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Chronic lung allograft dysfunction (CLAD) is the major long-term cause of morbidity and mortality after lung
transplantation. Both bronchiolitis obliterans syndrome and restrictive lung allograft syndrome, two main
types of CLAD, lead to fibrosis in either the small airways or alveoli and pleura. Pathological pathways in CLAD
and other types offibrosis, for example idiopathic pulmonaryfibrosis, are assumed to overlap and thereforefibro-
sis biomarkers could aid in the early detection of CLAD. These biomarkers could help to differentiate between dif-
ferent phenotypes of CLAD and could, in comparison to biomarkers of inflammation, possibly distinguish an
infectious event from CLAD when a decline in lung function is present. This review gives an overview of
known CLAD specific biomarkers, describes new promising fibrosis biomarkers currently investigated in other
types of fibrosis, and discusses the possible use of these fibrosis biomarkers for CLAD.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Chronic lung allograft dysfunction (CLAD) is the main complication
limiting long term survival in lung transplantation [1]. It is estimated
that about 50% of lung transplant recipients develop CLAD in the first
five years after transplantation [2] and that development of the disease
is associated with lower quality of life [3]. CLAD remains the primary
cause of death in half of all lung transplantation(LTx) patients [4] even
though surgical procedures and immunosuppression have improved
over the last years. CLAD includes two distinct forms of graft dysfunc-
tion, restrictive allograft syndrome (RAS) and bronchiolitis obliterans
syndrome (BOS), the latter being the most common [5]. BOS is charac-
terized by remodeling and fibrotic obliteration of small airways and it
is thought to have a multifactorial origin. Repeated airway injury in-
duces recruitment of inflammatory cells that stimulate transition of ep-
ithelial cells into mesenchymal cells, migration of myofibroblasts and
production of extracellular matrix leading to occlusion of segments of
small airways [6]. Since histological confirmation of BOS is difficult be-
cause of its variable appearance, BOS is a clinical diagnosis based on
lung function decline [7,8]. Currently, BOS is diagnosed through spirom-
etry with measurement of forced expired volume in one second (FEV1)
and FEV1/forced vital capacity (FVC). BOS is confirmed when a 20% de-
cline in FEV1 compared to baseline persists for at least three months,
after exclusion of other causes of FEV1 decline, for example infection
or acute rejection [9]. Early detection of BOS is essential, since further
decline and mortality can possibly be prevented with changes in treat-
ment regimen [7,10].

In 2011 RAS, amore progressive form of CLADwas identified by Sato
et al. Patients with a RAS phenotype exhibit peripheral lung fibrosis and
restrictive lung function [11], negatively influencing survival compared
to BOS [12]. Diagnosis of RAS is based on a persistent 20% decline in
FEV1 for at least three months with a concomitant decline of at least
10% in total lung capacity. Moreover, persistent parenchymal opacities
with or without pleural based opacities of the chest should be visible
on high resolution computed tomography or chest x-ray [13]. The over-
all survival for RAS patients is estimated around 6–18 months, com-
pared to 3–5 years for BOS, necessitating a correct diagnosis for
patient consultation as well as for research purposes [14–16].

Biomarkers could aid in unravelling the underlying pathophysiology
of CLAD. Importantly, biomarkersmayhave a place in differentiating be-
tween BOS and RAS and play a role in identifying likelihood of rapid dis-
ease progression. Different specimens have been used to detect
biomarkers in CLAD: serum, bronchoalveolar lavage fluid (BALf) and
trans bronchial biopsies being the most common. Preferably, the speci-
men is collected via a simple technique, for example blood sampling.

In the early phase of disease, fibrosis is observed in patients with
CLAD together with inflammation. Therefore, many studies focus on in-
flammation and genetic polymorphisms as possible biomarkers for
CLAD. Inflammation, however, is highly dependent on other factors
like infection or gastro-esophageal reflux. Since fibrosis is an active pro-
cess, independent, but interconnected with inflammation, that pro-
gresses during advancing stages of CLAD, fibrotic biomarkers may
serve as robust markers for early detection and disease progression. In
addition, many pathological pathways in other fibrotic diseases, like id-
iopathic pulmonary fibrosis (IPF), overlap with CLAD development. It
may therefore be of great help to evaluate biomarkers that have been
studied for these conditions [17,18]. Several biomarkers appear to be
suitable to detect fibrosis in multiple fibrotic diseases in different
organ systems like IPF, auto-immune disorders and liver fibrosis
2

[19–22]. In this reviewwe give an overview of knownCLAD specific bio-
markers and describe new promising fibrosis biomarkers, currently
studied in other types of fibrosis, that may also be useful in CLAD.

2. Pathophysiology of CLAD

After LTx, allo-immune-dependent and independent factors are be-
lieved to start a response that ultimately culminates in airway or inter-
stitial fibrosis (Fig. 1). Allo-immune dependent factors include immune
responses of CD4+T cells that are highly sensitive tomismatchedmajor
histocompatibility complex (MHC) class I and class II. Also, immune re-
sponses are initiated by antibodies against MHCI or several non-MHC
antigens, such as an antibody against alpha1-tubulin which targets epi-
thelial cells. Independent factors that are believed to contribute to oc-
currence of BOS are infections, gastro-esophageal reflux and primary
graft dysfunction [23–25].

Central in the process leading to airway or interstitial fibrosis is con-
tinuous epithelial or endothelial micro-injury, by allo-reactive T cells,
antibody-activated natural killer cells or macrophages, infections, acid,
among others, resulting in activation of innate immune responses and
complement. Cytokines and chemokines released by resident immune
and lung cells will attract and activate neutrophils, monocytes andmac-
rophages in an attempt to mitigate injury and start tissue repair (Fig. 1).
Important in the repair process are interactions between macrophages
and (myo)fibroblasts that spiral into excessive production of extracellu-
lar matrix in response to continuous micro-injuries leading to the
fibrotic abnormalities seen in CLAD. Macrophages produce several
pro-fibrotic growth factors like transforming growth factor beta (TGF-
beta), platelet-derived growth factor (PDGF) and interleukin (IL)13,
that activate lung-resident fibroblasts and induce their differentiation
into myofibroblasts. These are the main producers of the excess extra-
cellularmatrix that is central to all types of CLAD [26]. Themyofibroblast
population does not solely originate from resident lung fibroblasts.
Fibrocytes, monocytic precursors of fibroblasts found in blood, are
attracted to peripheral tissue by several chemokines and can differenti-
ate into fibroblasts [27]. Furthermore, epithelial cells can differentiate
into myofibroblasts through a process called epithelial-mesenchymal
transition possibly through activation by TGF-beta [28].

Whereas BOS is characterized by fibrotic changes to the airways and
their subsequent occlusion, RAS encompasses anomalous obliteration of
alveoli by interstitial fibrosis perpetuated by myofibroblasts [6]. Recent
studies show that in patients with RAS, TGF-beta also causesmesenchy-
mal cells of the pleura to differentiate into myofibroblasts, through a
process called mesenchymal-to-myofibroblast transition [18]. Inciden-
tally, this process has also been identified in IPF patients [29,30].

The continuous micro-injury and repair/remodeling of the
transplanted organ will of course leave its mark in several compart-
ments of the body. Several markers of these processes have already
been studied in CLAD in serum as well as in BALf. For example,
exosomes containing high concentrations of self-antigens to k-α 1 tubu-
lin (K-α1T) and collagen type V (colV) were found in serum and BALf of
patients with BOS. These exosomes represent injury but possibly also
act as immunologically active particles that activate the recipients im-
mune system [31,32].

Different fibrotic diseases may share common underlying mecha-
nisms reflecting a wounding response to injury. This response charac-
terizes the complex nature of fibrosis with involvement of effector
cells such as fibroblasts, myofibroblasts and fibrocytes and deposition
of extracellular matrix [33]. Hypothetically biomarkers studied in IPF



Fig. 1. Pathway of formation of extracellular matrix causing luminal obstruction in BOS (bronchiolitis obliterans syndrome) or interstitial fibrosis in RAS (restrictive allograft syndrome).
Abbreviations: IL-13, Interleukin 13; TGF-β, transforming growth factor beta; PDGF, platelet derived growth factor; MMP-9, matrix metalloproteinase 9; CXCL12, stromal cell derived
factor 1; EMT, epithelial mesenchymal transition; MMT, macrophage to myofibroblast transition; ECM, extracellular matrix.
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and other fibrotic diseases like liver cirrhosis could also act as bio-
markers for CLAD. For example, markers known for their function in
cell proliferation or extracellular matrix production like fibulin-1 [34],
osteoprotegerin (OPG) [35] and pro-C3 [20] could also reflect manifes-
tation of fibrosis in CLAD (Fig. 2). Since the anatomy of affected organs,
the effector cells involved and ECM between tissues differ, the useful-
ness and comparability of fibrosis biomarkers in CLAD is unknown,
needing further research.

3. Current biomarkers associated with fibrosis in CLAD

3.1. MMP-9

Matrix metalloproteinases (MMPs) constitute a large group of pro-
teinases that are part of the process of turnover and stabilization of the ex-
tracellular matrix through their ability to degrade structural proteins like
collagen. MMPs are inhibited by tissue inhibitors of MMPs (TIMPs) that
bind the catalytic site of MMPs, leading to inactive MMPs. MMPs are pro-
duced in an inactive form bymany different cell types and once activated
in the extracellular space are thought to carry out different functions de-
pending on the cell type that produces them [36]. Since MMPs not only
cleave structural proteins in the extracellular matrix but also cleave sig-
naling proteins like cytokines, they can actively influence the inflamma-
tory state of tissue and indirectly influence the pro-fibrotic activity of
resident and immune cells(Fig. 2) [37]. MMPs clearly have a function in
extracellular matrix remodeling, but are also studied as biomarkers for
IPF, cardiovascular disease and cancer [38–40].

MMP-9, a gelatin degrading MMP, has a clear link with fibrotic re-
modeling. It is mainly produced by innate immune cells like neutro-
phils, eosinophils, and monocytes/macrophages but also by epithelial
3

cells [41]. Fernandez et al. used MMP-9 knockout mice in a tracheal al-
lograft transplant model and observed that obliterative allograft dys-
function was reduced in these mice compared to wildtype mice.
MMP-9 alsomodulated cellular infiltration into the allograft and activa-
tion and expansion of alloreactive T-cells. Furthermore, treatment with
doxycycline, a known inhibitor of MMPs, delayed development of BOS
inmice [42]. Not onlyMMP-9 appears to be involved in fibrotic changes,
other MMPs may also have a role.

Sato et al. showed that inhibition of MMPs with a low dose
broad spectrum MMP inhibitor (SC080) increased degradation of
an established collagen matrix in a rat intrapulmonary tracheal trans-
plant model, an effect that was not observed with a high dose of the in-
hibitor. This seems counter intuitive, howeverwhen transgenic deletion
or low dose chemical inhibition of MMPs was applied, upregulation of
collagenolytic MMPs, like MMP-2, was induced. This consequently in-
creased degradation of the established collagen matrix and lowered
production of collagen by myofibroblasts. Strikingly, expression of
MMP-8, −9 and − 13 was reduced, further illustrating the complexity
of the response in CLAD, in concert with observations that MMPs can
be up- and down- regulated in IPF, with their function being dependent
on their tissue location [43]. Reduced T-cell infiltration into the fibrous
deposit in the occluded airway through low dose SC080 treatment
coupled with lower numbers of myofibroblasts, augmented the effect.
When low dose SC080 treatmentwas combinedwith cyclosporin treat-
ment, a reduction in obliteration of allograft airways was observed [44].
In LTX patients, sputum MMP-9 and TIMP-1 levels were significantly
higher compared to normal controls, with CLAD patients having the
highest levels of MMP-9. In addition, the MMP-9/TIMP-1 ratio was
high in patients with chronic rejection, suggesting an imbalance be-
tween MMP-9 and its inhibitor that may lead to aberrant extracellular



Fig. 2. Current and possible biomarkers and accompanying processes leading to fibrosis in chronic lung allograft dysfunction. Abbreviations: ECM, extracellular matrix; CRC-reactive
protein; CRP-M, C-reactive protein degraded by MMP; OPG, osteoprotegerin; MiRNA, microRNA; anti-ColV/K- α1T, antibodies to collagen V and K- α 1 tubulin; AM, alveolar
macrophage; AEI, alveolar epithelial cell type I; AEII, alveolar epithelial cell type II; LR-MSC, lung resident mesenchymal stromal cell; RBC, red blood cell.
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matrix remodeling in the airways, activation of growth factors and cy-
tokines and the induction of a profibrotic response as is characteristic
of this MMP [43,45,46]. Importantly, a study by Hubner et al. reported
a higher MMP-9/TIMP-1 ratio in patients with BOS and this ratio also
correlated negatively with FEV1 in these patients [47].

In acute asthma, sputum MMP-9 is high during onset of an exacer-
bation with low TIMP-1 levels and thus high MMP-9/TIMP-1 ratios,
suggesting an inflammatory role for MMP-9 [48].

Recently, Pain et al. showed that plasma levels of MMP-9 also
predicted onset of BOS and RAS a year before diagnosis. Levels in
plasma increased before diagnosis, but declined with disease progres-
sion suggesting that the involvement of MMP-9 is primarily in the
early phases of CLAD [49]. In concordance, Kasteleijn et al. observed
high MMP-9 serum levels in BOS positive patients shortly after trans-
plantation, however no longitudinal change was seen in the MMP-9
levels [50].

MMP-9 levels in sputum rise before onset of CLAD, which is why
MMP-9 could serve as a biomarker for CLAD. However, the influence
of TIMP-1 levels and its relation to MMP-9 is not yet clear and study
populations thus far have been small thereby limiting interpretation of
the significance in CLAD.

3.2. YKL 40

YKL-40 is a chitinase-like glycoprotein that is expressed and se-
creted by lung alveolar macrophages, neutrophils and epithelial cells.
Its exact function is unknown, however YKL-40 is known to be a con-
nective tissue growth factor that promotes fibroblast growth and
contributes to tissue remodeling and degradation of extracellular
matrix [51,52] (Fig. 2). In addition, YKL-40 binds to type 1 collagen
4

and stimulates its fibril formation [53]. Higher YKL-40 levels are recog-
nized to reflect the fibrogenic process in fibrotic diseases like liver fibro-
sis, cryptogenic obliterative pneumonia and remodeling of airways in
asthma [51,54,55]. Furuhashi et al. reported a higher expression of
YKL-40 in serum and bronchial epithelial cells of patients with IPF. In
particular, YKL-40 expression is recognized in the bronchiolar epithelial
cells lining honeycomb spaces and in intra-alveolar spaces bordering
fibrotic lesions, suggesting a contributing role in development offibrosis
and tissue remodeling [56]. Interestingly, YKL-40 levels in BALF and
serum do not correlate, which could possibly be explained by different
sources of YKL-40 (alveolar macrophages and epithelial cells for YKL-
40 levels in BALf versus peripheral immune cells contributing to YKL-
40 levels in serum) and thus possibly reflecting two distinct processes
[56,57]. In LTx patients, YKL-40 serum levels before LTx are significantly
higher in patientswhodevelop BOS after LTx compared to thosewhodo
not and identify patients at risk for development of BOS [21] (Table 1).

YKL-40 levels remain significantly higher in patients developing BOS
and are also higher during progression of disease. In contrast, another
study in 20 LTx patients, reported no differences in serum levels of
YKL-40 between BOS-positive and BOS-negative patients measured be-
tween date of transplantation and date of onset of BOS. These investiga-
tors also found no longitudinal changes in serum levels of YKL-40
preceding BOS [50]. These opposing results may be explained by pro-
moter polymorphisms in the gene encoding for YKL-40 in different pop-
ulations. 10–23% of the variation in YKL-40 levels in healthy individuals
could be explained by polymorphisms [58,59]. Therefore, more studies
are necessary to investigate the role of YKL-40 and its predictive value
for BOS in LTx patients. It would be of interest to investigate if different
polymorphisms can indeed explain variations in serum levels before
and after transplantation and if YKL-40 levels change with progression



Table 1
Normal levels of current biomarkers in healthy controls.

Current biomarkers Patient (n) Specimen Level in healthy controls Levels in CLAD Levels in Non-CLAD Study

MMP-9 45 Sputum 41 ± 30 ng/ml ↑↑↑ ↑↑ Beeh [45]
YKL-40 57 Serum 46 (33–71) ng/ml ↑↑↑ ↑ Jaksch [21]
KL-6 46 Serum 235 ± 142 ng/ml ↑↑ ↑ Bessa [68]

73 Serum 265 (199–345) u/ml ↑↑↑ ↑ Berastegui [70]
Fibrocytes 39 Serum UK ↑↑ ↑ Lapar [27]
Mir-144 39 Lung tissue UK ↑↑ ↑ Xu [83]
Mir-151 33 Serum UK ↑↑ ↑ Budding [80]

Abbreviations: n, number; UK, unknown. Levels of biomarkers in BOS and non-BOS are presented as increase (↑) or decrease (↓) in lung transplantation patients compared to healthy
controls.
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of disease. In addition, further research into polymorphisms of YKL-40 is
needed to elucidate if specific morphisms are associated with develop-
ment of BOS or RAS.

3.3. KL-6

KL-6 is a glycoprotein that is mainly present on the surface of type II
alveolar epithelial cells, but is also expressed by other lung epithelial
cells. It acts as a chemotactic factor for human fibroblasts(Fig. 2) [60].
In healthy individuals a small amount of KL-6 is found in serum due to
leakage from alveoli into the circulation. Higher KL-6 levels in serum
after lung injury are believed to be the result of increased permeability
of the blood/alveolar barrier and the high expression by regenerating
type II alveolar epithelial cells. KL-6 induces fibrotic changes through
its proliferative and anti-apoptoptic actions on fibroblasts [61,62].

KL-6 is elevated in people with interstitial lung disease and proved
to be a useful marker of disease activity in interstitial lung disease
[63–65]. Significant increases in KL-6 levels did not occur in acute rejec-
tion in LTXpatients,which suggested itmay be a usefulmarker to differ-
entiate between BOS and acute rejection [66]. In 2006, Walter et al.
studied the levels of KL-6 in serum of LTx patients and concluded that
the levels of KL-6 were significantly higher in LTX patients with BOS
compared to LTX patients without BOS and healthy individuals. Also
higher levels of KL-6 correlated negatively with FEV1 [67]. Furthermore,
KL-6 levels increased in time in LTX patients who developed CLAD, but
declined in stable LTX patients 7 years after transplantation [68]. Later
studies from Oshimo and colleagues showed that patients with RAS
had significantly higher levels of KL-6 compared to BOS patients, per-
haps due to increased injury to type II alveolar epithelial cells in RAS
(Table 1). Therefore KL-6 could possibly be used to distinguish between
BOS or RAS [69,70].

However, the study populations to date have been small and valida-
tion in larger cohorts is needed with use of more follow up samples to
analyze the utility of changes of KL-6 longitudinally.

3.4. Fibrocytes

Fibrocytes are mesenchymal cell progenitors of myeloid origin that
can migrate to areas of injury and transform into fibroblast-like cells
that produce extracellular matrix. Classic fibrocyte cell surface markers
are the stromal marker collagen-1 and the immune cell marker CD45+
[27]. The role of fibrocytes in several fibrotic lung diseases is already
acknowledged [71,72]. Fibrocytes are thought to be recruited from the
circulation through chemokine receptors responding to secreted
chemokines released after alveolar damage. These chemokines attract
fibrocytes to the site of injury and stimulate their production of collagen
type I [73]. Moreover, fibrocyte secreted TGF-beta1 is known to activate
residentfibroblasts, possibly aggravating fibrotic responses to lung injury.

In a cohort of 39 LTx patients, LaPar et al. described that the number
of circulating fibrocytes in serum of BOS patients was significantly
higher compared to non-BOS patients and correlated positivelywith ad-
vanced stages of BOS. In addition, fibrocytes expressing CXCR4, a
5

specific subset of fibrocytes, significantly increased with advancing
BOS stage [27]. Research in IPF and murine models in bleomycin-
induced lung injury showed that CXCR4+ fibrocytes, attracted by the
chemokine CXCL12, played a significant role in pathogenesis of fibrosis
[74,75]. Therefore, this subset of fibrocytes may play a role in the path-
ogenesis of BOS through the CXCR4/CXCL12 axis, but further research is
warranted to investigate this.

It is not known what the role is of fibrocytes in the pathogenesis of
RAS and their use as a biomarker is therefore uncertain. Moreover, the
role of underlying disease for transplantation on the number on
fibrocytes in unilateral transplanted patients also requires further
consideration.

3.5. Micro-RNAs

Micro RNAs(miRNA) are short non-coding RNA molecules that reg-
ulate protein expression at the post-transcriptional level through bind-
ing to target messenger RNAs and by preventing translation of these
messenger RNAs [76]. miRNAs regulate more than 30% of protein gene
coding and are assigned an important role in the regulation ofmajor cel-
lular processes such as cell development and epithelial mesenchymal
transition [77,78]. Different miRNAs were either up- or downregulated
in patients that develop antibodies toMHCmolecules, a known risk fac-
tor for BOS, and appear to impact TGF-beta and B-cell receptor signaling
pathways [79].

Several miRNAs associated with fibrosis have been investigated in
CLAD. Pro-fibrotic mir-21 and mir-155 and anti-fibrotic mir-29a were
elevated in serum prior to the diagnosis of BOS compared to non-BOS
transplanted patients.Moreover,mir-103, amiRNApreviously not asso-
ciated with fibrosis, was also elevated in serum before diagnosis of BOS,
possibly due to active release ofmiRNAs in exosomes or upon cell injury
or death caused by a persistent inflammatory environment in the lung
[80]. In a rat tracheal transplant model of obliterative bronchiolitis
[81] and in pediatric transplantation patients with BOS [82], the gene
for mir-155, which alters a target gene involved in B- and T-cell differ-
entiation and function, was upregulated in BOS compared to non-BOS
suggesting a potential role for mir-155 in the induction of an unwanted
immune response against the donor organ leading to graft dysfunction.

The expression of mir-144was higher in lung tissue of patients with
BOS compared to non-BOS, while mir-144 regulated fibrogenesis
(Fig. 2) in fibroblasts through increased activity of the TGF-beta/SMAD
pathway. The role of mir-144 was confirmed by transfecting fibroblasts
withmir-144 and finding that these then expressedmore alpha smooth
muscle actin and fibronectin, a sign of transformation to myofibroblasts
[83]. To date, no studies have reported on the role of miRNAs in RAS.

4. Possible future biomarkers

4.1. Osteoprotegerin

Osteoprotegerin (OPG) is best known as a decoy receptor for recep-
tor activator of nuclear factor kappa-B ligand (RANKL) and tumor



E.A. van der Ploeg, B.N. Melgert, J.K. Burgess et al. Transplantation Reviews 35 (2021) 100626
necrosis factor-related apoptosis-inducing ligand (TRAIL). These are all
members of the tumor necrosis factor receptor family and mostly stud-
ied in the context of bone homeostasis and cancer [84,85]. RANKL is
expressed on osteoblasts and its receptor RANK is expressed on osteo-
clast precursor cells. Binding of RANKL to RANK on osteoclasts results
in osteoclast activation and subsequent bone matrix degradation. OPG
inhibits osteoclast activation and bonematrix degradation by neutraliz-
ing RANKL, thereby controlling bone density [86]. OPG can also neutral-
ize TRAIL and thereby inhibit apoptosis induction by TRAIL which is
most studied in the context of cancer [87].

OPG is not solely produced by osteoblasts and cancer cells, but is also
known to be produced by epithelial cells, smooth muscle cells and
(myo)fibroblasts. OPG messenger RNA and protein was found in lung
tissue, especially during fibrotic lung injury in IPF and mouse models
of pulmonary fibrosis [35,88,89] and OPG may be a predictor of rapid
progression of IPF [35]. Earlier studies showed OPG to be an inducer of
fibrogenesis by promoting vascular fibrosis and high expression of
OPG was described in liver and cardiac fibrosis and chronic kidney dis-
ease [90–94]. In liver fibrosis, adding OPG to a panel of serum markers
increased the diagnostic accuracy of this panel [95] (Table 2).Moreover,
recent studies show that OPG expression also responded to antifibrotic
treatment in vitro, suggesting OPG could not only be a biomarker for fi-
brosis severity but also for treatment efficacy [96]. The precise role of
OPG in (pulmonary) fibrosis remains to be elucidated, but may involve
neutralizing possible antifibrotic effects of RANKL and/or TRAIL. As
RANKL induces degradation of extracellular matrix in bone, it may
have similar effects in other tissues and neutralization of RANKL may
prevent this. Deficiency in TRAIL was found to abrogate lung injury
and fibrosis in bleomycin-treated mice and lower levels of TRAIL were
found in patients with IPF [97]. It is suggested that excessive
myofibroblast activation and extracellular matrix production is
prevented by TRAIL-induced apoptosis of myofibroblasts. Therefore,
neutralization of TRAIL by OPG may diminish these favorable effects of
TRAIL, leading to progression of fibrosis [98] (Fig. 2). Summarizing,
Table 2
Current and suggested biomarkers in chronic lung allograft dysfunction (CLAD).

Biomarker BOS/RAS Specimen Source F

MMP-9 BOS Serum, BALf,
sputum

Macrophages, neutrophils T

YKL-40 BOS Serum, BALf Lung alveolar macrophages, neutrophils,
epithelial cells

P
re
S

KL-6 BOS/RAS⁎ Serum Type II alveolar cells,
Epithelial cells

C

Fibrocytes BOS Serum Bone marrow P
T
S

Microrna BOS Serum, lung
biopsy

Nucleus R

Possible
biomarkers

Osteoprotegerin Possible
BOS/RAS

Serum Osteoblasts, epithelial cells, smooth
muscle cells, (myo)fibroblasts

A
T

Fibulin-1 Possible
BOS/RAS

Serum Fibroblasts S
F

CPRM Possible
BOS/RAS

Serum C-reactive protein C

Pro-C3 Possible
BOS/RAS

Serum Collagen type III P
fo

Anti-Kα1T
Anti-ColV

Possible
BOS

Serum, BALf Alveolar epithelial cells
Collagen type V

S

Prostaglandin
E2

Possible
BOS/RAS

Unknown Mesenchymal stromal cells In
a

Abbreviations: BOS, bronchiolitis obliterans syndrome; RAS, restrictive allograft syndrome; BA
trix. * Serum KL-6 is higher in RAS patients compared to BOS patients and could distinguish be

6

given the close association of OPG with many types of fibrosis it could
also possibly serve as a biomarker in CLAD.

4.2. Fibulin-1

Fibulin-1 is a glycoprotein produced by fibroblasts and airway
smooth muscle cells [99] that aids stabilization of the extracellular ma-
trix by binding to elastic fibers and interacting with fibronectin
[100,101]. Fibulin-1 has been reported to stimulate, as well as inhibit,
wound repair in different tissues. Four isoforms of fibulin-1 have been
identified in humans; fibulin-1A, B, C, and D. It is assumed that all iso-
forms have their own specific role. Fibulin-1A and B are thought to
have a role in embryonal development, having been detected at low
levels in human placenta, but are not usually detectable in adults
[102]. Fibulin-1D has anti-oncogenic and anti-invasive properties,
while fibulin-1C interacts with factors regulating cell differentiation
[103]. A high ratio of fibulin-1C/fibulin-1D is associated with more ag-
gressive tumor types in ovarian cancer [104]. Currently, only fibulin-
1C is known to have a role in lung tissue remodeling. A study by Lau
et al. showed that fibulin-1 levels are higher in serum and BALf from
people with asthma compared to those without [99]. Exaggerated pro-
liferation was reported in airway smooth muscle cells derived from
asthmatic compared to non-asthmatic volunteers corresponding with
previous studies [105,106]. This exaggerated proliferation was abro-
gated when fibulin-1C was downregulated through use of a specific
fibulin-1C antisense oligomer in the asthmatic airway smooth muscle
cells. Interestingly, migration of cells was not affected, indicating that
fibulin-1C exerts its effect on remodeling mainly through regulation of
proliferation. Furthermore, induction of fibulin-1C mRNA expression
by TGF-beta was higher in airway smooth muscle cells from asthmatic
compared to non-asthmatic volunteers while the levels of induction of
fibulin-1D expression did not differ [99]. This corresponds with another
study showing that in asthmatics fibulin-1D expression in bronchial bi-
opsies was lower than in non-asthmatic volunteers [107]. Lau et al. also
unction/product Current
field
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showed that in vitro, fibulin-1C stimulated airway smooth muscle cell
proliferation and extracellular matrix production. Similarly, in osteo-
blasts fibulin-1C was reported to have a negative regulatory effect on
proliferation [103]. In this same study, transfecting fibrosarcoma-
derived cell lines with fibulin-1D was shown to inhibit their invasive
growth potential. Collectively, these studies support the hypothesis
that different isoforms of fibulin-1 have different properties and that
in the airways fibulin-1C has a specific role in regulating cell prolifera-
tion and in production of extracellular matrix, but not in directly con-
trolling the migration of cells.

In vivo, Liu et al. concluded that fibulin-1C deficient mice did not
have an increase in collagen deposition following exogenous airway
stimuli, in contrast towild type animals inwhich collagen accumulation
was observed around the airways [108]. In another murinemodel, defi-
ciency of fibulin-1C inhibited activation of TGF-beta, which further sup-
ports the hypothesis that an increase in fibulin-1C is pivotal for the
development of fibrosis [109].

Clinically, a study investigating patients with IPF reported that
fibulin-1 serum levels were higher in patients with IPF compared to
subjects without lung disease. Primary parenchymal fibroblasts from
patients with IPF produced significantly more fibulin-1 compared to
those from healthy controls. Moreover, serum fibulin-1 levels of IPF pa-
tients, at the time of first clinical presentation at a tertiary referral cen-
ter, predicted disease progression within the first year of follow up [34].

The role of fibulin-1 has not yet been investigated in CLAD but may
provide further insight into the fibrotic process in airways.

4.3. Pro\\C3

The protein fragment pro-C3 is a substitutemarker of collagen type III
formation [110–112]. Pro-C3 is the N-terminal pro-peptide of collagen
type III and is cleaved by proteases in the extracellular space before the
mature collagen fibril is incorporated in the extracellular matrix
[112,113]. BOS is characterized by increased deposition of type III collagen
in the submucosa of the bronchi and this was correlated with poor lung
function [26]. Moreover, in obliterative bronchiolitis lesions in a porcine
heterotopic bronchial transplantation model, expression of collagen
type III mRNA in fibroblast like cells increased in the obliterative lesion
when compared to autografts and immunosuppressed allografts [114].
This suggests that collagen type III formation contributes tonet deposition
of extracellular matrix and thus to fibrosis. In patients with liver fibrosis
due to hepatitis or those receiving combined anti-retroviral treatment
for HIV, plasma levels of pro-C3 positively correlated with fibrosis and
were predictive for disease progression [19,110]. In addition, in IPF pa-
tients, levels of pro-C3 were significantly higher in progressive disease
compared to stable disease. Interestingly, the ratio of levels of pro-C3
andC3M, amarker for degradation of type III collagen,was lower in stable
IPF patients compared to patients with progressive disease [20]. This un-
derlines the idea that progression of fibrosis in IPF is a result of turnover
and especially increased deposition of collagen, particularly type III.
Since CLAD represents a net deposition of collagen type III, pro-C3 may
therefore also serve as a biomarker in CLAD.

4.4. Metalloproteinase degraded C-reactive protein

C-reactive protein (CRP) is an acute phase protein that is synthesized
by the liver and to some extent deposited in inflamed tissues. Extracel-
lular matrix degradation by MMP-activity generates protein fragments,
like CRP degraded by metalloproteinases, that can be found in higher
levels in patients with fibrotic lung diseases. Inflammation causes deg-
radation of normal CRP, through proteolytical enzymes, into specific
fragments that can provide process-specific information about for ex-
ample which MMPs are activated [115,116]. In a prospective cohort
study, Jenkins et al. compared baseline matrix neoepitope concentra-
tions of patients with IPF with levels in controls, including C-reactive
protein degraded by MMP-1/8 (CRPM). A higher baseline CRPM
7

concentration in serum of patients with IPF was significantly associated
with shorter survival in a small cohort, but failed to show significance in
a larger cohort [117]. However, a change in CRPMserum levels did affect
overall survival hazard ratio. Since inflammation as well as MMP-
activity have a substantial role in CLAD, CRPM could also be elevated
in CLAD in the early stages of disease.

4.5. Antibodies to self-antigens K-α 1 tubulin and Collagen V

Antibodies to k-α 1 tubulin(K-α1T) and collagen type V(Col V) are
both associated with development of CLAD [118]. K-α1T is a gap junc-
tion protein with mostly intracellular functions [119]. Col V is usually
hiddenwithin the structure of collagen type I in the lung tissue extracel-
lularmatrix but when exposed can act as an immunogenic ECM protein
situated in the perivascular and peribronchiolar tissue [120]. Both neo-
antigens can be exposed after graft injury, leading to induction of an im-
mune response that is possibly aggravated by loss of peripheral toler-
ance through suppression of regulatory T-cells by immunosuppression
[118]. In particular K-α1T antibodies directly influence the occurrence
of airway obliteration through inducing an increase in fibrogenic
growth factor expression and fibroproliferation, when these antibodies
are bound to alveolar epithelial cells [119].

Higher serum concentrations of anti-K-α1T and anti-col V post LTx
were associated with a higher risk to develop BOS in LTx patients.
Saini et al. showed that anti-K-α1T levels in serumand BALfwere signif-
icantly higher in patients with BOS compared to non-BOS when
matched for time after transplantation. BALf levels of anti-Col V were
also significantly higher in BOS patients compared to non-BOS patients
[121]. The occurrence of antibodies directed towards to self-antigens
post LTx was shown to be linked to the development of donor specific
HLA antibodies in the recipient, potentially representing an interaction
between allo- and auto-immunity [118].

Remarkably, antibodies to self-antigens were also found in serum
pre-LTX. Antibodies to Col V and K-α1T were found in 70% of LTx pa-
tients who had antibodies to self-antigens after transplantation; of
whom 73% had persistent antibodies after LTx. Moreover, patients
with pre-transplant self-antibodies had a lower BOS free survival com-
pared to LTX patients who did not have pre-transplant antibodies to
self-antigens, suggesting that measurement of these antibodies may
aid risk prediction for development of BOS after LTx [122].

Antibodies to self-antigens and their role in generating a
fibroproliferative response show the complex nature of development of
BOS. Currently, it is not known if self-antigen antibodies can serve as a
longitudinal biomarker for BOS andmore data is needed. Also, further re-
search should elucidate if antibodies to self-antigens can distinguish be-
tween BOS and RAS and predict likelihood of disease progression.

4.6. Prostaglandin-E2

Prostaglandin-E2 (PGE2), a cyclooxygenase-derived lipid mediator,
is awell-known inhibitor of T cells and thus an important immunomod-
ulator [123]. Moreover, PGE2 is known for its anti-fibrotic characteris-
tics, i.e. inhibition of fibroblast migration, collagen synthesis and
differentiation of myofibroblast. It is known that deficiency of PGE2 in
IPF contributes to reduced fibroblast apoptosis and thus maintain
fibroproliferation [124]. Inhaled liposomal PGE2 increased survival in
IPF murine models after intratracheal instillation of bleomycin com-
pared to untreated mice [125,126].

PGE2 is produced, among many other cell types, by mesenchymal
stromal cells. Mesenchymal stromal cells play a large role in embryonal
organogenesis of the lung and are known residents in lung tissue [127].
These cells have the ability to differentiate intomyofibroblasts and have
a role in the regulation of the micro-environment of the extracellular
matrix. These cells are increased in number in BALf preceding onset of
BOS [128]. A study in 2012 reported that mesenchymal stromal cells
of patients with BOS produced less PGE2 in vitro compared to cells
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from non-BOS LTx patients. Mesenchymal stromal cells treated with
profibrotic chemokines IL-13/TGF-beta in combination with PGE2
showed less expression of alpha-smooth muscle actin and collagen-1
than cells treated with IL-13/TGF-beta only. Production of PGE2 in BOS
mesenchymal stromal cells in culture was also five times lower com-
pared to non-BOS cells and even twenty-two times lower when cells
were stimulated with IL-1beta. This suggested failure to upregulate
cyclooxygenase-2 (the enzyme responsible for the conversion of arachi-
donic acid to PGE2, via PGG2 and PGH2 before the generation of the five
major prostanoids—PGE2, PGI2, PGD2, PGF2, and thromboxane A2— by
their tissue-specific synthases respectively) expression in BOS mesen-
chymal stromal cells, which was supported by the subsequent western
blot analyses investigating cyclooxygenase-2 expression [129]. Further-
more, mesenchymal stromal cells from lung tissue of patients with BOS
seem to be resistant to exogenously produced PGE2, for example by ep-
ithelium. This was also noticed in IPF previously, possibly caused by dif-
ferential expression of the receptors for PGE2, with downregulation of
E-prostanoid receptor 2 in IPF mesenchymal cells [130]. Currently, no
data exists on PGE2 as a biomarker for development of BOS, however
this should be a target for further research.

5. Conclusion

LTx survival is, in about half of the cases, limited by CLAD. Patients
with CLAD form a heterogenic populationwith different disease pheno-
types that share a common end stage in the form of fibrosis. Several fi-
brotic biomarkers have already been investigated in CLAD in different
specimens. Serum or sputum seem to be the least invasive methods to
acquire samples for regular testing. Present study populations are
often small, with unilateral as well as bilateral LTx patients included.
This may affect study outcomes since changes in biomarkers could
also reflect underlying disease activity in the remaining native lung. In
addition, further studies are needed to evaluate if known biomarkers
can distinguish between BOS and RAS. Since pathological pathways
overlap in different fibrotic diseases,more studies should be established
focusing on biomarkers that have already proven their predictive value
in detection and progression of fibrotic disease in for example IPF or
liver fibrosis. These future studies could meet the urgent need for bio-
markers in CLAD for early detection, phenotyping and monitoring dis-
ease activity. Moreover, fibrosis biomarkers would give a unique
insight in the pathophysiology of this heterogenic disease and could
help in developing new treatment strategies. Single biomarkers proba-
bly will not adequately represent the different stages and phenotypes
in the complex pathophysiological process in CLAD. Several specific bio-
markers of fibrosismay predict the clinical course and disease activity in
different fibrotic diseases, potentially illustrating contemporaneous
processes in different organs. Therefore, a single biomarker may not
provide a clear unique description of CLAD. In the future, a panel of bio-
markers each encompassing different components of the pathological
process of fibrosis will probably best illustrate CLAD and could thus pos-
itively impact long term outcomes in LTx. The future for declading the
lung will be challenging but promising when we are informed by ad-
vances in other fibrotic diseases.
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