

 University of Groningen

Software reuse cuts both ways
Gkortzis, Antonios; Feitosa, Daniel; Spinellis, Diomidis

Published in:
Journal of Systems and Software

DOI:
10.1016/j.jss.2020.110653

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gkortzis, A., Feitosa, D., & Spinellis, D. (2021). Software reuse cuts both ways: An empirical analysis of its
relationship with security vulnerabilities. Journal of Systems and Software, 172, [110653].
https://doi.org/10.1016/j.jss.2020.110653

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-11-2022

https://doi.org/10.1016/j.jss.2020.110653
https://research.rug.nl/en/publications/8b99ca2b-f90e-464f-91fb-e1e4a6efddb2
https://doi.org/10.1016/j.jss.2020.110653

The Journal of Systems & Software 172 (2021) 110653

a

b

d
a
e
i
v
t
l
i
i
e
s

t
i
i
K

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Software reuse cuts bothways: An empirical analysis of its relationship
with security vulnerabilities
Antonios Gkortzis a,∗, Daniel Feitosa b, Diomidis Spinellis a

Department of Management Science and Technology, Athens University of Economics and Business, Patision 76, Athens, 10434, Greece
Campus Fryslân, University of Groningen, Wirdumerdijk 34, 8911 CE Leeuwarden, The Netherlands

a r t i c l e i n f o

Article history:
Received 3 November 2019
Received in revised form 13 April 2020
Accepted 18 May 2020
Available online 20 May 2020

Keywords:
Software reuse
Security vulnerabilities
Case study
Open-source software

a b s t r a c t

Software reuse is a widely adopted practice among both researchers and practitioners. The relation
between security and reuse can go both ways: a system can become more secure by relying on mature
dependencies, or more insecure by exposing a larger attack surface via exploitable dependencies.
To follow up on a previous study and shed more light on this subject, we further examine the
association between software reuse and security threats. In particular, we empirically investigate
1244 open-source projects in a multiple-case study to explore and discuss the distribution of security
vulnerabilities between the code created by a development team and the code reused through
dependencies. For that, we consider both potential vulnerabilities, as assessed through static analysis,
and disclosed vulnerabilities, reported in public databases. The results suggest that larger projects in
size are associated with an increase on the amount of potential vulnerabilities in both native and
reused code. Moreover, we found a strong correlation between a higher number of dependencies and
vulnerabilities. Based on our empirical investigation, it appears that source code reuse is neither a
silver bullet to combat vulnerabilities nor a frightening werewolf that entail an excessive number of
them.

© 2020 Published by Elsevier Inc.
1. Introduction

Software reuse is a part of the state-of-practice in software
evelopment, being supported by practitioners and researchers
like. The dominant mobile operating system, Android,1 is a mod-
rn, large-scale example of software reuse. The operating system
s highly modular, allowing smartphone providers to deploy fla-
ors of it, reusing and customizing most of the functionality. For
hat, the platform provides a set of more than 3 million Java
ibraries from the Maven repository.2 Moreover, Android’s core
s another great example, since it reuses the Linux kernel, which
s among the earliest examples of reuse. UNIX-based systems
merged and evolved thanks to systematic reuse, from which
ome are still maintained until the present time.
However, software reuse is not a silver bullet. Some of its limi-

ations are not characterized as ‘‘concerning’’ but as ‘‘dangerous’’,
n the sense that an important side-effect is the security risks that
t may entail. In a study with 4659 open-source software systems,
ula et al. (2018) showed that, although more than 80% of the

∗ Corresponding author.
E-mail addresses: antoniosgkortzis@aueb.gr (A. Gkortzis), d.feitosa@rug.nl

D. Feitosa), dds@aueb.gr (D. Spinellis).
1 https://www.android.com/.
2 https://mvnrepository.com/repos/central.
ttps://doi.org/10.1016/j.jss.2020.110653
164-1212/© 2020 Published by Elsevier Inc.
systems’ depended on outdated external libraries, 69% of the
interviewed developers were unaware of any security risks that
were introduced into the system due to incorporating the reused
code. Moreover, in the State of Open-Source Security report,3
Snyk shares the worrisome findings that between 2017 and 2019,
they observed an increase of 88% in the number of disclosed
vulnerabilities in open-source libraries.

As a concrete example, Heartbleed4 was a severe security vul-
nerability that resided in OpenSSL cryptographic software library,
which is a popular open-source component. The vulnerability
enabled malicious users to read arbitrary memory contents. By
exploiting this vulnerability any user could get access to keys that
protected communications, usernames and passwords, personal
emails, documents and messages. The bug was detected two years
later, after it affected the web servers that were powering 66% of
the active web sites at that time.5 Another, more recent, example
is the Equifax incident,6 in which hackers exploited a known
vulnerability in a third-party Java library that Equifax reused,

3 https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-
two-years/.
4 https://nvd.nist.gov/vuln/detail/CVE-2014-0160.
5 Netcraft, Web Server Survey, April 2014 - https://news.netcraft.com/

archives/2014/04/02/april-2014-web-server-survey.html.
6 https://www.equifaxsecurity2017.com/.

https://doi.org/10.1016/j.jss.2020.110653
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110653&domain=pdf
mailto:antoniosgkortzis@aueb.gr
mailto:d.feitosa@rug.nl
mailto:dds@aueb.gr
https://www.android.com/
https://mvnrepository.com/repos/central
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://snyk.io/blog/88-increase-in-application-library-vulnerabilities-over-two-years/
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
https://news.netcraft.com/archives/2014/04/02/april-2014-web-server-survey.html
https://www.equifaxsecurity2017.com/
https://doi.org/10.1016/j.jss.2020.110653

2 A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653

a
A

d

C
a

l
i
b
c
p
r
b
c
t
r
d
t
t
w

t
l
o
s
w
t
o
c
a
o
r
s
f
t
r
n
k
l
d
o

h
s
r
s
e
t
v
r
i
v

i
s
t

d

a

nd stole personal private information of more than 147 million
merican citizens.
Various initiatives try to battle this problem. GitHub intro-

uced the Security Alert for Vulnerable Dependencies7 service
aiming to increase users’ awareness and mitigate the potential
security risks. Similarly, any Linux or BSD system notifies its users
for available security updates in vulnerable versions of installed
packages and system libraries. Additionally, several popular se-
curity assessment tools (e.g., SpotBugs, Snyk, owasp Dependency
heck]) have plugins available for integrating them in any build
utomation tool and Continuous Integration (CI) service.
Development teams can reuse software through third-party

ibraries to add functionality to their system without the need to
mplement an available feature from scratch. Software reuse can
e performed in two ways: (a) black-box, in which the reused
ode is in binary form and (b) white-box, in which the third-
arty source code is inserted into the application. In black-box
euse, developers interact with the library through APIs provided
y the third-party developers without editing and maintaining its
ode. On the other hand, in white-box reuse, developers are able
o adjust the reused code and also select only a subset of it to
euse. In our study we focus on black-box reuse, considering that
evelopers do not have direct visibility of the library’s implemen-
ation and as a consequence, no awareness of the security risk,
hey might inherit. For the rest of the paper with ‘‘reused code’’
e refer to black-box type of reuse, unless stated otherwise.
Despite the existence of security mishaps and the initiatives

o counteract them, to the best of our knowledge, there is a
ack of large-scale studies that attempt to obtain an overview
f how security vulnerabilities are associated with code reuse,
o as to understand the phenomenon. To start filling this gap,
e carried out a first exploratory study (Gkortzis et al., 2019)
o investigate how potential vulnerabilities are distributed in
pen-source software-intensive systems, with regards to native
ode, i.e., written in-house by the software development team,
nd reused code, introduced through dependencies. We scope
ur research to answer concerns of software practitioners and
esearchers related to the potential security risks when they
elect to reuse software. Specifically, we aim at answering the
ollowing questions: (1) Will the third-party library that I want
o reuse suffer from security vulnerabilities? (2) How are secu-
ity vulnerabilities in open-source projects distributed between
ative and reused code? (3) Are third-party libraries from well-
nown open-source communities less vulnerable than those of
ess known ones? (4) Is the reuse frequency and the number of
evelopers using a third-party library associated with the amount
f vulnerabilities in a specific library?
The findings of our previous study suggest that software reuse

as a positive effect on reducing security risks. However, this
tudy had the following main limitations. First, the observed
elation was not strong, which indicated that a larger sample
ize could enlighten the discussion, and further factors that might
xplain the relation could be explored. Second, the investiga-
ion was limited to potential vulnerabilities. Although potential
ulnerabilities can be used as a proxy of lack of quality and
isk due to unmet security levels, they may not reflect the ex-
sting exploitable threats reported on repositories of disclosed
ulnerabilities.
This paper aims at further alleviating the aforementioned lim-

tations by analyzing a considerably larger set of open-source
oftware systems and, not only compare the levels of security be-
ween the native and reused code, but also triangulate the results

7 https://help.github.com/articles/about-security-alerts-for-vulnerable-
ependencies/.
by investigating an additional source of information, namely dis-
closed vulnerabilities. To achieve this goal, we considered a new
set of 1244 Java projects and collected both disclosed vulnerabil-
ities (reported in public datasets),8 and potential vulnerabilities
(detected based through static analysis). Adding to the initial
characteristics we investigated (Gkortzis et al., 2019), we col-
lected information regarding four characteristics of the projects
and dependencies of our dataset, namely, (1) supported by well-
known communities, (2) belonging to an enterprise organization,
(3) the number of their contributors, and (4) the frequency of
usage in projects. In addition to the statistical analysis presented
in our previous work we extended our analysis to incorporate the
aforementioned dimensions.

The analysis of the produced dataset suggests that the native
code seems to be more vulnerable than reused code, although
the reused code is dominant in the majority of the projects.
Additionally, 65% of the analyzed projects suffer from at least one
security vulnerability introduced through a dependency. More-
over, the numbers of both disclosed and potential vulnerabilities
are strongly correlated to the number of dependencies.

In summary, the contributions of our work are: (a) an en-
hanced toolkit and associated processes to build a dataset that
fosters the investigation of security vulnerabilities with regard
to software reuse in open-source Java projects, (b) the afore-
mentioned updated dataset per se, (c) an additional dataset on
the dependencies and its characteristics, and (d) an extended
statistical analysis of the dataset. We note that the toolkit and
guidelines to reproduce the process are available on GitHub9 and
the dataset on Zenodo.10

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 describes our theoretical
model and the approach for designing our study. Also, it presents
the steps necessary to construct and analyze the dataset. Section 4
presents our findings, which we further discuss in Section 5.
Section 6 presents the limitations of our study and Section 7 our
conclusions.

2. Related work

As we could not find studies that are similar to ours, we
broadened the scope of this section to describe efforts dealing
with software defects and vulnerabilities in reused code.

Pashchenko et al. (2018) studied the sap software ecosystem
with regards to the vulnerable open-source dependencies that
they use. Their dataset comprised the 200 most commonly used
open-source Maven dependencies in their systems. Regarding
vulnerabilities, they included those that are disclosed in public
databases, such as, the cve database, and thus, their study does
not suffer from false positives vulnerability reports. However,
the nonexistence of known vulnerabilities does not guarantee
the absence of any other undetected vulnerabilities. Their finding
showed that 13% of the direct and transitive used dependencies
were reported with at least one disclosed vulnerability. In their
analysis they excluded non-deployed dependencies (e.g., test de-
pendencies). In the same direction, Neuhaus and Zimmermann
(0000) studied the Red Hat Linux (RHEL) distribution and pro-
vided empirical evidence that certain packages (can be used as
dependencies) increase the risk of vulnerabilities in the system,
while other packages decrease it. Their goal is to support develop-
ers in decision making regarding which package they should use
in their native code. In a more recent study, Zimmermann et al.

8 For example, the Common Vulnerabilities and Exposure repository, available
t https://cve.mitre.org/.
9 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software.

10 http://doi.org/10.5281/zenodo.2566054.

https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://help.github.com/articles/about-security-alerts-for-vulnerable-dependencies/
https://cve.mitre.org/
https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
https://doi.org/10.5281/zenodo.2566054

A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653 3
(2019) investigated security risks attached to JavaScript pack-
ages distributed via the npm package manager. Upon analyzing
their dependencies and maintainers, the authors found that, due
to transitive vulnerabilities and lack of maintenance, individual
packages pose a considerable threat. They also showed that the
number of vulnerabilities tends to increase with the number of
transitive dependencies. The JavaScript’s npm dependency net-
work was investigated also by Decan et al. (2018). In their study,
the authors analyzed 400 vulnerability reports covering a 6-year
period and observed that the number of security vulnerabilities
and the packages affected by them is growing over time. Addi-
tionally, they reported that 54% of the packages in the network
have at least one version that is affected by a vulnerable transitive
dependency.

Regarding the effect that the size of the developers team have
on the security defects in the code, Meneely and Williams (0000)
performed a study on the RHEL kernel. The authors provided
empirical evidence that large developers teams (with more than
nine members) and independent developer groups tend to in-
troduce more security defects in the code compared to smaller
development teams or files developed by the core developers.

Mohagheghi et al. (2004) performed an analysis on software
defects data for 12 consequent releases of a large-scale telecom
system developed by Ericsson. Their goal was to examine how
reuse, affects two factors of the system: (1) the defect density (de-
fined as defects per lines of code); and (2) the stability (defined as
the degree of modification). The authors provided evidence that
both defect density and stability showed better results in reused
components compared to those in the non-reused components.

Additionally, Mitropoulos et al. (2014) used FindBugs to per-
form a large scale analysis on the Maven ecosystem. The outcome
of their work is a dataset of the bugs (including security bugs) of
more than 17 000 Maven dependencies (155 000 considering all
their versions). Their dataset can be used to analyze the risk of us-
ing outdated libraries that exist in the Maven Central repository.
Although, their work does not examine reuse we find it relevant
to mention, since among the results, the authors reported a weak
correlation between potential security vulnerabilities and the
project size. In a similar direction, Shin et al. (0000) investigated
the RHEL kernel and the Mozilla Firefox web-browser to create a
prediction model for detecting potentially vulnerable code based
on the following three code metrics: (1) complexity; (2) code
churn; and (3) developer activity.

Concerning the effects of reusing code snippets from publicly
available web sources on the quality of the software, Fischer et al.
(2017) reported that 15.4% of the 1.3 million Android applications
that they analyzed, contained code snippets related to secu-
rity, published on StackOverflow.11 Interestingly, 97.9% of those
applications contained one or more vulnerable code snippets.
Similarly, Abdalkareem et al. (2017), analyzed 22 Android appli-
cations on the extent, and the conditions under which, develop-
ers use code snippets copied from StackOverflow. Their findings
showed that there was a statistically significant medium increase
of bug-fixing commits after reusing code from StackOverflow.

On the subject of detecting vulnerable code, Pham et al. (2010)
contributed towards the automated detection of suspicious code.
Authors introduced SecureSync, a tool that analyzes existing dis-
closed vulnerabilities, in open-source systems and creates models
in order to detect similar suspicious patterns in other systems.
The authors evaluated their approach by analyzing 176 releases
of 119 open-source projects and identified suspicious code in 51%
of them. Practitioners have also made significant contributions
in the area of classifying existing vulnerabilities as exploitable.

11 https://stackoverflow.com/.
Fig. 1. Theoretical model.

Specifically, Ponta et al. (2018) presented their approach to iden-
tify exploitable vulnerabilities based on function call graphs. Vul-
nerabilities in places of the reused code which are not accessible
by the native code can be considered of a lower risk for the
system. Recently, they made their tool12 and the vulnerability
dataset available for detecting known vulnerabilities in Java and
Python software systems.

In Table 1, we highlight the main differences of our study com-
pared to related work. In particular, to the best of our knowledge,
the study reported in this paper is the first to investigate the cor-
relation between code reuse and vulnerabilities, as obtained by
means of static analysis, specially in conjunction with disclosed
vulnerabilities, in multiple open-source systems.

3. Theoretical and empirical design

In this section, we present the theoretical model and the
protocol of our case study, which was designed according to the
guidelines of Runeson et al. (2012), and reported based on the
Linear Analytic Structure (Runeson et al., 2012).

3.1. Theoretical model

Based on the insights we obtained from the state of the art
on the analysis of vulnerabilities and reuse in software-intensive
systems (Section 2), we drew the assumptions and designed
the theoretical model for our study. The aspects of our analysis
and their relationships are visualized in Fig. 1. The relationships
presented in Fig. 1 establish the main research questions that are
investigated in the following Sections.

Initially, with relationship A we theorize that developers using
existing available reusable libraries need to write fewer lines of
code to satisfy the requirements of the software system they are
implementing. Among other reasons, such an action may also be
taken to avoid the accumulation of vulnerabilities (relationship
B), as a larger source code base (sloc) introduces more security
risks (Chowdhury and Zulkernine, 2010). However, a side-effect
of increasing the number of dependencies is that source code
size of the reused code also increases (relationship C), which
may bring in more vulnerabilities (Zimmermann et al., 2019;
Chowdhury and Zulkernine, 2010).

Despite a potential increase of software size due to reuse,
we theorize that code reused through open-source dependen-
cies is more probable to have faster detection and patching of
security defects (relationship D) through the application of the
so-called Linus’ law: ‘‘given enough eyeballs, all bugs are shal-
low’’ (Raymond, 1999, p. 30), (Wang and Carroll, 2011). Conse-
quently, if projects track their dependencies and update them

12 https://sap.github.io/vulnerabilityassessmenttool/.

https://stackoverflow.com/
https://sap.github.io/vulnerabilityassessmenttool/

4 A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653

T
C

o

3

Q
i

able 1
omparison against related work.
Study Context Focus on

security
Number of
projects

Language Source of vulnerabilities Relate security
to reuse

Pashchenko et al. (2018) Open-source Yes 200 Java Manual analysis Yes
Mohagheghi et al. (2004) Proprietary No 1 Java, C & Erlang Defect reports Yes
Mitropoulos et al. (2014) Open-source Yes 17505 Java Static analysis No
Pham et al. (2010) Open-source Yes 119 C & C++ Static analysis and clone

detection
Yes

Ponta et al. (2018) Open-source Yes 500 Java Static and dynamic
analysis

No

Meneely and Williams (0000) Open-source Yes 1 C & C++ Vulnerability reports No
Shin et al. (0000) Open-source Yes 2 C & C++ Vulnerability reports Partially
Neuhaus and Zimmermann (0000) Open-source Yes 1 C & C++ Vulnerability reports Yes
Zimmermann et al. (2019) Open-source Yes 5386239 JavaScript Vulnerability reports Partially
Decan et al. (2018) Open-source Yes 610000 JavaScript Vulnerability report Yes
Fischer et al. (2017) Open-source Yes 1600000 Java Static analysis Yes
Abdalkareem et al. (2017) Open-source No 22 Java Commit changes No

Ours Open-source Yes 1244 Java Static analysis and
vulnerability reports

Yes
R
w
a
p
a
a
s
v

3

s
a
w
s
(
s
a
c
m

w
T
o
r
A
c
s
t

3

g
m
b

when necessary, there would be fewer security vulnerabilities
overall (relationship E) (Pashchenko et al., 2018).

In summary, our goal is to evaluate these relationships based
n the findings of our analyses on the produced datasets.

.2. Objective and research questions

The goal of the study was formulated according to the Goal-
uestion-Metric (GQM) approach (van Solingen et al., 2002), and
s described as follows: ‘‘analyze native and reused code, for
the purpose of evaluating, with respect to the differences in the
estimated and actual levels of security vulnerabilities, from the
point of view of software developers, in the context of open-source
software’’. To fulfill this objective, we have set three research
questions (RQs), as follows:

RQ1: What size and reuse factors are related with potential se-
curity vulnerabilities of a project?

RQ1 aims at acquiring an overview of how two size factors and
two reuse factors are related to the potential security vulnerabil-
ities of a project. In RQ1 we investigate the relationships B and
C presented in Fig. 1. Additionally, we investigate how depen-
dencies from well-known and less known communities affect the
number of potential vulnerabilities in a project.

RQ2: How are potential security vulnerabilities distributed be-
tween native and reused code?

RQ2 aims at investigating an important question correlated
with software reuse, namely, the extent to which reuse influ-
ences the security of a project. This correlation is depicted with
relationships A, B, and C. For that, we exploit static analysis
to identify potential vulnerabilities and investigate how native
code developed by the project’s team and reused code stemming
from dependencies on third-party components contribute to the
overall estimated security level.

RQ3: To what extent do open-source projects suffer from vulner-
abilities introduced through dependencies?

The purpose of RQ3 is to collect evidence of disclosed vulnerabili-
ties that affect dependencies used in the projects as Fig. 1 depicts
with relationship C. To achieve that, we analyze all dependencies
with the owasp Dependency-Check tool and report the findings.

RQ4: How are the characteristics of a dependency related to its
potential and actual vulnerabilities?
RQ4.1: How is the reuse frequency of a dependency related
to potential and actual vulnerabilities?

RQ4.2: How is the community type of a dependency re-
lated to potential and actual vulnerabilities?

Q4 aims at investigating the validity of Linus’ law, by looking at
hether the many eyeballs brought-in through increased reuse
ctually find and fix potential and disclosed vulnerabilities, as
resented in relationships D and E in Fig. 1. Additionally, RQ4
ims at investigating if the type of the dependency, i.e., from
well-known community or an enterprise organization, is as-

ociated with the dependency’s number of potential and actual
ulnerabilities.

.3. Cases and unit of analysis

To answer the aforementioned research questions, we de-
igned a multiple-case study, i.e., one in which the multiple cases
re also the units of analysis (Runeson et al., 2012). For this study,
e chose open-source projects as cases and units of analysis. We
elected this particular type of study because the case granularity
i.e., project-level) is sufficient, and multiple cases will provide
tatistical power to the analysis. Moreover, the selected unit of
nalysis allows answering the set research questions and pinpoint
ases that researchers or practitioners may want to investigate in
ore detail.
The cases were collected from GitHub Activity Data dataset13

hich is publicly available on the Google Cloud Public Datasets.14
he GitHub Activity Data 3TB+ dataset contains a full snapshot
f the content of more than 2.8 million open-source GitHub
epositories including more than 145 million unique commits.
dditionally, it contains over 2 billion different file paths, and the
ontents of the latest revision for 163 million files, all of which are
earchable with regular expressions. Users can execute queries on
he dataset through the Google BigQuery API.

.4. Variables and data collection

To address the research questions, we built a containing two
roups of variables for each unit of analysis: (a) project infor-
ation; and (b) vulnerability information. We built the dataset
y following a five-step procedure, which is described in the

13 https://console.cloud.google.com/marketplace/details/github/github-repos?
filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb.
14 https://cloud.google.com/public-datasets/.

https://console.cloud.google.com/marketplace/details/github/github-repos?filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
https://console.cloud.google.com/marketplace/details/github/github-repos?filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
https://cloud.google.com/public-datasets/

A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653 5

s

S

f

Table 2
List of recorded variables for the projects dataset.
Variable Description

Project Full project name
D Number of dependencies
CVE Number of disclosed vulnerabilities introduced through dependencies
C Number of classes in project
Cn Number of native classes
Cr Number of reused classes
L Number of source lines of project
Ln Number of source lines of code in native classes
Lr Number of source lines of code in reused classes
Lre Number of source lines of code in reused classes from an enterprise organization
Lrne Number of source lines of code in reused classes from a non enterprise organization
Lrw Number of source lines of code in reused classes from well-known communities
Lrnw Number of source lines of code in reused classes from less-known communities
V Number of potential vulnerabilities in project
Vn Number of potential vulnerabilities in native code
Vr Number of potential vulnerabilities in reused code
Vre Number of potential vulnerabilities in reused classes from an enterprise organization
Vrne Number of potential vulnerabilities in reused classes from a volunteer based contribution
Vrw Number of potential vulnerabilities in reused classes from well-known communities
Vrnw Number of potential vulnerabilities in reused classes from less-known communities
VCn Number of potentially vulnerable native classes
VC r Number of potentially vulnerable reused classes
s
l
p
t
N
p
v
a
o
r
m

S
t
c
g
e
p
o
d
d
a
t
T
(
r
s
p
t
M

S
e
d
f
d
e

Table 3
List of recorded variables for the dependencies dataset.
Variable Description

Dependency Full dependency name
W Provided by an open-source well-known community
E Provided by an enterprise Github organization
CVEd Number of disclosed vulnerabilities
V Number of potential vulnerabilities in dependency
P Number of projects this dependency is used in
Cb Number of contributors in projects that use this dependency

following paragraphs together with the associated variables. Fig. 2
illustrates the data collection. A summary of the recorded vari-
ables is presented in Table 2. Additionally to the aforementioned
dataset, we built a dataset that comprises (a) the dependency
information, such as, the community type of its author (Enter-
pise and well-known); and (b) each dependencies’ potential and
publicly disclosed vulnerabilities. A summary of the recorded
variables for the second dataset is presented in Table 3.

We note that the complete procedure is automated in a set of
cripts available on GitHub.15

tep 1: Filter projects. First, we queried the GitHub Activity
Data database16 and selected the projects that met the following
criteria: (1) contain Java code, and (2) contain at least one Apache
Maven17 build automation configuration file, (i.e., pom.xml). We
selected Java as a programming language so as to take advantage
of automated build support provided by Maven, and the security
violation identification capabilities of the SpotBugs18 tool and
the owasp Dependency Check tool.19 Maven is well-established
tool, and it allowed us to automate the build process of multiple
projects and retrieve their dependencies. Both operations were
necessary for collecting the potential vulnerabilities. Finally, we
queried the GitHub api20 and retrieved the stars for each project

15 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software.
16 https://console.cloud.google.com/marketplace/details/github/github-repos?
ilter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb.
17 https://maven.apache.org/.
18 https://bugs.github.io/.
19 https://www.owasp.org/index.php/OWASP_Dependency_Check.
20 https://developer.github.com/v3/.
of our aforementioned list. We used the stars as an indicator of
popularity and we sorted the projects based on that criterion.

Step 2: Download repositories and detect build paths. In this
tep, we selected the 3500 most popular GitHub projects of the
ist that we generated in Step 1. We selected a large amount of
rojects to improve the representativeness of the study sample
owards the population and strengthen the statistical analyses.
ext, using the Git tool, we cloned locally the projects. Several
rojects consist of many modules and components written in
arious programming languages and managed by different build
utomation tools. To identify the projects that are in the scope
f our analysis, we created a tool that automatically detects the
oot Maven configuration file. We manually resolved cases with
ultiple root build paths.

tep 3: Build projects and retrieve dependencies. Working on
he local copies of the repositories, we built each project. To ac-
elerate this step we skip (1) testing tasks, (2) Java documentation
eneration tasks, and (3) any static analysis code review tool
xecution (such as checkstyle21 and pmd).22 When the building
rocess is complete, the generated compiled package (i.e., a .jar
r .war file) is stored in the local Maven repository (the .m2
irectory by default). The dependencies (along with any transitive
ependencies) that a project defines in its configuration file are
lso downloaded and stored in the local Maven repository. From
he initial 3500, we discarded 1181 projects that failed to build.
he main failure reasons were: (a) Java versions incompatibilities,
b) non-accessible Maven dependencies, and (c) compilation er-
ors. For the remaining 2319 successful builds, we created and
tored their transitive dependency trees, i.e., the paths to the
ackages of the project and its dependencies. The dependency
rees were retrieved with the use of the mvn dependency:tree
aven command.

tep 4: Collect project information. In this step, we analyzed
ach successfully build project’s dependencies’ tree that was pro-
uced in the previous step. With this process we collected the
irst groups of variables: project, D, Cn, Cr , Ln and Lr (see their
efinitions in Table 2). For that, we collected the class files from
ach jar file and also used them to retrieve the source lines of

21 https://github.com/checkstyle/checkstyle.
22 https://pmd.github.io/.

https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software
https://console.cloud.google.com/marketplace/details/github/github-repos?filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
https://console.cloud.google.com/marketplace/details/github/github-repos?filter=solution-type:dataset&id=46ee22ab-2ca4-4750-81a7-3ee0f0150dcb
https://maven.apache.org/
https://bugs.github.io/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://developer.github.com/v3/
https://github.com/checkstyle/checkstyle
https://pmd.github.io/

6 A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653
Fig. 2. The dataset construction procedure.
code (sloc), which is estimated based on the number of the
statements. When analyzing the dependencies we count only
those that are deployed with the application or used at runtime.
These are characterized as compile, runtime, provided in the
corresponding Maven configuration file. All other dependencies
are ignored since they do not cause an exploitable threat in the
deployed application.

Additionally, we analyzed every project and dependency indi-
vidually and detected those that are maintained by an enterprise
organization. For this process we used the dataset provided by
Spinellis et al. (2020) which contains a list of 17 252 identi-
fied Github enterprise repositories. The dataset defines as an
enterprise project ‘‘one that is likely to be mainly developed
by financially compensated employees, working full time un-
der an organization’s management’’. Furthermore, during this
step, we compiled a list of well-known open-source communi-
ties that are popular in Github, e.g., Apache, Google, Facebook,
Microsoft, MySql and Eclipse. Well-known communities are soft-
ware development groups that provide high-quality open-source
software systems that are widely used by other developers and
teams (e.g., the Apache web-server, the Facebook React web-
framework, the MySql community database, the Microsoft dotnet
framework and the vscode editor. To detect which dependencies
are maintained by well-known communities, we mapped the
Maven unique identifier of each dependency (i.e., groupId) to
the groupIds of projects belonging to the Github organizations
in the list of well-known communities list.

Finally, we performed the next three filtering steps: (1) iden-
tified and discarded projects that had no dependencies, (2) dis-
carded projects that had fewer than 1000 lines of native code, and
(3) projects that were used in their entirety only as dependencies
in other projects. For example, aws/aws-lambda-java-libs
and spring-cloud/spring-cloud-(bus|stream|netfix)
appear as dependencies in the dependency-trees of other projects
of our dataset. Applying the three filtering rules led us to a final
dataset of 1244 projects.

Step 5: Detect potential vulnerabilities. To detect potential vul-
nerabilities we performed a static analysis of the each project’s
code base. This type of analysis gives us the ability to assess a
large set of projects without the need of test cases and execution
scenarios. The latter techniques can prove to be time consuming
and prone to missing cases in code coverage. On the other hand,
static analyzers look for patterns in the code base of a system
while covering all possible execution paths. Kulenovic and Donko
(2014) compared different static analysis methods for detecting
security vulnerabilities in code bases. They found that there is a
constant improvement of the algorithms used for static analysis.
Consequently, static analyzers have better performance in terms
of accuracy and precision when detecting security vulnerabilities.

For selecting our analyzer we consulted the Open Web Appli-
cation Security Project’s (OWASP) list of static analysis tools,23
considering only those that: (1) can analyze Java code, (2) can
operate offline, (3) are actively maintained by the open-source
community, and (4) have rules for detecting patterns of poten-
tial security violations. Based on the aforementioned criteria,
we selected the static analyzer SpotBugs24 (v3.1.11) (Hovemeyer
and Pugh, 2004; Zheng et al., 2006; Tomassi, 2018). This tool
identifies violations of good coding practices (Hovemeyer and
Pugh, 2004) by creating rules based on bug patterns. There are
nine categories of rules and two of them related to security:
Security and Malicious Code. Moreover, based on the completeness
of a rule matching on a bug detection, SpotBugs classifies this
detection into one of three levels of confidence (low, medium,
high). The tool has already been evaluated in independent studies
(Hovemeyer and Pugh, 2004; Feitosa et al., 2015) and (Ayewah
et al., 2007), which reported an average precision of 66%. Ad-
ditionally, using only medium or high level of confidence in
the detection rules the precision showed to be significantly in-
creased. Nevertheless, SpotBugs like any static analysis tool, is
still prone to introducing noise (false positives) to the data col-
lection. However, other studies showed that SpotBugs findings
can be valuable pointers to parts of the system that need to
be maintained (Ayewah and Pugh, 2010; Feitosa et al., 2018;
Hovemeyer and Pugh, 2004; Khalid et al., 2016; Tripathi and
Gupta, 2014; Zheng et al., 2006).

To further enhance the security related detection capabilities
of SpotBugs, we included its plugin FindSecBugs.25 This plugin
adds several new bug patterns related to the Open Web Applica-
tion Security Project (owasp) top-10 vulnerabilities26 and several
other listed in the Common Weaknesses Enumerations (cwe)
list.27 cwe is a community-list of common software security

23 https://owasp.org/www-community/Source_Code_Analysis_Tools.
24 This is the well-known FindBugs tool further developed under a new name.
25 https://find-sec-bugs.github.io/.
26 https://www.owasp.org/index.php/Top_10-2017_Top_10.
27 https://cwe.mitre.org/.

https://owasp.org/www-community/Source_Code_Analysis_Tools
https://find-sec-bugs.github.io/
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://cwe.mitre.org/

A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653 7

c

weaknesses types, and serves as a common language for classify-
ing security vulnerabilities in software systems. The combination
of SpotbBugs core functionality28 and FindSecBugs’ specialized
bug patterns29 offers a capability to detect 163 potential secu-
rity vulnerabilities. To perform an analysis, SpotBugs requires
the path to the compiled Java project and its dependencies. We
acquired this information from the lists that we created in Step 3.
Next, SpotBugs generates an xml file that reports all the potential
vulnerabilities in the given Java classes for both native code base
and dependencies. Due to failures in the SpotBugs’ analysis, we
excluded 260 projects during this step. The two most commons
of errors were: (a) executable files missing compiled code, and
(b) Java version incompatibilities.

Finally, we analyzed with SpotBugs all dependencies detected
in Steps 3 and 4, and collected their potential vulnerabilities.
We analyzed the dependencies as standalone jars, to avoid
including vulnerabilities from other dependencies related to the
one that we analyzed. We applied the same filtering that we
presented earlier in this Step on the SpotBugs findings for the
dependencies.

Step 5b: Retrieve disclosed vulnerabilities. We performed this
step in parallel with Step 5. The purpose of this step is use the
owasp Dependency-Check tool in order to analyze all dependen-
cies and to retrieve the information for its disclosed vulnerabili-
ties. The owasp Dependency-Check tool reports the unique iden-
tifier (cve) for the dependency of our interest and the complete
tree of transitive dependencies. We exclude disclosed vulnera-
bilities that refer to non-Java transitive dependencies. This step
populated the variable CVE in Table 2.

Step 6: Collect vulnerability information. In this final step, we
collected the second groups of variables for each project: Vn,
Vr , VCn, VC r , VLn, and VLr . For that, we parse each xml report
that we generated by SpotBugs in Step 5. From these reports we
select only the potential security vulnerabilities and we discard
all other data. Then, we aggregate the results separately for the
native source code and the reused source code. Next, we parse
the json reports that owasp Dependency Check tool generated for
each dependency in Step 5b and assign a list of unique disclosed
vulnerabilities (cves) to each project. In this list we include only
vulnerabilities related to Java code and dismiss all others.

3.5. Analysis procedure

To investigate the collected data, we performed various statis-
tical analyses. First, to answer RQ1, we calculated the descriptive
statistics on all collected variables, and used linear regression
analysis for four selected variables associated with project size
and reuse. Additionally, we investigate how the overall amount
of vulnerabilities are associated with dependencies maintained
by different communities: (a) well-known vs. less-known, and
(b) enterprise vs. volunteer-based. Next, to answer RQ2, we first
calculated the ratio of reuse Rr and vulnerabilities density Dv as
described in (1a) and (2b) below.

Rr =
Lr

Ln + Lr
(1a), and Dv =

Vn + Vr

Ln + Lr
(1b) (1)

Then, similarly with RQ1, we performed a linear regression anal-
ysis to evaluate the correlation between reuse and security vul-
nerabilities.

Regarding RQ3, we collected the disclosed vulnerabilities of
each projects’ dependencies and performed a linear regression

28 https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#malicious-
ode-vulnerability-malicious-code.
29 https://find-sec-bugs.github.io/bugs.htm.
analysis between the number of dependencies and the number
of disclosed vulnerabilities. Finally, to answer RQ4, we collected
data related to the use frequency of each dependency in our
dataset and we performed a linear regression analysis on the use
frequency and its number of vulnerabilities.

We note that this complete procedure is automated and avail-
able online together with all other scripts used in this study.30

4. Results

In this section, we present details about the obtained dataset
and answers to the study’s results research questions. Based on
our unit of analysis, i.e., each project, and with regards to the
variables we presented in Section 3 we obtained the descriptive
statistics shown in Table 4.

4.1. RQ1 - Relationship between vulnerabilities and size and reuse

To investigate how the factors of (1) source code size (sloc),
(2) number of classes, (3) number of dependencies, (4) reuse
ratio are related to the number of potential vulnerabilities, we
performed a multivariate ordinary linear regression with stan-
dardized beta coefficients on the aforementioned variables. The
summary of this analysis is presented in Table 5.

The results show that the source code size (sloc) is strongly
correlated to the number of potential vulnerabilities. Interest-
ingly, the number of classes appears to have no effect on the
potential vulnerabilities. Although this may seem to contradict
previous findings, we note that the majority of our dataset com-
prise smaller projects, which may encapsulate more functionality
in single classes. Regarding the reuse factors, there is no statistical
evidence that they are correlated with the number of potential
vulnerabilities as both the number of dependencies and reuse
ratio, have below-weak correlation.

In order to investigate how dependencies from well-known
communities contribute to the total amount of potential vulnera-
bilities, we calculated the well-known ratio, which is the sloc of
well-known communities divided by the total SLOC of the reused
code. We then analyzed the correlation between the number of
potential vulnerabilities and the well-known ratio, performing a
non-parametric test. The results (Kendall’s τ ≈ 0.05, p-value ≈

0.02) show that the number of potential vulnerabilities is not
correlated to the well-known ratio.

RQ1: The multivariate linear regression provides empir-
ical evidence for the common belief that the number of
potential vulnerabilities increases along with the source
code size (sloc). However, it shows no evidence that
the number of potential vulnerabilities is correlated with
reuse factors. Similarly, the number of potential vulner-
abilities shows no correlation with the type (well-know
and less well-known) of the reused code.

4.2. RQ2 - Distribution of vulnerabilities in native and reused code

Fig. 3 depicts three boxplots, which illustrate the distribution
of the vulnerability density (per 1000 lines of code) in the native,
reused, and total code respectively. Comparing the vulnerability
density in the native code (left boxplot) and the vulnerability
density in the reused code (middle boxplot), we observe that the
vulnerability density median is higher in native code. Also, there
are more projects with higher vulnerability density in native code
than in reused code.

30 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software.

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#malicious-code-vulnerability-malicious-code
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#malicious-code-vulnerability-malicious-code
https://find-sec-bugs.github.io/bugs.htm
https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

8 A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653

T
D

i
c
e
t

r
n
(

able 4
escriptive statistics.
Variable Sum Min Max Mean Median σ Dataset

D 11 328 1 182 14 751 8 18 144 Dependencies
CVE 1 728 0 102 7 508 2 12 Projects
C 10 031 775 9 191 859 8 064 3 835 14 237 Projects
Cn 2 616 877 3 184 717 2 103 190 9 001 Projects
Cr 7 414 898 2 120 000 5 960 2 862 9 398 Projects
L 315 948 364 1 231 3 619 934 253 977 124 871 372 688 Projects
Ln 69 350 897 1 000 2 650 782 55 748 5 210 191 022 Projects
Lr 246 597 467 3 3 330 189 117 209 96 265 286 261 Projects
Lre 96 144 679 0 893 172 77 286 39 211 107 552 Projects
Lrne 150 810 685 0 2 531 786 121 230 50 470 208 833 Projects
Lrw 112 555 320 0 2 132 518 90 478 38 364 162 380 Projects
Lrnw 134 319 010 0 2 004 584 107 973 47 687 164 581 Projects
V 828 315 0 10 064 665 301 972 Projects
Vn 212 873 0 8 790 171 23 580 Projects
Vr 615 442 0 7 955 494 177 747 Projects
Vre 188 732 0 2 183 151 55 240 Projects
Vrne 426 710 0 5 772 343 95 591 Projects
Vrw 283 137 0 3 940 227 56 427 Projects
Vrnw 332 305 0 4 433 267 85 444 Projects
VCn 150 241 0 6 670 120 19 413 Projects
VC r 451 375 0 5 082 362 145 541 Projects
CVEd 10 074 0 55 1 0 3 Dependencies
Vd 860 027 0 4 716 92 18 259 Dependencies
P 18 888 1 124 2 1 4 Dependencies
Cb 830 975 1 4 589 89 20 236 Dependencies
s
F
c

Table 5
Multivariate regression analysis for potential vulnerabilities.
Variable Description coeff p-value

L Number of lines of code 0.7882 0.000
C Number of classes 0.0125 0.699
D Number of dependencies 0.1225 0.000
Rr Reuse ratio 0.0399 0.004

Fig. 3. Boxplots of vulnerability density in native code (left), reused code
(center), and overall (right).

Furthermore, we notice that the overall density (right boxplot)
s similar to the density in reused code compared to the native
ode. This is due to the fact that the size of reused code is consid-
rably larger than native code, and the density is calculated after
he vulnerabilities and corresponding code sizes re combined.

To investigate RQ2 with regards to the correlation between the
euse ratio and the vulnerability density, we performed an ordi-
ary linear regression with standardized coefficients. The result
statistic = −0.0221, p-value = 0.436) shows no evidence of a
tatistically significant relationship between these two variables.
urther interpreting the results, one can suggest that there is no
orrelation between relationships AC and B as depicted in Fig. 1.
The current dataset does not provide strong evidence to either
confirm or deny whether projects with higher reuse ratio tend to
have lower vulnerability density.

To further investigate the distribution of the potential vulner-
abilities between the native and reused code we list the most
occurring types of vulnerabilities as reported by the SpotBugs
tool. In Table 6, we list the integrated top-10 recurrent types
of potential vulnerabilities in native and reused code. For each
type of potential vulnerability we calculated its density, as the
number of detected potential vulnerabilities per 10 000 lines of
code. In their description we include a reference number to the
cwe software weaknesses types list.31

In Table 6 we observe that potential vulnerabilities that belong
to the last two types (11 and 12) were detected in the reused code
more often than in the native code with a difference of > 80%.
Similarly, for the types 6, 7 and 8 we observe a moderately greater
frequency of detection in the reused code. On the contrary, for
types 1, 3, 4 and 10, we observe a moderately greater frequency
of appearances in the native code. Regarding types 2, 5 and 9
we observe similar frequency of appearance in both native and
reused code.

RQ2: The median vulnerability density is higher in native
code. However, the results do not present any statisti-
cally significant correlation between the reuse ratio and
the vulnerability density.

4.3. RQ3 - Disclosed vulnerabilities in reused code

The first step to answer RQ3 was to analyze all dependen-
cies in our dataset with the owasp Dependency-Check tool. The
results showed that, at the time of the analysis, 2821 out of
the 11 328 dependencies (24.9%) were reported to have at least

31 https://cwe.mitre.org/data/definitions/699.html.

https://cwe.mitre.org/data/definitions/699.html

A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653 9

o
i
b

b
v

n
T
o
s
v
d
t
t
t

Table 6
Densities of most occurring types of vulnerabilities.
Vulnerability description Densities in code Difference

Native Reused

1 Potential CRLF Injection for logs (CWE-93/117) 0.150 0.086 25.72%
2 Potential Path Traversal (file read) (CWE-22) 0.128 0.139 −7.96%
3 May expose internal representation by returning reference to mutable object 0.093 0.076 22.30%
4 May expose internal representation by incorporating reference to mutable object 0.092 0.071 29.53%
5 Information Exposure Through An Error Message (CWE-209/211) 0.060 0.064 −6.77%
6 Field is not final but should be 0.048 0.076 −36.62%
7 Predictable pseudo-random number generator (CWE-330) 0.039 0.048 −19.23%
8 URLConnection Server-Side Request Forgery (SSRF) and File Disclosure (CWE-73/918) 0.035 0.056 −37.98%
9 Field should be package protected 0.022 0.025 −9.19%
10 Format String Manipulation (CWE-134) 0.020 0.012 30.73%
11 Object de-serialization is used (CWE-502) 0.010 0.064 −84.13%
12 MD2, MD4 and MD5 are weak hash functions (CWE-327) 0.006 0.035 −82.08%
Fig. 4. Violin plots of number of disclosed vulnerabilities in projects.

ne disclosed vulnerability. Consequently, mapping those find-
ngs to projects, we accounted for 65% of projects being vulnera-
le through their dependencies.
Fig. 4 presents the distribution of number of disclosed vulnera-

ilities in our dataset. It is clear that the majority of projects have
ery few disclosed vulnerabilities.
However, this is a concerning finding, because even one vul-

erability can lead to a security breach with severe consequences.
his is also interesting, because many open-source projects use
utdated third-party dependencies with disclosed vulnerabilities;
ee references Kula et al. (2018) and Ponta et al. (2018). Disclosing
ulnerability details along with the code patch fixing the security
efect, motivates users to update to a newer, secure version. On
he other hand, the disclosure also gives time and necessary de-
ails for malicious users to prepare attacks that target exploiting
hose specific defects, as happened in the Equifax incident.32

To investigate if the number of disclosed vulnerabilities in
a project is correlated with the number of dependencies used
in this project we performed a linear regression analysis be-
tween these two variables. The results, (statistic = 0.6151, p-
value < 0.001) show that the number of disclosed vulnera-
bilities is strongly correlated to the number of dependencies.
Similarly, with respect to potential vulnerabilities, we performed
the linear regression analysis. The results (statistic = 0.7730, p-
value < 0.001) are in line with the previous analysis and show a
strong correlation between the number of dependencies and the
potential vulnerabilities.

These findings suggest that a larger amount of dependencies
used in a project may be correlated with a higher risk of bringing
on board disclosed vulnerabilities. This can be described as the

32 https://www.wired.com/story/equifax-breach-no-excuse/.
Table 7
Regression analysis for dependencies’ use frequency.
Variable Description coeff p-value

V Potential vulnerabilities −0.0326 0.083
CVE Disclosed vulnerabilities −0.0355 0.059

‘‘effect of complex configuration’’, because developers select the
direct dependencies in their projects but are unaware of the
number of indirect dependencies brought in the project through
other dependencies. Kula et al. (2018) interviewed several devel-
opers that affirmed being unaware of security risks in the code
that they reuse. Additionally, Snyk reported that 78% of disclosed
vulnerabilities are found in indirect dependencies.33

RQ3: The analysis shows that 24.9% of the dependen-
cies have at least one reported disclosed vulnerability.
These vulnerable dependencies affect 65% of the projects
analyzed. Additionally, the regression analysis showed
that the numbers of both disclosed and potential vul-
nerabilities are strongly correlated to the number of
dependencies included in a project.

4.4. RQ4 - Dependencies’ use frequency

The dataset analyzed in this RQ regards the 11 328 unique de-
pendencies that appeared in our population of 1244 projects. For
these dependencies, we collected the (1) disclosed vulnerabilities
as reported and collected by the owasp Dependency-Check tool,
(2) the potential vulnerabilities as reported by the SpotBugs tool,
(3) if they are maintained by a well-known community or an
enterprise organization, and (4) the total number of contributors
of the projects that reuse these dependencies.

To investigate if the use frequency is correlated with the
number of disclosed and potential vulnerabilities we performed
a linear regression analysis on these variables. The results are
presented in Table 7 and show that there is no statistically signif-
icant evidence to correlate the number of disclosed and potential
vulnerabilities with their use frequency. There is no evidence that
more popular dependencies have more disclosed vulnerabilities
reports or have a lower number of potential vulnerabilities.

To further investigate Linus’ Law, we estimate the total num-
ber of contributors in projects reusing a dependency as the num-
ber of eyeballs that might detect a vulnerability. We tested how
the total amount of contributors is associated with the potential

33 https://snyk.io/blog/78-of-vulnerabilities-are-found-in-indirect-
dependencies-making-remediation-complex/.

https://www.wired.com/story/equifax-breach-no-excuse/
https://snyk.io/blog/78-of-vulnerabilities-are-found-in-indirect-dependencies-making-remediation-complex/
https://snyk.io/blog/78-of-vulnerabilities-are-found-in-indirect-dependencies-making-remediation-complex/

10 A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653

i
w
t
p
v

5

p
f
o
F
a
v
o
t
a
L
w
2
o
u
t
t
s
s
i
v

w

Table 8
Regression analysis for dependencies’ use frequency.
Dataset Potential vulnerabilities Disclosed vulnerabilities

τ p-value τ p-value

All dependencies −0.01 0.28 −0.10 0.00
Well-known communities −0.02 0.06 −0.13 0.00
Enterprise organizations −0.03 0.02 −0.14 0.00
Both well-known and enterprise −0.05 0.00 −0.22 0.00
n
r
b
h
s
e
s
(
c
f
d
c
c

n
i
T
i
i
p
d

s

and the disclosed number of vulnerabilities in the dependencies
by calculating Kendall’s non-parametric correlation. In Table 8,
we report the results (τ and p-value) of the Kendall correlation
on (1) the overall dependencies dataset population, (2) depen-
dencies from well-known communities, (3) dependencies from
enterprise organizations, and (4) from dependencies that are both
well-known and from an enterprise organization.

The τ and p-values of the executed correlation tests show
no strong evidence that the type of the community (i.e., well-
known, enterprise) is correlated to the number of its potential
vulnerabilities. While for the actual vulnerabilities the statistical
evidence is poor for each individual type community, we observe
a very weak correlation for dependencies that belong both in a
well-known community and an enterprise organization.

RQ4: The statistical analysis showed that there is no evi-
dence that correlates the use frequency of a dependency
with its security aspect. Furthermore, the results showed
only a very weak correlation between the number of
eyeballs associated with a dependency and its disclosed
vulnerabilities: only for dependencies that belong in both
well-known communities and enterprise organizations.

5. Discussion

In this section, we revisit and explain the findings presented
n the previous section, comparing them against related work
here applicable. We also elaborate on a point that stems from
he discussion, namely, the special case of enterprise open-source
rojects. Finally, we elaborate on the implications of these obser-
ations to both researchers and practitioners.

.1. Interpretation of the results

We found that the amount of potential vulnerabilities of a
roject is strongly correlated to its source code size (sloc). This
inding is in line with what Chowdhury and Zulkernine (2010)
bserved in their study on five consequent versions of the Mozilla
irefox web browser. Similarly, Mitropoulos et al. (2014) found
positive correlation between project size and the amount of
ulnerabilities, which also aligns with our findings. Furthermore,
ur findings agree with those of Yu and Mishra (2013) in that
he more a project evolves and adds functionality the more it
ccumulates defects. Both findings support Lehman’s Seventh
aw, which states that the quality of a software product decreases
ith time unless it is restructured (Lehman, 1996; Herraiz et al.,
013). If we assume that reused code stands for code that would
therwise have to be written from scratch, vulnerabilities will
ltimately arise either from native or reused code. Depending on
he security expertise of the development team, one will have,
hen, to choose between two strategies. On the one hand, a wiser
trategy may be to avoid reuse for developing components with
trict security requirements and manage the vulnerability threat
nternally. On the other hand, it may be desirable to reduce
ulnerability risks by reusing as much as possible.
To discuss this subject further, we focus on the results of RQ2,

hich suggest the presence of a higher vulnerability density in
ative code, i.e., higher count of vulnerabilities per sloc than
eused code. However, our results also suggest that the distri-
ution of vulnerabilities between native and reused code is not
omogeneous among the studied projects. Perhaps, projects with
imilar vulnerability density may have features in common. For
xample, Mohagheghi et al. (2004), who performed a comparable
tudy but in an industrial setting, found a lower defect density
which includes security vulnerabilities) in reused code when
ompared to native code. In summary, for the time being these
indings place a heavier weight for the decision making on the
evelopment team, which has to verify the maturity of reused
ode and balance it with in-house expertise in writing secure
ode.
Regarding the relatively larger amount of reused code, we

ote that this is understandable due to the nature of our dataset,
.e., with multiple medium-size projects which is observable in
able 4. On one hand, dependencies (e.g., libraries) have a larger
mpact on the project size as they may introduce a cascade of
ncluded dependencies. On the other hand, the evolution of the
roject may not depend as much on additional reuse, which
ecreases the reuse ratio.
Turning to disclosed vulnerabilities, our analysis showed a

ignificantly larger percentage of affected dependencies (24.9%)
compared to that reported in related work. In particular,
Pashchenko et al. (2018) found that 12.4% of their studied depen-
dencies were vulnerable. This difference can be explained based
on the difference between the two datasets. In our dataset, we
study dependencies used in open-source projects while
Pashchenko et al. (2018) study dependencies in proprietary SAP
projects. A possible explanation is that enterprise projects are
more selective on the use of third-party code, and they tend to
update their versions more often. To shed further light in this
matter, in the next section, we explore the differences between
the reuse of third-part code on volunteer-based and enterprise
open-source communities.

With respect to the use frequency of dependencies, we were
not able to clearly identify a correlation with the number of
potential or disclosed vulnerabilities. Consequently, we could not
establish from our data that Linus’ law (Raymond, 1999, p. 30)
does in fact hold. It seems that users of third-party code are
not necessarily contributors that can catch and fix security vul-
nerabilities and thus support the aforementioned law. However,
absence of evidence is not evidence of absence. A related line that
might be worth pursuing, would be to investigate if a project’s
popularity is associated with how fast security defects are de-
tected and fixed. In that direction, van Liere (2009) studied the
Firefox community and found that a large community of bug
reporters can be associated with quicker bug fixing, while the
addition of new software developers incurs fixing delays. How-
ever, with a similar scope, Bissyandé et al. (2013) performed a
large scale study on 20 000 GitHub projects and found that the
correlation between bug fixing time and the amount of issue
reporters is negligible (0.16). These partially contradicting results

A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653 11

t
v
i
f
i
t
v

5

t
t
o
d
f
i
S
s
i
t
p
s
s

n
t
R

Table 9
Descriptive statistics for enterprise and volunteer-based projects.
Variable Enterprise (N = 252) Volunteer-based (N = 992)

Mean σ Mean σ

Contributors 42 94 21 42
D 18 24 14 16
CVE 8 12 7 12
L 284 564 442 846 246 181 352 450
Ln 44 501 175 598 58 616 194 783
Lr 240 062 383 684 187 564 254 663
V 725 1 052 650 950
Vn 123 374 183 621
Vr 602 884 467 884
m
i
v
c

t
W
l
p

show that more research in this subject is paramount and should
also consider other indicators of project popularity (e.g., number
of downloads, forks, and positive reviews).

Finally, we investigated to what extent the amount of po-
ential vulnerabilities is correlated with the amount of disclosed
ulnerabilities. A linear regression analysis showed that there
s a medium correlation between the two factors. Despite the
act that disclosed vulnerabilities cannot be tracked to code level
n this dataset, the results show that a high number of poten-
ial vulnerabilities is an indicator of higher risk of exploitable
ulnerabilities.

.2. Comparison between enterprise and volunteer-based projects

In the previous section, we noted that different practices be-
ween community types could reflect on a more selective process
o manage reuse. In particular, one may wonder how enterprise
pen-source projects compare to volunteer-based ones. As our
ataset encompasses both types of projects, it is feasible to per-
orm such comparison. For that, we used the same process to
dentify dependencies belonging to enterprise organizations (see
ection 3.4, Step 4) to also identify enterprise projects. The clas-
ification of each project (into ‘enterprise’ or ‘volunteer-based’)
s also available in the main dataset. We used this extension of
he dataset to revisit the research questions in which we perform
roject-level analyses (i.e., RQ1–RQ3). In Table 9, we present a
ummary of the descriptive statistics to briefly compare the two
ub-populations.
Regarding RQ1, we analyzed the relationship between the

umber of vulnerabilities and size and reuse for each of the
wo groups of projects and did not find a significant difference.
egarding RQ2, we examined the distribution of vulnerabilities

between native and reused code and, although we noticed a lower
density of vulnerabilities in native code on enterprise projects, we
also found it not to be statistically significant. Finally, regarding
RQ3, we first looked into the number of projects affected by
disclosed vulnerabilities and found the percentage to be similar
to the overall population (enterprise: 64.3%; volunteer-based:
65.3%). However, we estimated the association between disclosed
vulnerabilities and the number of dependencies for both groups
and noticed that enterprise projects are less likely to suffer from
them, compared to volunteer-based projects based on the linear
regression analysis (coeff= 0.5 < coeff= 0.6825).

In summary, our dataset allows us to further speculate that
enterprise projects may indeed be less likely to be suffer from
vulnerabilities due to a higher quality of native code and a more
careful selection of dependencies. However, we cannot provide
strong evidence to support this based on our dataset alone, and
more studies are necessary to investigate a larger population and

additional factors.
Table 10
Manual inspection of SpotBugs’ findings.
Project True positive False positive Undecided

spotify/netty4-zmtp 1 − 1
gturri/aXMLRPC 3 1 1
twitter/whiskey 2 2 2

5.3. Inspection of SpotBugs’ findings

To acquire more insights over SpotBugs’ findings, we selected
three projects from our dataset and investigated if the reported
potential vulnerabilities are exploitable. This process consists of
the following steps:

1. retrieve SpotBugs’ xml report for a project,
2. dynamically analyze the project by executing all test cases

provided by the developers,
3. manually inspect the source code flagged as vulnerable.

For this process we selected three projects, namely spotify/
netty4-zmtp, gturri/aXMLRPC and twitter/whiskey to
anually investigate the validity of thirteen potential vulnerabil-

ties reported by SpotBugs. All three projects contained potential
ulnerabilities detected by SpotBugs, as well as unit tests that
hallenge the functionality of the application.
In Table 10, we present our findings from the manual inspec-

ion of each potential vulnerability of the three selected projects.
e mark as True positive the bugs in SpotBugs’ report that can

ead to actual security vulnerabilities based on the description
rovided by SpotBugs34 and its plugin, FindSecBugs.35 In the

False positive column, we report SpotBugs’ findings that do not
constitute a security vulnerability. Finally, as Undecided, we report
those that partially match the vulnerability description.

We dynamically analyzed the source code of the three projects
by executing the provided test cases and applying the Java Code
Coverage Library36 on them. The results showed that the lines
containing a potential vulnerability flagged as True positive were
covered by one ore more test cases. This finding suggests that
more extensive testing related to the security requirements is
required.

Furthermore, other aspects of dynamic analysis could be used
to supplement static analysis in order to test the application’s be-
havior more extensively. For example, fuzz testing is a prominent
dynamic analysis technique for discovering software bugs and
security vulnerabilities. The success of this technique is reflected
by the hundreds of bugs detected in popular applications by
the fuzzer AFL.37 Fuzz testing iteratively and randomly gener-
ates inputs with which it tests a target program. However, this

34 https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html.
35 https://find-sec-bugs.github.io/bugs.htm.
36 https://www.eclemma.org/jacoco/.
37 AFL2018.AmericanFuzzingLop(AFL).https://lcamtuf.coredump.cx/afl/.

https://spotbugs.readthedocs.io/en/stable/bugDescriptions.html
https://find-sec-bugs.github.io/bugs.htm
https://www.eclemma.org/jacoco/
https://lcamtuf.coredump.cx/afl/

12 A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653

t
(
t
t
T
p
o
l

5

a
o
t
p
I
n
a
b
s
m
c
S

echnique comes with a great computational cost. Klees et al.
2018) performed an evaluation of 32 studies related to fuzz
esting and reported that all suffered by one or more violations of
he proposed proper methodology for performing this technique.
his shows that the effectiveness of fuzz testing depends on the
rior-execution configuration of the tester based on the context
f each application. This makes fuzz testing difficult to apply on a
arge-scale analysis such as the one reported in this manuscript.

.4. Implications for researchers and practitioners

Security assessment and risk analysis are common practices
mong software developers and researchers. With the prevalence
f agile software development and the automations that con-
inuous deployment strategy offers, security assessment can be
erformed before every version release of a software system.
n our study, we provided evidence that source code size has a
egative impact on the security of a software system. Addition-
lly, we showed that a higher number of dependencies tend to
e associated with more security risks in open-source software
ystems. To mitigate this risk more strict security assessment
ethods should be followed. For example, automated build pro-
esses could integrate vulnerability detection tools, e.g., SpotBugs,
nyk and owasp Dependency Check. Such methods can provide

valuable information regarding the security status of the native
code and the risks introduced through dependencies.

Software developers can consult the dataset and gain in-
sight related to the security vulnerabilities of 1244 open-source
projects. Practitioners can use this information to perform risk
analysis and prioritize bug-fixing activities related to security
defects. Moreover, practitioners can employ the provided au-
tomation scripts to perform a similar analyses on their own code
base.

The provided dataset can be used by researchers to explore ad-
ditional research questions based on other characteristics of the
projects, e.g., clustering of projects based on one or more of the
available variables. Additionally, by taking advantage of SpotBugs
plurality of findings, researchers can investigate other software
quality attributes (e.g., correctness and performance). To examine
this aspect, researchers can modify the provided scripts to enrich
SpotBugs’ report with information related to these attributes. Our
scripts and guidelines are available for researchers to create their
own dataset or extend the one analyzed in this study.

6. Threats to validity

In this section, we discuss the three types of validity that are
applicable in this study: (1) the construct validity; (2) the relia-
bility; and (3) the external validity. We exclude internal validity
since our study does not examine causality. Construct validity
examines the relationship between the study’s observable object
or phenomenon and its research questions. Reliability examines if
the study can be replicated and produce the same results. Finally,
external validity examines potential threats to generalizing the
results of this study to other cases.

Regrading construct validity, we can argue that static anal-
ysis can only detect potential security defects and not actually
exploitable vulnerabilities. However, as we saw, these reports
are correlated with the existence of exploitable vulnerabilities.
Furthermore, vulnerabilities reported by static analyzers in the
reused code may not be exploitable since some vulnerable el-
ements may never be executed by the native code, and thus
be irrelevant. Moreover, our study is limited to identifying only
black-box reuse as defined by Heinemann et al. (2011), which
requires developers to include a binary version of the depen-

dency. White-box reuse is the integration of the dependency code
into the native code. White-box requires clone code-detection
and, thus, is out of the scope of this study. Finally, we selected
the amount of GitHub stars for measuring the popularity of our
projects. There are other criteria, such as watchers and forks, that
may render different results.

Concerning reliability, we put our best effort to make this
study easy to replicate. The source code, along with the guide-
lines to execute it, are available on GitHub.38 To reproduce the
same results, researchers should revert the Git repositories of the
locally downloaded projects to the date of this study (July 20th
2019). To mitigate reliability risks, two developers were involved
in the development of the scripts and all authors reviewed the
analysis process.

Finally, concerning external validity, we identified three po-
tential risks. Firstly, the project selection was limited to one
programming language (Java), and thus generalization of our
findings to other languages requires further investigation. Sec-
ondly, the selection of our projects represents only a proportion
of the available open-source Java projects on Github and thus,
generalization of our findings to open-source Java projects hosted
in Github or other web vcs requires further investigation. Finally,
despite the fact that Maven provided us a straight-forward way
of building the projects and easy access to the dependencies, it
also limited our dataset. Almost 34% of the initial project selection
(3500) failed to build with Maven or was partially built, and was
therefore excluded from the analysis.

7. Conclusion

Software reuse is a widely adopted practice that still raises
several concerns when it comes to security risks. There are good
arguments to both reuse and not reuse source code, especially
with regards to open-source software. In this context, we con-
ducted a multiple-case study to explore and discuss the relation-
ship between software reuse and the amount of security vulnera-
bilities in open-source projects. For that, we followed up on a pre-
vious study (Gkortzis et al., 2019) and further examined the dis-
tribution of potential vulnerabilities among the code created by a
development team (i.e., native code) and code reused from third-
party dependencies. Moreover, we investigated how information
about disclosed vulnerabilities from public databases triangu-
late with previous results especially on studying the association
between the ratio of reuse and the density of vulnerabilities.

For that, we looked into the most popular Java projects in
the GitHub Activity Data database and constructed a dataset
with 1244 projects, containing information regarding the size of
both native and reused code, as well as vulnerability informa-
tion obtained from the static analyzer SpotBugs and the owasp
Dependency-Check tool. Among the results, we observed that
larger projects are related with an increased amount of poten-
tial vulnerabilities in both native and reused code. Furthermore,
native code appears to have a higher vulnerability density. How-
ever, our analysis showed no strong evidence that native code
contributes to more vulnerabilities than reused code in a project.
Additionally, the results suggest that the number of dependencies
in a project is correlated to its number of vulnerabilities.

In light of the theoretical and empirical designs, and the ob-
served results, we envisage several opportunities of future work.
On the one hand, it is desirable to investigate other program-
ming languages, automated build systems and package managers
(e.g., Ant, Gradle, npm and pip). Such data could be used to
further enrich the provided dataset, and allow for confirmatory
and replication studies. Future studies could explore more in-
depth research questions related to, for example, features that

38 https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software.

https://github.com/AntonisGkortzis/Vulnerabilities-in-Reused-Software

A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653 13
could cluster similar projects in terms of size, also including a
qualitative analysis to explain each cluster. On the other hand, the
toolkit reported in paper could be implemented as a workbench
that could benefit practitioners and researchers alike by fostering
in-house analyses or future studies.

CRediT authorship contribution statement

Antonios Gkortzis: Conceptualization, Methodology, Software,
Data curation, Writing - original draft, Visualization, Investiga-
tion, Validation. Daniel Feitosa: Conceptualization, Methodology,
Software, Writing - original draft, Visualization, Investigation,
Writing - review & editing. Diomidis Spinellis: Conceptualiza-
tion, Methodology, Writing - review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jss.2020.110653.

References

Abdalkareem, R., Shihab, E., Rilling, J., 2017. On code reuse from StackOverflow:
An exploratory study on Android apps. Inf. Softw. Technol. 88, 148–158.
http://dx.doi.org/10.1016/j.infsof.2017.04.005.

Ayewah, N., Pugh, W., 2010. The google findbugs fixit. In: Proc. 19th Int. Symp.
on Software Testing and Analysis (ISSTA ’10). ACM, Trento, Italy, pp. 241–252.
http://dx.doi.org/10.1145/1831708.1831738.

Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y., 2007. Evaluating
static analysis defect warnings on production software. In: Proc. 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE ’07). ACM Press, San Diego, California, USA, pp. 1–8.
http://dx.doi.org/10.1145/1251535.1251536.

Bissyandé, T.F., Lo, D., Jiang, L., Réveillère, L., Klein, J., Traon, Y.L., 2013. Got
issues? Who cares about it? a large scale investigation of issue trackers
from GitHub. In: 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE). pp. 188–197. http://dx.doi.org/10.1109/ISSRE.
2013.6698918, ISSN: 1071-9458, 2332-6549.

Chowdhury, I., Zulkernine, M., 2010. Can complexity, coupling, and cohesion
metrics be used as early indicators of vulnerabilities? In: Proceedings of
the 2010 ACM Symposium on Applied Computing. In: SAC ’10, ACM, New
York, NY, USA, pp. 1963–1969. http://dx.doi.org/10.1145/1774088.1774504,
event-place: Sierre, Switzerland.

Decan, A., Mens, T., Constantinou, E., 2018. On the impact of security vulner-
abilities in the npm package dependency network. In: Proceedings of the
15th International Conference on Mining Software Repositories. In: MSR ’18,
Association for Computing Machinery, Gothenburg, Sweden, pp. 181–191.
http://dx.doi.org/10.1145/3196398.3196401.

Feitosa, D., Ampatzoglou, A., Avgeriou, P., Chatzigeorgiou, A., Nakagawa, E.,
2018. What can violations of good practices tell about the relationship
between gof patterns and run-time quality attributes? Inf. Softw. Technol.
http://dx.doi.org/10.1016/j.infsof.2018.07.014.

Feitosa, D., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y., 2015. Investigating
quality trade-offs in open source critical embedded systems. In: Proc. 11th
Int. ACM SIGSOFT Conf. the Quality of Software Architectures (QoSA ’15).
ACM, Montreal, QC, Canada, pp. 113–122. http://dx.doi.org/10.1145/2737182.
2737190.

Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M., Fahl, S., 2017.
Stack overflow considered harmful? The impact of copy paste on android
application security. In: 2017 IEEE Symposium on Security and Privacy (SP).
pp. 121–136. http://dx.doi.org/10.1109/SP.2017.31, iSSN: 2375-1207.

Gkortzis, A., Feitosa, D., Spinellis, D., 2019. A double-edged sword? software
reuse and potential security vulnerabilities. In: Peng, X., Ampatzoglou, A.,
Bhowmik, T. (Eds.), Reuse in the Big Data Era. Springer International

Publishing, Cham, pp. 187–203.
Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., Irlbeck, M., 2011.
On the extent and nature of software reuse in open source java projects.
In: Proc. 12th Int. Conf. Top Productivity Through Software Reuse (ICSR’11).
Springer Berlin Heidelberg, Pohang, South Korea, pp. 207–222.

Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-Barahona, J., 2013. The evolution
of the laws of software evolution: A discussion based on a systematic liter-
ature review. ACM Comput. Surv. 46 (2), http://dx.doi.org/10.1145/2543581.
2543595.

Hovemeyer, D., Pugh, W., 2004. Finding bugs is easy. ACM SIGPLAN Not. 39 (12),
92–106. http://dx.doi.org/10.1145/1052883.1052895.

Khalid, H., Nagappan, M., Hassan, A.E., 2016. Examining the relationship between
FindBugs warnings and app ratings. IEEE Software 33 (4), 34–39. http:
//dx.doi.org/10.1109/MS.2015.29.

Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M., 2018. Evaluating fuzz testing. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security. In: CCS ’18, Association for Computing Machinery, New
York, NY, USA, pp. 2123–2138. http://dx.doi.org/10.1145/3243734.3243804.

Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K., 2018. Do developers
update their library dependencies? Empir. Softw. Eng. 23 (1), 384–417.
http://dx.doi.org/10.1007/s10664-017-9521-5.

Kulenovic, M., Donko, D., 2014. A survey of static code analysis methods for se-
curity vulnerabilities detection. In: Proc. 37th Int. Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO
’14). pp. 1381–1386. http://dx.doi.org/10.1109/MIPRO.2014.6859783.

Lehman, M.M., 1996. Laws of software evolution revisited. In: Proceedings of
the 5th European Workshop on Software Process Technology. In: EWSPT
’96, Springer-Verlag, Berlin, Heidelberg, pp. 108–124.

van Liere, D.W., 2009. How shallow is a bug? why open source communities
shorten the repair time of software defects. In: ICIS 2009 Proceedings. p.
195.

Meneely, A., Williams, L., Secure open source collaboration: An empirical study of
linus’ law. In: Proc. 16th ACM Conf. Computer and Communications Security.
In: CCS ’09, ACM, pp. 453–462. http://dx.doi.org/10.1145/1653662.1653717.

Mitropoulos, D., Karakoidas, V., Louridas, P., Gousios, G., Spinellis, D., 2014. The
bug catalog of the Maven ecosystem. In: Proc. 11th Working Conf. Mining
Software Repositories (MSR ’14). ACM, Hyderabad, India, pp. 372–375. http:
//dx.doi.org/10.1145/2597073.2597123.

Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H., 2004. An empirical study
of software reuse vs. defect-density and stability. In: Proc. 26th Int. Conf.
Software Engineering (ICSE ’04). IEEE Computer Society, Washington, DC,
USA, pp. 282–292, URL http://dl.acm.org/citation.cfm?id=998675.999433.

Neuhaus, S., Zimmermann, T., The beauty and the beast: vulnerabilities in red
hat’s packages. In: Proc. 2009 USENIX Annual Technical Conf. (USENIX 2009).

Pashchenko, I., Plate, H., Ponta, S.E., Sabetta, A., Massacci, F., 2018. Vulnerable
open source dependencies: Counting those that matter. In: Proc. 12th
ACM/IEEE Int. Symp. on Empirical Software Engineering and Measurement
(ESEM ’18). ACM, Oulu, Finland, pp. 42:1–42:10. http://dx.doi.org/10.1145/
3239235.3268920.

Pham, N.H., Nguyen, T.T., Nguyen, H.A., Wang, X., Nguyen, A.T., Nguyen, T.N.,
2010. Detecting recurring and similar software Vulnerabilities. In: Proc. 32nd
ACM/IEEE Int. Conf. Software Engineering (ICSE ’10). ACM, Cape Town, South
Africa, pp. 227–230. http://dx.doi.org/10.1145/1810295.1810336.

Ponta, S.E., Plate, H., Sabetta, A., 2018. Beyond metadata: Code-centric and usage-
based analysis of known vulnerabilities in open-source software. In: Proc.
34th IEEE Int. Conf.on Software Maintenance and Evolution (ICSME ’18).
http://dx.doi.org/10.1109/ICSME.2018.00054.

Raymond, E., 1999. The cathedral and the bazaar. Knowl. Technol. Policy 12 (3),
23–49. http://dx.doi.org/10.1007/s12130-999-1026-0.

Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in
Software Engineering: Guidelines and Examples. Wiley Blackwell.

Shin, Y., Meneely, A., Williams, L., Osborne, J.A., Evaluating complexity,
code churn, and developer activity metrics as indicators of software
vulnerabilities, 37 (6), 772–787. http://dx.doi.org/10.1109/TSE.2010.81.

van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D., 2002. Goal question
Metric (GQM) approach. In: Encyclopedia of Software Engineering. John
Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 528–532. http://dx.doi.org/10.1002/
0471028959.sof142.

Spinellis, D., Kotti, Z., Kravvaritis, K., Theodorou, G., Louridas, P., 2020. A dataset
of enterprise-driven open source software. In: 17th International Conference
on Mining Software Repositories. In: MSR ’20, Association for Computing
Machinery, New York, NY, USA, http://dx.doi.org/10.1145/3379597.3387495.

Tomassi, D.A., 2018. Bugs in the wild: Examining the effectiveness of static
analyzers at finding real-world bugs. In: Proc. 2018 26th ACM Joint Meeting
on European Software Engineering Conf. and Symp. on the Foundations of
Software Engineering (ESEC/FSE ’18). ACM, Lake Buena Vista, FL, USA, pp.

980–982. http://dx.doi.org/10.1145/3236024.3275439.

https://doi.org/10.1016/j.jss.2020.110653
http://dx.doi.org/10.1016/j.infsof.2017.04.005
http://dx.doi.org/10.1145/1831708.1831738
http://dx.doi.org/10.1145/1251535.1251536
http://dx.doi.org/10.1109/ISSRE.2013.6698918
http://dx.doi.org/10.1109/ISSRE.2013.6698918
http://dx.doi.org/10.1109/ISSRE.2013.6698918
http://dx.doi.org/10.1145/1774088.1774504
http://dx.doi.org/10.1145/3196398.3196401
http://dx.doi.org/10.1016/j.infsof.2018.07.014
http://dx.doi.org/10.1145/2737182.2737190
http://dx.doi.org/10.1145/2737182.2737190
http://dx.doi.org/10.1145/2737182.2737190
http://dx.doi.org/10.1109/SP.2017.31
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb10
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb11
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb11
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb11
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb11
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb11
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb11
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb11
http://dx.doi.org/10.1145/2543581.2543595
http://dx.doi.org/10.1145/2543581.2543595
http://dx.doi.org/10.1145/2543581.2543595
http://dx.doi.org/10.1145/1052883.1052895
http://dx.doi.org/10.1109/MS.2015.29
http://dx.doi.org/10.1109/MS.2015.29
http://dx.doi.org/10.1109/MS.2015.29
http://dx.doi.org/10.1145/3243734.3243804
http://dx.doi.org/10.1007/s10664-017-9521-5
http://dx.doi.org/10.1109/MIPRO.2014.6859783
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb18
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb18
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb18
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb18
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb18
http://dx.doi.org/10.1145/1653662.1653717
http://dx.doi.org/10.1145/2597073.2597123
http://dx.doi.org/10.1145/2597073.2597123
http://dx.doi.org/10.1145/2597073.2597123
http://dl.acm.org/citation.cfm?id=998675.999433
http://dx.doi.org/10.1145/3239235.3268920
http://dx.doi.org/10.1145/3239235.3268920
http://dx.doi.org/10.1145/3239235.3268920
http://dx.doi.org/10.1145/1810295.1810336
http://dx.doi.org/10.1109/ICSME.2018.00054
http://dx.doi.org/10.1007/s12130-999-1026-0
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb28
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb28
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb28
http://dx.doi.org/10.1109/TSE.2010.81
http://dx.doi.org/10.1002/0471028959.sof142
http://dx.doi.org/10.1002/0471028959.sof142
http://dx.doi.org/10.1002/0471028959.sof142
http://dx.doi.org/10.1145/3379597.3387495
http://dx.doi.org/10.1145/3236024.3275439

14 A. Gkortzis, D. Feitosa and D. Spinellis / The Journal of Systems & Software 172 (2021) 110653

T

W

Y

Z

Z

ripathi, A.K., Gupta, A., 2014. A controlled experiment to evaluate the effec-
tiveness and the efficiency of four static program analysis tools for Java
programs. In: Proc. 18th Int. Conf. Evaluation and Assessment in Software
Engineering (EASE ’14). ACM, London, UK, pp. 23:1–23:4. http://dx.doi.org/
10.1145/2601248.2601288.

ang, J., Carroll, J.M., 2011. Behind Linus’s law: A preliminary analysis of open
source software peer review practices in Mozilla and Python. In: CTS 2011:
International Conference on Collaboration Technologies and Systems. IEEE,
pp. 117–124.

u, L., Mishra, A., 2013. An empirical study of lehman’s law on software quality
evolution. Int. J. Softw. Inf. 7, 469–481.

heng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk, M.A., 2006.
On the value of static analysis for fault detection in software. Softw. Eng.
IEEE Trans. 32 (4), 240–253. http://dx.doi.org/10.1109/TSE.2006.38.

immermann, M., Staicu, C., Tenny, C., Pradel, M., 2019. Small world with
high risks: A study of security threats in the npm ecosystem. CoRR arXiv:
1902.09217. URL http://arxiv.org/abs/1902.09217.

Antonis Gkortzis is a Ph.D. Student at the Athens Uni-
versity of Economics and Business (Greece) in the Soft-
ware Engineering and Security (SENSE) group. He holds
an MSc degree in Software Engineering from University
of Groningen (the Netherlands) and a BSc degree in In-
formation Technology from the Technological Institute
of Thessaloniki (Greece). His research interests include
security, object-oriented design, maintainability, and
software quality assessment.
Dr. Daniel Feitosa is an Assistant Professor in the Fac-
ulty Campus Fryslân and the Chief Data Scientist at the
Data Research Centre of the University of Groningen.
He is also an associated researcher in the group of
Software Engineering and Architecture of the Univer-
sity of Groningen. He holds a BSc degree (2010) and
MSc (2013) in Computer Science from the University
of São Paulo, Brazil, and was awarded his Ph.D. degree
(2019) in Software Engineering by the University of
Groningen. He currently has 20 publications among
journal, conference papers and book chapters. His main

research interests are in software architecture, software patterns and data
analytics.

Diomidis Spinellis is a Professor in the Department
of Management Science and Technology at the Athens
University of Economics and Business, Greece and di-
rector of the University’s Business Analytics Laboratory.
He is the author of two award-winning books, Code
Reading and Code Quality: The Open Source Perspec-
tive. His most recent book is Effective Debugging: 66
Specific Ways to Debug Software and Systems. He has
contributed code that ships with Apple’s macos and bsd
Unix, and is the developer of CScout, UMLGraph, dgsh,
and other open-source software packages, libraries, and

tools. He served as the Editor in Chief for IEEE Software over the period
2015–2018.

http://dx.doi.org/10.1145/2601248.2601288
http://dx.doi.org/10.1145/2601248.2601288
http://dx.doi.org/10.1145/2601248.2601288
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb34
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb35
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb35
http://refhub.elsevier.com/S0164-1212(20)30119-9/sb35
http://dx.doi.org/10.1109/TSE.2006.38
http://arxiv.org/abs/1902.09217
http://arxiv.org/abs/1902.09217
http://arxiv.org/abs/1902.09217
http://arxiv.org/abs/1902.09217

	Software reuse cuts both ways: An empirical analysis of its relationship with security vulnerabilities
	Introduction
	Related work
	Theoretical and empirical design
	Theoretical model
	Objective and research questions
	Cases and unit of analysis
	Variables and data collection
	Analysis procedure

	Results
	RQ1 - Relationship between vulnerabilities and size and reuse
	RQ2 - Distribution of vulnerabilities in native and reused code
	RQ3 - Disclosed vulnerabilities in reused code
	RQ4 - Dependencies' use frequency

	Discussion
	Interpretation of the results
	Comparison between enterprise and volunteer-based projects
	Inspection of SpotBugs' findings
	Implications for researchers and practitioners

	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Supplementary data
	References

