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Understanding Realism 

Collin Rice 

Bryn Mawr College 

Abstract. Catherine Elgin has recently argued that a nonfactive conception of understanding is 

required to accommodate the epistemic successes of science that make essential use of idealizations 

and models. In this paper, I argue that the fact that our best scientific models and theories are 

pervasively inaccurate representations can be made compatible with a more nuanced form of 

scientific realism that I call Understanding Realism. According to this view, science aims at (and 

often achieves) factive scientific understanding of natural phenomena. I contend that this factive 

scientific understanding is provided by grasping a set of true modal information about the 

phenomenon of interest. Furthermore, contrary to Elgin’s view, I argue that the facticity of this kind 

of scientific understanding can be separated from the inaccuracy of the models and theories used to 

produce it. 

 

Acknowledgements. I am grateful to two anonymous reviewers whose comments on the paper 

greatly improved the final version. I would also like to thank Catherine Elgin for several 

discussions that have helped improve my thinking on these topics.  

 

 

1. Introduction 

Both philosophers of science and epistemologists have recently focused on the question of how 

idealized scientific models can produce understanding (de Regt, Leonelli and Eigner 2009; Elgin 

2017; Khalifa 2013, 2017; Kvanvig 2003; Mizrahi 2012; Potochnik 2017; Rice 2016; Schurz and 

Lambert 1994; Strevens 2013). For example, in her new book True Enough, Catherine Elgin 

argues that a nonfactive conception of understanding is required to accommodate the epistemic 

achievements of science that make essential use of idealizations (Elgin 2017). In this paper, I 

argue that the fact that our best scientific models and theories are pervasive distortions of real 

systems can be made compatible with a more nuanced form of scientific realism that I call 

Understanding Realism. The key to Understanding Realism is shifting realist views of science 

away from focusing on whether scientific representations accurately represent relevant (e.g. 

difference-making) features towards a defense of the facticity (or accuracy) of the understanding 

that can be produced by using idealized theories and models in strategic ways.  
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Philosophical discussions of scientific realism frequently focus exclusively on the truth or 

accuracy of models or theories themselves rather than the truth, accuracy, or justification of the 

body of scientific understanding produced by scientists’ use of those models and theories. I 

contend that this focus is far too narrow for adequately evaluating the prospects for scientific 

realism. Unfortunately, the debate over realism has been so focused on the truth and continuity 

of (parts of) scientific theories that it has failed to even consider alternative ways that the 

required truth and continuity might be achieved by scientific inquiry. 

In order to move beyond traditional ways of framing the realism debate, I will grant that 

our best scientific models and theories are pervasive misrepresentations of their real-world target 

systems (Elgin 2017; Morrison 2015; Potochnik 2017; Rice 2017, 2018). That is, in agreement 

with Elgin, I will grant that the representations produced by scientific inquiry are not true and do 

not purport to be true (Elgin 2007, 2009, 2017). However, in contrast with Elgin, I then argue 

that factive understanding is the primary epistemic goal of science and that this epistemic 

achievement can be, and often is, accomplished by investigating and manipulating idealized 

models and theories that fail to accurately represent the relevant features of their target systems 

(Rice 2016).1 In order to appreciate how this could be so, philosophers must look at the 

information that scientific communities extract from highly idealized models; e.g. by 

manipulating and combining multiple models in various ways to discover modal information 

about possible states of the system(s) of interest. 

The following section draws out several mistaken assumptions that have dominated the 

realism debate. Removing these assumptions makes room for a form of realism that is 

compatible with our best models and theories being pervasively inaccurate representations. Next, 

 
1 I do not claim that understanding is the only aim of science. I only claim that it is the primary epistemic aim that 

realists should be concerned with. 
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Section 3 lays out a factive account of scientific understanding in terms of providing correct 

modal information about the phenomenon. Section 4 provides examples that demonstrate how 

pervasively distorted models can be used to produce this kind of factive understanding. Then, 

Section 5 explicitly lays out my Understanding Realism view. The final section concludes and 

suggests that philosophers look more directly at the factive understanding produced by scientific 

communities rather than focusing on the accuracy (or facticity) of the scientific representations 

used to produce that understanding. 

 

2. Realism, Accurate Representation, and Idealization 

Traditionally, scientific realism claims that science aims at truth and that we have reason to 

believe that our most successful scientific theories and models are true or approximately true 

descriptions of the natural world (Kitcher 1993; Putnam 1975; Psillos 1999; Stanford 2006; van 

Fraassen 1980). The main argument for realism—the so called ‘No Miracles Argument’—argues 

that we are justified in believing our best scientific theories are accurate because this is the best 

(or only) explanation of their ability to yield many successful predictions and interventions 

(Putnam 1975). However, as opponents of realism have repeatedly argued, the history of science 

shows that previously believed, but ultimately inaccurate theories, have also made accurate 

predictions (Laudan 1981; Stanford 2006; van Fraassen 1980). What is more, several 

philosophers have suggested that science’s widespread use of idealizations raises additional 

problems for the realist (Cartwright 1983; McMullin 1985; Odenbaugh 2011; Psillos 2011; 

Suárez 1999). The argument runs roughly as follows: given that we know scientific 

representations include false assumptions, even if they make accurate predictions, we have no 

reason to believe that they are true (or accurate) (see Odenbaugh 2011 for an example). 
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These observations undermine the main argument that has been given for realism, but 

they also perform another unintended function: they show that inaccurate models and theories 

can accomplish many of the goals of science (Elgin 2017; Potochnik 2017; Strevens 2008; 

Weisberg 2013). My thesis is that, in addition to being useful for prediction, pervasively 

idealized models and theories can be used to produce factive understanding of real phenomena. 

Moreover, I will argue that it is within these epistemic achievements that the truth or accuracy 

the realist seeks is to be found rather than within the (partially) accurate representations of 

scientific models or theories themselves. That is, we can be realists about the epistemic 

achievements of scientific practice while granting that our best models and theories are 

pervasively inaccurate descriptions of reality. 

There are two main reasons this possibility has yet to be adequately explored. First, as I 

noted above, the realism debate has been exclusively focused on the truth of scientific models 

and theories themselves rather than on the corpus of understanding that scientific communities 

can acquire from using idealized models and theories in strategic ways.2 A second reason this 

possibility has yet to be adequately explored is that, throughout the literature, it is assumed that 

the primary way that science produces understanding is by providing explanations (Friedman 

1974; Salmon 1984; Strevens 2008). This claim is then coupled with the fact that most accounts 

of explanation involve truth or accuracy requirements in order to conclude that the 

representations scientists use to understand natural phenomena must be (at least partially) 

accurate (de Regt and Gijsbers 2017).3 

 
2 An important exception here is Potochnik (2017) that focuses on the way that diverse communities focused on 

different causal patterns can produce understanding. However, Potochnik’s discussion never really addresses the 

realism debate and, in contrast with the view I defend here, she argues that the understanding produced by science is 

nonfactive. 
3 Bas van Fraassen nicely summarizes this realist line of argument: “Science aims to find explanation, but nothing is 

an explanation unless it is true (explanation requires true premises); so science aims to find true theories about what 

the world is like. Hence scientific realism is correct” (van Fraassen 1980, 97). van Fraassen, of course, goes on to 
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Indeed, ever since Hempel (1965) required that the propositions in the explanans be true, 

most accounts have maintained that explanations must accurately describe the explanatorily 

relevant features responsible for the explanandum. For example, mechanistic accounts of 

explanation often endorse some kind of ‘model to mechanisms mapping’ requirement for models 

to explain (Craver 2006; Craver and Darden 2013; Kaplan and Craver 2011). These accounts 

then respond to the widespread use of idealization in science by suggesting that this observation,  

[…] should not lead one to dispense with the idea that models can more or less accurately 

represent features of the mechanism in the case at hand…These practices of abstraction and 

idealization sit comfortably with the realist objectives of a mechanistic science. (Kaplan and 

Craver 2011, 610) 

 

In other words, we can respond to challenges to realism from idealization by showing that 

idealized models can still provide partially accurate representations of their target 

mechanism(s).4  

Most causal accounts also build in accuracy requirements for models to explain. As 

Michael Strevens puts it, “no causal account of explanation—certainly not the kairetic account—

allows nonveridical models to explain” (Strevens 2008, 297). While Strevens’s account does 

allow some idealized models to explain, accurate representation continues to play a key role 

since, “the overlap between an idealized model and reality...is a standalone set of difference-

makers for the target” (Strevens 2008, 318). More generally, for causal accounts, in order for a 

model to explain it must provide an accurate representation of (at least some of) the difference-

making causal relationships within the target system(s). 

In light of these accurate representation requirements for explanation, most philosophers 

have also maintained a factive (or veridicality) requirement for scientific understanding (de Regt 

 
deny that in order to explain a theory must be true, but he is correct in characterizing the standard realist reasoning 

as requiring that explanations be provided by true theories (or models). 
4 More generally, for mechanistic accounts, “the goal is to describe correctly enough (to model or mirror more or 

less accurately) the relevant aspects of the mechanisms under investigation” (Craver and Darden 2013, 94). 
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2009; de Regt and Gijsbers 2017; Grimm 2008; Mizrahi 2012; Khalifa 2012, 2017; Kvanvig 

2003, 2009; Strevens 2013). In fact, several philosophers have argued that scientific 

understanding is only produced by grasping a correct explanation. For example, Strevens follows 

J.D. Trout (2007) in claiming that, “An individual has scientific understanding of a phenomenon 

just in case they grasp a correct scientific explanation of that phenomenon” (Strevens 2008, 3; 

2013, 510). In addition, Jonathan Kvanvig tells us that, “understanding why something is the 

case requires understanding that a certain explanation is correct” (Kvanvig 2003, 189-90).5 

In general, most philosophical accounts claim that for idealized models to provide 

genuine understanding (often by providing an explanation), the model must accurately represent 

the important, significant, or difference-making features of the system that actually produced the 

phenomenon of interest. These accurate representation requirements, however, conflict with the 

observation that most of the idealized models used to explain and understand in science 

pervasively distort their target systems—including the features that scientists know make a 

difference to the phenomenon (Batterman and Rice 2014; Longino 2013; Potochnik 2017; Rice 

2017, 2018). For example, models in physics distort the difference-making components and 

interactions of fluids, magnets, and quantum dots (Batterman 2002; Batterman and Rice 2014; 

Bokulich 2012; Morrison 2015), models in biology distort the difference-making processes of 

drift and selection (Ariew et al. 2015; Morrison 2015; Potochnik 2017; Rice 2013, 2018), models 

in economics distort the difference-making features of agents and transactions (Frigg 2010; 

Knuuttila 2009), models in the study of human behavior distort difference-making genes and 

environmental factors (Longino 2013), etc. The more general problem is that most of the 

 
5 Moreover, Kvanvig claims that a key relationship between knowledge and understanding “is that both imply truth, 

that both are factives. To say that a person understands that p therefore requires that p is true” (Kvanvig 2003, 190). 

Stephen Grimm also suggests that, “our understanding of natural phenomena seems conspicuously factive—what we 

are trying to grasp is how things actually stand in the world” (Grimm 2006, 518). 
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idealizations used in scientific practice cannot be quarantined (or separated) from the parts of 

science that are responsible for science’s epistemic successes (Elgin 2007, 2009, 2017; 

Potochnik 2017; Rice 2018). As a result, the accurate representation relations that are required by 

most realist approaches to science will fail to hold in most actual cases—even if we focus only 

on known difference makers.6  

What is more, very often in science we find multiple conflicting idealized models being 

used to explain and understand the same phenomenon (Morrison 2011; Massimi 2018; Rice 

2019; Weisberg 2013). When this occurs, a different, but related, epistemological problem arises 

for the realist. In particular, if the realist is committed to endorsing the idea that the models 

scientists use to understand must be accurate representations of difference makers, then these 

uses of multiple conflicting models would seem to lead to the endorsement of inconsistent 

metaphysical claims or the denial that such modeling can produce genuine understanding 

(Massimi 2018; Rice 2019).7  

I contend that realist approaches to science will continue to fall prey to the challenges 

raised by pervasive idealization and the use of multiple conflicting models as long as 

philosophical accounts continue to conflate the following two questions: 

(1) How does the scientific model (or theory) allow scientists to genuinely understand 

(perhaps by explaining) the phenomenon? 

(2) Which of the relevant features (e.g. difference making causes) for the occurrence of the 

phenomenon are accurately represented by the scientific model (or theory)?  

 
6 As Markus Eronon and Raphael van Reil summarize the challenge: “On the one hand, understanding provided by 

scientific models seems to be genuine understanding, but on the other hand, it often seems to be non-factive, as the 

models involved are known to be literally false.” (Eronon and van Reil 2015, 3777). 
7 Indeed, Michela Massimi (2018) has recently argued that the supposed incompatibility of the use of multiple 

inconsistent models and realism depends on the implicit assumptions that the goal of modeling is “to establish a one-

to-one mapping between relevant (partial) features of the model and relevant (partial) — actual or fictional — states 

of affairs about the target system” (Massimi 2018, 342). 



 8 

In short, the problem is equating science’s understanding of a phenomenon with a model or 

theory’s accurate representation of relevant features due to the truth and accuracy requirements 

maintained by most accounts of explanation and understanding. 

In contrast with these attempts to show that scientific understanding is factive, Elgin 

(2007, 2017) argues that the pervasive use of idealizations shows us that only a nonfactive 

conception of understanding can accommodate the epistemic achievements of science. On 

Elgin’s view, “Effective models afford an understanding of their targets because their 

simplifications, idealizations, elaborations, and distortions make salient important features of the 

targets” (Elgin 2017, 249). Elgin’s justification for believing that idealized models are able to 

produce nonfactive understanding relies heavily on the concept of exemplification. 

Exemplification is a kind of instantiation of properties of the target system: “To exemplify, an 

item must refer to the feature in question, and must do so via its instantiation of that feature” 

(Elgin 2017, 185). Consequently, on Elgin’s account, “Idealizations are fictions expressly 

designed to highlight subtle or obscure matters of fact. They do so by exemplifying features they 

share with the facts” (Elgin 2007, 39). The crucial question is just how far of a departure this is 

from the views described above given that exemplification still requires the model to share key 

properties with real systems in order to generate understanding. In what follows, I disagree with 

Elgin that being able to instantiate or approximate important features via exemplification is the 

only way that models make features salient for purposes of understanding. While a scientific 

model certainly “equips us to see the target differently than we otherwise might” (Elgin 2017, 

263), this is often accomplished without regard to whether or not the salient features are 

exemplified, instantiated, or accurately represented within the model. Moreover, I will argue that 

the pervasive use of idealizations within scientific representations need not force us to adopt a 
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nonfactive account of scientific understanding. As we will see below, by separating scientific 

models (and theories) from the understanding scientists acquire by using those representations 

we can see how inaccurate scientific representations can be used to improve our understanding—

even if we maintain factive requirements for understanding. First, however, we need an account 

of the epistemic achievement of factive understanding. 

 

3. Factive Understanding and Modal information 

Within the epistemology literature, one of the main ways that understanding is distinguished 

from knowledge is that, while knowledge seems to apply to individual propositions, 

understanding is a cognitive relation to more extensive ‘bodies of information’ (Elgin 2007, 

2017; Kvanvig 2003; Grimm 2006). As Kvanvig puts it, “Understanding requires the grasping of 

explanatory and other coherence-making relationships in a large and comprehensive body of 

information. One can know many unrelated pieces of information, but understanding is achieved 

only when informational items are pieced together by the subject in question” (Kvanvig 2003, 

192). Elgin agrees: “understanding is primarily a cognitive relation to a fairly comprehensive, 

coherent body of information” (Elgin 2007, 35). For example, when we say that a person 

understands the motion of the planets, they must grasp a fairly comprehensive body of 

information about the planets along with various relationships between those pieces of 

information.  

In addition, the information and relations grasped about a phenomenon must be 

incorporated into a larger body of information. Elgin puts the point this way: “The understanding 

encapsulated in individual propositions derives from an understanding of larger bodies of 

information that include those propositions.” (Elgin 2007, 35). Philosophers of science also 
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suggest that “to understand a phenomenon P is to know how P fits into one’s background 

knowledge” (Schurz and Lambert 1994, 67). In other words, in order to understand, an agent 

needs to not only grasp various relations among the components of a body of information, but 

those connections must also enable the agent to incorporate that information into their wider set 

of background knowledge. Following these views, on the account I present here, scientific 

understanding of a phenomenon requires that what one believes about the phenomenon, and the 

relationships between those beliefs, must be systematically integrated into a wider body of 

background information. Therefore, in order to understand a phenomenon, an agent must (1) 

grasp the relations between a fairly comprehensive body of information about the phenomenon 

and (2) see how that information is related to various pieces of their background knowledge. 

Grasping these systematic relationships between information about the phenomenon (and one’s 

other beliefs) is the ‘something further’ that must be grasped in order to genuinely understand. 

This point about incorporation is important because it shows why scientific models are unable to 

provide understanding in isolation.8 Instead, the information extracted from scientific models by 

using them in various ways must also be incorporated into the scientist’s or the scientific 

community’s overall body of information about the phenomenon. 

 The next question is, of course, just what information and relations must one grasp in 

order to understand a phenomenon? I suggest that the primary source of scientific understanding 

comes from grasping relationships of counterfactual dependence and independence among 

various observable and unobservable features of the system and the phenomenon of interest 

(Rice 2016, 2019). That is, understanding requires that one have a certain body of justified true 

beliefs about the subject matter and be able to answer a range of what-if-things-had-been-

 
8 Thanks to an anonymous reviewer for pushing me to make this point clearer. 
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different questions concerning changes to the features of the system(s) (Grimm 2006; Woodward 

2003). In order to grasp these counterfactual dependencies and independencies, we need to see 

how changes to the features of the system do or do not change the phenomenon of interest. This 

requires that we have some sense of the modal space of possibilities and how the phenomenon 

changes across that space.9 Providing accurate information about the phenomenon across a range 

of possible situations shows us which features of the system are important (and unimportant) for 

producing the phenomenon in the actual case—i.e. counterfactual information provides 

information about the actual dependencies and independencies that hold in real systems. 

However, we can only see these counterfactual dependencies and independencies by evaluating 

contrastive situations where those feature are different. Consequently, I argue that the relevant 

kind of relations that must be grasped within a coherent body of information in order to 

scientifically understand a phenomenon are relationships of counterfactual dependence and 

independence between features of the system and the phenomenon of interest. For example, 

understanding planetary motion requires that one have a set of justified true beliefs about how 

planets move and that one grasp how things would have been different had those facts been 

different in various possible ways; e.g. had the earth had a much smaller mass. By grasping what 

would occur in various counterfactual situations, scientists come to understand which features of 

the system are important to the occurrence of the phenomenon and how the phenomenon 

depends on those features.  

One reason to focus on the modal information involved in understanding is that, while 

explanations and understanding are importantly distinct (Lipton 2009; Rohwer and Rice 2016), 

 
9 Soazig Le Bihan explicates this idea in more detail in terms of knowing “how to navigate some of the possibility 

space associated with the phenomena (Le Bihan 2017, 112). Much of what follows is in agreement with that view 

although I focus more on how idealized scientific models can provide the kind of modal information required to 

understand. 
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the primary way science produces understanding is by developing explanations (Friedman 1974; 

Salmon 1984; Strevens 2008). Consequently, the kind of information required for understanding 

ought to be closely related to the information provided by scientific explanations. Indeed, as 

Elgin notes, scientific understanding of natural phenomena “is the conception of understanding 

that is closely connected with explanation” (Elgin 2007, 35). 

Although I will not be arguing for any particular account of explanation here, it is widely 

accepted that an important aspect of scientific explanations is that they provide a set of modal 

information about how the features of the explanans relate to the explanandum (Bokulich 2008; 

Craver 2007; Potochnik 2017; Rice 2013; Strevens 2008; Woodward 2003). Indeed, information 

about counterfactual dependencies that hold in the system features prominently in causal 

accounts of explanation (Potochnik 2017; Woodward 2003), noncausal accounts of explanation 

(Reutlinger 2016; Rice 2013), statistical accounts of explanation (Ariew et al. 2015), and 

structural accounts of explanation (Bokulich 2008, 2011, 2012). Almost all of these accounts 

agree that, “[an] explanation must enable us to see what sort of difference it would have made for 

the explanandum if the factors cited in the explanans had been different in various possible 

ways” (Woodward 2003, 11). Consequently, we can see why explanations are such a good 

source of understanding: they provide a large amount of the modal information about the space 

of possibilities involved in understanding a phenomenon.  

Moreover, I suggest that the more modal information one grasps about the possible states 

of the target phenomenon, the better one understands the phenomenon.10 The kind of possibility 

of interest to scientists will be different in different context (e.g. logical possibility vs. biological 

possibility), but I suggest that learning about how the phenomenon would or would not be 

 
10 There are, of course, other ways to improve one’s understanding as well.  
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different in various possible counterfactual situations always improves one’s understanding. This 

highlights another important feature of understanding: unlike knowledge or explanation, 

understanding seems to clearly come in degrees (Kvanvig 2003; Elgin 2017).11 For example, 

some people understand a subject matter better than others. This feature of understanding is 

important for two reasons. First, it suggests that there might be degrees of understanding that fall 

below the understanding provided by having a complete explanation (Lipton 2009; Rohwer and 

Rice 2013, 2016). In science, this allows for the improvement of understanding without requiring 

that scientists be able to provide an explanation.12 The second important thing about 

understanding coming in degrees is that understanding of a phenomenon might be improved 

beyond the understanding provided by an explanation. One way this can happen is when 

scientists provide multiple explanations for the same phenomenon (Bokuich 2018; Longino 

2013; Massimi 2018; Morrison 2015; Potochnik 2017). In other cases, models that fail to explain 

might deepen our understanding beyond what our current explanations can provide (Rohwer and 

Rice 2013, 2016). The general point is that the degree of understanding science has about a 

phenomenon neither starts nor stops with the understanding provided by a single explanation. 

We can now turn to the question of whether or not understanding is factive and, if so, 

what about the grasped body of information needs to be true (or accurate) in order for us to 

genuinely understand? As we saw earlier, the serious issue here is that much of the 

understanding produced by science depends, in essential ways, on idealizations that are known to 

 
11 While explanations might be better or worse, or perhaps can be deepened, whether or not an explanation has been 

provided is typically treated as a threshold concept.  
12 This idea runs contrary to recent accounts that have claimed that the only way to understand a phenomenon is to 

grasp a correct explanation of the phenomena (Trout 2002; Strevens 2013). See Lipton (2009) or Rice (2016) for 

reasons to doubt that explanation is the only way to provide understanding.  
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be false. One way to try and accommodate this observation is to restrict the false assumptions to 

the periphery of our understanding. For example, Kvanvig suggests:  

[S]uppose that the false beliefs concern matters that are peripheral rather than central to the subject 

matter…When the falsehoods are peripheral, we can ascribe understanding based on the rest of the 

information grasped that is true and contains no falsehoods…In this way, the factive character of 

understanding can be preserved without having to say that a person with false beliefs about a subject 

matter can have no understanding of it. (Kvanvig 2003, 201-202). 

 

This is similar to Strevens’s requirement that understanding be provided by a correct explanation 

that provides an accurate description of the difference-making causes of the phenomenon 

(Strevens 2008, 2013). This allows idealizations to distort features that are irrelevant or make no 

difference to the phenomenon of interest. The problem with this suggestion is that essential 

idealization of difference-makers is often absolutely central to the models and theories scientists 

use to understand various phenomena. As Elgin notes, in science, “elimination of idealizations is 

not a desideratum. Nor is consigning them to the periphery of a theory” (Elgin 2007, 38). Indeed, 

the literature on scientific modeling reveals myriad examples in which idealizations play 

ineliminable and central roles within scientists’ attempts to explain and understand the 

phenomena we observe (Batterman 2002; Batterman and Rice 2014; Morrison 2015; Potochnik 

2017; Rice 2017, 2018). 

Another issue with Kvanvig’s suggestion is that idealizations are rarely believed by the 

scientists that use them. This goes back to the earlier point that most accounts seem to conflate 

the idealized model itself with being an explanation or providing understanding on its own. If 

this is so, and idealizations are central to those models, then the idealizations will be central to 

our understanding. Moreover, when scientist make use of multiple conflicting idealized models 

to investigate the same phenomenon, this would result in our understanding including multiple 

conflicting claims about the phenomenon. However, I think it is a mistake to assume that all the 

assumptions of the idealized models used within science are automatically constituents of 
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science’s understanding of a phenomenon. Instead, “It is only through the use of models, or 

indeed any other kind of object or representation, that scientists acquire understanding of the 

world” (de Regt, Leonelli and Eigner 2009, 12). As a result, I argue that the modal information 

required to understand a phenomenon is typically strategically extracted from the use of 

idealized models. This means that not every idealization used in the production of scientific 

understanding need be included in the understanding scientists have of a phenomenon—even if 

those idealizations were essential to producing that understanding.  

Still, there is a sense in which our account of understanding ought to accommodate the 

idea that scientists might unknowingly believe some falsehoods or distortions without 

undermining the facticity of their understanding.13 Indeed, the history of science clearly shows 

that unknowingly believing some falsehoods is common within scientific practice.  

In light of this, my view is that understanding is factive because in order to genuinely 

understand a phenomenon most of what the agent (or community) believes about the 

phenomenon and the counterfactual dependencies and independencies that hold between features 

of real systems and that phenomenon must be true (Rice 2016, 2019). This does not mean that 

determining if an agent understands requires determining whether the percentage of true beliefs 

within their understanding meets some universally applicable threshold (e.g. eighty percent). For 

one thing, in different contexts, some pieces of information will be more important (or salient) to 

one’s understanding and so the correctness of those beliefs will carry more weight in determining 

whether one’s understanding meets this factive requirement. Other issues concern cases where 

one’s beliefs are only approximately true or are inferred from other false beliefs. These issues 

 
13 Indeed, if someone had an extensive set of justified true beliefs about the Roman Empire (and various related 

counterfactual situations), but also believed that Rome was currently on the northern border of Italy, we would not 

thereby claim that they failed to understand the subject matter at all—although their understanding might be 

improved by correcting this false belief. 
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suggest that the factive component of understanding will have to be somewhat context sensitive 

and allow for the possibility that one who understands might believe some (central) falsehoods 

about the phenomenon.  

Nonetheless, I contend that the body of information that constitutes science’s 

understanding will often be ‘true enough’ for us to maintain that genuine understanding requires 

meeting a factive requirement. For example, scientists’ understanding of the movement of 

planets seems to clearly meet this factive requirement since—although it may contain some false 

beliefs—it is mostly constituted by true beliefs and those beliefs are particularly salient in the 

context of inquiry; e.g. where the earth is, how planets rotate, which bodies orbit which others, 

and the elliptical shape of the orbits. Moreover, scientists’ understanding of this phenomenon 

also includes a plethora of correct information about how planetary motion would be different in 

a range of counterfactual situations; e.g. if the earth’s orbit were altered or the earth’s mass had 

been different. If scientists were systematically wrong about these salient facts or counterfactual 

situations, then they would fail to understand the phenomenon. Yet, given that most of their 

beliefs about planetary motion and how changes to the features of the system would change it are 

true, we ought to conclude that scientists do genuinely understand a great deal about planetary 

motion. This conception of understanding is still conspicuously factive since truth continues to 

play a key role in our judgments about whether or not we genuinely understand. 

Here it is worth highlighting an important contrast between my view and the view 

defended by Elgin. Because Elgin’s view requires exemplification, her view fails to 

accommodate cases in which drastic distortion of the salient features is used to further our 

understanding. The problem is that, as Elgin herself suggests, “Many scientific models such as 

equations and diagrams, are incapable of instantiating the properties they apparently impute to 
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their targets. If they cannot instantiate a range of properties, they cannot exemplify them.” (Elgin 

2017, 258). Elgin’s response to this objection is that these models are often true enough for 

purposes of understanding “because the models are approximately true, or because they diverge 

from truth in irrelevant respects, or because the range of cases for which they are not true is a 

range of cases we do not care about” (Elgin 2017, 261). This is fairly close to the suggestion 

made by Strevens and others that idealized models can be used to produce understanding as long 

as their idealizations only distort irrelevant or negligible features. In contrast, I argue that 

idealized models that are used to produce understanding are often not approximately true and 

distort significant difference-making features that the researchers take to be relevant. Therefore, I 

argue that limiting the contributions scientific models make to understanding to the features they 

(approximately) exemplify or instantiate is too narrow. Features can be emphasized, 

deemphasized, and learned about via the use of scientific representations without having to 

accurately represent, exemplify, or approximate those features. 

Another key difference with Elgin is that, while she takes the central role of idealization 

in science to require a nonfactive conception of understanding, I maintain that the central role of 

idealization in the extraction of modal information is compatible with a factive conception of the 

understanding produced by science. The key to recognizing this possibility is to separate the 

assumptions of idealized scientific representations from the modal information extracted from 

scientists’ strategic use of those representations. I will provided some more detailed examples of 

how this can occur in the next section. 

Let me now state my account of understanding more explicitly. Factive scientific 

understanding of a phenomenon is achieved when an agent (or community) grasps some correct 

modal information about the counterfactual dependencies and independencies that hold between 
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features of the system and the phenomenon and the agent (or community) grasps how that modal 

information can be systematically incorporated into a larger body of information in which most 

of what they believe about the phenomenon is true (Rice 2016). It is important to note that this 

account leaves open the possibility that some (and perhaps central) propositions of the 

representations that contribute to one’s understanding might be false or inaccurate. Moreover, on 

this account, the more accurate modal information that is grasped about how changes in the 

features of the system would result in changes in the phenomenon, the better (or deeper) one’s 

understanding of that phenomenon. 

 

4. Extracting Modal Information from Highly Idealized Models 

Using the above account of factive understanding, in this section I use examples from scientific 

practice to argue that factive understanding can be produced by (multiple conflicting) idealized 

models that inaccurately represent most of the features of their target system(s)—including 

features that are known to make a difference to the phenomenon of interest. This understanding 

is constituted by modal information regarding how changes in the observable and unobservable 

features of the system would result in changes in the phenomenon. This information is revealed 

by investigating various possible states of the target system(s) that illustrate how the 

phenomenon would have been different if various features of the system had been (perhaps 

radically) different then they are in the actual case. The examples provided here also illustrate 

how the assumptions of idealized models can be distinguished from the understanding extracted 

by scientists’ use of those models. 

 

4.1. Example #1: The Exploration of Possibilities 
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One way that idealized models that distort difference-making features can produce understanding 

is by using the model to demonstrate how something is possible by modeling a hypothetical (but 

nonactual) system (Lipton 2009; Nozick 1981, 12; Weisberg 2013). That is, the model is used to 

extract information about how the phenomenon counterfactually depends (or fails to depend) on 

various features of the system by investigating a merely possible system that shows how 

changing the actual features of the system result in changes in the phenomenon of interest. As 

Lipton suggests, in these cases “the kind of understanding gained is modal, but here what is 

gained is knowledge of possibility” (Lipton 2009, 49). Indeed, since grasping modal information 

about the possible states of the system provides understanding, exploring nonactual possible 

systems can produce understanding without aiming to accurately represent the features of any 

real-world system.  

An example of this kind of modeling is the use of the Hardy-Weinberg model in 

population genetics (Morrison 2015; Hartwell et al. 2000; Relethford 2012). This highly 

idealized model represents the change in the distribution of alleles in an infinite population of 

organisms that mate randomly and are not subject to migration or mutation (Relethford 2012; 

Stoneking 2017). This is a rather drastic distortion of the causes and processes that biologists 

know make a difference to actual evolutionary outcomes. No population is infinite and this 

assumption distorts the processes that result in drift (and selection) within real biological 

populations. Furthermore, all populations are subject to a plethora of other evolutionary 

influences such as selection, mutation, and migration, but each of these is distorted (or simply 

ignored) within the Hardy-Weinberg model. In addition, the Hardy-Weinberg model assumes 

that there is no intergenerational overlap. However, this is false of (almost) every real-world 
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population and is a difference-making feature for many evolutionary outcomes (Levy 2011; 

Morrison 2015; Stoneking 2017).  

The model does, however, demonstrate that in such a hypothetical (i.e. possible) system, 

one generation of random mating will produce a distribution of genotypes that is solely a 

function of the allele frequencies in the previous generation. Moreover, the model shows that this 

distribution will be stable in future generations provided that the above assumptions are held 

constant. More specifically, the model tells us that if we have a pair of alleles, A1 and A2, at a 

particular locus and in the initial population the ratio of A1 to A2 is p to q, the distribution for all 

succeeding generations will be: 

  p2A1A1 + 2pqA1A2 + q2A2A2 

regardless of the distribution of genotypes in the initial generation. By idealizing most of the 

influences on the population’s evolution, the model allows one to calculate the genotype 

frequencies after a round of random mating simply by knowing the allele frequencies in the 

previous generation. 

Despite its myriad distortions of difference-making features of actual biological 

populations: “The Hardy-Weinberg law enables us to understand fundamental features of 

heredity and variation…Hence, the claim that the law is false in some sense misses the point if 

our concern is understanding and conveying information” (Morrison 2009, 133). The key 

question is exactly how the model is able to produce this understanding of variation and heredity 

in actual biological populations.  

One way the Hardy-Weinberg model produces understanding is showing how it is 

possible for variation to be maintained across generations within a Mendelian framework. This 

result is important because before demonstrating the stability of the distribution of genotypes, 
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Darwinians believing that blending inheritance would lead to decreased variation in each 

successive generation. This was problematic because natural selection requires variation. The 

Hardy-Weinberg model answers the question, “How is it possible for the genetic structure to be 

maintained over successive generations?” (Morrison 2009, 134). This insight provides correct 

information about a modal possibility that is relevant to understanding how actual biological 

systems evolve. What is more, these results concerning how the biological population would 

behave in a radically different possible system help scientists see how changing various 

observable and unobservable features of the real system would result in changes in the 

phenomenon. This modal information concerning how changes in these features result in 

changes in the phenomenon can then be incorporated into a larger body of information that 

constitutes the scientific communities’ overall understanding of evolutionary phenomena. Since 

most of this information—as well as the modal information provided by investigating the Hardy-

Weinberg model—is correct, we can see how the model contributes factive understanding of real 

biological phenomena despite its being pervasively idealized. 

Rather than being an isolated case, the Hardy-Weinberg model is part of a large class of 

biological models that produce understanding by drastically distorting the evolutionary processes 

of real populations. Other examples include the Hawk-Dove model or the Prisoner’s dilemma 

(Rohwer and Rice 2016). These models produce understanding not by accurately representing 

the features of actual systems, but by modeling systems that are merely (biologically) possible. 

Indeed: “Selectionists have devoted a great deal of effort to the construction of models that are 

aimed at demonstrating that some observed or suspected phenomena are possible, that is, that 

they are compatible with the established or confirmed biological hypotheses” (Beckner 1968, 

165). The key in these cases is that models that represent possible (but non-actual) systems can 
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still provide correct modal information by showing how the phenomenon in question could have 

arisen (Lipton 2009, 51). By answering questions about the possibility space of the phenomenon, 

the model provides true modal information about the features of biological populations despite 

its drastic distortion of the difference-making features of all real biological populations. By 

incorporating this modal information into a larger body of information about how biological 

populations evolve, scientists come to (better) understand heredity and the transmission of 

variation.  

Elgin discusses the understanding produced by the HW-model somewhat differently: 

The Hardy-Weinberg model…exemplifies the pattern in the redistribution of the alleles in the 

absence of evolutionary pressures. Inasmuch as evolutionary pressures are always present, the 

model cannot, nor does it pretend to, account for allele distribution more generally. It is, however, 

very useful for some purposes. If population geneticists want to understand how significant an 

evolutionary factor such as migration is, they need a base rate. They need, that is, to know how 

alleles would redistribute in its absence (Elgin 2017, 263).14  

 

However, it is a bit unclear how, on Elgin’s view, exemplifying a pattern that fails to occur in 

any actual system is able to produce understanding. That is, the Hardy-Weinberg model fails to 

exemplify the salient features of any real-world biological population. Therefore, it is unclear 

how Elgin’s view, based on exemplification of the features of real systems, is able to show how 

the Hardy-Weinberg model produces understanding. In contrast, I have argued that the Hardy-

Weinberg model produces factive understanding of real biological phenomena because it enables 

biologists to grasp true model information about how the system would behave had various real 

features been (drastically) different in the ways represented by the model. In other words, the 

Hardy-Weinberg model produces understanding not because it exemplifies or accurately 

represents the features of real biological populations, but because it provides true information 

about how changing the features of real systems would change the dynamics of the population. 

 
14 This is very close to de Regt and Gijsbers’s (2017) idea that non-veridical models can promote understanding by 

being useful for moving science forward. 
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This understanding is produced by investigating a merely possible system in order to show how 

changing the features of real biological populations would result in changes in the phenomenon 

of interest.  

 

 

4.2. Example #2: Multiple Conflicting Models and Overall Understanding 

As we saw above, a major challenge for realist (or factivist) approaches to science comes from 

the use of multiple inconsistent models to understand the same phenomenon (Massimi 2018; 

Morrison 2011, 2015; Rice 2019). Across many sciences, multiple conflicting scientific 

representations are required to provide a complete understanding of a phenomenon (Green 

2013). These models typically provide incompatible representations of the difference-making 

features of their target system(s). Thus, if we required models that are used to understand (or 

explain) to accurately represent difference makers, then the realist would be forced to either 

endorse incompatible claims about the features of the target system or deny that such cases can 

produce genuine understanding. Elgin’s view based on exemplification also seems to face a 

challenge here. When models provide genuinely inconsistent representations of the salient 

features of their target systems, it is unclear how we can interpret the understanding these models 

provide in terms of exemplification of salient features. After all, the models each describe those 

features in contradictory and idealized ways. The way around these issues, I propose, is to see 

how each of the conflicting models can contribute to scientists’ overall understanding of the 

phenomenon by providing accurate modal information without having to accurately represent or 

exemplify the features of their target system(s). 

 As an example, scientists make use of multiple inconsistent models to study the nucleus 

(Morrison 2011). In fact, there are over thirty different nuclear models, each of which provides 
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insight into some aspects of nuclear structure and dynamics. What is troubling for the realist is 

that the set of assumptions made by any one of these models is in conflict with fundamental 

claims made by the others. For example, “some models assume that nucleons move 

approximately independently in the nucleus … while others characterize the nucleons as strongly 

coupled due to their strong short range interactions” (Morrison 2011, 347). In other words, the 

models scientists use to study the nucleus routinely provide idealized representations that are 

inconsistent with one another regarding precisely those features that scientists take to be most 

salient. As Morrison explains, “nuclear spin, size, binding energy, fission and several other 

properties of stable nuclei are all accounted for using models that describe one and the same 

entity (the nucleus) in different and contradictory ways” (Morrison 2011, 349). The challenge, of 

course, is seeing how such a conflicting set of idealized models can yield (factive) 

understanding. 

I suggest that the realist ought to reject the assumption that accurate representation (or 

exemplification) is essential to interpreting these idealized models as providing genuine factive 

understanding. Instead, I argue that we should interpret these various nuclear models as 

capturing different pieces of modal information about nuclear behaviors across different ranges 

of perturbations to the physical features of nuclear systems (Rice 2019). That is, these models 

produce understanding by modeling different ranges of possible systems that illustrate how 

changing (different) features of the actual system(s) would result in changes in the phenomena of 

interest. For example, the liquid-drop model captures one set of true modal information about 

nuclear phenomena by looking at a certain set of possible systems that change certain features of 

real systems, whereas the shell model might capture another set of true modal information about 

nuclear phenomena by looking at a different set of possible systems in which different real 
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features are altered, and so on for the other models. The general idea is that conflicting models 

can be used to extract different sets of modal information about the nucleus without having to 

interpret any one of the models as an accurate representation of the actual features of real nuclear 

systems. Indeed, while no single model is able to account for all the features of nuclear 

phenomena, these models have provided “an explanatory foundation for understanding certain 

processes” (Morrison 2011, 350). I argue that this is because multiple conflicting idealized 

models can be used to produce different sets of counterfactual dependence information about the 

target system despite the inaccuracy of the models used to extract that modal information. This 

counterfactual dependence information about how changes to the features of the system would 

change the phenomenon can then constitute a coherent (and consistent) body of information 

about the phenomenon even if the models used to explore those possibilities represent 

incompatible systems. Just because the representations of the liquid drop model and the shell 

model are incompatible does not entail that the counterfactual dependencies the liquid drop 

model reveals about real systems will conflict with the counterfactual dependencies revealed by 

the shell model. The modal information extracted from these multiple conflicting models can 

then be incorporated into physicists’ overall body of information concerning nuclear 

phenomenon, which is constituted by mostly true beliefs about the nature of the nucleus and how 

changing the features of the nucleus would result in changes to various phenomena that are of 

interest to physicists. As a result, the use of multiple conflicting models can improve scientists’ 

body of factive understanding even if none of the models provides an accurate representation of 

the difference-making features of real systems in which that phenomenon occurs. 

Elgin addresses this case quite differently. She says: 

 
…if what one model highlights is that in some significant respects the nucleus behaves like a liquid 

drop, and another model highlights that in some other significant respects it behaves as though it 

has a shell structure, there is in principle no problem. There is no reason why the same thing should 
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not share some significant properties with liquid drops and other significant properties with rigid 

shells. (Elgin 2017, 270) 

 

While this is somewhat helpful in moving us away from focusing on accurate representation 

relations, Elgin’s proposal requires that the features these models enable us understand ought to 

be exemplified (i.e. instantiated) in some way. That is, what the models enable us to understand 

must be what each model has in common with the actual systems. This works fine when the 

salient features involved in the understanding provided by one model are sufficiently different 

and separable from the features involved in the understanding provide by another model. The 

issue is that in many instances—including the multiple conflicting models of the nucleus—this 

assumption cannot be made. As Morrison notes, cases in which different aspects of the 

phenomenon can be investigated by idealizing the system in different ways are importantly 

different from cases of genuinely inconsistent models like those in the nuclear modeling case. In 

this case, each of the models “makes very different assumptions about exactly the same thing” 

(Morrison 2011, 347). As a result, we cannot interpret these cases as merely exemplifying 

different aspects of the phenomena of interest. Instead, these models provide contradictory 

representations of the same features of the system in order to explore alternative possible states 

of the system. By seeing how exploring these various contradictory possibilities can produce 

understanding of the actual phenomenon via the extraction of modal information, we can see 

how scientists have developed a large body of factive understanding of nuclear phenomena 

despite the fact that the models used to produce that understanding fail to accurately represent or 

exemplify the salient features of real systems.  

 

5. Understanding Realism 
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In light of the above discussion, I contend that the use of pervasively inaccurate representations 

in science can be made compatible with a version of realism that I call Understanding Realism. 

According to this view, the primary epistemic aim of science is factive understanding and this 

aim can be, and often has been, accomplished by the use of models (and theories) that 

inaccurately represent most of the features of their target system(s) (Potochnik 2017; Rice 2016, 

2019). The key is noting that the understanding provided by scientists’ use of idealized models 

ought to be separated from the representational accuracy of the models and theories used to 

produce that understanding. According to Understanding Realism, factive understanding of 

natural phenomena is provided by the correct modal information extracted from idealized 

models. Importantly, this means that the plethora of modal information included in scientists’ 

understanding of various phenomena need not include the inconsistent assumptions included in 

the various (conflicting) idealized models used to study those phenomena. In short, the grasping 

of the modal information required to understand natural phenomena can be separated from the 

detailed assumptions involved in constructing the various idealized model systems used to 

extract that information. 

 Distinguishing the understanding provided by models from the assumptions of the 

models themselves allows us to maintain a factive conception of scientific understanding despite 

the central use of idealization in science. In contrast, Elgin argues against any kind of veritism 

that takes truth to be necessary for epistemic success, since “if we accept it, we cannot do justice 

to the epistemic achievements of science” (Elgin 2017, 9). Specifically, Elgin argues that “The 

more serious problem comes with the laws, models, and idealizations that are acknowledged not 

to be true but that are nonetheless critical to, indeed at least partially constitutive of, the 

understanding that science delivers” (Elgin 2017, 14). While I am sympathetic with many 
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aspects of Elgin’s views, I disagree with the claim that the understanding produced by scientific 

inquiry must be partially constituted by (all of) the idealizations used in science. Although 

theories, models, and idealizations are certainly the tools with which scientists produce 

understanding of various phenomena, it does not directly follow that the assumptions involved in 

those tools must be included in the understanding extracted from scientists’ uses of those tools. If 

this separation between the representations used by scientists and the understanding provided by 

scientific inquiry is possible, then recognizing the central role of (multiple conflicting) idealized 

models in science need not force us to adopt a nonfactive conception of scientific understanding. 

Indeed, the account defended above maintains the requirement that the modal information used 

to understand a phenomenon must be constituted by mostly true beliefs about how changing the 

observable and unobservable features of the system would change the phenomenon without 

requiring that the models used to produce that understanding be accurate representations of the 

relevant features of their target system(s). 

In line with this account of understanding, I contend that realist approaches to science 

ought to focus their attention on science’s ability to provide factive understanding of patterns of 

counterfactual dependence and independence rather than on the truth or accuracy of our best 

theories and models themselves. Despite their drastic distortion of the features of real systems, 

scientific models can provide a wide range of true modal information about the counterfactual 

relevance and irrelevance of various features of real systems to the occurrence of natural 

phenomena (Batterman and Rice 2014; Massimi 2018; Rice 2013, 2016, 2017). Moreover, by 

building multiple conflicting models that explore different possible states of the system, 

scientists can extract a plethora of modal information that can be used to better understand the 

phenomenon (perhaps in a variety of ways). As a result, realists can claim that science is able to 
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achieve the epistemic success of factive understanding despite the fact that scientific models are 

typically highly idealized and conflict with one another. In fact, the above account suggests that 

realists ought to encourage such a proliferation of conflicting models since they will typically 

provide access to a wider range of modal information and, therefore, will provide more overall 

understanding than any single model (or perspective).  

Before moving forward, it is important to look at what this view has in common with 

other (more traditional) kinds of realism. Indeed, given that Understanding Realism denies one 

of the central tenets of realism—that our scientific models and theories are accurate descriptions 

of real world phenomena—it is worth taking a moment to consider why the above position ought 

to be considered a kind of realism. Moreover, given that I have argued that scientific models and 

theories are tools with which scientists extract modal information, one might think 

Understanding Realism has more in common with instrumentalism than realism.15  

However, while I have argued that scientific models are tools that are used to extract 

information, a key difference between this view and instrumentalism concerns what scientists are 

able to use the models to produce. For the instrumentalist, the results are either accurate 

prediction or empirical adequacy regarding observable features of the phenomenon (van 

Fraassen 1980). In contrast, Understanding Realism argues that scientific models and theories 

can be used to produce the epistemic achievement of factive understanding which requires much 

more than mere accurate prediction of observable features. In particular, the model must enable 

us to see how various changes to the observable and unobservable features of the real system(s) 

would result in changes in the phenomenon of interest. The important point is that this factive 

epistemic achievement requires accurate information about counterfactual dependencies that 

 
15 Thanks to an anonymous reviewer for pressing me to make the connection with realism and the distinction with 

instrumentalism clearer here. 
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hold between actual features of the system(s) and the predicted outcome—dependencies that will 

often hold between unobservables and the target phenomenon. This goes well beyond merely 

‘saving the phenomenon’ or being accurate regarding only observable aspects of real systems. In 

short, while scientific models and theories are instruments, according to Understanding Realism, 

they are instruments for producing factive understanding which requires much more than 

empirical adequacy. Most importantly, the modal information involved in scientists’ 

understanding of natural phenomena will (typically) be partially constituted by accurate 

information about unobservables and their dependence relations with the phenomenon of 

interest. 

In addition, the view defended here has much in common with traditional forms of 

realism in terms of what it claims about the epistemic aims of science, the role of truth in those 

epistemic aims, and our being justified in believing that (our current) science has in fact achieved 

those epistemic aims. One way of thinking about the realism debate is as a debate about the aims 

of science and the epistemic achievements we are justified in believing scientific inquiry has 

accomplished (e.g. understanding of unobservables vs. empirical adequacy). The problem, I’ve 

argued, is that most realist accounts have assumed that the accomplishment of the realist’s 

epistemic aims necessarily requires the development of true (or approximately true) theories or 

models. I think scientific practice makes clear that the epistemic achievements of science are 

accomplished via models and theories that drastically distort real systems. However, we can still 

be realists (of a sort) if we shift our consideration of these epistemic aims of science away from 

the theories and models themselves towards the modal information extracted from the use of 

those representations. By focusing on these epistemic achievements directly, we can see that, 

while it denies one of the central tenets of traditional accounts of realism, Understanding 
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Realism still makes several realist claims about the aims and epistemic accomplishments of 

scientific practice.  

First, my account argues that the aim of scientific inquiry is factive understanding. This 

means that science still aims at truth in an important way. Some philosophers have interpreted 

the reliance on essential idealizations as requiring the claim that science does not aim for truth or 

that science only aims for nonfactive epistemic achievements (Elgin 2017; Potochnik 2017). In 

contrast, I have argued that, despite the use of drastically distorted models and theories, science 

aims to uncover correct modal information about the counterfactual dependencies and 

independencies that obtain in the real world. In other words, the aim of facticity with respect to 

the epistemic achievements of science is consistent with the widespread use of grossly inaccurate 

scientific representations. 

Second, the above account holds that the factive understanding science aims at includes 

lots of accurate information about unobservable entities and their relationships to observable 

phenomena. That is, it isn’t just that these models and theories can be used to make accurate 

predictions of observable features, but that they can be used to extract true modal information 

about various observable and unobservable features of the system and how changes in those 

features would (or would not) change the results. This means that the epistemic aims of science 

often include providing accurate information about unobservables much like traditional accounts 

of realism.  

Finally, Understanding Realism still maintains that we are justified in believing much of 

what science’s factive understanding tells us about the operations of unobservable entities and 

their features even if we are not justified in believing the models and theories used to generate 

that understanding. That is, we are still justified in believing much of the information science has 
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provided about the nature of unobservable entities, processes, and features of real systems—that 

information is just contained in scientists’ understanding of the phenomenon rather than being 

accurately reflected or mirrored by the representations used to discover that information.  

In sum, Understanding Realism counts as a kind of realism because it: (1) makes a claim 

about the epistemic aims of science involving truth, (2) includes unobservable entities and their 

features within those truths that science aims at, and (3) makes a claim about science’s epistemic 

successes in terms of achieving factive understanding of many natural phenomena. The mistake 

of traditional accounts of realism has been assuming that these factive epistemic aims must be 

achieved via (or within) true or accurate models and theories. By showing that these factive 

epistemic achievements can be accomplished by other means, we can preserve the realist’s 

commitments regarding the aims and achievements of science without having to show that our 

models and theories accurately represent reality. 

The most pressing issue for Understanding Realism is to show why we are justified in 

believing the counterfactual dependence (and independence) information we extract from 

scientific models given that we know those models are inaccurate representations. In response, I 

suggest that instead of relying on accurate representation or exemplification of difference-

making features, realist approaches to science ought to appeal to the exploration of non-actual 

possibilities and the fact that many patterns of counterfactual dependence are universal across 

drastically different systems (Batterman and Rice 2014; Bokulich 2008, 2011; Morrison 2015; 

Rice 2017, 2018, 2019).  

In many cases, such as the Hardy-Weinberg model, the justification for trusting the 

modal information extracted from the idealized model is that the model represents a highly 

idealized non-actual system that changes many of the features we know are present in real 
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systems. As a result, despite failing to exemplify or accurately represent the features of real 

biological populations, the Hardy-Weinberg model can show how changes to the actual features 

of the system would result in changes in the evolutionary dynamics of the population. This 

modal information is true and reveals important information about the dependence relations that 

hold within real systems. This is accomplished by constructing a model of a hypothetical 

scenario that changes the features of the real systems in particular ways and looking at the results 

when certain key features (e.g. migration, mutation, drift, etc.) are absent or altered. 

In the second case, multiple conflicting models are used to extract modal information by 

having each of the models display different sets of counterfactual dependence relationships that 

are present in the real-world system. For example, the liquid drop model might display certain 

counterfactual dependencies present in real nuclear systems and the shell model might display 

some other counterfactual dependence relations between different features of the real system and 

the phenomenon of interest. Physicists’ concept of a universality class becomes particular useful 

in such cases where the model(s) and the target system(s) are claimed to display similar patterns 

of counterfactual dependence despite the drastic distortions involved in each of the models. The 

term ‘universality’ is just an expression of the fact that many systems that are perhaps extremely 

heterogeneous in their physical features will nonetheless display similar patterns of behavior 

(Batterman 2002; Kadanoff 2013; Morrison 2015). The systems that display similar patterns of 

behavior despite differences in their physical features are said to be in the same universality class 

(Kadanoff 2013).16 Physicists’ interest in universality has typically focused on patterns that are 

stable across extremely diverse real systems; e.g. the universality of critical exponents across a 

wide range of fluids and magnets (Batterman 2002). However, I argue that scientists also use 

 
16 As physicist Leo Kadanoff puts it, “Whenever two systems show an unexpected or deeply rooted identity of 

behavior they are said to be in the same universality class” (Kadanoff 2013, 178). 
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universality classes to find model systems that display similar patterns of counterfactual 

dependence to those found in real systems despite rather drastic differences in their features 

(Rice 2017, 2018).17 Thomas Gisiger explains how this works in physics: 

Universality has been described as a physicist’s dream come true. Indeed, what it tells us is that a 

system, whether it is a sample in a laboratory or a mathematical model, is very insensitive to details 

of its dynamics…From a theoretical point of view, to study a given physical system, one only has 

to consider the simplest mathematical model possibly conceivable in the same universality class. 

(Gisiger 2001, 173) 

 

After reviewing how this works in physics, Gisiger then argues that when it comes to modeling 

complex systems in biology, “One only has to choose a simple, or simplistic, model in the same 

universality class as the system under study” (Gisiger 2001, 175). 

When an idealized model system is within the same universality class as its target 

system(s), the model will display similar patterns of counterfactual dependence and 

independence despite the fact that the model may drastically distort the causes, mechanisms, or 

other features responsible for the phenomenon in real-world systems. For example, physicists 

have discovered that, despite drastic differences in their molecular details, a wide range of fluids 

display the same phase transition behaviors near their critical points (Batterman 2002). What is 

more, physicists have discovered that these same universal patterns are displayed by highly 

idealized models that look nothing like the real fluids whose behavior they are used to 

investigate (Batterman and Rice 2014). Despite these distortions, by delimiting the universality 

class of systems—which includes the idealized model systems—that display these universal 

patterns, physicists have discovered that these behaviors counterfactually depend on various 

features of real systems; e.g. the order parameter of the system. Moreover, physicists have used 

various mathematical modeling techniques such as the renormalization group to demonstrate that 

 
17 I refer to a model system as the abstract system represented by a scientific model that includes all and only the 

features specified by the model (within a particular modeling context). 
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most of the other features of these systems could be changed (or perturbed) without altering the 

critical behaviors of the system. All of this is accomplished without constructing a model that 

accurately represents or exemplifies difference makers. By identifying universal patterns of 

behavior, scientists can link the modal information extracted from their investigations of 

idealized models with patterns of counterfactual dependence and independence present in real 

systems. The stability of certain relationships of counterfactual dependence and independence 

across scientific models and real (or possible) systems enables scientists to justifiably use 

idealized models that drastically distort difference-making features to understand the behaviors 

of their real-world target system(s) (Batterman and Rice 2014; Rice 2017, 2018).  

In many cases—e.g. the multiple conflicting models case described above—similar 

patterns of counterfactual dependence will be displayed by systems with very different 

components, interactions, and processes. In these cases, scientists often construct pervasively 

distorted models that only include a few minimal features, but are amenable to the mathematical 

modeling techniques they have available. For example, in many cases “the large-scale structure 

is independent of a detailed description of the motion on the small scales. We can exploit this 

kind of ‘universality’ by designing the most convenient ‘minimal model.’” (Goldenfeld and 

Kadnoff 1999, 87). The resulting idealized model can then be used to investigate how changes in 

various features of the system are counterfactually related to the phenomenon of interest. When 

the idealized model is in the same universality class as the system(s) of interest, scientists can 

justifiably use the idealized model to discover how changes to the features of the system would 

result in changes to the phenomenon of interest (Rice 2017, 2018). 

I want to conclude this section by briefly mentioning two important implications of 

Understanding Realism that deserve to be explored in more detail than the space I have 
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remaining allows. First, it is important to note that the body of modal information that constitutes 

the scientific community’s current understanding of various phenomena has been contributed to 

by multiple contradictory models and theories across time. Understanding Realism suggests that 

just as multiple conflicting modeling approaches can each contribute to the production of factive 

understanding by exploring different possible states of real systems, so too can conflicting 

idealized models and theories used at different points in the history of science.18 That is, the 

above arguments concerning the use of multiple conflicting models to understand the same 

phenomenon might be used to show how past scientific representations that conflict with our 

current models and theories can contribute to our current understanding of natural phenomena.  

Along similar lines, Understanding Realism suggests that one of the best ways to improve 

science’s overall (degrees of) understanding is through increased diversity of the kinds of 

scientists (and non-scientists) and modeling approaches working to understand a phenomenon 

(Longino 1990, 2002, 2013; Potochnik 2017; Solomon 2001). By incorporating the modal 

information accessible by a more diverse range of scientific researchers and modeling 

approaches over time—whose background assumptions, models, theories, and methods might be 

in conflict—science will achieve a more complete understanding of natural phenomena than is 

possible within the limitations of any single perspective. Both of these ideas have important 

implications for the realism debate, but, given their complexity, a full treatment of them will 

have to be provided elsewhere. 

 

6. Conclusion 

 
18 The challenge here is to say precisely which pieces of modal information ought to be retained across radical 

changes to the models and theories adopted by the scientific community. 
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I have argued that the fact that our best scientific models and theories are pervasively inaccurate 

representations can be made compatible with a more nuanced form of scientific realism called 

Understanding Realism. According to this view, science aims at and often achieves factive 

understanding of natural phenomena by grasping true modal information. Moreover, the facticity 

of this kind of understanding can be separated from the accuracy of the models and theories used 

to produce it. Going forward, I suggest philosophers look more directly at the factive epistemic 

achievements of scientific communities rather than focusing exclusively on the accuracy of our 

current scientific models and theories. Often the best way to understand our world—and the 

ways our world could be—is by having a diverse community of researchers construct multiple 

conflicting models that each drastically distort the difference-making features of real systems.  
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