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Short communication 
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A B S T R A C T   

A significant proportion of individuals with attention-deficit/hyperactivity disorder (ADHD) show persistence into adulthood. The genetic and neural correlates of 
ADHD in adolescents versus adults remain poorly characterized. We investigated ADHD polygenic risk score (PRS) in relation to previously identified gray matter 
(GM) patterns, neurocognitive, and symptom findings in the same ADHD sample (462 adolescents & 422 adults from the NeuroIMAGE and IMpACT cohorts). 
Significant effects of ADHD PRS were found on hyperactivity and impulsivity symptoms in adolescents, hyperactivity symptom in adults, but not GM volume 
components. A distinct PRS effect between adolescents and adults on individual ADHD symptoms is suggested.   

1. Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a childhood- 
onset neuropsychiatric disorder characterized by inattention and/or 
hyperactivity-impulsivity (American Psychiatric Association, 2013). 
The disorder is associated with alterations of brain structure and func
tion mostly found in the caudate nucleus, right globus palidus and pu
tamen, fronto-striatal-parietal pathway, and cerebellum (Dickstein 
et al., 2006; Faraone et al., 2005; Frodl and Skokauskas, 2012; Halperin 
and Schulz, 2006; Hoogman et al., 2017; Nakao et al., 2011; Polanczyk 
and Rohde, 2007; Valera et al., 2007). ADHD is also often marked by 
impairments in cognitive functioning; including deficits in working 

memory, inhibitory control, and cognitive flexibility (Alderson et al., 
2013; Lijffijt et al., 2005; Martinussen et al., 2005; Tarver et al., 2014). 
The persistence rate of ADHD from childhood into adulthood is esti
mated between 15 and 60%, depending on the definition of persistence 
(Chandra et al., 2016). 

Symptom profiles, neuroanatomical features, and cognitive deficits 
also appear to differ between children and adults with ADHD. In chil
dren, hyperactivity is the more common presentation, whereas inat
tention, restlessness, and working memory deficits are more common in 
adulthood (Agnew-Blais et al., 2016). In addition, previous literature 
has shown different neuroanatomical features between the age groups 
with adolescents showing more significant alterations in the bilateral 

* Corresponding author. Georgia State University, Atlanta, GA. 
E-mail address: krootesmurdy1@student.gsu.edu (K. Rootes-Murdy).   

1 These authors contributed equally 

Contents lists available at ScienceDirect 

Psychiatry Research: Neuroimaging 

journal homepage: www.elsevier.com/locate/psychresns 

https://doi.org/10.1016/j.pscychresns.2021.111282 
Received 18 March 2020; Received in revised form 12 March 2021; Accepted 18 March 2021   

mailto:krootesmurdy1@student.gsu.edu
www.sciencedirect.com/science/journal/09254927
https://www.elsevier.com/locate/psychresns
https://doi.org/10.1016/j.pscychresns.2021.111282
https://doi.org/10.1016/j.pscychresns.2021.111282
https://doi.org/10.1016/j.pscychresns.2021.111282
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pscychresns.2021.111282&domain=pdf


Psychiatry Research: Neuroimaging 311 (2021) 111282

2

Crus I, insula, caudate, thalamus, and middle occipital gyrus, adults 
showing moresignificant alterations in the middle frontal gyrus (Duan 
et al., 2018; Jiang et al., 2019), and children (age 4–9 years) having the 
greatest reduction in cortical surface area among all the age groups 
(Hoogman et al., 2019). 

ADHD is considered among the most heritable psychiatric disorders 
with a heritability percentage estimate of 76% (Biederman et al., 1990; 
Wolfers et al., 2016). Twelve independent loci on 11 different chro
mosomes were identified as surpassing genome-wide significance to 
carry the risk to ADHD (Demontis et al., 2019). However, only a small 
percentage of heritability was accounted for, indicating a need for 
further investigation into the common variants of ADHD (Demontis 
et al., 2019). 

Given the differing symptom profiles, neuroanatomical features, and 
cognitive deficits, examination of the genetic underpinnings of adult 
ADHD is needed. We aimed to investigate the differences in genetic ef
fects between adolescents and adults with ADHD. Specifically, we 
investigated how ADHD polygenic risks scores (PRS) based on a genome 
wide association children and adult study from the Lundbeck Founda
tion Initiative for Integrative Psychiatric Research (iPSYCH; https://ipsy 
ch.au.dk/downloads/) may influence brain structures and symptoms in 
ADHD that has persisted into adulthood, and how these genetic effects 
differ from those in adolescence (Duan et al., 2018; Jiang et al., 2019). 

2. Methods 

2.1. Participants 

This study included adolescents and adults with ADHD, siblings of 
individuals with ADHD, and unrelated healthy controls (462 adolescent 
participants from the NeuroIMAGE cohort, 278 adult participants from 
the NeuroIMAGE cohort, and 144 adult participants from the Dutch 
IMpACT consortium). The NeuroIMAGE projects included relatives of 
both the adolescent participants and the adult participants, while the 
IMpACT cohort were unrelated. Participant breakdown and de
mographics are further explained in Supplemental Appendix 1. Partici
pant recruitment, consent process, and enrollment are detailed in the 
original studies (Mostert et al., 2015; Onnink et al., 2016; von Rhein 
et al., 2015). 

2.2. Clinical and neurocognitive measures 

In brief, individuals with ADHD were included if they met the DSM- 
IV (NeuroIMAGE project) (American Psychiatric Association, 1994) or 
DSM-IV-TR (IMpACT consortium) (American Psychiatric Association, 
2000) criteria for ADHD. Two symptom domains, inattention and hy
peractivity/impulsivity, were evaluated between the two cohorts based 
on the 18 DSM-IV symptom questions (American Psychiatric Associa
tion, 1994). The symptom scores for both domains ranged from 0 to 9, 
with larger scores indicating more severe symptoms (Duan et al., 2018; 
Noordermeer et al., 2017). To examine working memory capacity, the 
WAIS Digit Span test (Wechsler et al., 2000) with maximum forward and 
backward scores was assessed in both NeuroIMAGE and IMpACT par
ticipants. Further assessment information is detailed in Supplemental 
Appendix 1. 

2.3. Neuroimaging 

T1-weighted images were acquired from three 1.5T scanners 
(Amsterdam using Siemens SONATA and Siemens AVANTO, and Nij
megen using Siemens SONATA). The imaging preprocessing procedure 
was the same as in previous studies and is further detailed in Supple
mental Appendix 2. In brief, the Jacobian-scaled modulated images 
were regressed for age, sex, and site prior to analyses. 

2.4. Structural brain decomposition 

The preprocessed images went through component estimation using 
the minimum description length algorithm (Rissanen, 1978). Twenty 
distinct gray matter (GM) components were computed by the infomax 
algorithm (Bell and Sejnowski, 1995) ICA (Xu et al., 2009) within the 
GIFT toolbox (http://mialab.mrn.org/software/gift). ICASSO (Himberg 
et al., 2004) with 10 ICA runs was used to ensure the stability of com
ponents. Detailed information about the GM brain components identi
fied in the previous studies is described in Supplemental Appendix 3. 

2.5. Genetic data and PRS construction 

We used PRSice-2 (https://www.prsice.info/) for PRS calculations 
(Choi and O’Reilly, 2019). Detailed information of genetic data and 
preprocessing is further described in Supplemental Appendix 4. The 
Lundbeck Foundation Initiative for Integrative Psychiatric Research 
(iPSYCH; https://ipsych.au.dk/downloads/) child and adult ADHD 
summary statistics were used as the base file, and the preprocessed ge
netic data were used as the target file for adolescent and adult samples. 

2.6. Association analyses of PRS, structural brain components, and 
behavior data 

Our previous research identified GM components, which were 
greater in controls than individuals with ADHD (Duan et al., 2018; Jiang 
et al., 2019). The association between PRS and those GM components 
that showed differences between cases and controls, symptom score, or 
neurocognitive differences were analyzed in separate linear mixed 
models (LMM). In the LMMs, the GM component was the dependent 
variable. Age, diagnosis, medication use (yes/no), and PRS were 
included as fixed effect with family as a random effect on the intercept. 
The quadratic effect of age2 (testing possible non-linear age effects) was 
added into the fixed effect for adolescents only. 

The associations between PRS and symptom score and neuro
cognitive data were also tested with similar LMMs. The individual 
ADHD symptoms of hyperactivity and inattention, and the working 
memory assessments of WAIS digital span forward and backward, were 
included in four separate LMMs as dependent variables. Again, age, sex, 
medication, and PRS were included as fixed effect with family as a 
random effect on the intercept. Significance corrections for multiple 
comparisons were done using false discovery rate (FDR) correction (p <
0.05) (Genovese et al., 2002). 

3. Results 

Detailed demographic information can be found in Supplementary 
Tables 1 and 2 for adolescents and adults, respectively. In the adolescent 
sample, the p-value threshold to compute PRS was 0.0025 with 3% of 
the case vs. control variance explained (p = 1.29E-04) (Fig. 1a). Using 
this threshold, a total of 1789 SNPs were included in the PRS model. In 
the adult sample, the p-value threshold to compute PRS was 0.065 with 
5.6% of the case vs. control variance explained (p = 2.94E-04). A total of 
15,908 SNPs were included in this model (Fig. 1b). 

In adolescents, there were no significant associations between PRS 
and any of the GM components previously reported (Supplemental Ap
pendix 5). In adolescents, PRS were positively related to hyperactivity 
scores (β = 0.10, p = 7.52E4 (FDR corrected)) and inattention scores (β 
= 0.09, p = 0.02 (FDR corrected)) after controlling for age, sex, and 
medication. In adults, PRS were positively related to hyperactivity 
scores (β = 0.19, p = 3.58E-03 (FDR corrected)) while controlling for 
age, sex, and medication, but not inattention scores (β = 0.06, p = 0.15 
(FDR corrected)). There were no significant associations with the pre
viously reported GM components for adults (Supplemental Appendix 6). 
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4. Discussion 

In this study, we assessed PRS effects on ADHD diagnosis, symptoms, 
and brain networks implicated in ADHD separately in two age cohorts: 
adolescents and adults. Our findings did not show a PRS effect on any of 
the previously identified GM components (see Supplemental Appendices 
5 and 6) related to ADHD in either adolescents or adults (Duan et al., 
2018; Jiang et al., 2019). However, our results did show a PRS effect on 
individual symptom domains of ADHD; in adolescents this held for both 
hyperactivity and inattention scores, while in adulthood this was only 
found for hyperactivity scores. 

Inattention is the prominent symptom profile of adults with ADHD, 
not hyperactivity (Spencer et al., 2007). Previous PRS literature has 
shown associations between PRS and individual externalizing symp
toms, hyperactivity among others, but not internalizing symptoms 
including inattention (Brikell et al., 2018). Our findings are in line with 
this previous literature. This may partially explain why our results 
showed no association between PRS and inattention in adults. In ado
lescents, symptoms of hyperactivity and inattention were highly corre
lated, and therefore, the dual results could be capturing the same 
behavioral presentation. These results may offer new insights into the 
genetic effects of the different behavioral phenotypes of ADHD through 
the lifespan. 

The variable persistence rate of ADHD from childhood to adulthood 
has previous lead to the speculation that adults with ADHD may present 
a more homogeneous phenotype of ADHD. Therefore, children with 
ADHD could be a more muddled representation of ADHD; perhaps 
representing varied phenotypes, environmental factors, or eventually 
simply “grow out” of their clinical diagnosis. Adults who have had the 
diagnosis of ADHD persist through adolescence into their adulthood, 
may be a more severe and consistent representation of the disorder. A 
recent study by Rovira and colleagues also found that the PRS for 
persistent ADHD (or adulthood ADHD) relates to a more severe and 
consistent clinical phenotype when compared to the PRS for childhood 
ADHD (Rovira et al., 2020). Our previous and current results support 
this notion that adulthood ADHD differs from childhood ADHD in 
phenotypic presentation, in the affected brain structures, and now, 
genetically. 

Limitations in our study include a relatively broad age range for the 
adolescent data (7 to 18 years old; mean = 14.65, SD = 2.24) that we 
counteracted by completing a voxelwise correction with the quadratic 
effect of age (age^2) in the analyses. Our sample sizes are also relatively 
small and should be replicated with larger samples as these results are 
meant to serve as preliminary findings for ADHD in adolescents and 

adults. 
In conclusion, the finding of different age groups with ADHD pre

senting with distinct symptom profiles partially explained by PRS is an 
important addition to the ADHD literature. We demonstrated a differ
ence between adolescents and adults in the effects of PRS on individual 
symptom domains. These results may be explained by differences in the 
genetic effects of the symptom domains of ADHD and should serve as a 
starting point for future genetic studies of adults with ADHD. 
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Fig. 1. Polygenic Risk Model Estimation. a) The polygenic risk model estimation based on iPSYCH data and case/control phenotypes in adolescent sample. The risk 
scores set at P value threshold of 0.0025 were included in the following analyses. b) The polygenic risk model estimation based on iPSYCH data and case/control 
phenotypes in adult sample. The risk scores set at P value threshold of 0.0652 were included in the following analyses. 
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