
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-31-2021

Sounds of Silence: A Study of Stability and Diversity of Web Audio Sounds of Silence: A Study of Stability and Diversity of Web Audio

Fingerprints Fingerprints

Shekhar Chalise
University of New Orleans, New Orleans, schalise@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

Recommended Citation Recommended Citation
Chalise, Shekhar, "Sounds of Silence: A Study of Stability and Diversity of Web Audio Fingerprints" (2021).
University of New Orleans Theses and Dissertations. 2900.
https://scholarworks.uno.edu/td/2900

This Thesis-Restricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis-Restricted in any
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you
need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Thesis-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by
an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2900?utm_source=scholarworks.uno.edu%2Ftd%2F2900&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Sounds of Silence: A Study of Stability and Diversity of Web Audio Fingerprints

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by

Shekhar Chalise

B.E. Tribhuvan University- Kathmandu, 2015

May, 2021

Acknowledgements

First of all, I would like to express my sincere gratitude to my advisor Dr. Krishna Phani Kumar

Vadrevu for providing his invaluable guidance, support, and suggestions required for this research.

I would also like to thank Dr.Vassil Roussev and Dr. Hyunguk Yoo, for their kind consent to

be a committee member for my thesis defense.

I would also like to thank my friends Mr. Rachindra Poudel, Mr. Pujan Pokhrel, and Mr.

Nishan Rayamajhee for their invaluable suggestions. A very special thanks to my family and all

my friends for their encouragement and support, which helped me in completion of this project.

I also want to express my sincere gratitude towards the University of New Orleans for providing

me a creative space for research.

ii

Table of Contents

Page

List of Figures . v

List of Tables . vii

Abstract . viii

1. Introduction . 1

2. Literature Review . 4

2.1 Browser Fingerprinting . 4
2.1.1 History . 4
2.1.2 Fingerprints . 5
2.1.3 Canvas Fingerprints . 6
2.1.4 Font Fingerprints . 7
2.1.5 Audio Fingerprints . 8

2.2 Background and Related Work . 8

3. System Description . 10

3.1 Web Audio API . 10
3.2 Main Audio Node Interfaces . 11

3.2.1 AudioNode. 11
3.2.2 BaseAudioContext . 11
3.2.3 AudioContext . 11
3.2.4 OfflineAudioContext . 12
3.2.5 AudioBuffer . 12
3.2.6 OscillatorNode. 12
3.2.7 DynamicCompressor . 12
3.2.8 AnalyserNode. 13
3.2.9 GainNode . 13
3.2.10 ScriptProcessor . 13
3.2.11 ChannelMergerNode . 13
3.2.12 AudioDestinationNode . 14

3.3 Digital Signal Processing . 14
3.3.1 Frequency Modulation . 14
3.3.2 Amplitude Modulation . 15

3.4 Fingerprinting Methods . 16
3.4.1 DynamicCompressor Method . 17

iii

3.4.2 OscillatorNode Method . 18
3.4.3 Hybrid Method . 18
3.4.4 Custom Signal Hybrid Method . 20
3.4.5 Audio Source Hybrid Method . 22
3.4.6 Channel Merge Hybrid Method. 23
3.4.7 Amplitude Modulation Hybrid Method . 25
3.4.8 Frequency Modulation Hybrid Method . 26

3.5 FingerprintJS2 . 28
3.6 IP Information . 28
3.7 User Agent Information. 28
3.8 System Overview. 29
3.9 Hosting Stack. 30
3.10 User Study . 30

4. Evaluation. 32

4.1 Stability Analysis . 32
4.1.1 Statistical Analysis . 32
4.1.2 Cumulative Distribution Function based approach . 35

4.2 Time Analysis . 37
4.3 Diversity Analysis . 37

4.3.1 Network Graph based approach . 38
4.3.2 User-Agent Comparison . 40

5. Discussion . 48

5.1 Limitations . 48
5.2 Future Work . 48
5.3 Conclusion. 49

References . 50

Appendix A. Code snippets . 53

Appendix B. Figures. 66

Vita . 68

iv

List of Figures

FIGURE Page

2.1 Panopticlick Experiment Table . 5

2.2 Canvas Fingerprint Example. 7

3.1 Frequency Modulation Example . 15

3.2 Amplitude Modulation Example . 16

3.3 DynamicCompressor Full Buffer Method . 17

3.4 Generated Triangle Wave . 18

3.5 OscillatorNode Method . 19

3.6 Hybrid (DynamicCompressor + OscillatorNode) Method . 19

3.7 Custom Signal Hybrid Method . 20

3.8 Generated Custom Wave . 21

3.9 Audio Source Hybrid Method . 22

3.10 Generated Audio Source Wave . 23

3.11 Channel Merge Hybrid Method . 24

3.12 Generated Channel Merge Wave . 24

3.13 Amplitude Modulation Hybrid Method . 25

3.14 Generated Amplitude Modulation Wave . 26

3.15 Frequency Modulation Hybrid Method . 27

3.16 Generated Frequency Modulation Wave . 27

3.17 System Diagram. 29

3.18 Fingerprinting Website . 31

v

4.1 Bar graphs showing grouping of the number of fingerprints observed for a finger-
printing method cont. 34

4.1 Bar graphs showing grouping of the number of fingerprints observed for a finger-
printing method . 35

4.2 The frequency of the highest occurring fingerprint value in 30 iterations 36

4.3 An example of distinct fingerprint groups generated with network graph based ap-
proach . 39

4.4 Browser compatibility of Web Audio API across different browsers. 41

4.5 Browser/OS combination of distinct fingerprint group for DynamicCompressor. 42

4.6 Browser/OS combination of distinct fingerprint group for OscillatorNode 43

4.7 Browser/OS combination of distinct fingerprint group for Hybrid . 43

4.8 Browser/OS combination of distinct fingerprint group for CustomSignalHybrid 44

4.9 Browser/OS combination of distinct fingerprint group for AudioSourceHybrid. 44

4.10 Browser/OS combination of distinct fingerprint group for ChannelMergeHybrid 45

4.11 Browser/OS combination of distinct fingerprint group for AmplitudeModulation-
Hybrid . 45

4.12 Browser/OS combination of distinct fingerprint group for FrequencyModulation-
Hybrid . 46

B.1 The frequency of the highest occurring fingerprint value in 30 iterations for indi-
vidual audio fingerprinting methods contd. 66

B.1 The frequency of the highest occurring fingerprint value in 30 iterations for indi-
vidual audio fingerprinting methods . 67

vi

List of Tables

TABLE Page

4.1 Minimum number of appearances of the most popular fingerprint for a user in 30
iterations . 36

4.2 Average time in seconds to compute each audio fingerprinting method. 38

4.3 Number of distinct and unique fingerprints and their entropy and normalized en-
tropy . 40

4.4 Browser mapping . 41

4.5 Number of User-Agents spanning on more than 1 diverse fingerprint group 47

vii

Abstract

Browser fingerprinting presents a grave threat to privacy as it allows user tracking even in

private browsing modes. Prior measurement studies on HTML5-based fingerprinting have been

limited to Canvas and WebGL but not Web Audio APIs. We aim to fill this gap by conducting

the first large-scale systematic study of web audio fingerprints and studying their stability as well

as diversity properties. Using MTurk and social media platforms, we collected 8 different audio

fingerprints from 694 users.

Firstly, we show that the audio fingerprints are unstable unlike other fingerprinting methods

with some users having as many as 20 different fingerprints. Despite this, we show that audio

fingerprinting can still be used as an effective fingerprinting vector as most fingerprints tend to

repeat quite often. We devised a graph-based fingerprint matching mechanism to measure the

diversity of audio fingerprints. Our results show that audio fingerprints are much less diverse with

only 45 distinct fingerprints among 694 users.

Keywords: Web Audio Fingerprints, Browser Fingerprints, Web Audio API, Canvas Finger-

prints, Font Fingerprints, User-Agents Fingerprints, Tracking, Web Security

viii

1. Introduction

“Browser fingerprinting” is a method of tracking web browsers by their browser configuration

and settings information that is visible to the websites, rather than traditional tracking methods such

as IP addresses and unique cookies. Browser fingerprinting is both difficult to detect and extremely

difficult to thwart. A great example of Browser fingerprinting is Canvas fingerprinting. Canvas

fingerprinting is a browser fingerprinting technique that uses HTML5 Canvas feature to draw text

or 3D figures on a canvas when a user visits a website. The subtle difference in rendering that varies

between users is tokenized to serve as an unique identifier that allows the website to remember the

visitor. Another popular browser fingerprinting technique is the WebGL fingerprint. The WebGL

hash is generated by rendering a pattern or low high entropy image (Image that does not compress

well) and then creating a hash from the resulting rendered pixels. That image is rendered to a frame

buffer with a fixed size so changing screen resolution will not affect the resulting hash.

There have been several large scale studies on Canvas Fingerprints and WebGL Fingerprints

and the defenses have been proposed as well [1, 2, 3, 4, 5]. However, one area of fingerprinting

that has been neglected is audio fingerprinting. Discovered by Englehardt et al. [6] in 2016 while

crawling through 1 million websites, audio fingerprinting is fairly new to the browser fingerprinting

world. There have been no large scale studies on audio fingerprinting and we aim to fill this gap in

our research.

Stability of a browser fingerprint technique plays a pivotal role in its efficiency. The main

reason behind browser fingerprinting popularity is its ability to compute a distinct fingerprint for a

user when repeated multiple times even in private/incognito browsing mode. A browser fingerprint

must be stable, fast and diverse to be used for tracking. First research question we try to answer in

our research is that, RQ1 - are audio fingerprinting stable enough to be used as a fingerprinting

vector? Computation time of a fingerprinting technique must be attainable to not add any compu-

tational overhead to the browser. If a fingerprinting technique takes too much time then it is not

1

effective in a sense that a user might leave the website before the fingerprint computation com-

pletes. The second research question we try to find an answer is that, RQ2 - do audio fingerprints

compute in a reasonable time frame?

Recent security research has improved the security in the browser and made them less finger-

printable. At the same time, there has been an increasing amount of research on fingerprintability

of web browsers [4, 2, 7, 8]. To address this gap for audio fingerprinting we study the effectiveness

and diversity of our collected audio fingerprints at large. The third research question we try to

answer in this research is RQ3 - how diverse are audio fingerprints? We also compare our audio

fingerprinting technique to known fingerprinting methods such as Canvas, Font, User Agent, etc to

answer our fourth research question, RQ4 - in comparison to known fingerprinting techniques and

how serious and effective are our audio fingerprinting techniques?

Englehardt et al. found two audio fingerprinting techniques being used by the advertising

company[6]. They found that the most popular script is from Liverail1, present on 512 sites and

other scripts were present on less than 6 other websites. An additional technique was used on the

OpenWPM project 2 which is essentially an additional work by Englehardt et al. However, there

can be several approaches to computing the audio fingerprints because of the interfaces provided

by the Web Audio API [9]. The fifth question we try to answer in our research is that, RQ5 - are

there any additional techniques that can be used for audio fingerprinting? In our research, we

use three techniques discovered before and five new audio fingerprinting configurations that we

developed to audio fingerprint a user and answer this question.

In the absence of a large scale study, industry has been doing contradictory things. For example,

Brave, a privacy concerned browser has been implementing audio fingerprinting protection [10].

This is problematic in a sense that it adds computational overhead and it is also affecting the

quality of the audio without actually realising its necessity. On the other hand, the Web Audio API

developers from World Wide Web Consortium (W3C) believe - "This merely allows deduction of

information already readily available by easier means (User Agent string), such as "this is browser

1https://www.liverail.com/
2https://audiofingerprint.openwpm.com/

2

X running on platform Y"" 3 However, both of these issues need a proper research study to pass

a judgement on the correctness. Therefore, we raise a final research question, RQ6 - are audio

fingerprinting defenses necessary?.

At the heart of our project lies an audio fingerprinting website that collects audio fingerprints

as well as uses FingerprintJS [11] to capture canvas and font fingerprints and stores them in a

database. The detailed system description is explained in Section 3. Our analysis and results are

explained in detail in Section 4. In summary, our contributions are as follows:

1. We conducted the first-large systematic study of Web Audio API-based fingerprinting vec-

tors by employing 633 web users. We measured both the stability and diversity of 8 audio

fingerprints by repeating them 30 times for each user.

2. We designed, implemented and analyzed the effectiveness of 5 new audio fingerprinting

vectors that made use of FFTs of audio source files and modulated and modified custom

waveforms.

3. We designed a graph-based fingerprint matching mechanism to analyze the diversity of par-

tially stable audio fingerprints.

4. We compared the diversity of audio fingerprints with other well-known fingerprinting vectors

such as Canvas, font and User-Agent headers to allow the browser developers to take

informed decisions when developing privacy protection features.

3https://www.w3.org/TR/webaudio/#priv-sec

3

2. Literature Review

2.1 Browser Fingerprinting

In this section, we answer the basic information encompassing the browser fingerprinting his-

tory, usages, types, current methods on the web and give an exhaustive overview of the researches

led in the area of browser fingerprinting (BF) with a synopsis of current procedures.

2.1.1 History

Browser fingerprints were first discovered by Mayer in 2009 [12]. He concluded that the

browser features and the plugins are unique to each user and can be used for tracking. He looked

at the differences in browsing environments that can be exploited by the remote serve to identify

the users. Mayer saw the "quirkiness" that comes with the hardware, operating system and the

browser configuration can be used to track users on the internet. In his study 96.23% (1278 of

1328) participants could be uniquely identified.

Following Mayers in 2010, Eckersley conducted the Panopticlick Experiment from Electronic

Frontier Foundation (EFF) [13]. The script calculates a uniqueness score based on the data that the

web browser reveals during connections. Tests with Google Chrome 5, Opera 10.5 pre-alpha, In-

ternet Explorer 8 and Mozilla Firefox 3.6 revealed that all four web browsers contained unique bits

that could be used to identify them. This can be attributed to the web browser fingerprint database

of the service as it contains more than 470,000 fingerprints. He also noted that the fingerprints are

likely to reduce the uniqueness with the increase in users. The test results are displayed as a table

on the screen as shown in Figure 2.1. Each bit of information identified by the test is displayed

in its own row in the table revealing the bits of identifying information and how unique it is when

compared to the whole database. The higher the number the worse. The experiment was able to

identify 84% of the participants.

4

Figure 2.1: Table displayed to the user by the Panopticlick Experiment

2.1.2 Fingerprints

The popularity of the web has seen an increase in tracking for statistical, marketing or commer-

cial purposes. User tracking or web tracking allows you to track an Internet user anonymously and

by various means while browsing your website. Browser fingerprinting (BFPs) is an incredibly ac-

curate method of identifying unique browsers and tracking online activity. Browser fingerprinting

has arrived at a condition of development where it is currently utilized by numerous organizations

for various purposes. Several studies have demonstrated the development of this procedure along

the years with both the disclosure of new properties and its spread on the web [6, 8, 4, 2]. Un-

like cookies and local storage, fingerprint stays the same in incognito/private mode and even when

browser data is purged.

Fingerprint is formally defined as a set of information elements defining a device or an in-

stance of an application and Fingerprinting as the process by which an observer or attacker

uniquely identifies a device or instance of an application based on a set of multiple information by

RFC6973 [14]. Browser fingerprints (BFPs) have been defined in many ways on previous research

[3, 15, 7]. In general, we can define the Browser Fingerprinting as a powerful method that the

website utilizes to extract the device features to generate a single unique identifier which is then

used to identify the user with a high probability. Based on the current trend and researches we

discuss the primary fingerprinting mechanisms that are wild in the web in the section below.

5

2.1.3 Canvas Fingerprints

The HTML Canvas allows web applications to draw graphics in real time, with functions to

support drawing shapes, arcs, and text to a custom canvas element[6]. This was demonstrated

on the "Pixel Perfect" project by Mower et. al in 2012 [1]. The minute differences in rendering,

smoothing, anti-aliasing and other features of the user devices can contribute to drawing an image

differently on each machine allowing the exploitation of these differences to generate a unique

fingerprint for a user. Canvas fingerprinting works by exploiting the HTML5 canvas element:

when a user visits a website their browser is instructed to “draw” a hidden line of text or 3D

graphic that is then rendered into a single digital token, a potentially unique identifier to track

users without any actual identifier persistence on the machine. The technique is based on the fact

that the same canvas image may be rendered differently on different computers. This happens for

several reasons. At the image format level – web browsers use different image processing engines,

image export options, compression level, the final images may get different checksum even if they

are pixel-identical. At the system level – operating systems have different fonts, they use different

algorithms and settings for anti-aliasing and sub-pixel rendering.

In plain English, what this means is that the HTML5 canvas element generates certain data,

such as the font size and active background color settings of the visitor’s browser, on a website.

This information serves as the unique fingerprint of every visitor. An example of the hidden canvas

rendered on a users machine is shown in Figure 2.2

6

Figure 2.2: Canvas rendering on a user device used for canvas fingerprinting

2.1.4 Font Fingerprints

Font list of a browser can also be utilized to fingerprint the users. Font fingerprinting tech-

niques are based on measuring the onscreen dimensions of HTML elements filled with text pieces

or single Unicode glyph. Font rendering in web browsers is affected by many factors, and these

measurements may vary slightly. Font Enumeration attack is a brute-force method that tries dif-

ferent fonts from a sizable font-family dictionary. If the rendered element’s size differs from the

default values, it means that the substituted font is present in the system. Shown below in code

block 2.1 is an example of the font list of a user that is used to generate a unique identifier for that

particular user.
1 ["Calibri" ,"PMingLiU" ,"SimHei" ,"Arial" ,"Arial Black" ,"Arial Narrow" ,"Arimo" ,"Calibri" ,"Cambria" ,"Comic Sans MS" ,"Courier" ,"Courier

New" ,"Garamond" ,"Georgia" ,"Helvetica" ,"Liberation Mono" ,"Liberation Sans" ,"Liberation Serif" ,"Lohit Odia" ,"Lohit Punjabi" ,"

MS Gothic" ,"MS PGothic" ,"MS PMincho" ,"Monospace" ,"NanumGothic" ,"Noto Color Emoji" ,"Noto Naskh Arabic" ,"Noto Nastaliq Urdu" ,"

Noto Sans" ,"Noto Sans Armenian" ,"Noto Sans Bengali" ,"Noto Sans Canadian Aboriginal" ,"Noto Sans Cherokee" ,"Noto Sans

Devanagari" ,"Noto Sans Ethiopic" ,"Noto Sans Georgian" ,"Noto Sans Gujarati" ,"Noto Sans Gurmukhi" ,"Noto Sans Hebrew" ,"Noto

Sans Kannada" ,"Noto Sans Khmer" ,"Noto Sans Lao" ,"Noto Sans Malayalam" ,"Noto Sans Myanmar" ,"Noto Sans Oriya" ,"Noto Sans

Sinhala" ,"Noto Sans Symbols" ,"Noto Sans Tamil" ,"Noto Sans Telugu" ,"Noto Sans Thai" ,"Noto Sans Yi" ,"Noto Serif" ,"PMingLiU" ,"

Roboto" ,"Sans" ,"Serif" ,"SimHei" ,"SimSun" ,"Tahoma" ,"Times" ,"Times New Roman" ,"Trebuchet MS" ,"Verdana" ,"Webdings" ,"Wingdings" ,

7

"Wingdings 2" ,"Wingdings 3"]

Listing 2.1: Font list generated for a user used for fingerprinting

2.1.5 Audio Fingerprints

Audio fingerprinting (AFPs) is a fingerprinting technique that is moderately new with regards

to browser fingerprinting techniques. By using the Web Audio API [9] in modern browsers, one

can misuse the subtle differences in the rendering of a fixed audio waveform, for instance a sine or

triangle wave, to construct a unique fingerprint of a device. The Web Audio API gives an interface

to create/process an audio by linking multiple modules like oscillators, compressor, and filters

together to generate a very specific output. A continuous signal is passed through this pipeline to

convert the continuous signal to discrete so that the computer can process the audio very easily in

the form of a block called frames [8]. Each frame is composed of samples that represent the value

of the audio stream at a specific point in time. While utilizing the Web Audio API to generate

fingerprints, the code doesn’t gather sound played or recorded by your machine rather an identifier

is generated by the code based on the frame values that varies based on a machine’s sound stack.

2.2 Background and Related Work

Audio Fingerprinting (AFPs) technique was first discovered by Englehardt et al. while crawl-

ing the web looking for trackers. AudioContext fingerprinting is one of the latest additions in

a fingerprinter’s toolbox. They found scripts that process an audio signal generated with an

OscillatorNode to fingerprint devices. The authors add that the fingerprinting process is sim-

ilar to what is done with canvas fingerprinting as processed signals will present differences due to

the software and hardware stack of the device. The relative novelty of this technique explains that

scripts using this API were only found on a very small number of websites [6]. Researchers found

that the first technique using AnalyzerNode to extract FFT to build fingerprints was not con-

sistent and the results were flaky. However, the second technique with DynamicCompressor

with full buffer was more promising for repeated visitors but they also saw collision between fin-

gerprints and they were not particularly identifying. Their 1M web census saw the prevalence

8

of audio fingerprinting script in 5.6% of the websites. The detailed working mechanism of these

methods are explained in Chapter 3

Laperdrix et al. collected 19,467 audio fingerprints from AmIUnique.org to mitigate the risk

of audio fingerprinting by ’breaking’ the stability of fingerprint over time [8]. They introduced

very small noise directly into the audio processing routines of the browser so that tests using

any number of AudioContext modules are all impacted. They operate AudioBuffers of the

AudioNodeEngine as they contain the frames of the processed audio and decrease the volume

of processed buffers by a factor ranging between 0.000 and 0.001. The changes made it impossible

to detect modified sections from unmodified ones and produce a different hash as the audio routine

for each browser session.

Queiroz et al. showed that the audio fingerprinting is capable of identifying the device’s class,

based on features like device’s type, web browser’s version and rendering engine [16]. They also

studied the stability of the two interfaces i.e AudioContext and OfflineAudioContext

and chose to use OfflineAudioContext fingerprint users using several audio configurations.

The researchers concluded that Web Audio API is capable of providing information about the

devices only when employed with other Browser Fingerprinting techniques.

These works have shown how new web technologies such as Canvas API, Web GL API, Font,

Audio and browser extensions are increasing the diversity of web browsers and making the users

more prone to cookie-less tracking. While these research works have studied the privacy impli-

cations of browser fingerprinting, the security implications of these advanced fingerprinting tech-

niques have not been studied well. In particular, no systematic research has been done to see how

stable and diverse the audio fingerprinting can be. Our research primarily focuses on addressing

this gap.

9

3. System Description

3.1 Web Audio API

The Web Audio API provides a powerful and versatile system for controlling audio on the Web,

allowing developers to choose audio sources, add effects to audio, create audio visualizations,

apply spatial effects (such as panning) and much more [9].

The Web Audio API is based on the concept of modular routing, which has its roots in analog

synthesizers. There are audio sources, such as microphones, oscillators, and audio files, which

provide some kind of audio signal. This API manages operations inside an Audio Context. Audio

operations are performed with audio nodes, which are linked together to form an Audio Routing

Graph. Multiple sources are supported within a single Audio Context. This modular design is

highly flexible, allowing the creation of complex audio designs. They typically start with one or

more sources. Node outputs can be linked to the inputs of others creating chains or webs of audio

streams.[17] The APIs have been designed with a wide variety of use cases in mind. Ideally, it

should be able to support any use case which could reasonably be implemented with an optimized

C++ engine controlled via script and run in a browser. That said, modern desktop audio software

can have very advanced capabilities, some of which would be difficult or impossible to build with

this system. [18].

Those audio signals can be connected to other audio nodes which perform operations with that

signal. These nodes include the Gain Node, which can raise or lower the volume of a signal; Filter

Nodes, which changes how the signal sounds; and an Analyser Node, which provides real-time

information about a signal which can be used to render a visualization.

Once the sound has been effected and is ready for output, it can be linked to the input of a

AudioContext.destination (computer’s speakers), which sends the sound to the speakers. Note that

this last connection is only required if you need the audio to be heard. [19]

A typical flow for Web Audio could look something like this:

10

1. Create audio context (AudioContext or OfflineAudioContext)

2. Create sources inside the context (e.g. <audio>, oscillator, streams)

3. Create effects nodes (e.g. reverb, flanger, panner, compression)

4. Choose a destination for the audio (e.g. speakers)

5. Connect the sources to the effects, and the effects to the destination

3.2 Main Audio Node Interfaces

In this section we discuss the different audio interfaces provided by the Web Audio API. These

audio nodes are very important and are the base of our audio fingerprinting configurations. These

nodes are used in combination to generate an audio fingerprinting and each of the nodes have their

significance and a role to play in our fingerprinting methods.

3.2.1 AudioNode

The AudioNode interface is a generic interface for representing an audio processing module.

Each AudioNode has inputs and outputs, and multiple audio nodes are connected to build a pro-

cessing graph. AudioNode.connect() method present in the AudioNode interface allows

to connect the output of this node to be input into another node, either as audio data or as the value

of an AudioParam [9].

3.2.2 BaseAudioContext

The BaseAudioContext interface of the Web Audio API acts as a base definition for online

and offline audio-processing graphs, as represented by AudioContext and

OfflineAudioContext respectively. BaseAudioContext is not used directly, rather its

used via one of these two inheriting interfaces.

3.2.3 AudioContext

The AudioContext interface represents an audio-processing graph built from audio modules

linked together, each represented by an AudioNode. An audio context controls both the creation

11

of the nodes it contains and the execution of the audio processing, or decoding [9].

3.2.4 OfflineAudioContext

The OfflineAudioContext interface is an AudioContext interface representing an

audio-processing graph built from linked together AudioNodes. In contrast with a standard

AudioContext, an OfflineAudioContext doesn’t render the audio to the device hard-

ware; instead, it generates it, as fast as it can, and outputs the result to an AudioBuffer [9].

3.2.5 AudioBuffer

The AudioBuffer interface represents a short audio asset residing in memory, created from

an audio file using the AudioContext.decodeAudioData() method, or from raw data us-

ing AudioContext.createBuffer(). Once put into an AudioBuffer, the audio can then

be played by being passed into an AudioBufferSourceNode [9].

3.2.6 OscillatorNode

The OscillatorNode interface represents a periodic waveform, such as a sine wave. It is

an AudioScheduledSourceNode audio-processing module that causes a specified frequency

of a given wave to be created—in effect, a constant tone. An OscillatorNode is created using

the BaseAudioContext.createOscillator() method. It always has exactly one output

and no inputs [9].

3.2.7 DynamicCompressor

The DynamicsCompressorNode interface provides a compression effect, which lowers

the volume of the loudest parts of the signal in order to help prevent clipping and distortion that

can occur when multiple sounds are played and multiplexed together at once. This is often used in

musical production and game audio. DynamicsCompressorNode is an AudioNode that has

exactly one input and one output; it is created using the

BaseAudioContext.createDynamicsCompressor() method [9].

12

3.2.8 AnalyserNode

The AnalyserNode interface represents a node able to provide real-time frequency and time-

domain analysis information. It is an AudioNode that passes the audio stream unchanged from

the input to the output, but allows you to take the generated data, process it, and create audio

visualizations. An AnalyserNode has exactly one input and one output. The node works even

if the output is not connected [9].

3.2.9 GainNode

The GainNode interface represents a change in volume. It is an AudioNode audio-processing

module that causes a given gain to be applied to the input data before its propagation to the output.

A GainNode always has exactly one input and one output, both with the same number of chan-

nels. The gain is a unit-less value, changing with time, that is multiplied to each corresponding

sample of all input channels. If modified, the new gain is instantly applied, causing unaesthetic

’clicks’ in the resulting audio [9].

3.2.10 ScriptProcessor

The createScriptProcessor()method of the BaseAudioContext interface creates

a ScriptProcessorNode used for direct audio processing using JavaScript. This module is in-

terconnected to two AudioBuffers: 1) Input data 2) Output data. This interface consists of an event

handler function; onaudioprocess that takes the associated audioProcessingEvent and

uses it to loop through each channel of the input buffer, and each sample in each channel and is

triggered when the incoming AudioBuffer is ready to be processed.

3.2.11 ChannelMergerNode

The ChannelMergerNode interface, reunites different mono inputs into a single output. Each

input is used to fill a channel of the output. This is useful for accessing each channel sepa-

rately, e.g. for performing channel mixing where gain must be separately controlled on each

channel. If ChannelMergerNode has one single output, but as many inputs as there are chan-

13

nels to merge; the number of inputs is defined as a parameter of its constructor and the call to

AudioContext.createChannelMerger(). In the case that no value is given, it will de-

fault to 6 [9].

3.2.12 AudioDestinationNode

The destination property of the BaseAudioContext interface returns an

AudioDestinationNode representing the final destination of all audio in the context. It often

represents an actual audio-rendering device such as your device’s speakers [9].

3.3 Digital Signal Processing

In this section we discuss two very popular methods of signal processing in Digital Signal Pro-

cessing. The knowledge of working mechanisms is vital to understand both of these processes.

These methods are used in our research to generate Amplitude Modulation Hybrid and Fre-

quency Modulation Hybrid Fingerprints. The exact details about the modulating and carrier

signals are discussed in the Section 3.4.7 and 3.4.8 respectively.

3.3.1 Frequency Modulation

Frequency modulation (FM) is the encoding of information in a carrier wave by varying the

instantaneous frequency of the wave. The technology is used in telecommunications, radio broad-

casting, signal processing, and computing. Frequency modulation is widely used for FM radio

broadcasting. It is also used in telemetry, radar, seismic prospecting, and monitoring newborns

for seizure, two-way radio systems, sound synthesis, magnetic tape-recording systems and some

video-transmission systems.

To generate a frequency modulated signal, the frequency of the radio carrier is changed in line

with the amplitude of the incoming radio signal. When the radio signal is modulated onto the radio

frequency carrier, the new radio frequency signal moves up and down in frequency. The amount

by which the signal moves up and down is important. It is known as the deviation and is normally

quoted as the number of kilohertz deviations. As an example the signal may have a deviation of

plus and minus 3 kHz, i.e. ±3 kHz. In this case the carrier is made to move up and down by 3 kHz

14

[20]. From Figure 3.1, it can be seen that the envelope of the signal follows the frequency of the

modulating signal.

Figure 3.1: Frequency Modulation Example

3.3.2 Amplitude Modulation

Amplitude modulation (AM) is a modulation technique used in electronic communication,

most commonly for transmitting messages with a radio carrier wave. In amplitude modulation,

the amplitude (signal strength) of the carrier wave is varied in proportion to that of the modulating

signal, such as a radio signal. Although one of the earliest used forms of modulation it is still used

today, mainly for long, medium and short wave broadcasting and for some aeronautical point to

point communications.

In order that a radio signal can carry audio or other information for broadcasting or for two way

15

h

Figure 3.2: Amplitude Modulation Example

radio communication, it must be modulated or changed in some way. Although there are a number

of ways in which a radio signal may be modulated, one of the easiest is to change its amplitude

in line with variations of the sound. In this way the amplitude of the radio frequency signal varies

in line with the instantaneous value of the intensity of the modulation. This means that the radio

frequency signal has a representation of the sound wave superimposed in it [21]. From Figure 3.2

, it can be seen that the envelope of the signal follows the contours of the modulating signal.

3.4 Fingerprinting Methods

In this section we discuss 8 fingerprinting methods used in this research to get the unique iden-

tifier of a user. First, we discuss the two methods namely DynamicCompressor and OscialltorNode

that were found by Englehardt et al. during their 1-Million-Site Measurement and Analysis [6]. An

additional technique used on the OpenWPM project 1. Then, we discuss a more advanced methods

i.e. Custom Signal Hybrid, Audio Source Hybrid, Channel Merge Hybrid, Amplitude Mod-

ulation Hybrid and Frequency Modulation Hybrid that we introduced to audio fingerprint the

1https://audiofingerprint.openwpm.com/

16

users and try to answer the research question RQ5. The code snippet of all the audio fingerprinting

methods are shown in the Appendix A

3.4.1 DynamicCompressor Method

Figure 3.3: DynamicCompressor Full Buffer Method

Figure 3.3. shows the utilization of the OfflineAudioContext interface to audio finger-

print the sound stack of a device. Initially, a triangle wave is produced as shown in Figure 3.4 utiliz-

ing an OscillatorNode. The signal is then connected to DynamicsCompressorNode, to

increment differences in processed audio between devices. The yield of this compressor is passed

to the buffer of an OfflineAudioContext. Hashes generated from the values from the full

buffer is used to audio fingerprint a user. This method was found wild in the web by trackers during

their 1-Million-Site Measurement and Analysis [6].

17

Figure 3.4: Generated Triangle Wave

3.4.2 OscillatorNode Method

Figure 3.5. shows the utilization of the AudioContext interface to audio fingerprint the

sound stack of a device. Initially, a triangle wave is created as shown in Figure 3.4 using an

OscillatorNode. This signal is then passed to an AnalyserNode and a

ScriptProcessorNode. At last, the single goes through a GainNode whose gain is set

zero to mute any output to AudioContext destination (For example. computer speakers). The

AnalyserNode gives admittance to a Fast Fourier Transform (FFT) of the audio signal, which is

caught utilizing the onaudioprocess event handler added by the ScriptProcessorNode. The

subsequent FFT is taken care of into a hash and utilized as a unique audio fingerprint.

3.4.3 Hybrid Method

Figure 3.6. shows the combination of OscillatorNode and DynamicCompressormeth-

ods to generate a unique audio fingerprint of a user using AudioContext interface. A triangle

wave is generated as shown in Figure 3.4 using OscillatorNode which is passed through

18

Figure 3.5: OscillatorNode Method

Figure 3.6: Hybrid (DynamicCompressor + OscillatorNode) Method

19

the DynamicsCompressorNode. This signal is then passed to an AnalyserNode and a

ScriptProcessorNode. Similar to the OscillatorNode method the signal then goes

through GainNode that is set to zero. We use AnalyserNode to FFT the audio signal, that

is captured by onaudioprocess event handler added by the ScriptProcessorNode. The FFT

is then hashed using MD5 which acts as an audio fingerprint.

3.4.4 Custom Signal Hybrid Method

Figure 3.7: Custom Signal Hybrid Method

Custom Signal Hybrid Method only differs from Hybrid method in terms of the signal. In-

stead of using a standard signal (Sine, Triangle, Sawtooth, Square) offered by the Web Audio API,

we generate a periodic signal by defining the real and imaginary values as shown in Appendix

A.4. Figure 3.7. shows the setup used to generate a unique audio fingerprint of a user using

AudioContext interface for custom signal. A custom periodic wave is generated as shown in

Figure 3.8 using AudioContext.createPeriodicWave()method which is passed through

20

Figure 3.8: Generated Custom Wave

the DynamicsCompressorNode. This signal is then passed to an AnalyserNode and a

ScriptProcessorNode as before. Similar as before we use AnalyserNode to FFT audio

signal, that is captured by onaudioprocess event handler added by the

ScriptProcessorNode. The FFT is then hashed using MD5 which acts as an audio finger-

print.

21

3.4.5 Audio Source Hybrid Method

Figure 3.9: Audio Source Hybrid Method

Audio Source Hybrid is yet another new method that we introduced for audio fingerprinting.

This method varies from all of the methods in terms of how the signal is generated. In this method,

we used a 40 seconds audio clip [22] that was trimmed down to 5 seconds to make it shorter and

suitable for fingerprinting. The audio clip is first decoded using

AudioContext.decodeAudioData() method to get the audio buffer which is then uti-

lized by AudioContext.createBufferSource() to generate the signal as shown in Fig-

ure 3.10. This signal is then passed on to the rest of the audio nodes as before. Similarly, the

AnalyserNode is used to FFT audio signal, that is captured by onaudioprocess event handler

added by the ScriptProcessorNode and then hashed using MD5 to generate an audio finger-

22

Figure 3.10: Generated Audio Source Wave

print. Figure 3.9 shows the method with different audio nodes used to generate an identifier.

3.4.6 Channel Merge Hybrid Method

Channel Merge Hybrid is another addition to audio fingerprinting methods which was created

during this research. The idea is to generate multiple signals and merge them using a

ChannelMergeNode. In this method we create four OsciallatorNode with different fre-

quencies and different signal types and merge them together to generate a single waveform. Specif-

ically we create Sine OsciallatorNodewith frequency 440 HZ, Triangle OsciallatorNode

with frequency 10000 HZ, Square OsciallatorNode with frequency 1880 HZ and Sawtooth

OsciallatorNode with frequency 22000 HZ. All of these OscillatorNode are then con-

nected to the ChannelMergeNode. The output of the ChannelMergeNode is connected to

the DynamicCompressorNode as before. The rest of the Audio Nodes remain the same as

previous methods with FFT being captured and hashed through the onaudioprocess event handler

added by the ScriptProcessorNode. Figure 3.11 shows the exact implementation of the

Channel Merge Hybrid method and Figure 3.12 shows the output of the ChannelMergeNode.

23

Figure 3.11: Channel Merge Hybrid Method

Figure 3.12: Generated Channel Merge Wave

24

3.4.7 Amplitude Modulation Hybrid Method

Figure 3.13: Amplitude Modulation Hybrid Method

Amplitude Modulation Hybrid is yet another contribution to the fingerprinting method intro-

duced during this research. The major focus here is also on the signal generation. The rest of the

audio nodes remains the same as previous methods where the FFT is being captured and hashed

through the onaudioprocess event handler added by the ScriptProcessorNode to generate

an audio fingerprint. We introduce two modulating waves: 1) Triangle, 440HZ 2) Square, 18HZ

that are connected to their respective GainNode’s. The carrier wave is a Sine wave oscillating at

10000HZ that is connected to its own GainNode. The output of the both Modulating GainNodes

are connected to carrier GainNode. This output is then connected to DynamicCompressor

and the rest of the stack remains the same as well as the process. Figure 3.13 shows the exact

implementation of the Amplitude Modulation Hybrid method and Figure 3.14 shows the output of

the carrier GainNode.

25

Figure 3.14: Generated Amplitude Modulation Wave

3.4.8 Frequency Modulation Hybrid Method

Frequency Modulation Hybrid is another add to fingerprinting method introduced during this

research. This method is analogous to Amplitude Modulation Hybrid Method discussed to 3.4.7.

Similar to Amplitude Modulation Hybrid Method we introduce two modulating waves: 1) Triangle,

440HZ 2) Square, 18HZ that are connected to their respective GainNode’s whose gain is set to

60 and 30 respectively. The carrier wave is a Sine wave oscillating at 10000HZ. The output of the

both Modulating GainNode’s are connected to carrier frequency. This output is then connected

to DynamicCompressor. The rest of the audio nodes remains the same as previous methods

where the FFT is being captured and hashed through the onaudioprocess event handler added by

the ScriptProcessorNode to generate an audio fingerprint. Figure 3.15 shows the exact

implementation of the Frequency Modulation Hybrid method and Figure 3.16 shows the output of

the carrier wave.

26

Figure 3.15: Frequency Modulation Hybrid Method

Figure 3.16: Generated Frequency Modulation Wave

27

3.5 FingerprintJS2

FingerprintJS2 is one of the most popular browser fingerprinting library that collects 27 differ-

ent attributes (at the time of our collection) of browser and hashes them into a single fingerprint

called "vistiorId" [11]. We primarily used FingprintJS2 to obtain Canvas and Font Fingerprints.

We also modified FingerprintJS’s font fingerprinting code to expand the list of font from 51 to

1094 [23]. The expanded list of fonts is listed in Appendix A.9.

3.6 IP Information

In addition to the FingerprintJS2 fingerprints we also collected IP information of each user that

visited our fingerprinting site. We tried several third-party APIs to get user IP information but

most of the third-parties were blocked by all of the mainstream browsers and some of the APIs

required API-keys and had limits on the number of requests made. However, we were able to

successfully get the IP information using a CloudFlare API [24]. The user-agent collected from

this information was used for the further analysis of data in determining the type of device, type of

browser and the browser versions used.

3.7 User Agent Information

We also used the Bowser package to collect the User Agent Information. The library is made

to help to detect what browser the user has and gives a convenient API to filter the users depending

on their browsers [25].

28

3.8 System Overview

Figure 3.17: System Diagram

Figure 3.17 shows our system overview of our audio fingerprinting project. The center of the

system consists of the audio fingerprinting script written in JavaScript (Angular 11.0.4) that utilizes

the Web Audio API to generate the fingerprints. The fingerprinting script also uses the popular

fingerprinting FingerprintJS2 to get several components (28) used in browser fingerprinting. The

IP information is collected using a cloudflare API service [24] and the User Agent is collected

using Bowser [25]. The collected data is stored in the form of a JSON object in Google Firestore2.

A cookie is set to each user once the user lands on our fingerprinting page. This cookie acts as an

unique identifier in the database.

2https://firebase.google.com/docs/firestore

29

Our script generates 8 different types of audio fingerprints discussed above. For a particular

user, all the fingerprints (8) are generated 30 times and saved to the database in each iteration. The

code-base resides in GitHub 3 and the project has around 10000 lines of code.

3.9 Hosting Stack

Our entire project is hosted using Firebase Hosting 4. The web page is hosted as a single page

application. The hosting and the firestore is free till 1GiB Stored data, 10 GiB/month Network

egress, 20K/day Document writes, 50K/day Document reads and Document deletes 20K/day.

3.10 User Study

We conducted our user study using Amazon’s Mechanical Turk [26]. Our aim was to get 5000

users for this study. We instructed each user to visit our website 5 and click on the start button and

stay on the page until they see a UserID/SurveyID. As soon as the user lands on our website, a

unique cookie is set for that user that acts as an identifier in the database. We also instructed each

user to submit their UserID/SurveyID once they are done to the MTurk so we can keep a proper

track on the progress of our study. For any user the 8 audio fingerprints are generated 30 times and

duration of each fingerprinting method is also saved in the database to analyse the average timings.

We had issues with the Apple iOS devices (iPhone, iPad, iPod) not functioning properly with

the Web Audio API during testing. These devices were filtered as soon as the user lands on the

website and were shown a message saying "Your iOS device is incompatible. Please try on any

other Desktops/Laptops/Android Devices". However, the macOS devices(Macbooks/iMACs) had

no issues with our setup. Furthermore, the AudioContext requires user interaction with the

website to instantiate. This restriction made the fingerprinting page unusable without a user click-

ing on a button to start the fingerprinting. A solution to this problem was to add a "START" button

that starts the fingerprinting for that particular user. The website was designed in an interactive

way to inform the user of the progress of the fingerprinting with a progress bar and a message

3https://github.com/shekharchalise/audio-audiofingerprint
4https://firebase.google.com/docs/hosting
5https://audiocontextfingerprint.web.app/

30

Figure 3.18: Fingerprinting Website

saying "Please click on start and wait till the progress bar indicates 100%" and "Almost done!!!

Please don’t close the window" to avoid any mid termination of the website by the user that stops

our script from running and collecting the data. Figure 3.18 shows the setup of our website that

was used for the user study.

31

4. Evaluation

In this section we analyse the data collected during the user study. We also discuss the stability

and diversity of the fingerprints. We collected data from 868 users however, after cleaning the data

we only used data from 694 users. We discarded the data that were from the same IP address,

ones that did not consist of the fingerprints, and the data consisting more than 30 iterations of data

which might be caused due to various reasons like browser incompatibility, mid-termination of the

fingerprinting website and multiple entry by the same user.

4.1 Stability Analysis

Stability is an important aspect of any fingerprinting method. Once a user fingerprint is col-

lected, it must be reproducible for that user in a subsequent visit. Which means that for any

fingerprinting method to increase its effect, it must be stable enough to be generated in a repeated

fashion.

4.1.1 Statistical Analysis

We took a statistical approach to study the stability of the fingerprints. We wanted to run our 8

audio fingerprinting methods under 1 minute for each user. During the testing phase we observed

that all of our audio fingerprints could be generated 30 times for each user under 1 minute. This

made it possible to study the stability aspect as the fingerprints need to be reproduced in each

iteration. To study the stability we grouped fingerprints based on the fingerprinting method used

and the total number of fingerprints observed in 30 iterations for a particular user. For instance, a

user with 2 different fingerprints in 30 iterations for OscillatorNode method falls into group

2, another user with 3 fingerprints in 30 iterations falls into group 3, and so on.

Ideally, a fingerprinting method should only yield one fingerprint even if it is run multiple

times. But, the high instability of the computer hardware and software (Web Audio API), makes

it not achievable in case of audio fingerprinting. Figure 4.1(a) - Figure 4.1(h) shows the bar graph

32

of the users with respect to the number of fingerprints observed in 30 iterations. The red curve

indicates the percentage of users in each group of fingerprints observed. Figure 4.1(a) shows that

100% of the users have a total of one fingerprint in 30 iterations for the DynamicCompressor

method making it the most stable method. Whereas, Figure 4.1(b) tells a completely different

story. Although 71.46% users (496) had a single fingerprint which makes it less stable than

DynamicCompressor, the remaining users did not generate random fingerprints and the fin-

gerprints were repeating themselves in 30 iterations. For example, there were 9 users with 7 fin-

gerprints in 30 iterations as shown in Figure 4.1(b) which shows the OsciallatorNodemethod

was stable to generate audio fingerprints where more than 80% of the users have less than or equal

to 7 fingerprints in 30 iterations.

The stability was lowest for Figure 4.1(h), which observed less fingerprints in each group com-

pared to the other methods. However, even for the least stable method, more than 80% of the users

have less than or equal to 7 fingerprints in 30 iterations. The extreme number here is 24 for 1 user

but not 30 so there is repetition of fingerprints for every user. There exists no column representing

a group of size 30 for any audio fingerprinting method; this means that for every user and every

fingerprinting vector, there were some fingerprint repetitions thus indicating stability. Results are

similar for the reminder of our audio fingerprinting methods. Figure 4.1(f) shows the grouping

for 610 users because some of the users were not able to generate the AudioSourceHybrid

fingerprint due to its complex nature. This clearly answers our first research question on stability

RQ1.

33

(a) Dynamic Compressor (b) Oscillator Node

(c) Channel Merge Hybrid (d) Hybrid

(e) Custom Signal Hybrid (f) Audio Source Hybrid

Figure 4.1: Bar graphs showing grouping of the number of fingerprints observed for a fingerprint-
ing method cont.

34

(g) Amplitude Modulation Hybrid (h) Frequency Modulation Hybrid

Figure 4.1: Bar graphs showing grouping of the number of fingerprints observed for a fingerprint-
ing method

4.1.2 Cumulative Distribution Function based approach

We used Cumulative Distribution Function (CDF) [27] to analyse the stability of our finger-

prints as shown in Figure 4.2 to solidify our claim on stability. The popularity is the percentage of

highest occurring fingerprint value in 30 iterations for each of the fingerprinting methods. Table 4.1

clearly shows that the fingerprints are stable considering the fact that the appearance of the most

popular fingerprint occurs at least 2 times in 30 iterations for the AudioSource method. This

means that even in the worst case the audio fingerprint repeated. Results are more promising for

other fingerprinting methods where DynamicCompressor shows the best result with the same

value occurring 100% of the times in 30 iterations. The graph shows that the OscillatorNode

method shows that more than 80% of the users observed at least 25 repetitions (83.33%) in 30 itera-

tions indicating stability. Appendix B.1 shows individual CDF plots for all the audio fingerprinting

methods.

35

Figure 4.2: The frequency of the highest occurring fingerprint value in 30 iterations

Fingerprinting Methods Minimum number of appearances in 30 iterations

DynamicCompressor 30

OscillatorNode 5

Hybrid 4

CustomSignalHybrid 5

AudioSourceHybrid 2

ChannelMergeHybrid 4

AmplitudeModulationHybrid 3

FrequencyModulationHybrid 3

Table 4.1: Minimum number of appearances of the most popular fingerprint for a user in 30 itera-
tions

36

4.2 Time Analysis

Time and computation is another aspect that is very important for any fingerprinting method.

The computational overhead increases the time taken for a fingerprinting method to complete and

raise suspicion. Therefore, the fingerprinting method must be computationally efficient to be gen-

erated in a certain time frame. In our research we wanted to study the timing stability of our audio

fingerprinting methods. Our website collected time taken by each fingerprinting method for each

iteration. A particular user running our script will have 30 different timings for each audio finger-

printing method. We first calculated the average time to generate each fingerprint by averaging the

time taken to complete 30 iterations for each user for different audio fingerprinting methods. Then

that average time is divided by the total users involved in the user study to generate average time

to compute each fingerprint once. Table 4.2. shows the average time to generate 8 fingerprints is

1.275 seconds which is analysed with the data from 694 users. The highest time taken is 0.648

seconds by the DynamicCompressor method which is probably due its nature of completing

the entire buffer rendering that happens in real time. This proves that our entire audio fingerprint-

ing stack is computationally efficient and hence, answers our research question on timing stability

RQ2 and further reinforces our claim on stability.

4.3 Diversity Analysis

The first defense to mitigate browser fingerprinting is to decrease the diversity of devices so that

real fingerprints are hidden in noise. Diversity that is part of the device fingerprinting, is central

to any browser fingerprinting technique. More diverse the fingerprints more easily identifiable the

users and more efficient the technique. In this section we compare our audio fingerprinting methods

with existing browser fingerprinting methods i.e. Canvas, Font and User-Agent Fingerprinting and

try to answer our third research question.

37

Fingerprinting Methods Avg Time (sec)

DynamicCompressor 0.648

OscillatorNode 0.106

Hybrid 0.105

CustomSignalHybrid 0.106

AudioSourceHybrid 0.074

ChannelMergeHybrid 0.103

AmplitudeModulationHybrid 0.068

FrequencyModulationHybrid 0.065
CombinedFingerprint 1.275

Table 4.2: Average time in seconds to compute each audio fingerprinting method

4.3.1 Network Graph based approach

As mentioned in Section 4.1.1 for a particular user there may be more than one fingerprint for a

fingerprinting method in 30 iterations. For example for a user running our script can have different

OscillatorNode fingerprints in different iterations. Unlike Canvas fingerprint where you run

a code you get the same result in every iteration, we noticed that although stable, each user would

get multiple fingerprints. To account for this instability we choose a network graph based approach

using connected nodes to analyse the diversity.

Due to the unstable nature of the audio fingerprints it was not straightforward to do a statistical

data analysis to determine the diversity. Our network graph based approach is based on creating a

connected node graph between a fingerprint and its associated user for a particular fingerprinting

method. To achieve this, we took all the fingerprints for a fingerprinting method and created a

map between a fingerprint and a userID. A network graph was created with this data which had

two nodes i.e fingerprints and userIDs. Figure 4.3 shows an example of distinct fingerprints group

(connected components (CC)) for the collected data. We then calculated the number of distinct,

unique, entropy, and normalized entropy of fingerprints for each fingerprinting method using the

distinct fingerprint groups of this graph with 694 users as shown in Table 4.3. The number of

38

Figure 4.3: An example of distinct fingerprint groups generated with network graph based ap-
proach

unique combined fingerprints is calculated by getting the union of all the unique fingerprints for

each audio fingerprinting method. In comparison with canvas and font fingerprinting methods that

shows 100 unique out of 170 and 232 unique out of 282 distinct users respectively, the best audio

fingerprinting method being Hybrid shows only 21 unique out of 45 distinct users. If we compare

our audio fingerprints with a previous work on Canvas fingerprinting by Gómez-Boix et al., which

had 2,067,942 users with 78,037 distinct canvas fingerprints out of which 65,787 were unique [5],

it does not yield a very good result in terms of unique and distinct audio fingerprints. Even with 694

users the best fingerprinting method being Hybrid could only produce 21 unique fingerprints out

of 45 distinct users showing that although stable, audio fingerprints are not diverse enough. This

answers our research question number four RQ4, only half way through with a comparison with

canvas and font fingerprinting. To fully answer our question we compare the audio fingerprints

with User-Agent in the Section 4.3.2

39

Fingerprinting Methods # of Users Distinct Unique Entropy Normalized Entropy

Canvas 694 170 100 5.718 0.605

Font 694 282 232 6.553 0.694
DynamicCompressor 694 36 19 2.460 0.261

OscillatorNode 694 41 20 3.712 0.393

Hybrid 694 45 21 3.875 0.410

CustomSignalHybrid 694 40 19 3.558 0.377

AudioSourceHybrid 610 36 19 5.173 0.587

ChannelMergeHybrid 694 46 21 4.327 0.458

AmplitudeModulationHybrid 694 46 21 4.679 0.496

FrequencyModulationHybrid 694 46 21 4.746 0.503

Table 4.3: Number of distinct and unique fingerprints and their entropy and normalized entropy

4.3.2 User-Agent Comparison

The User-Agent (UA) request header is a characteristic string that lets servers and network

peers identify the application, operating system, vendor, and/or version of the requesting user agent

[28]. A User-Agent can be known from the user agent header which is fairly simple, beside that

even if a user uses a User-Agent switcher/defense, it is easy to figure out the User-Agent based on

what Web API the browser is implementing. Every browser has their own implementation of the

Web API and they can decide on the features they want to implement. Browser compatibility1 can

be easily verified and the User-Agent can be easily extracted without any sophisticated technique

by getting the differential implementation of Web APIs. Figure 4.4 shows the Web Audio API

compatibility across different browsers. With regards to User-Agent we want to know if audio

fingerprint diversity was simply an artefact of these implementation differences. In fact, the W3C

(World Wide Web Consortium) documentation interestingly makes this exact same point "This

merely allows deduction of information already readily available by easier means (User Agent

1https://caniuse.com/

40

string), such as "this is browser X running on platform Y"" 2. To get an answer to this question

as well as to answer the research question RQ4 and ultimately answer the research question on

diversity RQ3, we want to compare the audio fingerprints with User-Agent.

Figure 4.4: Browser compatibility of Web Audio API across different browsers

Browser/OS Mapping

Samsung Internet for Android Chrome

Yandex Browser Chrome

Microsoft Edge Chrome

Opera Chrome

Table 4.4: Browser mapping

2https://www.w3.org/TR/webaudio/#priv-sec

41

We used the diverse fingerprint group (connected components(CC)) discussed in the Section

4.3.1 to further modify our code to find different User-Agent and Browser/Operating System (OS)

combinations in one connected component. In order to plot the browser/OS combination in a more

manageable way, we considered the browser and OS using the same base as the same entity. We

considered Chrome and Firefox as the primary browsers and Windows, Linux, macOS and Linux

as the primary OSs. Table 4.4 shows the mapping of different browsers to primary Browser. Figure

4.5 - 4.12 shows a homogeneity in browser and OS combination for all the audio fingerprinting

vectors. The top text of each bar indicates the number of users / number of User-Agent associated

with that distinct fingerprint group. We see that the majority of the groups either have the same

browser or OS configuration. We see that the results are very uniform as we see that every distinct

group is associated with only one browser either Firefox or Chrome but not both and at most 2

OSs. There is a lot of uniformity in terms of fingerprint groups and browser OS combination they

are manifested in. Although every fingerprint group is associated with one browser, no browser is

associated with only one fingerprint. For example Figure 4.5 shows 6 different fingerprint groups

of Chrome/Android users with different numbers of users in each group. This means that each

browser is associated with more than one fingerprint.

Figure 4.5: Browser/OS combination of distinct fingerprint group for DynamicCompressor

42

Figure 4.6: Browser/OS combination of distinct fingerprint group for OscillatorNode

Figure 4.7: Browser/OS combination of distinct fingerprint group for Hybrid

43

Figure 4.8: Browser/OS combination of distinct fingerprint group for CustomSignalHybrid

Figure 4.9: Browser/OS combination of distinct fingerprint group for AudioSourceHybrid

44

Figure 4.10: Browser/OS combination of distinct fingerprint group for ChannelMergeHybrid

Figure 4.11: Browser/OS combination of distinct fingerprint group for AmplitudeModulationHy-
brid

45

Figure 4.12: Browser/OS combination of distinct fingerprint group for FrequencyModulationHy-
brid

We also wanted to see if audio fingerprints are a subset of User-Agents. In order to answer that

we wanted to see if a single User-Agent is connected to multiple groups. We again utilized the dis-

tinct fingerprint group (connected component(CC) from 4.3.1 to find the total distinct and unique

User-Agents in the user-study for each fingerprinting method. Then, used the difference between

distinct and unique User-Agents to find the non-unique User-Agents for each distinct group to get

the association between User-Agent and audio fingerprints. Table 4.5 shows that one User-Agent is

spread across multiple groups for each fingerprinting technique. This means that two users having

the same User-Agent can have different audio fingerprints. Unlike what the World Wide Web Con-

sortium Document states we found that audio fingerprints can add incremental value to user-agent

fingerprinting as there are a number of cases with same user-agent users having multiple audio

fingerprints. Although audio fingerprints are better than User-Agents, we see that they do not hold

notable value as Canvas and Font fingerprints. Thus, we arrive at a judgement about diversity of

audio fingerprints saying that audio fingerprints are better than User-Agent fingerprint, however,

they are not adequately diverse to be used as a standalone fingerprinting mechanism and answer

our research question RQ3.

46

Fingerprinting Methods # of UAs spanning > 1 FP goups

DynamicCompressor 8

OscillatorNode 36

Hybrid 35

CustomSignalHybrid 36

AudioSourceHybrid 31

ChannelMergeHybrid 36

AmplitudeModulationHybrid 36

FrequencyModulationHybrid 36

Table 4.5: Number of User-Agents spanning on more than 1 diverse fingerprint group

47

5. Discussion

5.1 Limitations

The analysis presented in this work has several methodological and measurement limitations.

We tested our fingerprinting script using sine wave before settling for triangle wave, which showed

similar results. Using other types of single such as square, saw-tooth and even changing the pa-

rameters of the AudioContext and OfflineAudioContext attributes may result in better

unique fingerprints. However, we tested 8 different audio fingerprinting methods by obtaining

FFTs of audio source files, modulated waves and custom waveforms, where we saw similar results

across all the audio fingerprinting vectors. So we think that even if we try different waves and dif-

ferent audio parameters, we will end up with similar results. Secondly, in comparison to popular

fingerprinting methods like Canvas and Font Fingerprinting based studies, our study is relatively

small. However, even in the small size we see that audio fingerprints are less diverse in comparison

to Canvas and Font, so we think that the results are going to hold up even in a bigger study. Thirdly,

we had limited financial resources that hindered us to increase the number of users.

5.2 Future Work

We focus on the privacy concerned browser like Brave and understand their defenses against

the audio fingerprinting. We want to understand the defenses proposed and study the robustness

of these defenses. We also want to understand the value of audio fingerprints when used in con-

junction with the existing browsers fingerprinting techniques like Canvas and Font fingerprinting.

In addition, we would also like to conduct a larger user-study to solidify our findings in a more

systematic and methodological way.

48

5.3 Conclusion

In this work, we tested the resilience of the mainstream browsers against audio fingerprinting

on mobile and desktop. In order to do this, we devised an audio fingerprinting script based on

earlier research [6, 8] and added 5 more techniques that collected 694 fingerprints across mobile

and desktops. We analysed the stability of the audio fingerprinting methods which shows that

the audio fingerprinting methods are stable when repeated multiple times in a timed setting. The

diversity analysis, however shows that although the audio fingerprints are stable but they are not

diverse enough to be used a single browser fingerprinting method by comparing it with the popular

browser fingerprinting methods like Canvas, Font and User-Agent fingerprinting. Audio finger-

printing is important and has a tracking value which is better than User-Agent. Users with the

same User-Agent can have different audio fingerprints but it does not have as significant value as

Canvas and Font fingerprints. However, if used in conjunction with the more popular fingerprint-

ing mechanism, the audio fingerprints can have an incremental value. Thus, with the statements

presented here we finally answer the research question RQ6 saying that standalone audio finger-

prints does not have as much diversity as existing fingerprinting mechanism, however, it does have

incremental value, so further studies are needed.

49

References

[1] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in HTML5,” in Proceed-

ings of W2SP 2012 (M. Fredrikson, ed.), IEEE Computer Society, May 2012.

[2] P. Laperdrix, W. Rudametkin, and B. Baudry, Beauty and the beast: Diverting modern web

browsers to build unique browser fingerprints. IEEE Symposium on Security and Privacy,

SP 2016, San Jose, CA, USA, May 22-26, 2016. https://doi.org/10.1109/SP.

2016.57.

[3] F. Alaca and P. C. van Oorschot, “Device fingerprinting for augmenting web authentication:

Classification and analysis of methods,” in Proceedings of the 32nd Annual Conference on

Computer Security Applications, ACSAC ’16, (New York, NY, USA), p. 289–301, Associa-

tion for Computing Machinery, 2016.

[4] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Díaz, “The web

never forgets: Persistent tracking mechanisms in the wild,” in Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,

USA, November 3-7, p. 674–689, 2014. https://doi.org/10.1145/2660267.

2660347.

[5] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the crowd: An analysis of the

effectiveness of browser fingerprinting at large scale,” in Proceedings of the 2018 World

Wide Web Conference, WWW ’18, (Republic and Canton of Geneva, CHE), p. 309–318,

International World Wide Web Conferences Steering Committee, 2018.

[6] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site measurement and anal-

ysis,” in CCS ’16: Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, 2016. https://www.cs.princeton.edu/~arvindn/

publications/OpenWPM_1_million_site_tracking_measurement.pdf.

50

https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1145/2660267.2660347
https://doi.org/10.1145/2660267.2660347
https://www.cs.princeton.edu/~arvindn/publications/OpenWPM_1_million_site_tracking_measurement.pdf
https://www.cs.princeton.edu/~arvindn/publications/OpenWPM_1_million_site_tracking_measurement.pdf

[7] N. Nikiforakis and G. Acar, “Browse at your own risk,” IEEE Spectrum, vol. 51, no. 8,

pp. 30–35, 2014.

[8] P. Laperdrix, B. Baudry, and V. Mishra, FPRandom: Randomizing core browser objects to

break advanced device fingerprinting techniques. ESSoS 2017 - 9th International Sympo-

sium on Engineering Secure Software and Systems, 2017. https://hal.inria.fr/

hal-01527580.

[9] M. W. Docs, Web Audio API. https://developer.mozilla.org/en-US/docs/

Web/API/Web_Audio_API.

[10] Brave, What’s Brave Done For My Privacy Lately? March 2020. https://brave.com/

privacy-updates-3/.

[11] F. Inc, FingerprintJS. https://github.com/fingerprintjs/fingerprintjs.

[12] J. R. Mayer, Any person... a pamphleteer: Internet Anonymity in the Age of Web 2.0. 2009.

https://jonathanmayer.org/publications/thesis09.pdf.

[13] P. Eckersley, “How unique is your web browser?,” in Proceedings of the 10th Interna-

tional Conference on Privacy Enhancing Technologies (PETS’10), Springer-Verlag, Berlin,

Heidelberg, pp. 1–18, 2010. https://coveryourtracks.eff.org/static/

browser-uniqueness.pdf.

[14] I. E. T. Force, Privacy Considerations for Internet Protocols. 2009. https://www.

rfc-editor.org/rfc/pdfrfc/rfc6973.txt.pdf.

[15] P. Baumann, S. Katzenbeisser, M. Stopczynski, and E. Tews, “Disguised chromium browser:

Robust browser, flash and canvas fingerprinting protection,” pp. 37–46, 10 2016.

[16] J. S. Queiroz and E. L. Feitosa, “A Web Browser Fingerprinting Method Based on the Web

Audio API,” The Computer Journal, vol. 62, pp. 1106–1120, 01 2019.

[17] R. A. Anderson, “Introduction to the web audio api,” 2020.

[18] W3C, Web Audio API. https://www.w3.org/TR/webaudio/.

51

https://hal.inria.fr/hal-01527580
https://hal.inria.fr/hal-01527580
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
 https://brave.com/privacy-updates-3/
 https://brave.com/privacy-updates-3/
 https://github.com/fingerprintjs/fingerprintjs
https://jonathanmayer.org/publications/thesis09.pdf
https://coveryourtracks.eff.org/static/browser-uniqueness.pdf
https://coveryourtracks.eff.org/static/browser-uniqueness.pdf
 https://www.rfc-editor.org/rfc/pdfrfc/rfc6973.txt.pdf
 https://www.rfc-editor.org/rfc/pdfrfc/rfc6973.txt.pdf
https://www.w3.org/TR/webaudio/

[19] R. Mattka, “Get started with the web audio api,” 2018.

[20] ElectronicNotes, ElectronicsNotes. https://www.electronics-notes.com/

articles/radio/modulation/frequency-modulation-fm.php.

[21] ElectronicNotes, ElectronicsNotes. https://www.electronics-notes.com/

articles/radio/modulation/amplitude-modulation-am.php.

[22] M. W. Docs, Web Audio Examples, Decode Audio Data. 2017. https://github.com/

mdn/webaudio-examples/blob/master/decode-audio-data/viper.ogg.

[23] F. Inc, FingerprintJS Font. https://github.com/fingerprintjs/

fingerprintjs/blob/master/src/sources/fonts.ts#L12.

[24] C. Inc, CloudFlare. https://www.cloudflare.com/cdn-cgi/trace.

[25] D. Demchenko, Bowser. https://www.npmjs.com/package/bowser.

[26] A. M. T. Inc, Amazon MTurk. https://www.mturk.com/.

[27] Wikipedia, Cumulative Distribution Function. https://en.wikipedia.org/wiki/

Cumulative_distribution_function#cite_note-1.

[28] M. W. Docs, User-Agent. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Headers/User-Agent.

52

https://www.electronics-notes.com/articles/radio/modulation/frequency-modulation-fm.php
https://www.electronics-notes.com/articles/radio/modulation/frequency-modulation-fm.php
https://www.electronics-notes.com/articles/radio/modulation/amplitude-modulation-am.php
https://www.electronics-notes.com/articles/radio/modulation/amplitude-modulation-am.php
 https://github.com/mdn/webaudio-examples/blob/master/decode-audio-data/viper.ogg
 https://github.com/mdn/webaudio-examples/blob/master/decode-audio-data/viper.ogg
https://github.com/fingerprintjs/fingerprintjs/blob/master/src/sources/fonts.ts#L12
https://github.com/fingerprintjs/fingerprintjs/blob/master/src/sources/fonts.ts#L12
 https://www.cloudflare.com/cdn-cgi/trace
 https://www.npmjs.com/package/bowser
 https://www.mturk.com/
 https://en.wikipedia.org/wiki/Cumulative_distribution_function#cite_note-1
 https://en.wikipedia.org/wiki/Cumulative_distribution_function#cite_note-1
 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent

Appendix A

Code snippets

1 g e t D y n a m i c C o m p r e s s o r F i n g e r p r i n t () : Promise <any > {

2 l e t sumBuffe r = 0 ;

3 l e t sumBufferHash = n u l l ;

4 re turn new Promise ((r e s o l v e , r e j e c t) => {

5 t r y {

6 l e t o f f l i n e A u d i o C t x = new ((< any >window) . O f f l i n e A u d i o C o n t e x t | | (< any >window) . w e b k i t O f f l i n e A u d i o C o n t e x t) (OFFLINEAUDIOCTX .

numberOfChannels , OFFLINEAUDIOCTX . l e n g t h , OFFLINEAUDIOCTX . sampleRa te) ;

7 i f (o f f l i n e A u d i o C t x) {

8 l e t o s c i l l a t o r = o f f l i n e A u d i o C t x . c r e a t e O s c i l l a t o r () ;

9 o s c i l l a t o r . t y p e = SIGNAL_TYPE ;

10 o s c i l l a t o r . f r e q u e n c y . v a l u e = FREQUENCY;

11
12 // Create and configure compressor

13 l e t c o m p r e s s o r = o f f l i n e A u d i o C t x . c r ea t eDynamicsCompres so r () ;

14 c o m p r e s s o r . t h r e s h o l d && (c o m p r e s s o r . t h r e s h o l d . v a l u e = COMPRESSOR. t h r e s h o l d) ;

15 c o m p r e s s o r . knee && (c o m p r e s s o r . knee . v a l u e = COMPRESSOR. knee) ;

16 c o m p r e s s o r . r a t i o && (c o m p r e s s o r . r a t i o . v a l u e = COMPRESSOR. r a t i o) ;

17 // compressor.reduction && (compressor.reduction.value = -20);

18 c o m p r e s s o r . a t t a c k && (c o m p r e s s o r . a t t a c k . v a l u e = COMPRESSOR. a t t a c k) ;

19 c o m p r e s s o r . r e l e a s e && (c o m p r e s s o r . r e l e a s e . v a l u e = COMPRESSOR. r e l e a s e) ;

20
21 // Connect nodes

22 o s c i l l a t o r . c o n n e c t (c o m p r e s s o r) ;

23 c o m p r e s s o r . c o n n e c t (o f f l i n e A u d i o C t x . d e s t i n a t i o n) ;

24
25 // Start audio processing

26 o s c i l l a t o r . s t a r t (0) ;

27 o f f l i n e A u d i o C t x . s t a r t R e n d e r i n g () ;

28 o f f l i n e A u d i o C t x . oncomple t e = ((e v n t : any) => {

29 sumBuffer = 0 ;

30 l e t MD5 = Cryp toJS . a l g o .MD5. c r e a t e () ;

31 f o r (l e t i = 0 ; i < e v n t . r e n d e r e d B u f f e r . l e n g t h ; i ++) {

32 MD5. u p d a t e (e v n t . r e n d e r e d B u f f e r . g e t C h a n n e l D a t a (0) [i] . t o S t r i n g ()) ;

33 }

34 c o n s t hash = MD5. f i n a l i z e () ;

35 sumBufferHash = hash . t o S t r i n g (Cryp toJS . enc . Hex) ;

36 f o r (l e t i = 4500 ; 5 e3 > i ; i ++) {

37 sumBuffer += Math . abs (e v n t . r e n d e r e d B u f f e r . g e t C h a n n e l D a t a (0) [i]) ;

38 }

39 o s c i l l a t o r . d i s c o n n e c t () ;

40 //console.log({"dynamicCompressor": sumBufferHash, "sum": sumBuffer});

41 //alert("dynamiccompressor " +sumBufferHash)

42 r e s o l v e ({"hash" : sumBufferHash , "sum" : sumBuffer , "noFingerprint" : f a l s e }) ;

43 }) ;

44 } e l s e {

53

45 r e j e c t ({"hash" : sumBufferHash , "sum" : sumBuffer , "noFingerprint" : t rue }) ;

46 }

47 } catch (u) {

48 r e j e c t ({"hash" : sumBufferHash , "sum" : sumBuffer , "noFingerprint" : t rue }) ;

49 }

50 }) ;

51 }

Listing A.1: DynamicCompressor fingerprint generation code

1 g e t O s c i l l a t o r N o d e F i n g e r p r i n t () : Promise <any > {

2 l e t o s c i l l a t o r N o d e = [] ;

3 l e t hash = n u l l ;

4 re turn new Promise ((r e s o l v e , r e j e c t) => {

5 t r y {

6 l e t a u d i oC t x = new ((< any >window) . AudioContex t | | (< any >window) . w e b k i t A u d i o C o n t e x t) () ;

7 i f (a u d i o C t x) {

8 l e t o s c i l l a t o r = a u d i o C t x . c r e a t e O s c i l l a t o r () ;

9 l e t a n a l y s e r = a u d i o C t x . c r e a t e A n a l y s e r () ;

10 l e t g a i n = a u d i oC t x . c r e a t e G a i n () ;

11 l e t s c r i p t P r o c e s s o r = a u d i o C t x . c r e a t e S c r i p t P r o c e s s o r (SCRIPT_PROCESSOR . b u f f e r S i z e , SCRIPT_PROCESSOR . numberOfInpu tChanne l s

, SCRIPT_PROCESSOR . numberOfOutputChanne ls) ;

12 g a i n . g a i n . v a l u e = 1 ; // Disable volume

13 a n a l y s e r . f f t S i z e = 2048 ;

14 o s c i l l a t o r . t y p e = SIGNAL_TYPE // Set oscillator to output wave

15 o s c i l l a t o r . c o n n e c t (a n a l y s e r) ; // Connect oscillator output to analyser input

16 a n a l y s e r . c o n n e c t (s c r i p t P r o c e s s o r) ; // Connect analyser output to scriptProcessor input

17 s c r i p t P r o c e s s o r . c o n n e c t (g a i n) ; // Connect scriptProcessor output to gain input

18 g a i n . c o n n e c t (a u d i o C t x . d e s t i n a t i o n) ; // Connect gain output to audiocontext destination

19 s c r i p t P r o c e s s o r . o n a u d i o p r o c e s s = (async (e v e n t) => {

20 c o n s t b i n s = new F l o a t 3 2 A r r a y (a n a l y s e r . f r e q u e n c y B i n C o u n t) ;

21 a n a l y s e r . g e t F l o a t F r e q u e n c y D a t a (b i n s) ;

22 f o r (l e t i = 0 ; i < b i n s . l e n g t h ; i ++) {

23 o s c i l l a t o r N o d e . push (b i n s [i]) ;

24 }

25 a n a l y s e r . d i s c o n n e c t () ;

26 s c r i p t P r o c e s s o r . d i s c o n n e c t () ;

27 g a i n . d i s c o n n e c t () ;

28 c o n s t audioFP = JSON . s t r i n g i f y (o s c i l l a t o r N o d e) ;

29 hash = Cryp toJS .MD5(audioFP) . t o S t r i n g () ;

30 a w a i t a u d i oC t x . c l o s e () ;

31 r e s o l v e ({"hash" : hash , "values" : o s c i l l a t o r N o d e , "noFingerprint" : f a l s e }) ;

32 }) ;

33 o s c i l l a t o r . s t a r t (0) ;

34 } e l s e {

35 r e j e c t ({"hash" : hash , "values" : o s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

36 }

37 } catch (u) {

38 r e j e c t ({"hash" : hash , "values" : o s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

39 }

40 }) ;

41 }

Listing A.2: OscillatorNode fingerprint generation code

54

1 g e t H y b r i d F i n g e r p r i n t W i t h A u d i o C t x () : Promise <any > {

2 l e t h y b r i d O s c i l l a t o r N o d e = [] ;

3 l e t hybr idHash = n u l l ;

4 re turn new Promise ((r e s o l v e , r e j e c t) => {

5 t r y {

6 l e t a u d i oC t x = new ((< any >window) . AudioContex t | | (< any >window) . w e b k i t A u d i o C o n t e x t) () ;

7 i f (a u d i o C t x) {

8 l e t o s c i l l a t o r = a u d i o C t x . c r e a t e O s c i l l a t o r () ;

9 l e t a n a l y s e r = a u d i o C t x . c r e a t e A n a l y s e r () ;

10 l e t g a i n = a u d i oC t x . c r e a t e G a i n () ;

11 l e t s c r i p t P r o c e s s o r = a u d i o C t x . c r e a t e S c r i p t P r o c e s s o r (SCRIPT_PROCESSOR . b u f f e r S i z e , SCRIPT_PROCESSOR . numberOfInpu tChanne l s

, SCRIPT_PROCESSOR . numberOfOutputChanne ls) ;

12
13 // Create and configure compressor

14 l e t c o m p r e s s o r = a u d i o C t x . c r ea t eDynamicsCompres so r () ;

15 c o m p r e s s o r . t h r e s h o l d . se tVa lueAtTime (COMPRESSOR. t h r e s h o l d , a u d io C t x . c u r r e n t T i m e) ;

16 c o m p r e s s o r . knee . se tVa lueAtT ime (COMPRESSOR. knee , a u d io C t x . c u r r e n t T i m e) ;

17 c o m p r e s s o r . r a t i o . se tVa lueAtT ime (COMPRESSOR. r a t i o , a u d io C t x . c u r r e n t T i m e) ;

18 c o m p r e s s o r . a t t a c k . se tVa lueAtT ime (COMPRESSOR. a t t a c k , a u d io C t x . c u r r e n t T i m e) ;

19 c o m p r e s s o r . r e l e a s e . se tVa lueAtTime (COMPRESSOR. r e l e a s e , a u d io C t x . c u r r e n t T i m e) ;

20
21 g a i n . g a i n . v a l u e = 0 ; // Disable volume

22 a n a l y s e r . f f t S i z e = 2048 ;

23 o s c i l l a t o r . t y p e = SIGNAL_TYPE // Set oscillator to output triangle wave

24 o s c i l l a t o r . c o n n e c t (c o m p r e s s o r) ; // Connect oscillator output to dynamic compressor

25 c o m p r e s s o r . c o n n e c t (a n a l y s e r) ; // Connect compressor to analyser

26 a n a l y s e r . c o n n e c t (s c r i p t P r o c e s s o r) ; // Connect analyser output to scriptProcessor input

27 s c r i p t P r o c e s s o r . c o n n e c t (g a i n) ; // Connect scriptProcessor output to gain input

28 g a i n . c o n n e c t (a u d i o C t x . d e s t i n a t i o n) ; // Connect gain output to audiocontext destination

29 s c r i p t P r o c e s s o r . o n a u d i o p r o c e s s = (async (b i n s : any) => {

30 b i n s = new F l o a t 3 2 A r r a y (a n a l y s e r . f r e q u e n c y B i n C o u n t) ;

31 a n a l y s e r . g e t F l o a t F r e q u e n c y D a t a (b i n s) ;

32 f o r (l e t i = 0 ; i < b i n s . l e n g t h ; i ++) {

33 h y b r i d O s c i l l a t o r N o d e . push (b i n s [i]) ;

34 }

35 a n a l y s e r . d i s c o n n e c t () ;

36 s c r i p t P r o c e s s o r . d i s c o n n e c t () ;

37 g a i n . d i s c o n n e c t () ;

38 c o n s t audioFP = JSON . s t r i n g i f y (h y b r i d O s c i l l a t o r N o d e) ;

39 hybr idHash = Cryp toJS .MD5(audioFP) . t o S t r i n g () ;

40 a w a i t a u d i oC t x . c l o s e () ;

41 r e s o l v e ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : f a l s e }) ;

42 }) ;

43 o s c i l l a t o r . s t a r t (0) ;

44 } e l s e {

45 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

46 }

47 } catch (u) {

48 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

49 }

50 }) ;

51 }

Listing A.3: Hybrid fingerprint generation code

55

1 g e t C u s t o m S i g n a l H y b r i d F i n g e r p r i n t A u d i o C t x () : Promise <any > {

2 l e t h y b r i d O s c i l l a t o r N o d e = [] ;

3 l e t hybr idHash = n u l l ;

4 re turn new Promise (a sync (r e s o l v e , r e j e c t) => {

5 t r y {

6 l e t a u d i oC t x = new ((< any >window) . AudioContex t | | (< any >window) . w e b k i t A u d i o C o n t e x t) () ;

7 i f (a u d i o C t x) {

8 c o n s t OFFSET = 0 . 7 ;

9 c o n s t p i = Math . PI ;

10 // https://medium.com/web-audio/phase-offsets-with-web-audio-wavetables-c7dc85ac3218

11 // https://meettechniek.info/additional/additive-synthesis.html

12 c o n s t r e a l = new F l o a t 3 2 A r r a y (1 1) ;

13 c o n s t imag = new F l o a t 3 2 A r r a y (1 1) ;

14 r e a l [0] = 0 . 3 6 0 ;

15 r e a l [1] = 0 . 7 6 0 ;

16 r e a l [2] = 0 . 1 2 0 ;

17 r e a l [3] = 0 . 7 4 5 ;

18 r e a l [4] = 0 . 2 3 5 ;

19 r e a l [5] = 0 . 1 4 5 ;

20 r e a l [6] = 0 . 5 4 5 ;

21 r e a l [7] = 0 . 6 7 5 ;

22 r e a l [8] = 0 . 5 8 5 ;

23 r e a l [9] = 0 . 6 8 5 ;

24 r e a l [1 0] = 0 . 1 1 5 ;

25 r e a l [1 1] = 0 . 6 6 0 ;

26
27 imag [0] = p i / 2 ;

28 imag [1] = 0 ;

29 imag [2] = p i / 2 ;

30 imag [3] = 0 ;

31 imag [4] = p i / 2 ;

32 imag [5] = 0 ;

33 imag [6] = p i / 2 ;

34 imag [7] = 0 ;

35 imag [8] = p i / 2 ;

36 imag [9] = 0 ;

37 imag [1 0] = p i / 2 ;

38 imag [1 1] = 0

39
40 c o n s t wave = a u d i o C t x . c r e a t e P e r i o d i c W a v e (r e a l , imag , { d i s a b l e N o r m a l i z a t i o n : t rue }) ;

41 l e t o s c i l l a t o r = a u d i o C t x . c r e a t e O s c i l l a t o r () ;

42 o s c i l l a t o r . f r e q u e n c y . v a l u e = 440 ;

43 o s c i l l a t o r . s e t P e r i o d i c W a v e (wave) ;

44 c o n s t o f f s e t = a u d i o C t x . c r e a t e C o n s t a n t S o u r c e () ;

45 o f f s e t . o f f s e t . v a l u e = OFFSET ;

46 l e t a n a l y s e r = a u d i o C t x . c r e a t e A n a l y s e r () ;

47 l e t g a i n = a u d i oC t x . c r e a t e G a i n () ;

48 l e t s c r i p t P r o c e s s o r = a u d i o C t x . c r e a t e S c r i p t P r o c e s s o r (SCRIPT_PROCESSOR . b u f f e r S i z e , SCRIPT_PROCESSOR . numberOfInpu tChanne l s

, SCRIPT_PROCESSOR . numberOfOutputChanne ls) ;

49
50 l e t c o m p r e s s o r = a u d i o C t x . c r ea t eDynamicsCompres so r () ;

51 c o m p r e s s o r . t h r e s h o l d . se tVa lueAtTime (COMPRESSOR. t h r e s h o l d , a u d io C t x . c u r r e n t T i m e) ;

52 c o m p r e s s o r . knee . se tVa lueAtT ime (COMPRESSOR. knee , a u d io C t x . c u r r e n t T i m e) ;

53 c o m p r e s s o r . r a t i o . se tVa lueAtT ime (COMPRESSOR. r a t i o , a u d io C t x . c u r r e n t T i m e) ;

54 c o m p r e s s o r . a t t a c k . se tVa lueAtT ime (COMPRESSOR. a t t a c k , a u d io C t x . c u r r e n t T i m e) ;

55 c o m p r e s s o r . r e l e a s e . se tVa lueAtTime (COMPRESSOR. r e l e a s e , a u d io C t x . c u r r e n t T i m e) ;

56

56
57 g a i n . g a i n . v a l u e = 0 ; // Disable volume

58 a n a l y s e r . f f t S i z e = 2048 ;

59 o s c i l l a t o r . c o n n e c t (c o m p r e s s o r) ; // Connect oscillator output to dynamic compressor

60 c o m p r e s s o r . c o n n e c t (a n a l y s e r) ; // Connect oscillator output to dynamic compressor

61 a n a l y s e r . c o n n e c t (s c r i p t P r o c e s s o r) ; // Connect analyser output to scriptProcessor input

62 s c r i p t P r o c e s s o r . c o n n e c t (g a i n) ; // Connect scriptProcessor output to gain input

63 g a i n . c o n n e c t (a u d i o C t x . d e s t i n a t i o n) ; // Connect gain output to audiocontext destination

64
65 s c r i p t P r o c e s s o r . o n a u d i o p r o c e s s = (async (b i n s : any) => {

66 b i n s = new F l o a t 3 2 A r r a y (a n a l y s e r . f r e q u e n c y B i n C o u n t) ;

67 a n a l y s e r . g e t F l o a t F r e q u e n c y D a t a (b i n s) ;

68 f o r (l e t i = 0 ; i < b i n s . l e n g t h ; i ++) {

69 h y b r i d O s c i l l a t o r N o d e . push (b i n s [i]) ;

70 }

71 a n a l y s e r . d i s c o n n e c t () ;

72 s c r i p t P r o c e s s o r . d i s c o n n e c t () ;

73 g a i n . d i s c o n n e c t () ;

74 c o n s t audioFP = JSON . s t r i n g i f y (h y b r i d O s c i l l a t o r N o d e) ;

75 hybr idHash = Cryp toJS .MD5(audioFP) . t o S t r i n g () ;

76 a w a i t a u d io C t x . c l o s e () ;

77 r e s o l v e ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : f a l s e }) ;

78 }) ;

79 o s c i l l a t o r . s t a r t (0) ;

80 o f f s e t . s t a r t () ;

81 } e l s e {

82 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

83 }

84 } catch (u) {

85 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

86 }

87 }) ;

88 }

Listing A.4: Custom Signal Hybrid fingerprint generation code

1 g e t A u d i o S o u r c e H y b r i d F i n g e p r i n t A u d i o C t x () : Promise <any > {

2 l e t a u d i o D a t a = n u l l ;

3 l e t hash = n u l l ;

4 l e t a n a l y s e r N o d e D a t a = [] ;

5 re turn new Promise ((r e s o l v e , r e j e c t) => {

6 t r y {

7 c o n s t a u d i o C o n t e x t = new ((< any >window) . AudioContex t | | (< any >window) . w e b k i t A u d i o C o n t e x t) () ;

8 i f (a u d i o C o n t e x t) {

9 c o n s t sourceNode = a u d i o C o n t e x t . c r e a t e B u f f e r S o u r c e () ;

10 c o n s t a n a l y s e r N o d e = a u d i o C o n t e x t . c r e a t e A n a l y s e r () ;

11 c o n s t g a i n = a u d i o C o n t e x t . c r e a t e G a i n () ;

12 c o n s t s c r i p t P r o c e s s o r = a u d i o C o n t e x t . c r e a t e S c r i p t P r o c e s s o r (SCRIPT_PROCESSOR . b u f f e r S i z e , SCRIPT_PROCESSOR .

numberOfInpu tChanne l s , SCRIPT_PROCESSOR . numberOfOutputChanne ls) ;

13 // Create and configure compressor

14 c o n s t c o m p r e s s o r = a u d i o C o n t e x t . c r ea t eDynamicsCompres so r () ;

15 c o m p r e s s o r . t h r e s h o l d . se tVa lueAtTime (COMPRESSOR. t h r e s h o l d , a u d i o C o n t e x t . c u r r e n t T i m e) ;

16 c o m p r e s s o r . knee . se tVa lueAtT ime (COMPRESSOR. knee , a u d i o C o n t e x t . c u r r e n t T i m e) ;

17 c o m p r e s s o r . r a t i o . se tVa lueAtT ime (COMPRESSOR. r a t i o , a u d i o C o n t e x t . c u r r e n t T i m e) ;

18 c o m p r e s s o r . a t t a c k . se tVa lueAtT ime (COMPRESSOR. a t t a c k , a u d i o C o n t e x t . c u r r e n t T i m e) ;

57

19 c o m p r e s s o r . r e l e a s e . se tVa lueAtTime (COMPRESSOR. r e l e a s e , a u d i o C o n t e x t . c u r r e n t T i m e) ;

20 g a i n . g a i n . v a l u e = 0 ; // Disable volume

21 a n a l y s e r N o d e . f f t S i z e = 2048 ;

22
23 // Now connect the nodes together

24 sourceNode . c o n n e c t (c o m p r e s s o r) ;

25 c o m p r e s s o r . c o n n e c t (a n a l y s e r N o d e) ;

26 a n a l y s e r N o d e . c o n n e c t (s c r i p t P r o c e s s o r) ;

27 s c r i p t P r o c e s s o r . c o n n e c t (g a i n) ;

28 g a i n . c o n n e c t (a u d i o C o n t e x t . d e s t i n a t i o n) ;

29
30 s c r i p t P r o c e s s o r . o n a u d i o p r o c e s s = (async (e v e n t : any) => {

31 c o n s t b i n s = new F l o a t 3 2 A r r a y (a n a l y s e r N o d e . f r e q u e n c y B i n C o u n t) ;

32 a n a l y s e r N o d e . g e t F l o a t F r e q u e n c y D a t a (b i n s) ;

33 f o r (l e t i = 0 ; i < b i n s . l e n g t h ; i ++) {

34 a n a l y s e r N o d e D a t a . push (b i n s [i]) ;

35 }

36 c o n s t audioFP = JSON . s t r i n g i f y (a n a l y s e r N o d e D a t a) ;

37 hash = Cryp toJS .MD5(audioFP) . t o S t r i n g () ;

38 g a i n . d i s c o n n e c t () ;

39 s c r i p t P r o c e s s o r . d i s c o n n e c t () ;

40 a n a l y s e r N o d e . d i s c o n n e c t () ;

41 a w a i t a u d i o C o n t e x t . c l o s e () ;

42 r e s o l v e ({"hash" : hash , "values" : ana ly se rNodeDa ta , "noFingerprint" : f a l s e }) ;

43 }) ;

44 // Load the Audio the first time through, otherwise play it from the buffer

45 i f (a u d i o D a t a == n u l l) {

46 c o n s t r e q u e s t = new XMLHttpRequest () ;

47 r e q u e s t . open (’GET’ , ’../../../assets/viper-05.ogg’ , t rue) ;

48 r e q u e s t . r e s p o n s e T y p e = ’arraybuffer’ ;

49 r e q u e s t . on l oa d = (() => {

50 a u d i o C o n t e x t . decodeAudioData (r e q u e s t . r e s p o n s e , f u n c t i o n (b u f f e r) {

51 a u d i o D a t a = b u f f e r ;

52 sourceNode . b u f f e r = b u f f e r ;

53 sourceNode . s t a r t (0) ; // Play the sound now

54 sourceNode . l oop = f a l s e ;

55 } ,

56 f u n c t i o n (e) {"Error with decoding audio data" + e }) ;

57 }) ;

58 r e q u e s t . send ()

59 } e l s e {

60 sourceNode . b u f f e r = a u d i o D a t a ;

61 sourceNode . s t a r t (0) ; // Play the sound now

62 sourceNode . l oop = f a l s e ;

63 }

64 } e l s e {

65 r e j e c t ({"hash" : hash , "values" : ana ly se rNodeDa ta , "noFingerprint" : t rue }) ;

66 }

67 } catch (u) {

68 r e j e c t ({"hash" : hash , "values" : ana ly se rNodeDa ta , "noFingerprint" : t rue }) ;

69 }

70 }) ;

71 }

Listing A.5: Audio Source Hybrid fingerprint generation code

58

1 g e t C h a n n e l M e r g e H y b r i d F i n g e r p r i n t A u d i o C t x () : Promise <any > {

2 l e t hybr idHash = n u l l ;

3 l e t h y b r i d O s c i l l a t o r N o d e = [] ;

4 re turn new Promise ((r e s o l v e , r e j e c t) => {

5 t r y {

6 l e t a u d i oC t x = new ((< any >window) . AudioContex t | | (< any >window) . w e b k i t A u d i o C o n t e x t) () ;

7 i f (a u d i o C t x) {

8 l e t o s c i l l a t o r 1 = a u d i o C t x . c r e a t e O s c i l l a t o r () ;

9 o s c i l l a t o r 1 . t y p e = "sine" ;

10 o s c i l l a t o r 1 . f r e q u e n c y . se tVa lueAtTime (4 4 0 , a u d i o C t x . c u r r e n t T i m e) ;

11 l e t o s c i l l a t o r 2 = a u d i o C t x . c r e a t e O s c i l l a t o r () ;

12 o s c i l l a t o r 2 . t y p e = "triangle" ;

13 o s c i l l a t o r 2 . f r e q u e n c y . se tVa lueAtTime (10000 , a u d i o C t x . c u r r e n t T i m e) ;

14 l e t o s c i l l a t o r 3 = a u d i o C t x . c r e a t e O s c i l l a t o r () ;

15 o s c i l l a t o r 3 . t y p e = "square" ;

16 o s c i l l a t o r 3 . f r e q u e n c y . se tVa lueAtTime (1 8 8 0 , a u d i o C t x . c u r r e n t T i m e) ;

17 l e t o s c i l l a t o r 4 = a u d i o C t x . c r e a t e O s c i l l a t o r () ;

18 o s c i l l a t o r 4 . t y p e = "sawtooth" ;

19 o s c i l l a t o r 4 . f r e q u e n c y . se tVa lueAtTime (22000 , a u d i o C t x . c u r r e n t T i m e) ;

20
21 l e t channe lMerge r = a u d i o C t x . c r e a t e C h a n n e l M e r g e r (4)

22 o s c i l l a t o r 1 . c o n n e c t (channe lMerger , 0 , 0) ;

23 o s c i l l a t o r 2 . c o n n e c t (channe lMerger , 0 , 1) ;

24 o s c i l l a t o r 3 . c o n n e c t (channe lMerger , 0 , 2) ;

25 o s c i l l a t o r 4 . c o n n e c t (channe lMerger , 0 , 3) ;

26
27 l e t c o m p r e s s o r = a u d i o C t x . c r ea t eDynamicsCompres so r () ;

28 l e t a n a l y s e r = a u d i o C t x . c r e a t e A n a l y s e r () ;

29 l e t g a i n = a u d i oC t x . c r e a t e G a i n () ;

30 l e t s c r i p t P r o c e s s o r = a u d i o C t x . c r e a t e S c r i p t P r o c e s s o r (SCRIPT_PROCESSOR . b u f f e r S i z e , SCRIPT_PROCESSOR . numberOfInpu tChanne l s

, SCRIPT_PROCESSOR . numberOfOutputChanne ls) ;

31
32 c o m p r e s s o r . t h r e s h o l d . se tVa lueAtTime (COMPRESSOR. t h r e s h o l d , a u d io C t x . c u r r e n t T i m e) ;

33 c o m p r e s s o r . knee . se tVa lueAtT ime (COMPRESSOR. knee , a u d io C t x . c u r r e n t T i m e) ;

34 c o m p r e s s o r . r a t i o . se tVa lueAtT ime (COMPRESSOR. r a t i o , a u d io C t x . c u r r e n t T i m e) ;

35 c o m p r e s s o r . a t t a c k . se tVa lueAtT ime (COMPRESSOR. a t t a c k , a u d io C t x . c u r r e n t T i m e) ;

36 c o m p r e s s o r . r e l e a s e . se tVa lueAtTime (COMPRESSOR. r e l e a s e , a u d io C t x . c u r r e n t T i m e) ;

37
38 g a i n . g a i n . v a l u e = 0 ; // Disable volume

39 a n a l y s e r . f f t S i z e = 4096 ;

40
41 channe lMerge r . c o n n e c t (c o m p r e s s o r) ; // Connect merger to compressor

42 c o m p r e s s o r . c o n n e c t (a n a l y s e r) ; // Connect compressor to analyser

43 a n a l y s e r . c o n n e c t (s c r i p t P r o c e s s o r) ; // Connect analyser output to scriptProcessor input

44 s c r i p t P r o c e s s o r . c o n n e c t (g a i n) ; // Connect scriptProcessor output to gain input

45 g a i n . c o n n e c t (a u d i o C t x . d e s t i n a t i o n) ; // Connect gain output to audiocontext destination

46
47 s c r i p t P r o c e s s o r . o n a u d i o p r o c e s s = (async (b i n s : any) => {

48 b i n s = new F l o a t 3 2 A r r a y (a n a l y s e r . f r e q u e n c y B i n C o u n t) ;

49 a n a l y s e r . g e t F l o a t F r e q u e n c y D a t a (b i n s) ;

50 f o r (l e t i = 0 ; i < b i n s . l e n g t h ; i ++) {

51 h y b r i d O s c i l l a t o r N o d e . push (b i n s [i]) ;

52 }

53 a n a l y s e r . d i s c o n n e c t () ;

54 s c r i p t P r o c e s s o r . d i s c o n n e c t () ;

55 g a i n . d i s c o n n e c t () ;

59

56 c o n s t audioFP = JSON . s t r i n g i f y (h y b r i d O s c i l l a t o r N o d e) ;

57 hybr idHash = Cryp toJS .MD5(audioFP) . t o S t r i n g () ;

58 a w a i t a u d i oC t x . c l o s e () ;

59 r e s o l v e ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : f a l s e }) ;

60 }) ;

61 //start source

62 o s c i l l a t o r 1 . s t a r t (0) ;

63 o s c i l l a t o r 2 . s t a r t (0) ;

64 o s c i l l a t o r 3 . s t a r t (0) ;

65 o s c i l l a t o r 4 . s t a r t (0) ;

66 } e l s e {

67 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

68 }

69 } catch (u) {

70 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

71 }

72 }) ;

73 }

Listing A.6: Channel Merge Hybrid fingerprint generation code

1 g e t A m p l i t u d e M o d u l a t i o n H y b r i d F i n g e r p r i n t A u d i o C t x () : Promise <any > {

2 l e t h y b r i d O s c i l l a t o r N o d e = [] ;

3 l e t hybr idHash = n u l l ;

4 re turn new Promise ((r e s o l v e , r e j e c t) => {

5 t r y {

6 l e t a u d i oC t x = new ((< any >window) . AudioContex t | | (< any >window) . w e b k i t A u d i o C o n t e x t) () ;

7 i f (a u d i o C t x) {

8 l e t mod = a u d i oC t x . c r e a t e O s c i l l a t o r () ;

9 mod . f r e q u e n c y . se tVa lueAtT ime (1 8 , au d i o C t x . c u r r e n t T i m e) ;

10 mod . t y p e = "square"

11
12 l e t modGain = a u d i o C t x . c r e a t e G a i n () ;

13 modGain . g a i n . v a l u e = 3 0 ;

14
15 l e t mod1 = a u d i oC t x . c r e a t e O s c i l l a t o r () ;

16 mod1 . f r e q u e n c y . se tVa lueAtT ime (4 4 0 , a ud i o C t x . c u r r e n t T i m e) ;

17 mod1 . t y p e = "triangle"

18
19 l e t modGain1 = a u d i o C t x . c r e a t e G a i n () ;

20 modGain1 . g a i n . v a l u e = 6 0 ;

21
22 l e t c a r r i e r = a u d i oC t x . c r e a t e O s c i l l a t o r () ;

23 c a r r i e r . t y p e = "sine"

24 c a r r i e r . f r e q u e n c y . se tVa lueAtTime (10000 , a u d i o C tx . c u r r e n t T i m e) ;

25
26 l e t c a r r i e r G a i n = a u d i o C t x . c r e a t e G a i n () ;

27 c a r r i e r G a i n . g a i n . v a l u e = 1 ;

28
29 l e t a n a l y s e r = a u d i o C t x . c r e a t e A n a l y s e r () ;

30 l e t m a s t e r G a i n = a u d i o C t x . c r e a t e G a i n () ;

31 m a s t e r G a i n . g a i n . v a l u e = 0 ; // Disable volume

32 l e t s c r i p t P r o c e s s o r = a u d i o C t x . c r e a t e S c r i p t P r o c e s s o r (SCRIPT_PROCESSOR . b u f f e r S i z e , SCRIPT_PROCESSOR . numberOfInpu tChanne l s

, SCRIPT_PROCESSOR . numberOfOutputChanne ls) ;

33

60

34 mod . c o n n e c t (modGain) ;

35 mod1 . c o n n e c t (modGain1) ;

36 mod . c o n n e c t (c a r r i e r G a i n . g a i n) ;

37 mod1 . c o n n e c t (c a r r i e r G a i n . g a i n) ;

38 c a r r i e r . c o n n e c t (c a r r i e r G a i n) ;

39 // Create and configure compressor

40 l e t c o m p r e s s o r = a u d i o C t x . c r ea t eDynamicsCompres so r () ;

41 c o m p r e s s o r . t h r e s h o l d . se tVa lueAtTime (COMPRESSOR. t h r e s h o l d , a u d io C t x . c u r r e n t T i m e) ;

42 c o m p r e s s o r . knee . se tVa lueAtT ime (COMPRESSOR. knee , a u d io C t x . c u r r e n t T i m e) ;

43 c o m p r e s s o r . r a t i o . se tVa lueAtT ime (COMPRESSOR. r a t i o , a u d io C t x . c u r r e n t T i m e) ;

44 c o m p r e s s o r . a t t a c k . se tVa lueAtT ime (COMPRESSOR. a t t a c k , a u d io C t x . c u r r e n t T i m e) ;

45 c o m p r e s s o r . r e l e a s e . se tVa lueAtTime (COMPRESSOR. r e l e a s e , a u d io C t x . c u r r e n t T i m e) ;

46
47 a n a l y s e r . f f t S i z e = 4096 ;

48
49 c a r r i e r G a i n . c o n n e c t (c o m p r e s s o r) ; // Connect carrier oscillator output to dynamic compressor

50 c o m p r e s s o r . c o n n e c t (a n a l y s e r) ; // Connect compressor to analyser

51 a n a l y s e r . c o n n e c t (s c r i p t P r o c e s s o r) ; // Connect analyser output to scriptProcessor input

52 s c r i p t P r o c e s s o r . c o n n e c t (m a s t e r G a i n) ; // Connect scriptProcessor output to gain input

53 m a s t e r G a i n . c o n n e c t (a ud i o C t x . d e s t i n a t i o n) ; // Connect gain output to audiocontext destination

54 s c r i p t P r o c e s s o r . o n a u d i o p r o c e s s = (async (b i n s : any) => {

55 b i n s = new F l o a t 3 2 A r r a y (a n a l y s e r . f r e q u e n c y B i n C o u n t) ;

56 a n a l y s e r . g e t F l o a t F r e q u e n c y D a t a (b i n s) ;

57 f o r (l e t i = 0 ; i < b i n s . l e n g t h ; i ++) {

58 h y b r i d O s c i l l a t o r N o d e . push (b i n s [i]) ;

59 }

60 a n a l y s e r . d i s c o n n e c t () ;

61 s c r i p t P r o c e s s o r . d i s c o n n e c t () ;

62 m a s t e r G a i n . d i s c o n n e c t () ;

63 c o n s t audioFP = JSON . s t r i n g i f y (h y b r i d O s c i l l a t o r N o d e) ;

64 hybr idHash = Cryp toJS .MD5(audioFP) . t o S t r i n g () ;

65 a w a i t a u d i oC t x . c l o s e () ;

66 r e s o l v e ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : f a l s e }) ;

67 }) ;

68 c a r r i e r . s t a r t (0) ;

69 mod . s t a r t (0) ;

70 mod1 . s t a r t (0) ;

71 } e l s e {

72 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

73 }

74 } catch (u) {

75 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

76 }

77 }) ;

78 }

Listing A.7: Amplitude Modulation Hybrid fingerprint generation code

1 g e t F r e q u e n c y M o d u l a t i o n H y b r i d F i n g e r p r i n t A u d i o C t x () : Promise <any > {

2 l e t h y b r i d O s c i l l a t o r N o d e = [] ;

3 l e t hybr idHash = n u l l ;

4 re turn new Promise ((r e s o l v e , r e j e c t) => {

5 t r y {

6 l e t a u d i oC t x = new ((< any >window) . AudioContex t | | (< any >window) . w e b k i t A u d i o C o n t e x t) () ;

7 i f (a u d i o C t x) {

61

8 l e t mod = a u d i oC t x . c r e a t e O s c i l l a t o r () ;

9 mod . f r e q u e n c y . se tVa lueAtT ime (1 8 , au d i o C t x . c u r r e n t T i m e) ;

10 mod . t y p e = "square"

11
12 l e t modGain = a u d i o C t x . c r e a t e G a i n () ;

13 modGain . g a i n . v a l u e = 3 0 ;

14
15 l e t mod1 = a u d i oC t x . c r e a t e O s c i l l a t o r () ;

16 mod1 . f r e q u e n c y . se tVa lueAtT ime (4 4 0 , a ud i o C t x . c u r r e n t T i m e) ;

17 mod1 . t y p e = "triangle"

18
19 l e t modGain1 = a u d i o C t x . c r e a t e G a i n () ;

20 modGain1 . g a i n . v a l u e = 6 0 ;

21
22 l e t c a r r i e r = a u d i oC t x . c r e a t e O s c i l l a t o r () ;

23 c a r r i e r . t y p e = "sine"

24 c a r r i e r . f r e q u e n c y . se tVa lueAtTime (10000 , a u d i o C tx . c u r r e n t T i m e) ;

25
26 l e t c a r r i e r G a i n = a u d i o C t x . c r e a t e G a i n () ;

27 c a r r i e r G a i n . g a i n . v a l u e = 1 ;

28
29 l e t a n a l y s e r = a u d i o C t x . c r e a t e A n a l y s e r () ;

30 l e t m a s t e r G a i n = a u d i o C t x . c r e a t e G a i n () ;

31 m a s t e r G a i n . g a i n . v a l u e = 0 ; // Disable volume

32 l e t s c r i p t P r o c e s s o r = a u d i o C t x . c r e a t e S c r i p t P r o c e s s o r (SCRIPT_PROCESSOR . b u f f e r S i z e , SCRIPT_PROCESSOR . numberOfInpu tChanne l s

, SCRIPT_PROCESSOR . numberOfOutputChanne ls) ;

33
34 mod1 . c o n n e c t (modGain1) ;

35 modGain1 . c o n n e c t (c a r r i e r . f r e q u e n c y) ;

36
37 mod . c o n n e c t (modGain) ;

38 modGain . c o n n e c t (c a r r i e r . f r e q u e n c y) ;

39
40 // Create and configure compressor

41 l e t c o m p r e s s o r = a u d i o C t x . c r ea t eDynamicsCompres so r () ;

42 c o m p r e s s o r . t h r e s h o l d . se tVa lueAtTime (COMPRESSOR. t h r e s h o l d , a u d io C t x . c u r r e n t T i m e) ;

43 c o m p r e s s o r . knee . se tVa lueAtT ime (COMPRESSOR. knee , a u d io C t x . c u r r e n t T i m e) ;

44 c o m p r e s s o r . r a t i o . se tVa lueAtT ime (COMPRESSOR. r a t i o , a u d io C t x . c u r r e n t T i m e) ;

45 c o m p r e s s o r . a t t a c k . se tVa lueAtT ime (COMPRESSOR. a t t a c k , a u d io C t x . c u r r e n t T i m e) ;

46 c o m p r e s s o r . r e l e a s e . se tVa lueAtTime (COMPRESSOR. r e l e a s e , a u d io C t x . c u r r e n t T i m e) ;

47
48 c a r r i e r . c o n n e c t (c o m p r e s s o r) ; // Connect carrier output to analyser input

49 c o m p r e s s o r . c o n n e c t (a n a l y s e r) ; // Connect compressor to analyser

50 a n a l y s e r . c o n n e c t (s c r i p t P r o c e s s o r) ; // Connect analyser output to scriptProcessor input

51 s c r i p t P r o c e s s o r . c o n n e c t (m a s t e r G a i n) ; // Connect scriptProcessor output to gain input

52 m a s t e r G a i n . c o n n e c t (a ud i o C t x . d e s t i n a t i o n) ; // Connect gain output to audiocontext destination

53 s c r i p t P r o c e s s o r . o n a u d i o p r o c e s s = (async (b i n s : any) => {

54 b i n s = new F l o a t 3 2 A r r a y (a n a l y s e r . f r e q u e n c y B i n C o u n t) ;

55 a n a l y s e r . g e t F l o a t F r e q u e n c y D a t a (b i n s) ;

56 f o r (l e t i = 0 ; i < b i n s . l e n g t h ; i ++) {

57 h y b r i d O s c i l l a t o r N o d e . push (b i n s [i]) ;

58 }

59 a n a l y s e r . d i s c o n n e c t () ;

60 s c r i p t P r o c e s s o r . d i s c o n n e c t () ;

61 m a s t e r G a i n . d i s c o n n e c t () ;

62 c o n s t audioFP = JSON . s t r i n g i f y (h y b r i d O s c i l l a t o r N o d e) ;

62

63 hybr idHash = Cryp toJS .MD5(audioFP) . t o S t r i n g () ;

64 a w a i t a u d i oC t x . c l o s e () ;

65 r e s o l v e ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : f a l s e }) ;

66 }) ;

67 c a r r i e r . s t a r t (0) ;

68 mod . s t a r t (0) ;

69 mod1 . s t a r t (0) ;

70 } e l s e {

71 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

72 }

73 } catch (u) {

74 r e j e c t ({"hash" : hybr idHash , "values" : h y b r i d O s c i l l a t o r N o d e , "noFingerprint" : t rue }) ;

75 }

76 }) ;

77 }

Listing A.8: Frequency Modulation Hybrid fingerprint generation code

1 ["sans-serif-thin" ,"ARNO PRO" ,"Agency FB" ,"Arabic Typesetting" ,"Arial Unicode MS" ,"AvantGarde Bk BT" ,"BankGothic Md BT" ,"Batang" ,"

Bitstream Vera Sans Mono" ,"Calibri" ,"Century" ,"Century Gothic" ,"Clarendon" ,"EUROSTILE" ,"Franklin Gothic" ,"Futura Bk BT" ,"

Futura Md BT" ,"GOTHAM" ,"Gill Sans" ,"HELV" ,"Haettenschweiler" ,"Helvetica Neue" ,"Humanst521 BT" ,"Leelawadee" ,"Letter Gothic" ,"

Levenim MT" ,"Lucida Bright" ,"Lucida Sans" ,"Menlo" ,"MS Mincho" ,"MS Outlook" ,"MS Reference Specialty" ,"MS UI Gothic" ,"MT Extra

" ,"MYRIAD PRO" ,"Marlett" ,"Meiryo UI" ,"Microsoft Uighur" ,"Minion Pro" ,"Monotype Corsiva" ,"PMingLiU" ,"Pristina" ,"SCRIPTINA" ,"

Segoe UI Light" ,"Serifa" ,"SimHei" ,"Small Fonts" ,"Staccato222 BT" ,"TRAJAN PRO" ,"Univers CE 55 Medium" ,"Vrinda" ,"ZWAdobeF" ,".

Aqua Kana" ,".Helvetica LT MM" ,".Times LT MM" ,"18thCentury" ,"8514oem" ,"AR BERKLEY" ,"AR JULIAN" ,"AR PL UKai CN" ,"AR PL UMing

CN" ,"AR PL UMing HK" ,"AR PL UMing TW" ,"AR PL UMing TW MBE" ,"Aakar" ,"Abadi MT Condensed Extra Bold" ,"Abadi MT Condensed Light

" ,"Abyssinica SIL" ,"AcmeFont" ,"Adobe Arabic" ,"Agency FB" ,"Aharoni" ,"Aharoni Bold" ,"Al Bayan" ,"Al Bayan Bold" ,"Al Bayan Plain

" ,"Al Nile" ,"Al Tarikh" ,"Aldhabi" ,"Alfredo" ,"Algerian" ,"Alien Encounters" ,"Almonte Snow" ,"American Typewriter" ,"American

Typewriter Bold" ,"American Typewriter Condensed" ,"American Typewriter Light" ,"Amethyst" ,"Andale Mono" ,"Andale Mono Version" ,

"Andalus" ,"Angsana New" ,"AngsanaUPC" ,"Ani" ,"AnjaliOldLipi" ,"Aparajita" ,"Apple Braille" ,"Apple Braille Outline 6 Dot" ,"Apple

Braille Outline 8 Dot" ,"Apple Braille Pinpoint 6 Dot" ,"Apple Braille Pinpoint 8 Dot" ,"Apple Chancery" ,"Apple Color Emoji" ,"

Apple LiGothic Medium" ,"Apple LiSung Light" ,"Apple SD Gothic Neo" ,"Apple SD Gothic Neo Regular" ,"Apple SD GothicNeo

ExtraBold" ,"Apple Symbols" ,"AppleGothic" ,"AppleGothic Regular" ,"AppleMyungjo" ,"AppleMyungjo Regular" ,"AquaKana" ,"Arabic

Transparent" ,"Arabic Typesetting" ,"Arial" ,"Arial Baltic" ,"Arial Black" ,"Arial Bold" ,"Arial Bold Italic" ,"Arial CE" ,"Arial

CYR" ,"Arial Greek" ,"Arial Hebrew" ,"Arial Hebrew Bold" ,"Arial Italic" ,"Arial Narrow" ,"Arial Narrow Bold" ,"Arial Narrow Bold

Italic" ,"Arial Narrow Italic" ,"Arial Rounded Bold" ,"Arial Rounded MT Bold" ,"Arial TUR" ,"Arial Unicode MS" ,"ArialHB" ,"Arimo" ,

"Asimov" ,"Autumn" ,"Avenir" ,"Avenir Black" ,"Avenir Book" ,"Avenir Next" ,"Avenir Next Bold" ,"Avenir Next Condensed" ,"Avenir

Next Condensed Bold" ,"Avenir Next Demi Bold" ,"Avenir Next Heavy" ,"Avenir Next Regular" ,"Avenir Roman" ,"Ayuthaya" ,"BN Jinx" ,"

BN Machine" ,"BOUTON International Symbols" ,"BabyKruffy" ,"Baghdad" ,"Bahnschrift" ,"Balthazar" ,"Bangla MN" ,"Bangla MN Bold" ,"

Bangla Sangam MN" ,"Bangla Sangam MN Bold" ,"Baskerville" ,"Baskerville Bold" ,"Baskerville Bold Italic" ,"Baskerville Old Face" ,

"Baskerville SemiBold" ,"Baskerville SemiBold Italic" ,"Bastion" ,"Batang" ,"BatangChe" ,"Bauhaus 93" ,"Beirut" ,"Bell MT" ,"Bell MT

Bold" ,"Bell MT Italic" ,"Bellerose" ,"Berlin Sans FB" ,"Berlin Sans FB Demi" ,"Bernard MT Condensed" ,"BiauKai" ,"Big Caslon" ,"

Big Caslon Medium" ,"Birch Std" ,"Bitstream Charter" ,"Bitstream Vera Sans" ,"Blackadder ITC" ,"Blackoak Std" ,"Bobcat" ,"Bodoni 72

" ,"Bodoni MT" ,"Bodoni MT Black" ,"Bodoni MT Poster Compressed" ,"Bodoni Ornaments" ,"BolsterBold" ,"Book Antiqua" ,"Book Antiqua

Bold" ,"Bookman Old Style" ,"Bookman Old Style Bold" ,"Bookshelf Symbol 7" ,"Borealis" ,"Bradley Hand" ,"Bradley Hand ITC" ,"

Braggadocio" ,"Brandish" ,"Britannic Bold" ,"Broadway" ,"Browallia New" ,"BrowalliaUPC" ,"Brush Script" ,"Brush Script MT" ,"Brush

Script MT Italic" ,"Brush Script Std" ,"Brussels" ,"Calibri" ,"Calibri Bold" ,"Calibri Light" ,"Californian FB" ,"Calisto MT" ,"

Calisto MT Bold" ,"Calligraphic" ,"Calvin" ,"Cambria" ,"Cambria Bold" ,"Cambria Math" ,"Candara" ,"Candara Bold" ,"Candles" ,"Carrois

Gothic SC" ,"Castellar" ,"Centaur" ,"Century" ,"Century Gothic" ,"Century Gothic Bold" ,"Century Schoolbook" ,"Century Schoolbook

Bold" ,"Century Schoolbook L" ,"Chalkboard" ,"Chalkboard Bold" ,"Chalkboard SE" ,"Chalkboard SE Bold" ,"ChalkboardBold" ,"

Chalkduster" ,"Chandas" ,"Chaparral Pro" ,"Chaparral Pro Light" ,"Charlemagne Std" ,"Charter" ,"Chilanka" ,"Chiller" ,"Chinyen" ,"

Clarendon" ,"Cochin" ,"Cochin Bold" ,"Colbert" ,"Colonna MT" ,"Comic Sans MS" ,"Comic Sans MS Bold" ,"Commons" ,"Consolas" ,"Consolas

Bold" ,"Constantia" ,"Constantia Bold" ,"Coolsville" ,"Cooper Black" ,"Cooper Std Black" ,"Copperplate" ,"Copperplate Bold" ,"

Copperplate Gothic Bold" ,"Copperplate Light" ,"Corbel" ,"Corbel Bold" ,"Cordia New" ,"CordiaUPC" ,"Corporate" ,"Corsiva" ,"Corsiva

Hebrew" ,"Corsiva Hebrew Bold" ,"Courier" ,"Courier 10 Pitch" ,"Courier Bold" ,"Courier New" ,"Courier New Baltic" ,"Courier New

63

Bold" ,"Courier New CE" ,"Courier New Italic" ,"Courier Oblique" ,"Cracked Johnnie" ,"Creepygirl" ,"Curlz MT" ,"Cursor" ,"Cutive

Mono" ,"DFKai-SB" ,"DIN Alternate" ,"DIN Condensed" ,"Damascus" ,"Damascus Bold" ,"Dancing Script" ,"DaunPenh" ,"David" ,"Dayton" ,"

DecoType Naskh" ,"Deja Vu" ,"DejaVu LGC Sans" ,"DejaVu Sans" ,"DejaVu Sans Mono" ,"DejaVu Serif" ,"Deneane" ,"Desdemona" ,"Detente" ,

"Devanagari MT" ,"Devanagari MT Bold" ,"Devanagari Sangam MN" ,"Didot" ,"Didot Bold" ,"Digifit" ,"DilleniaUPC" ,"Dingbats" ,"Distant

Galaxy" ,"Diwan Kufi" ,"Diwan Kufi Regular" ,"Diwan Thuluth" ,"Diwan Thuluth Regular" ,"DokChampa" ,"Dominican" ,"Dotum" ,"DotumChe

" ,"Droid Sans" ,"Droid Sans Fallback" ,"Droid Sans Mono" ,"Dyuthi" ,"Ebrima" ,"Edwardian Script ITC" ,"Elephant" ,"Emmett" ,"

Engravers MT" ,"Engravers MT Bold" ,"Enliven" ,"Eras Bold ITC" ,"Estrangelo Edessa" ,"Ethnocentric" ,"EucrosiaUPC" ,"Euphemia" ,"

Euphemia UCAS" ,"Euphemia UCAS Bold" ,"Eurostile" ,"Eurostile Bold" ,"Expressway Rg" ,"FangSong" ,"Farah" ,"Farisi" ,"Felix Titling"

,"Fingerpop" ,"Fixedsys" ,"Flubber" ,"Footlight MT Light" ,"Forte" ,"FrankRuehl" ,"Frankfurter Venetian TT" ,"Franklin Gothic Book"

,"Franklin Gothic Book Italic" ,"Franklin Gothic Medium" ,"Franklin Gothic Medium Cond" ,"Franklin Gothic Medium Italic" ,"

FreeMono" ,"FreeSans" ,"FreeSerif" ,"FreesiaUPC" ,"Freestyle Script" ,"French Script MT" ,"Futura" ,"Futura Condensed ExtraBold" ,"

Futura Medium" ,"GB18030 Bitmap" ,"Gabriola" ,"Gadugi" ,"Garamond" ,"Garamond Bold" ,"Gargi" ,"Garuda" ,"Gautami" ,"Gazzarelli" ,"

Geeza Pro" ,"Geeza Pro Bold" ,"Geneva" ,"GenevaCY" ,"Gentium" ,"Gentium Basic" ,"Gentium Book Basic" ,"GentiumAlt" ,"Georgia" ,"

Georgia Bold" ,"Geotype TT" ,"Giddyup Std" ,"Gigi" ,"Gill" ,"Gill Sans" ,"Gill Sans Bold" ,"Gill Sans MT" ,"Gill Sans MT Bold" ,"Gill

Sans MT Condensed" ,"Gill Sans MT Ext Condensed Bold" ,"Gill Sans MT Italic" ,"Gill Sans Ultra Bold" ,"Gill Sans Ultra Bold

Condensed" ,"Gisha" ,"Glockenspiel" ,"Gloucester MT Extra Condensed" ,"Good Times" ,"Goudy" ,"Goudy Old Style" ,"Goudy Old Style

Bold" ,"Goudy Stout" ,"Greek Diner Inline TT" ,"Gubbi" ,"Gujarati MT" ,"Gujarati MT Bold" ,"Gujarati Sangam MN" ,"Gujarati Sangam

MN Bold" ,"Gulim" ,"GulimChe" ,"GungSeo Regular" ,"Gungseouche" ,"Gungsuh" ,"GungsuhChe" ,"Gurmukhi" ,"Gurmukhi MN" ,"Gurmukhi MN

Bold" ,"Gurmukhi MT" ,"Gurmukhi Sangam MN" ,"Gurmukhi Sangam MN Bold" ,"Haettenschweiler" ,"Hand Me Down S (BRK)" ,"Hansen" ,"

Harlow Solid Italic" ,"Harrington" ,"Harvest" ,"HarvestItal" ,"Haxton Logos TT" ,"HeadLineA Regular" ,"HeadlineA" ,"Heavy Heap" ,"

Hei" ,"Hei Regular" ,"Heiti SC" ,"Heiti SC Light" ,"Heiti SC Medium" ,"Heiti TC" ,"Heiti TC Light" ,"Heiti TC Medium" ,"Helvetica" ,"

Helvetica Bold" ,"Helvetica CY Bold" ,"Helvetica CY Plain" ,"Helvetica LT Std" ,"Helvetica Light" ,"Helvetica Neue" ,"Helvetica

Neue Bold" ,"Helvetica Neue Medium" ,"Helvetica Oblique" ,"HelveticaCY" ,"HelveticaNeueLT Com 107 XBlkCn" ,"Herculanum" ,"High

Tower Text" ,"Highboot" ,"Hiragino Kaku Gothic Pro W3" ,"Hiragino Kaku Gothic Pro W6" ,"Hiragino Kaku Gothic ProN W3" ,"Hiragino

Kaku Gothic ProN W6" ,"Hiragino Kaku Gothic Std W8" ,"Hiragino Kaku Gothic StdN W8" ,"Hiragino Maru Gothic Pro W4" ,"Hiragino

Maru Gothic ProN W4" ,"Hiragino Mincho Pro W3" ,"Hiragino Mincho Pro W6" ,"Hiragino Mincho ProN W3" ,"Hiragino Mincho ProN W6" ,"

Hiragino Sans GB W3" ,"Hiragino Sans GB W6" ,"Hiragino Sans W0" ,"Hiragino Sans W1" ,"Hiragino Sans W2" ,"Hiragino Sans W3" ,"

Hiragino Sans W4" ,"Hiragino Sans W5" ,"Hiragino Sans W6" ,"Hiragino Sans W7" ,"Hiragino Sans W8" ,"Hiragino Sans W9" ,"Hobo Std" ,

"Hoefler Text" ,"Hoefler Text Black" ,"Hoefler Text Ornaments" ,"Hollywood Hills" ,"Hombre" ,"Huxley Titling" ,"ITC Stone Serif" ,"

ITF Devanagari" ,"ITF Devanagari Marathi" ,"ITF Devanagari Medium" ,"Impact" ,"Imprint MT Shadow" ,"InaiMathi" ,"Induction" ,"

Informal Roman" ,"Ink Free" ,"IrisUPC" ,"Iskoola Pota" ,"Italianate" ,"Jamrul" ,"JasmineUPC" ,"JavaneseText" ,"Jokerman" ,"JuiceITC" ,

"KacstArt" ,"KacstBook" ,"KacstDecorative" ,"KacstDigital" ,"KacstFarsi" ,"KacstLetter" ,"KacstNaskh" ,"KacstOffice" ,"KacstOne" ,"

KacstPen" ,"KacstPoster" ,"KacstQurn" ,"KacstScreen" ,"KacstTitle" ,"KacstTitleL" ,"Kai" ,"Kai Regular" ,"KaiTi" ,"Kailasa" ,"Kailasa

Regular" ,"Kaiti SC" ,"Kaiti SC Black" ,"Kalapi" ,"Kalimati" ,"Kalinga" ,"Kannada MN" ,"Kannada MN Bold" ,"Kannada Sangam MN" ,"

Kannada Sangam MN Bold" ,"Kartika" ,"Karumbi" ,"Kedage" ,"Kefa" ,"Kefa Bold" ,"Keraleeyam" ,"Keyboard" ,"Khmer MN" ,"Khmer MN Bold" ,"

Khmer OS" ,"Khmer OS System" ,"Khmer Sangam MN" ,"Khmer UI" ,"Kinnari" ,"Kino MT" ,"KodchiangUPC" ,"Kohinoor Bangla" ,"Kohinoor

Devanagari" ,"Kohinoor Telugu" ,"Kokila" ,"Kokonor" ,"Kokonor Regular" ,"Kozuka Gothic Pr6N B" ,"Kristen ITC" ,"Krungthep" ,"

KufiStandardGK" ,"KufiStandardGK Regular" ,"Kunstler Script" ,"Laksaman" ,"Lao MN" ,"Lao Sangam MN" ,"Lao UI" ,"LastResort" ,"Latha"

,"Leelawadee" ,"Letter Gothic Std" ,"LetterOMatic!" ,"Levenim MT" ,"LiHei Pro" ,"LiSong Pro" ,"Liberation Mono" ,"Liberation Sans" ,

"Liberation Sans Narrow" ,"Liberation Serif" ,"Likhan" ,"LilyUPC" ,"Limousine" ,"Lithos Pro Regular" ,"LittleLordFontleroy" ,"Lohit

Assamese" ,"Lohit Bengali" ,"Lohit Devanagari" ,"Lohit Gujarati" ,"Lohit Gurmukhi" ,"Lohit Hindi" ,"Lohit Kannada" ,"Lohit

Malayalam" ,"Lohit Odia" ,"Lohit Punjabi" ,"Lohit Tamil" ,"Lohit Tamil Classical" ,"Lohit Telugu" ,"Loma" ,"Lucida Blackletter" ,"

Lucida Bright" ,"Lucida Bright Demibold" ,"Lucida Bright Demibold Italic" ,"Lucida Bright Italic" ,"Lucida Calligraphy" ,"Lucida

Calligraphy Italic" ,"Lucida Console" ,"Lucida Fax" ,"Lucida Fax Demibold" ,"Lucida Fax Regular" ,"Lucida Grande" ,"Lucida Grande

Bold" ,"Lucida Handwriting" ,"Lucida Handwriting Italic" ,"Lucida Sans" ,"Lucida Sans Demibold Italic" ,"Lucida Sans Typewriter" ,

"Lucida Sans Typewriter Bold" ,"Lucida Sans Unicode" ,"Luminari" ,"Luxi Mono" ,"MS Gothic" ,"MS Mincho" ,"MS Outlook" ,"MS PGothic"

,"MS PMincho" ,"MS Reference Sans Serif" ,"MS Reference Specialty" ,"MS Sans Serif" ,"MS Serif" ,"MS UI Gothic" ,"MT Extra" ,"MV

Boli" ,"Mael" ,"Magneto" ,"Maiandra GD" ,"Malayalam MN" ,"Malayalam MN Bold" ,"Malayalam Sangam MN" ,"Malayalam Sangam MN Bold" ,"

Malgun Gothic" ,"Mallige" ,"Mangal" ,"Manorly" ,"Marion" ,"Marion Bold" ,"Marker Felt" ,"Marker Felt Thin" ,"Marlett" ,"Martina" ,"

Matura MT Script Capitals" ,"Meera" ,"Meiryo" ,"Meiryo Bold" ,"Meiryo UI" ,"MelodBold" ,"Menlo" ,"Menlo Bold" ,"Mesquite Std" ,"

Microsoft" ,"Microsoft Himalaya" ,"Microsoft JhengHei" ,"Microsoft JhengHei UI" ,"Microsoft New Tai Lue" ,"Microsoft PhagsPa" ,"

Microsoft Sans Serif" ,"Microsoft Tai Le" ,"Microsoft Tai Le Bold" ,"Microsoft Uighur" ,"Microsoft YaHei" ,"Microsoft YaHei UI" ,"

Microsoft Yi Baiti" ,"Minerva" ,"MingLiU" ,"MingLiU-ExtB" ,"MingLiU_HKSCS" ,"Minion Pro" ,"Miriam" ,"Mishafi" ,"Mishafi Gold" ,"

Mistral" ,"Modern" ,"Modern No. 20" ,"Monaco" ,"Mongolian Baiti" ,"Monospace" ,"Monotype Corsiva" ,"Monotype Sorts" ,"MoolBoran" ,"

Moonbeam" ,"MotoyaLMaru" ,"Mshtakan" ,"Mshtakan Bold" ,"Mukti Narrow" ,"Muna" ,"Myanmar MN" ,"Myanmar MN Bold" ,"Myanmar Sangam MN" ,

"Myanmar Text" ,"Mycalc" ,"Myriad Arabic" ,"Myriad Hebrew" ,"Myriad Pro" ,"NISC18030" ,"NSimSun" ,"Nadeem" ,"Nadeem Regular" ,"Nakula

64

" ,"Nanum Barun Gothic" ,"Nanum Gothic" ,"Nanum Myeongjo" ,"NanumBarunGothic" ,"NanumGothic" ,"NanumGothic Bold" ,"

NanumGothicCoding" ,"NanumMyeongjo" ,"NanumMyeongjo Bold" ,"Narkisim" ,"Nasalization" ,"Navilu" ,"Neon Lights" ,"New Peninim MT" ,"

New Peninim MT Bold" ,"News Gothic MT" ,"News Gothic MT Bold" ,"Niagara Engraved" ,"Niagara Solid" ,"Nimbus Mono L" ,"Nimbus Roman

No9 L" ,"Nimbus Sans L" ,"Nimbus Sans L Condensed" ,"Nina" ,"Nirmala UI" ,"Nirmala.ttf" ,"Norasi" ,"Noteworthy" ,"Noteworthy Bold" ,

"Noto Color Emoji" ,"Noto Emoji" ,"Noto Mono" ,"Noto Naskh Arabic" ,"Noto Nastaliq Urdu" ,"Noto Sans" ,"Noto Sans Armenian" ,"Noto

Sans Bengali" ,"Noto Sans CJK" ,"Noto Sans Canadian Aboriginal" ,"Noto Sans Cherokee" ,"Noto Sans Devanagari" ,"Noto Sans

Ethiopic" ,"Noto Sans Georgian" ,"Noto Sans Gujarati" ,"Noto Sans Gurmukhi" ,"Noto Sans Hebrew" ,"Noto Sans JP" ,"Noto Sans KR" ,"

Noto Sans Kannada" ,"Noto Sans Khmer" ,"Noto Sans Lao" ,"Noto Sans Malayalam" ,"Noto Sans Myanmar" ,"Noto Sans Oriya" ,"Noto Sans

SC" ,"Noto Sans Sinhala" ,"Noto Sans Symbols" ,"Noto Sans TC" ,"Noto Sans Tamil" ,"Noto Sans Telugu" ,"Noto Sans Thai" ,"Noto Sans

Yi" ,"Noto Serif" ,"Notram" ,"November" ,"Nueva Std" ,"Nueva Std Cond" ,"Nyala" ,"OCR A Extended" ,"OCR A Std" ,"Old English Text MT"

,"OldeEnglish" ,"Onyx" ,"OpenSymbol" ,"OpineHeavy" ,"Optima" ,"Optima Bold" ,"Optima Regular" ,"Orator Std" ,"Oriya MN" ,"Oriya MN

Bold" ,"Oriya Sangam MN" ,"Oriya Sangam MN Bold" ,"Osaka" ,"Osaka-Mono" ,"OsakaMono" ,"PCMyungjo Regular" ,"PCmyoungjo" ,"PMingLiU" ,

"PMingLiU-ExtB" ,"PR Celtic Narrow" ,"PT Mono" ,"PT Sans" ,"PT Sans Bold" ,"PT Sans Caption Bold" ,"PT Sans Narrow Bold" ,"PT Serif

" ,"Padauk" ,"Padauk Book" ,"Padmaa" ,"Pagul" ,"Palace Script MT" ,"Palatino" ,"Palatino Bold" ,"Palatino Linotype" ,"Palatino

Linotype Bold" ,"Papyrus" ,"Papyrus Condensed" ,"Parchment" ,"Parry Hotter" ,"PenultimateLight" ,"Perpetua" ,"Perpetua Bold" ,"

Perpetua Titling MT" ,"Perpetua Titling MT Bold" ,"Phetsarath OT" ,"Phosphate" ,"Phosphate Inline" ,"Phosphate Solid" ,"

PhrasticMedium" ,"PilGi Regular" ,"Pilgiche" ,"PingFang HK" ,"PingFang SC" ,"PingFang TC" ,"Pirate" ,"Plantagenet Cherokee" ,"

Playbill" ,"Poor Richard" ,"Poplar Std" ,"Pothana2000" ,"Prestige Elite Std" ,"Pristina" ,"Purisa" ,"QuiverItal" ,"Raanana" ,"Raanana

Bold" ,"Raavi" ,"Rachana" ,"Rage Italic" ,"RaghuMalayalam" ,"Ravie" ,"Rekha" ,"Roboto" ,"Rockwell" ,"Rockwell Bold" ,"Rockwell

Condensed" ,"Rockwell Extra Bold" ,"Rockwell Italic" ,"Rod" ,"Roland" ,"Rondalo" ,"Rosewood Std Regular" ,"RowdyHeavy" ,"Russel

Write TT" ,"SF Movie Poster" ,"STFangsong" ,"STHeiti" ,"STIXGeneral" ,"STIXGeneral-Bold" ,"STIXGeneral-Regular" ,"STIXIntegralsD" ,"

STIXIntegralsD-Bold" ,"STIXIntegralsSm" ,"STIXIntegralsSm-Bold" ,"STIXIntegralsUp" ,"STIXIntegralsUp-Bold" ,"STIXIntegralsUp-

Regular" ,"STIXIntegralsUpD" ,"STIXIntegralsUpD-Bold" ,"STIXIntegralsUpD-Regular" ,"STIXIntegralsUpSm" ,"STIXIntegralsUpSm-Bold" ,

"STIXNonUnicode" ,"STIXNonUnicode-Bold" ,"STIXSizeFiveSym" ,"STIXSizeFiveSym-Regular" ,"STIXSizeFourSym" ,"STIXSizeFourSym-Bold" ,

"STIXSizeOneSym" ,"STIXSizeOneSym-Bold" ,"STIXSizeThreeSym" ,"STIXSizeThreeSym-Bold" ,"STIXSizeTwoSym" ,"STIXSizeTwoSym-Bold" ,"

STIXVariants" ,"STIXVariants-Bold" ,"STKaiti" ,"STSong" ,"STXihei" ,"SWGamekeys MT" ,"Saab" ,"Sahadeva" ,"Sakkal Majalla" ,"Salina" ,"

Samanata" ,"Samyak Devanagari" ,"Samyak Gujarati" ,"Samyak Malayalam" ,"Samyak Tamil" ,"Sana" ,"Sana Regular" ,"Sans" ,"Sarai" ,"

Sathu" ,"Savoye LET Plain:1.0" ,"Sawasdee" ,"Script" ,"Script MT Bold" ,"Segoe MDL2 Assets" ,"Segoe Print" ,"Segoe Pseudo" ,"Segoe

Script" ,"Segoe UI" ,"Segoe UI Emoji" ,"Segoe UI Historic" ,"Segoe UI Semilight" ,"Segoe UI Symbol" ,"Serif" ,"Shonar Bangla" ,"

Showcard Gothic" ,"Shree Devanagari 714" ,"Shruti" ,"SignPainter-HouseScript" ,"Silom" ,"SimHei" ,"SimSun" ,"SimSun-ExtB" ,"

Simplified Arabic" ,"Simplified Arabic Fixed" ,"Sinhala MN" ,"Sinhala MN Bold" ,"Sinhala Sangam MN" ,"Sinhala Sangam MN Bold" ,"

Sitka" ,"Skia" ,"Skia Regular" ,"Skinny" ,"Small Fonts" ,"Snap ITC" ,"Snell Roundhand" ,"Snowdrift" ,"Songti SC" ,"Songti SC Black" ,"

Songti TC" ,"Source Code Pro" ,"Splash" ,"Standard Symbols L" ,"Stencil" ,"Stencil Std" ,"Stephen" ,"Sukhumvit Set" ,"Suruma" ,"

Sylfaen" ,"Symbol" ,"Symbole" ,"System" ,"System Font" ,"TAMu_Kadambri" ,"TAMu_Kalyani" ,"TAMu_Maduram" ,"TSCu_Comic" ,"TSCu_Paranar"

,"TSCu_Times" ,"Tahoma" ,"Tahoma Negreta" ,"TakaoExGothic" ,"TakaoExMincho" ,"TakaoGothic" ,"TakaoMincho" ,"TakaoPGothic" ,"

TakaoPMincho" ,"Tamil MN" ,"Tamil MN Bold" ,"Tamil Sangam MN" ,"Tamil Sangam MN Bold" ,"Tarzan" ,"Tekton Pro" ,"Tekton Pro Cond" ,"

Tekton Pro Ext" ,"Telugu MN" ,"Telugu MN Bold" ,"Telugu Sangam MN" ,"Telugu Sangam MN Bold" ,"Tempus Sans ITC" ,"Terminal" ,"

Terminator Two" ,"Thonburi" ,"Thonburi Bold" ,"Tibetan Machine Uni" ,"Times" ,"Times Bold" ,"Times New Roman" ,"Times New Roman

Baltic" ,"Times New Roman Bold" ,"Times New Roman Italic" ,"Times Roman" ,"Tlwg Mono" ,"Tlwg Typewriter" ,"Tlwg Typist" ,"Tlwg Typo

" ,"TlwgMono" ,"TlwgTypewriter" ,"Toledo" ,"Traditional Arabic" ,"Trajan Pro" ,"Trattatello" ,"Trebuchet MS" ,"Trebuchet MS Bold" ,"

Tunga" ,"Tw Cen MT" ,"Tw Cen MT Bold" ,"Tw Cen MT Italic" ,"URW Bookman L" ,"URW Chancery L" ,"URW Gothic L" ,"URW Palladio L" ,"

Ubuntu" ,"Ubuntu Condensed" ,"Ubuntu Mono" ,"Ukai" ,"Ume Gothic" ,"Ume Mincho" ,"Ume P Gothic" ,"Ume P Mincho" ,"Ume UI Gothic" ,"

Uming" ,"Umpush" ,"UnBatang" ,"UnDinaru" ,"UnDotum" ,"UnGraphic" ,"UnGungseo" ,"UnPilgi" ,"Untitled1" ,"Urdu Typesetting" ,"Uroob" ,"

Utkal" ,"Utopia" ,"Utsaah" ,"Valken" ,"Vani" ,"Vemana2000" ,"Verdana" ,"Verdana Bold" ,"Vijaya" ,"Viner Hand ITC" ,"Vivaldi" ,"Vivian" ,

"Vladimir Script" ,"Vrinda" ,"Waree" ,"Waseem" ,"Waverly" ,"Webdings" ,"WenQuanYi Bitmap Song" ,"WenQuanYi Micro Hei" ,"WenQuanYi

Micro Hei Mono" ,"WenQuanYi Zen Hei" ,"Whimsy TT" ,"Wide Latin" ,"Wingdings" ,"Wingdings 2" ,"Wingdings 3" ,"Woodcut" ,"X-Files" ,"

Year supply of fairy cakes" ,"Yu Gothic" ,"Yu Mincho" ,"Yuppy SC" ,"Yuppy SC Regular" ,"Yuppy TC" ,"Yuppy TC Regular" ,"Zapf

Dingbats" ,"Zapfino" ,"Zawgyi-One" ,"gargi" ,"lklug" ,"mry_KacstQurn" ,"ori1Uni"]

Listing A.9: Expanded Font list

65

Appendix B

Figures

(a) Dynamic Compressor (b) Oscillator Node

(c) Hybrid (d) Custom Signal Hybrid

Figure B.1: The frequency of the highest occurring fingerprint value in 30 iterations for individual
audio fingerprinting methods contd.

66

(e) Audio Source Hybrid (f) Channel Merge Hybrid

(g) Amplitude Modulation Hybrid (h) Frequency Modulation Hybrid

Figure B.1: The frequency of the highest occurring fingerprint value in 30 iterations for individual
audio fingerprinting methods

67

Vita

The author, Shekhar Chalise, was born in Kathmandu, Nepal. He obtained his bachelor’s de-

gree in Computer Engineering in 2015 from Tribhuvan University, Kathmandu, Nepal. He joined

the University of New Orleans Computer Science Master’s program in Fall-2019. Shekhar has

been working under Dr. Krishna Phani Kumar Vadrevu, in his Cybersecurity lab within the De-

partment of Computer Science, at the University of New Orleans. He is also working as a Software

Engineering Intern at LUCID LLC, New Orleans, LA and aspires to be a Software Engineer fo-

cusing on privacy and security. He worked on the study of stability and diversity of WebAudio

fingerprints as part of his Master thesis in computer science.

68

	Sounds of Silence: A Study of Stability and Diversity of Web Audio Fingerprints
	Recommended Citation

	List of Figures
	List of Tables
	Abstract
	Introduction
	Literature Review
	Browser Fingerprinting
	History
	Fingerprints
	Canvas Fingerprints
	Font Fingerprints
	Audio Fingerprints

	Background and Related Work

	 System Description
	Web Audio API
	Main Audio Node Interfaces
	AudioNode
	BaseAudioContext
	AudioContext
	OfflineAudioContext
	AudioBuffer
	OscillatorNode
	DynamicCompressor
	AnalyserNode
	GainNode
	ScriptProcessor
	ChannelMergerNode
	AudioDestinationNode

	Digital Signal Processing
	Frequency Modulation
	Amplitude Modulation

	Fingerprinting Methods
	DynamicCompressor Method
	OscillatorNode Method
	Hybrid Method
	Custom Signal Hybrid Method
	Audio Source Hybrid Method
	Channel Merge Hybrid Method
	Amplitude Modulation Hybrid Method
	Frequency Modulation Hybrid Method

	FingerprintJS2
	IP Information
	User Agent Information
	System Overview
	Hosting Stack
	User Study

	Evaluation
	Stability Analysis
	Statistical Analysis
	Cumulative Distribution Function based approach

	Time Analysis
	Diversity Analysis
	Network Graph based approach
	User-Agent Comparison

	Discussion
	Limitations
	Future Work
	Conclusion

	References
	Appendix Code snippets
	Appendix Figures
	Vita

