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A B S T R A C T   

Background: Manual annotation of seizures and interictal-ictal-injury continuum (IIIC) patterns in continuous 
EEG (cEEG) recorded from critically ill patients is a time-intensive process for clinicians and researchers. In this 
study, we evaluated the accuracy and efficiency of an automated clustering method to accelerate expert anno-
tation of cEEG. 
New method: We learned a local dictionary from 97 ICU patients by applying k-medoids clustering to 592 features 
in the time and frequency domains. We utilized changepoint detection (CPD) to segment the cEEG recordings. 
We then computed a bag-of-words (BoW) representation for each segment. We further clustered the segments by 
affinity propagation. EEG experts scored the resulting clusters for each patient by labeling only the cluster 
medoids. We trained a random forest classifier to assess validity of the clusters. 
Results: Mean pairwise agreement of 62.6% using this automated method was not significantly different from 
interrater agreements using manual labeling (63.8%), demonstrating the validity of the method. We also found 
that it takes experts using our method 5.31 ± 4.44 min to label the 30.19 ± 3.84 h of cEEG data, more than 45 
times faster than unaided manual review, demonstrating efficiency. 
Comparison with existing methods: Previous studies of EEG data labeling have generally yielded similar human 
expert interrater agreements, and lower agreements with automated methods. 
Conclusions: Our results suggest that long EEG recordings can be rapidly annotated by experts many times faster 
than unaided manual review through the use of an advanced clustering method.   

1. Introduction 

The electroencephalogram (EEG) is a cornerstone diagnostic mo-
dality employed clinically for epilepsy evaluation, sleep studies, and 
neurocritical care. In all of these settings, clinicians retain a high burden 
of manually annotating EEG into classes such as seizures, periodic dis-
charges, or sleep stages. Detecting electrographic events like these by 
manual review of EEG remains a critical bottleneck. In both clinical and 
research settings, the ability to automatically annotate EEG with high 
accuracy would greatly improve the efficiency of multiple analyses as 
compared to present practices. 

In the last decade, continuous EEG (cEEG) monitoring of high-risk 
patients in the intensive care unit (ICU) has become the standard of 
care (Hirsch, 2004; Friedman et al., 2009). Events of clinical interest in 
the ICU often presenting with correlates on cEEG include seizures, 
ischemia, hemorrhage, and elevated intracranial pressure (Friedman 
et al., 2009; Kennedy and Gerard, 2012). The volume of cEEG data 
recorded during a typical ICU stay for a single patient imposes a sig-
nificant annotation burden on clinicians. Automated annotation of cEEG 
from the ICU specifically could significantly accelerate classification and 
diagnosis to support clinical decisions for critically ill patients. 

Nonconvulsive seizures (NCS) constitute a clinically impactful class 
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of events with prognostic significance (Claassen, 2009). Up to 48% of 
patients in the ICU may exhibit NCS (Friedman et al., 2009). NCS can 
cause or exacerbate neuronal injury, inducing worse outcomes including 
permanent neurologic dysfunction and mortality (Hirsch, 2004). While 
these events most often have no discernable behavioral or functional 
correlate, they are detectable on cEEG (Friedman et al., 2009; Shneker 
and Fountain, 2003). 

Due to the clinical significance of these events, NCS is one of the 
labels used in this study of automated cEEG annotation. While seizure 
detection studies on convulsive seizures in patients with epilepsy syn-
dromes have yielded performances with sensitivity and specificity over 
95%, NCS detection on ICU patient cEEG data has performed consid-
erably worse, and has not been evaluated on large datasets (Bose et al., 
2017; Golmohammadi et al., 2017; Sackellares et al., 2011). 

In addition to NCS, the IIIC includes several other rhythmic seizure- 
like patterns not considered to be definite seizures, but still associated 
with poor outcomes and increased seizure risk (Gaspard et al., 2014). 
Therefore, in this study, we explore not only automatic labeling of NCS, 
but also additional IIIC patterns. In particular, lateralized (L) or gener-
alized (G) periodic discharges (PD) and rhythmic delta activity (RDA), as 
defined by American Clinical Neurophysiology Society (ACNS) ICU EEG 
terminology, have been shown to correlate with poor neurologic out-
comes (Claassen, 2009; Hirsch, 2011; Foreman et al., 2016; Halford 
et al., 2015). Efficient labeling of voluminous cEEG data will help enable 
development of better performing diagnostic and prognostic algorithms 
for clinical use, as well as more accurate models of the functional impact 
of IIIC events in research use. 

In order to divide cEEG data into discrete segments that can be an-
notated, we employ changepoint detection (CPD), a method that iden-
tifies sudden changes in sequential data (Adams and MacKay, 2007). In 
addition to EEG segmentation, variants of CPD methods have also been 
used effectively in process control, DNA segmentation, and epidemi-
ology (Adams and MacKay, 2007; Reeves et al., 2007; Barlow et al., 
1981; Kaplan and Shishkin, 2000). We then apply a bag-of-words (BoW) 
model, which summarizes each cEEG segment into a histogram of its 
composite “words”, which is then used for clustering. This BoW 
approach is adapted from machine learning methods developed for text 
and image classification (Zhang et al., 2010). 

In the presented analysis, we apply a method we introduced in an 
earlier pilot study (Jing et al., 2018), BoW-based clustering, to 
CPD-segmented cEEG data from critically ill patients in the ICU. Our 
method is designed to facilitate rapid and efficient labeling of cEEG 
recordings by experts, as compared to manual labeling. In this paper, we 
evaluate the performance of our method both in terms of the quality of 
its results, as measured in terms of interrater agreement of experts using 
the method, and in terms of the mean time required for expert 
annotation. 

2. Materials and methods 

2.1. EEG samples and feature extraction 

We selected archival data from 97 ICU patients with a variety of IIIC 
patterns. The local institutional review board (IRB) waived the 
requirement for informed consent for this retrospective analysis of EEG 
data. We used the MATLAB R2017 (Natick, MA) Signal Processing 
Toolbox for signal processing. For each patient, we collected at least 24 h 
of EEG data. We converted this data to longitudinal bipolar montage and 
resampled it to 200 Hz. Furthermore, we applied bandpass filtering 
between 0.5 Hz and 40 Hz to denoise the data. We did not apply addi-
tional artifact detection and removal before clustering, so that the 
clustering method would be robust to real-world clinical signal 
irregularities. 

We then divided all cEEG recordings into 2 s segments, and extracted 
a number of features in the spectral and time domains. These features 
include classic measures such as line length, kurtosis, entropy, nonlinear 

energy operator activation, relative power, power ratios, and power 
kurtosis (see Table 1). The chosen features were for a large part based on 
prior work, e.g. on automated sleep staging (Sun et al., 2017). The 
spectral features were calculated with the use of spectrograms, which 
were estimated with a multitaper (MT) framework (Babadi and Brown, 
2014). To include contextual information from the surrounding EEG, we 
also computed these features within windows of 6, 10 and 14 s centered 
on each 2 s segment (see Fig. 1A). We divided the scalp into 4 different 
brain regions for feature construction (LL: Left Lateral, RL: Right Lateral, 
LP: Left Parasagittal, and RP: Right Parasagittal) in order to represent 
spatial information (see Fig. 1B). 

The 37 different spectral and temporal features from all 4 temporal 
scales and all 4 spatial regions resulted in a total of 592 features, which 
collectively describe each 2 s segment of cEEG. This rich set of features is 
intended to suffice for differentiating patterns encountered in the cEEGs 
of ICU patients, including variations of NCS and patterns along the IIIC. 

2.2. CPD-BoW based unsupervised clustering 

The following steps were applied on each individual subject. 
Changepoint detection (CPD) is a general method to find abrupt 

changes in time series (Guralnik and Srivastava, 1999; Lund et al., 
2007). We applied CPD on the averaged spectrograms of each cEEG 
recording using a parametric global method, implemented in the 
MATLAB (Natick, MA) Signal Processing Toolbox. This method finds K 
changepoints in the signal x1, x2, …, xN by minimizing the following 
objective function for each recording: 

J(K) =
∑K

r=0

∑kr+1 − 1

i=kr

(xi −
〈

x
〉kr+1 − 1

kr
)

2
+ βK, (1)  

Here, k1, …, kK are the indices of the changepoints, with k0 and kK+1 
defined as the first and last sample in the signal respectively. 〈x〉a

b =

1
a− b+1

∑a
i=bxi is the mean operator and βK represents the penalty term 

added to avoid overfitting (i.e. introducing too many changepoints). 
This penalty term had a default of 10 times the variance in power within 
the segment, but could be manually adjusted by the user in the GUI. For 
the minimization we applied a recursive optimization algorithm based 
on dynamic programming with early abandonment (Killick et al., 2012). 
This breaks each cEEG into variable length segments that are relatively 
homogeneous between changepoints. The changepoints were rounded 
up to the future to fit within the 2 s temporal scale. To preempt the 
possibility of hypo-segmentation by automated CPD, we use a conser-
vative threshold for CPD to attain uniform segments; this threshold is 
optimized based on iterative user testing and feedback. 

Subsequently, we applied a bag-of-words (BoW) model (also known 
as a “term-frequency counter”) (Zhang et al., 2010). This model is 
commonly applied in document classification by recording the fre-
quency of occurrence of each word. In this study, we consider each cEEG 
recording as a special kind of “text,” with the variable length segments 
between the changepoints as “sentences,” and the consecutive 2 s seg-
ments as the elementary “words.” For each patient, feature 

Table 1 
EEG features.  

Temporal features Feature calculation Measurement 

Line length  Total variation 
Kurtosis  Extreme values 
Shannon entropy Absolute value Signal irregularity 
Nonlinear energy operator Mean and SD Changes of stationarity  

Spectral features 
Absolute δ, θ, α, and β power Kurtosis  
Relative δ, θ, α, and β power Mean, min, SD, 95th percentile 
δ/θ, δ/α, and θ/α power ratios Mean, min, SD, 95th percentile 

δ = 1–4 Hz, θ = 4–8 Hz, α = 8–12 Hz, β = 12–18 Hz. 
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dimensionality was reduced using principal component analysis (PCA), 
with 95% variance retained. We learned a dictionary of words by clus-
tering these dimensionality-reduced feature arrays using k-medoids 
clustering with k = 100 (chosen empirically). Here, each cluster repre-
sents one type of word, so that each sentence is represented as a 
collection of words. We then calculated the normalized histogram of 
words in each sentence, which is known as the BoW. Finally, we clus-
tered the sentences based on the corresponding BoW by applying 
χ2-based affinity propagation (AP) (see Fig. 2) (Dueck and Frey, 2007). 
The APCLUSTER toolbox in MATLAB was applied for this purpose. AP is 
a clustering algorithm that starts by considering all data points as po-
tential “exemplars” and then updates the availability of each point by 

recursively transmitting real-valued messages along the edges of the 
network until the optimal exemplars with corresponding clusters 
remain. The advantage of this method is that it does not require a pre-
defined number of clusters. 

2.3. NCS and IIIC annotation 

Three EEG experts (MT, MN, AH), i.e. fellowship trained epileptol-
ogists, independently performed manual scoring of the center of each 
exemplar sentence, defined as the medoid of each cluster identified by 
AP. A MATLAB-based graphical user interface (GUI) was developed for 
this purpose, as shown in Fig. 3. For each 2-second segment, the raw EEG 
and spectrograms were displayed within a wider temporal context of 
14 s (EEG) and 10–60 min (spectrograms). An embedding map showing 
the clusters in a two-dimensional space (computed via t-SNE) was also 
displayed. The initial reduced dimensionality and the perplexity of the 
Gaussian kernel of the t-SNE were both set to 30 and it was implemented 
in the MATLAB Toolbox for Dimensionality Reduction (v0.8.1b). The 
GUI presented the medoids sequentially to the experts, and experts an-
notated each pattern by clicking one of six label buttons. 

The different EEG patterns that we aimed to distinguish were 
“Seizure”, and the most common IIIC patterns: “LPD”, “GPD”, “LRDA” 
and “GRDA”, as defined by the ACNS (Hirsch et al., 2013). An “Other” 
class was added as well to cover any other patterns, including base-
line/background EEG, and major artifacts. We hypothesized that our 
CPD-BoW based clustering would render the data into relatively uniform 
groups of EEG patterns that can be accurately labeled as a group, by only 
inspecting the medoid exemplar of each cluster. 

To reduce label ‘noise’ (as distinct from true inter-rater disagree-
ment), we applied a simple label de-noising rule, based on domain 
knowledge. For each of the following pairs of labels, if two experts 
agreed on one label and the third expert disagreed, the third expert’s 
label was changed to agree with the other two: (Seizure, LPD), (Seizure, 
GPD), (Seizure, LRDA). The justification for this label-denoising rule is 
as follows: because IIIC patterns lie along a continuum, the classification 
of some EEG patterns are ambiguous, i.e. there can be more than one 
‘correct’ classification. This is particularly true for distinguishing be-
tween seizure, LPD, and GPD patterns. In such cases, labels from the 
three experts such as (seizure, LPD, LPD) do not represent true 

Fig. 1. Featurization of cEEG data. Features were computed from windows of 
2, 6, 10 and 14 s, centered on each 2 s segment (A), and from 4 different brain 
regions (B), to include contextual and spatial information in the feature rep-
resentation of the EEG. 

Fig. 2. Affinity propagation based clustering of CPD-BoW 
represented EEG. (A) A step-by-step representation of the pro-
posed method. Filtered EEG (B) and corresponding spectro-
grams (C) were segmented via changepoint detection (CPD), 
demarcated with magenta lines. (D) Each segment was then 
represented as a bag-of-words (BoW) histogram. (E) Chi- 
squared affinity propagation (AP) clustering then assigned the 
sample segment, encircled in magenta, to one of several clus-
ters. This figure, intended to illustrate our methodology, is 
based on synthetic data. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web 
version of this article.)   
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disagreement. We validated this rule by all three experts reviewing 
approximately 100 of these cases, confirming that indeed in nearly every 
case, the third expert conceded no difference in choosing between the 
label they originally gave versus the label given by their peers. The 
denoised labels were used throughout the remainder of the analysis. 

2.4. Validity of clusters 

To assess the validity of the BoW-based clustering, we trained a 
random forest classifier (RF) using a combination of labeled and pseu-
dolabeled data. The labeled data were the cluster medoids (2 s segments) 
that were directly annotated by our experts. The pseudolabeled data 
consisted of all non-medoid 2 s segments. Each of these segments 
received the label corresponding to that of the medoid of the cluster it 
belonged to. We reasoned that if this classifier is able to learn from the 
pseudolabeled data, this would indicate that clusters indeed are suitably 
uniform in terms of the EEG patterns they encompass. For example, if a 
medoid of a cluster is labeled as pattern A, but the majority of data 
points in this cluster have true label pattern B, the classifier would 
falsely learn to classify a similar data point as pattern A, as all data 
points received the label of the medoid. On the other hand, if the large 
majority of points have true labels that match that of the medoid, the 
classifier should be able to learn to classify correctly. 

First, each cluster was labeled according to the majority vote of the 
medoid of that cluster. If all three experts disagreed on the label of a 
medoid, its cluster was ignored for training. Thereafter, we pooled all 
patient data, i.e. the original 592 features of the 2 s segments, and 
randomly selected 100 samples from 80% of all clusters, excluding the 
medoid, which was the sample shown to experts for scoring. If a cluster 
consisted of less than 100 data points, all data points were selected. We 
applied PCA with 95% variance retained to the selected data and used 
this as training data for the RF. The center 2 s segments of the medoids of 
the remaining 20% of clusters, which were all visually scored by the 
experts, were used as testing data. This way, we made sure that no 
clusters involved in testing the classifier was also involved in training. 

We used the dimensionality-reduced feature arrays as input for a RF 

containing 1000 trees. We applied balanced class-weights for training 
the RF. We performed a non-stratified 5-fold cross-validation to assess 
the performance of this training and testing procedure. 

For each fold of cross-validation, we calculated the percentage 
agreement between the RF and the majority vote, as well as between the 
RF and each individual expert, and compared this to the agreement 
between the experts. We hypothesized that the agreement between the 
model and the experts would be statistically equivalent to the agreement 
within the experts. This was tested with a two one-sided test for 
equivalence (TOST) with the limits set to ±SD of the agreement within 
the experts (TOST toolblox version 1.0.0.0 in MATLAB) (Rogers et al., 
1993). A significant equivalence test would constitute evidence that 
‘pseudolabeled’ samples inherited from a single manually-annotated 
cluster center are of sufficiently high quality to justify forgoing the 
labor-intensive process of manually annotating all individual EEG 
samples within a cluster. 

To assess the added value of the CPD-BoW based clustering over a 
more straightforward method, we applied the same RF classification 
method to the k-medoids clusters upon which the BoW model was based. 
Hereafter, we compared the percentage agreement between this 
benchmark model and the majority vote of the experts with the per-
centage agreement between our more advanced model and the majority 
vote. 

3. Results 

The cEEG recordings had a mean length of 30.19 h (SD: 3.84), and 
the BoW-based clustering of each recording resulted in a mean number 
of clusters of 27 (SD: 11, range: 5–50). Table 2 shows the time per pa-
tient taken by the experts to label all cluster medoids of that patient. 

As can be seen, the median time taken by the 3 experts to label 24+ h 
of EEG data is around 4 min. In comparison, conventional review con-
sists of serially reviewing 10–15 s EEG intervals of the 24 h of EEG, 
which requires visual inspection of between 5760–8640 individual in-
tervals. Annotating 24 h of EEG at a temporal resolution of one label per 
2 s, which is the resolution obtained by the proposed annotation scheme, 

Fig. 3. The graphical user interface for rapid annotation. 14 s of EEG are shown on the right. The regional average spectrograms are shown on the left with the 
changepoint detection results below. The unsupervised clustering membership assignment is illustrated by the horizontal color bar at the bottom, as determined by 
the CPD-BoW-AP steps. The colors are assigned based on the average total power from all members in that cluster. The higher the power values usually correlate with 
severity of the EEG patterns (darker colors are more likely to be seizures or IIIC patterns). Above the spectrograms is a 2D embedding map computed using t-SNE 
(Maaten and Hinton, 2008) for data visualization and exploration. Each scattered point in this map corresponds to a 592-dimensional feature vector extracted from a 
2 s EEG interval. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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requires applying 43,200 labels per EEG. In practice, some time saving is 
often possible by “drawing boxes” around events of interest and labeling 
the entire events at once. Nevertheless, even done this way, manual 
annotation generally takes 2–4 h per 24 h of EEG (unpublished obser-
vations of author MBW), and is thus not scalable. Using 3 h as a con-
servative lower bound for unaided manual annotation, we estimate that 
our method provides a speedup of at least 45 times. 

Pooling all clusters for training the RF resulted in a total of 2623 
clusters (mean of 27 per subject). So in each fold, the test set consisted of 
524 or 525 data points (20% of all clusters). 19.75% of the clusters had 
less than 100 data points. The training sets ranged from 187,320 to 
188,799 data points. 61% of the clusters was labeled as ‘other’ based on 
the majority vote. For ‘Seizure’, ‘LPD’, ‘GPD’, ‘LRDA’ and ‘GRDA’ this 
was 5%, 14%, 8%, 4% and 8%, respectively. 162 principal components 
remained after application of PCA with 95% variance retained. 

Fig. 4 shows box plots of the pairwise percentage agreements be-
tween the model and the experts and within the experts. It also shows 
the percentage agreements with the majority vote of the experts. In the 
majority vote, the medoids on which all three experts disagreed were left 
out in testing, as we could not set a ‘true’ label for these segments. The 
mean pairwise agreement between the model and the experts was 62.6% 
(SD: 3.8) and within the experts 63.8% (SD: 4.2). The TOST rendered 
two significant one-sided t-tests with p < 0.001 and p = 0.0255 (df = 14). 

The mean agreement between the model and the majority vote of the 
experts was 72.5% (SD: 1.2). Our benchmark model, which was based 
upon the k-medoids clusters, had a mean agreement of 57.5% (SD: 2.4) 
with the majority vote. A two-sided t-test shows these results signifi-
cantly differ (p < 0.001, df = 14). 

4. Discussion 

We have validated a method to aggregate cEEG data into a small 
number of clusters, which can rapidly be annotated by EEG experts with 
an easy-to-use GUI. We did this by applying BoW-based clustering to 
cEEG, a method we have introduced elsewhere (Jing et al., 2018). Our 

method allows experts to quickly identify and tag seizures and IIIC 
patterns in critically ill patients. 

4.1. Findings 

The validity of the clustering results was assessed by training a RF 
classifier using randomly selected points within a cluster and assigning 
them the same label as the center of the cluster, and then comparing the 
predictions of this model with labels assigned by experts. If the clusters 
are ‘pure,’ i.e. if the whole cluster indeed belongs to a specific pattern 
type, the model predictions should agree well with annotations assigned 
by experts, whereas if there exist a large variety of pattern types within a 
cluster, agreement should be low. As shown in Fig. 4, agreement be-
tween experts and the automatic clustering is comparable with the 
interrater agreement of the three experts. The lack of significant dif-
ference supports the validity of this method: interrater agreements be-
tween the automated method and the human experts and those 
calculated among human experts are comparable in performance. In 
other words, the samples ‘pseudolabeled’ by inheriting the label of their 
cluster center were informative; the model trained with these pseudo-
labels was able to predict the score of an expert as well as the judgment 
of another expert would. This provides evidence that our methodology 
creates clusters in such a way that they meaningfully distinguish 
different pattern types. 

Our comparison with a less advanced methodology shows that the 
CPD-BoW based unsupervised clustering significantly improves the re-
sults. Moreover, it shows that it is rather difficult for an algorithm to 
achieve a level of agreement similar to the interrater agreement, even 
with the ‘tricky’ samples, where all experts had disagreed, left out. 

Previous studies of EEG data labeling have generally yielded similar 
human expert interrater agreements, and lower agreements with auto-
mated methods. The majority of studies conducted using experts label-
ing EEG data from the ICU or EMU including both seizure and multiple 
IIIC labels have resulted in kappas in the range of 0.50–0.66 (Hermans 
et al., 2016; Wusthoff et al., 2017; Halford et al., 2011, 2015; Shellhaas 
et al., 2008; Foreman et al., 2016; Mani et al., 2012). While Gaspard and 
colleagues report high agreement for seizures and IIIC patterns 
(κ> 90 %), their study used carefully curated examples, whereas our 
study included a wide variety of patterns which were not filtered in any 
way to fit any given pattern category (Gaspard et al., 2014). 

Labeling the cEEG data with our method took the experts at least 45 
times less time than manual labeling: the median time per patient was 
less than 4 min. This time saving effect is comparable to the order of 
magnitude time reduction we found in our earlier pilot study of this 
methodology (Jing et al., 2018). This result suggests that the method is 
fast and easy to use, enabling rapid generation of a large labeled EEG 
dataset. This dataset can in turn be reliably used for relating the different 
pattern types to patient outcomes in a supervised manner. Once applied 
to such large dataset, our interpretable method will enable analysis of 
which features most strongly define cEEG labels, which will be discussed 
in a future study. 

4.2. Limitations 

While this study suggests a valid novel approach for rapidly anno-
tating cEEG data, there are several limitations and caveats. Firstly, the 
interrater agreement remains relatively low, despite being comparable 
to the interrater agreement of human experts, which may be due to 
intrinsic overlap in EEG labeling criteria and resultant indeterminate 
labels (Hermans et al., 2016; Wusthoff et al., 2017; Halford et al., 2011, 
2015; Shellhaas et al., 2008; Foreman et al., 2016; Mani et al., 2012). 
Secondly, the data ended up having a relative overrepresentation of 
‘Other’ labeled cEEG (61%), which was mitigated by using balanced 
class weights in training the RF. Finally, not every segment of the 
training data was manually annotated so there could be ‘false’ labels 
relative to the ground truth labels of human experts. The RF classifier 

Table 2 
Annotation time cost per-patient (in minutes).   

Mean ± SD Median IQR 

Expert 1 5.61 ± 7.66 3.73 2.23–5.64 
Expert 2 2.08 ± 1.38 1.55 1.12–2.94 
Expert 3 8.86 ± 3.33 8.40 6.74–11.34 
Overall 5.52 ± 5.60 3.97 1.68–7.70 

IQR: inter quartile range. 

Fig. 4. Percentage agreements of all 5 folds between the RF classifier (C) and 
the experts (E1 to E3) and within the experts. Emaj is the majority vote of the 
experts, with the samples on which all experts disagreed left out. 
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demonstrates scalable performance on the held-out data incorporating 
pseudolabels, with the caveat that this procedure does not specifically 
test the equivalence of the pseudolabels to the ground truth labels. 

4.3. Future directions 

We anticipate three key use cases for our method: (1) categorization 
and labeling of large EEG datasets for population-level research; (2) 
creation and curation of labeled EEG databases to train machine 
learning models; and (3) rapid annotation of a specific EEG recording for 
patient care in the ICU or epilepsy monitoring unit (e.g. to estimate 
patient seizure burden for clinical management). 

Our work builds on previous work that has demonstrated the clinical 
utility of an EEG clustering approach (Hassan et al., 2015). We antici-
pate that this study and future related studies can significantly improve 
clinical workflows for clinical neurophysiologists, who currently work 
to manually label large quantities of data. Our clustering method per-
forms robustly enough that clinicians labeling data will only have to 
label a representative subset of a patient’s data, and can rely on the 
algorithm to effectively apply the labels across the dataset. In addition to 
saving clinician time, our approach preserves accuracy by eliminating 
long labeling sessions, and allowing experts to evaluate exemplary EEG 
segments in more detail. 

5. Conclusion 

This work supports the hypothesis that cEEG data can be validly 
clustered into a small number of distinct patterns. Our results suggest 
that long EEG recordings can be rapidly annotated by experts many 
times faster than unaided manual review. Using our system, we are 
currently in the process of labeling >30TB of EEG data from 2000 ICU 
subjects. The resulting EEG data will provide sufficient data to train deep 
neural network models to automatically detect NCS and IIIC patterns. 
This rich data will also allow us to gain a deeper understanding of the 
clinical consequences of NCS and IIIC events, and how the consequences 
depend on the attributes of different NCS and IIIC patterns. 
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