
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-31-2021

Convolutional Neural Networks for Deflate Data Encoding Convolutional Neural Networks for Deflate Data Encoding

Classification of High Entropy File Fragments Classification of High Entropy File Fragments

Nehal Ameen
University of New Orleans, New Orleans, nameen@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Ameen, Nehal, "Convolutional Neural Networks for Deflate Data Encoding Classification of High Entropy
File Fragments" (2021). University of New Orleans Theses and Dissertations. 2853.
https://scholarworks.uno.edu/td/2853

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2853?utm_source=scholarworks.uno.edu%2Ftd%2F2853&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Convolutional Neural Networks for Deflate Data Encoding Classification of High Entropy File Fragments

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science
Cyber Security

by

Nehal Ameen

B.S. Alexandria University, 2012

May 2021

ii

Dedication

To the memory of my grandmother, who despite of the age difference was my best friend and

confidant who taught me my values.

To my loving uncle for all his support and encouragement, and for believing in me.

To my adorable partner in crime, my little sister whom I cannot imagine my life without.

To my mom, the strong gorgeous woman who so lovingly dedicated her whole life to her two

daughters and always empowered them to go that extra mile.

iii

Acknowledgement

Throughout my work on this thesis, I have received a great deal of support and assistance.

I would like to first thank my advisor, Professor Vassil Roussev whose guidance and support was

invaluable in formulating the research questions and methodology. Your insightful feedback

pushed me to sharpen my thinking and brought my work to a higher level.

I would also like to thank Dr. Phani Vadrevu, whose expertise and patient support helped make

this work what it is today.

All thanks and appreciation to my friend, former lab partner, and now my professor who served

on my thesis defense committee, Dr. Hyunguk Yoo for his wonderful collaboration throughout

the years.

In addition, I would like to thank our IT Director and my teacher Matt Toups for helping me

throughout his awesome classes, realize my interest in Cyber Security as an undergraduate, and

for providing me with the tools that I needed to successfully complete my thesis as a graduate

student.

My deepest gratitude to my great mentor and director Pete Persson who supported, motivated,

and inspired me through his countless words of encouragement, care, guidance, and advice to

cross the finish line.

My wholehearted thanks to Emmanuel Tourniaire whom without his help, support, motivation,

and encouragement, I could not have completed this thesis.

My warmest thanks to my colleague and friend Mayra Cervantes who took interest in my work

and helped with her technical expertise and advice.

My heartfelt thanks to my friend Sushma Kalle who helped push me forward in times of doubt.

Many thanks to my lovely family and amazing friends who provided stimulating discussions and

wise counsel as well as happy distractions to rest my mind outside of my research.

iv

Table of Contents

List of Figures .. v

List of Tables .. vi

List of Illustrations ... vii

List of Code Snippets .. viii

Abstract ... ix

Introduction .. 1

Related Work .. 4

Problem Statement and Data .. 8

1- Problem Statement .. 8

2- Test Data Setup .. 9

Solution (Implementation) .. 12

Creating our Datasets ... 12

Establishing our Heuristics ... 13

Building our Deep Learning Model .. 14

Evaluation ... 22

Conclusions and Future Work .. 28

References .. 30

Vita .. 32

v

List of Figures

Figure (1): Convolutional Neural Network Structure [17] .. 15

vi

List of Tables

Table (1): JPEG vs. GZIP Frequency of “FF00” .. 13

Table (2): GZIP Fragment Encoding Accuracy, True Positives, & True Negatives 13

Table (3): Jpeg, PNG, Gzip (level 9 compression level), Bzip2, Xz, & Zip vs. Gzip (default compression

level) Accuracy & Loss .. 24

Table (4): Docx vs. Gzip Accuracy... 25

Table (5): Docx vs. Gzip Loss .. 25

Table (6): Jpeg, Bzip2, Xz, & Zip vs. PNG Accuracy & Loss .. 26

Table (8): Xz & Zip vs. Bzip2 Accuracy & Loss .. 27

vii

List of Illustrations

Illustration (1): Typical Convolutional Neural Network Layers Architecture [16] 16

Illustration (2): A 4-dimensional Word Embedding .. 17

Illustration (3): Max Pooling .. 19

Illustration (4): Flattening .. 20

viii

List of Code Snippets

Code Snippet (1): CNN Architecture .. 21

Code Snippet (2): Compiling our Model .. 21

Code Snippet (3): Training & Evaluating our Model ... 21

Code Snippet (4): Output ... 21

ix

Abstract

Data reconstruction is significantly improved in terms of speed and accuracy by reliable data

encoding fragment classification. To date, work on this problem has been successful with file

structures of low entropy that contain sparse data, such as large tables or logs. Classifying

compressed, encrypted, and random data that exhibit high entropy is an inherently difficult

problem that requires more advanced classification approaches. We explore the ability of

convolutional neural networks and word embeddings to classify deflate data encoding of high

entropy file fragments after establishing ground truth using controlled datasets. Our model is

designed to either successfully classify file fragments that contain hidden patterns and high

dimensional features, or to gracefully fail if there are no patterns to be recognized. Our

experimental results of the model that we built show high accuracy of 99.82%, 99.73%, and

99.6%, when classifying BZ2, PNG, and GZ against JPEG file fragments, respectively.

Keywords: Cyber Security, Digital Forensics, Data Reconstruction, Deflate Data Encoding, File

Fragments, High Entropy, Data Science, Big Data Analytics, Machine Learning, Deep Learning,

Convolutional Neural Networks, Word Embeddings

1

Chapter 1

Introduction

Reliable data encoding (fragment) classification is important for efficient data reconstruction in

terms of speed and accuracy, as evidence could be found in deleted hidden fragments where

file carving technologies are usually applied to reconstruct files from these fragments. Highly

accurate classification relies on full file extension, the magic number, or the metadata of files,

which only works when the metadata is found within the fragments extracted from a storage

medium. Usually, that is not the case in real life, which is why a more practical approach is

needed to classify data encodings of file fragments accurately.

File type and data encoding are two different concepts that are often confused. Starting with

the basic notion of a file before differentiating between the two concepts, a file is a sequence

of bytes that is stored by a file system under a user-specified name. A data encoding is a set of

rules for mapping pieces of data to sequences of bits. Such an encoding is minimal, if it is not

possible to reduce the rule set and still produce meaningful data encodings. The same piece of

information can be represented in different ways using different encodings. For example, a

plain text document could be represented in ASCII for editing, and in compressed form for

storage/transmission. Once encoded, the resulting bit stream can serve as the source for

further (recursive) encodings, e.g., a base64- encoded JPEG image [5].

A file type is a set of rules for utilizing (sets of) primitive data encodings to serialize digital

artifacts. Unlike data encodings, file types can have very loose, ambiguous, and extensible sets

of rules, especially for complex file types. Consider the breakdown of recursively embedded MS

Office objects found inside a set of ~20,000 MS Office files. A Word document may contain a

PowerPoint presentation, which in turn may contain an Excel spreadsheet, which may contain

OLE objects, and so on [5].

File fragment classification is the process of mapping a sample chunk of data, such as a disk

block, to a specific type of data encoding [5]. Small pieces of data (fragments) are usually found

on disk blocks or network packets. On the low end, file system space is usually allocated in

fixed-sized blocks of 512, 1024, 2048, or 4096 bytes; on modern systems, 4KB is the most

common while higher allocation are also used.

Data encoding classification is a complicated problem because there are many kinds of file

types—from simple primitive types such as a block of ASCII text or a JPEG file, to complex

container files such as an Adobe Acrobat File (PDF), to archive files such as TAR and ZIP that can

themselves contain many other files (and even other archives). Given a contiguous piece of

data (a fragment), the classification is the encoding format of the file from which the fragment

was taken [4].

2

The general problem of file fragment classification is formulated in two separate questions, 1)

What is the primitive data format of the fragment? 2) Is the fragment part of a compound file

structure? Our research focuses on the first question. Given a fragment, a classification method

should be able to detect evidence of known primitive encoding formats, such as jpeg. For

primitive types we can measure the size of a fragment, which usually falls between 256 and

4096 bytes vs. correct classification. Separately, we can measure the effectiveness of

classification with and without header information. Classification methods should also be able

to state ‘I don’t know’ when the data exceeds their abilities [4].

In this work, we explore a new approach to classify file fragments of high entropy. We assume a

realistic scenario where there are no headers, metadata, or magic numbers, thereby making

the classification more challenging. This research explores the ability of deep learning

techniques, specifically convolutional neural networks and word embeddings using TensorFlow

[1] to solve this problem.

The two most common uses of Convolutional Neural Networks (CNNs) are 1) image

classification, 2) time series forecasting. Neural Networks in general mimic the way our nerve

cells communicate through interconnected neurons. CNNs have a similar architecture, but what

makes them unique from other neural networks is the convolutional operation that applies

filters to every part of the previous input in order to extract patterns and features maps, which

makes them more sensitive to patterns that could be otherwise hidden. Since high entropy file

fragments may have hidden patterns that can be difficult to extract, a convolutional neural

network seemed to be the most suitable solution to this problem.

Another concept that we combined with our solution is Word Embeddings. Word embedding is

the collective name for a set of language modeling and feature learning techniques in Natural

Language Processing (NLP) where words or phrases from the vocabulary are mapped to vectors

of real numbers to learn the position of a word. Learning the position of a word – in our case a

byte – in a learned vector space, will help our model learn different patterns in the different

data encodings. It can be learned as part of a deep learning model. Since word embeddings

have been shown to boost the performance in NLP tasks such as syntactic parsing and

sentiment analysis [6], and our classification problem could fall under syntactic parsing can, we

added an embedding layer to our convolutional neural network to help with our pattern

extraction, which improved our results significantly.

The case for specialized approaches to file fragment classification has been made as shown

later in chapter 2. However, it is not scalable. Our approach combines a more generic approach

with the specialized approach to enhance accuracy and scalability. The specialized part of our

approach treats primitive data format and compound file structure separately to accurately

classify deflate encoded file fragments such as JPEG, PNG, Gzip, Zip, Bzip2, and Docx. The more

generic piece of the puzzle is our deep learning model.

3

Also, clean, structured and content-controlled datasets are not readily available to perform

accurate unbiased classifications. The first step that we took in our research was establishing

ground truth using a clean controlled structure and data content to leave no room for

mislabeling due to similar formatting. We used our knowledge of some of the existing prevalent

patterns in JPEG fragments to build heuristics to set a baseline on which we can measure the

performance of our classification model. We used the different block sizes as the fragment sizes

for our classifications, starting with 256 bytes and going up until 4096 bytes to see how

different fragment sizes affect the accuracy of our classifier.

In this research, we are using TensorFlow to build our convolutional neural network model and

files from the public Gov Docs Error! Reference source not found.[2] and the msx-13 corpus [3]

to create our datasets. TensorFlow includes tf.keras, a high-level neural network API that

provides useful abstractions to reduce boilerplate and make TensorFlow easier to use without

sacrificing flexibility and performance [1]. We also built our environment in Colab, a Google

Research product, which allows developers to write and execute Python code through their

browser. Google Colab is an excellent tool for deep learning tasks. It is a hosted Jupyter

notebook that requires no setup and has an excellent free version, which gives free access to

Google computing resources such as GPUs and TPUs [7].

We evaluate our model using four different file types, JPEG, PNG, GZ, ZIP, BZIP2, and DOCX files.

DOCX files are zip files that consist of deflate encoded files/components (almost entirely in

xml), and embedded media content that is stored in its original (compressed) encoding.

Generally, small objects (deflate) are good news as the beginning/end have readily identifiable

markers and can save us deeper analysis [5].

Our model is able to classify JPEG file fragments against gz file fragments with 99.60% accuracy,

which met our heuristic performance that achieved around 99.2% accuracy. This result has not

been achieved using other methods or other deep neural network implementations, which

shows that our model is actually capable of recognizing any patterns in file fragments. Our

model is also capable of saying “I don’t know” if a classification is impossible due to the absence

of patterns in randomized or encrypted compressed data. Our results show a 57.63% accuracy

when it tries to classify zip fragments against gzip fragments, which is the expected result given

that both formats use the same RFC 1951 compression format.

4

Chapter 2

Related Work

Content-based file fragment classification algorithms such as extracting the N-gram, Shannon

entropy, Hamming weight and statistical regularities of bytes have been proposed for file

fragments of low and medium entropy file structures, such as: large tables or logs and text or

code. In similar schemes, traditional machine learning techniques are deployed to improve the

performance of these classification algorithms. However, for high entropy files such as

compressed files (e.g., .zip files or. jpg files), different classification techniques would be more

efficient [5].

(Poisel, Rybnicek, & Tjoa, 2013) identified several categories of data fragment classifiers. Their

taxonomy divided them into the following main-classes: signature-based approaches, statistical

approaches, computational intelligence-based approaches, approaches considering the context,

and other approaches.

Signature-based approaches use byte-sequences for the identification of unknown file

fragments by matching typical and well-known byte sequences. A wide-spread application area

in the context of digital forensics is to determine header and footer fragments by file signatures

which are often referred to as magic number. Statistical approaches use quantitative analysis

techniques to identify fragments of given file types. Statistical properties such as the mean

value, variance, binary frequency distribution (BFD), or the rate of change (ROC) are

determined from fragments contained in reference data sets to obtain a model for each data

type. The actual classification is then carried out by comparing the fragments in question to the

precalculated model.

For computational intelligence approaches, they explained that the goal is to transform data

into information after learning from a collection of given data. For data fragment and type

classification, strong classifiers have to be trained. They further refine this class into supervised

(if the training set consists of labeled data) and unsupervised (if patterns and structures are

derived from unlabeled data) approaches. Both supervised and unsupervised machine learning

algorithms are used to meet the goal of correct classification of data fragments and file type

classification.

5

As for context-considering approaches, information gained from meta-data extracted from

other fragments or the transport medium is used. Such approaches can provide additional

information necessary for the correct classification. The category “other approaches” contains

techniques which cannot be assigned to one of the other categories. A special sub-class of class

are combining approaches [11]. Our work can be categorized under “computational intelligence

– supervised approach” since we train our CNN model using labeled datasets.

(Duffy, 2014) investigates the role of ML in file fragment classification as a proof of concept.

Because the research in this field is limited, and no specialized algorithms existed to solve the

fragment classification problem, they chose SVMs because they are generally a good candidate

for any classification problem. Naive Bayes was used to see how well they could model this

problem like a text classification problem, treating each of the bytes as if they were randomly

occurring words in some text stream. LDA was used just as a method of comparison to the

other two, as it is also a generally strong classification algorithm[9].

While they performed their testing on file fragments, for parameter estimation they trained

each model on entire files. This was done with the goal in mind of creating models that could

recognize whole files, and then assume that fragments given to the model will have the same

distributions (in general) as whole files with the corresponding type. This method performed

fairly well at allowing them to classify the random testing fragments. SVM obtained an accuracy

of 75.03%, Multinomial Naïve Bayes achieved 47.9%, and LDA resulted in a 69.01% accuracy.

The author mentioned a few issues with their dataset that may skew the results. The first is that

the extensions of some files in the dataset are inaccurate, and while this does not give cause to

disregard the results wholly, it does mean that there is some amount of error in the

approximations. The other issue with the dataset is the number of file types trained on. The

classification performed here is far from optimal and lacks intelligence to distinguish well

between multiple different types of the same format. For example, the classifier often

misclassified .html files as .py files. This is in part due to the issues with the dataset as noted

above [9].

(Xu, et al., 2014) explored the feasibility of the idea that whether the type of a file fragment can

be detected by description of its corresponding grayscale image using an image classification

method. Considering a grayscale image of 256 gray-level, every 8 bits in the data can be viewed

as a pixel in a grayscale image. Every grayscale image has its width and height. Therefore, it is

necessary to reshape “pixels” into a 2D array to make them constitute an image instead of a

line. All the images were converted from 1024 bytes fragments with 32 pixels (32 bytes in file

fragments) in width. These images can be classified into correct types easily by human eyes.

Therefore, if computers can view pictures like human beings, file fragments may be classified

based on their corresponding descriptions of grayscale images.

6

After obtaining the descriptions of file fragments, the vectors were put into different

classification algorithms to find the best classification algorithm which fits for file fragment

classification. In this work, 4 commonly used classification algorithms were evaluated: 1) KNN,

2) Naïve Bayes, 3) SVM, and 4) Decision Tree. The classification experiments were conducted in

WEKA and ten-fold cross validation was used to evaluate their approach.

Their result showed that KNN was fast to build the model required for classification because of

its simplicity. The performance of KNN was the best in most cases. Two models based on file-

unbiased and type-unbiased were proposed to verify the validity of the proposed method. The

best average classification accuracy acquired is 39.7% with K being 1 in 9 dimensions in file-

unbiased model. While in type-unbiased model, the best average classification accuracy is

54.7% with K being 7 in 9 dimensions [12]. The classifier here performed well on low entropy

file fragments, but is not applicable to high entropy file fragments, which reflected findings in

previous work.

After that, (Chen & Liao, 2018) added deep learning to the grayscale image conversion

approach to extract more hidden features and therefore improve the accuracy of classification.

Their proposed CNN model achieved 70.9% accuracy. Some of the grayscale images have

obvious texture features different from the others, while some of them look quite similar, such

as the grayscale images of DOCX, GIF, GZ, JPG, and PNG. JPG files use the lossy compression

algorithm, while GIF files are based on the LZW algorithm. DOCX, GZ, and PNG are produced

using Phil Katz’s Deflate compression algorithm. Deflate is a lossless data compression

algorithm that uses both the LZ77 algorithm and Huffman Coding, which explains the stark

similarities between them. They can be easily confused because they are either embedded or

compressed high entropy files.

Due to the ability of CNNs to extract high-dimensional features, PNG and GZ; both are high

entropy compressed files, could be separated to some degree. However, many files such as,

PNG and GZ were misclassified. Since GZ is a compressed file and PPT is a composite file type,

they may embed different types of file fragments which can skew the results. Additionally, this

paper did not optimize the data, the distributions of different types of files are not the same in

the GovDocs datasets that were used, so if the number of files of a certain type is significantly

less than others, it will affect the accuracy of the final classification results [8]. There was no

consistency in the files selected and the file type was not distinguished from the file extension

in this work, which led to a 70.9% overall accuracy and that is not enough when taking into

account the huge amounts of data that need to be classified.

7

(Hiester, 2018) explored the use of neural networks as universal models for classifying file

fragments, focusing on the lossless feature representation, with fragments’ bits as direct input,

and its use of feedforward, recurrent, and convolutional networks as classifiers. The recurrent

networks achieved 98% accuracy in distinguishing 4 file types, suggesting that this approach

may be capable of yielding models with sufficient performance for practical applications.

Due to the study’s exploratory nature, the models were not directly evaluated in a practical

setting; rather, easily reproducible experiments were performed to attempt to answer the

initial question of whether this approach is worthwhile to pursue further. Additionally, the

experiments tested classification of fragments of homogeneous file types as an idealized case,

rather than using a realistic set of types. A random fragment of 512 bytes was selected from

each file of a size no less than 1,024 bytes, using the bits as features, hence, the lossless

representation. Their research was focused on CSV, XML, JPG, and GIF files where their feed-

forward neural network achieved 77% accuracy, their recurrent neural network achieved 98%

accuracy, and their convolutional neural network achieved 73% accuracy [10].

The previous work has a number of methodological problems, which our work strives to

address. These begin with the fundamental problems of not distinguishing between “file type”

and “file extension”, not distinguishing between the primitive data format of the fragment and

the fragment being part of a compound file structure, and the inconsistency of files selected.

For our research, we took the lessons learned from the research that has been conducted over

the past decade in this area and we focused on building a more generic specialized classification

approach that focused on primitive data formats, specifically the high entropy deflate encoded

files jpeg, png, zip, Gzip, Bzip2, and docx. We chose a computational intelligence approach to

build a specialized strong classifier using supervised learning. Before training our model, we

established ground truth using a clean controlled structure and data content to leave no room

for mislabeling due to similar formatting. We also optimized our datasets by using equal

numbers of samples from each file type for training and testing with a consistent ratio between

our training and testing datasets, around 80% to 20% respectively for all our experiments.

8

Chapter 3

Problem Statement and Data

1- Problem Statement

The file fragment classification problem refers to the problem of taking a file fragment and

automatically detecting the file type. This is an important problem in digital forensics,

particularly for carving digital files from disks. The problem with file fragment classification

is that it is quite complicated due to the sheer size of the search space and the different

kinds of file types—from simple primitive types to complex container files. In order to

perform a proper file fragment classification, two questions need to be answered, the first

is, what the primitive data format of the fragment is and the second is whether the

fragment is part of a compound file structure. Moreover, the definition of the file type can

be quite vague, and often file types are only characterized by their header information [4].

Research has been done on file fragment classification for a long time using a variety of

different approaches, such as: signature-based, statistical, computational intelligence-

based, approaches considering the context, and other approaches like combining several

approaches (Taxonomy). In the computational intelligence based or machine learning

description of the problem, each file type is thought to be a category (class) and certain

features that are thought to characterize the file fragment are extracted. Then, supervised

machine learning approaches are used to predict the category label for each test instance.

Some of the methods also incorporate unsupervised machine learning approaches [11].

Some file fragments are easier to classify than others, depending on the file structure and

the fitness of the classification approach followed. For example, Jpeg header recognition is

relatively easy to accomplish – the header has a variable length record structure in which

synchronization markers are followed by the length of the field. Thus, some simple ‘header

hopping’ can reliably identify the header [5].

JPEG body recognition is also not difficult to accomplish as the encoding uses byte stuffing

that results in the 16-bit hexadecimal FF00 occurring on average every 191 bytes [4]. Placed

next to a high-entropy sample with a different encoding, e.g., deflate, this feature should

stick out rather prominently [5]. However, classifying high entropy fragments such as

compressed files against each other is not as easy. So far, simple classifiers that provide a

quick and general classification have been implemented. However, for high entropy files

such as compressed files (e.g., .zip files or. gzip files), different classification techniques

would be more efficient.

9

The lack of classification approaches that treat primitive data format and compound file

structure separately, to accurately classify deflate encoded file fragments such as JPEG,

PNG, Gzip, Zip, and Docx is a problem that we need to overcome. Also, clean, structure and

content-controlled datasets are not readily available to perform accurate unbiased

classifications. Additionally, the majority of the available classification tools are not

designed to handle large amounts of data and take several hours if not days to execute.

In this work we investigate a more specialized approach that focuses on primitive data

formats, specifically, Huffman encoded file fragments and test the ability of deep learning

to recognize any hidden patterns. We try to find the optimal deep learning architecture,

model, and hyper parameter values for such classifications and how much each fragment

size can reveal, using clean controlled datasets that we created. Our tool produces expected

results within a few minutes.

2- Test Data Setup

File compression takes advantage of redundancy or patterns to "abbreviate" the contents of

the file in such a way to take up less space yet maintain the ability to reconstruct a full

version of the original when needed [13].

In our experiments, we investigate the classification of Gzip file fragments against JPEG,

PNG, Zip, and Docx file fragments with different groupings. Docx files are zip files that

consist of deflate encoded files/components (almost entirely in xml), and embedded media

content that is stored in its original (compressed) encoding [5].

The jpeg format has some distinctive data format encoding features, which are helpful with

respect to fragment classification. Detecting the JPEG header is separate from the detection

of the encoded image. The header has a simple record structure where the beginning of

each record is announced by the presence of a marker—a 16-bit number in the 0xFFC0 to

0xFFFE range, which is followed by a 16-bit number describing the length of the record. We

are focused on the JPEG body of the image as the true problem of significance. It is fairly

straightforward to identify compressed/encrypted data using some basic entropy

measurements. The true task is to differentiate among different compressed streams. Apart

from zlib, most compressed formats do have some synchronization information. We

mentioned earlier that, in the body of the image, jpeg encoders stuff a 0x00 byte after every

0xFF. In addition to that, there are a few more legal markers that may appear—mostly in

the 0xD0 to 0xDB range [4].

10

The zlib data format is employed by zip and gz files. The zlib/deflate encoding (RFC,

1950/1951) is entirely focused on storage efficiency and contains the absolute minimal

amount of metadata necessary for decoding. It consists of a sequence of compressed

blocks, each one comprised of:

3-bit header - The first bit indicates whether this is the last block in the sequence; the

following two bits define how the data is coded: raw (uncompressed), static Huffman, or

dynamic Huffman. In practice, dynamic Huffman is present 99.5% of the time [4].

Huffman tables - These describe the Huffman code books used in a particular block. The

Huffman encoding scheme assigns codes to characters such that the length of the code

depends on the relative frequency or weight of the corresponding character. It takes

advantage of the disparity between frequencies and uses less storage for the frequently

occurring characters at the expense of having to use more storage for each of the rarer

characters. Huffman is an example of a variable-length encoding— some characters may

only require 2 or 3 bits and other characters may require 7, 10, or 12 bits. The savings from

not having to use a full 8 bits for the most common characters makes up for having to use

more than 8 bits for the rare characters and the overall effect is that the file almost always

requires less space [4][13].

Compressed data - The table is followed by a stream of variable-length Huffman codes that

represent the content of the block. One of the codes is reserved for marking the end of the

block. As soon as the end-of-block code is read from the stream, the next bit is the

beginning of the following block header, there is no break in the bit stream between blocks,

and there are no synchronization markers of any kind. The end-of-block code depends on

the coding table, so it varies from block to block. The upshot is that absent sanity checking,

where a deflate decoder can sometimes “decode” even random data. The statistical

variation of the coded stream is quite uniformly random [4][5].

To ensure that we build a clean setup, we control the structure and content of the data

instead of being blind in the wild. To control artifacts in JPEG file fragments, we remove all

header metadata (using ExifTool) [14] and trim the beginning of the resulting file to remove

readily recognizable strings in the file header. We treat PNG files the same way. For Gzip file

fragments, we merge a large number of HTML files and compress them using the Gzip

command in Linux with the default compression level “-6”. As for Zip file fragments, we Zip-

compress a folder containing a large number of HTML files. This is to ensure that Gzip and

Zip file fragments do not contain any embedded images or objects that could skew the

results one way or another.

11

To make sure we do the same with Docx file fragments, we remove any /media folders

contained within the compressed Docx folder and we group the Docx files by their sizes to

create our datasets. One group contains Docx files that are greater than or equal 16 KB and

less than 32 KB, the second group contains Docx files that are greater than or equal 32 KB

and less than 64 KB, the third group contains Docx files that are greater than or equal 64 KB

and less than 128 KB, and finally, the fourth group contains Docx files that are 128 KB or

larger.

We also optimized our datasets by using equal numbers of samples from each file type for

training and testing with a consistent ratio between our training and testing datasets,

around 80% to 20% respectively for all our experiments. We ran our experiments using

different fragment sizes starting by 256 bytes and going up until 4096 bytes to see how

different fragment sizes affect the accuracy of our classifier. Each sample resembled a

fragment, and each byte resembled a feature. While running our experiments, we

optimized our hyperparameters each time until we achieved sensible results.

In the following section we go over the methodology that we used to create our datasets

from the aforementioned file types.

12

Chapter 4

Solution (Implementation)

Creating our Datasets
To obtain the required data, we downloaded Jpeg and HTML files from the public Gov Docs

corpora. We converted some JPEG files to PNG files, due to the lack of PNG files in the Gov Docs

corpora [2] and downloaded Docx files from the msx-13 corpus [3]. We used the HTML files to

create our zip and gz files. For the zip files, we added all the HTML files to a folder and zip

compressed this folder. As for the gz files, we merged all the HTML files into one large file and

compressed this file using the gzip command in Linux with the compression level set to default

(-6).

Then, to clean the data and establish content control we trimmed the header and removed

metadata from the body of Jpeg files using ExifTool. We also removed all /media folders from

the Docx files, and we excluded any files that were less than 4KB in size. For further

experimentation, we made copies of the docx files that were grouped into different sizes, 1)

between 16 – 32 KB, 2) between 32 – 128 KB, 3) 128 KB or larger. All that was to ensure that we

only have stand-alone primitive files.

We wrote a Python[15] program to create different labeled datasets from these files. The basic

idea of this program is that it converts each file into its decimal value, then adds a “.0” to each

decimal value to change the values into float values to then be processed by TensorFlow. The

reason behind this data conversion is, as explained above, there are certain known hexadecimal

patterns in some file types, such as the occurrence of the hexadecimal FF00 every 191 bytes in

a jpeg body [4]. The decimal value of the byte FF is 255 and 0 for the byte 00, which with our

conversion becomes 255.0,0.0. Each byte represents one feature in our dataset.

The idea is to create training and testing datasets for each file type with a training to testing

ratio 0.8:0.2. Each dataset is created in a CSV file where each row of bytes (features) represents

a fragment. We wanted our model to train and test different fragment sizes, and because we

have a fixed number of files with fixed sizes, there is a trade-off between the fragment size and

the number of samples that we can use, the larger the fragment size is, the less the number of

samples that we have. Another aspect that we have to take into account is that we want to

have equal number of samples for each file type in both training and testing datasets, so we

have to base our calculations on the file type with the minimum sum of file sizes. We then

create our training and testing files with fragment sizes 256, 512, 1024, 4096 bytes for each

type. The reason behind selecting these particular fragment sizes is explained in chapter 1.

13

We then select the fragment size and the file types that we want to classify. Based on the order

of the type selection, each type is labeled using an integer to represent this type starting by 0

and incrementing by 1 for each new type. Then the selected training files are concatenated

together with the added “label” column, the testing files are treated similarly. We only

experimented with binary classifications for this thesis work.

Establishing our Heuristics
We used our knowledge of some of the existing prevalent patterns in JPEG fragments to build

simple heuristics to establish a baseline for the expected results based on the prevalence of the

FF00 pattern, so we can measure the performance of our classification model. As shown below,

we used a fragment size of 1024 bytes and 25,000 training samples for each of the types Jpeg

and Gzip and 10,000 testing samples for each. We then found the minimum and maximum

occurrence of the pattern FF00 among all the fragments of each type.

As expected, the number showed a huge difference between the max occurrence in jpeg, 84

times compared to only 2 times in gzip. We then found the number of samples that had 0, 1, 2,

and 3 occurrences of the pattern within each type, to find the optimal number of occurrences

(frequency) to use as a basis for our heuristic. We found out that if we go with a rule that is as

simple as “if frequency == 0, then the fragment belongs to a gzip file” achieved approximately

97.5% accuracy, with only 2% false positives. Based on that analysis we decided that we should

not accept any accuracy that is less than 97.5% for this particular classification, if not higher.

Table (1): JPEG vs. GZIP Frequency of “FF00”

 Frequency of "FF00" by dataset

 JPEG GZIP

1024 bytes Training % Testing % Training % Testing %

min 0 0 0 0

max 84 97 2 2

0 620 2.48 618 6.18 24328 97.31 9866 98.66

1 1514 6.06 1220 12.20 646 2.58 132 1.32

2 2315 9.26 1698 16.98 26 0.10 2 0.02

3 2835 11.34 1573 15.73 0 0.00 0 0.00

Samples per set 25,000 10,000 25,000 10,000

Table (2): GZIP Fragment Encoding Accuracy, True Positives, & True Negatives

Accuracy from True Positives & True Negatives

GZIP Accuracy
True

Positive
False

Positive

if freq == 0, then GZIP ~ 97.50% ~ 97.00% ~ 2.00%

if freq >= 2, then JPEG ~ 95.70% ~ 99.90% ~ 8.50%

14

Building our Deep Learning Model
As we explained in chapter 2, we wanted to use deep learning to solve this problem. We built

our model in TensorFlow as it allows creating custom layers for your neural network. Many

machine learning models are expressible as the composition and stacking of relatively simple

layers, and TensorFlow provides both, a set of many common layers as a well as easy ways for

you to write your own application-specific layers either from scratch or as the composition of

existing layers [1].

We chose Google Colab for our environment due to its ease of use and the availability of TPU

runtime environments which significantly reduced the runtime of the simulations. Colab is a

Google Research product, which allows developers to write and execute Python code through

their browser. It is an excellent tool for deep learning tasks. It is a hosted Jupyter notebook that

requires no setup and has an excellent free version, which gives free access to Google

computing resources such as GPUs and TPUs [7].

A model is the relationship between features and the label. A good machine learning approach

determines the model for you. If you feed enough representative examples into the right

machine learning model type, the program will figure out the relationships. There are many

types of models and picking a good one needs experience and a lot of experimentation [1]. A

huge part of our research was determining the model to train.

Our experiments were structured as follows:

1- Import and parse training and testing datasets.

2- Build the model.

3- Train the model using training datasets.

4- Evaluate the model's effectiveness using testing datasets.

5- Use the trained model to make predictions.

Neural networks can find complex relationships between features and the label. It is a highly

structured graph, organized into one or more hidden layers. Each hidden layer consists of one

or more neurons. The diagram below shows a visualization of how nodes or neurons of the

input and output layers are connected through hidden layers that work together to learn the

different features that the Neural Network needs to know to be able to distinguish one class

from the other. There are several categories of neural networks and the model we chose was

Convolutional Neural Networks with an Embedding layer. Figure (1) shows a generic

Convolutional Neural Network Structure.

15

Figure (1): Convolutional Neural Network Structure [17]

Convolutional Neural Networks are the leading algorithms in today’s world which are used to

solve the Computer vision problems such as: 1) Image Classification tasks, 2) Facial Recognition

tasks, 3) Object Detection, 4) Pattern Detection, and 5) Natural Language Processing.

One of the most popular research in this area was the development of LeNet-5 by LeCunn and

co. in 1997. This was one of the first Convolutional Neural Networks (CNN) that was deployed in

banks for reading cheques in real-time. It is said that the LeNet-5 read over a million cheques.

Although there were other algorithms Like Support Vector machines which were close to the

accuracy of the LeNet-5, it was argued that the CNN speed of computation was exponentially

faster than other algorithms.

A one-dimensional CNN is a CNN model that has a convolutional hidden layer that operates

over a 1D sequence. This is followed by perhaps a second convolutional layer in some cases,

such as very long input sequences, then a pooling layer whose job it is to distill the output of

the convolutional layer to the most salient elements. The convolutional and pooling layers are

followed by a dense fully connected layer that interprets the features extracted by the

convolutional part of the model. A flatten layer is used between the convolutional layers and

the dense layer to reduce the feature maps to a single one-dimensional vector as shown in

illustration (1) below that showcases a typical CNN Architecture [1][6][16][17].

16

Illustration (1): Typical Convolutional Neural Network Layers Architecture [16]

We used the Keras Sequential API to add our neural network layers. A “Sequential” model is

appropriate for a plain stack of layers where each layer has exactly one input tensor and one

output tensor. It can be created incrementally via the add() method. All layers in Keras need to

know the shape of their inputs in order to create their weights. Initially when a layer is created,

it has no weights. It creates its weights the first time it is called on an input, since the shape of

the weights depends on the shape of the inputs. So, when a Sequential model is instantiated

without an input shape, it is not built and thus, has no weights. The weights are only created

when the model first sees some input data. Once a Sequential model is built, every layer will

have an input and output attribute. These attributes can be used to do neat things, like quickly

creating a model that extracts the outputs of all intermediate layers in a Sequential model [1].

Our convolutional base consists of:

1- Embedding Layer [1][6]

Word embeddings give us a way to use an efficient, dense representation in which similar

words have a similar encoding. An embedding is a dense vector of floating-point values (the

length of the vector is a parameter you specify). Instead of specifying the values for the

embedding manually, they are trainable parameters (weights learned by the model during

training, in the same way a model learns weights for a dense layer). It is common to see

word embeddings that are 8-dimensional (for small datasets), up to 1024 dimensions when

working with large datasets. A higher dimensional embedding can capture fine-grained

relationships between words but takes more data to learn. Conceptually, it involves a

mathematical embedding from a space with many dimensions per word to a continuous

vector space with a much lower dimension. One of the methods to generate this mapping is

neural networks.

17

Illustration (2) below is a diagram for a word embedding. Each word is represented as a 4-

dimensional vector of floating-point values. Another way to think of an embedding is as a

"lookup table". After these weights have been learned, you can encode each word by

looking up the dense vector it corresponds to in the table.

 Illustration (2): A 4-dimensional Word Embedding

car 1.2 -0.1 4.7 3.1

truck 0.4 3.5 -0.7 0.6

van 0.3 2.2 0.3 0.4

Word embeddings provide a dense representation of words and their relative meanings,

which is an improvement over the more traditional bag-of-word model encoding schemes

where large sparse vectors were used to represent each word or to score each word within

a vector to represent an entire vocabulary. These representations were sparse because the

vocabularies were vast, and a given word or document would be represented by a large

vector comprised mostly of zero values.

Instead, in an embedding, words are represented by dense vectors, where a vector

represents the projection of the word into a continuous vector space. The position of a

word within the vector space is learned from text and is based on the words that surround

the word when it is used. That position of a word in the learned vector space is referred to

as its embedding. Word embeddings can be learned from text data and reused among

projects. They can also be learned as part of fitting a neural network on text data and can

be considered as a class of approaches for representing words and documents using a

dense vector representation.

The output of the Embedding layer is a 2D vector with one embedding for each word in the

input sequence of words (input document), which can be understood as a lookup table that

maps from integer indices (which stand for specific words) to dense vectors (their

embeddings). The dimensionality (or width) of the embedding is a parameter you can

experiment with to see what works well for your problem, much in the same way you would

experiment with the number of neurons in a Dense layer.

18

When you create an Embedding layer, the weights for the embedding are randomly

initialized (just like any other layer). During training, they are gradually adjusted via

backpropagation. Once trained, the learned word embeddings will roughly encode

similarities between words (as they were learned for the specific problem your model is

trained on). If you pass an integer to an embedding layer, the result replaces each integer

with the vector from the embedding table.

Learning the position of a word – in our case a byte – in a learned vector space, will help our

model learn different patterns in the different data encodings. Keras offers

an embedding layer that can be used for neural networks on text data. It requires that the

input data be integer encoded, so that each word is represented by a unique integer. In our

case, each byte is represented by a unique float value, which is automatically cast to an

integer within the layer. The Embedding layer is initialized with random weights and will

learn an embedding for all of the words (bytes) in the training dataset. It is a flexible layer

that can be used in a variety of ways, such as:

• It can be used alone to learn a word embedding that can be saved and used in another

model later.

• It can be used as part of a deep learning model where the embedding is learned along

with the model itself, which is the case in our experiment.

• It can be used to load a pre-trained word embedding model, as a type of transfer

learning.

The Embedding layer is defined as the first hidden layer of a network. It must specify 3

arguments:

• input_dim: This is the size of the vocabulary in the text data. For example, if your data is

integer encoded to values between 0 – 10, then the size of the vocabulary would be 11

words. In our case, the data is encoded to values between 0 – 255, so the size would be

256.

• output_dim: This is the size of the vector space in which words will be embedded. It

defines the size of the output vectors from this layer for each word. For example, it

could be 32 or 100 or even larger. The optimal number is determined by experimenting

with different values. We tested different values for our problem and 10 performed

well.

• input_length: This is the length of input sequences, as you would define for any input

layer of a Keras model. For example, if all of your input documents are comprised of

1000 words, this would be 1000. This represents the number of features, in our case,

the fragment size. We used 256, 512, 1024, and 4096 for our input_length values.

19

2- Convolution + Activation Layer [1][6][17]

Convolution is an interesting operation that works by taking a ‘Feature map’ or say a 3x3

filter and applying it on every part of the input features. Here, applying means an arithmetic

operation where the result of the operation is stored as a value for the next layer. This

operation is repeated across the input image by “Convolving” the filter. A Convolution layer

can have a number of Feature Maps (or Filters) in each layer and so can produce as many

outputs as possible. In our model, we used 20 filters. The size of each filter is configured

using the kernel_size parameter.

After applying the convolutional function, a non-linearity is added to the output. It is used

to determine the output of neural network like yes or no. It maps the resulting values in

between 0 to 1 or -1 to 1 etc. (depending upon the function). Typically, this is done by the

Rectified Linear Unit (Relu) Activation function. You can think of this as passing only the

positive values to the output while changing the negative values to 0.

3- Pooling Layer [1][6][17]

Pooling is an operation which has 2 main impacts, 1) It reduces the dimensions of the

feature maps, so lesser parameters are faster to compute in following layers. Hence, it is

also known as a down-sampling layer, 2) It highlights the importance of the features. There

are a few pooling operations which are popular: Average pooling, Max pooling and Sum

Pooling. Out of these max pooling is the most widely used operation, so we chose it for our

model. Below is a visualization of how it works. Similar to the kernel_size, the size of the

max pooling window is an integer that’s configured using the pool_size parameter. We used

32 for our model. Illustration (3) shows how Max Pooling works.

 Illustration (3): Max Pooling

20

4- Flatten Layer [1][6]

The flatten layer basically takes the current pooling layer output and it converts it into the

format which is required for the Fully connected layer. The fully connected layer is an

artificial neural network in itself and requires a specific input. Illustration (4) shows how the

Flattening Layer works.

 Illustration (4): Flattening

5- Dense (Fully Connected) Layer [1][6][17]

The initial convolution layers help in detecting low level features. When we pass these again

into additional convolutional layers, higher level features are detected. The fully connected

layer is the final piece of the puzzle. It takes the high-level feature maps as the input and

decides what the output category would be. This is basically a multi-level Perceptron

network that identifies which weights are more likely to contribute to which outputs. This is

done when we train the model with a lot of samples, it is able to decide which attributes

associate more with which categories. It is fully connected as every neuron in the previous

layer is connected to every neuron in the next layer. The activation function of our dense

layer is the Sigmoid Function because it returns a value between (0 to 1). Therefore, it is

especially used for models where we have to predict the probability as an output, as in our

model. Since the probability of anything exists only between the range of 0 and 1, sigmoid is

the correct activation function.

21

This is a code snippet to show our CNN architecture explained above:

 Code Snippet (1): CNN Architecture

After building our neural network we need to compile it using the following code. It uses

Adam, which is a momentum-based optimizer. The loss function used is

binary_crossentropy, which is usually the optimizer of choice for binary classification

problems that give output in the form of probability. The metric we used is accuracy.

 Code Snippet (2): Compiling our Model

The model is then trained on the training set for 10 epochs, then evaluated for the test set

to check the accuracy, as shown in the code and output snippets below.

 Code Snippet (3): Training & Evaluating our Model

 Code Snippet (4): Output

22

Chapter 5

Evaluation

We now have our CNN model, ready to be trained on our datasets that we created. For the sake

of this research, we focused on the high entropy Huffman encoded data. We used binary

classifiers to classify pure jpeg, png, gz, zip, bz2, xz, and docx fragments. We ran our simulations

for each fragment size for each classification separately. Each simulation took approximately

between 15 minutes to 30 minutes to complete.

To evaluate the performance of our model, we introduce here two important parameters [1][6]:

▪ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

True Positives + True Negatives + False Positives + False Negatives
 (1)

▪ Loss: Our binary classification problem can be posed as: “is the fragment a gzip fragment?”

or, “what is the probability of the fragment being gzip?” In this setting, gzip fragments belong

to the positive class (Yes, they are gzip fragments), while other fragments belong to the

negative class (No, they are not gzip fragments). When we fit a model to perform this

classification, it predicts a probability of being gzip to each one of our samples. A loss function

evaluates how good or bad the predicted probabilities are. For a binary classification like ours,

the typical loss function is the Binary Crossentropy function (BCE), which is used to determine

the error (aka “the loss”) between the output of our algorithms and the given target value. In

layman’s terms, the loss function expresses how far off the mark our computed output is.

Since we are trying to compute a loss, we need to penalize bad predictions. If the probability

associated with the true class is 1.0, we need its loss to be zero. Conversely, if that probability

is low, say, 0.01, we need its loss to be huge, which is calculated by taking the negative log of

the probability. The binary cross-entropy is computed using the following equation:

𝐻𝑝(𝑞) = −
1

𝑁
∑ 𝑦𝑖 ∙ log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∙ log (1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1
 (2)

𝒚 is the label (1 for gzip fragments and 0 for each of the other fragments) and 𝒑(𝒚) is the

predicted probability of the fragment being gzip for all N samples. What this formula tells us

is that for each gzip fragment (y = 1), it adds 𝒍𝒐𝒈(𝒑(𝒚)) to the loss, that is the log probability

of it being gzip. Conversely, it adds log(1-p(y)), that is, the log probability of it being jpeg,

zip, or docx for each other fragment (y = 0).

23

We started with our baseline classification, which is classifying jpeg and gz fragments, since we

know what results to expect. Using a fragment size of 256 bytes did not really help the network

learn any patterns as the number of features used was too low. As we increased the fragment

size, the accuracy improved gradually, starting at 57.91% for 256 bytes and going up to 99.60%

when we used 4096 bytes. Conversely, the loss decreased from 3.2213 to 0.0004. We show the

distributions of accuracy and loss values for our classifications in Table (3) below. After that, we

wanted to see the effect of the embedding layer on the accuracy of the classification jpg vs. gz.

We tried classifying them after removing the embedding layer from our network which reduced

the accuracy significantly from 99.6% to 70.91% as shown in Table (3) as well.

After successfully classifying jpeg and gz fragments, we wanted to test if our model is just

picking on the “FF00” pattern or if it is picking on a different pattern that is not obvious to the

human eye. So, we omitted each occurrence of “FF00” to get rid of this specific pattern and, the

test accuracy started at 50.02% at 256 bytes, but surprisingly, it went up to 99.52% at 4096

bytes. We noticed that the accuracy was much less than the results we had without omitting

“FF00” at 512 and 1024 bytes, but the values still reveal that there is probably a different

pattern that the model is picking up on. That could be some legal markers that may appear—

mostly in the 0xD0 to 0xDB range in the jpeg fragments [4]. It is worth digging deeper and

understanding what these results could be revealing about the structure of the jpeg fragments,

but that is out of the scope of this work.

Classifying zip and gz fragments started at an expected accuracy of 50% at 256 bytes and stayed

at 50% all the way through until it got to 57.63% at 4096 bytes, which is explained by the fact

that both zip and gz fragments are of high entropy, there are hardly any patterns to recognize.

We also tried classifying gz fragments with the default compression level against gz fragments

with the highest compression level to increase the entropy, but the accuracy was still 50%. The

loss distributions are shown in Table (3).

For our docx and gz classification, we tried two different approaches to building our datasets.

The first approach was to group all docx files that were higher than 4 KB together and pick up-

to 5 random samples from each file, which started at a surprising accuracy of 100% at 256 bytes

and stayed at a 100% for 512 and 1024 bytes, then significantly went down to 50.27% at 4096

bytes as shown in Table (4). Table (5) shows the loss starting at a very low value of 0.1246 and

increasing to 2.9956. The second approach was grouping the files by sizes between 16 to 32KB,

32 to 128KB, and 128KB & larger, and also picking up to 5 random samples from each file in

each group, leaving us with datasets that are separated, not only by the fragment size, but also

by the docx size grouping. Accuracy results are shown in Table (5).

24

Below are our “Accuracy by fragment size & datasets” and “Loss by fragment size & datasets”

tables, showing the results that we got from our CNN model for each of our classifications. Each

table is divided into 4 sections for our 4 different fragment sizes that we trained and tested,

each of the fragment sections is sub-divided into training and testing subsections. Then each

type that was classified has the accuracy or loss recorded for the last epoch of the training and

recorded for the testing (evaluation), followed by the number of samples used in each dataset.

Table (3): Jpeg, PNG, Gzip (level 9 compression level), Bzip2, Xz, & Zip vs. Gzip (default

compression level) Accuracy & Loss

 Accuracy by fragment size & dataset (GZ vs. ALL)

Classification Task
256 512 1024 4096

Training Testing Training Testing Training Testing Training Testing

JPEG 99.15% 57.91% 99.44% 81.17% 99.83% 97.02% 100.00% 99.60%

JPEG “FF00” omitted 98.66% 50.02% 99.02% 68.26% 99.52% 83.52% 100.00% 99.52%

JPEG w/o Embedding 84.00% 70.91%

Bzip2 97.90% 50.26% 97.69% 53.40% 97.64% 81.33% 98.40% 95.47%

PNG 98.26% 50.01% 98.28% 59.98% 98.39% 76.46% 97.77% 79.58%

Zip 96.71% 50.00% 93.96% 50.00% 90.07% 50.00% 73.73% 57.63%

Xz 96.61% 50.00% 94.33% 50.00% 90.19% 50.00% 75.83% 56.84%

Gzip -9 96.72% 50.00% 93.87% 50.00% 88.21% 50.00% 46.30% 50.01%

 Loss by fragment size & dataset

JPEG 0.0314 3.2213 0.0179 0.8701 0.0052 0.1018 0.0005 0.0004

JPEG w/o Embedding 0.5092 1.1114

Bzip2 0.0779 4.0311 0.0650 2.0640 0.0634 0.4739 0.0649 0.1257

PNG 0.0673 4.6678 0.0540 2.5475 0.0536 1.3210 0.0747 1.0726

Zip 0.1212 4.5419 0.1790 2.6664 0.2164 1.3597 0.5347 0.6927

Xz 0.1253 4.7295 0.1572 2.8696 0.2159 1.3890 0.5106 0.7639

Gzip -9 0.1260 4.8047 0.1795 2.7974 0.2459 1.5505 0.6949 0.6935

Samples per set 113,024 28,256 56,512 14,128 28,256 7,064 7,064 1,766

25

Table (4): Docx vs. Gzip Accuracy

 Accuracy by fragment size & dataset (Docx vs. GZ)

Docx (without
/media)

256 512 1024 4096

Training Testing Training Testing Training Testing Training Testing

4 – 128+ KB 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 50.27%

Samples per set 860 215 860 215 848 212 371 93

16 – 32 KB 100.00% 53.01% 100.00% 83.99% 100.00% 50.10% 100.00% 50.12%

Samples per set 964 241 964 241 964 241 834 209

32 – 128 KB 100.00% 50.12% 100.00% 50.12% 100.00% 50.12% 100.00% 50.12%

Samples per set 804 201 804 201 804 201 804 201

128+ KB 100.00% 50.65% 100.00% 50.65% 100.00% 50.65% 100.00% 49.35%

Samples per set 156 39 156 39 156 39 156 39

Table (5): Docx vs. Gzip Loss

 Loss by fragment size & dataset (Docx vs. GZ)

Docx (without
/media)

256 512 1024 4096

Training Testing Training Testing Training Testing Training Testing

4 – 128+ KB 0.0008 0.1246 0.0005 0.0271 0.0003 0.1908 0.0007 2.9956

Samples per set 860 215 860 215 848 212 371 93

128+ KB 0.1803 0.7634 0.1196 0.6603 0.0387 0.7846 0.0191 0.7327

Samples per set 156 39 156 39 156 39 156 39

26

Table (6): Jpeg, Bzip2, Xz, & Zip vs. PNG Accuracy & Loss

 Accuracy by fragment size & dataset (PNG vs. ALL)

Classification Task
256 512 1024 4096

Training Testing Training Testing Training Testing Training Testing

JPEG 99.56% 51.30% 99.70% 73.34% 99.90% 94.21% 100.00% 99.73%

Bzip2 99.06% 50.01% 98.88% 50.22% 99.05% 87.17% 99.54% 99.14%

Xz 99.01% 50.00% 98.64% 50.00% 98.25% 50.29% 97.49% 98.67%

Zip 99.03% 50.00% 98.47% 50.01% 98.00% 54.82% 96.78% 97.14%

 Loss by fragment size & dataset

JPEG 0.019 4.5163 0.0108 1.3755 0.0030 0.2364 0.0000 0.0058

Bzip2 0.0418 5.2402 0.0386 3.5419 0.0275 0.3062 0.0141 0.0256

Xz 0.0418 5.3504 0.0497 3.7353 0.0433 1.6211 0.0693 0.0551

Zip 0.0444 5.4883 0.0553 3.7410 0.0491 1.0722 0.0857 0.1009

Samples per set 211,232 52,816 105,616 26,408 52,808 13,204 13,202 3,301

Table (7): Xz, Bzip2, & Zip vs. JPEG Accuracy & Loss

 Accuracy by fragment size & dataset (JPG vs. ALL)

Classification Task
256 512 1024 4096

Training Testing Training Testing Training Testing Training Testing

Xz 99.44% 54.43% 99.68% 76.71% 99.89% 97.44% 100.00% 100.00%

Bzip2 99.41% 50.89% 99.57% 61.39% 99.84% 90.78% 100.00% 99.82%

Zip 99.44% 52.19% 99.56% 71.26% 99.84% 93.45% 99.99% 99.76%

 Loss by fragment size & dataset

Xz 0.0250 3.7994 0.0124 1.2623 0.0030 0.0912 0.0000 0.0001

Bzip2 0.0285 4.5272 0.0175 2.3269 0.0056 0.2946 0.0001 0.0044

Zip 0.0256 4.2616 0.0170 1.6862 0.0054 0.5610 0.0004 0.0052

Samples per set 211,232 52,816 105,616 26,408 52,808 13,204 13,202 3,301

27

Table (8): Xz & Zip vs. Bzip2 Accuracy & Loss

 Accuracy by fragment size & dataset (BZ2 vs. ALL)

Classification Task
256 512 1024 4096

Training Testing Training Testing Training Testing Training Testing

Xz 98.68% 50.00% 98.42% 50.00% 98.61% 64.73% 99.25% 97.29%

Zip 98.58% 50.00% 98.27% 50.00% 98.31% 58.86% 98.95% 95.97%

 Loss by fragment size & dataset

Xz 0.0564 5.5756 0.0543 3.5189 0.0400 0.8877 0.0250 0.0687

Zip 0.0609 5.625 0.0625 4.1661 0.0506 1.1671 0.0322 0.1044

Samples per set 211,232 52,816 105,616 26,408 52,808 13,204 13,202 3,301

28

Chapter 6

Conclusions and Future Work

Data encoding classification simply is the process of mapping a sequence of bytes from a file

(fragment) to a specific type of data encoding. Reliable data encoding classification of file

fragments improves the speed and accuracy of data reconstruction significantly. In general,

classifying data encodings of low to medium entropy file fragments is much easier than

classifying data encodings of high entropy file fragments. So far, all machine learning

approaches that have been designed to classify file fragments have had methodological issues

that we tackled in this thesis work.

While designing our solution, we took into account the conceptual difference between the

notions of file type and data encoding, as well as the difference between primitive data format

and compound file structure, making our classification more efficient. We used our knowledge

of the anatomy of different data encodings to build our heuristics using ground truth that we

established through controlled and clean datasets that we prepared to help evaluate our

results.

We followed a computational intelligence-based approach using a convolutional neural

network with a word embedding layer to build a more generic and scalable, yet specialized

classification approach that focused on Huffman encoded (high entropy) file fragments. Our

classifier has the ability to either successfully classify file fragments that contain hidden

patterns and high dimensional features, or to say, “I don’t know” and gracefully fail if there are

no patterns to be recognized.

Our solution has 2 main components, the first is our dataset builder, that can create any

datasets needed for training and testing, with any fragment size, any number of samples, and

any training to testing ratio desired. The second component is the classifier itself; it can be fed

any training and testing datasets and it will output training and testing accuracy results within a

few minutes. We ran all our classifications through the same fragment sizes (256, 512, 1024,

and 4096 bytes) for consistency and to better understand how much can be extracted from

each fragment size. We were also able to run at least four different classifier instances

simultaneously, which gave us the ability to obtain results for at least four different

classifications within 15 minutes only.

29

Our binary classifiers achieved 99.6% accuracy when classifying JPEG and GZ fragments,

between 97.14 and 99.73% when classifying PNG against ZIP, XZ, BZIP2 and JPEG fragments,

and between 99.76% and 100% when classifying JPEG against ZIP, BZIP2, and XZ fragments.

Our main research contribution is that we have demonstrated a new fragment classification

approach that, unlike prior work, is both generic and exhibits very high accuracy, making it

suitable for practical application at scale. Further, unlike most prior work, our results are based

on a large, realistic, but also carefully curated datasets to ensure that ground truth is known,

rather than assumed (based on file extension). By excluding extraneous metadata, such as

those contained in file header, we have constructed the most difficult test case, which gives us

confidence that the results would be reproducible in the real world. Finally, our approach has

been able to classify different variations of the same basic (high entropy) data encoding,

deflate, which is another first.

Our future work would be building a multi-classifier using our binary classifiers to build decision

trees as well as exploring other multi-classification approaches. We will also include cross

validation in our steps and use larger fragment sizes, up to 16 KB to classify other deflate/

Huffman encoded file fragments that were not addressed in this research. Additionally, we plan

to use LIME (Local Interpretable Model-Agnostic Explanations) to explain the ability of our

neural network to classify JPEG fragments even after omitting the “FF00” pattern.

30

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew

Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath

Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray,

Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Garfinkel, Farrell, Roussev and Dinolt, Bringing Science to Digital Forensics with Standardized

Forensic Corpora, DFRWS 2009, Montreal, Canada

[3] Roussev, V. (n.d.). the msx-13 corpus. Retrieved from Vassil Roussev: http://roussev.net/msx-

13/msx-13.html

[4] Roussev, V., & Garfinkel, S. L. (2009). File Fragment Classification - The Case for Specialized

Approaches. New Orleans: University of New Orleans.

[5] Roussev, V., & Quates, C. (2013). File fragment encoding classificationd - An empirical approach .

DFRWS.

[6] Goodfellow, I., Bengio, Y., & Courville, A. (2015). Deep Learning.

[7] Bisong E. (2019) Google Colaboratory. In: Building Machine Learning and Deep Learning Models

on Google Cloud Platform. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-4470-8_7

[8] Chen, Q., & Liao, Q. (2018). File Fragment Classification Using Grayscale Image Conversion and

Deep Learning in Digital Forensics.

[9] Duffy, A. (2014). CarveML: application of machine. Stanford University.

[10] Hiester, L. (2018). File Fragment Classification Using Neural Networks with Lossless

Representations. East Tennessee State University.

[11] Poisel, R., Rybnicek, M., & Tjoa, S. (2013). Taxonomy of Data Fragment Classification.

[12] Xu, T., Xu, M., Ren, Y., Xu, J., Zhang, H., & Zheng, N. (2014). A File Fragment Classification

Method Based on Grayscale Image. College of Computer, Hangzhou Dianzi University,

Hangzhou, China.

[13] Zelenski, J., Huffman, K., Schwarz, K., & Stepp, M. (2012). Huffman Encoding and Data

Compression.

[14] Harvey, P. (2016). ExifTool. Retrieved from https://exiftool.org/

[15] Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA:

CreateSpace.

http://www.simson.net/clips/academic/2009.DFRWS.Corpora.pdf
http://www.simson.net/clips/academic/2009.DFRWS.Corpora.pdf
http://roussev.net/msx-13/msx-13.html
http://roussev.net/msx-13/msx-13.html
https://exiftool.org/

31

[16] Introduction to Convolutional Neural Networks (Stanford University, 2018)

[17] Introduction to Convolutional Neural Networks (Stanford University, Spring 2021)

32

Vita

Nehal Ameen is an M.S. candidate in the Computer Science department at UNO, where she

worked as a Graduate Research Assistant under Dr. Roussev’s supervision. She was awarded a

Bachelor of Science in Management Information Systems at Alexandria University in Egypt.

Nehal is currently working as an Emerging Technology Product & Systems Analyst at Entergy,

where she started as a Robotic Process Automation Developer. As a Computer Scientist, her

interests include Machine Learning Engineering and Cyber Security, and finding innovative

approaches to enhance Cyber Security using AI. She has worked on multiple projects focused

on Big Data Analytics, Digital Forensics, and Software Reverse Engineering, including working on

a portable visual field system prototype that innovates a non-invasive method for visual field-

testing using VR goggles, as a Visiting Scholar at Tulane University. She co-authored “CLIK on

PLCs! Attacking Control Logic with Decompilation and Virtual PLC” and earned credits from the

National Cyber Security and Communications Integration Center for reporting three

vulnerabilities in Modicon’s PLC while working as a Research Assistant in the CyPhy lab at UNO.

	Convolutional Neural Networks for Deflate Data Encoding Classification of High Entropy File Fragments
	Recommended Citation

	tmp.1618614218.pdf.RHcQC

