrated eluent was injected onto a Superdex 200 pg 16/600 sizing column (GE 

Healthcare). Peak fractions, appearing around 60 mL elution volume, were collected and added to a new 

Amicon Ultra-15 centricon tube with a 100 kD cutoff. The protein was centrifuged at 3500 rpm at 4°C until 

the protein reached a concentration between 10-20 mg/mL which was measured at 280 nm using an Implen 

Nanodrop N50. The absorbance was divided by the extinction coefficient of MetNI (83365 M-1 cm-1) and 

multiplied by its molar mass (122034.85 g/mol) to determine the concentration in mg/mL.  

 

2.4: Purification of MetNI Chimeras 

 The initial purification of MetNI chimeras followed the previous procedure for MetNI purification 

up to elution from the desalt column. From there, the method diverges with the goal of removing non-FLAG 

tagged MetNI transporters from the final product.  

 The eluent from the desalting column was loaded onto a 20-mL FLAG affinity column (Sigma-

Aldrich). Once the UV peak from contaminant protein had passed through the column, an additional 30 mL 

of buffer was flowed through the column before the protein was eluted with 10 μg/mL FLAG peptide in 

MetNI buffer.  To remove the FLAG peptide, the peak elute fractions were collected and concentrated from 

the FLAG affinity column in an Amicon Ultra-15 centricon tube with a 100 kD cutoff to less than 5 mL 
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before injecting the solution onto a Superdex 200 pg 16/600 sizing column (GE Healthcare). The peak 

eluted fractions were collected, concentrated in a separate Amicon Ultra-15 centricon tube with a 100 kD 

cutoff to a concentration close to 10 mg/mL before being flash frozen in liquid nitrogen and stored at -80°C.  

 

2.5: Purification of MetQ 

 Eighteen grams of pelleted BL21 cells were homogenized (by hand, with a spatula) in 10 mL of 40 

% sucrose, 1 mM EDTA, and 10 mM Tris pH 7.5 and then stirred at room temperature for 1 hour. The cells 

were then shocked by adding 500 mL of ice-cold deionized water. After stirring for 10 min at 4°C, buffer 

components were added to a final concentration of 25 mM Tris pH 7.5, 150 mM NaCl, 5 mM BME, and 

17 mM imidazole. The resulting suspension was centrifuged at 15,817 rpm (37,500 x g) for 30 min. The 

lysate was loaded onto a 5 mL Ni-NTA column equilibrated in MetQ buffer (25 mM Tris pH 7.5, 150 mM 

NaCl, 5 mM BME). The column was washed with 10 column volumes of MetQ buffer with 17 mM 

imidazole. The protein was eluted with MetQ buffer containing 400 mM imidazole. The pooled fractions 

were injected onto a HiPrep 26/10 Desalting column previously equilibrated with MetQ buffer. The peak 

fractions were pooled and frozen in liquid nitrogen and stored at -80°C overnight.  

Sixteen hours later, the pooled fractions were concentrated in an Amicon Ultra-15 centricon tube 

with a 10 kD cutoff until the volume was at or below 5 mL. The concentrated protein solution was then 

injected onto a Superdex 200 pg 16/600 sizing column. Peak fractions were collected (elution volume ~9 

mL) and concentrated in an Amicon Ultra-15 centricon tube with a 10 kD cutoff until the concentration 

was 10 mg/mL. To calculate protein concentration, the absorbance was recorded at 280 nm with an Implen 

Nanodrop N50. To convert the concentration into mg/mL, the absorbance was divided by the extinction 

coefficient for MetQ (20400 M-1 cm-1) and multiplied by the molar mass (29431.65 g/mol).   

 

2.6: SDS-PAGE of Purification Process 

 Samples collected throughout the MetQ and MetNI purification process were analyzed for their 

protein content via SDS-PAGE. The samples collected for the gel were the lysate, pellet, and supernatant 

before injection onto the Ni-NTA column plus the flow-through, wash, and eluent solutions from the Ni-

NTA column and finally the desalt and sizing elutions. All samples prepared for the gel had a final volume 

of 24 μL, where 12 μL of each sample was 2x loading buffer (4% SDS, 100 mM Tris-HCl, 20% glycerol, 

0.2% bromophenol blue, 200 mM dithiothreitol) and the other 12 μL of the gel sample contained different 

ratios of the collected sample with its corresponding buffer depending on the sample (MetNI buffer for a 

MetNI purification analysis, MetQ buffer for a MetQ purification analysis). For the lysate, pellet, and sizing 

eluent samples, one μL of the final sample volume was the eluent while the remaining 11 μL of the sample 

was buffer solution. For the supernatant, flow-through, wash, Ni-NTA, and desalt eluent samples, 12 μL of 
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each sample was added to each SDS-Page sample prep. After the preparation of each sample, the samples 

incubated at 95ºC for 5 min before loading.  

 Ten μL of every prepared sample and a protein ladder (Bio-Rad) were loaded into separate wells 

of a Mini-Protean TGX gel (Bio-Rad). The gel was placed into a gel box and filled with 1x SDS running 

buffer (1 g/L sodium-dodecyl-sulfate, 3 g/L Tris (hydroxymethyl) aminomethane, 14.4 g/L glycine). The 

gel was run at 200 volts for 30 min. The gel was then placed into a container with Coomassie Blue staining 

solution (40% methanol, 10% acetic acid, 1g/L brilliant Coomassie blue staining powder) for 30 min with 

agitation. The Coomassie stain was removed, and destaining solution was added (40% methanol, 10% acetic 

acid) before the gel was agitated for an hour. The gel was then removed from the destaining solution and 

imaged using a ChemiDoc MP (BioRad).  

 

2.7: ATPase assays 

 To measure the rate of ATP hydrolysis, a commercially available coupled enzyme system was 

utilized (Enzchek Phosphate Assay Kit, Invitrogen). In the presence of free phosphate, the enzyme purine 

nucleoside (PNP) converts the substrate 2-amino-6-mercapto-7-methylpurine riboside (MESG) into free 2-

amino-6-mercapto-7-methylpurine, which absorbs light at 360 nm.  

To convert the measured absorbance to concentration of Pi, phosphate standard curves were 

generated. A phosphate standard curve was prepared with 100 µL wells containing Pi concentrations of 500 

µM, 250 µM, 100 µM, 50 µM, 10 µM, and 0 µM. Each reaction contained 55 mM Tris pH 7.5, 5 mM TAPS 

pH 8.5, 0.055% DDM, 55 mM NaCl, 1 mM BME, 5 mM MgCl2, 200 µM MESG, 300 nM MetNI and 1U 

per reaction of PNP. A best-fit line of the data provided a reliable constant to convert AU to concentration 

of Pi. 

To measure the ATPase activity of MetNI, 90 μL reactions were prepared in a Greiner black-clear 

bottom 96-well plate for absorbance measurement in a Tecan Infinite 200 plate reader. Ten μL of 50 mM 

MgCl2 was injected into each well to initiate the reaction, and the absorbance at 360 nm was recorded every 

20 seconds for a total of 500 seconds. The final buffer condition for each sample was identical to samples 

of the phosphate standard assay. Plots of AU vs. time (seconds) were graphed and the region with the 

steadiest linear trend (usually from 300s-500s) were analyzed to find the change in AU/sec. This slope was 

converted to find kobs, or ATP hydrolyzed/minute per transporter, using the equation 

 

𝐴𝑈

𝑠𝑒𝑐
∗  

𝑀 𝑃𝑖

𝐴𝑈
∗

60 𝑠𝑒𝑐

1 𝑚𝑖𝑛
∗

1

3∗10−7 𝑀 𝑀𝑒𝑡 𝑁𝐼
=

𝑃𝑖

𝑚𝑖𝑛∗𝑀𝑒𝑡𝑁𝐼
        (Equation 1) 

 

where the M Pi/AU component of this equation is the slope from the phosphate standard curve. 
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 Plots of kobs versus the concentration of ATP were fit to the following equation  

 

𝑘𝑜𝑏𝑠 =
𝑘𝑐𝑎𝑡∗[𝐴𝑇𝑃]𝑛

𝐾𝑚
𝑛 +[𝐴𝑇𝑃]𝑛

                                    (Equation 2) 

where kcat is the catalytic rate constant for ATP hydrolysis, Km is the concentration of ATP at which ATPase 

activity equals half of kcat, and n is the Hill coefficient. In this system, Km (or Michaelis constant) is a 

measure of the affinity of MetNI for ATP, and the Hill coefficient is a measure of the cooperativity of 

ATPase activity between the two nucleotide binding sites.  

 ATPase assays to determine the affinity of L-Met for the C2 inhibitory domains of MetNI were 

performed as above except ATP was kept constant at 5 mM ATP while L-Met varied from 0 mM to 5 mM. 

Data from ATPase assays were fit to the equation 

 

𝑘𝑜𝑏𝑠 =
𝑘𝑐𝑎𝑡

(1+
[𝐿−𝑀𝑒𝑡]𝑛

𝐾𝑖
𝑛 )

           (Equation 3) 

 

where Ki (the inihibition constant) is the concentration of L-Met at which kobs is half of kcat, and n is the 

Hill coefficient for the cooperativity of L-Met binding. All data fitting was conducted using Prism Version 

7 software.  

 

2.8: MetQ Labeling 

 This procedure largely follows that offered by Thermo Fisher; the manufacturer of the fluorescent 

dye used in the procedure (fluorescein 5-maleimide). One mL of ~10 mg/mL purified MetQ was injected 

onto a 5-mL HP Desalting column equilibrated in labeling buffer (25 mM Tris pH 7.0, 150 mM NaCl, 5 

mM EDTA, 10 mM TCEP). Peak fractions were pooled, and labeling buffer was added for a final 

concentration of MetQ between 30-40 µM. Solid fluorescein 5-maleimide (FW = 427 kD, Thermo Fisher) 

was added to a final concentration of 1 mM (25x the molar ratio of MetQ). The solution was continuously 

inverted at room temperature for 2 hours. The labeling reaction was then quenched by adding beta-

mercaptoethanol to a final concentration of 100 mM (FW = 78 g/mol, Bio-Rad) and inverted at room 

temperature for an additional 15 min. Next, the solution was injected onto a TALON 2-mL disposable 

gravity column with 200 µL of Ni-NTA (Qiagen) beads that had been previously equilibrated with MetQ 

buffer. The column was washed with 10 mL of MetQ buffer before elution with MetQ buffer containing 

400 mM imidazole. The eluted protein was injected onto a 5 mL HP Desalting column previously 

equilibrated with MetQ buffer. The peak fractions were collected and pooled together. The labeling 

efficiency was determined using the equation  
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𝐴494

𝜀
∗

𝑀𝑊 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑚𝐿

=
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑑𝑦𝑒

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
                (Equation 4) 

 

in which A494 is the absorbance of the solution at 494 nm (peak absorbance wavelength of fluorescein 5-

maleimide), ε is the extinction coefficient of fluorescein 5-maleimide (90,000 M-1 cm-1), MW is 29431.65 

g/mol (molar mass of MetQ), and mg protein/mL is the measured concentration of MetQ.  

 

2.9: Anisotropy to Determine Kd of MetQ - MetNI In the Presence of ATP 

 A detailed step-by-step procedure for this section can be found in the Appendix. 

Purified MetNI and a 1:5 dilution of purified maleimide-labeled MetQ (diluted with MetQ buffer) 

were separately spun at 90,000 rpm for 20 min at 4°C using an Optima TLX Ultracentrifuge in a TLA-100 

rotor to remove any aggregates (Beckman). Following centrifugation, the concentration of each protein was 

determined by measuring the absorbance at 280 nm. 25 µL solutions were prepared on ice with final 

concentrations of 3 mM ATP, 3 mM EDTA, 0.06% DDM, 150 mM NaCl, 57.5 mM Tris pH 7.5, and 10 

mM TAPS pH 8.5. 

 For MetQ N229A – MetNI E166Q experiments, the final concentration of MetNI E166Q varied 

from 0 – 10  μM. For MetQ WT – MetNI E166Q experiments, final concentrations of MetNI E166Q varied 

from 0 – 20 μM.   

 Once reaction mixtures were prepared on ice, 20 µL of each solution were transferred to a black-

clear bottom Greiner 384-well plate. The solutions were placed in the Spectramax Gemini plate reader 

preset to 37°C for 10 min. After incubation, fluorescence polarization (FP) values were recorded with the 

sensitivity of the sensor set to high.  

 FP values and their corresponding MetNI concentrations were plotted and analyzed using Prism. 

First, relative Bmin, Bmax, and Kd values were determined using the equation 

 

𝐹𝑃 =  
𝐵𝑚𝑎𝑥∗[𝑀𝑒𝑡𝑁𝐼]

𝐾𝑑+[𝑀𝑒𝑡𝑁𝐼]
+ 𝐵𝑚𝑖𝑛                   (Equation 5) 

 

in which FP is the recorded fluorescence polarization value, Bmax is the maximum FP asymptote, Bmin is the 

minimum FP asymptote, and Kd is the MetNI concentration at which 50% of the maximum change in FP 

has been reached.   

FP values were then converted to fraction bound using the equation  
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𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑 =  
𝐹𝑃−𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥
                      (Equation 6) 

 

Fraction bound values were then plotted as a function of MetNI concentration and fit to the equation 

 

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑 =
[𝑀𝑒𝑡𝑁𝐼]

𝐾𝑑+[𝑀𝑒𝑡𝑁𝐼]
                          (Equation 7) 

 

with fraction bound values produced by calculations using Equation 6, and Kd representing the 

concentration of MetNI at which fraction bound is equal to 50%.  

 

2.10: Using Fluorescence Anisotropy to Determine Kd of L-Met to MetQ N229A - MetNI E166Q 

Complex 

 The procedure to determine the Kd of L-Met for the MetQ N229A – MetNI E166Q complex was 

nearly identical to determining the Kd of MetQ – MetNI in the presence of ATP with a few changes. Instead 

of varying the concentration of MetNI, each reaction contained 5 μM MetNI E166Q and 20 nM MetQ 

N229A. The concentration of L-Met varied from 0 – 20 μM. The equation to calculate Bmin, Kd, and Bmax 

was modified to 

 

𝐹𝑃 = 𝐵𝑚𝑎𝑥 − 
𝐵𝑚𝑎𝑥∗[𝑀𝑒𝑡𝑁𝐼]

𝐾𝑑+[𝑀𝑒𝑡𝑁𝐼]
+ 𝐵𝑚𝑖𝑛               (Equation 8) 

 

The fraction bound equation changed as well. This equation follows Equation 7 with the exception 

that as MetNI increases, the fraction of bound MetQ decreases, resulting in Equation 9.  

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑 = 1 − 
[𝑀𝑒𝑡𝑁𝐼]

𝐾𝑑+[𝑀𝑒𝑡𝑁𝐼]
                              (Equation 9) 
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Chapter 3: Results 

 

3.1: Protein Expression and Purification 

In any biochemical project, significant quantities of protein must first be expressed and purified. 

While the results below were mainly generated using published protocols (see references 1-5), the 

complexity of the multi-day procedures warrant a detailed explanation and analysis, which is provided 

below.12,3,4,5 

  

3.1.1: MetNI Expression 

The plasmids utilized for MetNI expression contained both the MetI and MetN genes, with a ten-

histidine residue (10xHis) tag engineered at the N-terminus of the MetN. The 10xHis tag allowed for the 

purification of MetNI protein via immobilized nickel affinity chromatography.  To express MetNI, BL21 

E. coli cells, known for their ability to express large amounts of exogenous proteins, were transformed with 

plasmids via standard protocols. Large-scale growths in Terrific Broth (TB) media were induced with IPTG 

(isopropyl β-D-1-thiogalactopyranoside) and harvested for subsequent purification. 

 

3.1.2: MetNI Purification 

Routine purifications starting 

with 15 grams of BL21 cell pellets 

yielded 20-30 mg of purified MetNI 

protein on average. Multiple runs were 

performed to provide the amount of 

protein necessary for ATPase assays 

and anisotropy experiments.  

 Since MetNI is a membrane-

embedded protein, detergent was 

necessary to extract the protein from 

the lipid environment. To solubilize 

MetNI, n-dodecyl 𝛽-D maltoside 

(DDM) was added to the MetNI buffer (50 mM[tris(hydroxymethyl)methylamino]propanesulfonic acid) 

Figure 3-1: Loading of protein supernatant onto a nickel affinity column. 

Clarified cell lysate containing overexpressed MetNI was loaded onto a HisTrap 

HP 5-mL column. 
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(TAPS) pH 8.5, 250 mM NaCl, and 0.05% n-Dodecyl β-D-maltoside (DDM) to a final concentration of 1% 

(w/v). Clarified cell lysate was applied to a 

HisTrap nickel affinity column to purify 

His-tagged MetNI (GE Healthcare). The 

eluent had a high absorbance (~2500 

mAU), from non-His-tagged (Fig. 3-1). 

Next, buffer containing 25 mM imidazole 

was used to wash away non-specific 

proteins bound to the column, followed by 

a second wash using 75 mM imidazole. A 

small amount of non-specific contaminant 

protein was removed from the column in 

these wash steps, as seen in the spike in 

absorbance that occurs when the elution 

volume reaches ~90 mL in Fig. 3-2. Finally, MetNI was eluted from the resin using buffer containing 350 

mM imidazole. The imidazole, present at high concentrations, competed with and displaced the 10xHis tag, 

thereby promoting the elution of MetNI. Imidazole, when present at high concentrations (250 mM or 

higher), outcompetes His-tagged protein for the nickel-resin beads, eluting the protein from the column.6  

 The resulting eluent (consisting mostly of MetNI) was injected onto a desalting column (HiPrep 

26/10, GE Healthcare) to remove imidazole from the buffer. This step was crucial, as excess imidazole can 

cause the protein to precipitate out of solution over time. Figure 3-3 plots the eluent’s conductivity and 

absorbance at 280 nm versus the elution volume. In the figure, a dip in conductivity occurred as the protein 

eluted from the column, and later a 

sharp increase in conductivity occurred 

at approximately one column volume 

(52 mL) as the imidazole exited the 

column.  

The final stage of purification 

involved injection of the eluent from 

the desalting column onto a size 

exclusion column (HiLoad 16/600 

Superdex pg 200, GE Healthcare). In 

Figure 3-4, a small peak of aggregated 

protein appeared at the void volume, 

Figure 3-2: Washing and elution of MetNI protein from affinity column. 

The dark trace indicates the absorbance at 280 nm, and the light trace 

indicates the imidazole concentration. 
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Figure 3-3: Removal of imidazole from MetNI eluent. The collected 

eluent from the 5-mL HP HisTrap column was injected onto a HiPrep 

26/10 desalting column. The dark trace depicts the absorbance at 280 nm 

while the light trace indicates conductivity.  
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45 mL. The large monodisperse peak at 60 mL is the desired MetNI transporter with a molecular weight of 

122 kD.  

To analyze the purity of the final 

product, as well as analyze the efficacy of 

each step of the purification process, SDS-

PAGE was performed. Figure 3-5 shows a 

gel containing different samples taken during 

the MetNI purification process. Lane 1 is a 

molecular weight standard ladder. Lane 2 is 

the cell lysate following homogenization of 

the cell pellet in MetNI buffer and 1% w/v 

DDM. Lane 3 is the pellet of insoluble 

cellular material obtained via centrifugation, 

and lane 4 is the supernatant which contained 

solubilized proteins. Lane 5 is the flow-

through obtained from application of the supernatant over the HisTrap column. Lane 6 is the wash collected 

using MetNI buffer containing 25 mM imidazole, and lane 7 is the wash collected using MetNI buffer 

containing 75 mM imidazole. Lane 8 is the eluent collected when flowing buffer containing 350 mM 

imidazole through the HisTrap column. Lane 9 is the eluent collected following injection of the HisTrap 

eluent onto the HiPrep 26/10 desalting column. Lane 10 is the eluent following injection of the desalted 

eluent onto the HiLoad 16/600 Superdex pg 200 size exclusion column.  

Figure 3-5: SDS-PAGE analysis of the MetNI purification procedure.  

Figure 3-4: Size exclusion chromatography of MetNI. The collected 

eluent from the desalting column was concentrated to 5 mL before injection 

onto a HiLoad 16/600 Superdex pg 200 column.   
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Outlined in blue boxes in Figure 3-5 are the dissociated MetN and the MetI portions of the 

transporter. In lanes 3 and 4 (samples of cell pellet and cell lysate, respectively) the MetN and MetI bands 

are enriched relative to other proteins, indicating a high level of expression. A considerable amount of 

MetNI is found in the pellet following centrifugation (Lane 4), indicating that some protein remained in the 

membrane. In lane 5 (HisTrap flow-through) the bands are noticeably lighter, indicating successful 

retention of MetNI on the nickel resin. In subsequent purification steps, the MetN and MetI bands outlined 

in red become more prominent, indicating a higher concentration of MetNI compared to contaminating 

proteins. While the intensity of the transporter bands remains consistent across lanes 8-10, the presence of 

contaminating proteins decreases as shown by the fading of the non-MetNI bands in each successive lane. 

The final purified MetNI sample shown in lane 10 contains minimal amounts of contaminants and is 

appropriate for use in subsequent assays.  

 

3.1.3: MetQ Expression 

 The plasmids utilized for MetQ expression contained MetQ gene followed by a six-histidine residue 

(6xHis) tag engineered at the C-terminus. The 6xHis tag allowed for the purification of MetQ protein via 

immobilized nickel affinity chromatography. Similar to MetNI expression, BL21 E. coli cells were 

transformed with plasmids via standard protocols.3  

The protocol for large-scale expression of the MetQ substrate binding protein was modified to 

increase yield. Previously, MetQ was expressed in autoinduction media, a method made popular due to its 

ease of use.5 After numerous purification runs yielding low amounts of MetQ (1-3 mg per 18 g of cells), 

MetQ expression was tested in TB media. SDS-PAGE analysis revealed a significant difference in 

expression levels depending on growth media, as seen in Figure 3-6. Lane 1 is a molecular weight standard 

ladder. Lane 2 contains cellular lysate from cells grown in autoinduction media, while lanes 3 and 4 contain 

lysate from two separate growths using TB media. While less total cell lysate is loaded in lane 2, there is 

an unambiguous increase in MetQ expression relative to other proteins in lanes 3 and 4. As a result of this 

increased expression, subsequent purifications resulted in approximately 10-fold higher yield of MetQ, as 

described below.  
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3.1.4: MetQ Purification 

Much of the MetQ purification 

procedure followed that of the MetNI 

purification procedure with a set of 

modifications. The chromatograms of 

the purification procedure (nickel-

affinity chromatography, desalt 

chromatography, and size-exclusion 

chromatography can be viewed in 

Figures 3-7 to 3-10 with an SDS-

PAGE analysis in Fig 3-11. Each 

chromatogram is described in greater 

detail throughout this section. 

Figure 3-6: SDS-PAGE of cell lysate from different cell growth protocols.  

Figure 3-7: Loading of periplasmic extract onto nickel affinity column.  

Periplasmic extract containing overexpressed MetQ was loaded onto a 5-

mL HisTrap HP column. 
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The purification of MetQ 

required different considerations than 

that of MetNI, because MetQ is a 

soluble protein, so detergent was not 

necessary, and MetQ contains a 

cysteine residue near the N-terminus 

that can lead to non-physiological, in 

vitro dimerization under non-reducing 

conditions. This concern pertains to 

MetQ in a purely artificial 

environment as cellular conditions are 

reducing and prevent in vivo 

dimerization from occurring. To prevent artificial dimerization, the reducing agent beta-mercaptoethanol 

(BME) was added to all buffers utilized in purification.  Lastly, the periplasmic localization of MetQ 

necessitated a significant modification to the purification protocol. MetQ is produced by ribosomes in the 

cytoplasm of the cell. To target MetQ to the periplasm, a signal sequence on the nascent polypeptide chain 

is recognized by specialized cellular machinery. MetQ is then shuttled to the inner membrane of the bacteria 

and is eventually threaded through the membrane into the periplasmic space. Once inside the periplasm, 

the signal sequence is cleaved from MetQ. The signal-sequence-containing MetQ and cleaved MetQ are 

regarded as the immature and mature forms, respectively. As a consequence of over-expression, the 

targeting and cleavage machinery of the cell can be overwhelmed, leading to increased amounts of 

immature MetQ relative to mature MetQ. As mature MetQ is the species responsible for transport of L-

methionine, it was important to isolate 

only mature MetQ for biochemical 

studies. To obtain mature MetQ, an 

osmotic shock procedure was employed 

to lyse only the outer membrane of the 

E.coli cells, as described below.  

Cell pellets were first 

homogenized in a small volume of high 

concentration of sucrose (2 grams / 

mL). This slurry of cells was then mixed 

with 30 times the volume of deionized 

water, triggering lysis of the outer 

Figure 3-8: Washing and elution of MetQ protein from affinity column. 

The dark trace indicates the absorbance at 280 nm and the light trace depicts 

the imidazole concentration. 
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Figure 3-9: Removal of imidazole from MetQ eluent.  The eluent collected 

from the 5-mL HisTrap column was loaded onto a HiPrep 26/10 desalting 

column. The dark trace indicates the absorbance at 280 nm, and the light trace 

indicates the conductivity. 
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membrane only. This was followed by the addition of Tris (50 mM final pH 7.5), sodium chloride (150 mM 

final), and BME (5 mM final). Following osmotic shock, much of the MetQ purification procedure using 

chromatography was similar to that of MetNI (Figs. 3-6 through 3-10). The osmotic shock solution was 

centrifuged to separate non-periplasmic components from the periplasmic lysate (lanes 3 and 4). The 

periplasmic lysate was loaded onto a HisTrap column, and the flow-through was collected (Fig. 3-7 and 

Fig. 3-11, lane 5).  Due to the lower affinity of 6xHis-MetQ for the nickel-resin beads, the multiple wash 

steps used in MetNI purification were 

omitted (Fig. 3-8).  Bypassing these 

washes resulted in a significant amount 

of contaminating proteins in the 

HisTrap eluent, as seen in lane 7 of 

Figure 3-11. Size exclusion 

chromatography of the desalted eluent, 

shown in Fig 3-10, revealed the 

presence of two different MetQ 

populations at 55 mL and 90 mL elution 

volumes. Based on the molecular 

weight of MetQ, the peak at 90 mL 

corresponds with a monomer of MetQ, 

whereas the peak at 55 mL was unexpected. To investigate the composition of the peak at 55 mL, SDS-

PAGE was performed using samples from both peaks (Fig. 3-11). Lane 1 is a protein ladder, lane 2 is the 

cellular preparation following osmotic shock, lane 3 is the cell pellet following centrifugation. Lane 4 is the 

periplasmic extract, and Lane 5 is a sample of the flow-through from the 5-mL HisTrap HP column. Lane 

6 is a sample of the following wash with MetQ buffer with 0 mM imidazole. Lane 7 is a sample of the 

eluted protein collected when flowing MetQ buffer with 400 mM imidazole. Lane 8 contains sample that 

overflowed from Lane 7. Lane 9 is a sample of the eluted protein following injection to the desalting 

column. Lane 10 is a sample of the first peak (55 mL) eluted from the sizing column. Lane 11 is the second 

peak (90 mL) eluted from the sizing column. 

The conclusion from SDS-PAGE analysis was that the protein in the 55 mL peak was slightly larger 

than the protein in the 90 mL MetQ (Fig. 3-11, blue and red arrows, respectively). One explanation for the 

is that the 55 mL peak contained immature MetQ, which is slightly larger than mature MetQ due to its 

uncleaved signal sequence. The hydrophobic nature of the signal sequence in immature MetQ may have 

caused aggregation of this species, resulting in a distinct peak at 55 mL that is noticeably smaller than that 

of the mature MetQ peak at 90 mL. This observation suggests that some of the inner membrane may have 
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Figure 3-10: Size-exclusion chromatography of MetQ. The eluent collected 

from the desalt column was concentrated to 5 mL before injection onto a 

HiLoad 16/600 Superdex pg 200 column. The peak indicated by the blue 

arrow is immature MetQ. The peak indicated by the red arrow is mature MetQ.  
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lysed despite the osmotic shock procedure. Eighteen g of BL21 cells gave a final sample of reasonable 

purity and yielded 20-30 mg of purified MetQ protein.  

 

 

 

 

3.2: Effect of Single Amino Acid Substitutions in MetNI 

In this work, we utilized a well-established ATPase assay to verify the activity of wild-type 

MetNI and to analyze the effect of single amino acid mutations in MetNI. This solution-based, real-time 

assay is commonly utilized to accurately determine the ATP 

hydrolysis rate of an enzyme. The protocol was modified to a 

plate reader format, and 10-12 individual reaction conditions 

could be tested simultaneously. Briefly, in this coupled 

enzyme system, purine nucleoside phosphorylase (PNP) 

catalyzes a reaction between inorganic phosphate and 2-

amino-6-mercapto-7-methyl purine riboside (MESG) (Fig. 3-

12).7  A standard curve (see Fig 3-13) was generated by 

measuring the amount of product, 2-amino-6-mercapto-7-

methyl purine, which has a 1:1 ratio with inorganic phosphate 

(reaction depicted in Fig. 3-12). 2-amino-6-mercapto-7-

methyl purine absorbs light at 360 nm, and thus the 

absorbance at 360 nm is used as a measure of inorganic phosphate concentration, directly quantifying the 

amount of ATP hydrolysis in a solution.  

Figure 3-12: Schematic of the coupled-

enzyme reaction for the Enzchek Phosphate 

Assay kit. Image taken directly from 

ThermoFisher.6  

Figure 3-11: SDS-PAGE analysis of MetQ purification procedure.  The blue and red arrows identify immature and mature 

MetQ, respectively.   

Lane 1: Standard ladder 

Lane 2: Cell lysate following 

osmotic shock 

Lane 3: Insoluble cell pellet 

Lane 4: Solubilized periplasmic 

extract 

Lane 5: His-Trap flow-through 

Lane 6: 0 mM imidazole wash 

Lane 7: 400 mM imidazole eluent 

Lane 8: Overflow from Lane 7 

Lane 9: Desalt chromatography 

eluent 

Lane 10: Sizing chromatography 

peak 1 (immature MetQ) 

Lane 11: Sizing chromatography 

peak 2 (mature MetQ) 
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 The raw data from a representative experiment is shown in Figure 3-14. In this particular assay, 

the concentration of ATP was varied, and thus the absorbance at t = 0 varied between samples. ATP 

hydrolysis requires the presence of Mg2+ ion, and a final concentration of 5.5 mM MgCl2 was injected into 

each sample at t = 120 seconds to start the reaction. 27 To determine the rate of ATP hydrolysis, the time 

points from 300-500 seconds were fit to a straight line. This time range provided the most reproducible 

data, as earlier and later time points often showed non-linear trends or leveling off of the absorbance value, 

respectively. The slope from the raw data was then converted into the observed rate constant (kobs) using 

the conversion factor provided from the standard curve. Using this assay, the basic kinetic parameters, 

including kcat, Km, and the Hill coefficient (n), were determined for MetNI. 

 

→
 

Increasing 

ATP 

concentration 

Figure 3-14: Raw data of MetNI ATPase assay with varying concentrations of ATP. Final concentrations of ATP varied from 

0 – 5 mM ATP. A final concentration of 5.5 mM Mg2+ was injected at time = 120 seconds, allowing ATP hydrolysis to begin.  
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Figure 3-13: Standard curve for conversion of absorbance to concentration of inorganic phosphate. The equation for the 

best-fit line was y = 0.00195x + 0.2209 with an R2 value of 0.9956. 

A
b

s
o

rb
a
n

c
e
 (

A
U

) 
A

b
s

o
rb

a
n

c
e

 (
A

U
) 

Pi [µM] 



42 

 

3.2.1 ATPase Activity of Wild-Type MetNI 

 First, to verify the quality of the protein resulting from the purification process, experiments using 

wild-type MetNI with varying ATP concentrations were performed and compared to published data (Fig. 

3-15). Data were fit to a modified Michaelis-Menten equation: 

𝑘𝑜𝑏𝑠 =
𝑘𝑐𝑎𝑡  ∗  [𝐴𝑇𝑃]𝑛

𝐾𝑚 + [𝐴𝑇𝑃]𝑛
 

 

where kobs is the observed rate constant, kcat, is the catalytic rate constant, n is the Hill coefficient, and Km 

is the Michaelis-Menten constant.   

As expected, ATP hydrolysis increased as a function of ATP concentration. The best-fit KmATP 

value was 320 ± 120 µM, which is in good agreement with previously published work in which Km = 330 

± 20 µM. In published work, experiments were performed at 33°C, while these assays were conducted at 

37°C.8 This could explain the significant difference between the catalytic rate constant determined here, kcat 

= 30 ± 3 min-1 and the published kcat value of 17 ± 1 min-1.  Surprisingly, our results little cooperativity 

based upon the Hill coefficient of 0.9 ± 0.2, while published data report that n = 1.7 ± 0.1. As a guiding 

principle, a Hill coefficient of 0 signifies negative cooperativity between the two ATP binding sites, a 

coefficient of 1 indicates no cooperativity, and a cooperativity of 2 signals positive cooperativity between 

the binding sites. To confirm these preliminary results, further experimentation with lower concentrations 

of ATP should be performed. Given the consistent values for kcat and Km, we concluded that the protein 

purification process yielded MetNI with sufficient specific activity.  

Figure 3-15: ATPase assay of wild-type MetNI in varying ATP concentrations. Best-fit parameters are kcat = 30 ± 3 min-1, 

KmATP = 320 ± 120 μM , n = 0.9 ± 0.2.   
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Next, to verify the transinhibitory regulation of MetNI, ATPase activity was measured as a function 

of L-methionine concentration. As expected, the hydrolysis rate decreased as concentrations of L-

methionine increased (Fig. 3-16). In this assay, at saturating concentrations of ATP, the ATPase activity 

decreases and approaches zero. The Ki(L-Met) value was 41 ± 13 µM, in good agreement with previous 

studies (41 ± 2 µM).7 This corresponds with the elegant in vivo observations from nearly 50 years ago, 

which showed that high cellular concentrations of L-methionine inhibit further import. Thus, L-methionine 

acts as both a substrate and inhibitor. 

 

3.2.2 Confirmation of the Loss of ATP Hydrolysis in MetNI E166Q Mutant  

To trap an intermediate ATP-bound state of MetNI, a canonical single amino acid substitution was 

employed. A glutamate to glutamine substitution in the Walker B motif of the NBDs allows the binding of 

ATP but impairs hydrolysis. By eliminating the negative charge on the side chain, the residue no longer 

acts as a general base, thereby reducing polarization of the water molecule involved in ATP hydrolysis. 

Kadaba et. al. first introduced this mutant and demonstrated that E166Q MetNI was unable to hydrolyze 

ATP.3 Similarly, our experiments showed a complete loss of activity for E166Q MetNI (Fig. 3-17, red). 

These results, along with the crystallization of the E166Q transporter in the ATP-bound form, supports the 

use of this mutant as a tool to examine the MetNI transporter trapped in its ATP-bound form.  

 

Figure 3-16: L-Met inhibits MetNI wild-type ATPase activity. Best fit parameters are Ki = 41 ± 13 μM, n = 1.2 ± 0.2, and 

kcat = 28.5 ± 2.5 min-1. 
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3.2.3 MetNI N295A Mutant 

To generate a version of MetNI that cannot be inhibited, a previously described N295A mutant was 

purified and tested.2 This mutant dramatically decreased the binding affinity between L-Met and the C2 

domain using structural studies, however kinetic studies were absent. To ensure that the N295A mutation 

solely affects transinhibition, but does not hinder ATP binding and hydrolysis, two ATPase assays were 

conducted. First, we measured the ability of L-methionine to inhibit ATPase activity. As expected, the rate 

of ATP hydrolysis by wild-type MetNI decreased as L-methionine concentrations increased (Fig. 3-18). 

The Ki(L-Met) value of 41 ± 13 μM for wild-type MetNI was in agreement with the published data (Ki(L-

Met) = 41 ± 2 μM).  In contrast, using the same series of L-methionine concentrations, the MetNI N295A 

Figure 3-17: E166Q mutation eliminates MetNI ATPase activity. ATPase activity as a function of ATP concentration was 

measured using ATPase assays of MetNI wild-type (black) and MetNI E166Q (red).   

Figure 3-18: High L-Met concentrations do not inhibit MetNI N295A ATPase activity. ATPase activity as a function of L-

Met concentration was measured using MetNI wild-type (black) and MetNI N295A (red).  
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mutant did not show any decrease in ATPase activity (Fig. 3-18, red). This data suggest that the N295A 

mutation eliminates the transinhibition phenomenon of MetNI.  

Next, the ATP concentration was varied to determine the kcat and KmATP of the mutant (Fig. 3-19). 

The comparison of wild-type and N295A MetNI showed similar results, with kcat values of 30 ± 3 min-1 and 

34 ± 4 min-1 , respectively.  Additionally, KmATP values were within error, with values of 320 ± 120 µM 

for wild-type and 365 ± 200 μM for N295A. These results demonstrate that the effect of the N295A 

mutation is limited to the C2 regulatory domain and does not alter ATP binding and hydrolysis. 

 Together, the results from ATPase assays of wild-type, E166Q, and N295A versions of MetNI 

establish that these mutations indeed serve their intended purpose. With this confirmation in hand, we 

moved forward to determine the requirements for MetNI-Q complex formation.  

3.3 Development of Fluorescence Anisotropy Assay to Measure MetNI-MetQ Complex Formation 

Fluorescence anisotropy is a widely accepted technique to measure the binding affinities between 

biomolecules. The results from the assay give a broader range of Kd values than the frequently utilized 

isothermal calorimetry (ITC) method.9 While surface plasmon resonance (SPR) has been successfully 

employed to measure binding affinities between the BtuCD transporter and its cognate binding protein, 

reliable results were not achievable with the MetNI transporter.10 The development of an anisotropy assay 

to quantify the binding affinity of the MetNI-Q complex will be a valuable tool in establishing the 

nucleotide and substrate requirements for association of the transporter and substrate binding protein. The 

identification of intermediates in the reaction cycle will allow us to build a comprehensive model for 

methionine transport. 

 

 

Figure 3-19: N295A mutation does not alter MetNI ATPase activity. ATPase activities of MetNI N295A (red) and MetNI 

wild-type (black) as a function of varying ATP concentration.  
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3.3.1: Labeling Substrate-Binding Protein MetQ with Fluorescein 5-Maleimide 

In anisotropy experiments, one member of a binding interaction must be fluorescently labeled. 

Ideally, the labeled protein alone and the protein complex are significantly different in size, with the smaller 

protein being labeled. In this arrangement, the rotational lifetime of the labeled protein alone varies greatly 

from that of the protein complex. For anisotropy experiments with the methionine transport system, the 

substrate-binding protein MetQ (29 kD) was labeled. Given the 1:1 ratio of MetNI to MetQ per functional 

transporter unit, the MetNI-MetQ complex has a molecular weight of 151 kD.   

For these studies, activated fluorescein 5-maleimide dye was chosen because of its high quantum 

yield (0.79), ideal fluorescence lifetime (~4 nanoseconds), and low anisotropy if the dye is unconjugated (r 

= 0.021) versus attached to MetQ (r ~ 0.09).11,12 Fluorescein 5-maleimide was covalently conjugated via 

maleimide chemistry to the single cysteine residue at amino acid position 23, near the N-terminus of MetQ. 

This amino acid is not featured in the crystal structure of MetQ because it is unstructured, suggesting that 

it is not critical for interaction between the two proteins.11  

A brief summary of the MetQ labeling process is described here. More detailed procedures are 

provided in the Methods section. First, the reducing agent in the buffer was exchanged from BME to TCEP, 

as BME contains a thiol group that would react with the maleimide group on the dye. As recommended by 

the manufacturer, fluorescein 5-maleimide was dissolved in DMSO to 100 mM final concentration. The 

dissolved dye was added to a final concentration that was 5% DMSO (v/v) and 10-fold dye concentration 

to that of MetQ (~50 µM MetQ). The mixture was incubated for two hours, and the labeling reaction was 

quenched by addition of BME. The solution was then injected onto a 5-mL desalting column as a first step 

in removing excess dye. To further wash the labeled MetQ, the protein was then added to nickel resin beads 

in a standard 1.5-mL microcentrifuge tube. The 6xHis tag on MetQ allowed the capture of the labeled 

protein on the nickel beads. The sample was centrifuged at 10,000 rpm for one minute, thereby separating 

the beads and protein in the pellet and unconjugated dye in the supernatant. The supernatant was removed, 

and fresh buffer was added to the beads. This batch wash procedure repeated three times or until a constant 

absorbance at 492 nm was observed. The protein was eluted from the beads by addition of imidazole, and 

imidazole was subsequently removed via buffer exchange. The absorbance at 280 nm and 492 nm was 

measured for the samples (Table 3-1), which corresponds to the absorption maxima for protein and 

fluorescein, respectively. This early labeling procedure was problematic and required significant 

troubleshooting and optimization.  

First, the amount of recovered protein following labeling was extremely low, with yields calculated 

around 5%. Second, of the protein that was recovered, only ~3% of MetQ was labeled. Lastly, it was 

suspected that a significant amount of unreacted dye remained in the final sample. The anisotropy value of 

the labeled MetQ (r = 0.052) was not much higher than the recorded anisotropy value of the unconjugated 
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maleimide dye (r = 0.032). This suspicion was raised after observing that latter batches of labeled MetQ 

were measured to have anisotropy values near r = 0.09. It was important to remove as much unconjugated 

dye as possible, as this contaminant would reduce the ability to detect changes in anisotropy.  

Ideally, each potential issue would have been separately tested and analyzed to determine their 

effect on labeling. However, to preserve time and resources, the labeling protocol was concurrently 

modified in three ways. First, solid fluorescein dye was directly solubilized in MetQ buffer rather than 

addition via a high concentration DMSO stock of the dye. This modification may be responsible for the 

improved protein recovery (Table 3-1), as high concentrations of DMSO may have led to unfolding and 

precipitation of protein. DMSO has been shown to trigger protein unfolding in concentrations as low as 4% 

w/v.13 Second, the molar ratio of dye: protein was increased from 10:1 to 25:1. While expensive, the 

investment in additional dye paid off, resulting in an ~33% increase in labeling (Table 3-1).  

Lastly, to improve the efficiency of washing, the batch washing method was replaced with the use 

of a gravity column. In a gravity washing method, nickel resin beads are packed into a gravity column. The 

labeling reaction was added to the beads, and the protein was captured on this stationary phase. The beads 

were then washed with a total of five mL of buffer instead of three mL administered in batch washing. This 

gravity washing method effectively removed the unreacted dye, as suggested by the difference in anisotropy 

values between the labeled MetQ produced from the batch method and the labeled MetQ from the modified 

protocol (Table 3-3).  

 

Table 3-1: Comparison of original and modified MetQ labeling protocols 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Original Protocol Modified Protocol 

Abs 280 nm Abs 492 nm Abs 280 nm Abs 492 nm 

Flow-Thru 0.976 1.369 9.34 22.5 

Wash #1 0.050 0.058 0.316 0.915 

Wash #2 0.024 0.035 0.023 0.025 

Wash #3 0.000 0.002 0.001 0.018 

Eluent 0.000 0.179 3.157 4.406 

Desalt 0.000 0.036 0.691 0.968 

 % Labeling (Original Protocol) % Labeling (Modified Protocol) 

Final 2.9% 35.7% 

 % Recovered % Recovered 

 2% 20% 



48 

 

Together, these modifications led to the reproducible labeling of MetQ with increased recovery and 

labeling efficiency. Both protocols started with 6 mg of unlabeled protein, but the original protocol 

recovered 1.7% of protein while the modified protocol resulted in 10-fold more recovery (17%). 

Furthermore, the percent of MetQ that was labeled increased from 2.9% to 35.7%, as calculated using the 

absorbance values at 280 nm and 492 nm and Equation 1 (see Methods). MetQ contains only one cysteine 

amino acid, which ensures that a 1:1 ratio of protein: dye is the maximum that can be attained. In summary, 

the optimization of the labeling protocol yielded suitable amounts of labeled MetQ for subsequent 

anisotropy studies.  

 

3.3.2: Anisotropy Control Measurements 

As there was no recent precedent for anisotropy experiments at USF, a positive control was 

developed to ensure proper operation of the in-house fluorimeter. First, solubilized dye was added to 

varying concentrations of glycerol, and the anisotropy was measured. It was expected that increasing 

amounts of glycerol, being much more viscous than water (1.412 Pa·s vs. 8.90 * 10-4 Pa·s, respectively), 

would reduce the rotation of the dye, thereby increasing the anisotropy value. As predicted, the anisotropy 

value increased as the percent volume of glycerol increased (Table 3-2). This trend provided initial 

confidence in the procedure and in the settings employed on the Fluoromax (Horiba).  

 

Table 3-2: Anisotropy values of solutions of fluorescein 5-maleimide in glycerol 

% volume glycerol Anisotropy 

0 0.03160 

5 0.04498 

10 0.04641 

20 0.05697 

40 0.07413 

60 0.11578 

80 0.25341 

 

 To further assess the efficiency of the optimized protein labeling protocol, the anisotropy of free 

fluorescein 5-maleimide dye was compared to that of labeled MetQ protein (Table 3-3). In this case, the 

dye was resuspended in the same buffer as that of MetQ. The polarization value for labeled MetQ was 

0.0902 ± 0.003, three times higher than the polarization value of free dye (r = 0.037 ± 0.004 ) and almost 
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twice as high as the labeled MetQ produced from the initial batch protocol (r = 0.057 ± 0.003). These data 

suggest that MetQ was successfully labeled during the labeling procedure and that minimal free dye remains 

in solution.   

 

Table 3-3: Comparison of anisotropy values of free fluorescein 5-maleimide dye versus maleimide-

labeled MetQ.  

  Anisotropy 

Relative 

Standard 

Deviation (%) 

Unconjugated Dye 0.03681 10.5247 

Labeled MetQ (Batch Protocol) 0.0567 6.0914 

Labeled MetQ (Modified Protocol) 0.09019 3.6818 

 

A series of preliminary experiments were conducted to determine the optimal experimental 

conditions for measuring MetNI-Q interactions using a Fluoromax-4 Spectrofluorometer (Horiba).  First, 

the ideal concentration of labeled MetQ was determined through a series of serial dilutions.  

 

Table 3-4: Concentration of fluorescein maleimide dye vs. average counts per second (CPS) 

Concentration of fluorescein 

maleimide dye (M) 

Avg CPS @ 535 nm 

1.00 ∗ 10-6 3.83 ∗106 

5.00 ∗ 10-7 2.14 ∗106 

2.00 ∗ 10-7 9.64 ∗105 

1.00 ∗ 10-7 7.84 ∗105 

2.00 ∗ 10-8 2.84 ∗105 

1.00 ∗ 10-9 2.07∗105  

 

The optimal zone for emission was between 1 x 105 to 2 x 106  counts per second (CPS) as per the 

fluorometer user manual (Horiba). With MetQ labeled with at 20-30% on average, the optimal amount of 

MetQ to use in each anisotropy trial was determined to be 20 nM. This concentration of MetQ was ideal, 

as it produced sufficient signal for fluorescence anisotropy measurements while being far enough below 

the anticipated Kd to provide maximal change in anisotropy.  

Second, the buffer conditions from the ATPase assay did not interfere with fluorescence readings, 

and thus the same conditions were used for anisotropy experiments. Lastly, the anisotropy was recorded 
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over time with high concentrations of protein, to ensure that neither the buffer conditions nor the incubation 

time required for equilibration resulted in aggregation. 

 

3.4: Anisotropy Assays: Determining the Kd of the MetNI-Q Complex in Different Nucleotide and 

Substrate Environments 

 

3.4.1. Initial Anisotropy Assays using ATP 

With successfully labeled MetQ and appropriate settings for the in-house fluorimeter, anisotropy 

experiments to assess MetNI-Q complex binding affinities were ready to move forward. As a starting point, 

the MetNI-Q complex formation was assessed in the ATP-bound state, as this was the conformation isolated 

in crystallography studies.2,26 A double mutant E166Q/N295A MetNI was utilized. The E166Q mutation 

prevented ATP hydrolysis, thereby allowing the trapping of ATP-bound states. As an extra precaution 

against ATP hydrolysis, 3 mM EDTA was added in conjunction with 3 mM ATP to ensure removal of any 

trace Mg2+ ions that would hydrolyze bound ATP. The N295A mutation hindered L-Met binding at the C2 

domains, thereby eliminating any effect from transinhibition.   

Using the in-house fluorimeter (Fluoromax-4 Spectrofluorometer), an experiment comparing the 

binding affinities of L-Met bound MetQ (MetQ wild-type) and apo MetQ (MetQ N229A) with ATP-bound 

MetNI was performed (Figure 3-20). The Kd value of apo MetQ with ATP-bound MetNI was determined 

to be 83 nM after a single trial while the Kd value of L-Met bound MetQ with ATP-bound MetNI was 

determined to be 2.7 µM. Previously published microscale thermophoresis studies found a similar trend 

with apo MetQ having a higher binding affinity than wild-type MetQ.25  

While these initial assays were a success, it became apparent that the labor and reagent requirements 

of the experiment were unsustainable. A single experiment would take approximately 4-6 hours to 

Figure 3-20: Initial anisotropy assays assessing MetNI-Q binding affinities in the presence of ATP. The black and red 

curves are two separate assays performed with 20 nM MetQ N229A and MetQ wild-type, respectively.   
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complete, as the in-house fluorimeter relied on a cuvette that holds only one 100 µl sample at a time. 

Additionally, the concentration of MetNI necessary to saturate MetQ exceeded 10 µM, and at 100 µl per 

sample, the total amount of MetNI was very substantial. Given the number of variables we planned to 

examine, a more efficient method would be very beneficial, if not essential. For this reason, we explored 

the possibility of using a spectrofluorimeter plate reader at UCSF. In this format, a single experiment could 

be conducted in only 30-60 minutes and each well used only 20 µl.  After weeks of troubleshooting the 

procedure and equipment, anisotropy experiments were exclusively performed using a SpectraMax Gemini 

XS Microplate Spectrofluorometer (Molecular Devices).  

 

3.4.2: Complex Formation as a Function of MetNI Nucleotide State: Apo, ATP-Bound, and ADP-

Bound 

The first variable assessed was the nucleotide state of the MetNI transporter. During the reaction 

cycle, possible nucleotide states include empty (or apo), ATP-bound, the ATP transition state, a post-

hydrolysis state, and ADP-bound. As a starting point, we chose to test three nucleotide states: apo, ADP-

bound, and ATP-bound. In structural studies, the MetNI-Q complex was crystallized in the ATP-bound 

state, while MetNI alone was crystallized with ADP bound to its NBDs.2,26 While these structures provide 

strong evidence of the nucleotide requirements for complex formation, the possibility of artifacts due to 

crystal packing demands independent confirmation using a solution-based method. Discrepancy between 

functional and structural studies have been debated regarding other ABC transporters. For example, the 

original mechanisms for both the maltose (type I) and the vitamin B12 (type II) importers proposed based 

on crystallography studies did not align with mechanisms proposed for the transporters based on functional 

studies.13-1814,15,16,17,18,19  

Figure 3-21: MetNI-Q complex formation requires ATP.  Association of MetQ wild-type and MetNI E166Q/N295A was 

measured in the presence of ATP/EDTA (black), ADP (blue), or no nucleotide (red). 
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To test the effect of MetNI nucleotide state on complex formation, the double mutant 

E166Q/N295A MetNI was utilized, as described above. In these assays, 20 nM of wild-type MetQ was held 

constant while the concentration of E166Q/N295A MetNI was varied from 0 - 20 µM. Either ATP and 

EDTA, ADP, or no nucleotide was included in each reaction. While there was no detectable change in 

anisotropy in either the ADP or apo state, a reproducible, robust change was measured in the presence of 

ATP (Fig. 3-21). The data was best fit to a 1:1 binding curve with a Kd of 527 nM ± 107 nM. The formation 

of the complex in the ATP-bound state is in agreement with previous crystallography studies,11 and is the 

first measured Kd value for an ABC transporter using fluorescence anisotropy. 

 

3.4.3 Role of MetQ Substrate-State in MetNI-Q Complex Formation: Apo (MetQ N229A) or L-Met 

Bound (MetQ wild-type) 

The second variable tested was the presence or absence of substrate bound to MetQ. In 

crystallography studies, apo MetQ has been crystallized in complex with MetNI in its ATP-bound state, 

however, attempts to capture an intermediate with substrate present were unsuccessful.2 This intermediate 

has been trapped in both the maltose and molybdate transporters.20,21 We hypothesize, however, that L-

methionine must interact with MetQ at some point during the reaction cycle, as in vivo evidence suggests 

that transport cannot occur if the MetQ gene is deleted.22 The same observation was made in both the 

maltose and vitamin B12 transporters, where transport was not detected in the absence of the SBP in vivo 

and in vitro, respectively.23,24 

Due to its tight binding affinity, it is widely accepted that the substrate binding protein of ABC 

transporters commonly co-purifies with its cognate substrate.25 To isolate substrate binding protein without 

substrate (apo), a common technique is to unfold the protein in the presence of urea. Urea is a chaotrope 

which disrupts the hydrogen bonding network of a solution or substrates. Following unfolding, MetQ is  

refolded to its original shape via the slow removal of the chaotrope. To circumvent this time-consuming 

and low-yielding process, Nguyen et al. introduced a single amino acid substitution (N238A) in Neisseria 

meningitides MetQ that drastically increased the Kd nearly 400-fold (0.2 nM for wild-type to 78 µM for 

mutant).26  Based on crystallography studies, this asparagine forms key hydrogen bonds with both the α-

amino and the α-carboxyl groups of the methionine substrate. By mutating this asparagine to alanine, a 

mimic for apo MetQ was created, allowing for an alternative to the extensive unfolding-refolding process. 

Apo MetQ could now be purified directly from cells overexpressing this mutant form of MetQ. 

This strategy was implemented for use with E. coli MetQ. A mutation in the homologous site 

(amino acid position 229) in E. coli allowed for the direct isolation of apoMetQ from E. coli cells. The use 

of MetQ wild-type and MetQ N229A serves as equivalents for substrate-bound and apo MetQ, respectively. 

The anisotropy assay described above was then performed using MetQ N229A. As with wild-type MetQ, 
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no binding was detected for either ADP-bound or apo E166Q/N295A MetNI. Binding of MetQ N229A to 

E166Q/N295A MetNI was observed in the presence of ATP, however the Kd was approximately 2-fold 

lower than with wild-type MetQ (281 nM ± 36 nM vs 527 nM ± 107 nM, respectively) (Fig 3-22). 

  

Table 3-5: Comparison of MetNI-Q complex binding affinities with substrate-bound MetQ vs. apo 

MetQ 

 L-Met bound MetQ (wild-type) + 

ATP-bound N295A MetNI 

Apo MetQ (N229A mutant) 

+ ATP-bound N295A MetNI 

Kd 527 nM ± 107 nM 281 nM ± 36 nM 

 

While apo MetQ (MetQ N229A) showed a two-fold higher affinity for ATP-bound MetNI than L-

Met bound MetQ (MetQ wild-type), this difference is relatively minor in a physiological setting. The 

similarity in binding affinities suggests the possibility that both complexes may be involved in methionine 

transport.   

 

3.4.4: L-Met as an Inhibitor of MetNI-Q Complex Formation 

The third variable assayed was the presence or absence of L-Met at the regulatory C2 domains. 

Previous studies found that the ATPase activity of the MetNI transporter decreased with increasing  

concentrations of L-Met, which is consistent with the transinhibition model first proposed by Kadner.27 In 

crystallographic studies, MetNI containing L-Met bound to the C2 domains was trapped in its inward-facing 

conformation, uncomplexed to MetQ.28 This transinhibitory mechanism has only been observed in the 

methionine and molybdate transporters.29 However, the maltose and vitamin B12 transporters were captured 

in an inward-facing conformation without their respective SBP.30 Furthermore, Chen et al. proposed that 

Figure 3-22: Binding affinity for ATP-bound MetNI. Complex formation was measured using MetNI E166Q/N295A 

and MetQ N229A (red) and MetQ wild-type (black)  
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the maltose transporter in its IWF conformation complexed with its SBP (MalE) is an unstable, high energy 

structure that quickly dissociated.31 While it is commonly accepted that binding of L-Met at the C2 domains 

prevents association of the NBDs, it is unclear as to whether MetQ can bind MetNI in this inhibited state. 

We hypothesize that transinhibition will sterically induce MetQ dissociation from MetNI.  

To test if binding of L-Met to the C2 domains triggers the dissociation of the MetNI-Q complex, 

the experimental procedure was designed to ensure that all MetQ molecules were in a complex with MetNI. 

This experiment was performed by saturating 20 nM maleimide-labeled MetQ N229A with 1 µM MetNI 

E166Q and 3 mM ATP/EDTA. These concentrations were informed by previous anisotropy experiments 

(Section 3.4.2), where nearly 100% of MetQ N229A was in complex under these conditions. To ensure that 

the total concentration of L-Met was controlled in each reaction, these anisotropy trials utilized apo MetQ 

(MetQ N229A). This also ensured that L-Met was available to bind the C2 domains and not MetQ.  

In a single preliminary trial, increasing concentrations of L-Met dissociated the MetNI E166Q - 

MetQ N229A complex. The Kd for MetNI-Q complex dissociation by addition of L-Met was determined to 

be 484 nM (Fig 3-23, see Methods for details of data fitting). Published ATPase measurements report a KI 

of 41 ± 2 µM for L-Met to MetNI, which can be interpreted as synonymous to the Kd in this case. Though 

the binding affinity measurement in this anisotropy assay differs from that of previous kinetic studies on 

MetNI, this is the first evidence that L-Met binding to the C2 domain would inhibit MetQ association. Due 

to COVID-19 pandemic, only one trial was completed for this experiment. Going forward in this project, it 

will be crucial to repeat these experiments to determine the Kd. Experiments using higher concentrations of 

L-Met will be important to obtain a reliable binding curve. 

 

Figure 3-23: Preliminary anisotropy trial to determine Kd of L-Met - MetNI. Each reaction contained 20 nM MetQ 

N229A, 1 μM MetNI E166Q, 3 mM ATP/EDTA, and varying concentrations of L-methionine. The Kd of L-methionine 

to the C2 domain was 484 nM.  
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Chapter 4: Discussion 

 

This thesis addresses fundamental questions regarding the mechanism of the MetNI methionine 

importer. Crucial technical advancements in this project include a modified protein purification protocol 

with increased yield, an optimized MetQ labeling procedure, and the development of a reliable binding 

affinity assay using fluorescence anisotropy.  The techniques developed here and the resulting data have 

allowed us to address key unknowns, such as the requirements necessary for MetNI - MetQ complex 

formation and the details of the transinhibition phenomenon.  This work not only presents insights into 

MetNI transport but gives rise to further questions for both methionine import and ABC transporters in 

general.  

 

4.1: Optimization of MetQ Protein Purification and Fluorescent Labeling Protocols 

One of the main limitations in many biochemical studies is the availability of pure protein. 

Improvements in purification are a crucial first step necessary to ensure the feasibility of subsequent 

experiments.  Before optimization, MetQ expression and purification were inconsistent and yielded low 

amounts of purified protein. The switch from autoinduction media to Terrific Broth media was a pivotal 

discovery.

An excess amount of glucose in the autoinduction media may have led to the low protein yields. If 

lactose is not completely digested then the lac operon would not be activated.1 Another explanation for the 

low yield under these conditions is a decrease in O2 solubility at higher temperatures leading to less 

breakdown of lactose and decreased protein expression.2 The use of Terrific Broth media, where protein 

expression is induced by addition of a lactose analog, IPTG, produced a 5-fold increase in yield.  

The second technical improvement was the optimized MetQ labeling procedure. Initial procedures 

resulted in 1-2% protein labeling, which did not provide enough fluorescent signal for anisotropy assays. 

Furthermore, the sample contained a high level of unconjugated dye, which masked changes in anisotropy. 

Modified labeling methods, including altering the protein:dye ratio and buffer components, increased the 

percentage of protein labeled. The use of a gravity column for washing efficiently removed unreacted 

fluorescein 5-maleimide dye. Ultimately the modified labeling protocol saw 12 times more fluorescently 

labeled MetQ, a crucial improvement for subsequent assays. 

 

4.2 Development of Fluorescence Anisotropy Assay to Detect MetNI-Q Complex Formation 

Previous attempts to measure the binding between MetNI and MetQ were difficult and unreliable.  

Surface plasmon resonance (SPR) was successfully employed to measure binding for the BtuCD-F vitamin 

B12 transporter however, adhesion of MetNI to the surface of the sensor chip was variable.3 Microscale 
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thermophoresis was used to gather evidence of  MetNI binding to MetQ however, this technique is relatively 

novel and is not commonly-accepted in the field.4  Isothermal titration calorimetry is a standard technique 

to measure binding affinities that may be considered for measuring MetNI-Q binding, however, producing 

the amount of purified protein necessary for these experiments would be exceptionally difficult for the 

methionine transport system. Upon considering the challenges with the procedures mentioned, we 

developed a new system to fully address questions regarding MetNI - Q complex formation.  

Fluorescence anisotropy is a widely accepted technique to measure binding affinities. This method 

measures solution-based equilibrium and requires standard instrumentation. Iterative experiments 

determined the ideal conditions to measure the MetNI-Q interaction. Variables in the experiments included 

the proper amounts of labeled MetQ for appropriate signal to noise ratios, ideal MetNI concentration ranges, 

removal of aggregate protein, buffer conditions, and temperature. Preliminary experiments were conducted 

using a standard cuvette-based fluorescence spectrophotometer. The protocol was subsequently adapted for 

use in a 384-well plate reader format, which decreased the amount of purified protein required by 5-fold 

per experiment.  The modification to the plate reader format decreased the time required for each 

experiment from six hours to only one hour of experimentation. The detailed procedure appears in the 

appendix of this thesis for use in future projects.  

 

4.3: ATP-Binding is a Prerequisite for MetNI-Q Complex Formation 

 One of the highly debated questions regarding ABC transporter mechanism is which nucleotide 

state(s) promote(s) transporter-SBP complex formation. According to the anisotropy experiments we 

performed, when MetNI was either nucleotide-free or trapped in an ADP-bound state, there was no 

detectable change in anisotropy when added to labeled MetQ. These measurements were conducted with 

both apo MetQ and L-Met-loaded MetQ. A lower bound for the Kd is approximately 20 μM, indicating that 

the MetNI-Q complex does not form with MetNI in its nucleotide-free or ADP-bound states. 

The Kd of ATP-bound MetNI with MetQ, whether it was apo MetQ or L-Met bound MetQ, was 

much lower than results recovered with MetNI in the apo or ADP-bound nucleotide states (Kd values ranged 

from 200- 600 nM), suggesting that ATP-binding by MetNI is a prerequisite for the MetNI-Q complex to 

form. These findings are consistent with studies of the type I maltose importer in lipid nanodiscs and the 

type II vitamin B12 transporter in detergent, which also reported ATP-binding as a prerequisite for 

transporter-SBP complex formation.3,5 Additionally, crystallization of the MetNI-Q complex has only been 

successful with the transporter in its ATP-bound state.6 This is likely the most common configuration of 

the transporter as the normal ratio of intracellular ATP:ADP is 1000:1.7 With the anisotropy data mentioned 

above, we conclude that MetNI requires ATP-binding as a prerequisite for MetNI-Q complex formation.  
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4.3.1: The Presence of L-Met as a Substrate Does Not Significantly Alter Complex Formation 

 An unexpected discovery in this work, was the similar binding affinity between apo MetQ and 

ATP-bound MetNI versus L-Met loaded MetQ and ATP-bound MetNI. The results from fluorescence 

anisotropy experiments (Fig 3.14) in the presence of 3 mM ATP show that apo MetQ has a stronger affinity 

for ATP-bound MetNI than L-Met loaded MetQ ((Kd = 281 ± 36 nM for MetQ N229A –MetNI 

E166Q/N295A, Kd = 527 ± 107 nM for MetQ wild-type – MetNI E166Q/N295A), see Fig 3-22). Under 

physiological conditions, this difference is not considered to be significant. While our results demonstrate 

an approximate two-fold difference in affinity, previously published thermophoresis titration curves suggest 

a 40-fold difference (Kd = 27 ± 9 nM for MetQ N229A – MetNI E166Q, Kd = 1100 ± 300 nM for MetQ 

wild-type- MetNI E166Q).4 These previously published data were conducted under different in vitro 

reaction conditions. Nguyen et. al completed the reaction in 1 mM ATP, 1 mM EDTA, 20 mM TAPS pH 

8.5, 100 mM NaCl, and 0.3 % Cymal-5 while we performed our assays in 3 mM ATP, 3 mM EDTA, 0.06% 

DDM, 150 mM NaCl, 57.5 mM Tris pH 7.5, and 10 mM TAPS pH 8.5. In addition, Nguyen et. al used a 

novel technique, microscale thermophoresis, that has not been widely accepted by the scientific community 

(personal communication with J. Yang). Further experimentation should be conducted to explore these 

disparate results. The generation of meaningful binding curves validate the use of fluorescence anisotropy 

to determine ABC transporter complex dissociation constants. Since fluorescence anisotropy can be adapted 

to different protein complexes this advancement opens the door for future ABC transporter mechanism 

research through the study of complex dissociation constants.  

 

 

 

 

Figure 4-1:  Visual representation of MetNIQ complex binding affinities. MetQ is shown in yellow, and L-Met is 

represented by the maroon diamond. In the presence of 3 mM ATP, apo MetQ was found to have slightly higher affinity for 

ATP-bound MetNI than L-Met bound MetQ. The Kd of MetQ N229A – MetNI N295A/E166Q is 281 ± 36 nM, and the Kd 

of MetQ wild-type – MetNI N295A/E166Q is 527 ± 107 nM,  
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4.3.2: Evidence for Both Classical and Non-Canonical Mechanisms of Methionine Transport 

The data presented in this thesis provide evidence in support of both the classical and noncanonical 

models of methionine transport. In the classical model, MetQ first captures L-Met in the periplasmic space 

and then shuttles the substrate to the membrane-bound transporter.  Based on the results shown here, we 

propose that ATP binding is a prerequisite for interaction between L-Met bound MetQ and MetNI. 

Anisotropy data demonstrate that MetQ and MetNI do not interact in the absence of ATP, and thus the 

“resting state” complex found in the maltose and vitamin B12 transporters may not exist for the methionine 

transporter.  Once substrate-loaded MetQ binds to MetNI in its OWF conformation, L-Met is released into 

the transmembrane cavity, initiating ATP hydrolysis and triggering rearrangement to the IWF conformation 

(Fig. 4-2).  

In the non-canonical model, apo MetQ binds to MetNI in its OWF, ATP-bound conformation. The 

periplasmic substrate can then interact with the preformed complex, passing through MetQ to the 

transmembrane cavity (Fig. 4-3). Our results show that apo MetQ interacts with MetNI only in the ATP 

nucleotide state, and that neither ADP nor the apo nucleotide state support complex association.  

The presence of two mechanisms may seem unnecessary for a transporter, however, some 

researchers hypothesize each mechanism transports a unique substrate. Nguyen et al. proposed that the 

preference for a particular mechanism may be triggered in response to environmental conditions.8 When 

extracellular L-Met concentrations are low, the cell can transition from importing L-Met via the classical 

model to importing L-Met derivatives using the non-canonical model.  They developed this hypothesis 

upon depicting the structure of the MetNI-apo MetQ complex that had been solved by x-ray 

crystallography. However, while this finding has opened the door to discovering a new mechanism, 

crystallography studies place transporters in highly artificial environments and are best interpreted in 

conjunction with functional studies. Our measurement of a relatively strong binding affinity for the apo 

Figure 4-2: A classical mechanism for methionine transport.  When extracellular L-Met is present (red diamond), periplasmic 

MetQ captures the substrate and delivers it to the transporter. 
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MetQ - MetNI complex strongly supports the existence of the non-canonical model. While MetQ N229A 

has a higher affinity for ATP-bound MetNI (Kd = 281 nM + 36 nM), L-Met-bound MetQ was also able to 

bind to MetNI with a reasonably strong affinity (Kd = 527 + 107 nM). The similarity in binding affinity 

between L-Met bound and apo MetQ is a further indicator of the presence of the classical and non-canonical 

mechanisms. Previous studies propose that there may be a substrate binding site in the translocation 

pathway that is selective for the sulfur atom in L-Met derivatives8. This binding site would attract L-Met   

derivatives to the MetNI-apo MetQ complex to initiate the non-canonical model. The possibility of a 

substrate binding site in the transmembrane domains, combined with our functional data showing similar 

binding affinities for both L-Met bound and apo MetQ - MetNI complexes, indicate that MetNI utilizes 

both mechanisms for transport. Through these distinct pathways, the cell maintains sufficient amounts of 

L-Met or L-Met precursors to maintain cellular function.  

 

4.4: Transinhibition Mechanism of MetNI 

In 1976, Kadner performed in vivo experiments in which the import of L-Met and D-Met decreased 

as intracellular L-Met concentrations increased9. This transinhibition mechanism was observed when high 

intracellular concentrations of methionine were present. This mechanism is thought to pause MetNI activity, 

conserving ATP and preventing the import of a substrate that is already in excess. This process is activated 

when intracellular L-Met binds to the C2 regulatory domains of MetNI, as based on both crystallography 

and functional studies. Figure 4-4 depicts the proposed conformational changes that occur upon L-Met 

binding to the C2 domains. Once L-Met binds to the C2 domains, the transporter is shifted to its inward-

facing conformation.8  

To build upon this observation, we sought to provide solution-based evidence that L-Met binding 

to the C2 domains can drive the dissociation of MetQ from MetNI. Using the fluorescence anisotropy assay 

Figure 4-3: A non-canonical mechanism for methionine transport.  In this model, if L-Met is unavailable, MetQ will 

dissociate from and rebind MetNI. A methionine derivative (red diamond) can access the translocation pathway if MetQ is bound 

to the transporter. The substrate can then enter the transmembrane pathway and be transported across the membrane upon ATP 

hydrolysis.  
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developed here, the MetNI-Q complex appeared to dissociate upon addition of increasing concentrations 

of L-Met. Using maleimide-labeled MetQ, the anisotropy value decreased when L-Met was added to a 

preformed MetNI-Q complex, presumably due to L-Met binding at the C2 domains. By plotting the 

anisotropy value as a function of L-Met concentration, the Kd value of L-Met to the C2 domains can be 

determined.  In a single preliminary anisotropy assay, the Kd of L-Met to the C2 domains was 484 nM (Fig. 

3-15). The data comes from a single trial, and while more results are required to report a reliable Kd value, 

this data provides a starting point in designing future assays. It will be crucial to perform this experiment 

using the N295A mutation to test that this effect is due to binding at the C2 domains. Overall, this 

preliminary result provides further detail to the transinhibition model (Fig. 4-4).  

 

4.5: Future Experiments: Comparison of MetQ N229A and Apo MetQ Wild-Type 

Given the tight affinity for L-Met, wild-type MetQ naturally co-purifies with L-Met expressed in 

E. coli. To obtain apo MetQ, a laborious unfolding-refolding protocol has been developed (see Fig. 4-5). 

The chaotrope guanidine hydrochloride is added to purified protein, disrupting the hydrogen bonds that 

hold together a protein’s structure, triggering protein unfolding and the release of L-methionine. Guanidine 

hydrochloride is then slowly removed, driving refolding of MetQ into an apo form. In this work, however, 

we employed a mutant form of MetQ to reduce the time and resources necessary for experiments. This 

mutant, N229A, was utilized in previously studies as a mimic for apo MetQ. While isothermal titration 

Figure 4-4: Binding of L-Met to the C2 domains of the transporter dissociates the MetNI-Q complex. 

Figure 4-5:  The unfolding-refolding process of wild-type MetQ. Addition and slow removal of guanidine hydrochloride 

removes the L-Met that co-purifies with wild-type MetQ. 
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calorimetry experiments have shown that a similar mutation in Neisseria meningitides negates L-Met 

binding, data regarding the E.coli MetQ N229A mutant is limited.10 Further evidence must be obtained to 

confirm the use of this mutant as an appropriate substitute for apo wild-type MetQ.  

The anisotropy assay developed in this work can be used to address this need.  Specifically, the 

binding affinities of unfolded-refolded apo wild-type MetQ for ATP-bound MetNI can be compared to that 

of MetQ N229A. Similar Kd values would suggest that MetQ N229A binds to MetNI in a manner similar 

to that of apo WT MetQ, and that this mutant is appropriate for future studies. 

 

4.6: Chimeric MetNI Transporter to Study Role of Two ATPase Sites 

Both structural and functional studies show similar outcomes that suggest the two NBDs of a single 

transporter must come together during a reaction cycle. While there are two ATP-binding sites formed at 

the interface of the NBDs, it remains unknown if both sites must bind and hydrolyze ATP.  For example, 

can MetNI function with a single bound ATP? Can MetNI function with two NBDs that bind ATP but only 

one that is able to hydrolyze ATP?  

To address these types of questions, future experiments will involve heterodimeric, or chimera, 

transporters. In a chimera transporter, the TMDs would be identical but the NBDs would be different. Using 

mutations in the NBDs, chimera transporters can be trapped in asymmetric nucleotide states. For example, 

the mutant K44A involves a substitution in the Rec-A portion of the NBD. The loss of the lysine side chain 

prevents binding of ATP in the active site. In contrast, the mutant E166Q allows the NBD to bind but not 

hydrolyze ATP. Creating different pairings of wild-type, K44A, and E166Q mutations in the nucleotide 

binding regions will provide insight into the mechanism of methionine transport. Clues as to the ATP 

requirement for MetQ binding could be addressed using anisotropy assays.  If there is no change in 

anisotropy in experiments with rising heterodimeric MetNI concentrations in solutions of fluorescently 

labeled MetQ, then that would reject the idea that that heterodimeric MetNI may successfully complex with 

MetQ.  

In order to generate MetNI chimeras, a different purification strategy must be employed. A pilot 

protein purification using this strategy was successful, but was not pursued further due to time limitations. 

To create a chimera, a His-tag is attached to one NBD with a specific mutation and a FLAG-tag is attached 

to the other NBD with a different mutation. Since both mutations are expressed simultaneously in E. coli, 

three different versions of transporters are produced. Specifically, the transporters have either two His-tags, 

two FLAG-tags, or the chimera His-FLAG tags. To capture the desired chimera transporters, cell lysates 

are purified using a Ni-NTA resin column followed by an anti-FLAG antibody column.  Through this 

tandem purification procedure, only chimera transporters with both the His-tag and the FLAG-tag would 

be collected.  
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Next, assays will be carried out to ensure that chimera transporters show activity that are consistent 

with that of homodimers. For example, His-FLAG chimeras which have two wild-type NBDs should show 

the same ATPase activity as His wild-type homodimers. Similarly, His-FLAG chimeras which have two 

E166Q NBDs should behave as did the His-E166Q homodimers measured in the anisotropy assays (Fig. 4-

6). If Kd values and kinetic parameters for chimera transporters are comparable to those of homodimers, 

then the project can move forward with evidence suggesting the addition of multiple tags will not interfere 

with transporter activity. 

 

 4.7: Investigating the Number of ATP Required for MetNI-Q Complex Formation 

Building upon our finding that ATP is required for MetNI-Q complex formation, the next question 

is whether one or two ATP molecules are necessary for complex formation. Crystal structures of MetNI in 

its ATP-bound state have shown two ATP molecules bound to the transporter NBDs.11 The ATPase activity 

between the two NBDs exhibit positive cooperativity, meaning that the binding of one ATP molecule 

increases the affinity for a second ATP molecule.12 This project aims to further understand ATP usage by 

identifying the number of ATP molecules needed for complex formation. Anisotropy assays using chimeras 

in which one nucleotide binding domain can bind but not hydrolyze ATP and another that is unable to bind 

ATP would identify whether or not two functional ATP binding sites are required to form the MetNI-Q 

complex. As briefly noted in Section 4.6, if there is no change in anisotropy in experiments with rising 

Figure 4-6: Initial control assays using MetNI chimeras.  MetNI transporters containing E166Q NBDs with different tags will 

first be compared to singly-tagged E166Q NBDs. The binding affinities must be measured to ensure that any changes in 

subsequent data are due to mutations in the ATP site and not an artifact of the tag.  
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heterodimeric MetNI concentrations in solutions of fluorescently labeled MetQ, then that would reject the 

idea that that heterodimeric MetNI may successfully complex with MetQ.  

According to crystallography studies, MetNI in its apo nucleotide state resides in an inward-facing 

conformation, which inhibits MetNI-Q complex formation. In the previously proposed model, the 

transporter switches to its outward-facing conformation when two ATP molecules bind to the NBD region.8 

The question that future work will address is whether one ATP binding at the NBD region provides 

sufficient energy for the transporter to switch to an outward-facing conformation. In this outward-facing 

conformation, it will be of great interest to determine if the transporter discriminates between apo and L-

Met bound MetQ (Fig. 4-7). Studies of other ABC transporters have shown different results when it comes 

to the necessity of each ATP site. The type II importer BtuCD has been found to perform 5% of its maximum 

transport with only one functioning ATP site.13 Previous studies have revealed positive cooperativity for 

MetNI (n = 1.7), meaning that the two ATP binding sites cooperate with one another. Meanwhile, His 

permease shows ~50% ATP hydrolysis activity with only one competent ATPase site.14 The type I maltose 

transporter has also demonstrated positive cooperativity (n = 1.9 at pH 5), suggesting that two ATP binding 

are necessary for a change in conformation.15   

Figure 4-7: Investigation into the number of ATP required for MetNI-Q complex formation. The binding affinity between 

MetQ and MetNI chimeras will be examined to see if binding of only one ATP to the NBDs affects the dissociation constant of 

the MetNI-Q complex. The binding affinity of both apo MetQ (top) and L-Met bound MetQ (bottom) to MetNI chimeras 

(pictured with one wild-type NBD (purple) and one degenerate NBD (salmon)) will be determined and compared to the binding 

affinities of those complexes with two wild-type NBDs.  
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 In order to investigate the effects of one degenerate ATP binding site, a mimic for MetNI with 

only one competent ATP-binding site must be purified. To mimic the binding of a single ATP molecule to 

the NBD region, future research will focus on the purification and experimentation of MetNI chimeras with 

one NBD that locks itself into the ATP-bound state (E166Q mutant) and one NBD that is unable to bind 

ATP (K44A mutant). This chimera, named MetNI E166Q – K44A, will be able to bind only one ATP 

molecule. Anisotropy assays of apo MetQ and L-Met bound MetQ will be performed with varying 

concentrations of the MetNI E166Q – K44A chimera. The Kd will provide key insight into whether the 

binding of only one ATP molecule is sufficient for MetNI-Q complex formation. If determined Kd values 

for these MetNI (E166Q – K44A) – MetQ complexes are much higher than previously determined Kd values 

(281 nM for the MetNI – apo MetQ complex and 527 nM for the MetNI – L-Met bound MetQ complex) 

then there would be evidence to suggest the binding of two ATP is necessary for the MetNI-Q complex to 

form.   

A similar but distinct question about the MetNI transporter is whether or not one functioning 

ATPase site is sufficient for ATP hydrolysis to occur in the NBD region. In other words, if two ATP can 

bind to the NBDs but only one ATPase site can hydrolyze ATP, will the functioning ATPase site hydrolyze 

ATP or does the transporter require two functioning ATPase sites for hydrolysis to occur? To examine this 

question, a different MetNI chimera must be purified. This MetNI chimera must have one NBD that is able 

to bind and hydrolyze ATP (wild-type) and one NBD that is able to bind but not hydrolyze ATP (E166Q 

mutant). This MetNI chimera, named MetNI WT – E166Q will be utilized in ATPase assays to assess 

whether or not one functional ATPase site is sufficient for ATP hydrolysis to occur. Furthermore, if ATP 

hydrolysis can occur, it will be of interest to see if the rate of hydrolysis is similar or reduced in comparison 

to that of wild-type MetNI. 

A few of the possible outcomes of these experiments are depicted in Fig. 4.8. Shown in (A) is a 

WT-E166Q MetNI chimera in which two ATP molecules are present and apo MetQ is in complex with the 

transporter. If MetNI is capable of hydrolyzing only one ATP at a time, this could result in the transition 

from (A) to (B), where apo MetQ remains bound to the OWF conformation of MetNI. In this case, the 

energy from binding one ATP would be sufficient to hold together the NBD dimer, suggesting that 

hydrolysis must occur at both ATP sites to drive transport. Alternatively, if the hydrolysis of one ATP may 

destabilize the NBD dimer, shown as (A) to (C), the transporter could rearrange to the IWF conformation, 

thereby driving dissociation of MetQ.  This result would be consistent with a model in which only one ATP 

is hydrolyzed during the transport cycle. In another scenario, shown in (D), MetNI may not be able to 

hydrolyze any ATP, despite the fact that one NBD is functional. From this result, one could hypothesize 
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that two molecules of ATP are simultaneously hydrolyzed to trigger the switch from the OWF to the IWF 

conformation.  

The possibilities outlined above are a starting point for consideration, and this list of outcomes is 

by no means comprehensive. The combination of ATPase and anisotropy assays developed in this thesis 

will provide the tools necessary to dissect the role of the two ATP sites and their influence on complex 

formation with MetQ. This would be a significant step forward to developing a complete understanding of 

the MetNI transporter mechanism.  

 

4.8: Lipid Environment of the Transporter: DDM vs. Nanodisc 

 All of the experiments performed with MetNI thus far have been conducted with the transporter 

solubilized in the detergent n-dodecyl-β-D-maltoside (DDM). This detergent serves to extract the 

transporter from the bilayer and to interact with the hydrophobic portions of the TMDs, thereby solubilizing 

Figure 4-8: Possible conformational changes to a MetNI-Q complex with a single active ATPase site. (a) With one wild-type 

NBD (purple) and one E166Q mutant NBD (light pink), the transporter can bind two ATP molecules, triggering the outward-facing 

conformation and allowing binding of MetQ. (b) One possibility is that the transporter can then hydrolyze only one ATP, and that 

this may not be sufficient enough to drive rearrangement to the inward-facing conformation. (c) A similar but different possibility 

is that the transporter hydrolyzes one ATP, and that this is sufficient to drive rearrangement to the inward-facing conformation. (d) 

A third possibility is that both ATP sites must be functional in order for any hydrolysis to occur. 



68 

 

the transporter. These experimental conditions are the most straightforward, as it only requires the addition 

of detergent to buffers. All x-ray crystallography studies of MetNI have been solved in the presence of 

detergent. However, MetNI may behave differently in a lipid bilayer in comparison to a detergent micelle. 

For example, the maltose transporter has been observed to hydrolyze ATP in the absence of substrate and 

SBP at a similar rate to when maltose and SBP are present, a phenomenon known as uncoupling.16 

Uncoupling of a transporter’s ATPase activity is not uncommon, especially with the protein in vitro. This 

phenomenon is most prominent when the transporter is in lipid detergent. In the absence of maltose and 

SBP, the maltose transporter recorded an ATPase activity of ~900 nmol/min/mg in detergent micelles. The 

ATPase activity only slightly increases to ~1,000 nmol/min/mg (~11% increase) with maltose and SBP 

both present in solution. With the transporter in lipid nanodisc, the ATPase activity increased from ~700 

nmol/min/mg ~1500 nmol/min/mg (~110% increase) in the absence and presence of maltose and SBP, 

respectively.16 Researchers from the Bao group observed that the lipid environment of a nanodisc places 

more of a conformational constraint on the transporter, making the transporter more stable and less likely 

to freely switch between the inward and outward facing conformations that hydrolyze ATP in the process.17 

Due to the high level of uncoupled ATPase activity with transporter in detergent, many efforts have been 

focused on the reconstitution of ABC transporters into lipid nanodiscs (Fig. 4-9).18 

In light of these observations in related transporters, it will be important to measure MetNI-Q 

complex formation using the transporter embedded in a nanodisc. These measurements will help to 

determine whether the results observed in detergent faithfully replicate in vivo behavior. While ATPase 

activity was mentioned to be affected by lipid activity, complex formation studied by Lewinson et. al. in 

2010 found thermodynamic measurements for complex formation of the BtuCD-F transporter to be 

similar whether the transporter was in proteoliposomes or in detergent.3  

Figure 4-9: Lipid reconstitution of an ABC transporter.  Reconstitution of MetNI into lipid nanodiscs may provide 

additional insight into the mechanism of methionine transport. Figure inspired by (18). 
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 The results from assays performed in detergent will guide the following set of questions about 

transporter mechanism, developing the assays, and introducing new experiments to examine how different 

variables affect complex formation and transport mechanism. 

 

4.9: Summary 

This thesis presents multiple findings that reveal details of methionine transport. Through 

adapting an anisotropy assay for an ABC transporter system, we show that ATP binding by MetNI is a 

requirement for complex formation between the transporter and its periplasmic binding protein. 

Anisotropy data suggests that MetNI has a slightly higher affinity for apo MetQ than L-Met bound MetQ, 

an intriguing finding that suggests the further complexity of this transporter. Furthermore, we present 

preliminary data that suggest that L-Met binding to the C2 regulatory domains of the transporter 

dissociates the MetNI-Q complex, thereby preventing transport. Going forward, this project will continue 

to uncover features of the MetNI mechanism. Yet to be discovered details include the number of ATP 

molecules required per transport cycle and the intermediate states involved in transport of different 

methionine derivatives. The elucidation of the MetNI mechanism will aid in understanding how ABC 

transporters function in general, thereby enhancing our knowledge of related ABC transporters involved 

in human diseases.  
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Appendix 

Detailed Instructions on Fluorescence Anisotropy Experiments 

 

Materials  

● 200 mM ATP (or close to) 

● 10% DDM   

● 2M or 5M NaCl 

● 1M Tris 

● Deionized H2O  

● MetQ Buff A (150 mM NaCl, 25 mM Tris pH 7.5, 5 mM BME)  

● MetNI Buff A (250 mM NaCl, 50 mM TAPS pH 8.5, 0.05% DDM)  

● MetNI protein 

● Labeled MetQ protein 

● Ultracentrifuge tubes  

● Laptop (for calculations and setup)  

  

Procedure (Before UCSF)  

● Email johnny.rodriguez@ucsf.edu and emily.wong3@ucsf.edu ahead of time to reserve the 

ultracentrifuge and anisotropy plate reader  

● Prepare buffers, ATP, EDTA, and DDM solutions a day before heading out to UCSF  

  

Procedure (UCSF day) Preparing the proteins  

● Turn on ultracentrifuge on 3rd floor, set to 4 C, 90,000 rpm. Get rotor and holder from cold room 

● Turn on anisotropy plate reader (Agard Lab, 4th floor) so it can warm up for at least ~30 mins. Set the 

temperature to 37 C.   

 

A difficult part about this experiment is knowing how much protein to centrifuge at the beginning of 

the day. Too many thawed aliquots and you waste precious protein, too little and you have to spend an 

additional hour to prepare and use the ultracentrifuge and also prepare the correct concentration of MetNI 

protein. To calculate the amount of protein needed it is crucial to predict the amount of non-aggregated 

protein that will be present after centrifugation. Expect the protein concentration to decrease by 25% after 

centrifugation. (For an estimate, 3 trials MetQ N229A – MetNI E166Q anisotropy assays required about 

30 µL of 15 mg/mL MetNI and MetQ WT – MetNI E166Q assays required 90 µL of about 15 mg/mL 

MetNI.  

 

● For each final concentration of MetNI in each trial, you need to make 5x concentrations for each. For 

example, if one well needs a final MetNI concentration of 10 μM, then we need to make 50 μM 

MetNI solutions. This is because the MetNI mix makes up 20% of the total volume of the final 

sample volume. An example table can be seen below. 

 

 

 

 

 

 

mailto:johnny.rodriguez@ucsf.edu
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Table 1: MetNI 5x serial dilution calculation. Concentration of stock MetNI was about 134 mM.  

Final MetNI 

(nM) MetNI 5x (nM) Vol. previous (µL) 

MetNI 

Buffer (µL) 

10000 50000 18.63 stock 31.37 

5000 25000 25.00 (50000 nM) 25.00 

2500 12500 25.00  25.00 

1000 5000 20.00 30.00 

400 2000 20.00 30.00 

200 1000 25.00 25.00 

120 600 30.00 20.00 

80 400 33.33 16.67 

40 200 25.00 25.00 

20 100 25.00 25.00 

10 50 25.00 25.00 

5 25 25.00 25.00 

1 5 10.00 40.00 

0.1 0.5 5.00 45.00 

 

● Add up all the stock MetNI needed and use it to predict the amount of MetNI protein needed. Keep in 

mind, the bottom 20 µL of the centrifuged solution will be aggregated protein that will not be 

collected, so add 20 µL to your predicted volume.  

● Pipette 20 µL of labeled MetQ (normally 20-30% labeled, curves may be noisier if less) and 80 

µL MetQ Buff A into one centrifuge tube, find another tube and balance with 100 µL MetQ buff A. 

(This should be more than enough labeled MetQ (assuming 1 mg/mL, only 20 nM for each well’s 

final concentration).   

● Pipette the predicted necessary amount of stock MetNI into another centrifuge tube, balance with 

another tube of equal volume MetNI buff A  

● Spin down in JLA-100 rotor for 20 minutes at 90k rpm  

● Once completed, change the temperature of the centrifuge to 25 C and close the centrifuge lid. This 

helps with removing any condensation in the vacuum. Once the temperature reaches 25 C, open the 

lid of the centrifuge and turn it off. 

● Pipette the centrifuged solutions into labeled eppendorf tubes. Leave 20 µL at the bottom of the tubes 

to be certain that you do not pipette any of the aggregated protein. 

● Use the nanodrop located next to the fish tank to record Abs @ 280 nm and calculate concentrations 

of each protein. Use the single readout option and perform the readings on sensor A1. Ext. coeff. 

MetNI = 83365 M-1*cm-1, MW = 122034.85 g/mol ; Ext. Coeff. MetQ = 20400 M-1*cm-1, MW = 

29431.65 g/mol 

● Adjust the MetNI well calculations according to the true concentration of the stock.   

● Create the 5x MetNI concentrations in labeled Eppendorf tubes and keep on ice.  

● Prepare the Master Mix solution 
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Table 2: Anisotropy Master Mix Set-Up (60 reactions) 

  MM (μL) 

2M NaCl 41.25 

1M Tris 75 

10% DDM 7.5  

100 mM 

MgCl2 45 

193 mM 

ATP 23.32 

ddH2O 557.93 

66 nM MetQ 

mix 450 

    

Total 1200 

This table will give you 60 reactions worth of Master Mix with final well concentrations of 55 

mM Tris pH 7.5, 5 mM TAPS pH 8.5, 0.055% DDM, 55 mM NaCl, 1 mM BME, 3 mM MgCl2, and 3 

mM ATP. This table may change based on the variables of the experiment. Double check your 

calculations before creating the master mix.  

  

With the Master Mix and MetNI 5x solutions prepared, the procedure can begin. Make sure to 

complete each step on ice until the solutions are transferred to the 384-black clear bottom (opaque bottom 

may work too) well plate.  

 

● Label eppendorf tubes for rxn mixtures with their final MetNI concentrations 

● Pipette 20 µL of MM into each labeled eppendorf tube 

● Pipette 5 µL of MetNI 5x stock into their respective tube 

● Transfer 20 µL of each solution into their own respective well  

● Place the well plate in the plate reader and allow it to warm up for 10 minutes. To use the plate 

reader, read the following instructions.  

● Press "Drawer" button on instrument, insert plate. Close "Drawer."  

● In Experiment window, check settings, Endpoint.  

● Read mode: Fluorescence or Fluorescence Polarity  

● Wavelength: default is 485 ex /538 em  

● Sensitivity: choose "High" unless signal is too Sat. "Precise" default setting is ok.  

● Assay Plate Type: 384 Grenier Blk/clr  

● Wells to Read: select  

● Press ok  

● Click on "Read" icon.  

● Save data under desktop > User > Laura > Janet. Taking a picture of the data is also a good idea.   

 

Once all the assays have been performed, be sure to clean up your lab bench and turn off both the 

ultracentrifuge and anisotropy plate reader. Sign up for the anisotropy plate reader on the calendar in the 
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plate reader room if you know when you will return. If the next experiment day is unknown, email or text 

Emily Wong afterwards to reserve a time to use the reader.  
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