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Abstract

As new techniques have been introduced, specifically the possibility of complete genome

sequencing, better methods of defining bacterial species have also been proposed. One of the

most recently proposed methods, using bioinformatic techniques, is to calculate the average

nucleotide identity (ANI) between the homologous genome segments of different isolates.

Another method for species discrimination that has been tested successfully is the similarity of

DNA compositional signatures. However, in a recent update, DNA signatures split the available

Escherichia coli complete genomes into three groups. To check if this result was consistent with

such genomes belonging to different species, we tested methods based on genomic

composition and compared them to classic homology methods. The five methods used were

ANI, DNA signatures, 16s rRNA, 23s rRNA, and genomic similarity score. All species

discrimination methods grouped genomes of E. coli slightly differently. However, the DNA

signatures and ANI split the groups similarly, suggesting that methods of delimitation based on

genetic composition are just as effective as methods based on homology.
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Introduction

The definition and identification of species have been a challenge in biological sciences for

centuries. Many species concepts have been proposed in order to classify plants, animals, and

bacteria. As new methods of bacterial classification are introduced, the classification of species

continues to change as well. Early methods of bacterial classification started by looking at the

morphology of bacteria and conducting biochemical tests to group genomes into the same

species (Scheutz and Strockbine 2015). The problem with lab techniques is that they are

laborious and sometimes unable to be used as certain bacteria cannot be cultured in the lab.

Although these methods are still used today, more and more, they are used in conjunction with

sequence analysis methods to overcome some of the difficulties of lab techniques. Most

sequence analyses compare homologous genome segments to determine which organisms

belong together. These methods are accurate but can be very time-consuming. Due to the time

inefficiency and computer processing that these methods take, it is possible that new, heuristic

approaches need to be considered. An alternative to comparing homologous segments is to

compare the composition of genomes to discriminate between genomes of the same species

(Moreno-Hagelsieb et al. 2013).

Although species classification has come a long way, with different methods

incorporated, some errors may arise due to inappropriate classification methods for some

genomes of bacteria. A classic example of mislabeled species includes genomes of Shigella,

which often group with organisms classified as Escherichia coli because of their genomic

similarity (Lan and Reeves 2002). So the question lies in whether their genomes are similar

enough that they should be considered the same species or whether they should be separate

species altogether.

In order to understand the discrepancies between the labeling and the genomes of E.coli

and Shigella, it may be important to look at the specific biochemical tests used to classify



genomes into those species. Table 1.1 lists a few tests used to classify these bacteria

(Strockbine et al. 2015). With bacteria, the definitive tests started with the determination of the

morphology of individuals. These bacterial species have the same shape. Although few tests

and results are present in the table below, it still exemplifies similarities between the different

bacteria. If researchers found a strain of E. coli that had the same biochemical results as

Shigella, it could easily be misclassified. The similarity of these results can give an inaccurate

classification of individual genomes into a species. This highlights why it is so important to use

new methods of species classification for bacterial species, where the genomes are analyzed

and compared. This can give researchers more insight into the similarity of individuals and allow

for an adequate classification of bacterial species.

Species shape Gram staining Catalase Oxidative/fermentative

Escherichia coli rods Gram negative positive Fermentative

Shigella rods Gram negative positive Fermentative

Table 1.1. Four common tests performed in order to classify bacteria as either Escherichia coli

or Shigella. The similarity in the results of these tests provides an explanation as to why there

are genomes of Shigella that are found in databases under the species of E. coli.

However, in order to understand why these genomes may be classified as the same

species, it is crucial to consider their differences. When reading literature about what some of

the differences are between the genomes of E.coli and Shigella, what was found was that one of

the main differences between E.coli and Shigella is that, unlike E.coli, Shigella cannot ferment



lactose (Devanga Ragupathi et al. 2018). There are four different kinds of Shigella found in the

database labeled as E.coli, including S.flexneri and S. boydii, which do not contain any Lac

genes. S.dysenteriae, which contains LacA and LacB but does not contain the LacZ gene. The

fourth Shigella in the database is S.sonnei which has all three Lac genes but can still not

ferment lactose as there is no permease activity (Devanga Ragupathi et al. 2018).

A current method of species classification, based on genome comparison techniques, is

to calculate the average nucleotide identity (ANI). ANI is a method based on homology. As the

name indicates, ANI is the measure of nucleotide-level genomic similarity between complete

genomes; It is a similarity index given to genomes based on the homology. Researchers at

Michigan State University and Gent University (Goris et al. 2007)), suggested that an ANI of

95.5% better grouped genomes of the same species together. This threshold is comparable in

discriminating power to the 70 percent threshold suggested before for the DNA-DNA

hybridization method (Goris et al. 2007). Thus, ANI has been shown to be effective in classifying

species. However, while much faster and cheaper than DNA-DNA hybridization, it can still

become a bottleneck when working with large databases because it can take months to

compare many genomes.

When talking about methods of classification based on composition, the most basic level

of composition, GC content, would not be expected to contain enough information for species

delimitation. For this reason, higher levels of compositional analysis might be necessary. In

1999, a group of researchers calculated and analysed genomic composition of species. They

discovered that each genome has a characteristic “signature” defined as the ratios between the

observed dinucleotide frequencies and their expected frequencies given the genomic GC

content. The authors found that a comparison of the signatures of different genomes provided a

measure of similarity that grouped genomes similarly to what would be expected from a

phylogenetic analysis (Campbell et al. 1996).



When comparing methods of classification based on homology versus genomic

composition, it is important to understand what portion of the genomes are being compared

(Figure 1.1). Methods that are based on homology compare the portions of the genomes that

align well, whereas methods based on composition look at the entire genome and compare

them. Looking at the whole genome means that there would be more differences found between

genomes even if they belonged to the same species (Welch et al. 2002), which is why it is

appropriate to be skeptical about this method in terms of bacterial classification.

Figure 1.1. Comparison of homology based methods of discrimination to methods based on

composition. Homology based methods compare the portions of the genomes that are

significantly similar to each other, the intersection, as shown in the top Venn diagram. Genomic

composition methods compare the compositions of whole genomes, without alignment.

Based on the results given by Campbell et al. (1996) when using DNA signatures, a

measure to group organisms could be suggested by comparing the DNA compositional

signature between genomes of the same species. In a paper by Moreno-Hagelsieb et al. (2013),

DNA signatures of genomes of the same species were analyzed. The results found that



genomes of the same species condense at a tri-nucleotide signature distance of 0.03 when

using Manhattan distances (Moreno-Hagelsieb at al. 2013). The reason that this method was

tested for species discrimination is because of its efficiency. Determining differences in DNA

signatures is a lot quicker than calculating ANI, because there is no alignment required for

calculating and comparing DNA signatures, which is a requirement to determine the ANI

between two genomes (Figure 1.2).

Figure 1.2. Comparison of two methods used in species classification. The first image is the

ANI method, which has to find matching regions between genomes to determine how similar

they are to one another. The second image is the method of DNA signatures. The signature

calculation is exemplified with the dinucleotide AA, where the predicted AA value is derived from

the genomic proportion of AT and the observed is learned from the genome itself. The observed

value is then divided by the predicted value to give a ratio of 1.17 for the dinucleotide AA for this

given genome. The dinucleotide DNA signature consists of the vector of these

observed/expected ratios for each dinucleotide. The resulting vectors, DNA signatures, are

compared to each other using Manhattan distances.



Michael Richter and Ramon Rosello-Mora compared ANI and tetra-nucleotide

composition for genomes of the species Methanococcus maripaludis (Richter et al. 2009). They

found that tetra-nucleotides could group genomes of the same species, with some fuzziness as

this method is, as explained above, alignment-free. In contrast with the tetranucleotide

composition that Richter used, the research presented in this thesis focused mainly on using

tri-nucleotide DNA signatures to achieve a more heuristic approach to species discrimination.

Tri-nucleotide DNA signatures results were also compared to ANI to ensure that accuracy was

also kept while improving efficiency.

Up until 2019 DNA signatures were shown to organize all genomes of Escherichia coli

into a single group, along Shigella genomes. This suggested that DNA signatures were an

appropriate method of classification for bacterial species. However, in a 2019 genome database

update, the tri-nucleotide DNA signatures split the genomes of E. coli into three groups at the

same, previously established, distance threshold of 0.03. This suggested that either these

genomes of E. coli should be grouped into three different species, or that DNA signatures might

not be as effective in grouping genomes of the same species as previously thought. These

differences highlight the issue that different species discrimination methods can give rise to

different results and, therefore, inaccurate species classifications. The research conducted for

this thesis focused on reclassifying E.coli, using different species classification methods, to

determine how these genomes should be differentiated and whether methods of classification

based on composition do as well as methods of classification based in homology. Doing so will

also aid in evaluating the adequacy of DNA signatures for species delimitation.

My masters' thesis aimed at comparing methods of classification based on the

composition of genomes versus the homology of genome segments. The comparisons involved

1072 genomes of Escherichia coli as classified by the NCBI database combined with the

tri-nucleotide signatures, which are part of 2882 genomes belonging to the Enterobacteriaceae



family in the NCBI database. The method used for classification based on composition were di-,

tri- and tetra-nucleotide DNA signatures. The methods used for classification based on

homology were the average nucleotide identity, 16S rRNA, and 23S rRNA.

Previous work

For my undergraduate thesis, classification was done based on three methods; ANI, 16S rRNA,

and DNA signatures of all the genomes of E.coli available in the NCBI database. All three

methods were used on 560 complete genomes, which grouped together with genomes labeled

as Escherichia coli in the NCBI database in 2018. The threshold for ANI was based on a study

by Johan Goris and his colleagues (Goris et al. 2007), where they determined the ANI between

several species. The program used to find the ANI of all the genomes was fastANI (Jain et al.

2018). The results for all the ANI were then put into a table and clustered at a similarity of

95.5%. The 16S rRNA sequences for E.coli were selected from a collection of all 16S rRNA

sequences of all of the bacterial genomes in the RefSeq database (O’Leary et al. 2016). To

extract these sequences from the collection, an ad hoc program was written. This program was

written in python and put all the 16S rRNA in a file in order to cluster them later. The threshold

used to determine groups based on the 16S rRNAs was 98.5% (Kim et al. 2014). The third

method used to determine the similarity between E. coli genomes was distances based on DNA

compositional signatures (Campbell et al.1999). A program, written by Dr. Moreno-Hagelsieb,

was used to compare the DNA signatures of all E. coli genomes to one another. This program

grouped genomes based on a distance of 0.03. The number of groups and genomes per group

were saved into their respective files for all methods to compare results later.

What was seen based on these comparisons was that each method gave different

results (Figure 1.3). ANI resulted in 10 different groups, with the largest containing 560



genomes. DNA signatures gave three different groups, with the first containing 324 genomes.

Lastly, the 16S rRNA method gave 28 different groups, with the largest having 540 genomes.

Interestingly, in all three methods, there were 24 genomes that grouped out and all

labeled as genomes of E. coli; This was an unexpected result because genomes labeled as

Shigella and Citrobacter were mixing with those labeled E.coli species in the NCBI database.

We expected that genomes named differently would be the ones that would group themselves

out. The results thus suggested that these 24 genomes were different enough to be considered

a different species.

Figure 1.3. Comparison of number of clusters and genomes using three methods of species

classification. The results show that based on the DNA signatures method there were three

clusters found, with the largest containing 324 genomes. The ANI method gave 10 different

clusters, with the largest containing 560 genomes and the 16S rRNA method gave 28 different

clusters with the largest containing 540 genomes.

In an update of the NCBI database, we found that the 24 consistently problematic

genomes had been reclassified as Citrobacter, which is consistent with the suggestion that DNA

signatures were, like the other methods tested, currently rejecting them from the main E. coli

groups.



Objectives

The objectives of my MSc thesis research are as follows:

1. To build hierarchical clusters for all DNA signature groups, containing genomes labeled

as E.coli, based on the following measures for classification: ANI, DNA signature

similarity, as well as 16S rRNA and 23S rRNA gene similarities testifying for more

traditional approaches.

2. To determine whether methods of classification based on composition (DNA signatures)

are comparable to methods of classification based on homology (ANI).

3. To test the accuracy of these methods for species delimitation against the whole

Enterobacteriaceae family.



Methods

Selecting genomes

We downloaded complete genomes from NCBI’s RefSeq database (O’Leary et al. 2016).

Trinucleotide DNA signatures were calculated for all genomes and grouped based on a cutoff of

0.03, previously found to correspond to a species threshold (Moreno-Hagelsieb et al. 2013). The

genomes were selected by bringing in all genomes found in a group with at least one genome of

Escherichia coli in it.

Average Nucleotide Identity

Average nucleotide identity was calculated using fastANI v. 1.2 (Jain et al 2018). We used a

fragment size option of 1020 nucleotides. The same method was also done for all genomes that

were labeled as Escherichia.

DNA signatures

DNA signatures are vectors containing the ratio of observed and predicted proportions of each

of di, tri, or tetranucleotides (Campbell et al. 1996, Moreno-Hagelsieb et al. 2013). The observed

were calculated with a single nucleotide sliding window as published previously

(Moreno-Hagelsieb et al. 2013).

16S and 23S rRNA

The 16S and 23S rRNA gene sequences were found using infernal v. 1.1.3 (Nawrocki and Eddy,

2013) against the RF00177 (16S rRNA) and RF02541 (23S rRNA) covariance models. The

percent identity between all rRNA sequences found were calculated using the vsearch program



v. 2.16 (Rognes et al. 2016). This program works by using a fast heuristic word searching

method.

MASH

Another method used for comparing genomic distances was MASH (Ondov at al. 2019). This

method compares genomes based on long-nucleotide composition, which makes it something

of an intermediate composition/homology method. MASH uses two primary functions for

sequence comparisons, known as sketch and dist. The sketch function converted the collection

of sequences into a MinHash sketch—the dist function then compared the sketches and

returned an estimate of the Jaccard index. MASH defaults at 1000 sketches per genome. We

selected 5000 sketches instead (mash sketch -s 5000).

Dashing

DASHING works very similar to MASH, where it creates sketches in order to compare distances

(Baker and Langmeed 2019). The difference, however, is that Dashing uses HyperLogLog

sketches rather than MinHash sketches. Options other than the defaults for dashing cmp, were

selected to produce a mash-like result (--mash-dist), with a k-mer size of 21 to make it more

comparable to MASH (-k 21), and the sketch size option that produced the best jaccard-index

estimates in the publication (2^14, selected using -S 14).

Selecting cutoffs

After the groups were created, the cutoffs for the family and genus were double-checked using

the cutpointr R library (Christian Thiele, 2021: https://CRAN.R-project.org/package=cutpointr).

The library found the optimal cutpoint for each method, including the di, tri, and tetra nucleotides



in DNA signatures; ANI, MASH, and DASH. The program also calculated the different prediction

statistics for all methods of classification.

Hierarchical Clusters

Hierarchical clusters were built using a program written by Dr. Moreno-Hagelsieb. The program

is a wrap up that takes the appropriate distance/similarity files for each method as appropriate

and produces an R script to produce hierarchical clusters. The program can also cut the

hierarchical clusters at selected thresholds. Hierarchical clusters were compared using cluster,

MCMCpack, ape and reshape2 packages in R.



Results

Selecting Escherichia coli genomes

We first selected genomes from the NCBI database, and trinucleotide DNA signatures were

calculated for all genomes and grouped based on a cutoff of 0.03. The E. coli groups were

selected by bringing in all genomes found in a group with at least one genome of Escherichia

coli in it. The genomes of E.coli were found in 3 different groups based on their DNA signatures

(Table 3.1). The first group contained 527 genomes in total, with 523 of these genomes labeled

as Escherichia coli. The group also contained three genomes of Shigella and one genome of

Salmonella with no species-level designation. In the second group, there were 544 genomes in

total, with 446 of them labeled as Escherichia and 101 of them labeled as Shigella. In the third

group, there were 450 genomes in total, with 448 of the genomes labeled as Klebsiella, one of

them labeled as Escherichia coli, and one labeled as Enterobacteriaceae bacterium. We

assumed that this group contained a Klebsiella genome mislabeled as E. coli, thus deciding to

ignore this group. Later on, we found that the genome had been reclassified as Klebsiella

pneumoniae in NCBI.

Cluster 1 Cluster 2 Cluster 3

523 Escherichia coli
1 Salmonella HNK130
1 Shigella boydii
1 Shigella flexneri

444 Escherichia coli
39 Shigella flexneri
23 Shigella dysenteriae
22 Shigella sonnei
14 Shigella boydii
1 Shigella Marmoate
1 Escherichia E4742

399 Klebsiella pneumoniae
22 Klebsiella quasipneumoniae
21 Klebsiella variicola
2 Klebsiella aerogenes
1 Klebsiella quasivariicola
1 Klebsiella PO552
1 Klebsiella P1CD1
1 Klebsiella LY
1 Escherichia coli
1 Enterobacteriaceae unclassified

Table 3.1. Species found in the three groups obtained using DNA signatures at a 0.03

threshold. The first two clusters mainly contained genomes labeled as Escherichia coli, with the



second containing most of the Shigella genomes. However, the third group contained only one

E. coli genome, shown in red. The third cluster was left out of the analyses as it was suspected

to be a misclassified genome of Klebsiella, which was later confirmed as it was later reclassified

as Klebsiella pneumoniae in the original database.

Hierarchical clusters

Once selecting the two proper E. coli groups, I produced hierarchical clusters for the remaining

1071 genomes using all the methods of classification (Figures 3.1, 3.2).

The 16S and 23S rRNA gene clusters displayed many more nodes than any ogher

cluster, because each genome contained several rRNA genes. While identical copies of the

rRNA genes, within the same genome, were ignored, that was not enough to keep a single

representative sequence per genome (Figure 3.1). The abundance of non-identical 16S and

23S rRNA genes makes them a difficult choice for bacterial species classification or delimitation.

After the hierarchical clusters were produced, I noticed that there seemed to be many

similarities between the ANI cluster (Figure 3.1) and DNA signatures cluster (Figure 3.2). In

both cases, almost all the genomes of Shigella are found together. A numerical analysis, using

entanglement, was then done to compare the alignment of the hierarchical cluster, based on

ANI to that based on trinucleotide DNA signatures using an entanglement (Figure 3.3). The

entanglement score is a measure between one and zero, where one represents full

entanglement, and 0 represents no entanglement; A lower entanglement coefficient

corresponds to a good correspondence between the clusters. The entanglement of 0.08 further

shows that both classification methods, ANI and DNA signatures, produce very similar results.



Figure 3.1. Hierarchical clusters based on homology methods of classification, including ANI

16S rRNA and 23S rRNA. It is interesting to note that ANI clustered most Shigella genomes

together into a single group. The Shigella 16S and 23S rRNA genes did not group together as

clearly.



Figure 3.2. Hierarchical clusters based on compositional methods of classification, including di,

tri and tetranucleotide DNA signatures. All three methods grouped most Shigella genomes close

together.



Figure 3.3. Tanglegram representing similarities between hierarchical clusters of ANI and

tri-nucleotide DNA signatures. On the right is the hierarchical cluster for ANI and on the left is

the hierarchical cluster for DNA signatures. The number on top is an entanglement coefficient

which corresponds to how well the two clusters align to each other. The low entanglement of

0.08 indicates that the results of the two methods are very similar.

Classification quality

Receiver operating characteristic (ROC) curves were produced where the positive data set

consisted of pairs of genomes classified into the same species, while negatives consisted of,

either pairs of genomes classified in the same family, but different species; or pairs of genomes

classified in the same genus, but different species. A ROC curve is a performance

measurement that is often used for classification problems testing different thresholds. These

graphs are plotted with the true positive rate (sensitivity) on the y- axis, against the false positive



rate (1 - specificity) on the x-axis. The area under the curve (AUC) represents the accuracy of

the method for classification.

The graphs in figure 3.4 highlight that DNA signatures can accurately differentiate

between different groups when using same-family pairs as negatives. This is seen due to the

high value for the area under the curve (AUC), which ranges from 0.9899 for dinucleotide

signatures all the way to 0.9929 for the tetranucleotide signatures. The AUC for DNA signatures

are comparable to the AUC for ANI, which showed an AUC of 0.9903.

ANI can accurately differentiate species when tested using same-genus genomes as a

negative dataset, as seen on the ROC curve with an AUC of 0.97 (Figure 3.4). ROC curves for

di, tri, and tetranucleotide DNA signatures, with same-genus as negative dataset (Figure 3.5)

shows AUC of 0.8555 for dinucleotide signatures, 0.8962 for tri-nucleotide signatures, and

0.9081 for tetra-nucleotide signatures.



Method AUC Opt. cutpoint sensitivity specificity accuracy

DNA sig - 2 0.9899 0.012 0.9402 0.9914 0.9517

DNA sig - 3 0.9919 0.0206 0.9508 0.9917 0.9616

DNA sig - 4 0.9929 0.0325 0.9516 0.9961 0.9616

ANI 0.9903 7.955 0.9601 0.9979 0.9686

Figure 3.4. ROC curves for DNA signatures and ANI, with same-family genome pairs used as

negative datasets. A ROC curve is a performance measurement that is often used for



classification problems testing different thresholds. These graphs are plotted with the true

positive rate (sensitivity) on the y- axis, against the false positive rate (1 - specificity) on the

x-axis. The area under the curve (AUC) represents the accuracy of the method for classification.

The AUC suggested that all methods of classification, DNA signatures and ANI, were able to

differentiate between species within the same taxonomic family.

Method AUC Opt. cutpoint sensitivity specificity accuracy

DNA sig - 2 0.8555 0.0056 0.7755 0.7315 0.7353



DNA sig - 3 0.8962 0.0123 0.7247 0.8823 0.8689

DNA sig - 4 0.9081 0.0189 0.7316 0.9011 0.8867

ANI 0.97 5.12 0.9332 0.9853 0.9808

Figure 3.5. ROC curves for DNA signatures and ANI, with same-genus genome pairs used as a

negative dataset. The AUCs were lower than those displayed in Figure 3.4. The AUCs for DNA

signatures were not as high as the AUC for ANI, meaning that DNA signatures were not as

good at differentiating between species of the same genus as ANI.

Oligonucleotide methods for species delimitation

Initially, this work did not contemplate testing what we call “intermediate” classification methods,

like MASH (Ondov at al. 2019) and DASHING (Baker, D.N. & Langmeed, B. 2019). We call

them intermediate because they compare oligonucleotide content, where the oligonucleotides,

the k-mers, are much longer than four (defaults of 21 and 31, respectively), and thus approach a

homology-based comparison. Given the results with the ROC analyses above, where DNA

signatures gave results of lesser quality compared to ANI, I thought it worth testing these other

methods. Figure 3.6 highlights the hierarchical clusters for both methods.

As observed, both methods cluster Shigella genomes in a similar way as ANI. The

hierarchical clusters were also compared against the ANI cluster using tanglegrams. Figure 3.7

shows the tanglegram for ANI on the right against MASH on the left. This figure highlights how

similar the hierarchical clusters for both these methods are due to the entanglement score of

0.01. Figure 3.8 shows the tanglegram of ANI on the right against Dashing MASH on the left.

This figure highlights the difference between these two programs, seen by an entanglement

score of 0.6.



The ROC curves for MASH and DASHING, using same-genus genome pairs as negative

datasets, are shown in Figure 3.9 highlight the accuracy of both MASH and Dashing, based on

the high values for the AUC.

Figure 3.6. Hierarchical clusters based on MASH and Dashing. Both methods kept most of the

Shigella genomes into the same group.



Figure 3.7. Tanglegram of ANI vs MASH, where the hierarchical cluster of ANI is seen on the

right side and the hierarchical cluster of MASH is seen on the left. The entanglement coefficient

seen here is 0.01, indicating that the results of the hierarchical clusters for both MASH and ANI

are very similar to one another, and almost identical.



Figure 3.8. Tanglegram of ANI vs Dashing-MASH, where the hierarchical cluster of ANI is seen

on the right side and the hierarchical cluster of Dashing-MASH is seen on the left. The

entanglement coefficient seen here is 0.6, indicating that the results for the hierarchical clusters

of Dashing and ANI are not well aligned, meaning the methods group them very differently from

one another.



Method AUC Opt. cutpoint sensitivity specificity accuracy

MASH 0.9683 0.0477 0.9301 0.9827 0.9782

Dashing - MASH 0.9682 0.0465 0.9317 0.9783 0.9744

Figure 3.9. ROC curves for MASH and Dashing-Mash, with same-genus genome pairs used as

a negative dataset. What is seen is that both had an AUC of 0.96, indicating that both methods

are effective in differentiating between genus and species, where genus is the negative dataset.

Since all methods produced very similar AUC values with the same-family negative

datasets, I further analysed the performance of these methods using the same-genus negative

dataset, where more differences could be expected. Thus, the hierarchical clusters containing

all of the Enterobacteriaceae genomes were cut into groups after determining the optimal cutoffs

for each method using the same-genus negative dataset. An analysis was done of the resulting

groups to determine how the Shigella and E.coli grouped (Table 3.3). What I noticed is that,

based on these cutoffs, the signature-based thresholds divided the Enterobacteriaceae into



more groups than other methods, with ANI, mash and dashing keeping all of the genomes of

E.coli and Shigella into a single group. This table highlights the discrepancies between the

method of DNA signatures and ANI when tested with organisms of the same genus as negative

datasets.

Method:
threshold

Number of
groups

Largest number
of Shigella in a
group (out of
101)

Largest number
of E.coli in a
group (out of
967)

ANI: 5.12 155 101 (group 1) 967 (group 1)

Dinucleotide: 0.0056 190 40 (group 5) 195 (group 6)

Trinucleotide: 0.0123 159 51 (group 2) 276 (group 12)

Tetranucleotide: 0.0189 157 64 (group 2) 254 (group 11)

MASH: 0.0477 158 101 (group 1) 967 (group 1)

Dashing: 0.0465 185 101 (group 10) 967 (group 10)

Table 3.3. Amount of genomes of Shigella and E.coli found in a single group based on different

methods. These thresholds were determined by comparing same-species genome pairs as

positive datasets against same-genus genome pairs as negative datasets as indicated by the

ROC curves.



Discussion

A heuristic technique is an approach to a problem that employs a method that is not guaranteed

to be perfect, but rather good enough to reach an immediate short-term goal. When considering

DNA signatures as a method for bacterial classification, this is precisely the word that comes to

mind. The definition and identification of species have been a challenge in Biological sciences

for centuries. As new methods of bacterial classification are introduced, the classification of

species continues to change as well. My thesis looked at multiple classification methods to

determine whether methods based on genomic composition, specifically DNA signatures, are as

effective in classifying bacterial species as methods based on homology (ANI). One of the main

reasons to test methods of classification based on genomic composition is to approach bacterial

classification with a heuristic model in mind.

The first step in these analyses was genomes selection from the NCBI database. There

were 101 genomes of Shigella in the NCBI database that were grouped with E.coli. In order to

understand why these genomes may be classified as the same species, it is crucial to consider

their similarities and differences. When reading literature about what some of the differences are

between the genomes of E.coli and Shigella, what was found was that one of the main

differences between E.coli and Shigella is that, unlike E.coli, Shigella cannot ferment lactose

(Devanga Ragupathi et al. 2018). There are four different kinds of Shigella found in the

database labeled as E.coli, including S.flexneri and S. bodyii, which do not contain any Lac

genes. S.dysenteriae, which contains LacA and LacB but does not contain the LacZ gene. The

fourth Shigella in the database is S.sonnei which has all three Lac genes but can still not

ferment lactose as there is no permease activity (Devanga Ragupathi et al. 2018). Although

their genomes may be similar, the differences are in parts of the genome that contain functional

genes and that belong to the core genome, thus suggesting that Shigella strains should be

classified as a different species.



The methods were all tested on genomes that were grouped with those classified as

Escherichia coli according to the NCBI database. Interestingly, the DNA signatures and ANI

hierarchical clusters were very similar, as they grouped 97 of the 101 genomes of Shigella

together into a separate node (Figure 3.1, Figure 3.2). Therefore, I tested the similarity of these

clusters based on a tanglegram (Figure 3.3). The tanglegram for this comparison produced an

entanglement score of 0.08. An entanglement score, again, gives a measure to how well

aligned the two clusters are to one another (An introduction to cutpointr. (n.d.)). The low

entanglement score between the trinucleotide DNA signatures and ANI hierarchical clusters

shows that the two are very similar. This provides evidence suggesting that DNA signatures are

as effective in clustering genomes of bacterial species as ANI.

After comparing the hierarchical clusters, ROC curves were produced for di, tri, and

tetranucleotide signatures (Figure 3.4). A ROC curve is a performance measurement that is

often used for classification problems at various thresholds. The graphs are plotted with the true

positive rate (sensitivity) against the false positive rate (1 - specificity) to show the area under

the curve and the optimal threshold. The ROC curves for the DNA signatures highlight that this

method can differentiate between genomes from organisms of the same species and other

organisms in the same taxonomic family; this is seen due to the high area under the curve

(AUC), ranging from 0.9899 for dinucleotides to 0.9929 for tetranucleotides. The AUC for ANI,

using the same datasets, showed that it could differentiate between species accurately, with an

AUC of 0.9903.

The results above are very similar. However, a more precise comparison was made

producing ROC curves for DNA signatures and ANI, but this time checking the separation

between genomes of organisms of the same species against organisms within the same genus.

This time around, DNA signatures could not discriminate between the genus and species as

accurately as ANI (Figures 3.5). ANI produced an AUC of 0.97, while for the DNA signatures,



the range was between 0.8555 for dinucleotides and 0.9081 for tetranucleotide DNA signatures.

Although these are still high AUCs, they are not as good as the one for ANI.

After seeing that DNA signatures could not discriminate as well between genus and

species, I tested two other methods. The first method was MASH; this method is somewhat in

between composition and homology regarding how it classifies species. MASH uses a MinHash

algorithm, effectively eliminating the resemblance of two genomes or metagenomes (Ondov at

al. 2019). Initially, this method was left out of consideration when it came to picking strategies for

bacterial classification. We thought it would be slower than DNA signatures as it is an

in-between method based on composition and homology. What I found was that this method

was quicker than DNA signatures and much quicker than ANI.

The first thing done was that a hierarchical cluster was created for MASH, as seen in

figure 3.6. What was seen is that the hierarchical cluster grouped the majority of Shigella

genomes together into a separate node. Based on the similarity of this cluster to the one

produced by ANI, another tanglegram was made, as seen in figure 3.7. This time on the right,

there was ANI, and on the left, there was the hierarchical cluster for MASH. What was seen in

this comparison was that the two hierarchical clusters were well aligned, proven by the

entanglement score of 0.01. After testing the similarity between ANI and MASH hierarchical

clusters, ROC curves were created for MASH for genus versus species. What was seen in this

curve is that this method worked very well when discriminating between genus and species,

proven by the AUC of 0.9683.

One more tested method was Dashing; this method is also used for estimating genomes

or sequence datasets. The difference is that Dashing sketches genomes more rapidly than

previous MinHash-based methods, such as MASH, while still providing greater accuracy. Rather

than a MinHash method for sketching, Dashing uses a HyperLogLog sketch (Baker and

Langmeed 2019). The first thing was that a hierarchical cluster was created for Dashing -

MASH, as seen in figure 3.6. What was seen in this hierarchical cluster was that, yet again, the



majority of the genomes of Shigella were grouped together in a separate node. Based on this

similarity, another tanglegram was created, as seen in figure 3.8. This time on the left, there

was the hierarchical cluster for Dashing, and on the right was the hierarchical cluster for ANI.

What was seen in this comparison was that the two hierarchical clusters were not well aligned,

as seen by an entanglement score of 0.6, meaning that there was much entanglement. After

testing the similarity between ANI and Dashing hierarchical clusters, ROC curves were created

for Dashing-MASH for the same-genus negative dataset. What was seen in this curve is that

this method worked very well when discriminating between genus and species, proven by the

AUC of 0.9682 (figure 3.9). This method has the same accuracy as MASH does in terms of

discriminating between genomes when it comes to comparing the genus against the species.

The difference, however, is that Dashing is a lot faster as it uses the HyperLogLog sketches,

and it does this in the same step that it separates the genome. Whereas for MASH, the

sketches need to be done in a separate, initial step.

After testing all these methods, it was seen that they gave different results, which is what

was expected. Hierarchical clusters gave a clearer understanding of where genomes of Shigella

were grouped and if there was a way to separate them from all the other genomes of E.coli.

Based on the hierarchical clusters of all the methods, it is evident that one method that gave

clean results in how it grouped the genomes of Shigella was the method of DNA signatures. It

grouped 97 of the 101 genomes of Shigella in one group. Table 3.3 shows a comparison of the

number of groups found based on each DNA signature method and at different thresholds and

the number of genomes of Shigella found grouped. This table highlights the fact that one group

based on trinucleotide DNA signatures captured 94% of the genomes of Shigella found in the

NCBI database, listed as E.coli in one group, suggesting that based on this method, Shigella

should be separated into different species.

Based on these results, it is evident that DNA signatures are an acceptable classification

method, as it organizes genomes of Shigella into a separate group, just as ANI does. This also



suggests that Shigella should be separated from the Escherichia species even though their

genomes are very similar. Based on ROC curves, it also suggests that DNA signatures should

be used as a method of classification to discriminate between the family against the species.

When discriminating between the genus and the species, DNA signatures do not seem as

adequate based on an area under the curve of 89%, compared to the ANI method, which has

an area under the curve of 97%. When discriminating between genus and species, it is more

effective to use a classification method such as MASH or Dashing. Both these methods were

seen to be more effective than ANI when discriminating between genus and species, and both

were seen to be doing so with much more efficiency than the latter.

At present, Shigella and Escherichia genera are considered to be unique species based

on their genotypes. Unlike E.coli, Shigella genomes are nonmotile due to a deletion in the fliF

operon or an ISI insertion mutation in the flhD operon. Shigella also does not ferment lactose,

as genomes of S. flexneri and S. bodyii do not contain any lac genes required for fermentation.

S.dysenteriae is known to have some lac genes (lacY and lacZ) but is lacking the lacA gene,

which is required for fermentation. S.sonnei has all three of the lac genes but is still unable to

ferment lactose as a result of there being no permease activity. These observations have led

researchers to believe that Shigella originated as a result of convergent evolution (Ragupathi at

al.2018). Going forward, I think it is important to check whether the lac gene is why DNA

signatures grouped the genomes of Shigella together. If this is the case, it would confirm again

that DNA signatures are an excellent classification method. Another thing to confirm would be

whether the Lac genes would be found in the core genome. This is important because if they

are found in genes that are a part of the core genome, this would suggest yet again that

Shigella and E.coli should be part of different species rather than being considered the same.

I suggest using DNA signatures or other compositional classification methods when

discriminating between the family and species to classify species as it is a lot quicker. If

discrimination needs to be done between genus and species, methods that use homologies



such as ANI or some intermediate between genomic composition and homology can be used,

such as MASH or Dashing. The best method of classification based on the results seen here is

a combination of ones that look at just the composition and ones that also consider the

homology.

Going forward, trinucleotide DNA signatures, MASH, and Dashing should be tested on

all bacterial species, and these three methods should be compared to one another on a larger

scale. This will ensure that these methods are consistent with one another and make sure that

the produced results are accurate and efficient.

Over the years, bacterial species classification has moved away from more lab-intensive

methods due to many different reasons. One of those is that it can be a prolonged approach to

classifying species, and it cannot be used on non-culturable cells (Franco-Duarte, 2019). As

classification methods are constantly changing, as they have throughout the years, it is

essential to consider methods of classification based on genomic composition as it offers a

heuristic approach to bacterial species classification. A new method of bacterial classification

based on both genomic composition and homology that is being proposed is the Naïve Bayes

hybrid model, which takes the intersection of the predictions produced by two classifiers to

produce a high-confidence set of predictions in which classified fragments are rarely incorrect

and often assigned to the most appropriate taxonomic rank given the available set of reference

genomes (Parks, 2011). This method incorporates genomic composition into the classification

of bacterial species to achieve a more accurate and efficient method of bacterial classification.

This again proves that there should be more research conducted to determine better

classification methods in bacterial species that can be done quickly; this involves looking at

methods based on genomic composition or an intermediate between homology and

composition.



Conclusions

As classification methods and technologies have changed throughout the years, the focus has

changed from using biochemical tests to genome-sequence methods, and then from using

methods that are accurate to using methods that take a heuristic approach to bacterial

classification. One of the primary shifts has been in using methods that consider the genomic

composition instead of methods that focus on just the homology of genomes. My thesis focused

on comparing these two different methods of bacterial discrimination on genomes of Escherichia

coli, using DNA signatures, a compositional method, against ANI, a method based on homology.

My findings showed that DNA signatures could accurately and efficiently discriminate between

genomes of Escherichia coli and organize them into a hierarchical cluster, almost as well as ANI

and at a fraction of the time. Going forward, research should focus on using methods of

classification based on composition or a mix of both composition and homology; one example of

this is the program MASH. This program was an intermediate between ANI and DNA signatures

and worked at a fraction of the time that DNA signatures did. This further proved how genomic

composition could be used as a heuristic approach to species classification. As methods of

classification progress, the goals have also shifted to make methods not just accurate but also

efficient; with that, it is essential to consider methods based on genomic composition.

Integrative Biology statement

What does it mean to be integrative? The word by definition means to unify separate things.

Integrative biology to me means to use multiple skills and approaches to solve biological

problems. My thesis was very representative of integrative biology, as it was using programming

skills in order to answer questions pertaining to the biological sciences, in terms of species

definition.



References

An introduction to cutpointr. (n.d.). Retrieved June 2, 2021, from

https://cran.r-project.org/web/packages/cutpointr/vignettes/cutpointr.html

Baker DN, Langmead B (2019). Dashing: Fast and accurate genomic distances with

HyperLogLog. Genome Biology, 20(1), 1–12. https://doi.org/10.1186/s13059-019-1875-0

Bohlin J, Eldholm V, Pettersson JHO, Brynildsrud O, Snipen L (2017). The nucleotide

composition of microbial genomes indicates differential patterns of selection on core and

accessory genomes. BMC Genomics, 18(1), 1–11. https://doi.org/10.1186/s12864-017-3543-7

Campbell A, Mrázek J, Karlin S (1999). Genome signature comparisons among

prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA, 96(16), 9184–9189.

https://doi.org/10.1073/pnas.96.16.9184

Caputo A, Merhej V, Georgiades K, Fournier PE, Croce O, Robert C, Raoult D (2015).

Pan-genomic analysis to redefine species and subspecies based on quantum discontinuous

variation: The Klebsiella paradigm. Biology Direct. https://doi.org/10.1186/s13062-015-0085-2

Devanga Ragupathi NK, Muthuirulandi Sethuvel DP, Inbanathan FY, Veeraraghavan B

(2018). Accurate differentiation of Escherichia coli and Shigella serogroups: challenges and

strategies. New Microbes and New Infections, 21, 58–62.

https://doi.org/10.1016/j.nmni.2017.09.003

Franco-Duarte R, Cernakova L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, Corbo

MR, Antolak H, Dybka-Stepien K, Leszczewicz M, Relison Tintino S, Alexandrino de Souza VC,

Sharifi-Rad J, Coutinho HDM, Martins N, Rodrigues CF (2019). Advances in chemical and

https://doi.org/10.1186/s13059-019-1875-0
https://doi.org/10.1186/s12864-017-3543-7
https://doi.org/10.1186/s13062-015-0085-2


biological methods to identify microorganisms—from past to present. Microorganisms, 7, 130.

https://doi.org/10.3390/microorganisms7050130

Goris J, Konstantinidis KT, Klappenbach JA, Coeyne T, Vandamme P, Tidje JM (2007).

DNA-DNA hybridization values and their relationship to whole-genome sequence similarities.

International Journal of Systematic and Evolutionary Microbiology, 57, 81-91. Retrieved from

www.microbiologyresearch.org

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput

ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun, 9,

5114. https://doi.org/10.1038/s41467-018-07641-9

Kim H, Oh HS, Park SC, Chun J (2014). Towards a taxonomic coherence between

average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of

prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64, pp. 346-35.

https://doi.org/10.1099/ijs.0.059774-0

Lan R, Reeves PR (2002). Escherichia coli in disguise: molecular origins of Shigella.

Microbes and Infection, 4(11), pp. 1125–1132. https://doi.org/10.1016/S1286-4579(02)01637-4

Lorén JG, Farfán M, Fusté MC (2018). Species Delimitation, Phylogenetic Relationships,

and Temporal Divergence Model in the Genus Aeromonas. Frontiers in microbiology, 9, 770.

https://doi.org/10.3389/fmicb.2018.00770

Moreno-Hagelsieb G, Wang Z, Walsh S, Elsherbiny A (2013). Phylogenomic clustering

for selecting non-redundant genomes for comparative genomics. Bioinformatics, 29(7), pp.

947-949.https://doi.org/10.1093/bioinformatics/btt064

http://www.microbiologyresearch.org
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1099/ijs.0.059774-0
https://doi.org/10.1016/S1286-4579(02)01637-4
https://doi.org/10.3389/fmicb.2018.00770
https://doi.org/10.1093/bioinformatics/btt064


Nawrocki EP, Eddy SR (2013). Infernal 1.1: 100-fold faster RNA homology searches.

Bioinformatics, 29(22), 2933–2935. https://doi.org/10.1093/bioinformatics/btt509

O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B,

Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover

V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher

E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR,

O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun

H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ,

Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD (2016). Reference sequence

(RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.

Nucleic Acids Res, 44(D1), D733-4. https://doi.org/10.1093/nar/gkv1189

Ondov BD, Starrett GJ, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM (2019).

Mash Screen: High-throughput sequence containment estimation for genome discovery.

Genome Biology, 20(1), 1–13. https://doi.org/10.1186/s13059-019-1841-x

Parks DH, MacDonald NJ, Beiko RG (2011). Classifying short genomic fragments from

novel lineages using composition and homology. BMC Bioinformatics, 12(1), 1–16.

https://doi.org/10.1186/1471-2105-12-328

Richter M, Rosello-Mora R (2009). Shifting the genomic gold standard for the prokaryotic

species definition. Proc Natl Acad Sci USA 106 (45) 19126-19131.

https://doi.org/10.1073/pnas.0906412106

Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016). VSEARCH: a versatile open

source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.2584

https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1186/s13059-019-1841-x
https://doi.org/10.1186/1471-2105-12-328
https://doi.org/10.1073/pnas.0906412106
https://doi.org/10.7717/peerj.2584


Strockbine NA, Maurelli AT (2015). Bergey’s manual of systematics of archaea and

bacteria. Wiley Online library. https://doi-org.libproxy.wlu.ca/10.1002/9781118960608.gbm01168

Sheutz F, Strockbine NA (2015). Escherichia. Bergey's Manual of Systematics of Archaea

and Bacteria. https://doi.org/10.1002/9781118960608.gbm01147

Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL

(2013). Microbial genomic taxonomy. BMC Genomics.

https://doi.org/10.1186/1471-2164-14-913.

Welch RA, Burland V, Plunkett G, 3rd, Redford P, Roesch P, Rasko D, Buckles EL, Liou

SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT,

Mobley HL, Donnenberg MS, Blattner FR (2002). Extensive mosaic structure revealed by the

complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA

99:17020-4. Doi: https://doi.org/10.1073/pnas.252529799

Wiens JJ (2007). Species Delimitation: New Approaches for Discovering Diversity .

Systematic Biology, 56 (6), pp. 875-878. https://doi.org/10.1080/10635150701748506

https://doi-org.libproxy.wlu.ca/10.1002/9781118960608.gbm01168
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118960608
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118960608
https://doi.org/10.1002/9781118960608.gbm01147
https://doi.org/10.1186/1471-2164-14-913
https://doi.org/10.1073/pnas.252529799
https://doi.org/10.1080/10635150701748506


Appendix

Program AUC n n_pos n_neg

optimal

cutpoint acc sensitivity specificity

MASH 0.9893 3943836 3057146 886689 0.0666 0.9686 0.9602 0.9977

ANI 0.9903 3943836 3057147 886689 7.955 0.9686 0.9601 0.9979

Signatures-3 0.9919 3943836 3057147 886689 0.0206 0.96 0.9508 0.9917

Signatures-2 0.9899 3943836 3057147 886689 0.012 0.9517 0.9402 0.9914

Signatures-4 0.9929 3943836 3057147 886689 0.0325 0.9616 0.9516 0.9961

Dashing-

MASH 0.99 3943836 3057147 886689 0.0653 0.9684 0.96 0.9975

Dashing-

Jaccard 0.99 3943836 3057147 886689 0.8622 0.9684 0.96 0.9975

Table A.1. ROC curve data based on all the different methods of discrimination used, when

comparing Family versus species.



Program AUC n n_pos n_neg

optimal

cutpoint acc sensitivity specificity

Signature-3 0.8962 969356 82667 886689 0.0123 0.8689 0.7247 0.8823

ANI 0.97 969356 82667 886689 5.12 0.9808 0.9332 0.9853

Signature-4 0.9081 969356 82667 886689 0.0189 0.8867 0.7316 0.9011

Signature-2 0.8555 969356 82667 886689 0.0056 0.7353 0.7755 0.7315

MASH 0.9683 969356 82667 886689 0.0477 0.9782 0.9301 0.9827

Dashing-

MASH 0.9682 969356 82667 886689 0.0465 0.9744 0.9317 0.9783

Dashing-

Jaccard 0.9682 969356 82667 886689 0.7748 0.9744 0.9317 0.9783

Table A.2. ROC curve data based on all the different methods of discrimination used when

comparing Genus versus species.



DNA signature
distance cutoffs

Dinucleotide DNA
signature

Trinucleotide DNA
signature

Tetranucleotide DNA
Signature

0.01 5 20 58

0.02 2 3 12

0.03 1 2 4

0.04 1 1 4

0.05 1 1 1

0.06 1 1 1

0.07 1 1 1

0.08 1 1 1

0.09 1 1 1

0.1 1 1 1

Table A.3. Number of Groups at different distances for di, tri and tetra nucleotide DNA

signatures.
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