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Abstract 
 

Data reconstruction is significantly improved in terms of speed and accuracy by reliable data 

encoding fragment classification. To date, work on this problem has been successful with file 

structures of low entropy that contain sparse data, such as large tables or logs. Classifying 

compressed, encrypted, and random data that exhibit high entropy is an inherently difficult 

problem that requires more advanced classification approaches. We explore the ability of 

convolutional neural networks and word embeddings to classify deflate data encoding of high 

entropy file fragments after establishing ground truth using controlled datasets. Our model is 

designed to either successfully classify file fragments that contain hidden patterns and high 

dimensional features, or to gracefully fail if there are no patterns to be recognized. Our 

experimental results of the model that we built show high accuracy of 99.82%, 99.73%, and 

99.6%, when classifying BZ2, PNG, and GZ against JPEG file fragments, respectively. 
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Chapter 1 

Introduction 
 

Reliable data encoding (fragment) classification is important for efficient data reconstruction in 

terms of speed and accuracy, as evidence could be found in deleted hidden fragments where 

file carving technologies are usually applied to reconstruct files from these fragments. Highly 

accurate classification relies on full file extension, the magic number, or the metadata of files, 

which only works when the metadata is found within the fragments extracted from a storage 

medium. Usually, that is not the case in real life, which is why a more practical approach is 

needed to classify data encodings of file fragments accurately. 

File type and data encoding are two different concepts that are often confused. Starting with 

the basic notion of a file before differentiating between the two concepts, a file is a sequence 

of bytes that is stored by a file system under a user-specified name. A data encoding is a set of 

rules for mapping pieces of data to sequences of bits. Such an encoding is minimal, if it is not 

possible to reduce the rule set and still produce meaningful data encodings. The same piece of 

information can be represented in different ways using different encodings. For example, a 

plain text document could be represented in ASCII for editing, and in compressed form for 

storage/transmission. Once encoded, the resulting bit stream can serve as the source for 

further (recursive) encodings, e.g., a base64- encoded JPEG image [5]. 

A file type is a set of rules for utilizing (sets of) primitive data encodings to serialize digital 

artifacts. Unlike data encodings, file types can have very loose, ambiguous, and extensible sets 

of rules, especially for complex file types. Consider the breakdown of recursively embedded MS 

Office objects found inside a set of ~20,000 MS Office files. A Word document may contain a 

PowerPoint presentation, which in turn may contain an Excel spreadsheet, which may contain 

OLE objects, and so on [5]. 

File fragment classification is the process of mapping a sample chunk of data, such as a disk 

block, to a specific type of data encoding [5]. Small pieces of data (fragments) are usually found 

on disk blocks or network packets. On the low end, file system space is usually allocated in 

fixed-sized blocks of 512, 1024, 2048, or 4096 bytes; on modern systems, 4KB is the most 

common while higher allocation are also used.  

Data encoding classification is a complicated problem because there are many kinds of file 

types—from simple primitive types such as a block of ASCII text or a JPEG file, to complex 

container files such as an Adobe Acrobat File (PDF), to archive files such as TAR and ZIP that can 

themselves contain many other files (and even other archives). Given a contiguous piece of 

data (a fragment), the classification is the encoding format of the file from which the fragment 

was taken [4]. 
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The general problem of file fragment classification is formulated in two separate questions, 1) 

What is the primitive data format of the fragment? 2) Is the fragment part of a compound file 

structure? Our research focuses on the first question. Given a fragment, a classification method 

should be able to detect evidence of known primitive encoding formats, such as jpeg. For 

primitive types we can measure the size of a fragment, which usually falls between 256 and 

4096 bytes vs. correct classification. Separately, we can measure the effectiveness of 

classification with and without header information. Classification methods should also be able 

to state ‘I don’t know’ when the data exceeds their abilities [4]. 

In this work, we explore a new approach to classify file fragments of high entropy. We assume a 

realistic scenario where there are no headers, metadata, or magic numbers, thereby making 

the classification more challenging. This research explores the ability of deep learning 

techniques, specifically convolutional neural networks and word embeddings using TensorFlow 

[1] to solve this problem. 

The two most common uses of Convolutional Neural Networks (CNNs) are 1) image 

classification, 2) time series forecasting. Neural Networks in general mimic the way our nerve 

cells communicate through interconnected neurons. CNNs have a similar architecture, but what 

makes them unique from other neural networks is the convolutional operation that applies 

filters to every part of the previous input in order to extract patterns and features maps, which 

makes them more sensitive to patterns that could be otherwise hidden. Since high entropy file 

fragments may have hidden patterns that can be difficult to extract, a convolutional neural 

network seemed to be the most suitable solution to this problem. 

Another concept that we combined with our solution is Word Embeddings. Word embedding is 

the collective name for a set of language modeling and feature learning techniques in Natural 

Language Processing (NLP) where words or phrases from the vocabulary are mapped to vectors 

of real numbers to learn the position of a word. Learning the position of a word – in our case a 

byte – in a learned vector space, will help our model learn different patterns in the different 

data encodings. It can be learned as part of a deep learning model. Since word embeddings 

have been shown to boost the performance in NLP tasks such as syntactic parsing and 

sentiment analysis [6], and our classification problem could fall under syntactic parsing can, we 

added an embedding layer to our convolutional neural network to help with our pattern 

extraction, which improved our results significantly. 

The case for specialized approaches to file fragment classification has been made as shown 

later in chapter 2. However, it is not scalable. Our approach combines a more generic approach 

with the specialized approach to enhance accuracy and scalability. The specialized part of our 

approach treats primitive data format and compound file structure separately to accurately 

classify deflate encoded file fragments such as JPEG, PNG, Gzip, Zip, Bzip2, and Docx. The more 

generic piece of the puzzle is our deep learning model. 



3 
 

Also, clean, structured and content-controlled datasets are not readily available to perform 

accurate unbiased classifications. The first step that we took in our research was establishing 

ground truth using a clean controlled structure and data content to leave no room for 

mislabeling due to similar formatting. We used our knowledge of some of the existing prevalent 

patterns in JPEG fragments to build heuristics to set a baseline on which we can measure the 

performance of our classification model. We used the different block sizes as the fragment sizes 

for our classifications, starting with 256 bytes and going up until 4096 bytes to see how 

different fragment sizes affect the accuracy of our classifier. 

In this research, we are using TensorFlow to build our convolutional neural network model and 

files from the public Gov Docs Error! Reference source not found.[2] and the msx-13 corpus [3] 

to create our datasets. TensorFlow includes tf.keras, a high-level neural network API that 

provides useful abstractions to reduce boilerplate and make TensorFlow easier to use without 

sacrificing flexibility and performance [1]. We also built our environment in Colab, a Google 

Research product, which allows developers to write and execute Python code through their 

browser. Google Colab is an excellent tool for deep learning tasks. It is a hosted Jupyter 

notebook that requires no setup and has an excellent free version, which gives free access to 

Google computing resources such as GPUs and TPUs [7]. 

We evaluate our model using four different file types, JPEG, PNG, GZ, ZIP, BZIP2, and DOCX files. 

DOCX files are zip files that consist of deflate encoded files/components (almost entirely in 

xml), and embedded media content that is stored in its original (compressed) encoding. 

Generally, small objects (deflate) are good news as the beginning/end have readily identifiable 

markers and can save us deeper analysis [5]. 

Our model is able to classify JPEG file fragments against gz file fragments with 99.60% accuracy, 

which met our heuristic performance that achieved around 99.2% accuracy. This result has not 

been achieved using other methods or other deep neural network implementations, which 

shows that our model is actually capable of recognizing any patterns in file fragments. Our 

model is also capable of saying “I don’t know” if a classification is impossible due to the absence 

of patterns in randomized or encrypted compressed data. Our results show a 57.63% accuracy 

when it tries to classify zip fragments against gzip fragments, which is the expected result given 

that both formats use the same RFC 1951 compression format. 
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Chapter 2 

Related Work 
 

Content-based file fragment classification algorithms such as extracting the N-gram, Shannon 

entropy, Hamming weight and statistical regularities of bytes have been proposed for file 

fragments of low and medium entropy file structures, such as: large tables or logs and text or 

code. In similar schemes, traditional machine learning techniques are deployed to improve the 

performance of these classification algorithms. However, for high entropy files such as 

compressed files (e.g., .zip files or. jpg files), different classification techniques would be more 

efficient [5].  

(Poisel, Rybnicek, & Tjoa, 2013) identified several categories of data fragment classifiers. Their 

taxonomy divided them into the following main-classes: signature-based approaches, statistical 

approaches, computational intelligence-based approaches, approaches considering the context, 

and other approaches.  

 

Signature-based approaches use byte-sequences for the identification of unknown file 

fragments by matching typical and well-known byte sequences. A wide-spread application area 

in the context of digital forensics is to determine header and footer fragments by file signatures 

which are often referred to as magic number. Statistical approaches use quantitative analysis 

techniques to identify fragments of given file types. Statistical properties such as the mean 

value, variance, binary frequency distribution (BFD), or the rate of change (ROC) are 

determined from fragments contained in reference data sets to obtain a model for each data 

type. The actual classification is then carried out by comparing the fragments in question to the 

precalculated model. 

 

For computational intelligence approaches, they explained that the goal is to transform data 

into information after learning from a collection of given data. For data fragment and type 

classification, strong classifiers have to be trained. They further refine this class into supervised 

(if the training set consists of labeled data) and unsupervised (if patterns and structures are 

derived from unlabeled data) approaches. Both supervised and unsupervised machine learning 

algorithms are used to meet the goal of correct classification of data fragments and file type 

classification. 
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As for context-considering approaches, information gained from meta-data extracted from 

other fragments or the transport medium is used. Such approaches can provide additional 

information necessary for the correct classification. The category “other approaches” contains 

techniques which cannot be assigned to one of the other categories. A special sub-class of class 

are combining approaches [11]. Our work can be categorized under “computational intelligence 

– supervised approach” since we train our CNN model using labeled datasets. 

(Duffy, 2014) investigates the role of ML in file fragment classification as a proof of concept. 

Because the research in this field is limited, and no specialized algorithms existed to solve the 

fragment classification problem, they chose SVMs because they are generally a good candidate 

for any classification problem. Naive Bayes was used to see how well they could model this 

problem like a text classification problem, treating each of the bytes as if they were randomly 

occurring words in some text stream. LDA was used just as a method of comparison to the 

other two, as it is also a generally strong classification algorithm[9]. 

 

While they performed their testing on file fragments, for parameter estimation they trained 

each model on entire files. This was done with the goal in mind of creating models that could 

recognize whole files, and then assume that fragments given to the model will have the same 

distributions (in general) as whole files with the corresponding type. This method performed 

fairly well at allowing them to classify the random testing fragments. SVM obtained an accuracy 

of 75.03%, Multinomial Naïve Bayes achieved 47.9%, and LDA resulted in a 69.01% accuracy. 

 

The author mentioned a few issues with their dataset that may skew the results. The first is that 

the extensions of some files in the dataset are inaccurate, and while this does not give cause to 

disregard the results wholly, it does mean that there is some amount of error in the 

approximations. The other issue with the dataset is the number of file types trained on. The 

classification performed here is far from optimal and lacks intelligence to distinguish well 

between multiple different types of the same format. For example, the classifier often 

misclassified .html files as .py files. This is in part due to the issues with the dataset as noted 

above [9]. 

 

(Xu, et al., 2014) explored the feasibility of the idea that whether the type of a file fragment can 

be detected by description of its corresponding grayscale image using an image classification 

method. Considering a grayscale image of 256 gray-level, every 8 bits in the data can be viewed 

as a pixel in a grayscale image. Every grayscale image has its width and height. Therefore, it is 

necessary to reshape “pixels” into a 2D array to make them constitute an image instead of a 

line. All the images were converted from 1024 bytes fragments with 32 pixels (32 bytes in file 

fragments) in width. These images can be classified into correct types easily by human eyes. 

Therefore, if computers can view pictures like human beings, file fragments may be classified 

based on their corresponding descriptions of grayscale images. 
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After obtaining the descriptions of file fragments, the vectors were put into different 

classification algorithms to find the best classification algorithm which fits for file fragment 

classification. In this work, 4 commonly used classification algorithms were evaluated: 1) KNN, 

2) Naïve Bayes, 3) SVM, and 4) Decision Tree. The classification experiments were conducted in 

WEKA and ten-fold cross validation was used to evaluate their approach.  

 

Their result showed that KNN was fast to build the model required for classification because of 

its simplicity. The performance of KNN was the best in most cases. Two models based on file-

unbiased and type-unbiased were proposed to verify the validity of the proposed method. The 

best average classification accuracy acquired is 39.7% with K being 1 in 9 dimensions in file-

unbiased model. While in type-unbiased model, the best average classification accuracy is 

54.7% with K being 7 in 9 dimensions [12]. The classifier here performed well on low entropy 

file fragments, but is not applicable to high entropy file fragments, which reflected findings in 

previous work. 

 

After that, (Chen & Liao, 2018) added deep learning to the grayscale image conversion 

approach to extract more hidden features and therefore improve the accuracy of classification. 

Their proposed CNN model achieved 70.9% accuracy. Some of the grayscale images have 

obvious texture features different from the others, while some of them look quite similar, such 

as the grayscale images of DOCX, GIF, GZ, JPG, and PNG. JPG files use the lossy compression 

algorithm, while GIF files are based on the LZW algorithm. DOCX, GZ, and PNG are produced 

using Phil Katz’s Deflate compression algorithm. Deflate is a lossless data compression 

algorithm that uses both the LZ77 algorithm and Huffman Coding, which explains the stark 

similarities between them. They can be easily confused because they are either embedded or 

compressed high entropy files. 

 

Due to the ability of CNNs to extract high-dimensional features, PNG and GZ; both are high 

entropy compressed files, could be separated to some degree. However, many files such as, 

PNG and GZ were misclassified. Since GZ is a compressed file and PPT is a composite file type, 

they may embed different types of file fragments which can skew the results. Additionally, this 

paper did not optimize the data, the distributions of different types of files are not the same in 

the GovDocs datasets that were used, so if the number of files of a certain type is significantly 

less than others, it will affect the accuracy of the final classification results [8]. There was no 

consistency in the files selected and the file type was not distinguished from the file extension 

in this work, which led to a 70.9% overall accuracy and that is not enough when taking into 

account the huge amounts of data that need to be classified. 
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(Hiester, 2018) explored the use of neural networks as universal models for classifying file 

fragments, focusing on the lossless feature representation, with fragments’ bits as direct input, 

and its use of feedforward, recurrent, and convolutional networks as classifiers. The recurrent 

networks achieved 98% accuracy in distinguishing 4 file types, suggesting that this approach 

may be capable of yielding models with sufficient performance for practical applications. 

 

Due to the study’s exploratory nature, the models were not directly evaluated in a practical 

setting; rather, easily reproducible experiments were performed to attempt to answer the 

initial question of whether this approach is worthwhile to pursue further. Additionally, the 

experiments tested classification of fragments of homogeneous file types as an idealized case, 

rather than using a realistic set of types. A random fragment of 512 bytes was selected from 

each file of a size no less than 1,024 bytes, using the bits as features, hence, the lossless 

representation. Their research was focused on CSV, XML, JPG, and GIF files where their feed-

forward neural network achieved 77% accuracy, their recurrent neural network achieved 98% 

accuracy, and their convolutional neural network achieved 73% accuracy [10]. 

 

The previous work has a number of methodological problems, which our work strives to 

address. These begin with the fundamental problems of not distinguishing between “file type” 

and “file extension”, not distinguishing between the primitive data format of the fragment and 

the fragment being part of a compound file structure, and the inconsistency of files selected. 

For our research, we took the lessons learned from the research that has been conducted over 

the past decade in this area and we focused on building a more generic specialized classification 

approach that focused on primitive data formats, specifically the high entropy deflate encoded 

files jpeg, png, zip, Gzip, Bzip2, and docx. We chose a computational intelligence approach to 

build a specialized strong classifier using supervised learning. Before training our model, we 

established ground truth using a clean controlled structure and data content to leave no room 

for mislabeling due to similar formatting. We also optimized our datasets by using equal 

numbers of samples from each file type for training and testing with a consistent ratio between 

our training and testing datasets, around 80% to 20% respectively for all our experiments.  
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Chapter 3 

Problem Statement and Data 
 

1- Problem Statement 
 

The file fragment classification problem refers to the problem of taking a file fragment and 

automatically detecting the file type. This is an important problem in digital forensics, 

particularly for carving digital files from disks. The problem with file fragment classification 

is that it is quite complicated due to the sheer size of the search space and the different 

kinds of file types—from simple primitive types to complex container files. In order to 

perform a proper file fragment classification, two questions need to be answered, the first 

is, what the primitive data format of the fragment is and the second is whether the 

fragment is part of a compound file structure. Moreover, the definition of the file type can 

be quite vague, and often file types are only characterized by their header information [4].  

 

Research has been done on file fragment classification for a long time using a variety of 

different approaches, such as:  signature-based, statistical, computational intelligence-

based, approaches considering the context, and other approaches like combining several 

approaches (Taxonomy). In the computational intelligence based or machine learning 

description of the problem, each file type is thought to be a category (class) and certain 

features that are thought to characterize the file fragment are extracted. Then, supervised 

machine learning approaches are used to predict the category label for each test instance. 

Some of the methods also incorporate unsupervised machine learning approaches [11]. 

 

Some file fragments are easier to classify than others, depending on the file structure and 

the fitness of the classification approach followed. For example, Jpeg header recognition is 

relatively easy to accomplish – the header has a variable length record structure in which 

synchronization markers are followed by the length of the field. Thus, some simple ‘header 

hopping’ can reliably identify the header [5]. 

 

JPEG body recognition is also not difficult to accomplish as the encoding uses byte stuffing 

that results in the 16-bit hexadecimal FF00 occurring on average every 191 bytes [4]. Placed 

next to a high-entropy sample with a different encoding, e.g., deflate, this feature should 

stick out rather prominently [5]. However, classifying high entropy fragments such as 

compressed files against each other is not as easy. So far, simple classifiers that provide a 

quick and general classification have been implemented. However, for high entropy files 

such as compressed files (e.g., .zip files or. gzip files), different classification techniques 

would be more efficient. 
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The lack of classification approaches that treat primitive data format and compound file 

structure separately, to accurately classify deflate encoded file fragments such as JPEG, 

PNG, Gzip, Zip, and Docx is a problem that we need to overcome. Also, clean, structure and 

content-controlled datasets are not readily available to perform accurate unbiased 

classifications. Additionally, the majority of the available classification tools are not 

designed to handle large amounts of data and take several hours if not days to execute. 

In this work we investigate a more specialized approach that focuses on primitive data 

formats, specifically, Huffman encoded file fragments and test the ability of deep learning 

to recognize any hidden patterns. We try to find the optimal deep learning architecture, 

model, and hyper parameter values for such classifications and how much each fragment 

size can reveal, using clean controlled datasets that we created. Our tool produces expected 

results within a few minutes. 

 

2- Test Data Setup 
 

File compression takes advantage of redundancy or patterns to "abbreviate" the contents of 

the file in such a way to take up less space yet maintain the ability to reconstruct a full 

version of the original when needed [13].  

In our experiments, we investigate the classification of Gzip file fragments against JPEG, 

PNG, Zip, and Docx file fragments with different groupings. Docx files are zip files that 

consist of deflate encoded files/components (almost entirely in xml), and embedded media 

content that is stored in its original (compressed) encoding [5].  

The jpeg format has some distinctive data format encoding features, which are helpful with 

respect to fragment classification. Detecting the JPEG header is separate from the detection 

of the encoded image. The header has a simple record structure where the beginning of 

each record is announced by the presence of a marker—a 16-bit number in the 0xFFC0 to 

0xFFFE range, which is followed by a 16-bit number describing the length of the record. We 

are focused on the JPEG body of the image as the true problem of significance. It is fairly 

straightforward to identify compressed/encrypted data using some basic entropy 

measurements. The true task is to differentiate among different compressed streams. Apart 

from zlib, most compressed formats do have some synchronization information. We 

mentioned earlier that, in the body of the image, jpeg encoders stuff a 0x00 byte after every 

0xFF. In addition to that, there are a few more legal markers that may appear—mostly in 

the 0xD0 to 0xDB range [4]. 
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The zlib data format is employed by zip and gz files. The zlib/deflate encoding (RFC, 

1950/1951) is entirely focused on storage efficiency and contains the absolute minimal 

amount of metadata necessary for decoding. It consists of a sequence of compressed 

blocks, each one comprised of: 

3-bit header - The first bit indicates whether this is the last block in the sequence; the 

following two bits define how the data is coded: raw (uncompressed), static Huffman, or 

dynamic Huffman. In practice, dynamic Huffman is present 99.5% of the time [4]. 

Huffman tables - These describe the Huffman code books used in a particular block. The 

Huffman encoding scheme assigns codes to characters such that the length of the code 

depends on the relative frequency or weight of the corresponding character. It takes 

advantage of the disparity between frequencies and uses less storage for the frequently 

occurring characters at the expense of having to use more storage for each of the rarer 

characters. Huffman is an example of a variable-length encoding— some characters may 

only require 2 or 3 bits and other characters may require 7, 10, or 12 bits. The savings from 

not having to use a full 8 bits for the most common characters makes up for having to use 

more than 8 bits for the rare characters and the overall effect is that the file almost always 

requires less space [4][13]. 

Compressed data - The table is followed by a stream of variable-length Huffman codes that 

represent the content of the block. One of the codes is reserved for marking the end of the 

block. As soon as the end-of-block code is read from the stream, the next bit is the 

beginning of the following block header, there is no break in the bit stream between blocks, 

and there are no synchronization markers of any kind. The end-of-block code depends on 

the coding table, so it varies from block to block. The upshot is that absent sanity checking, 

where a deflate decoder can sometimes “decode” even random data. The statistical 

variation of the coded stream is quite uniformly random [4][5]. 

To ensure that we build a clean setup, we control the structure and content of the data 

instead of being blind in the wild. To control artifacts in JPEG file fragments, we remove all 

header metadata (using ExifTool) [14] and trim the beginning of the resulting file to remove 

readily recognizable strings in the file header. We treat PNG files the same way. For Gzip file 

fragments, we merge a large number of HTML files and compress them using the Gzip 

command in Linux with the default compression level “-6”. As for Zip file fragments, we Zip-

compress a folder containing a large number of HTML files. This is to ensure that Gzip and 

Zip file fragments do not contain any embedded images or objects that could skew the 

results one way or another.  
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To make sure we do the same with Docx file fragments, we remove any /media folders 

contained within the compressed Docx folder and we group the Docx files by their sizes to 

create our datasets. One group contains Docx files that are greater than or equal 16 KB and 

less than 32 KB, the second group contains Docx files that are greater than or equal 32 KB 

and less than 64 KB, the third group contains Docx files that are greater than or equal 64 KB 

and less than 128 KB, and finally, the fourth group contains Docx files that are 128 KB or 

larger. 

We also optimized our datasets by using equal numbers of samples from each file type for 

training and testing with a consistent ratio between our training and testing datasets, 

around 80% to 20% respectively for all our experiments. We ran our experiments using 

different fragment sizes starting by 256 bytes and going up until 4096 bytes to see how 

different fragment sizes affect the accuracy of our classifier. Each sample resembled a 

fragment, and each byte resembled a feature. While running our experiments, we 

optimized our hyperparameters each time until we achieved sensible results.   

In the following section we go over the methodology that we used to create our datasets 

from the aforementioned file types. 
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Chapter 4 

Solution (Implementation) 
 

Creating our Datasets 
To obtain the required data, we downloaded Jpeg and HTML files from the public Gov Docs 

corpora. We converted some JPEG files to PNG files, due to the lack of PNG files in the Gov Docs 

corpora [2] and downloaded Docx files from the msx-13 corpus [3]. We used the HTML files to 

create our zip and gz files. For the zip files, we added all the HTML files to a folder and zip 

compressed this folder. As for the gz files, we merged all the HTML files into one large file and 

compressed this file using the gzip command in Linux with the compression level set to default 

(-6). 

Then, to clean the data and establish content control we trimmed the header and removed 

metadata from the body of Jpeg files using ExifTool. We also removed all /media folders from 

the Docx files, and we excluded any files that were less than 4KB in size. For further 

experimentation, we made copies of the docx files that were grouped into different sizes, 1) 

between 16 – 32 KB, 2) between 32 – 128 KB, 3) 128 KB or larger. All that was to ensure that we 

only have stand-alone primitive files. 

We wrote a Python[15] program to create different labeled datasets from these files. The basic 

idea of this program is that it converts each file into its decimal value, then adds a “.0” to each 

decimal value to change the values into float values to then be processed by TensorFlow. The 

reason behind this data conversion is, as explained above, there are certain known hexadecimal 

patterns in some file types, such as the occurrence of the hexadecimal FF00 every 191 bytes in 

a jpeg body [4]. The decimal value of the byte FF is 255 and 0 for the byte 00, which with our 

conversion becomes 255.0,0.0. Each byte represents one feature in our dataset. 

The idea is to create training and testing datasets for each file type with a training to testing 

ratio 0.8:0.2. Each dataset is created in a CSV file where each row of bytes (features) represents 

a fragment. We wanted our model to train and test different fragment sizes, and because we 

have a fixed number of files with fixed sizes, there is a trade-off between the fragment size and 

the number of samples that we can use, the larger the fragment size is, the less the number of 

samples that we have. Another aspect that we have to take into account is that we want to 

have equal number of samples for each file type in both training and testing datasets, so we 

have to base our calculations on the file type with the minimum sum of file sizes. We then 

create our training and testing files with fragment sizes 256, 512, 1024, 4096 bytes for each 

type. The reason behind selecting these particular fragment sizes is explained in chapter 1. 
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We then select the fragment size and the file types that we want to classify. Based on the order 

of the type selection, each type is labeled using an integer to represent this type starting by 0 

and incrementing by 1 for each new type. Then the selected training files are concatenated 

together with the added “label” column, the testing files are treated similarly. We only 

experimented with binary classifications for this thesis work. 

Establishing our Heuristics 
We used our knowledge of some of the existing prevalent patterns in JPEG fragments to build 

simple heuristics to establish a baseline for the expected results based on the prevalence of the 

FF00 pattern, so we can measure the performance of our classification model. As shown below, 

we used a fragment size of 1024 bytes and 25,000 training samples for each of the types Jpeg 

and Gzip and 10,000 testing samples for each. We then found the minimum and maximum 

occurrence of the pattern FF00 among all the fragments of each type.  

As expected, the number showed a huge difference between the max occurrence in jpeg, 84 

times compared to only 2 times in gzip. We then found the number of samples that had 0, 1, 2, 

and 3 occurrences of the pattern within each type, to find the optimal number of occurrences 

(frequency) to use as a basis for our heuristic. We found out that if we go with a rule that is as 

simple as “if frequency == 0, then the fragment belongs to a gzip file” achieved approximately 

97.5% accuracy, with only 2% false positives. Based on that analysis we decided that we should 

not accept any accuracy that is less than 97.5% for this particular classification, if not higher. 

Table (1): JPEG vs. GZIP Frequency of “FF00” 

  Frequency of "FF00" by dataset 

  JPEG GZIP 

1024 bytes Training % Testing % Training % Testing % 

min 0  0   0  0  

max 84   97   2   2   

0 620 2.48 618 6.18 24328 97.31 9866 98.66 

1 1514 6.06 1220 12.20 646 2.58 132 1.32 

2 2315 9.26 1698 16.98 26 0.10 2 0.02 

3 2835 11.34 1573 15.73 0 0.00 0 0.00 
         

Samples per set 25,000   10,000   25,000   10,000   

 

Table (2): GZIP Fragment Encoding Accuracy, True Positives, & True Negatives 

Accuracy from True Positives & True Negatives 

GZIP Accuracy 
True 

Positive 
False 

Positive 

if freq == 0, then GZIP ~ 97.50% ~ 97.00% ~ 2.00% 

if freq >= 2, then JPEG ~ 95.70% ~ 99.90% ~ 8.50% 
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Building our Deep Learning Model 
As we explained in chapter 2, we wanted to use deep learning to solve this problem. We built 

our model in TensorFlow as it allows creating custom layers for your neural network. Many 

machine learning models are expressible as the composition and stacking of relatively simple 

layers, and TensorFlow provides both, a set of many common layers as a well as easy ways for 

you to write your own application-specific layers either from scratch or as the composition of 

existing layers [1]. 

We chose Google Colab for our environment due to its ease of use and the availability of TPU 

runtime environments which significantly reduced the runtime of the simulations. Colab is a 

Google Research product, which allows developers to write and execute Python code through 

their browser. It is an excellent tool for deep learning tasks. It is a hosted Jupyter notebook that 

requires no setup and has an excellent free version, which gives free access to Google 

computing resources such as GPUs and TPUs [7]. 

A model is the relationship between features and the label. A good machine learning approach 

determines the model for you. If you feed enough representative examples into the right 

machine learning model type, the program will figure out the relationships. There are many 

types of models and picking a good one needs experience and a lot of experimentation [1]. A 

huge part of our research was determining the model to train. 

Our experiments were structured as follows: 

1- Import and parse training and testing datasets. 

2- Build the model. 

3- Train the model using training datasets. 

4- Evaluate the model's effectiveness using testing datasets. 

5- Use the trained model to make predictions. 

 

Neural networks can find complex relationships between features and the label. It is a highly 

structured graph, organized into one or more hidden layers. Each hidden layer consists of one 

or more neurons. The diagram below shows a visualization of how nodes or neurons of the 

input and output layers are connected through hidden layers that work together to learn the 

different features that the Neural Network needs to know to be able to distinguish one class 

from the other. There are several categories of neural networks and the model we chose was 

Convolutional Neural Networks with an Embedding layer. Figure (1) shows a generic 

Convolutional Neural Network Structure. 
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Figure (1): Convolutional Neural Network Structure [17] 

 

Convolutional Neural Networks are the leading algorithms in today’s world which are used to 

solve the Computer vision problems such as: 1) Image Classification tasks, 2) Facial Recognition 

tasks, 3) Object Detection, 4) Pattern Detection, and 5) Natural Language Processing. 

One of the most popular research in this area was the development of LeNet-5 by LeCunn and 

co. in 1997. This was one of the first Convolutional Neural Networks (CNN) that was deployed in 

banks for reading cheques in real-time. It is said that the LeNet-5 read over a million cheques. 

Although there were other algorithms Like Support Vector machines which were close to the 

accuracy of the LeNet-5, it was argued that the CNN speed of computation was exponentially 

faster than other algorithms. 

A one-dimensional CNN is a CNN model that has a convolutional hidden layer that operates 

over a 1D sequence. This is followed by perhaps a second convolutional layer in some cases, 

such as very long input sequences, then a pooling layer whose job it is to distill the output of 

the convolutional layer to the most salient elements. The convolutional and pooling layers are 

followed by a dense fully connected layer that interprets the features extracted by the 

convolutional part of the model. A flatten layer is used between the convolutional layers and 

the dense layer to reduce the feature maps to a single one-dimensional vector as shown in 

illustration (1) below that showcases a typical CNN Architecture [1][6][16][17]. 
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Illustration (1): Typical Convolutional Neural Network Layers Architecture [16] 

 

We used the Keras Sequential API to add our neural network layers. A “Sequential” model is 

appropriate for a plain stack of layers where each layer has exactly one input tensor and one 

output tensor. It can be created incrementally via the add( ) method. All layers in Keras need to 

know the shape of their inputs in order to create their weights. Initially when a layer is created, 

it has no weights. It creates its weights the first time it is called on an input, since the shape of 

the weights depends on the shape of the inputs. So, when a Sequential model is instantiated 

without an input shape, it is not built and thus, has no weights. The weights are only created 

when the model first sees some input data. Once a Sequential model is built, every layer will 

have an input and output attribute. These attributes can be used to do neat things, like quickly 

creating a model that extracts the outputs of all intermediate layers in a Sequential model [1]. 

Our convolutional base consists of: 

1- Embedding Layer [1][6]  

Word embeddings give us a way to use an efficient, dense representation in which similar 

words have a similar encoding. An embedding is a dense vector of floating-point values (the 

length of the vector is a parameter you specify). Instead of specifying the values for the 

embedding manually, they are trainable parameters (weights learned by the model during 

training, in the same way a model learns weights for a dense layer). It is common to see 

word embeddings that are 8-dimensional (for small datasets), up to 1024 dimensions when 

working with large datasets. A higher dimensional embedding can capture fine-grained 

relationships between words but takes more data to learn. Conceptually, it involves a 

mathematical embedding from a space with many dimensions per word to a continuous 

vector space with a much lower dimension. One of the methods to generate this mapping is 

neural networks. 
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Illustration (2) below is a diagram for a word embedding. Each word is represented as a 4-

dimensional vector of floating-point values. Another way to think of an embedding is as a 

"lookup table". After these weights have been learned, you can encode each word by 

looking up the dense vector it corresponds to in the table. 

 

       Illustration (2): A 4-dimensional Word Embedding 
 

car 1.2 -0.1 4.7 3.1 

truck 0.4 3.5 -0.7 0.6 

van 0.3 2.2 0.3 0.4 

 

Word embeddings provide a dense representation of words and their relative meanings, 

which is an improvement over the more traditional bag-of-word model encoding schemes 

where large sparse vectors were used to represent each word or to score each word within 

a vector to represent an entire vocabulary. These representations were sparse because the 

vocabularies were vast, and a given word or document would be represented by a large 

vector comprised mostly of zero values. 

 

Instead, in an embedding, words are represented by dense vectors, where a vector 

represents the projection of the word into a continuous vector space. The position of a 

word within the vector space is learned from text and is based on the words that surround 

the word when it is used. That position of a word in the learned vector space is referred to 

as its embedding. Word embeddings can be learned from text data and reused among 

projects. They can also be learned as part of fitting a neural network on text data and can 

be considered as a class of approaches for representing words and documents using a 

dense vector representation. 

 

The output of the Embedding layer is a 2D vector with one embedding for each word in the 

input sequence of words (input document), which can be understood as a lookup table that 

maps from integer indices (which stand for specific words) to dense vectors (their 

embeddings). The dimensionality (or width) of the embedding is a parameter you can 

experiment with to see what works well for your problem, much in the same way you would 

experiment with the number of neurons in a Dense layer. 
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When you create an Embedding layer, the weights for the embedding are randomly 

initialized (just like any other layer). During training, they are gradually adjusted via 

backpropagation. Once trained, the learned word embeddings will roughly encode 

similarities between words (as they were learned for the specific problem your model is 

trained on). If you pass an integer to an embedding layer, the result replaces each integer 

with the vector from the embedding table. 

 

Learning the position of a word – in our case a byte – in a learned vector space, will help our 

model learn different patterns in the different data encodings. Keras offers 

an embedding layer that can be used for neural networks on text data. It requires that the 

input data be integer encoded, so that each word is represented by a unique integer. In our 

case, each byte is represented by a unique float value, which is automatically cast to an 

integer within the layer. The Embedding layer is initialized with random weights and will 

learn an embedding for all of the words (bytes) in the training dataset. It is a flexible layer 

that can be used in a variety of ways, such as: 

• It can be used alone to learn a word embedding that can be saved and used in another 

model later. 

• It can be used as part of a deep learning model where the embedding is learned along 

with the model itself, which is the case in our experiment. 

• It can be used to load a pre-trained word embedding model, as a type of transfer 

learning. 

 

The Embedding layer is defined as the first hidden layer of a network. It must specify 3 

arguments: 

• input_dim: This is the size of the vocabulary in the text data. For example, if your data is 

integer encoded to values between 0 – 10, then the size of the vocabulary would be 11 

words. In our case, the data is encoded to values between 0 – 255, so the size would be 

256. 

• output_dim: This is the size of the vector space in which words will be embedded. It 

defines the size of the output vectors from this layer for each word. For example, it 

could be 32 or 100 or even larger. The optimal number is determined by experimenting 

with different values. We tested different values for our problem and 10 performed 

well. 

• input_length: This is the length of input sequences, as you would define for any input 

layer of a Keras model. For example, if all of your input documents are comprised of 

1000 words, this would be 1000. This represents the number of features, in our case, 

the fragment size. We used 256, 512, 1024, and 4096 for our input_length values. 
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2- Convolution + Activation Layer [1][6][17] 

Convolution is an interesting operation that works by taking a ‘Feature map’ or say a 3x3 

filter and applying it on every part of the input features. Here, applying means an arithmetic 

operation where the result of the operation is stored as a value for the next layer. This 

operation is repeated across the input image by “Convolving” the filter. A Convolution layer 

can have a number of Feature Maps (or Filters) in each layer and so can produce as many 

outputs as possible. In our model, we used 20 filters. The size of each filter is configured 

using the kernel_size parameter. 

 

After applying the convolutional function, a non-linearity is added to the output. It is used 

to determine the output of neural network like yes or no. It maps the resulting values in 

between 0 to 1 or -1 to 1 etc. (depending upon the function). Typically, this is done by the 

Rectified Linear Unit (Relu) Activation function. You can think of this as passing only the 

positive values to the output while changing the negative values to 0. 

 

3- Pooling Layer [1][6][17] 

Pooling is an operation which has 2 main impacts, 1) It reduces the dimensions of the 

feature maps, so lesser parameters are faster to compute in following layers. Hence, it is 

also known as a down-sampling layer, 2) It highlights the importance of the features. There 

are a few pooling operations which are popular: Average pooling, Max pooling and Sum 

Pooling. Out of these max pooling is the most widely used operation, so we chose it for our 

model. Below is a visualization of how it works. Similar to the kernel_size, the size of the 

max pooling window is an integer that’s configured using the pool_size parameter. We used 

32 for our model. Illustration (3) shows how Max Pooling works. 

       Illustration (3): Max Pooling 
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4- Flatten Layer [1][6] 

The flatten layer basically takes the current pooling layer output and it converts it into the 

format which is required for the Fully connected layer. The fully connected layer is an 

artificial neural network in itself and requires a specific input. Illustration (4) shows how the 

Flattening Layer works. 

       Illustration (4): Flattening 

 
 

5- Dense (Fully Connected) Layer [1][6][17] 

The initial convolution layers help in detecting low level features. When we pass these again 

into additional convolutional layers, higher level features are detected. The fully connected 

layer is the final piece of the puzzle. It takes the high-level feature maps as the input and 

decides what the output category would be. This is basically a multi-level Perceptron 

network that identifies which weights are more likely to contribute to which outputs. This is 

done when we train the model with a lot of samples, it is able to decide which attributes 

associate more with which categories. It is fully connected as every neuron in the previous 

layer is connected to every neuron in the next layer. The activation function of our dense 

layer is the Sigmoid Function because it returns a value between (0 to 1). Therefore, it is 

especially used for models where we have to predict the probability as an output, as in our 

model. Since the probability of anything exists only between the range of 0 and 1, sigmoid is 

the correct activation function. 
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This is a code snippet to show our CNN architecture explained above: 

      Code Snippet (1): CNN Architecture 

 

After building our neural network we need to compile it using the following code. It uses 

Adam, which is a momentum-based optimizer. The loss function used is 

binary_crossentropy, which is usually the optimizer of choice for binary classification 

problems that give output in the form of probability. The metric we used is accuracy. 

       Code Snippet (2): Compiling our Model 

 

The model is then trained on the training set for 10 epochs, then evaluated for the test set 

to check the accuracy, as shown in the code and output snippets below. 

       Code Snippet (3): Training & Evaluating our Model 

 

       Code Snippet (4): Output 
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Chapter 5 

Evaluation 
 

We now have our CNN model, ready to be trained on our datasets that we created. For the sake 

of this research, we focused on the high entropy Huffman encoded data. We used binary 

classifiers to classify pure jpeg, png, gz, zip, bz2, xz, and docx fragments. We ran our simulations 

for each fragment size for each classification separately. Each simulation took approximately 

between 15 minutes to 30 minutes to complete. 

 

To evaluate the performance of our model, we introduce here two important parameters [1][6]: 

 
 

▪ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

True Positives + True Negatives + False Positives + False Negatives
                            (1) 

 

▪ Loss: Our binary classification problem can be posed as: “is the fragment a gzip fragment?” 

or, “what is the probability of the fragment being gzip?” In this setting, gzip fragments belong 

to the positive class (Yes, they are gzip fragments), while other fragments belong to the 

negative class (No, they are not gzip fragments). When we fit a model to perform this 

classification, it predicts a probability of being gzip to each one of our samples. A loss function 

evaluates how good or bad the predicted probabilities are. For a binary classification like ours, 

the typical loss function is the Binary Crossentropy function (BCE), which is used to determine 

the error (aka “the loss”) between the output of our algorithms and the given target value.  In 

layman’s terms, the loss function expresses how far off the mark our computed output is.  

 

Since we are trying to compute a loss, we need to penalize bad predictions. If the probability 

associated with the true class is 1.0, we need its loss to be zero. Conversely, if that probability 

is low, say, 0.01, we need its loss to be huge, which is calculated by taking the negative log of 

the probability. The binary cross-entropy is computed using the following equation: 

 

𝐻𝑝(𝑞) = −
1

𝑁
∑ 𝑦𝑖 ∙  log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∙ log (1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1
                                       (2) 

 

𝒚 is the label (1 for gzip fragments and 0 for each of the other fragments) and 𝒑(𝒚) is the 

predicted probability of the fragment being gzip for all N samples. What this formula tells us 

is that for each gzip fragment (y = 1), it adds 𝒍𝒐𝒈(𝒑(𝒚)) to the loss, that is the log probability 

of it being gzip. Conversely, it adds log(1-p(y)), that is, the log probability of it being jpeg, 

zip, or docx for each other fragment (y = 0). 
 



23 
 

We started with our baseline classification, which is classifying jpeg and gz fragments, since we 

know what results to expect. Using a fragment size of 256 bytes did not really help the network 

learn any patterns as the number of features used was too low. As we increased the fragment 

size, the accuracy improved gradually, starting at 57.91% for 256 bytes and going up to 99.60% 

when we used 4096 bytes. Conversely, the loss decreased from 3.2213 to 0.0004. We show the 

distributions of accuracy and loss values for our classifications in Table (3) below. After that, we 

wanted to see the effect of the embedding layer on the accuracy of the classification jpg vs. gz. 

We tried classifying them after removing the embedding layer from our network which reduced 

the accuracy significantly from 99.6% to 70.91% as shown in Table (3) as well. 

 
After successfully classifying jpeg and gz fragments, we wanted to test if our model is just 

picking on the “FF00” pattern or if it is picking on a different pattern that is not obvious to the 

human eye. So, we omitted each occurrence of “FF00” to get rid of this specific pattern and, the 

test accuracy started at 50.02% at 256 bytes, but surprisingly, it went up to 99.52% at 4096 

bytes. We noticed that the accuracy was much less than the results we had without omitting 

“FF00” at 512 and 1024 bytes, but the values still reveal that there is probably a different 

pattern that the model is picking up on. That could be some legal markers that may appear—

mostly in the 0xD0 to 0xDB range in the jpeg fragments [4]. It is worth digging deeper and 

understanding what these results could be revealing about the structure of the jpeg fragments, 

but that is out of the scope of this work. 

Classifying zip and gz fragments started at an expected accuracy of 50% at 256 bytes and stayed 

at 50% all the way through until it got to 57.63% at 4096 bytes, which is explained by the fact 

that both zip and gz fragments are of high entropy, there are hardly any patterns to recognize. 

We also tried classifying gz fragments with the default compression level against gz fragments 

with the highest compression level to increase the entropy, but the accuracy was still 50%. The 

loss distributions are shown in Table (3).  

For our docx and gz classification, we tried two different approaches to building our datasets. 

The first approach was to group all docx files that were higher than 4 KB together and pick up-

to 5 random samples from each file, which started at a surprising accuracy of 100% at 256 bytes 

and stayed at a 100% for 512 and 1024 bytes, then significantly went down to 50.27% at 4096 

bytes as shown in Table (4). Table (5) shows the loss starting at a very low value of 0.1246 and 

increasing to 2.9956. The second approach was grouping the files by sizes between 16 to 32KB, 

32 to 128KB, and 128KB & larger, and also picking up to 5 random samples from each file in 

each group, leaving us with datasets that are separated, not only by the fragment size, but also 

by the docx size grouping. Accuracy results are shown in Table (5). 
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Below are our “Accuracy by fragment size & datasets” and “Loss by fragment size & datasets” 

tables, showing the results that we got from our CNN model for each of our classifications. Each 

table is divided into 4 sections for our 4 different fragment sizes that we trained and tested, 

each of the fragment sections is sub-divided into training and testing subsections. Then each 

type that was classified has the accuracy or loss recorded for the last epoch of the training and 

recorded for the testing (evaluation), followed by the number of samples used in each dataset. 

 

Table (3): Jpeg, PNG, Gzip (level 9 compression level), Bzip2, Xz, & Zip vs. Gzip (default 

compression level) Accuracy & Loss 

  Accuracy by fragment size & dataset (GZ vs. ALL) 

Classification Task 
256 512 1024 4096 

Training Testing Training Testing Training Testing Training Testing 

JPEG  99.15% 57.91% 99.44% 81.17% 99.83% 97.02% 100.00% 99.60% 

JPEG “FF00” omitted 98.66% 50.02% 99.02% 68.26% 99.52% 83.52% 100.00% 99.52% 

JPEG w/o Embedding          84.00% 70.91% 

Bzip2 97.90% 50.26% 97.69% 53.40% 97.64% 81.33% 98.40% 95.47% 

PNG 98.26% 50.01% 98.28% 59.98% 98.39% 76.46% 97.77% 79.58% 

Zip 96.71% 50.00% 93.96% 50.00% 90.07% 50.00% 73.73% 57.63% 

Xz 96.61% 50.00% 94.33% 50.00% 90.19% 50.00% 75.83% 56.84% 

Gzip -9 96.72% 50.00% 93.87% 50.00% 88.21% 50.00% 46.30% 50.01% 

  Loss by fragment size & dataset 

JPEG  0.0314 3.2213 0.0179 0.8701 0.0052 0.1018 0.0005 0.0004 

JPEG w/o Embedding          0.5092 1.1114 

Bzip2 0.0779 4.0311 0.0650 2.0640 0.0634 0.4739 0.0649 0.1257 

PNG 0.0673 4.6678 0.0540 2.5475 0.0536 1.3210 0.0747 1.0726 

Zip 0.1212 4.5419 0.1790 2.6664 0.2164 1.3597 0.5347 0.6927 

Xz 0.1253 4.7295 0.1572 2.8696 0.2159 1.3890 0.5106 0.7639 

Gzip -9 0.1260 4.8047 0.1795 2.7974 0.2459 1.5505 0.6949 0.6935 

    

Samples per set 113,024 28,256 56,512 14,128 28,256 7,064 7,064 1,766 

 

 

 

 

 

 

 

 

 

 



25 
 

Table (4): Docx vs. Gzip Accuracy 

  Accuracy by fragment size & dataset (Docx vs. GZ) 

Docx (without 
/media) 

256 512 1024 4096 

Training Testing Training Testing Training Testing Training Testing 

4 – 128+ KB 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 50.27% 

Samples per set 860 215 860 215 848 212 371 93 

                  

16 – 32 KB 100.00% 53.01% 100.00% 83.99% 100.00% 50.10% 100.00% 50.12% 

Samples per set 964 241 964 241 964 241 834 209 

             

32 – 128 KB 100.00% 50.12% 100.00% 50.12% 100.00% 50.12% 100.00% 50.12% 

Samples per set 804 201 804 201 804 201 804 201 

             

128+ KB 100.00% 50.65% 100.00% 50.65% 100.00% 50.65% 100.00% 49.35% 

Samples per set 156 39 156 39 156 39 156 39 

 

 

Table (5): Docx vs. Gzip Loss 

  Loss by fragment size & dataset (Docx vs. GZ) 

Docx (without 
/media) 

256 512 1024 4096 

Training Testing Training Testing Training Testing Training Testing 

4 – 128+ KB 0.0008 0.1246 0.0005 0.0271 0.0003 0.1908 0.0007 2.9956 

Samples per set 860 215 860 215 848 212 371 93 

128+ KB 0.1803 0.7634 0.1196 0.6603 0.0387 0.7846 0.0191 0.7327 

Samples per set 156 39 156 39 156 39 156 39 
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Table (6): Jpeg, Bzip2, Xz, & Zip vs. PNG Accuracy & Loss 

  Accuracy by fragment size & dataset (PNG vs. ALL) 

Classification Task 
256 512 1024 4096 

Training Testing Training Testing Training Testing Training Testing 

JPEG 99.56% 51.30% 99.70% 73.34% 99.90% 94.21% 100.00% 99.73% 

Bzip2 99.06% 50.01% 98.88% 50.22% 99.05% 87.17% 99.54% 99.14% 

Xz 99.01% 50.00% 98.64% 50.00% 98.25% 50.29% 97.49% 98.67% 

Zip 99.03% 50.00% 98.47% 50.01% 98.00% 54.82% 96.78% 97.14% 

  Loss by fragment size & dataset 

JPEG 0.019 4.5163 0.0108 1.3755 0.0030 0.2364 0.0000 0.0058 

Bzip2 0.0418 5.2402 0.0386 3.5419 0.0275 0.3062 0.0141 0.0256 

Xz 0.0418 5.3504 0.0497 3.7353 0.0433 1.6211 0.0693 0.0551 

Zip 0.0444 5.4883 0.0553 3.7410 0.0491 1.0722 0.0857 0.1009 

    

Samples per set 211,232 52,816 105,616 26,408 52,808 13,204 13,202 3,301 

 

 

Table (7): Xz, Bzip2, & Zip vs. JPEG Accuracy & Loss 

  Accuracy by fragment size & dataset (JPG vs. ALL) 

Classification Task 
256 512 1024 4096 

Training Testing Training Testing Training Testing Training Testing 

Xz 99.44% 54.43% 99.68% 76.71% 99.89% 97.44% 100.00% 100.00% 

Bzip2 99.41% 50.89% 99.57% 61.39% 99.84% 90.78% 100.00% 99.82% 

Zip 99.44% 52.19% 99.56% 71.26% 99.84% 93.45% 99.99% 99.76% 

  Loss by fragment size & dataset 

Xz 0.0250 3.7994 0.0124 1.2623 0.0030 0.0912 0.0000 0.0001 

Bzip2 0.0285 4.5272 0.0175 2.3269 0.0056 0.2946 0.0001 0.0044 

Zip 0.0256 4.2616 0.0170 1.6862 0.0054 0.5610 0.0004 0.0052 

    

Samples per set 211,232 52,816 105,616 26,408 52,808 13,204 13,202 3,301 
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Table (8): Xz & Zip vs. Bzip2 Accuracy & Loss 

  Accuracy by fragment size & dataset (BZ2 vs. ALL) 

Classification Task 
256 512 1024 4096 

Training Testing Training Testing Training Testing Training Testing 

Xz 98.68% 50.00% 98.42% 50.00% 98.61% 64.73% 99.25% 97.29% 

Zip 98.58% 50.00% 98.27% 50.00% 98.31% 58.86% 98.95% 95.97% 

  Loss by fragment size & dataset 

Xz 0.0564 5.5756 0.0543 3.5189 0.0400 0.8877 0.0250 0.0687 

Zip 0.0609 5.625 0.0625 4.1661 0.0506 1.1671 0.0322 0.1044 

    

Samples per set 211,232 52,816 105,616 26,408 52,808 13,204 13,202 3,301 
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Chapter 6 

Conclusions and Future Work 

 

Data encoding classification simply is the process of mapping a sequence of bytes from a file 

(fragment) to a specific type of data encoding. Reliable data encoding classification of file 

fragments improves the speed and accuracy of data reconstruction significantly. In general, 

classifying data encodings of low to medium entropy file fragments is much easier than 

classifying data encodings of high entropy file fragments. So far, all machine learning 

approaches that have been designed to classify file fragments have had methodological issues 

that we tackled in this thesis work.  

 

While designing our solution, we took into account the conceptual difference between the 

notions of file type and data encoding, as well as the difference between primitive data format 

and compound file structure, making our classification more efficient. We used our knowledge 

of the anatomy of different data encodings to build our heuristics using ground truth that we 

established through controlled and clean datasets that we prepared to help evaluate our 

results. 

 

We followed a computational intelligence-based approach using a convolutional neural 

network with a word embedding layer to build a more generic and scalable, yet specialized 

classification approach that focused on Huffman encoded (high entropy) file fragments. Our 

classifier has the ability to either successfully classify file fragments that contain hidden 

patterns and high dimensional features, or to say, “I don’t know” and gracefully fail if there are 

no patterns to be recognized. 

 

Our solution has 2 main components, the first is our dataset builder, that can create any 

datasets needed for training and testing, with any fragment size, any number of samples, and 

any training to testing ratio desired. The second component is the classifier itself; it can be fed 

any training and testing datasets and it will output training and testing accuracy results within a 

few minutes. We ran all our classifications through the same fragment sizes (256, 512, 1024, 

and 4096 bytes) for consistency and to better understand how much can be extracted from 

each fragment size. We were also able to run at least four different classifier instances 

simultaneously, which gave us the ability to obtain results for at least four different 

classifications within 15 minutes only. 
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Our binary classifiers achieved 99.6% accuracy when classifying JPEG and GZ fragments, 

between 97.14 and 99.73% when classifying PNG against ZIP, XZ, BZIP2 and JPEG fragments, 

and between 99.76% and 100% when classifying JPEG against ZIP, BZIP2, and XZ fragments. 

 

Our main research contribution is that we have demonstrated a new fragment classification 

approach that, unlike prior work, is both generic and exhibits very high accuracy, making it 

suitable for practical application at scale. Further, unlike most prior work, our results are based 

on a large, realistic, but also carefully curated datasets to ensure that ground truth is known, 

rather than assumed (based on file extension). By excluding extraneous metadata, such as 

those contained in file header, we have constructed the most difficult test case, which gives us 

confidence that the results would be reproducible in the real world. Finally, our approach has 

been able to classify different variations of the same basic (high entropy) data encoding, 

deflate, which is another first. 

 

Our future work would be building a multi-classifier using our binary classifiers to build decision 

trees as well as exploring other multi-classification approaches. We will also include cross 

validation in our steps and use larger fragment sizes, up to 16 KB to classify other deflate/ 

Huffman encoded file fragments that were not addressed in this research. Additionally, we plan 

to use LIME (Local Interpretable Model-Agnostic Explanations) to explain the ability of our 

neural network to classify JPEG fragments even after omitting the “FF00” pattern. 
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