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Predictions from species distribution models (SDMs) are commonly used in support
of environmental decision-making to explore potential impacts of climate change on
biodiversity. However, because future climates are likely to differ from current climates,
there has been ongoing interest in understanding the ability of SDMs to predict species
responses under novel conditions (i.e., model transferability). Here, we explore the
spatial and environmental limits to extrapolation in SDMs using forest inventory data
from 11 model algorithms for 108 tree species across the western United States.
Algorithms performed well in predicting occurrence for plots that occurred in the
same geographic region in which they were fitted. However, a substantial portion of
models performed worse than random when predicting for geographic regions in which
algorithms were not fitted. Our results suggest that for transfers in geographic space,
no specific algorithm was better than another as there were no significant differences
in predictive performance across algorithms. There were significant differences in
predictive performance for algorithms transferred in environmental space with GAM
performing best. However, the predictive performance of GAM declined steeply with
increasing extrapolation in environmental space relative to other algorithms. The results
of this study suggest that SDMs may be limited in their ability to predict species ranges
beyond the environmental data used for model fitting. When predicting climate-driven
range shifts, extrapolation may also not reflect important biotic and abiotic drivers
of species ranges, and thus further misrepresent the realized shift in range. Future
studies investigating transferability of process based SDMs or relationships between
geodiversity and biodiversity may hold promise.

Keywords: species distribution model, forest inventory, prediction error, species range, extrapolation,
transferability
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INTRODUCTION

Unprecedented environmental change caused by human activity
threatens biodiversity and its associated ecosystem functions and
services that humanity relies upon (Chapin et al., 2000; Scheffers
et al., 2016). In this era of rapid global change, forecasts of
biodiversity changes have the potential to inform conservation
decisions to minimize extinctions (Botkin et al., 2007). Species
distribution models (SDMs) are one of the most accessible tools
for spatial predictions of biodiversity at biogeographic extents
and various open-source software packages are available for SDM
implementation (Brown, 2014; Thuiller, 2014; Kass et al., 2018).
Part of the popularity of correlative SDMs lies in the increasing
availability of data needed to fit them (i.e., species occurrence
records and satellite remotely sensed environmental data; Turner,
2014; Record and Charney, 2016). In addition, process-based
data on species’ demography, dispersal, biotic interactions, and
other data needed for fitting mechanistic SDMs is often lacking,
especially across the entirety of a species range (e.g., for process-
based demographic distribution models (Evans et al., 2016;
Kindsvater et al., 2018) or range wide models incorporating biotic
interactions (Zarnetske et al., 2012; Belmaker et al., 2015). Despite
the limitations of SDMs (Pearson and Dawson, 2003; Belmaker
et al., 2015), they remain a common and useful tool for predicting
potential changes in species distributions and suitable habitat
(Record et al., 2018). Understanding the limitations of SDMs is
thus necessary to inform their appropriate use.

Studies typically assume that correlative SDMs capture some
aspect of a species’ niche which can be generalized to other times
or locations (Anderson, 2013). This assumption is known as
model transferability — the ability of a model to generate precise
and accurate predictions for a new set of observations (i.e., in
space or time) that were not used in fitting the model (Yates
et al., 2018). Transferability of SDMs is typically assessed with
three types of ‘validation’ data (reviewed by Bahn and McGill,
2013; Werkowska et al., 2017; Sequeira et al., 2018; Yates et al.,
2018): (1) independently collected data (e.g., Elith et al., 2006),
(2) temporally independent data (e.g., Record et al., 2013), and
(3) spatially independent data (e.g., Randin et al., 2006).

Studies assessing SDM transferability across taxa and
geographic locations have shown inconsistent results — some
SDMs transfer well, and others do not (reviewed by Sequeira
et al., 2018; Yates et al., 2018). For instance, Duncan et al.
(2009) investigated five South African dung beetle species to
see if their native ranges could predict their invasive ranges
in Australia and found that this approach worked well for
two of the species, but not for the other three. Using a similar
approach that leveraged native and invasive distribution data,
Ibáñez et al. (2009) found that spatially explicit hierarchical
Bayesian SDMs parameterized with data from both the native
and invasive geographic ranges of three woody plants generated
better predictions of the presence/absence of them in their
invasive range than models fitted with data only from their native
geographic range. This result suggested that the niches of these
species may be better captured by incorporating information
from the native and invasive geographic ranges of these invasive
species. Whereas Duncan et al. (2009) and Ibáñez et al. (2009)

illustrate some instances where SDMs transfer in geographic
space, other studies illustrate poor transferability of SDMs. For
instance, a study of the presence and absence of 54 alpine and
subalpine plants on the ability of SDMs to transfer in geographic
space between Switzerland and Australia found that overall
transferability was poor (Randin et al., 2006). A cross-time study
from tropical montane cloud forests showed that extrapolation
in environmental space in the present led to poor transferability
when predicting the past (Guevara et al., 2018). A study of
mammals from North America and Australia found that Maxent
models did not transfer well when training and testing data
from different geographic regions were dissimilar in their
environmental conditions, resulting in collinearity shifts between
training and testing environmental predictor variables (Feng
et al., 2019). These inconsistent results suggest that there are
theoretical and technical knowledge gaps inhibiting effective
SDM transferability.

To improve SDM transferability a recent review by 50 experts
identified fundamental and technical knowledge gaps that need
to be addressed (Yates et al., 2018). One of the fundamental
knowledge gaps was determining the limits to extrapolation
(spatial and/or temporal) in model transfers. A focus on spatial
limits to extrapolation is especially promising because spatially
independent data provide the best test of SDM transferability
(Bahn and McGill, 2013). Further, independently collected data
may introduce noise due to differences in methodology and still
does not affirm that the data are spatially independent (Elith
et al., 2006). In addition, temporally independent data sets do
not guarantee that there is no temporal autocorrelation between
data used for model fitting and data used for model validation
(Bahn and McGill, 2013).

Assessments of transferability in space often take three
approaches:

(i) Holdout geographic transferability involves testing models
fit in different locations but within the same portion of
environmental space (e.g., as measured by a convex hull
in environmental space). For instance, one might test
transferability within the same geographic region, in which
case training and testing plots may be relatively near one
another. In such cases, similar mechanisms underlying
spatial autocorrelation may persist in both testing and
training data, and hence one has more confidence that the
same ecological processes are relevant in both the training
and testing data (Record et al., 2013; Sillero and Barbosa,
2020).

(ii) Novel geographic transferability involves testing
transferability to a different geographic region, in which
case training and testing plots are considerably more
spatially distant. Such tests are useful to remove patterns
of spatial autocorrelation between training and testing
data, however rather different processes may constrain
occurrence patterns in different regions (e.g., different
types of disturbance; (Dirnböck et al., 2003; McAlpine
et al., 2008) and the potential for extrapolation to different
processes is greater.
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(iii) Environmental transferability requires extrapolation in
environmental space, which may be in the same or a
different geographic region from the training data. Tests of
environmental transferability are useful in evaluating the
generality of the fitted response curves (i.e., occurrence-
environment relationships) to characterize a species niche
but the niche may be considerably truncated in the fitting
region (Thuiller et al., 2004). A truncated niche may lead
to response curves that are inappropriate for extrapolation
(e.g., one side of a unimodal response, when truncated,
appears to be monotonic, which will extrapolate poorly;
Hannemann et al., 2016).

In addition to determining limits to spatial extrapolation,
Yates et al. (2018) also identified a knowledge gap in determining
how model complexity influences transferability as an
impediment to confidence in transferring SDMs. Model
complexity may refer to the number of explanatory variables
(i.e., dimensionality; Peterson, 2011), transformations of
those explanatory variables (i.e., ‘features’ with regards to
machine learning) and/or the intricacies of the algorithm
that characterizes the shape of the occurrence-environment
relationships and is tightly linked to the number of parameters
in the model (Werkowska et al., 2017; Brun et al., 2020).
As with any modeling, in the spirit of generality, simpler
SDMs are preferred over complex models (i.e., Occam’s Razor;
Young et al., 2010).

Merow et al. (2014) reviewed algorithm complexity in SDMs
to ask how much intricacy is needed for optimal extrapolation.
They found that simpler parametric models (e.g., generalized
linear models) may miss thresholds that distinguish presence
from absence locations in relation to the environment, whereas
more complex non-parametric models (e.g., generalized additive
models) may extrapolate poorly when the response curve
forms odd shapes at the edge of the observed data range
if there are few points there. In a similar vein, they also
found that machine learning models that use a flat response
beyond the observed data range (i.e., clamping) tend to
overestimate an organism’s environmental tolerance. How model
complexity influences the ability of SDMs to transfer and
extrapolate in space remains a fundamental knowledge gap that
limits our confidence in SDMs for conservation applications
(Yates et al., 2018).

To improve understanding of spatial limits to SDM
extrapolation and to quantify how model complexity influences
transferability, we assessed three types of transferability—
holdout geographic transferability, novel geographic
transferability, and environmental transferability—for 11 model
algorithms of varying complexity. We used presence/absence
data for 108 tree species from the United States Forest
Service’s Forest Inventory and Analysis (FIA). These data
serve as an optimal study system for tests of transferability
due to the abundant presence and absence sampling
across geographic and environmental space, which allows
for explicit testing of factors affecting transferability and
therefore results can be more aptly applied to other systems
(Sequeira et al., 2018).

We addressed the following questions:

(1) How does transferability in geographic space (i.e.,
holdout geographic transferability vs. novel geographic
transferability) depend upon SDM algorithms?

(2) What is the relationship between predictive performance
of SDMs and amount of extrapolation in novel geographic
space?

(3) What is the relationship between predictive performance of
SDMs and amount of extrapolation in environmental space
in a novel geographic region?

(4) Does the relationship between predictive performance of
SDMs and amount of extrapolation in geographic and
environmental space vary with SDM algorithms?

With regards to questions three and four, the intent of this
study is to explore how models transfer in space when there
are likely differences between the environmental conditions in
training and testing regions as parts of our study region are
likely to experience no-analog conditions (Williams and Jackson,
2007), thus we provide a stringent test of spatial transferability
(Muscarella et al., 2014). We conclude with a discussion of
alternative approaches to SDMs for situations when predictive
performance declines at the spatial limits to SDM extrapolation,
such as process-based models and approaches that focus on
understanding distributions of geologically diverse areas rather
than distributions of species.

MATERIALS AND METHODS

Occurrence Data
The United States Forest Service’s (USFS) FIA National Program
provides data on species presence/absence, abundance, and basal
area in established plots for all individuals >12.7 cm diameter
at breast height. Given that the goal of this study was to use
the dense FIA data to understand how common uses of SDMs
under the data limitations faced by most studies for which these
types of climate envelope models are run (i.e., presence/absence
or presence-only), we chose to model presence/absence rather
than abundance or basal area. We downloaded all available FIA
data within our study region with inventory years from 1950 to
2000 in the western United States (N 25.893–49.000◦, W 124.799–
97.175◦; Figure 1), which included 286,551 census plot locations
encompassing 254 species. Species were deemed present in a
plot if they were observed anytime between 1950 and 2000 and
were considered absent if otherwise. We recognize that generally
it is not recommended to mix FIA plots for calculations of
abundance (e.g., basal area) from different inventories prior to
2001 given that plot sizes varied from region to region depending
on forest stand conditions before the United States Forest Service
adopted a uniform nationwide sampling strategy (Gillespie, 1999;
Bechtold and Peterson, 2005). However, we felt that using the
1950–2000 data was appropriate given that the data used for
this study were presence/absence rather than abundance and the
goal of this study was to explore SDM transferability for which
studies from the literature are often comprised of presence-only
observations (e.g., museum specimens) that lack any information
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FIGURE 1 | An illustration of how holdout sites were binned by distance (A) in
geographic space or (B) in environmental space from the fitting region for
Calocedrus decurrens. This map depicts the geographic extent of all FIA data
used in the study. The horizontal and vertical black lines in (A,B) represent
median latitude and longitude, respectively. The black area shows the
quadrant used for model fitting and gray shaded quadrants were neither used
for model fitting or testing. The colored areas indicate bins in either
geographic or environmental space used for model testing with near and far
referring to distance in geographic or climatic space.

on the amount of area searched for a given species. Furthermore,
using the pre-2001 data in this study enabled us to increase the
number of plots in the study region by an order of magnitude
(i.e., from tens of thousands to hundreds of thousands of plots)
to provide more information on species distributions throughout
the western United States.

Exact plot locations of FIA data are not publicly available
due to legal concerns regarding privacy of landowners. The
USFS ‘fuzzed’ and ‘swapped’ the exact plot locations of the
data used in this study by masking the locations within a
500-acre area and exchanging plot coordinates for <10% of
ecologically similar plots within the same county, respectively.

In our analyses, we included only the 108 species with >120
presences (Supplementary Data Sheet 1).

Environmental Data
For fitting and predicting the models, we downloaded monthly
climate data (i.e., precipitation and temperature) with a
resolution of 30 arc seconds from the NASA Earth Exchange
Downscaled Climate Predictions (NEX-DCP301) spanning the
period from 1950 to 2000, which combines PRISM data from
1981 to 2000 and CMIP5 retrospective model runs to provide
a long-term climatic average (Daly et al., 1994; Thrasher et al.,
2013). We used the longer-term NEX-DCP30 historic climatic
data for fitting models, as opposed to Worldclim historic climate
from 1970 to 2000, because longer-term climatic averages provide
better predictive power for long-lived species, such as trees
(Lembrechts et al., 2019). For each year, we used the monthly
data to generate 19 annual bioclimatic variables with the ‘biovars’
function from the dismo package in R (Hijmans et al., 2020). We
averaged across all years from 1950 to 2000 to generate a single
set of bioclimatic layers for model fitting and prediction. We
did not include non-climatic predictor variables (e.g., elevation,
soil, other physiographic variables) because many attempts to
predict range size neglect non-climate factors, and this analysis
was meant to compare only uses of that simplified approach.

Since some, but not all, of the models we used required
uncorrelated predictor variables to meet model assumptions (e.g.,
GLM), we ran all models once with correlated variables and
once excluding the minimum number of bioclimatic predictor
variables with correlations ≥ | 0.7| (Dormann et al., 2013;
Feng et al., 2019; Sillero and Barbosa, 2020; Supplementary
Figure 1). This left nine bioclimatic variables for modeling:
mean diurnal range (bio2), isothermality (bio3), maximum
temperature of the warmest month (bio5), temperature annual
range (bio7), mean temperature of the wettest quarter (bio8),
mean temperature of the driest quarter (bio9), precipitation
of the driest quarter (bio17), precipitation of the warmest
quarter (bio18), and precipitation of the coldest quarter (bio19).
Because we subdivided our data into quadrants for each species
(Figures 1, 2), standardizing predictor variables across all
four quadrants would have left each quadrant unstandardized
independently, whereas standardizing the quadrants separately
would have introduced differences between training and testing
data. Therefore, to preserve our capacity to test transferability,
we did not standardize predictor variables prior to fitting.

Species Distribution Models
The term SDM covers a variety of types of models with
different types of responses (e.g., presence-absence, presence-
only, abundance) and predictor variables (e.g., climate, elevation,
soil, location, other physiographic information). In this paper
we consider SDMs that are often referred to as climate
envelope or climatic niche models, wherein we only consider
climatic predictor variables and a presence/absence response. We
compared the predictive ability of 11 model algorithms contained
within the Biomod2 version 3.1 package in R: Generalized

1https://cds.nccs.nasa.gov/nex/
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FIGURE 2 | Example prediction maps for Calocedrus decurrens using GLM. (A) The input FIA plots, where red are presences and gray are absences. Black lines
designate the median latitude and longitude of presence plots, dividing the geographic space into our four quadrants specific to this species. (B) GLM predictions
within the same quadrant as training data, where the intensity of red denotes the continuous output of habitat suitability. (C) GLM prediction to the opposite quadrant
from the training data. The extreme over-prediction seen here in the northeast quadrant of the novel region predictions was a recurrent pattern typical across all
quadrants and algorithms, except for SRE.

Linear Model (GLM), Generalized Additive Model (GAM),
Generalized Boosting Model (GBM), Classification Tree Analysis
(CTA), Artificial Neural Network (ANN), Surface Range Envelop
(SRE), Flexible Discriminant Analysis (FDA), Multiple Adaptive
Regression Splines (MARS), Random Forest (RF), Maximum
Entropy (Maxent), and an ensemble prediction based on these 11
algorithms (Thuiller et al., 2009, 2016). We considered this wide
spectrum of algorithms to capture the range of feasible ways in
which one might capture occurrence-environment relationships.
A review of >200 published papers using biomod2 prior to
2016 showed that common practice by users of this software
is to use the default tuning for algorithms (Hao et al., 2019).
To maintain consistency with this general practice and given
the computational infeasibility of tuning individual settings for
the nearly 5000 individual SDMs that we fit in this study, we
used biomod2 default tuning choices2. Merow et al. (2014) have
demonstrated that many of the 11 algorithms we considered
can be made to produce very similar response curves to each
other by choosing different combinations of settings. Our use of
the default settings means that performance comparisons among
algorithms in this study can best be interpreted as a comparison
of response curves with differing complexity (cf. Merow et al.,
2014) rather than an examination of which algorithm is best –
since one algorithm may perform as well as another if different
settings were chosen.

Evaluation of Model Transferability
Effect of SDM Algorithm Complexity on Geographic
Transferability
To address Question 1, we tested each of the 11 model
algorithm’s ability to predict species’ occurrence at points within

2https://doi.org/10.6084/m9.figshare.c.5360402

the same geographic extent as points used for model training
(holdout geographic transferability) and to points outside of the
geographic extent used for model training (novel geographic
transferability) by splitting our entire geographic region into
four quadrants based on the median latitude and longitude of
presence data for a given species (Figure 1A). For each of the
four quadrants (northwest, northeast, southeast, southwest), we
fit each algorithm using all FIA plots within that quadrant. We
then used the algorithm to predict to the FIA plot locations in
the opposite quadrant. This quadrant approach is a common
method for partitioning data to test SDM transferability across
space (Feng et al., 2019), especially to explore the possibility of
encountering no-analog environmental conditions (Muscarella
et al., 2014). For example, the fit to the northeast was used to
predict to the southwest. To assess predictive performance, we
measured the area under the receiver operating curve (AUC),
sensitivity (1 – false negative rate), specificity (1 – false positive
rate), and accuracy (ACC; the fraction of correct prediction i.e.,
the sum of true positives and true negatives divided by the
total number of validation points; Fielding and Bell, 1997). To
assess sensitivity and specificity, we first converted continuous
model outputs to binary values using a threshold that optimized
the sum of sensitivity and specificity (Liu et al., 2005; Lobo
et al., 2008). We also used AUC to examine predictions to
FIA plots in the same quadrant as the training data, once
with the full set of FIA points used for both training and
predicting, and once with 70% of the points used for training and
30% for testing.

We used ANOVA to test for significant differences in
performance between the 11 algorithms we fitted that represented
differing levels of SDM algorithm complexity (Question 1).
Three separate ANOVAs with Type II sums of squares were
fit to compare between SDM algorithm performance based
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on AUC, (1) across all plots used to train the models, (2)
at testing plots not used to train the models, but within the
same geographic extent as the training data, and (3) in a novel
geographic extent. Three separate ANOVAs were also fit to assess
SDM algorithm differences in ACC, true positive rates, and
true negative rates in novel geographic extents. Fitting separate
ANOVAs for these measures of predictive performance facilitated
the interpretation of Tukey’s honestly significant differences
(HSD) post hoc test. Because of occasional failures of algorithms
to converge within biomod2, we ensured a balanced design
by only including quadrant × species combinations in which
the performance statistics yielded usable values for all models
run. Failures to converge represented 1.6% of predictions to
novel geographic regions and 9.0% of predictions to the training
geographic region.

Limits to Extrapolation in Geographic and
Environmental Space
To address Questions 2–4, we also examined the relationship
between predictive performance and extrapolation distance
outside the 19-dimensional climatic (i.e., environmental) space
and outside the 2-dimensional geographic space of the training
data. We measured the distance between every test FIA
plot in the validation data and the centroid of the training
data in the opposite quadrant (Figure 1). Distance was
measured by first normalizing the distance along each variable
axis, then calculating Euclidean distance, and finally dividing
by the square root of the number of dimensions (i.e.,
two for geographic or number of climatic variables for
environmental) to obtain a normalized distance in standard-
deviation units. Within the testing quadrant, we binned the
validation points, so that each bin would have enough points to
confidently calculate goodness-of-fit metrics (e.g., AUC, ACC).
To explore limits to extrapolation in geographic space, we
binned points based on geographic proximity to the training
region centroid, with 10,000 points per bin (Figure 1A).
To explore limits to extrapolation in environmental space,
we binned points based on proximity in environmental
space to the fitting region centroid with 10,000 points per
bin (Figure 1B).

We assessed goodness-of-fit of the models with two metrics:
AUC and ACC. We note that AUC can be problematic as a
predictive metric because it weights omission and commission
errors equally (Lobo et al., 2008). AUC is more problematic
when generating pseudoabsences with presence-only data, but
less so when using presence/absence data as we use in this study.
As such, we report both AUC and ACC (Lobo et al., 2008).
To assess differences in limits to extrapolation of the SDMs in
geographic space by algorithms, we fit two GLMs where the
response was either AUC or ACC and algorithm (e.g., GLM,
GAM, etc.) entered the GLMs as a fixed factor with geographic
distance entered as a covariate. We also included an interaction
between geographic distance and model algorithm to determine
if algorithms varied at different rates in their ability to extrapolate
in geographic distance. To assess limits to extrapolation of the
SDMs in environmental space, we fit similar mixed effect models
where the covariate was distance in environmental, rather than

geographic, space. These GLMs were fit with Type III sums
of squares given the inclusion of the interaction term. The
data were analyzed with separate GLMs for AUC and ACC for
geographic and climatic distance to facilitate the interpretation
of Tukey’s HSD test. All R code and data used in the analyses
along with the ODMAP (Overview, Data, Model, Assessment,
and Prediction) protocol documenting the SDMs (Zurrell et al.,
2020) are available on Figshare3.

RESULTS

Question 1 – Overall Transferability
Differences Among Algorithms
All results in figures presented in the main text are from the
algorithm runs with the full suite of bioclimatic explanatory
variables (see Supplementary Figures 2–8 for results from
algorithms run with the subset of nine uncorrelated variables).
Performance of all algorithms was qualitatively similar whether
all bioclimatic predictors were used to fit the algorithms versus
the subset of nine uncorrelated variables, except for GLM which
had worse predictions when using only uncorrelated variables.
Generally, all algorithms performed best when testing plots
were located within the training region (Figure 2B) where
average AUC values for all algorithms were >0.7 (Figure 3B).
A substantial portion of predictions into novel regions for
all algorithms performed worse than would be expected by
random chance (Figures 2C, 3C and Table 1). When testing
plots within the training region, the ranked AUC for random
forest was much better than when predicting to a novel region,
suggesting that the algorithms were overfit (Figure 3). When
testing plots in novel geographic regions, the models with the
highest mean AUC and the highest summed sensitivity and
specificity were Maxent, GLM, and GAM (Figure 3). However,
GLM had lower AUC, lower ACC, and higher true negative
rates when run with uncorrelated variables (Supplementary
Figures 2, 3). A common pattern across most algorithms was
the tendency for extreme over-prediction in the novel regions,
wherein species with narrow true ranges were predicted to occur
at most plots (Figure 2C). The one exception to this pattern
was SRE, which tended to make more conservative occurrence
predictions for the novel region compared to the training region
(Figure 4A). In both the training regions and the novel regions,
all algorithms but SRE had false negative rates lower than
expected by chance but false positive rates higher than expected
(Figures 4B,C).

Question 2 – Extrapolation Versus
Distance in Geographic Space
Differences in the ability of SDMs to extrapolate in geographic
space (i.e., where plots were binned based on geographic
proximity to the training region centroid, with 10,000 plots
per bin) depended on the metric of predictive performance
used. The ability of SDMs to extrapolate in geographic space

3https://doi.org/10.6084/m9.figshare.c.5360402
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FIGURE 3 | Distribution of AUC for model predictions (A) across all plots used to train the algorithms (B) at testing plots not used to train the algorithms, but within
the same geographic extent as the training data, and (C) in a novel geographic extent. Horizontal bars above the boxplots represent significant Tukey post hoc
groups. Black dots within the Tukey group bars represent the reference algorithm – all algorithms beneath a given bar are not significantly different from the reference
algorithm for that bar. Multiple black dots on a given bar indicate that the Tukey groups are identical for multiple algorithms.

declined significantly with increasing distance from the fitting
region when predictive performance was assessed with AUC
(Figure 5A; F1,10847 = 9.25, p < 0.005). However, the rate at
which predictive performance declined with geographic distance
was not significant when assessed with ACC (Figure 5C;
F1,10847 = 2.11, p > 0.1).

Question 3 – Extrapolation Versus
Distance in Environmental Space
Differences in the ability of SDMs to extrapolate in environmental
space were more consistent and significant across metrics of
predictive performance used. The ability of SDMs to extrapolate
in environmental space declined significantly with increasing
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TABLE 1 | Fraction of predictions to novel regions in which species distribution
models performed better than random (AUC greater than 0.5).

Algorithm Fraction

GLM 0.79

CTA 0.72

GBM 0.71

Ensemble 0.69

GAM 0.69

FDA 0.69

Maxent 0.68

RF 0.65

ANN 0.64

MARS 0.59

SRE 0.46

Fractions were calculated from up to 432 possible predictions for each algorithm (4
quadrants × 108 species), however not all species were included for all algorithms
due to convergence failures during fitting.

distance from the fitting region when model performance
was assessed with both AUC (Figure 5B; F1,15563 = 18.84,
P < 1.4 × 10−5) and ACC (Figure 5D; F1,15563 = 6.70,
P < 0.01).

Question 4 – Differences Among
Algorithms in Extrapolation Versus
Distance
When SDMs were extrapolated in geographic space, there were
no significant differences in predictive performance as measured
by AUC between algorithms (F10,10847 = 10.6, p = 0.4) nor
was there an interaction between algorithms and distance of
extrapolation in geographic space (F10,10847 = 2.63, p = 0.99;
Figure 6). Similarly, there were no significant differences in
predictive performance as measured by ACC between algorithms
(F10,10847 = 16.8, p = 0.08) nor was there an interaction between
algorithms and distance of extrapolation in geographic space
(F10,10847 = 5.45, p = 0.86; Supplementary Figure 9).

When SDMs were extrapolated in environmental space,
there were significant differences in predictive performance
as measured by AUC between algorithms (F10,15563 = 21.2,
p = 0.02), but post hoc comparisons revealed that these were
mainly driven by differences in predictive ability between Maxent
and artificial neural network algorithms. There was a significant
interaction between algorithms and distance of extrapolation in
environmental space (F10,15563 = 27.1, p = 2.5 × 10−3; Figure 7).
In particular, the following algorithms’ predictive capacities
declined steeply with increasing extrapolation in environmental
space relative to other algorithms: FDA, GAM, Maxent, and SRE.
When ACC was used as the measure of predictive performance
for extrapolation in environmental space, there was a significant
interaction between algorithm and distance of extrapolation in
environmental space (F10,15563 = 22.1, p = 0.01; Supplementary
Figure 10), but differences between algorithms alone were
not significant (F10,15563 = 17.8, p = 0.06). Averaged across
all measures of predictive performance (i.e., AUC, ACC, true
positive rates, and true negative rates) and across all species for

transfers in environmental space, GAM had the best performance
whether or not the full set of predictor variables or a reduced set
of non-collinear predictor variables were used to fit the models.

DISCUSSION

Species distribution models can be an important tool for
conservation by predicting range shifts as a consequence of global
change (Elith and Leathwick, 2009; Franklin, 2010). Maps of
potential range shifts can be essential for prioritizing reserves
across landscapes, however, in some cases, the pressing need
for conservation action can outweigh the caution necessary to
properly interpret these predictions (Fitzpatrick and Hargrove,
2009; Jimenez-Valverde et al., 2011; Sequeira et al., 2018). As
the appearance of no-analog climates is predicted to rise over
the next century (Williams and Jackson, 2007), more research is
necessary to understand the limitations of SDM transferability in
geographic and environmental space. Thus far, transferability of
SDMs to new time periods, geographic regions, and determining
cross-taxa caveats, have shown inconsistent patterns that could
be due to myriad factors (e.g., model algorithms, input data,
parameterization). This lack of progress has prompted the
call for more rigorous testing to learn about the limitations
of extrapolation in geographic and environmental space, and
to help establish general guidelines for model transfer (Yates
et al., 2018). In this study, we explicitly tested the ability of
SDMs of varying complexity to transfer in both geographic and
environmental space for data rich tree species in the western
United States. Our approach of fitting models in one quadrant
of geographic space and predicting them in another quadrant
of geographic space is a stringent test that may be akin to
projecting occupancy under no-analog conditions that may arise
in the western United States with climatic change (Williams
and Jackson, 2007). We found that SDMs for this system and
geographic region tend not to be transferable in geographic or
environmental space. Furthermore, distance in environmental
space determined predictive performance of the SDMs more than
distance in geographic space or the type of algorithm used.

When interpreting the results of this study, it is important
to note that the predictive performance metrics we used
are not perfect. We note that, although commonly used for
model performance evaluations, AUC, sensitivity, specificity,
and ACC can be misleading (Lobo et al., 2008; Pontius and
Parmentier, 2014). For instance, AUC is impacted by the
“extent to which models are carried out,” describes predictive
performance across portions of the Receiver Operating Curve
(ROC) space which may be biologically infeasible, weights
commission and omission errors the same, fails to consider
predicted probability outputs and model goodness-of-fit, and
ignores the spatial distribution of model errors (Lobo et al.,
2008). Future studies might consider other model predictive
performance measures, such as graphical assessment of curves
representing the Total Operating Characteristic (Pontius and Si,
2014), which provide a richer assessment of the information
contained in the ROC. This approach was not taken in this
study because it would have necessitated a visual interpretation
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FIGURE 4 | For predictions into novel geographic regions, the distribution of (A) accuracy (ACC), (B) true positive rate (TPR), and (C) true negative rate (TNR).
Horizontal bars above the boxplots represent significant Tukey post hoc groups. Black dots within the Tukey group bars represent the reference algorithm – all
algorithms beneath a given bar are not significantly different from the reference algorithm for that bar. Multiple black dots on a given bar indicate that the Tukey
groups are identical for multiple algorithms.
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FIGURE 5 | Effect of distance in environmental space on predictive ability of species distribution models (SDM), measured as AUC (A,B) or ACC (C,D). Each point
represents AUC or ACC calculated within a single bin of up to 10,000 holdout points in a novel geographic region binned by distance through either geographic
space (A,C) or environmental space (B,D) from the fitting region for one quadrant of a given species and a given SDM algorithm. Distance was measured by first
normalizing the distance along each variable axis, then calculating Euclidean distance, and finally dividing by the square root of the number of dimensions (i.e., two
for geographic space and 19 for climatic space) to obtain a normalized distance in standard-deviation units. The regression line represents a GAM fit to the data.

of thousands of curves (1 model algorithms × 108 species × 2
tests × 4 quadrants = 9504 curves). Future work that automates
graphical interpretation or provides summary metrics describing
the shape of the TOC curve, without loss of information, would
make the use of these more sophisticated metrics possible for
studies assessing many species across various model algorithms
and tests of transferability.

Furthermore, the interpretation of the results of this study
may be strongly dependent upon the field of study and
understood purpose of SDMs. Averaged across many species,
most algorithms with default tuning settings had median AUC
values near 0.7 when applied to novel geographic regions in
our study (Figure 3C). From a statistical perspective, this
indicates that, on average, SDMs are informative. As a tool
for developing and testing fundamental theories in ecology and
evolution, this may be sufficient. Users at that level are often
tuning algorithms beyond the default settings and/or including
additional predictor variables (e.g., remotely sensed elevation,

soils, other physiographic variables) and may thus achieve much
better predictive performance (Guisan et al., 2007; Austin and
Van Niel, 2011). However, the ultimate purpose for many SDMs is
applied conservation – where many end-users of SDMs may not
be aware of available non-climatic spatial data layers (Zarnetske
et al., 2019) nor have the training or capacity to tune algorithms
beyond the available default settings or to fully appreciate their
statistical limitations. When predicting beyond the geographic
area used for training, the algorithms in our study performed
worse than random about 30% of the time for many of the
commonly employed algorithms (Table 1). This may be an
unacceptably high rate of failure for SDMs to serve as a useful tool
for guiding individual species conservation. Determining policy
and management decisions based on such unreliable predictions
could be dangerously counterproductive. Imagine, for instance,
designing reserve boundaries for high-profile endangered species
using such models in unsampled regions. For one out of three
species, the SDMs are likely to suggest reserve boundaries
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FIGURE 6 | Predictive performance of species distribution models with different algorithms as measured with AUC versus distance of extrapolation in geographic
space in a novel geographic region. Distance was measured by first normalizing the distance along each variable axis, then calculating Euclidean distance, and finally
dividing by the square root of the number of dimensions (i.e., 2) to obtain a normalized distance in standard-deviation units.

that capture fewer presences than if we were to blindly select
arbitrary polygons from across the entire available map. With
such odds, a manager may be better served by circling areas on
a paper topographic map based on their own natural history
understanding of the system.

Question 1 – Overall Transferability
Differences Among Algorithms
When predicting species occurrence in novel regions, some
algorithms performed better in terms of mean AUC and the
highest summed sensitivity (e.g., Maxent, GLM, GAM; Figure 3;
see also Heikkinen et al., 2012; Wenger and Olden, 2012). Maxent
may have performed well in most cases because the default
settings of biomod2 use threshold and hinge settings. These
settings make a continuous environmental predictor binary by
forcing responses to zero below a certain value and to one above
that value (Merow et al., 2014). GLM had lower AUC, lower
ACC, and higher true negative rates when run with uncorrelated
variables (Supplementary Figures 2, 3) compared to the full suite
of 19 correlated bioclimatic variables (Figures 3, 4). The default
settings for biomod2 allow for Akaike Information Criterion
(AIC) variable selection within GLM. It is possible that the
reduced set of nine bioclimatic variables contained explanatory

variables with relatively weak relationships to species occurrence
compared to some of the explanatory variables maintained
in the full set of 19 bioclimatic variables. Thus, when AIC
model selection occurred for the uncorrelated set of variables,
there was selection bias where the parameters were poorly
estimated for those explanatory variables with weak relationships
to the occurrence response, resulting in poor predictive ability
(Lukacs et al., 2010).

Questions 2 and 3 – Extrapolation Versus
Distance in Geographic and
Environmental Space
Decay in model performance with increasing geographic distance
from training data depended on predictive performance metric
(AUC and ACC in Figure 5). In contrast, as climatic distances
became more dissimilar to training data, model performance
declined significantly regardless of predictive performance
metrics (AUC and ACC values in Figure 5). These results
indicate a decay in predictive ability of algorithms in increasingly
environmentally dissimilar regions. Further, the number of false
negatives were consistently lower than the number of false
positives expected by chance (i.e., higher true negative rate and
lower true positive rate; Figure 4), showing a trend toward
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FIGURE 7 | Predictive performance of species distribution models with different algorithms as measured with AUC versus distance of extrapolation in environmental
space in a novel geographic region. Distance was measured by first normalizing the distance along each variable axis, then calculating Euclidean distance, and finally
dividing by the square root of the number of dimensions (i.e., 19) to obtain a normalized distance in standard-deviation units.

strong overprediction in novel regions, even for narrow ranged
species (Figure 2C). These findings suggest that algorithms for
this system and geographic region tend not to be transferable,
particularly in environmental space. However, we also note that
the opposite quadrant data partitioning approach used here
to test SDM transferability is stringent. Different partitions of
the training and testing data (e.g., if the training and testing
quadrants had similar longitudinal bounds or using three of
the four quadrants for training and one for testing) may have
had better predictive performance in tests of transferability, and
would be very informative as follow up-studies.

Question 4 – Differences Among
Algorithms in Extrapolation Versus
Distance
Our results suggest that for transfers in geographic space, no
specific algorithm was better than another as there were no
significant differences in predictive performance as measured by
AUC or ACC across algorithms. However, there were significant
differences in predictive performance for algorithms transferred
in environmental space. Of the algorithms assessed, GAM
performed best in transferring in environmental space, but it
is important to note that GAMs’ performance declined steeply

with increasing extrapolation in environmental space relative to
other algorithms.

Beyond model complexity, other potential reasons may
explain the poor transferability of the models. For example,
species-specific tuning can improve transferability in novel
regions and climates (Guevara et al., 2018). Tuning has been
shown to generate more realistic SDMs as opposed to using
default settings (as used here). However, species-specific tuning
of SDMs in training does not necessarily equate to better
transferability to novel environments because the observed
correlative species occurrence and environment relationship
provides no insight into how the species will respond to no-
analog conditions (Fitzpatrick and Hargrove, 2009; Heikkinen
et al., 2012; Sequeira et al., 2018). In the future, the western
United States is likely to experience no-analog climates, especially
in regions of California (Williams and Jackson, 2007). Thus,
tuning to specific species’ current climate envelopes and
predicting to future climates would not necessarily help in
our study region, as any prediction would lead to strong
extrapolation beyond current and paleo climatic conditions and
therefore increase uncertainty in model predictions. Another
potential explanation for poor transferability is the geographic
partitioning of species occurrence records by the median
latitude and longitude of points to determine the four testing
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quadrants. A common method of cross validation, dividing
species occurrence records and training algorithms in quadrants
results in likely truncation of the species full climate envelope
(Muscarella et al., 2014). This can result in incomplete response
curves in model training, leading to poor transferability (Thuiller
et al., 2004; Owens et al., 2013; Guevara et al., 2018). Different
partitions of the training and testing data (e.g., if the training
and testing quadrants had similar longitudinal bounds or using
three of the four quadrants for training and one for testing)
may have led to better predictive performance in tests of
transferability. Comparison of paleoclimatic and current climatic
records compared to predicted future climatic conditions in
our study extent suggest that no-analog climatic conditions are
highly probable for this region of North America (Williams
and Jackson, 2007), thus, our approach to testing transferability
simulates the real-world challenge of predicting to a future
using data that may not encompass the full breadth of
species’ niches.

CONCLUSION AND FUTURE
DIRECTIONS

Understanding the limits to extrapolation for SDMs is important
for biodiversity assessments (e.g., International Union for
Conservation of Nature criteria) since future predictions of
species distributions are often considered. The ability of
decision makers to spatially plan conservation actions based
on SDM predictions across time and space (environmental or
geographic) relies on the transparency and documentation of the
modeling approaches, including the degree of extrapolation and
uncertainty (Sequeira et al., 2018). Assessing and communicating
the uncertainty of these predictions to potential stakeholders
avoids the misallocation of resources for conservation in
regions where predictions are questionable (e.g., areas of strong
overprediction; Figure 2C). For instance, Houlahan et al.
(2017) suggested that when transferring models, there must be
a minimum degree of similarity between the environmental
conditions of the training and testing region for that prediction
to be interpreted with a modicum of confidence. A possible
solution to the lack of certainty of these predictions transferred
to different times or regions is for modelers to delineate a
“forecast horizon,” or a threshold which demarcates a point
at which predictions are too uncertain and likely no longer
useful (Petchey et al., 2015). Though we did not explicitly
do this here, this can easily be achieved in future studies
by using a measure of performance and defining what is an
acceptable level of algorithm performance quality (e.g., AUC,
degree of environmental overlap between training and testing
regions).

Given the results of this study, there is a strong need for
more tests of algorithm transferability across taxa in different
regions of the world. By increasing our understanding of
limits to transferability within different regions and study
systems, guidelines can be established on the appropriate
use and interpretation of algorithm transfer. There would
also be value to comparing the transferability of SDMs

where the response variable is presence/absence or presence
only to models where the response variable is non-binary
(e.g., abundance, basal area for trees). Simplifying habitat
suitability to a binary response may not be biologically
realistic when there may be various reasons why a location
is predicted to be suitable but the species is absent or why
a species is detected but at that location it generally has
trouble regenerating.

Though here we mainly discuss correlative SDMs in
terms of transferability, mechanistic models, or models that
incorporate biological processes that limit and shape species
distributions (e.g., dispersal, biotic interactions, population
dynamics; Belmaker et al., 2015; Buckley and Catford, 2016;
Record and Charney, 2016) hold much promise and can
potentially achieve higher transferability (Evans et al., 2016).
However, these process-based models require abundant
experimental data, are computationally intensive, and the
influence of mechanisms added into such models may only
operate at particular spatial scales, which has caused progress
in this field to be slow thus far (Record et al., 2018; Sequeira
et al., 2018) and therefore they too require further study
within the context of transferability. There also may be great
value to combining occurrence based correlative SDMs with
process-based SDMs.

We also note that it is relevant to consider model
transferability, even if the goal of conservation is not focused
on an individual, often rare, species. In the last decade, some
conservation efforts have begun to focus less on where individual
species may shift their geographic ranges and more on specific
attributes of Earth’s surface that promote diversity of a large
number of species (Lawler et al., 2015). This latter approach
is often referred to as ‘conserving nature’s stage’ wherein the
organisms are the actors, and the stage is Earth’s environment.
The goal is to identify areas with higher habitat diversity
that may harbor higher levels of biodiversity. This habitat
diversity is termed geodiversity—variation in Earth’s abiotic
processes and features; (Zarnetske et al., 2019; Record et al.,
2020). Schrodt et al. (2019) recently called for the international
groups (e.g., the Group on Earth Observations Biodiversity
Observation Network [GEOBON]) to consider a framework for
identifying essential geodiversity variables (EGV) to complement
the essential biodiversity variables (EBV) framework that places a
strong emphasis on understanding potential changes in species
distributions (Pereira et al., 2013). Ultimately, a focus on
geodiversity still requires an understanding of the relationships
between biodiversity and geodiversity across space and time
(Read et al., 2020), which will also need to consider transferability
of models linking geodiversity to biodiversity.

Moving forward, the decision to focus more on process
based SDMs or geodiversity of parcels will depend on the
regulatory bounds of any conservation organization. For
instance, an emphasis on species distributions makes sense for
legislation protecting species (e.g., the United States Endangered
Species Act), whereas individual organizations purchasing land
holdings may want to take the geodiversity and ‘conserving
nature’s stage’ approach. Regardless, process-based SDMs and
models of geodiversity-biodiversity relationships necessitate the

Frontiers in Ecology and Evolution | www.frontiersin.org 13 July 2021 | Volume 9 | Article 689295

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-689295 June 29, 2021 Time: 14:44 # 14

Charney et al. Species Distribution Model Transferability

same understanding of how the models will transfer in space and
time to conserve nature now and into the future.
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