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m/sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 PIV configuration for flat plate investigations; side view (left) and cross-section
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.6 Experimental setup for flat plate experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Sample PIV image with plate edge indicated and relevant dimensions annotated . . 40
5.8 Inlet velocity function with respect to time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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Abstract

A Computational Fluid Dynamic (CFD) in-house code is developed to study unsteady charac-

teristics of incompressible oscillating boundary layer flow over a flat plate under laminar and in-

termittently turbulent condition using pseudo-compressible unsteady Reynolds Averaged Navier-

Stokes (RANS) model. In the in-house code, the two-dimensional, unsteady conservation of mass

and momentum equations are discretized using finite difference techniques which employs second

order accurate (based on Taylor series) central differencing for spatial derivatives and second

order Runge-Kutta accurate differencing for temporal derivatives. The in-house code employs

Fully Explicit-Finite Difference technique (FEFD) to solve the governing differential equations

of the mathematical model. In the study two different closure models are adopted, Chien’s (k–ε)

and Jones and Launder (k–ε) turbulence model. For the purpose of validation and verification of

the proposed pseudo-compressibility method, flow over a flat plate is chosen as benchmark case.

The numerically predicted velocities are compared to experimentally observed velocity fields us-

ing Particle Image Velocimetry (PIV) in laminar regime. The verification of the proposed model

is performed using Grid Convergence Index (GCI) method. The discretization errors observed

are less than 5% which are within the acceptable range.

Once verified and validated, the technique of pseudo-compressibility is use to simulate os-

cillating flow problem. The velocity fields predicted by the in-house code in laminar regime are

compared to the one given by the analytical solution to Stokes’ second problem of oscillating

flow. An intermittency equation (γ) is proposed which couples with Jones and Launder (k–ε)

along with unsteady RANS equations to simulate intermittently turbulent oscillating boundary

flows. Using the proposed unsteady pseudo-compressible NS and RANS models, numerical ex-

periments were conducted for unsteady cases for Reynolds number (based on Stokes’ thickness)

corresponding to laminar and intermittently turbulent flows, respectively. Predicted time depen-

dent velocity profiles and shear stress distributions are compared to LES results and experimental

xii



data. Turbulence properties during acceleration and deceleration phases are also predicted. The

sudden rise in shear stress during the acceleration phase of the oscillation, indicating the onset of

intermittence, is observed and discussed. Comparison of the results show that the observed devi-

ations between the velocity magnitudes predicted by the in-house code and experimental data are

within acceptable range for laminar and intermittently turbulent flow conditions. Based on the

results of the present study, one can conclude that the proposed unsteady pseudo-compressible

intermittent RANS model is capable of predicting the characteristics of oscillating external flows

successfully.

Keywords: CFD; Intermittent Turbulence; Pseudo-Compressible; Oscillating Boundary layer;

Finite-Difference; Wall Shear-Stress; Kinetic Energy; RANS
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Introduction

It is very common to encounter the phenomenon of incompressible flow in nature. Many engineers

working in disciplines of hydrodynamics, aerodynamics, coastal and offshore engineering have

to model fluid flows that are commonly incompressible in nature. Even the incompressible

form of equations, developed by Sir George Stokes and Claude Louis Navier, which governs

the fluid flow motions have a million-dollar prize on them for their existence and uniqueness

yet to be proved. These partial differential equations called Navier-Stokes (NS) equations are

simply too complicated to solve analytically; however, with powerful numerical techniques they

give approximate solutions to many real world fluid flow problems. The study of such fluid

flow problems numerically is called Computational Fluid Dynamics (CFD) and is used in many

engineering applications.

Many commercially available CFD packages solve incompressible form of NS equations using

pressure correction based approach such as SIMPLE (Semi-Implicit Method for Pressure Linked

Equations) or PISO (Pressure Implicit Splitting of Operators), as explained by Tannehill et al.

(1997). Even in the realm of numerical techniques, incompressible form of conservation are

delicate to solve. The sole reason for this is the absence of temporal derivative in mass the

conservation equation. To study incompressible flows using accurate and efficient numerical

methods, one requires a time derivative term in the continuity equation to make the pressure

waves generated of finite speed, which otherwise would be of infinite speed in incompressible

flows.

Aim 1: One such goal of this present study is to develop a computer code to investigate the

boundary layers in incompressible flows. Such is accomplished by using a method called

Pseudo-Compressibility, which introduces a time derivate term of density to the continuity

equations. Such computer code will be validated for accuracy with benchmark cases and
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experimental data and also verified with the established methods available for testing the

accuracy and robustness of such numerical methods (Celik et al. (2008)).

One very common application of incompressible flows that can be found in nature are oscil-

latory boundary layer flows. Understanding such flows is of importance due to their application

in wide variety of physical phenomenon such as coastal and geophysical flows, damping of waves,

biomedical applications for studying hemodynamics and also in many engineering applications

such as internal combustion engines for examining pulsating flows in turbocharger. Such oscillat-

ing flow have received quite attention since the early 1800’s. Stokes (1850) defined a formation

of boundary layer (Stokes layer) for an oscillating flow over a flat plate. This Stokes solution has

become a prototype for such unsteady boundary layer flows.

Aim 2: The next objective of this study thus becomes, to use the method of pseudo-compress-

ibility in developing a numerical solver to study oscillating boundary layer flows over a

stationary flat plate to determine shear stress profiles and boundary layer thickness.

Hsu et al. (2000) explained that to understand the shallow water sediment transportation,

one must first understand the interactions between surface gravity waves and sea bottom. As

the waves propagate from deep water to the coast there exits a phenomenon where flow on the

bottom bed becomes oscillatory in nature, and transition (intermittent turbulent) starts to occur

within the boundary layer from laminar to turbulent. There exists a need to understand these

oscillatory boundary layers for their velocities, turbulent properties and shear stresses.

This phenomenon is important; therefore, many studies (discussed in details in section 1)

have been conducted experimentally, using Large-Eddy Simulations (LES) and Direct Numerical

Simulations (DNS). LES and DNS have given much more insight on such flows with accuracy.

However, these techniques require a lot of computational power and time. Such may not be

available to many researchers, students or even industries. High-Performance Computing is

still in its developmental phase, on which the above mentioned numerical techniques rely on.

On the other hand, Reynolds-Averaged Navier-Stokes equations (RANS) along with linear eddy

viscosity turbulence close model is still the preferred method of modeling turbulence in a lot of

industrial applications. This is because RANS is faster, robust, easy to implement and foremost
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computationally inexpensive and give good results. By far, only three studies have been found

in open literature that study oscillating flow over a flat plate in intermittent turbulent regime

(discussed in section 1).

Aim 3: Thus the main objective of this study is, to investigate the oscillating boundary layer

flow over a stationary flat plate using method of pseudo-compressibility to solve RANS

equations along with a proposed intermittency k–ε–γ turbulence closure model.

One such phenomenon of the oscillating boundary layer flow, can be found in an undulatory

motion of a biological form used to propel themselves underwater. Such kind of motions have

been of interest to engineers and scientists in developing autonomous underwater vehicles or

biomimetic robots. One such study has been conducted at the University Of New Orleans (UNO)

under grant N00014-17-1-2099 titled, "Investigation into the Boundary Layer of an Anguilliform-

like Propulsor." The study involves understanding the fluid dynamics of an underwater robot that

mimics the motion of an anguilliform and is designed for wakeless swimming. To study such 3D,

unsteady flow problems accurately using LES or DNS can be challenging and computationally

expensive. Another challenge arises when the flow is intermittently turbulent for such complex

problems. To study this particular problem within realistic time frame, with available resources

and without compromising the accuracy, a RANS method would be a way to go. Therefore,

the motivation is to develop a simple intermittency turbulence closure model that can be used

along with a RANS equation to simulate and study such complex problems of an undualtory

anguilliform-like propulsor under water.
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1 Literature Survey

1.1 History Of Pseudo-Compressibility

A.J Chorin (1967) is the researcher who first proposed the method of pseudo-compressibility .

In his proposed formulation, a time derivative term of artificial density was introduced in the

continuity equation for incompressible flows. This term relates to pressure by an artificial com-

pressibility using an artificial equation of state. Chorin used explicit finite difference-techniques,

which employed the Dufort-Frankel scheme to solve for the governing differential equations for

steady state laminar flows only. He applied his technique to simulate flow inside a rectangu-

lar channel and thermal convection inside a closed cavity. He successfully demonstrated the

independence of the solution from an artificial compressibility factor.

Chang and Kwak (1984) presented an extensive explanation of the pseudo-compressibility

factor. The nature of pseudo-compressibility , physically and numerically, was well clarified by

these authors. They used implicit finite difference techniques to simulate laminar flow inside

an annular duct and over a cylinder. Their work was initiated to develop a computer code to

analyze the complex flow field observed in the hot gas manifold of Space Shuttle Main Engine

(Chang, Kwak, et al. (1985)). Their paper demonstrated the pivotal role played by the pseudo-

compressibility factor in convergence of the numerical solution and also identifies the criteria for

selecting the lower and upper-bounds of the same.

A three-dimensional application of the proposed pseudo-compressibility concept was demon-

strated first by Kwak and Chakarvarthy (1986). They used implicit finite difference techniques to

study laminar and turbulent flows over a cylinder and inside a channel. They adopted Baldwin

& Lomax model for their turbulent study. They also explained upper and lower bounds of the

pseudo-compressibility factor which was used in their code to predict laminar flow characteristics;

however, higher order smoothing was required near the walls to make algorithm stable.
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The accuracy of the pseudo-compressibility model was tested by S. Rogers et al. (1989) using

the code (INS3D) which was developed by Chang and Kwak (1984) & used by Chang, Kwak, et

al. (1985). The code simulated flow over a backward facing step and impulsively started circular

cylinder for unsteady laminar flows. Authors provided a detailed explanation of the effects on

numerical dissipation by addition of second-order accurate smoothing terms. The accuracy and

stability of the algorithm depends upon the proper selection of smoothing methods. Authors

presented accurate steady state solutions of the above mentioned simulations.

The model of pseudo-compressibility was used by S. Rogers et al. (1987) to simulate unsteady

flows. The authors developed a computer code to solve the governing differential equations

which adopted an upwind differencing scheme along with implicit solution algorithm to simulate

a steady state laminar flow inside a channel and unsteady flow inside an artificial heart with a

moving boundary. The authors claimed that the unsteady conservation of mass and momentum

equations, which are hyperbolic in pseudo-time, can be solved, using their code, by achieving a

steady state solution at each time step.

Soh and Goodrich (1988) used a finite difference scheme to solve unsteady incompressible

NS equation using pseudo-compressibility method. The authors used Crank-Nicolson implicit

scheme to solve the governing differential equations. They presented time accurate solutions for

two-dimensional fluid flows in square cavity with an impulsively starting lid and oscillating lid.

The authors claimed with their method they can extract the singularity in the drag on the lid for

an impulsively started cavity flow and also obtain a crisp periodicity in the solution of oscillatory

flows.

Chen and Pletcher (1993) solved the governing differential equations, which used the pseudo-

compressibility model, using Coupled Modified Strongly Implicit Procedure to simulate three-

dimensional free surface unsteady incompressible flows. Their study was on sloshing motion

in a spherical container undergoing motion characteristics of that experienced aboard a spin-

stabilized satellite. The authors successfully demonstrated tracking of free surface particles for

laminar flows using two different fluids (Glycerin & Kerosene). The authors were convinced that

their numerical simulations exhibit similar behavior as expected in the physical world, but there

was no experimental data available at that time to verify their results.
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Rahman and Sükonen (2001) developed pseudo-compressibility method which is charac-

terized by the pressure-based algorithm on non-orthogonal collocated grids for incompressible

fluid flow problems, using cell-centered finite volume approximation. The authors used a non-

traditional way of provoking the density perturbations, assisting the transformation between

primitive and conservative variables. They validate the proposed method by simulating forced-

and natural-convection inside some selected geometries. Their results indicate that the primi-

tive formulation, utilizing either the momentum-based dissipation scheme or the dual dissipation

scheme at the cell face to prevent nonphysical oscillations, has competency in producing satis-

factory stabilization for the iteration process.

ZhanSen et al. (2010) used implicit Lower Upper Symmetric Gauss-Siedel algorithm to solve

governing differential equations, which uses pseudo-compressibility model. The proposed pre-

conditioning of pseudo-compressibility method for time marching in solving incompressible NS

equations, which are stiff hyperbolic in nature. The authors presented the eigenvalues and eigen-

vectors for Jacobian preconditioned pseudo-compressibility NS equations and claim that a self

adaptive pseudo-compressibility factor can increase the convergence rate significantly and Roe’s

upwind scheme is superior to the second order central scheme for discretization.

Madsen and Schäffer (2006) used the method of pseudo-compressibility to a obtain linear

wave solution for progressive and standing waves. They used Euler equations excluding convec-

tive and viscous terms.

Later Srivastava et al. (2019) verified and validated the pseudo-compressibility model for

incompressible RANS and NS equations in laminar and intermittent turbulent regime respectively

for a flow over flat plate. They used the method of Grid Convergence Index, proposed by

Celik et al. (2008), for verification and used experimental data obtained using a Particle Image

Velocimetry technique for a flow over flat plate to validate of their computer code.

This study provides more details of the author’s work on developing a finite-difference fully

explicit solver to solve NS and RANS equations, along with turbulence closure model, for steady

and unsteady oscillating incompressible flows over a flat plate.
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1.2 Intermittent Turbulent Oscillating Flow

In fluid dynamics there exists a closed form solution for an oscillating boundary layer in deter-

mining the flow created by an oscillating solid surface. This problem is famously known as Stokes

second problem and named after Sir George Stokes. The flow is characterized by oscillating part

defined within layer of thickness δs = (2ν/ω)1/2, where ν is kinematic viscosity of fluid & ω is

frequency of oscillation. Then the Stokes Reynolds number Reδ = δsAω/ν, where A is amplitude

of oscillation. Stokes (1850) also presented a closed form analytical solution for oscillating flow

over a stationary infinite long plate. The solution of this problem forms the benchmark case for

many oscillating flow problems.

The past experimental studies conducted by Hino et al. (1983), Jensen et al. (1989), Akhavan

et al. (1991a) and Sarpkaya (1993) on oscillatory boundary layer flows observed the beginning

of turbulence as streaks or bursts toward the end of the acceleration phase and sustains in

deceleration part of the oscillation cycle. These experimental studies revealed that four distinct

flow regimes exist for oscillatory flow over a flat plate. These regimes are (a) Laminar regime

which is Reδ < 100. (b) Disturbed laminar regime that exits for 100 < Reδ ≤ 550, here small

perturbation occurs, which indicates onset of turbulence.(c) Intermittently turbulent regime,

where bursts or streaks of turbulent occurs during the end of acceleration phase and sustains

in deceleration phase of cycle for 550 < Reδ ≤ 3000.(d) Fully developed turbulent regime for

Reδ > 3000 throughout the cycle.

In 1989, Spalart and Baldwin (1989) used the method of DNS to simulate turbulent boundary

layer under free stream velocity that varies sinusoidally in time around zero mean. The results

of the authors’ study suggested that the oscillating boundary layer is believed to be linearly

stable, it exhibits transition stages; pre-transition and well developed turbulence in the different

parts of cycle. they also presented an algebraic turbulence model, designed and calibrated for

the oscillating flow. It yielded satisfactory results in agreement with DNS results.

Akhavan et al. (1991b) also studied transition to turbulence in bounded oscillatory stokes

flow using DNS. The authors’ results suggested that transition to turbulence in oscillatory Stokes

layers can be explained by secondary instability mechanism of two-dimensional finite amplitude
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waves to three-dimensional infinitesimal disturbances. The author claimed that value of the

transitional Reynolds number and the statistics of turbulent flow were well predicted by secondary

instability mechanism.

In 1998, Vittori and Verizzco (1998) studied intermittent turbulent oscillating flow over a

flat plate but imperfect wall, using DNS. The compared their results to experimental studies

conducted by Akhavan et al. (1991a) and Hino et al. (1983). The authors presented that in

intermittently turbulent regime, the vertically integrated specific kinetic energy is independent

of amplitude of wall imperfection and weakly dependent on Reynolds number based on Stokes

thickness. The authors concluded that while accelerating part of the cycle is characterized by

turbulence production, dissipation starts to be effective during the decelerating phase.

Hsu et al. (2000) studied oscillatory flow over a flat plate using LES and RANS methods.

The authors employed dynamic Subgrid scale (SGS) model, while Saffman’s turbulence model

in RANS. The authors compared RANS results with experimental data reported by Hino et

al. (1983). They reported the decrease in phase angle shift between wall shear stress and free

stream oscillations in intermittent turbulent regime when predicted by RANS and LES. The

authors concluded that because of an excellent agreement between their LES and RANS results

in oscillating flow structures as well as the wall shear stress, Saffman’s turbulence model is

applicable for unsteady flows.

Costamagna et al. (2003) simulated oscillating flow over a flat plate using DNS. The study

was performed for values of Reynolds number, based of Stokes boundary layer thickness, within

disturbed boundary layer and intermittent turbulent regime. They also suggested that small

imperfections in the wall played a fundamental role in triggering transition to turbulence. The

authors concluded that low speed streaks starts to appear during the end of the oscillating phase

and grows, oscillate and eventually break and dissipates because viscous effects near to the

wall. This streak instability mechanism is the dominant mechanism generating and maintaining

turbulence in oscillatory boundary layer flows.

In 2007 Salon et al. (2007) investigated intermittent oscillatory flow using LES that incorpo-

rated dynamic SGS model for Reδ = 1790. They compared their results to experimental results

obtained by Jensen et al. (1989). The authors’ results of dynamic LES model asymptotically
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converged towards their DNS with increased grid resolution. The authors successfully predict

and simulate the evolution of turbulence over the alternation of acceleration and deceleration

phases of cycle of oscillations.

LES simulations for oscillating boundary layer flows over smooth and rough walls was carried

by Radhakrishnan and Piomelli (2008) in fully turbulent flows. They compared several methods

for unresolved SGS stresses where none of the momentum transport eddies are resolved. The

authors claimed that the dynamic SGS eddy viscosity model predicted more accurate results

and they validated the LES model with experimental results by Jensen et al. (1989) in the fully

turbulent regime. The authors concluded that consistent application of boundary conditions

together with use of more advanced SGS model results in accurate flow prediction.

Shome (2013) numerically studied oscillating boundary layer flow over a flat plate using

RANS equations with a three equation (k− kL−ω) phenomenological eddy viscosity turbulence

model, developed by Walter and Cokljat (2008). Based on past studies, the author as well

identified the distinct flow regimes occurring in oscillatory boundary layer flow. The author

simulated oscillating flow over a flat plate using commercial CFD package (ANSYS). The Reδ

ranged from fully laminar to fully turbulent flows. They compared the predicted results for

velocity profile and wall shear stress to LES data by Salon et al. (2007) and experimental data

by Jensen et al. (1989) for intermittent turbulent regime. The author was able to predict pre-

transitional fluctuations which is believed to lead to onset of turbulence with sudden change

in shear stress profile. The profiles for laminar and turbulent kinetic energy near to the wall

along with Reynolds shear stress at profile at different phase angles were presented for low

intermittently turbulent Reynolds number (Reδ = 990). The author claimed that model did well

in the fully turbulent region as well.

All the studies mentioned above using LES and DNS successfully predicts the mean and

higher order turbulent statistics for the transitional and fully developed flow regimes and give

a successful understanding of oscillatory flow behavior. This however, comes at great computa-

tional expense. It can be observed from the above literature that the Reδ is limited to ≤ 1790

(Salon et al. (2007); Vittori and Verizzco (1998)). Radhakrishnan and Piomelli (2008) also

pointed out that application to DNS for fully and near to fully turbulent regime would require
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significant amount of computational time and resource. Such resources and computational power

may not be available to many researchers and students.

On the other hand the linear eddy viscosity based turbulence model along with RANS

equations provides a computational cheaper and robust alternative for industrial applications.

These models are widely used in engineering application. Even though these models provide

a cheaper alternative, there aren’t much studies available on the application of these models

on oscillatory boundary layer flows over a flat plate. The studies that can be found in open

literature are Blondeaux (1987), Hsu et al. (2000) & Shome (2013). Hence the objective of this

thesis is to study the oscillatory boundary layer flow over a flat plate using simpler, robust and

accurate two equation k-ε turbulence model, modified for the wall, along with RANS equations in

intermittently turbulent regime. The author expects to study the kinetic energy and dissipation

function during the phase where onset of transition occurs and the phase where the production of

turbulent kinetic energy reaches its peak value bridging the viscous and logarithmic layer in wall

bounded flows. Due to the nature of this eddy viscosity model, which assumes the turbulence

to be isotropic, there may be required a physics based calibration to the model to induce an

instability mechanism which creates onset of turbulence in intermittent flow regimes as indicated

by the above mentioned studies.

1.3 Undulatory Self-Propulsor

In biological systems, aquatic movements are a result of years of evolution which have been

perfected to achieve high efficiency. Amongst such movements, anguilliform locomotion is a form

of movement in which the swimmer propels itself forward by propagating a backward traveling

wave towards its posterior whose amplitude is increasing over the entire body length. Due to

its ability to achieve high propulsive efficiency, arguably, anguilliform swimming has attracted

attention of researchers and engineers from various areas in the field of marine propulsion (Lamas

and Rodriguez 2020). Anguilliform locomotion is a characteristic of long bodied forms such as

eels and lampreys.

One of the earliest theories on anguilliform locomotion and how it produces thrust was de-

veloped by Gray who studied eels extensively (Gray 1933). Later, one of the studies (M. S.
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Triantafyllou and G. S. Triantafyllou 1995) proved Gray’s calculations wrong and found the drag

to be lower for an undulating body corresponding to a rigid body. Lighthill (1960) developed

a slender body theory to study hydrodynamics on lampreys using ideal flow theory with vortex

shedding along with skin friction corrections to account for viscosity. Similar waving-strip ideal-

ization of swimming fishes were also studies by Lighthill (1970), Lighthill (1971) and Wu (1961).

Vorus (2005) developed a new theoretical model of steady self-propulsion of the waving strip that

predicted the production of thrust with no shed vortical wake and high Froude efficiency using

ideal flow theory.

Vorus and Taravella (2011) extended the same mathematical theory to be applied in three

dimensions and argued that anguilliform undulation with specific motion can generate reactive

swimming thrust through fluid inertial reaction without generating circulation, in context of

thin boundary layer flows. The lift and vortex shedding does not occur in high Reynolds number

anguilliform swimming in achieving the highest propulsive efficiency possible. The above two

studies form the theoretical groundwork for the present study. Such ideal flow theories for self-

propulsion with no shed vortical wake have been studied in past as well by Saffman (1967) and

Miloh and Galper (1993).

Many studies have been conducted on live eels using Particle Image Velocimetry (PIV).

Müller et al. (2001) visualized the wake field of live eels using PIV and concluded that they

generally undulate either for maximum swimming efficiency or maximum maneuverability. Their

findings also suggested that anguilliform swimmers shed two vortices per half tail-beat cycle,

which organizes itself into two distinct rows of vortices (Müller et al. 2001). Tytell and Lauder

(2004) found a similar wake structure of double row of wake vortex ring aligned in swimming

direction for Anguilla rostrata. They also used a PIV technique to study wake structures and

calculate the swimming efficiency of anguilliform using Lighthill’s elongated body theory.

Carling et al. (1998) investigated 2D self-propelled numerical simulations of the eel; however,

the predicted wake structure did not agree well with the experiments. Kern and Koumoutsakos

(2006) simulated self-propelled eel swimming in 3D and clarified the difference of Carling et

al. (1998) by pointing out that 2D simulations do not capture the actual 3D effects which are

important. The swimming motion was not specified a priori but was obtained through an
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evolutionary algorithm used to optimize swimming efficiency and burst efficiency. They observed

that for optimized swimming efficiency wake pattern did not result with reverse Kàrmàn vortex

sheet. This was consistent with postulation by Müller et al. (2001). They also observed that for

burst swimming the tail is responsible for the majority of the thrust, while in efficient swimming

the forward part is responsible for thrust generation.

Borazjani and Sotiropoulos (2009) performed numerical simulations to investigate hydrody-

namic performance of anguilliform swimmers and compared to that of carangiform swimmers as

a function of Reynolds number and Strouhal number. Their virtual swimmer is a 3D lamprey-

like flexible body undulating with prescribed kinematics same as experimental anguilliform type

(Gray 1933). They found that the net mean force is dependent on Strouhal number and the crit-

ical Strouhal number at which the force is zero is a decreasing function of Reynolds number and

approaches to the range of Strouhal numbers at which live anguilliform swimmers actually swim.

They also found that anguilliform swimmers generate thrust more smoothly than carangiform

swimmers and Froude efficiency peak in transitional regimes. The 3D wake structure is primarily

dependent on the Strouhal number.

Potts (2015) performed experimental studies on an in-house developed robotic eel and was

primarily interested in determining whether a circulation free wake field is achievable as proposed

by Vorus and Taravella (2011). Measurements of thrust, drag and lift were collected using a load

cell on the robot. The viscous drag on the robot was estimated by analytically computing the

thrust component thereby decoupling the robot’s drag from it predicted produced thrust. These

results were compared with the quasi-static empirical approach that was initially used to predict

the viscous drag (Vorus and Taravella 2011), and it is shown that the quasi-static approach

significantly under-predicts the viscous drag. The same eel robot is simulated for hydrodynamic

analysis in this study. The wake pattern was also investigated using PIV. Potts concluded

that with exact motion replication and constant swimming at design speed, the anguilliform

robot could achieve vortex free wake. Eastridge (2020) investigated the boundary layer on the

same anguilliform robot using PIV. Eastridge observed no turbulent structures or indication

of separation of boundary layer at design speed. Skin friction coefficients were estimated and

correlated with measurements made for an oscillating rigid cylinder and stationary rigid cylinder.
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The preliminary semi-empirical, quasi-static attempts to estimate frictional drag were shown to

under-predict the actual drag determined using the net force measurements taken while towing

the robot at its design speed which was undulating for that expected swimming speed. This is

in agreement with findings of Potts.

As pointed out by Borazjani and Sotiropoulos (2009) and many other studies, it is difficult

to perform experiments with live swimmers due to lack of control over the test subject. Perhaps,

this was tackled well by Potts (2015) by creating a robotic swimmer. It is still challenging

to estimate the complete hydrodynamic characteristics since obtaining 3D flow measurements

specially inside the boundary layer, to compute drag and thrust, are extremely difficult even

with state-of-the-art 3D PIV techniques that are currently available. Furthermore, pressure

field is an important parameter in defining the hydrodynamic forces (Dabri 2005). Therefore, a

carefully designed numerical experiment with fully controllable virtual swimmers can be used to

investigate hydrodynamics of swimmers over a wide range of flow regimes and body kinematics

(Borazjani and Sotiropoulos 2009).

Taravella and C. T. Rogers (2017) numerically investigated the theory proposed by Vorus

and Taravella (2011) using a model similar to the robot designed by Potts (2015). They found

good agreement with the theory for near body velocity. They concluded that it is plausible

for an undulating body to produce purely inertial thrust via body acceleration acting through

hydrodynamic added mass. The eel model simulated by Taravella and C. T. Rogers (2017) did

not have the ability to rotate the head and tail hemispherical caps, and body segments normal

to the anguilliform’s center-plane during the dynamic meshing process. The investigation is

also limited to inviscid flow simulation and computations of thrust and drag force were yet to

be discussed. Therefore, the present investigation concerns the development of a fundamental

understanding of fluid dynamics associated with particular autonomous underwater vehicle or the

anguilliform robot which could eventually meet some special naval and maritime objectives such

as intelligence, surveillance and reconnaissance missions; oceanographic observation; pipeline

inspection; etc. Furthermore, this idea of undulatory propulsion can be applied to improve

the mobility, efficiency and affordability of low-speed ships and submarines. In this present

investigation, the anguilliform robot is simulated with prescribed kinematics as proposed by
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Vorus and Taravella (2011) to investigate hydrodynamic characteristics and compute efficiency

in viscous and inviscid flow regimes. The rotational motion of head, tail hemispheres and body

segments are considered for in this study. The simulations are performed using structured hex-

mesh rather than unstructured tetra-mesh. The method of overset mesh is used to circumvent the

problem of decreasing quality of the mesh during re-meshing which is experienced in conventional

dynamic meshing method.
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2 Physical Model

To understand the oscillatory boundary layer flow over a flat plate using numerical techniques,

it fist advised to test the proposed numerical solver which uses methos of pseudo-compressibility

on a benchmark case. In such flow conditions, flow over a stationary flat plate serves as a good

benchmark case study.

2.1 Flat Plate

Flow over a stationary flat plate is adopted as the benchmark model to test the robustness and

accuracy of method of pseudo-compressibility . In numerical study mesh resolution plays an

extremely important role in achieving a correct converged solution. Especially in boundary layer

studies, the mesh near the wall has to be resolved to predict correct time and space evolution of

boundary layer and shear stresses. For this purpose, flow over a flat plate serves as a good base

model, and it also verifies and validates the accuracy of the numerical solver. Figure 2.1 shows

the model of flat plate used in this study.

δ(x) (Boundary Layer Thickness)

U∞

y (m)

0
x (m) L (m)Plate

Figure 2.1: Model for Flat Plate
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2.2 Oscillating Flow

The objective of this study is to investigate boundary layer in oscillating free stream over a flat

plate. Figure 2.2 represents the physical model which will be used to solve for the unknowns in

the time dependent oscillating boundary layer flows. The plate is infinitely long and the flow

driven by zero mean harmonic pressure gradient (Salon et al. 2007, Radhakrishnan and Piomelli

2008 & Shome 2013) The harmonic pressure gradient in stream wise direction can be given:

δ(t) (Boundary Layer Thickness)

y (m)

0
x (m)

Stationary Plate

u = uosin(ωt)

Oscillating Free Stream

Figure 2.2: Model for Oscillating Free Stream

dP (t)

dx
= −ρUrefω cos(ωt)

where P is kinematic pressure and this gives the following free stream velocity:

u(t) = ρUref sin(ωt)
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3 Mathematical Model

3.1 Governing Differential Equations

The conservation equation for mass and momentum for two dimensional, unsteady, viscous,

incompressible, sub-sonic and turbulent flow can be written as follows.

The continuity equation:
∂ũj
∂xj

= 0 (3.1)

The RANS momentum equation :

ρ

[
∂ũi
∂t

+
∂(ũj ũi)

∂xj

]
= − ∂p̃

∂xi
+

∂

∂xj

(
µ
∂ũi
∂xj

)
+
∂τij
∂xj

(3.2)

where convective term in Equation 3.2 is expressed in conservative form, and:

τij = −ρu′iu′j (3.3)

is Reynolds-stress term that incorporates the effect of turbulence on the mean stresses. The

Reynolds stress-tensor is symmetric, which includes diagonal components as normal stresses and

off-diagonal components as shear stresses. The system of Equations 3.1 and 3.2 is not closed yet,

as the Reynolds-stress tensor contains six independent unknowns.

3.2 Turbulence Model

3.2.1 Boussinesq Assumption

The problem of closure of RANS equation requires the Reynolds-stresses in Equation 3.2 to be

modeled in terms of mean viscous stress tensor. A common method employs a constitutive rela-

tion called “Boussinesq Assumption” which relates Reynolds-stresses to mean velocity gradients
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through artificial viscosity called “eddy viscosity” or “turbulent viscosity” and is given as:

− ρu′iu′j = 2µtS̃ij −
2

3
kρδij (3.4)

where turbulence kinetic energy is defined as:

k ≡ ke′ = 1

2
u′iu
′
i (3.5)

where µt is kinetic eddy viscosity and S̃ij is mean strain rate tensor:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(3.6)

The assumption is appropriate as it assumes that the eddy viscosity is an isotropic scalar quantity-

which according to Alfonsi (2009) is not. The turbulent viscosity is considered to be uniform in

all directions within the computational cell. The turbulent kinetic energy is determined from an

energy balance equation of the form:

∂k

∂t
+
∂(ũjk)

∂xj
= −

∂D′j
∂xj

+ P ′ − ε′ (3.7)

Here D′j is Turbulent diffusion, P ′ is turbulent energy production, and ε′ is turbulent dissipation

terms.

3.2.2 Chien’s Low Reynolds k–ε model

The closure models for RANS equation are modeled to represent higher order moments of velocity

fluctuations in terms of lower order moments. This is possible directly in turbulent viscosity (also

called “First order” models) models. Due to success of these models in study of basic physical

fluid flows phenomenon coupled by their advantage of less dependency on computational power.

To simulate the problem of flow over flat plate this study adopts the use of Standard k–ε model

modified near to the wall as per Chien (1982) modification.

The Turbulent Kinetic energy defined by Low Reynolds k–ε closure model (Chien’s model)
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adopted in this study is defined by:

∂k

∂t
+
∂(ũjk)

∂xj
=

1

ρ

∂

∂xj

[(
µ+

µt
Prk

)
∂k

∂xj

]
− τij

∂ũi
∂xj
− ε− 2µk

ρy2
(3.8)

The Turbulent dissipation function is defined as:

∂ε

∂t
+
∂(ũjε)

∂xj
=

1

ρ

∂

∂xj

[(
µ+

µt
Prε

)
∂ε

∂xj

]
− Cε1f1

ε

k
τij
∂ũi
∂xj
− Cε2f2ε

2

k

− 2µεe−y
+/2

ρy2
(3.9)

The constants and kinetic eddy viscosity are defined as:

µt =
Cµfµρk

2

ε
Cµ = 0.09 fµ = 1− e−0.0115y+

Pr = 1.0 Pre = 1.3 Cε1 = 1.35

Cε2 = 1.80 f1 = 1 (3.10)

The f2 in Equation 3.9 is defined as:

f2 = 1− 0.22e
−
(
Ret
6

)2

, Ret =
ρk2

µε
(3.11)

The effective viscosity that occurs in Equation 3.2 after substitution of Reynolds-stresses from

Equations 3.3 and 3.4 is defined as:

µeff = µ+ µt (3.12)

3.2.3 Jone and Launder k–ε model

Justesen and Spalart (1990) showed that Chien’s k–ε model was calibrated using only experi-

mental channel-flow data and flat plate boundary layer data. There were evidence from DNS

that this data were not very accurate near the wall. Also for the case of the time dependent

oscillating flow problem the model does not do well near the wall due to wall functions. Therefor

to study the intermittent turbulent oscillating flow, the base model chosen is by Jones and Laun-

der (1972) due to its simplicity and absence of wall functions. The eddy viscosity is modeled
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using turbulent Reynolds number and is free from functions based on distance from the wall.

The turbulent kinetic energy is defined as:

∂k

∂t
+
∂(ũjk)

∂xj
=

1

ρ

∂

∂xj

[(
µ+

µt
Prk

)
∂k

∂xj

]
+ τij

∂ũi
∂xj
− ε− 2ν

(
∂
√
k

∂xj

)2

(3.13)

The Turbulent dissipation function is defined as:

∂ε

∂t
+
∂(ũjε)

∂xj
=

1

ρ

∂

∂xj

[(
µ+

µt
Prε

)
∂ε

∂xj

]
+ Cε1f1

ε

k
τij
∂ũi
∂xj
− Cε2f2ε

2

k

+ 2ννt

(
∂2ũj
∂x2j

)2

(3.14)

The constants and kinetic eddy viscosity are defined as:

µt =
Cµfµρk

2

ε
Cµ = 0.09 fµ = exp

(
−2.5

(1 +Rt/50)2

)
Pr = 1.0 Pre = 1.3 Cε1 = 1.44

Cε2 = 1.92 f1 = 1 (3.15)

The f2 in Equation 3.14 is defined as:

f2 = 1− 0.3 exp
(
−Re2t

)
, Ret =

ρk2

µε
(3.16)

The effective viscosity that occurs in Equation 3.2 after substitution of Reynolds-stresses from

Equations 3.3 and 3.4 is defined as:

µeff = µ+ µt (3.17)
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3.3 Non-Dimensional form

The non-dimensionalization of the independent and primitive variables can be done using:

x̄ =
x

Lref
ȳ =

y

Lref
ū =

u

Uref

v̄ =
v

Uref
t̄ =

tUref
Lref

p̄ =
p

ρU2
ref

3.4 Pseudo-Compressibility

The difficulty in numerically solving laminar incompressible Navier-Stokes flow equations is the

absence of the temporal term for pressure(or density), which arises due to absence of the equation

of state, in the continuity equation. This void/absence decouples the continuity and momentum

equations. As mentioned by Chen (1990), numerical methods developed for compressible flows

are not appropriate for solving low Mach (<0.3) flows. Issa (1983) found that when density is

used as primitive variable for incompressible flows, the pressure gradients in momentum equations

become very sensitive to variation in density. The sensitivity causes round-off error to sometimes

grow and dramatically slow down the convergence rate of calculation. Chorin (1967) is the

first to propose an idea to circumvent the difficulty of pressure decoupling by introducing a

method called Pseudo-Compressibility or Artificial-Compressibility. The idea is to introduce

a time derivative term of artificial density in continuity equation which relates to the actual

thermodynamic pressure in the momentum equation. This solves the problem of decoupling.

Hence the continuity and momentum equations for turbulent flows become:

∂ρ̄

∂t̄
+
∂ūj
∂x̄j

= 0 (3.18)

∂ūi
∂t̄

+
∂(ūj ūi)

∂x̄j
= − ∂p̄

∂x̄i
+

1

Re

∂

∂x̄j

[(
1 +

µt
µ

)
∂ūi
∂x̄j

]
(3.19)

where ρ̄ is the artificial density and is related to non-dimensional thermodynamic pressure by:

ρ̄ =
p̄

β
, where β is artifical compressibility (3.20)
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For steady-state flow case t̄ ≡ τ , an iteration time, analogous to real time in compressible flows.

The system of equation for incompressible flows are of elliptic type. However, after the modifica-

tion as per Pseudo-Compressibility the system of Equations 3.18 and 3.19 becomes hyperbolic-

parabolic which are often less computationally expensive to be solved than elliptic equations.

As per Chang and Kwak (1984), the pressure waves propagate with infinite speed in elliptic

type formulation but in hyperbolic-parabolic, these pressure waves have finite speeds. The mag-

nitude of the pressure waves depends upon the parameter β. This is a disposable parameter,

analogous to relaxation parameter. This enables the system of equation to converge until di-

vergence free velocity is obtained to satisfy incompressible condition and doing so, the effect of

pseudo-compressibility decreases as the solution is reached to steady state. Hence Chorin (1967)

found that solution does not depend on β but the speed at which the solution converges does.

The above formulation is analogous to low speed compressible flows. In fact one can define an

artificial speed of sound, c̄, for above formulation as:

c̄ =
1√
β

(3.21)

Where artificial Mach number M can be defined as

M =
Re

c̄
max

√
ū2 + v̄2 (3.22)

In this study, M <1 for flow simulated using pseudo-compressibility. The method of pseudo-

compressibility can be extended to unsteady flows like oscillating flows by modifying Eqs 3.18

and 3.19 as:
∂ρ̄

∂τ̄
+
∂ūj
∂x̄j

= 0 (3.23)

∂ūi
∂τ̄

= −∂ūi
∂t̄
− ∂(ūj ūi)

∂x̄j
− ∂p̄

∂x̄i
+

1

Re

∂

∂x̄j

[(
1 +

µt
µ

)
∂ūi
∂x̄j

]
(3.24)

The above system is iterated in pseudo-time τ at a particular time step till divergence free field

is satisfied i.e, ∂p∂τ = 0 and ∂ui
∂τ = 0.
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4 Numerical solution method

A Fully Explicit Finite Difference (FEFD) method is adopted to solve the governing differential

equations presented in Chapter 3 along with the boundary condition. The discretization scheme

adapted for solution method along with grid generation scheme and solution algorithm used for

determining the primitive variables for the various cases under study are presented below (for

laminar and intermittently turbulent regimes).

4.1 Computational Domain

A numerical study was conducted to validate and verify the accuracy of pseudo-compressibility

model. Specifically to study the convergence of RANS equations with NS equations in intermit-

tent turbulent regime for unsteady flows. For this purpose the first or base model is chosen as

flow over a flat plate. To accomplish this study of primitive variables within the boundary layer,

the computational domain size is chosen to be 0.0254×0.0254 m (stream wise × wall normal).

The wall normal domain is sufficiently large enough to ensure no obstruction in the boundary

layer growth for highest Reynolds number used in this study. The stream wise extent is large

enough to keep the aspect ratio of mesh below 5 for all computational studies. The working fluid

is taken as water (ρ=998.2 kg/m3). Figure 4.1 shows a typical finite difference grid (similar grid

∆x

∆y

φi,j φi+1,j

φi,j+1

φi,j−1

φi−1,j

i

j

Computational Cell

Figure 4.1: Typical Finite Difference Grid & Computational Cell

is adopted by this study) along with graphical representation of computational cell. The grid or
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meshes generated for this study on which governing differential equations along with boundary

conditions are discretized and solved are presented below. The meshes are stretched and cells

are collapsed near the wall to achieve finer spatial resolution for study of boundary layer flows.

4.2 Grid Generation Scheme

In cases of wall bounded flows, the gradients of primitive variables are high near the wall which

actually forms the boundary layer. Hence to study the distribution of unknown variables (ve-

locity, pressure, kinetic energy and dissipation function) inside the boundary, the mesh near the

wall needs to be finer. Another need for finer mesh near the boundary is to satisfy the criteria of

y+<5 to catch the viscous sublayer in intermittently turbulent flows, which needs the mesh to

be extremely fine near the wall. However, making too fine mesh outside the boundary layer will

only increase the computation time as the free stream flow does not change. Hence we adopt

the technique of stretching the mesh near the wall in transverse direction of the flow. The mesh

in stream-wise direction is equal/uniform. Mesh clustering is achieved near boundaries using

transformation adopted from Özişik (1994):

ξ = x; η = 1− ln(A(y))

ln(B)
; A(y) =

β̄ + (1− y/h)

β̄ + (1 + y/h)
; where B =

β̄ + 1

β̄ − 1
(4.1)

Here β̄ is the stretching factor ranging between 1<β̄<∞. As the values approaches 1, more grids

are clustered near boundary. The back transformation to x and y domain is achieved through:

x = ξ; y =

[
(β̄ + 1)− (β̄ − 1)(B1−η)

1 +B1−η

]
h (4.2)

The governing differential equations are solved in ξ and η domain and then back transformed to

x and y coordinates. Figures 4.2 & 4.4 shows meshes adopted for Laminar and Intermittent

turbulent flow studies. 81×81 & 81×400 (stream wise × wall normal) for laminar and intermit-

tent turbulent cases respectively. Figures 4.3 & 4.5 shows the magnified version of two meshes

near the wall.
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Figure 4.2: Computational Mesh for flow in Laminar regime (81×81)

4.3 Discretization Method

The thrust of this study is to investigate intermittently turbulent oscillating flow over a flat

plate in incompressible flow using pseudo-compressibility. The governing differential equations

used in the in-house computer code to predict the unknowns are discretized using explicit finite

difference techniques. The terms in the governing differential equations are grouped as temporal,

convective, pressure and viscous terms.

4.3.1 Temporal Term

Considering φ be a general independent variable. The temporal term are discretized using second

order Runge-Kutta central differencing:

∂φn+1

∂t
=

3φn+1 − 4φn + φn

2∆t
(4.3)
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Figure 4.3: Mesh near the wall for flow in Laminar regime

4.3.2 Pseudo-Temporal Term

The temporal pseudo-term in Eq 3.24 is discretized using first order backward differencing:

∂φn+1

∂t
=
φn+1 − φn

∆t
(4.4)

4.3.3 Convective Term

The convective term in RANS Eq 3.23, closure model 3.13 & 3.14 and NS Eq 3.24 (without Boussi-

nesq Assumption) for intermittently turbulent and laminar flows respectively are discretized using

second order central differencing:

∂φni,j
∂x

=
φni+1,j − φni−1,j

2∆x
(4.5)

Except the convective term in stream-wise direction is discretized using upwind scheme as sug-

gested by S. Rogers et al. (1989)
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Figure 4.4: Computational Mesh for flow in Intermittent Turbulent regime (81×400)

4.3.4 Pressure Term

The pressure term is discretized using second order central differencing according to Equation

4.5.

4.3.5 Viscous Term

The viscous terms are also discretized using second order central differencing:

∂2φni,j
∂x2

=
φni+1,j − 2φni,j + φni−1,j

∆x2
(4.6)

The diffusion and generation term in the k − ε turbulence model Equations (3.8 & 3.9) are also

discretized using second-order central differencing.
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Figure 4.5: Mesh near the wall for flow in Intermittent Turbulent regime
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δ(x)

u = U∞
v = 0

Figure 4.6: Computational Domain with Boundary Conditions

4.4 Boundary Conditions

4.4.1 Flat Plate

Figure 4.6 shows the computational domain of 0.0254×0.0254 m with boundary conditions for a

flow over a flat plate. The boundary conditions are as follows. The bottom boundary plate, is

treated as an impermeable wall with no slip condition. The vertical and horizontal velocity are
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prescribed zero at the wall. Since it is nearly parallel flow, the derivative of horizontal velocity in

y-direction at the top boundary can be prescribed as zero and the vertical velocity is prescribed

as zero too. For the governing differential equations to be well posed, the horizontal and vertical

velocities are interpolated at the exit boundary and pressure is prescribed as Patm. At inlet, the

free stream horizontal velocity Uref is prescribed with vertical velocity as zero. The k-ε values at

the bottom wall is prescribed as zero (Chien 1982) and derivatives of it at the top boundary in

y-direction is prescribed zero. At the inlet, values to k-ε is prescribed as 10−6 and at exit they

are extrapolated.

4.4.2 Oscillating Flow

x

y

0 u = 0, v = 0 Amplitude(m)

Amplitude(m)

PeriodicBC

∂u
∂y

= 0, ∂v
∂y

= 0

δ(t)

PeriodicBC u = uo sinωt

Figure 4.7: Computational Domain with Boundary Condition for Oscillating Flow

Figure 4.7 shows the computational domain for the oscillating flow over a flat plate problem.

The size of computational domain depends on the amplitude which depends on the Reynolds

number chosen. The boundary conditions are as follows. The bottom boundary plate, is treated

as an impermeable wall with no slip condition. The vertical and horizontal velocity are prescribed

zero at the wall. The kinetic energy and dissipation function is also applied zero at the wall.

The derivatives of primitive variables in the y-direction are prescribed 0 at the top boundary.

Periodic boundary conditions are prescribed at the inlet and outlet to simulate infinitely long

plate. The flow is driven by harmonic pressure gradient as discussed in chapter 2. Since it is

an unsteady problem, the initial conditions are, u and v as zero. Turbulent kinetic energy (k)
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and dissipation function (ε), is calculated based on the turbulent intensity of 1.5% and turbulent

viscosity ratio of 100.

4.5 Solution Procedure

The solution procedure adopted to solve laminar and intermittently turbulent flows require mod-

ified pseudo-compressibility Equation 3.18 to be solved for artificial density using velocities from

previous iteration. The dynamic pressure is solved using Eq 3.20, where β is fixed for a par-

ticular time step and is calculated using pseudo-mach number, as per relations 3.21 and 3.22

and already converged velocities from previous time step. The horizontal and vertical velocities

at the current iteration are calculated using discretized form Equation 3.19. Turbulent flows

requires discretized form of Equations 3.8 and 3.9 to be solved for calculation kinetic energy

and dissipation function which is needed to solve for effective (3.12) and eddy viscosity at each

iteration. The boundary conditions remains fixed while the iterations proceeds in pseudo-time

to achieve divergence free velocity field. This is checked using convergence criterion on each

primitive variable as: 
im,jm∑
i,j=1

(
φk+1
n −φkn
φk+1
n,rms

)2
im × jm


0.5

≤ 10−6 (4.7)

Once the convergence is achieved, then the boundary conditions are updated and the solution

moves to next time step and iterations begin all over again. The artificial compressibility β is

calculated again at each time step, using relation 3.21 and 3.22 and velocities from previous

time step, before the solution enters iteration loop at a particular time step. The pseudo-mach

number remains fixed at every time step.
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5 Flat Plate

5.1 Verification

The definition of Verification dictates the establishment of procedure for accuracy or validity

of something. The objective of computational fluid dynamics is to model and predict results

for physical events for which experimental data is not available. With rapid advancement in

computing power and cost effective nature of numerical modeling has made CFD and important

tool in designing and studying engineering problems. As per Feritas (1993), numerical simula-

tion, just like physical experiments, are also needed to be evaluated for numerical errors and

uncertainty and techniques for such processes are less well developed and accepted. The Fluids

Engineering Division of ASME has worked on estimation and control of numerical uncertainty

and error estimation in CFD studies. Celik et al. (2008) has established one such method called

Grid Convergence Index (GCI) for evaluating numerical accuracy and uncertainty of a CFD

simulation. This helps in verification of any computer code which is written for numerical study.

This section elaborates more on use of GCI method to verify the accuracy and determine the

numerical uncertainty for the Pseudo-Compressibility model as explained by Srivastava et al.

(2019). In addition to GCI, mesh and time independent study is also conducted to determine

the optimum mesh size and time step (for unsteady case) for laminar flows.

5.1.1 Mesh Independence Study

To verify grid independence for the pseudo-compressibility model, numerical simulations were

repeated for three different meshes for Re=2099. Three meshes uniformly spaced grid were

chosen, 41×41, 61×61 & 81×81. The general characteristic of the contour plot were changed to

change very little, however, predicted velocities close to the wall at the trailing edge for flow over

a flat plate, were better with 81×81 mesh size (also seen in Figure 5.2). As it can be observed
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from Table 5.1, there is only 1.399% change in ūmax from 41×41 to 81×81. To verify further,

a finer grid of 121×121 was chosen however, no significant changes were observed in velocity

profiles.

Table 5.1: Comparison of maximum ū for three meshes at ȳ=0.11

Meshes ūmax
% Deviation from 81×81

mesh results

41×41 1.0635 1.399
61×61 1.0721 0.4026
81×81 1.0733 0.0000

5.1.2 Time Independence Study

A time increment study was conducted for laminar flow regimes for Re=2099. It was observed

due to the selection of pseudo-compressibility factor (δ) for fast convergence; FEFD method

requires minimum of 10−4 t̄. It can be observed from Table 5.2 that only 0.0093% change in

ūmax and any time increment smaller than this value did not result any significant changes in

magnitude of predicted velocities. For the present study a ∆t̄ of 10−5 was chosen to attain a

required stable convergence, even for turbulent flows.

Table 5.2: Comparison of maximum ū for three ∆t̄ at ȳ=0.11

∆t̄ ūmax
% Deviation from 10−6

time step results

10−4 1.0729 +0.0373
10−5 1.0734 -0.0093
10−6 1.0733 0.0000

5.1.3 Grid Convergence Index

The methodology and equations used for calculation of uncertainty estimation and GCI index

presented below are verbatim from Celik et al. (2008).
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Non-dimensional horizontal velocity, u

N
o
n
-d
im

e
n
si
o
n
al
ve
rt
ic
al
d
is
ta
ce
,y

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1e-4
1e-5
1e-6

Figure 5.1: Horizontal Velocity Profiles at the outlet for three different time increments for Re
2099
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1. Defining representative cell size h, for two dimension;

h =

√√√√ 1

N

N∑
i=1

(∆Ai) (5.1)

∆Ai is the area of ith computational cell, and N is total number of cells used in compu-

tation.

2. Select three different grid sizes and run the simulation and determine the value of variable,

example φ. The grid refinement factor r = hcoarse
hfine

is recommended to be greater than 1.3.

3. Let h1<h2<h3 and r21 = h1/h2, r32 = h3/h1, and calculate the apparent order p using

p =
1

ln(r21)
|ln(|ε32 − ε21|) + q(p)| (5.2)

where q(p) = ln

(
rp21 − s
rp32 − s

)
(5.3)

s =1.sgn(ε32/ε21) (5.4)

where ε32 = φ3 − φ2, ε21 = φ2 − φ1 and above equations can be solved using fixed point

iteration, with initial guess equal to the first term. Negative values of ε32/ε21 are an

indication of oscillatory convergence.

4. Calculate the extrapolated values from

φ21ext = (rp21φ1 − φ2) / (rp21 − 1) (5.5)

similarly, calculate φ32ext.

5. Calculate the following error estimates; Approximate relative error:

e21a =

∣∣∣∣φ1 − φ2φ1

∣∣∣∣ (5.6)

Extrapolated relative error:

e21ext =

∣∣∣∣φ21ext − φ1φ21ext

∣∣∣∣ (5.7)
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Fine Grid Convergence Index (GCI):

GCI21fine =
1.25e21a
rp21 − 1

(5.8)

For the purpose of validation and verification of Pseudo-Compressibility model, flow over a flat

plate is chosen as a benchmark case. The computational domain is 2D plane of 0.0245×0.0254

m, the free stream velocity was calculated from Reynolds number, based on characteristic length

of 0.0254 m, to be 0.0941 m/sec. Three mesh configurations were considered (41×41, 61×61 and

81×81) for GCI calculation. 42 points along the outlet plane at trailing edge were chosen for

calculation based on local parameter of non-dimensional horizontal velocity, ū.

Table 5.3: Sample Calculation for Discretization Error

Terms φ

N1,N2,N3 81×81,61×61,41×41
r12 1.3278
r32 1.4878
φ1 1.0554
φ2 1.0734
φ3 1.0759
p 0.1074-8.6406

pavg 2.1790
φext21 1.0780
e21a 1.714%
e21ext 4.801%

GCI21ext 5.726%

Table 5.3 illustrates the calculation of this procedure. GCI values were calculated with non-

dimensional horizontal velocity as local parameter determining the numerical uncertainty. Figure

5.2 show outlet profiles for three different grids used (it is expanded to see the differences) and

Figure 5.3 show same with extrapolated values calculated using global order of accuracy. The

local order of accuracy ranged from 0.1074 to 8.6406 with global average of 2.179. Oscillatory

convergence was observed in 2.439% of 42 points. Two separate GCI were calculated using local

and global average of accuracy. The maximum GCI using local order of accuracy is 5.726%
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Figure 5.2: Horizontal Velocity Profiles at the outlet for three different meshes at x=0.0254 m
and ū∞ = 0.0941 m/sec

which corresponds to non-dimensional velocity of ±0.00568. The maximum GCI using global

average is 2.549% which corresponds to non-dimensional velocity of ±0.000992. It is clear from

these values that discretization error is small. The error bar plot show in Figure 5.4 indicates

numerical uncertainty plotted with extrapolated values.

5.2 Validation

5.2.1 Experimental Setup

Experimental investigation is required to validate the accuracy of the numerical model. For this

purpose a non-intrusive technique which measures the instantaneous velocity of fluid particles,

called Particle Image Velocimetry (PIV) is adopted. PIV is also used to study the viscous effects

on the hydrodynamic drag of an undulatory anguiliform like propulsors in broader scope of this

project. In the initial stages of the same project this technique is employed to study uniform
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Figure 5.3: Horizontal Velocity Profiles at the outlet for three different meshes and extrapolated
values at x=0.0254 m and ū∞ = 0.0941 m/sec

laminar flow over a flat plate. For this purpose a hydraulic flume was developed at University

Of New Orleans. The data collected was used to validate the numerical data predicted, for flow

over a flat plate, by code which employs FDFE technique to solve Pseudo-Compressibility model

equations. PIV technique is centered around optical tracking of tracer particles called seeding

particles (added to the fluid), are neutrally buoyant, hollow, and silver-coated micro spheres.

These seeding particles are illuminated in the region of interest by a dual cavity laser, twice

within short known time interval. The light scattered by these particles is collected by high-speed

cameras. The calibration of these cameras determines the displacement of the seeding particles

in the real world coordinates from the image plane (pixels) captured. The in-built software

process these images to provide velocity vector fields for the region of interest. Since the prime

objective of this research is to study intermittent turbulence, viscous effects within boundary

layer and wall shear stress near to the wall, there is a need to validate the global vector fields

observed using optical flow visualization techniques (such as PIV) with another non-intrusive
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Figure 5.4: Fine Grid Solution with discretization error bars at x=0.0254 m and ū∞ = 0.0941
m/sec

directional sensitive measurement technique which measure the velocity of the fluid particles

locally and does not require calibration. Such technique used to validate PIV results is Laser

Doppler Anemometry (LDA).

Another experimental setup built to study Lid-driven Flows (Akyuzlu (2017)) employs LDA

technique to capture horizontal velocity magnitudes locally at spatial points situated close to the

wall and to the center of the cavity. The same setup employs PIV as well which and its results

are validated using LDA.

5.2.2 Hydraulic-Flume

A hydraulic flume is built to study flow over a flat plate using 2D PIV. A schematic diagram in

Figure 5.5 shows two views of the flume arrangement. The channel walls and bottom are made

of 25 mm thick transparent acrylic glass. This allows the high speed camera to see and capture

images clearly. The laser sheet is situated beneath the flume’s centerline and parallel to the flow.
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laser sheet
mirror

PIV cam

laser head

U
plate

Figure 5.5: PIV configuration for flat plate investigations; side view (left) and cross-section
(right)

The sheet is directed on the test article (plate) using an 45deg reflecting mirror. The test article

is made up of 6 mm thick plexiglass, suspended in the flow from above, and the leading edge

of the plate is clean cut to knife edge to reduce any sudden effects caused in the flow due to a

blunt leading edge. The channel’s hydraulic cross-section is constant 50×28 cm2 and Figure 5.6

PIV laserPIV camera

channel pumps

flat plate

power supply
plate motor

Figure 5.6: Experimental setup for flat plate experiments

is photographic description of experimental setup. The water is circulated through the flume via

two 3 horsepower pumps to attain two uniform flow speeds of 0.0941 m/sec & 0.1865 m/sec. The

laser pulses are synchronized with the PIV camera’s frame rate to capture images of neutrally

buoyant tracer particles suspended in the flow at known time increments ∆t. Calibration of the
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camera is accomplished to calculate the particle displacement which is converted to velocities

by dividing known ∆t. Spatial calibration yielded distance of 14.74 µm/px (micro meter/pixel).

Figure 5.7 shows a sample PIV image including plate edge and sufficient seeding representation.

Plate (18.2 mm)
20.6

m
m

30.2 mm

Figure 5.7: Sample PIV image with plate edge indicated and relevant dimensions annotated

It also shows the region of interest for PIV post processing. Two time increments ∆t 2400µs &

1200µs for the two flow speeds of 0.0941 m/sec and 0.1865 m/sec.

Table 5.4: PIV processing settings for experimental flat plate data

Spatial calibration 14.74 µm/px
Time interval, ∆t 1200 µs
Interrogation resolution 32 px/16 px (starting/final)
Grid engine Recursive Nyquist
Correlation engine FFT Correlator
Peak engine Gaussian peak
Vector conditioning Recursive with

Neighborhood size 2
Kernel radius 2
Gaussian sigma 0.8

PIV relies on the confident detection of tracer particles in two camera images. Fast Fourier
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Transform (FFT) correlation is employed for displacement calculation and Table 5.4 gives a

summary of PIV processing settings. A more detailed explanation of the setup and equipment

used can be found in Srivastava et al. 2019.

5.3 Numerical Study

To determine the accuracy and robustness of pseudo-compressibility model to study oscillating

boundary layer flows over a flat plate in intermittent turbulent region, first step is to test the

model along with RANS equation for a flow over a steady flat plate. To demonstrate unsteady

ability of the computer code/solver, the inlet velocity were varied in a fashion show in Figure

5.8. The code was allowed to run till steady state is achieved. To study oscillating flows in

intermittent turbulent regime using RANS equation, an appropriate turbulence model is required

to predict the unknowns well near to the wall. Chien’s k-ε turbulence model (Low-Reynolds

number turbulence model) is chosen for this study.
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Figure 5.8: Inlet velocity function with respect to time
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5.3.1 Code Validation

Numerical simulations were conducted for Re=2099 for verification of computed code. The

Reynolds number was chosen on the basis of inflow velocity obtained in experimentation using

PIV to study boundary layer on flow over a flat plate (as discussed in section 5.2). This Reynolds

number corresponded to inflow velocity of 0.0941 m/sec. The experiments were conducted with

identical flow parameters and the velocity profiles observed at the trailing edge of the plate are

compared with velocities predicted by FEFD and Commercial CFD package. The computational

domain chosen was 0.0254×0.0254 m & the experimental data was also observed at the same

distance in stream wise direction from the plate. The non-dimensional velocity profiles obtained

by all the methods described above are presented in 5.4 section. A quantitative comparison of

velocity vectors and contours as predicted by FEFD and observed in experiments are presented.

The NS equations were also reduced to boundary layer equations for flow over flat plate as

mentioned in Özişik 1994 & Tannehill et al. 1997. A separate computer solver was developed

to solve these equations using Alternating-Direction Explicit (ADE) finite difference techniques.

Comparisons of horizontal & vertical velocity profiles are made for Re=1000 for Boundary layer

solution, analytical solution (Blasius), FEFD and commercial CFD package. While solving the

boundary layer equations, it was observed that the expected vertical velocity profile for prescribed

boundary conditions, as described in section 3, can be obtained with adopting an ADE technique.

5.3.2 Parametric Study

A parametric study is conducted to validate the robustness of pseudo-compressibility model along

with Unsteady-RANS or URANS equation (Chien’s k-ε as turbulence closure model) and to study

the convergence of solution of URANS equation to ones predicted by Laminar NS equations in

intermittent turbulent flow regime. This forms a basis of study of oscillating boundary layer

flows over a flat plate which are unsteady in nature and have intermittent characteristics of

turbulence while transitioning from laminar to turbulent flow regime. This study covers free

stream velocity of 0.399 m/sec, 3.99 m/sec and 19.95 m/sec which corresponded to Reynolds

number of 10000, 100000 & 500000 respectively for chosen characteristic length of 0.0254 m. The

horizontal velocity profiles predicted by FEFD at the trailing edge of the plate are compared
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to ones predicted by commercial CFD package which employed two turbulence model, Standard

k-ε along with standard wall-functions and Transitional SST model. These comparison are

presented in section 5.4. To verify the convergence of chosen turbulence model, the horizontal

velocity profiles predicted by URANS equations are compared to the ones predicted by laminar

unsteady NS equations for Reynolds number 10000, 100000 & 500000. All the comparison were

made ones the solution reaches steady-state.

5.4 Results & Discussion

5.4.1 Results of Validation Study

A set of numerical simulations were carried out using FEFD pseudo-compressibility code with

working fluid as water (ρ=998.2 kg/m3).

For Re=1000, the velocity profiles predicted at the trailing edge of the plate by FEFD, Boundary

layer equations, Commercial CGF package, and analytically obtained are presented in Figure 5.9.

Quantitative comparison are made between FEFD, Commercial CFD package, Boundary layer

equations (ADE) & Blasius solution. It can be observed from Table 5.5 that Blasius and

Table 5.5: Comparison of maximum ū for different methods at Re=1000

Meshes ūmax
% Deviation ū from

FEFD results

Blasius Solution 1.000 +8.680
Boundary Layer
Equation (ADE) 1.000 +8.680

Commercial CFD
Package 1.101 -0.244

boundary layer equations (ADE) under predicts maximum horizontal velocity by 8.68% while

the commercial CFD package over predicts by only 0.244%. This over prediction seems within

acceptable range. One can only speculate from this observation that boundary layer solutions or

analytical solution would not serve as benchmark case for this study. It is in the nature of the

assumptions made to arrive at the boundary layer equations which perhaps makes it not suitable

for the comparison in this study. Hence, there arises a need to define a criteria for boundary

layer thickness for real world problems for flow over a flat plate (such as in this study), which
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Figure 5.9: Comparison of ū at x̄=1 for Analytical solution, Boundary Layer Code, FEFD and
Commercial CFD package for Re=1000

may include pressure drop as mentioned in boundary conditions. The accurate boundary layer

thickness would define the correct shear at the solid wall which in turn defines drag and lift forces

needed in practical engineering applications. Non-dimensional vertical velocity profiles obtained

at the trailing edge of plate using the methods listed above for Re=1000 are presented in Figure

5.10. It was observed that the expected vertical velocity profile obtained using ADE technique

while solving boundary layer equations, numerically, with prescribed boundary conditions.

5.4.2 Comparison with Experimental PIV results

The experimentally observed velocities at the trailing edge of the plate are compared with ones

predicted by FEFD, Commercial CFD package and Analytical solution (Blasius solution) for

Re=2099. It can be seen from Figure 5.11, that FEFD under predicts the maximum horizontal

velocity only by 2.2% from experimental data and Commercial CFD package over predicts FEFD

by 0.19%. These deviations are within the acceptable range. The non-dimensional horizontal
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Non-dimensional vertical velocity, v
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Figure 5.10: Comparison of v̄ at x̄=1 for Analytical solution, Boundary Layer Code, FEFD and
Commercial CFD package for Re=1000

velocity field contour plots along with vector, as predicted by FEFD and observed by experiments

for Re=2099 are presented in Figure 5.12. As it can be seen that the velocity fields predicted by

FEFD pseudo-compressibility code compares well with experimentally observed velocity fields.

5.4.3 Results Of Parametric Study

The results of parametric study conducted to compare turbulence models,FEFD (Chien’s k-

ε) and CFD package (Standard k-ε with standard wall-functions and Transitional SST model)

for Re=100000 (Intermittent turbulent regime) are presented in Figure 5.13. The mesh chosen

for this study was 81×400, which corresponded to y+ of 0.5 for FEFD, 1.2 for Standard Wall

Functions and 2.1 for Transitional SST model, for free stream velocity of 0.399m/sec. The

predictions of FEFD code and Commercial CFD package exhibits the same behavior in shape

and fairs well in free stream. It can be observed that Chien’s k-ε model & Transitional SST

fairs well with each other near to the wall. The near wall effects one can expect in flow over

flat plate with these prescribed boundary conditions is predicted well with Chien’s k-ε model.
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Figure 5.11: Comparison of v̄ at x̄=1 for Analytical solution, Experimental PIV data, FEFD
and Commercial CFD package for Re=2099

Figure 5.12: (Top): Fluid Horizontal Velocity Contour on the plate as observed by experiments
and (Bottom): as predicted by FEFD for Re=2099
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Figure 5.13: Comparison of ū at x̄=1 for Chien’s k-ε, Standard k-ε with wall function (Fluent)
& Transitional SST (Fluent) for Re=100000

This argument is supported by Figure 5.14, where FEFD for laminar case (NS-Equations) with

Re=100000 is compared with FEFD for RANS equations for same Re number.

Same study is conducted for Re=10000 and 500000 in Figures 5.15 & 5.16 respectively,

to validate the convergence of RANS equations (along with turbulence model) to Laminar NS

equations at low (10000) and high (500000) Reynolds number range during transitioning from

laminar to turbulence and vice verse. It can be observed that the chosen turbulence model

predicts well in intermittent turbulent regime and fairs well with laminar case at low Reynolds

number. The prediction of collapse in boundary layer as one expects can be observed in Figure

5.16.

In summary a CFD numerical solver based on pseudo-compressibility is developed to solve

governing differential equations for laminar (NS) and intermittently turbulent flow (RANS) for

flow over a flat plate. This code is successfully validated using analytical solution and commer-

cial CFD predictions. It is also validated by comparing to experimentally measured velocities

obtained by PIV techniques. The discretization accuracy is also verified by using GCI method.
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Figure 5.14: Comparison of ū at x̄=1 for RANS equations (Intermittent Turbulent) & NS equa-
tions (Laminar) at Re=100000

The velocity profiles predicted by RANS equations along with turbulence closure models are

compared to ones predicted by NS equations in lower and higher band of intermittent turbulent

regime. The preliminary results indicate that chosen k-ε model, modified for the wall (Chien

(1982)) does predict well in intermittent turbulent regime for flow over flat plate.
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Figure 5.15: Comparison of ū at x̄=1 for RANS equations (Intermittent Turbulent) & NS equa-
tions (Laminar) at Re=10000
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Figure 5.16: Comparison of ū at x̄=1 for RANS equations (Intermittent Turbulent) & NS equa-
tions (Laminar) at Re=500000
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6 Oscillating Flow

To study oscillating flow over a stationary flat plate in intermittent turbulent regime, the base

closure model chosen is k–ε by Jones and Launder (1972) and as described in chapter 3. Herein, a

single γ equation is formulated in local variables with no reference to data correlation. The model

proposed will be henceforth referred as k–ε–γ in this study. The proposed model only address

bypass transition, which is the transitional phenomenon occurring in oscillatory boundary layer

flows over a flat plate (Jensen et al. (1989),Hino et al. (1983) and Akhavan et al. (1991a)). In this

chapter, the development of the model is discussed in detail. Before, mesh and time independent

study is conducted along with validation of the model with analytical solution in laminar regime.

6.1 Mesh and Time Independent Study

To assess the grid independence of the results, three meshes were taken in consideration, 21×121,

41×321 and 81×421. The shear stresses obtained from these for Reδ = 90 were compared to

analytical (Stokes’ Analytical solution) shear stress. It was observed that there is only 0.24%

deviation in maximum shear stress in 81×421 mesh and analytical shear stress. The maximum

value of wall shear stress obtained for Reδ=1790 for 81×421 mesh differed by 0.02% from 41×321.

In addition reducing the time step size by factor of 10 from base ∆t=2π/360ω did not result in

much change in the general characteristics of velocity and shear stress profiles. To conserve the

computational efforts and obtain the y+ value of <5, base time step (∆t=2π/360ω) was chosen

along with 81×421 mesh.

6.2 Validation Study

To validate the proposed model, the problem was solved for laminar flow regime characterized

by Reδ of 90. The predicted stream wise velocity by model is compared to closed form analytical
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solution (Schlichting and Gersten 2017) given by:

u = Uinf [sin(ωt)− exp(−y/δ) sin(ωt− y/δ)] (6.1)

where δ is the Stokes thickness. The comparison are shown in Figs 6.1 and 6.2 for acceleration

and deceleration phases, respectively. As seen in the figure the proposed k–ε–γ results agree

well with analytical solution. This demonstrates the capability of the proposed model to predict

correctly in the limiting laminar case of fully laminar flow regime.
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Figure 6.1: Comparison of predicted stream-wise non-dimensional velocity with analytical solu-
tion for accelerating laminar flow regime, Reδ=90

6.3 Calibration/Development of Intermittency Model

The proposed k–ε–γ model is based on the Jones and Launder (1972) k–ε model. It is a two

equation turbulence model (see Eqs 3.13 and 3.14). The intermittency function γ is placed in

into the production term τij
∂ũi
∂xj

of kinetic energy equation. This is the only appearance of γ in
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Figure 6.2: Comparison of predicted stream-wise non-dimensional velocity with analytical solu-
tion for decelerating laminar flow regime, Reδ=90

the turbulence model, hence Eq 3.13 becomes:

∂k

∂t
+
∂(ũjk)

∂xj
=

1

ρ

∂

∂xj

[(
µ+

µt
Prk

)
∂k

∂xj

]
+ γτij

∂ũi
∂xj
− ε− 2ν

(
∂
√
k

∂xj

)2

(6.2)

and there is no change to the dissipation function Eq 3.14.

The intermittency function is used to suppress the production of turbulent kinetic energy

and γ forestall the early prediction of transition. In laminar flow k≈0 and eddy viscosity is 0.

When γ is small, Eq 6.2 will force k to be small. Assuming γ to be 0 inside the boundary layer

and unity in the free-stream turbulent region, non-zero γ will diffuse into the boundary layer,

enhancing the production of k, increasing eddy viscosity and hence initiating transition (Durbin

2012). Similar observations were reported by Jensen et al. (1989), Akhavan et al. (1991a) and

Salon et al. (2007) for oscillating flow that the turbulence is diffused into the boundary layer

from free stream causing the initiation or transition to turbulence from laminar regime. Consider
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an intermittency equation of the form (Lodefier et al. 2004)

∂γ

∂t
+
∂(ũjγ)

∂xj
=

1

ρ

∂

∂xj

[(
µ

σl
+
µt
σt

)
∂γ

∂xj

]
+ Fγ |Ω| (γmax − γ)

√
γ (6.3)

where Ω =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)

Lodefier et al. (2004) and Durbin (2012) used the intermittency model on steady flow over flat

plate with k–ω model. To be coupled with k–ε model and applied to oscillating unsteady flows,

some calibration is required. The γ is 1 in free-stream and 0 at the wall. Fig 6.3 shows the
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Figure 6.3: Profiles of intermittency function γ in acceleration and deceleration phase

characteristic profiles of function γ in acceleration and deceleration phases. It cab be observed

that in the free stream γ is 1. Similar characteristic was observed by Durbin (2012).

6.3.1 Diffusion Term

The influence of two constants σl and σt in Eq 6.3 is discussed below. For the purpose of this

study they are set to 7.5 and 0.35 respectively. From the diffusion term itself, we can predict
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that increasing σt decreases turbulent diffusivity and delays transition, while decreasing it cause

reverse effects on turbulent diffusivity.
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Figure 6.4: Sensitivity of σt on non-dimensional τw with fixed σl of 5 for Reδ 990

Fig 6.4 shows the non-dimensional shear stress in a half cycle of oscillation for Reδ of 990.

The values are compared to ones predicted by Salon et al. (2007). It can be clearly observed that

without the intermittency equation the base model predicts an early transition which also cause

higher shear stress. By adding the intermittency transport equation the production of kinetic

energy is clearly forestalled. It can be clearly observed that the decreasing σt (for a fixed value

of σl=5) the diffusion is enhanced causing early transition. Not shown in this study but reducing

the value of σt below 0.2 this particular parameter becomes less sensitive. For the purpose of

this study 0.35 is chosen. However, the effect of σl is a bit subtle. As shown in Fig 6.5 when σl

is doubled (for a fixed value of σt=0.35) the diffusivity is increased causing advanced transition.

The effects of σl is opposite to σt. Hence decreasing σl delays transition. For the purpose of this

study σl of 7.5 is chosen.
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Figure 6.5: Sensitivity of σl on non-dimensional τw with fixed σt of 0.35 for Reδ 990

6.3.2 Source Term

The source term is very familiar to one used by Durbin (2012). The γmax placed in the source

term is 1.1, in order to enhance the effects of source term to drive γ to unity. It may be possible for

γ to exceed unity due to such source, which is not allowed. So after each step of the computation,

γ is forced to the value of min(γ,1) to chop off the values greater than unity. This has a small

effect, but it does force a full transition to turbulence. It was also observed that it was required

for stability of the solver. The factor Fγ switches on as transition proceeds. Once it comes to

play, γ will increase up to unity within the region Fγ affects. Therefore the turbulent kinetic

energy k increases as well as the eddy viscosity.

Fγ has two parameters. The magnitude of mean rate of rotation or vorticity is represented by

56



|Ω|, which vanishes in free stream. The three non-dimensional parameters involved,

Rt =
νT
ν

(6.4)

Rν =
d2|Ω|

2.188ν

Tε = Rt
|Ω|k
ε

where d is the distance to the wall. Rt is ratio of the eddy viscosity to molecular viscosity, namely

the turbulent Reynolds number. Rν is the vorticity Reynolds number, which depends only on

local variables. The function Fγ is determined by two parameters Rν and Tε. Tε is used to form

a critical Reynolds number, Rc. It is a decreasing function of Tε. If the turbulent intensity is

low the Tε will be low and Rc will be high. The value of Rc are chosen from Durbin (2012) as

400 and 40 as follows:

Rc = 400− 360min
(
Tε
2
, 1

)
(6.5)

As the local Reynolds Rν crosses Rc, Fγ ramps up from 0. Meanwhile if the Rν crosses Rc

without the flow becoming turbulent, then to avoid this, another condition is imposed which

checks the bounds of Rν (100/0.7). This is done to suppress the Fγ namely the source term to

switch on for low-free stream turbulence. The formula for Fγ thus becomes:

Fγ = 2max [0,min (100− 0.7Rν , 1)]×min [max (Rν −Rc, 0) , 4] (6.6)

As per Durbin (2012):

Fγ =


0, if Rν ≤ Rc, or if Rν ≥ 100/0.7

8, if Rν > Rc + 4 and Rν ≤ 100/0.7
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6.4 Numerical Study

Numerical simulations are carried out for intermittently turbulent regimes characterized by Reδ

990, 1790 and a fully turbulent regime characterized by Reδ of 3464. Predicted velocity profiles

and wall shear stress by k–ε–γ model for 990 are compared to LES and DNS results by Salon

et al. (2007). This is simply due to fact that experimental results by Jensen et al. (1989) were

not reported. Further the proposed model k–ε–γ was tested for Reδ 1790 and predicted velocity

profiles along with wall shear stress are compared to experimental data by Jensen et al. (1989).

A parametric study of k–ε–γ model in fully turbulent regime, Reδ 3464, is performed. The

predicted velocity profiles and wall shear stress are compared to experimental data by Jensen

et al. (1989). A study is conducted for Reδ ranging from 32 to 5000 and variation of friction co-

efficient (Cf , defined as 2 < τw >max/( ρU2
inf )) with respect to Reynolds number Re (based on

amplitude) is presented and discussed. The reduction of phase lag between max wall shear stress

(< τw >max) and free stream velocity (Uinf ) is also presented and discussed. The distributions

of turbulent kinetic energy and dissipation function across the boundary layer as a function of

phase is also presented and discussed for Reδ of 990.

6.5 Results & Discussion

6.5.1 Results for Reδ = 990

Fig 6.6 and Fig 6.7 shows the mean stream velocity profiles in acceleration phase for for 15o, 45o,

75o and 90o and for deceleration phase for 105o, 135o, 165o and 180o respectively. As compared

to the laminar solution Fig 6.1 and Fig 6.2 the boundary layer is collapsed as one would expect

in a turbulent flow. Figures 6.8, 6.9, 6.10 and 6.11 compare the velocity profiles in u+ and y+

coordinates with LES results by Salon et al. (2007) for 15o, 75o, 105o and 135o.

It can be observed that the predicted velocity profiles by k–ε–γ model fairly well with the LES

results. The absence of the logarithmic profile is because of the non-equilibrium behavior, which

is characteristic of the intermittently turbulent flow regime for Reδ of 990. This is consistent

with findings of Salon et al. (2007) and Shome (2013) who used k–kL–ω model for prediction

of oscillating boundary layer flows in intermittent turbulent regime. The variation of wall shear
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Figure 6.6: Non-dimensional u profiles in acceleration phase for Reδ of 990

stress with phase angle is shown in Fig 6.12. The predicted profile is compared to DNS results

Salon et al. (2007).

It can be observed that wall shear stress agrees well with the data. The wall shear stress

rapidly increases at angle of 60o which is consistent with DNS predictions. This sudden increase

marks the onset of of transition to turbulence. The maximum value of shear stress differs by about

1% from the DNS data as compared to k–kL–ω model which observes an under-prediction of 10%

(Shome 2013). The triangular profile indicates the non-equilibrium turbulence effects that occur

in intermittently turbulent regime as demonstrated by Jensen et al. (1989) and Costamagna et al.

(2003). The shear stress profile also peak around 8o earlier as compared to DNS results. Also the

the flow reversal characterized by zero value of shear stress is at about 165o as compared DNS

data, which predicts at an angle of 158o. These differences can be attributed to base model of

k–ε which is based on the assumption of linear-eddy viscosity modeling approach. Even though

the proposed model is improved in predicting maximum shear stress and time at which is occurs,

some refinement are required to improve the accuracy. Figures 6.13 and 6.14 shows the kinetic
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Figure 6.7: Non-dimensional u profiles in deceleration phase for Reδ of 990
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Figure 6.8: Comparison of predicted stream-wise velocity profile with LES results of Salon et al.
(2007) for Reδ of 990 at θ=15o

energy profiles in acceleration and deceleration phase across the boundary layer for Reδ 990.

It can be observed as the flow accelerates the magnitude of kinetic energy near the wall

increases, as the turbulence is diffused into the boundary layer from free stream causing pre-
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Figure 6.9: Comparison of predicted stream-wise velocity profile with LES results of Salon et al.
(2007) for Reδ of 990 at θ=75o
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Figure 6.10: Comparison of predicted stream-wise velocity profile with LES results of Salon et al.
(2007) for Reδ of 990 at θ=105o

transitional fluctuations. As the flow accelerates beyond 60o, the near wall kinetic energy in-

creases sharply. This is caused by pre-transitional fluctuations that leads to the onset of transi-

tion. This is consistent with the sudden increase in shear stress profile as seen in Fig 6.12 around

the same phase angle. As the flow accelerates further, the kinetic energy increases and peaks at

90o beyond which the flow decelerates and the energy starts to decrease due to diffusion through

the boundary layer.
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Figure 6.11: Comparison of predicted stream-wise velocity profile with LES results of Salon et al.
(2007) for Reδ of 990 at θ=135o
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Figure 6.12: Comparison of predicted non-dimensional wall shear stress profile with DNS results
of Salon et al. (2007) for Reδ of 990
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Figure 6.13: Predicted non-dimensional kinetic energy profiles in acceleration phase for Reδ 990

6.5.2 Results for Reδ = 1790

The k–ε–γ model is tested for higher range of intermittently turbulent regime characterized by

Reδ 1790. The stream wise velocity profiles are compared to experimental data by Jensen et al.

(1989) in Figs 6.15 to 6.20 in u+ and y+ coordinates. A good agreement with experimental data

can be observed except for phase angle of 165o.The logarithmic profile plotted in the velocity

profiles is given by u+ = 2.44 ln(y+) + A.

It can be observed that log region exits from a phase angle of 45o to around 135o. However

the intercept is 6 for θ < 75o and 4 for θ ≥ 75o. Fig 6.21 shows the wall shear stress comparison

with experimental data of Jensen et al. (1989). The predictions of k–ε–γ model agrees well with

the experimental data. The peak value predicted by the proposed model is well within 1% range

of experimental data. In addition the peak value occurs at phase angle of about 80o which is 3o

more than experimental data but well within the range. The sharp increase of profile at a phase

angle of about 30o indicating the transition to turbulence is consistent with experimental findings.

The flow reversal characterized by zero shear stress occurs at a phase angle of 168o as compared
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Figure 6.14: Predicted non-dimensional kinetic energy profiles in deceleration phase for Reδ 990

to 161o as observed by experimental data. However, this difference between predicted value

and experimental value is consistent from the previous Reδ study and affirms that calibration is

required in order to achieve accuracy. The results have demonstrated that the k–ε–γ model is

capable of predicting the transition to turbulence.

6.5.3 Results of Parametric Study for Reδ = 3470

A parametric study for fully turbulent regime of Reδ 3464 is tested. Figs 6.22, 6.23 and Fig

6.24 show the velocity profile in u+ and y+ coordinates in acceleration and deceleration phase

respectively. The predicted values are compared to experimentally observed values by Jensen

et al. (1989) and are in good agreement. The log region is observed from phase angle of 15o to

about 150o. Fig 6.25 shows shear stress profile as predicted by k–ε–γ model. As observed

it fairs well with the experimental data. The predicted peak values of wall shear stress agrees

within 8% as well the phase angle at which it peaks also agrees well with experimental data. The

flow reversal as characterized by zero value of shear stress is predicted to be 166o which is close
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Figure 6.15: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 1790 at θ=15o
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Figure 6.16: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 1790 at θ=45o

to experimentally observed value of 164o. The change in slope of shear stress profile at about

20o indicates the onset of turbulence. The reduction in phase angle is expected as in case of fully

turbulent flow, the turbulence is initiated very early. Figs 6.26 and 6.27 shows the kinetic

energy profiles in acceleration and deceleration as predicted by k–ε–γ model for fully turbulent

regime. As expected and can be observed the onset of turbulence happens at an early phase

angle as compared to intermittently turbulent regime. The turbulence has high value almost
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Figure 6.17: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 1790 at θ=75o
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Figure 6.18: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 1790 at θ=105o

throughout the acceleration and some part of deceleration phase. The peak of turbulent kinetic

energy is also moved closer to the wall indicating collapse in boundary layer. Fig 6.28 and 6.29

shows the eddy viscosity profiles through the boundary layer as a function of phase angle in

acceleration and deceleration phase. The peak value observed is at 90o which is in phase with

the mean stream velocity. The value as expected, is about 200 times the value of molecular

viscosity. The eddy viscosity in free stream remains constant throughout the cycle indicating

66



y+

u
+

100 101 102 1030

10

20

30

40

u+ profile at =135o

u+ = y+
Log Law, with A = 4
Test (Jensen et. al. 1989)

Figure 6.19: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 1790 at θ=135o
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Figure 6.20: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 1790 at θ=165o

that turbulent flow regime. This is necessary to initiate turbulence.

After the parametric study the k–ε–γ model was tested for Reynolds number based on

amplitude, ranging from 1000 to 8×106. Fig 6.30 shows variation of the friction coefficient (Cf )

with Reynolds number. Experimental data reported by Jensen et al. (1989) is also reported in

the Fig 7.4. It can be observed that the transition begins at Reynolds number of about 2×105 as

indicated by deviation of friction coefficient from laminar value. Till the value of 6×105 the flow
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Figure 6.21: Comparison of predicted non-dimensional wall shear stress profile with experimental
results of Jensen et al. (1989) for Reδ of 1790
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Figure 6.22: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 3464 at θ=45o

is in transitional phase or intermittently turbulent and beyond which it starts to become fully

turbulent flow. The predicted values of friction coefficient are in well agreement with experimental
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Figure 6.23: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 3464 at θ=75o
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Figure 6.24: Comparison of predicted stream-wise velocity profile with experimental results of
Jensen et al. (1989) for Reδ of 3464 at θ=135o

data. Fig 7.4 indicates that k–ε–γ model is capable of predicting onset of transition as well as

friction coefficient accurately for fully laminar and fully turbulent flow regimes.
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Figure 6.25: Comparison of predicted non-dimensional wall shear stress profile with experimental
results of Jensen et al. (1989) for Reδ of 3464
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Figure 6.26: Predicted non-dimensional kinetic energy profiles in acceleration phase for Reδ 3464
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Figure 6.27: Predicted non-dimensional kinetic energy profiles in deceleration phase for Reδ 3464
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Figure 6.28: Predicted eddy viscosity profiles in acceleration phase for Reδ 3464
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Figure 6.29: Predicted eddy viscosity profiles in deceleration phase for Reδ 3464
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Figure 6.30: Predicted friction coefficient and its comparison with experimental results Jensen
et al. (1989)
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7 Undulatory Self-Propulsor Simulations

7.1 Overview

A three-dimensional slender body theory was developed by Lighthill (1960) to study hydrody-

namics on a lamprey and applied ideal flow theory with vortex shedding along with skin friction

correction to account for viscosity. For a relatively high Reynolds number, a thin boundary layer

flow exists (Lighthill 1971). Vorus (2005) used the same assumptions and proposed a conceptual

model of an ideal swimming motion for thin oscillating strip, in which vortex wake was absent.

Vorus and Taravella (2011) extended this model to 3D slender body object.

The oscillatory displacement function for the thin strip advancing with speed Uo and fre-

quency ω, as given by Vorus (2005).

h(x, t) = Re
[
H(x) exp−iωt

]
(7.1)

Further extension to 3D requires the sectional force coefficient to be integrated along the length to

find total thrust coefficient, CT Vorus and Taravella (2011). Then the non-dimensional complex

amplitude H̄(x) becomes:

H̄(x) = iΓ
[
exp2πix− exp

2πix
U

]
(7.2)

where Γ =

√
CT

4π3r2o(1− U)(1− cos 2π/U)
(7.3)

where the advance ratio is U= Uo/V , V is speed of backward traveling wave. This also becomes

the reference velocity for non-dimensionalization of thrust and power coefficients. The frequency

of oscillation is defined as ω = 2π V /L , where L is length of the undulating cylinder. Non-

dimensional time is t̄ = V t/L , x̄ and h̄(x̄, t̄) is non-dimensionalized based on length, L. Tab
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Table 7.1: Displacement parameters

Length, L 1.0275 m
Forward Speed, Uinf 0.25 m/sec
Design Speed, Uo 0.25 m/sec
Wave Speed, V 0.357 m/sec
Advance ratio, U 0.7
Radius, ro 0.0278 m
Gamma, Γ 0.0890

7.1 presents the parameters for the displacement equation used in simulations. Uinf is the

speed at which anguilliform is swimming or the inflow speed, Uo is the design speed at which

the anguilliform motion is expected or designed to swim. To numerically study hydrodynamic

analysis of undulatory self-propulsor ANSYS Fluent is chosen to simulate the flow problem and

solve the governing differential equation of mass and momentum. It is also capable of solving

the Euler(inviscid) equations by ignoring the viscous terms. Due to the nature of the problem

under investigation, dynamic meshing is required to solve the governing differential equation in

the discretized domain for the flow around the undulating anguilliform.

The conventional form of dynamic meshing available requires the re-meshing at every time

step which may cause decrease in quality of the mesh around the moving object. In this particular

study, the undulations of the anguilliform have significant amplitudes and derivatives causing

cells to collapse. Therefore to circumvent these obstacles the method of Overset grid, also

known as Chimera mesh, was adopted. Overset mesh is already available in the solver used

in this study (ANSYS 2020). This method allows the user to create separate meshes for each

region (components and background) of the flow problem and then combine them into one

computational domain. The fundamental principle of this technique is to solve the governing

differential equations on background and component meshes. In the background mesh the nodes

or elements corresponding to the interior of the component mesh are marked as holes and removed

from the computational domain. The values at the boundary of the overset mesh are interpolated

to the background mesh (Petra 2019). For dynamic cases, such as this, the background mesh

is undisturbed while the component mesh around the immersed body undulates with it. The
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Table 7.2: Solver Settings

Description Settings

Solver Pressure Based
Pressure-Velocity Coupling Coupled
Gradient Discretization Least Squares Cell Based
Pressure Second Order
Momentum Second Order Upwind
Transient Formulation First Order Implicit
Residual Criteria 1e−10

advantage of this method is that it eliminates the need of re-meshing and allows more control

over component mesh characteristics with moving geometries (Ramakrishnan and Scheidegger

2016). The prescribed kinematics for the undulation motion is achieved using a User-Defined

function (UDF), which uses the DEFINE_GRID_MOTION macro, to move the nodes of the

cylindrical body as well as the mesh around it in an anguilliform like motion defined by Eqn 7.2.

The settings for the solver are shown in Tab 7.2.

7.1.1 Computational Domain and Grid

Fig 7.1 shows the schematic of flow problem as well as computational domain. The computational

domain consists of a background mesh which is a cuboid with length of approximately 5.5L, width

of 1L and height of 3L and a cylindrical mesh of radius 2.5ro surrounding the cylinder, where

L is length of cylinder in its straight position and ro is the radius of cylinder. The head of the

3D flexible cylinder is placed 20ro from the inlet plane. Both background mesh and component

mesh are structured. The component mesh surrounding the body is stretched from the cylinder

walls to its own outer edge to resolve for the boundary and has a total of 200,000 nodes. The

background mesh has about 1.3 million nodes. After the hole cutting process the whole domain

is left with approximately 1.15 million nodes.

Fig 7.2 and Fig 7.3 shows the mesh at the center plane of the domain. The axial flow is in

x-direction with undulations performed in y-direction and z-axis is taken as the radial axis. As

shown in Fig 7.1, the immersed flexible cylinder has no-slip wall boundary condition. The outer

boundaries have following boundary conditions: uniform inlet flow at the inlet plane, slip wall
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Figure 7.1: Schematic diagram of flow problem

condition on the lateral boundaries and pressure-outlet at the outlet plane. The time period of

undulation motion was divided into 120 steps, ∆t = T/120. The calculation was performed for

10 oscillation cycles for every simulation to ensure the elimination of initial transient effects from

the final set of results. Each time step had 180 iterations to drive the velocity and divergence

residuals are set below 10−10 for tight convergence. To assess the grid independence of the

Table 7.3: Grid Independence Study

Nodes C̄F C̄T C̄P

600,000 -3.21×10−5 1.45×10−3 8.17×10−4

1.15 million -6.35×10−5 2.738×10−3 1.789×10−3

2.01 million -6.42×10−5 2.756×10−3 1.792×10−3

results, three meshes were taken into consideration; coarse grid with 600,000 nodes, fine grid

with 1.15 million and finer grid with 2.01 million nodes total after hole cutting process. The

mean net force (C̄F ), mean thrust (C̄T ) and mean power (C̄P ) were compared for Re=183796.
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Figure 7.2: Side view of mesh and geometry near to head at center plane

Figure 7.3: Side view of mesh and geometry near to tail at center plane

It can be observed from Tab 7.3, that C̄F deviated by 1.1 %, C̄T deviated by 0.657 % and C̄P by

0.16 % from fine to finer grid which seems to be within acceptable range. In addition reducing

time step size by a factor of 2 (∆t = T/240) for the fine grid solution did not result in much

change in general characteristics of net mean force, thrust and power loss.
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7.2 Force Decomposition & Efficiency

In the case of marine propulsion systems, it is easy to define efficiencies for the hull and propeller

as the thrust produced is solely by the propeller while the drag is produced by ship’s hull.

However, this is not the case with anguilliform like propulsors as the body producing thrust is

the same body producing drag also. Shultz and Webb (2002) explained that for such combined

system of propeller and body, Froude efficiency is zero for steady speeds when axial thrust force

is balanced by hydrodynamic drag.

Theories such as Lighthill’s elongated body theory (EBT),(Lighthill 1970), and motion under

consideration, (Vorus and Taravella 2011), defined Froude efficiency, thrust and lateral power

losses using mathematical models. Lighthill (1970) defines efficiency in a very simple and elegant

way by taking ratio of the thrust power produced to overcome viscous drag to the power spent

by flexural movements to overcome drag. The Froude efficiency defined by EBT for steady inline

swimming is:

ηEBT−1 =
1

2

(
1 +

U

V

)
(7.4)

where U is the swimming speed and V is the backward traveling wave speed. Vorus and Taravella

(2011) defined efficiency as output power or thrust power over input power for ideal swimming

motion:

ηideal =
UCT
V CP

(7.5)

Here CT is the thrust coefficient and CP is power coefficient. For the case of ideal swimming,

independent of viscous effects, the ideal efficiency (ηideal) is 100%. These mathematical models

will be used in this research for comparison with numerical simulations (viscous and inviscid

flows). Tytell and Lauder (2004) and Borazjani and Sotiropoulos (2009) defined the Froude

efficiency for steady speed inline swimming in more physically accurate manner:

η = T̄U
/(
T̄U + P̄L

)
(7.6)

where T̄ is average thrust over the swimming cycle and P̄ is average power loss during lateral

undulation over a swimming cycle. The challenge lies in measuring the thrust power, T̄, ex-
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perimentally, (Borazjani and Sotiropoulos 2009) and (Tytell and Lauder 2004). This obstacle is

circumvented when using numerical techniques to find solution to the flow problem. The thrust

and drag forces required to calculate efficiency using Eqn 7.6, can be calculated directly from

computation. The approach adopted to separate drag and thrust from net force, calculated by

solver, for this study is similar to one adopted by Borazjani and Sotiropoulos (2009). The anguil-

liform undulatory propulsor swims in negative x-direction (x1) with undulations in y-direction

(x2). The instantaneous hydrodynamic forces produced in flow direction (x1) will be the pressure

and viscous forces. The net force acting on the body at any instant will be given by:

F (t) =

∫
A
pn1dA+

∫
A
τ1jnjdA (7.7)

where p is the pressure acting on the surface, n1 is the unit normal vector acting in x1 direction

on area dA and τij is the viscous stress tensor. Now the thrust force can be decomposed due to

thrust produced by pressure (Tp) and viscosity (Tv). Similarly drag force can also be decomposed

due to drag produced by pressure (Dp) and viscosity (Dv). The net thrust force can be written

as:

T (t) = Tp + Tv =

1

2

(∫
A
pn1dA−

∣∣∣∣∫
A
pn1dA

∣∣∣∣)+

1

2

(∫
A
τ1jnjdA−

∣∣∣∣∫
A
τ1jnjdA

∣∣∣∣) (7.8)

and the net drag can be written as:

D(t) = Dp +Dv =

1

2

(∫
A
pn1dA+

∣∣∣∣∫
A
pn1dA

∣∣∣∣)+

1

2

(∫
A
τ1jnjdA+

∣∣∣∣∫
A
τ1jnjdA

∣∣∣∣) (7.9)
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Since the swimming direction is the negative x-direction; the net instantaneous force becomes:

F (t) = D(t)− T (t) (7.10)

So if at any instant the net force F (t) is negative it contributes to the thrust force T (t) and if

positive it contributes to the drag force D(t). The calculated net force F(t) is also compared

with one calculated by the solver with its own built-in function to calculate the axial force.

Similarly the power losses due to lateral undulation are calculated by:

PL =

∫
A
pn2ḣdA+

∫
A
τ2jnj ḣdA (7.11)

where ḣ is the time derivative of the swimming function h which is lateral displacement in the

x2 direction.

7.3 Results and Discussion

Viscous flow simulations were carried out for the swimming speed, Uinf , of 0.25 m/s correspond-

ing to a Reynolds number of 241844 with design speed, Uo, of 0.25 m/s. This will be referred to

as the design speed case. Another simulation keeping the design speed same and the swimming

speed, Uinf of 0.19 m/s corresponding to Reynolds number of 183796 was carried out and will

be referred to as off-design speed case. The time history of the instantaneous hydrodynamic

forces, thrust force and drag force are compared to the ideal slender body theory (Vorus and

Taravella 2011) and inviscid flow simulation, carried out at design speed and swimming speed

of 0.25 m/sec. Further comparison of the decomposed forces (thrust and drag) due to effects of

pressure and viscosity are presented in this study.

7.3.1 Ideal Flow vs Inviscid vs Viscous

Fig 7.4 shows the time variation of instantaneous hydrodynamic axial force coefficients CF for

ideal slender body theory (mean force coefficient), inviscid flow (carried out at design speed of

0.25 m/s) and viscous flow simulations (carried at design speed of 0.25 m/s and off-design speed
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of 0.19 m/s). Considering the sign convention for this study, CF > 0, which means drag force

(D) from Eq 7.9 is higher than thrust force (T) from Eq 7.8 at that instant and the net force

becomes of drag type. Similarly, when CF < 0, T becomes greater than D and net force becomes

thrust type. It can be observed for all simulations, CF in each cycle has two peaks corresponding

to tail strokes due to undulation motion (Müller et al. 2001). The net instantaneous force is

0 1 2 3 4 5 6 7 8
t [sec]

0.002

0.001

0.000

0.001

0.002

0.003

C F

CF, Inviscid, Uinf = 0.25 m/s
CF, Viscous, Uinf = 0.25 m/s

CF, Viscous, Uinf = 0.19 m/s
CFa, Analytical, Uinf = 0.25 m/s

Figure 7.4: Time history of axial force coefficients (CF ) for Viscous, Inviscid and analytical
solution at design and off-design speeds

Table 7.4: Mean Force coefficients for Inviscid and Viscous cases at design and off-design speed

Forces Inviscid Viscous-design Viscous-off-design

C̄F 1.53×10−6 1.03×10−3 -6.35×10−5

C̄Fpressure 1.53×10−6 3.76×10−4 -6.57×10−4

C̄Fviscous 0 6.51×10−4 5.94×10−4

decomposed into its thrust (T(t)) and drag (D(t)) components using Eq 7.8 and 7.9. Fig 7.6

shows the thrust and drag force for inviscid simulation and analytical thrust calculated by slender

body theory. The mean net force coefficient (C̄F ) for the inviscid flow simulation is approximately
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0 (as also shown in Tab 7.4). This can also be observed in Fig 7.6 where thrust forces almost

balances drag forces in time and gives an inline constant swimming speed case at design speed

of 0.25 m/s. Tab 7.5 also shows mean thrust coefficient (C̄T ) approximately equal to the mean

drag coefficient (C̄D). The analytical drag force (not shown here) is assumed to be equal and

opposite of the analytical thrust force shown in Fig 7.6 (Vorus and Taravella 2011). It can be

observed that the magnitude of thrust and drag forces are higher than the analytical thrust and

drag. This can be attributed to the assumption of potential flow on which the analytical solution

is developed. The boundary layer thickness is assumed to be thin for high Reynolds number

and ideal flow theory is applied (Vorus and Taravella 2011). The equation of motion derived

gives rise to vortex free wake and absence of wake-induced drag. The forces calculated are due

to pressure field derived using Bernoulli equation which is different from inviscid flow simulation

which uses Euler equations to solve for the flow field. The difference in the magnitude of the net

instantaneous force coefficients as shown in Fig 7.4 is due to the ends of the anguilliform geometry

which is not accounted by theory. At the aft end of the anguilliform, a high pressure region is

observed at the tip, with a low pressure region around it, as show in Fig 7.5. This causes flow

to change direction, resulting in higher thrust. Similarly, a stagnation point is observed on the

fore end of the anguilliform causing drag. Due to the nature of the tail and head movement, the

time on which aft pressure is higher than forward pressure, the net instantaneous force becomes

of thrust type and when forward pressure is higher than aft pressure the net force becomes drag

type.

Fig 7.4 also shows force coefficients of the viscous flow simulation at design speed. It was

clearly observed that the net instantaneous force is always of drag type. This is also evident

from Fig 7.7 where the drag force is higher than the thrust generated at that speed and also

higher than the drag force observed/calculated in the inviscid flow simulation. Tab 7.4 shows

that the mean coefficient of viscous force (C̄Fv) is almost twice of mean coefficient of pressure

force (C̄Fp). Tab 7.5 also shows that the CD is about 32% higher than CT . This due to the fact

that the viscous forces are important, which were modelled empirically in the analytical solution

(Vorus and Taravella 2011). As show in Fig 7.8, the viscous forces are evident and are of drag

producing/type in nature. The thrust force and drag force produced by pressure is very close
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Figure 7.5: Pressure Contour plot for Inviscid flow

to one produced for inviscid flow simulation as shown in Fig 7.8. The components of thrust

and drag produced, as shown in Fig 7.8, are calculated using Eqs 7.8 and 7.9. An important

observation can be made here that, the anguilliform designed for this speed will experience a net

drag force and constant inline swimming speed case will be difficult to achieve. In other words,

it either accelerates or decelerates and the swimming velocity Uinf will not be constant. The

definition of efficiency will be inconsequential. Now there are many parameters like frequency,

tail amplitude or advance ratio, that can be calibrated to achieve the desired case of net zero

force. For the purpose of this study we reduced the swimming speed Uinf keeping the advance

ratio same. The speed was reduced systematically to observe the value at which the anguilliform

motion achieves net zero force. The desired case was observed at swimming speed of Uinf of 0.19

m/s. This case from hence forth will be referred to as the off-design case.
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Figure 7.6: Thrust and drag forces as predicted by inviscid flow simulation and thrust force
calculated by the analytical solution(Vorus and Taravella 2011)

Table 7.5: Mean power, thrust and drag coefficients for inline swimming speed of Uinf of 0.25m/s
(design speed)

Case C̄p C̄T C̄D

Analytical 1.348× 10−5 1.9257× 10−5 1.9257× 10−5

Inviscid 2.751× 10−4 2.1770× 10−3 2.1772× 10−3

Viscous 1.094× 10−3 1.9223× 10−3 2.850× 10−3

7.3.2 Off-Design Reynolds Number for Efficiency

Fig 7.4 shows the net force coefficient CF for the off-design case which is very similar to one

predicted by inviscid flow simulation. The C̄F approximately 0 as from Tab 7.4. The drag force

is almost balanced by thrust force produced. The C̄D is just slightly lower by 0.4% than C̄T as

show in Tab 7.6. Fig 7.9 shows thrust and drag forces experienced by anguilliform for off-design

case. It also shows the analytical thrust calculated at the off-design speed. There is a clear

evidence of the reduction of drag force and increase of thrust force. The thrust force is increased

by 42.4% from viscous design speed case while drag only reduced by 4.2%. The mean pressure
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Figure 7.7: Thrust and drag forces as predicted by inviscid flow simulation, Thrust force calcu-
lated by analytical solution(Vorus and Taravella 2011) and thrust and drag forces predicted by
the viscous flow simulation

Table 7.6: Power, thrust and drag coefficients for inline swimming speed of Uinf of 0.19m/s
(Off-design speed)

Case C̄p C̄T C̄D

Analytical 2.421× 10−5 3.8265× 10−5 3.8265× 10−5

Inviscid 2.751× 10−4 2.1770× 10−3 2.1772× 10−3

Viscous 1.789× 10−3 2.738× 10−3 2.728× 10−3

force is of thrust type which balances drag type mean viscous force as shown in Tab 7.4. Fig

7.10 shows components of thrust and drag produced by pressure and viscosity. Comparing Figs

7.8 and 7.10; it can be observed that due to reduction in swimming speed, eventually reducing

inertial forces, thrust produced due to pressure increases by 42.4% with reduction of form drag

by 4% while the drag due to viscosity is only reduced by 0.2%. This observation is in agreement

with the findings of Borazjani and Sotiropoulos (2009) that the viscous drag is fairly constant at

high Reynolds number.

Tab 7.5 and 7.6 also shows coefficient of lateral power for undulation for analytical, inviscid
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Figure 7.8: Components of thrust and drag forces due to pressure and viscous effects predicted
by viscous and inviscid simulation

and viscous flow simulation at design and off-design speeds. For constant steady swimming speed,

mean axial power is zero since mean axial force is zero; therefore, the total power requirement is

only the lateral power calculated by Eq 7.11. The total power is non-dimensionalized by a factor

of 1/2ρV 3L2. It is to be noted that analytical lateral power calculated is almost two orders of

magnitude less than viscous power, this is again due to fact the assumption of potential flow

and absence of viscous effects. It is to be noted that power required for anguilliform motion

decreases when swimming speed, i.e. Reynolds number, is increased. The same was observed

by Tytell and Lauder (2004) and Borazjani and Sotiropoulos (2009) who a reported decrease

of lateral swimming power as the Reynolds number is decreased for inline constant swimming

speed case. A concrete conclusion is yet to be drawn for the motion function used in this study

as to whether at even higher and lower Reynolds number the power requirement would decrease

or increase. More simulations are being carried out for various Reynolds numbers to answer

this question and will be communicated in future work. It is worthwhile to mention that the

power coefficient for inviscid flow simulation does agree very well with the findings of Borazjani
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Figure 7.9: Thrust and drag forces as predicted by inviscid flow simulation, thrust force calculated
by analytical solution(Vorus and Taravella 2011) and thrust and drag forces predicted by viscous
flow simulation for non-ideal flow case

and Sotiropoulos (2009). The power requirement for the current study is 1.789×10e−3 for off-

design viscous simulation at Reynolds number 183,796, while for Borazjani and Sotiropoulos at

Reynolds number 4,000 was 4.726×10e−3. Since the the order of magnitude is the same, this

may give an idea that at higher Reynolds number the power requirements may decrease but at a

very slow rate; however, the authors do not claim this as a definite conclusion and more studies

are underway. Tab 7.7 gives the Froude efficiencies for analytical and inviscid flow simulations at

Table 7.7: Froude Efficiencies

Case η

Analyticaldesign speed 100%
Analyticaloff-design speed 84.13%

Invisciddesign speed 84.71%
Viscousoff-design speed 45.03%

EBT 75%

design speed and viscous, analytical and elongated-body theory at off-design speed. Vorus and
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Figure 7.10: Components of thrust and drag forces due to pressure and viscous effects predicted
by viscous and inviscid simulation for non-ideal flow case

Taravella (2011) calculated the ideal efficiency for the anguilliform motion to be 100% at design

speed. As discussed before, this theoretical efficiency is based on assumptions of a potential flow

model. The definition of analytical efficiency does not include the power to overcome the drag

produced in axial direction as seen in Eq 7.5 (Vorus and Taravella 2011). Considering inviscid

flow, where there is absence of viscous effects, the efficiency for inline swimming case at design

speed is about 84% due to the fact as discussed earlier, that there are effects due to the ends of

the anguilliform which are not accounted in the ideal theory.

7.3.3 Comparison to experimental results

A qualitative comparison of experimentally observed velocities (Eastridge 2020) and numerically

predicted velocities at two different cross section locations, L/2 and 3L/4, for design speed case

are presented below. Figure 7.11 and 7.12 shows cross section contours plots for axial velocity

at half length for design speed case. Figure 7.13 and 7.14 shows cross section contours plots for

axial velocity at three-quarters of the length for the design speed case. Comparison between
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Figure 7.11: Numerically predicted axial velocity plots for cross-section at L/2 for swimming
speed of 0.25 m/s

Figure 7.12: Experimentally observed axial velocity plots for cross-section at L/2 for swimming
speed of 0.25 m/s

Figs 7.11 and 7.12 are made when the cross section crosses the centerline to be consistent with

the experimentally acquired data. It can be observed that the numerically predicted boundary

layer is very thin around the anguilliform which is in consistent with assumptions made by

Vorus (2005). The comparison with experimental data indicates that there is not boundary

layer separation at that time step also as observed by Eastridge (2020). However, some effects
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of reflection while obtaining the experimental data, as discussed by Eastridge (2020), can be

observed in downstream of Fig 7.12. A similar comparison is made at the axial location of

Figure 7.13: Numerically predicted axial velocity plots for cross-section at 3L/4 for swimming
speed of 0.25 m/s

Figure 7.14: Experimentally observed axial velocity plots for cross-section at 3L/4 for swimming
speed of 0.25 m/s

three-quarters of length in Fig 7.13 and 7.14. It can be observed that boundary layer is very

thin and starts to separate in the downstream. The lower shear stress observed and reported

by Eastridge (2020) in the down stream can be attributed to the separation. The increase in
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shear stress as observed by Eastridge (2020) at top of the cross section (angle of 90o) can be

attributed to thinning of boundary layer. This can also indicate transitional behavior during the

acceleration phase. Fig 7.15 shows the numerically predicted velocity in deceleration phase of a

Figure 7.15: Numerically predicted axial velocity plots for cross-section at 3L/4 for swimming
speed of 0.25 m/s

cross section at three quarters of length. It can be observed that the boundary layer thickens and

starts to separate with formation of two vortex like structure. This is also seen in Fig 7.16 which

shows the vortex shedding in the wake which is consistent with observation made by Potts (2015)

however, strength of these vortex sheet is observed to be less. This supports the above argument

made regarding the transitional behavior of boundary layer. However, turbulence study is needed

to conclusively determine the behavior of boundary layer.
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Figure 7.16: Velocity contour plots for off-design case with vortex shedding
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8 Concluding Remarks

8.1 Conclusions

A CFD numerical solver based on pseudo-compressibility technique was developed to solve gov-

erning differential equation for laminar (NS) and intermittently turbulent (RANS) for flow over

a flat plate and oscillating flow over a flat plate. The code is validated for flow over a flat plate

by comparing to experimental data obtained using PIV techniques. The stream wise velocities

predicted by the code are within 2% range of experimentally observed velocities. The code is

verified for discretization accuracy using GCI method. It was observed that the discretization

error was found to be 1.7% with global order of accuracy of 5.7% which is again within acceptable

range. After the code is used to solve RANS equations along with two equation turbulence model

by Chien’s (k–ε) model. The velocity profiles predicted by RANS equations were compared to

ones predicted by NS equations for lower and higher ranges of intermittently turbulent regime.

The results indicated that the model does well in intermittently turbulent regime.

The developed CFD code was ultimately applied to to study the boundary layer characteristic

in oscillating flow over a flat plate in intermittently turbulent regime. To validate the code, the

predicted velocity profile in laminar regime were compared to analytical solution. The predictions

and analytical solution were in good agreement. To study oscillating flow in intermittently and

fully turbulent regime, an intermittency bypass transition model, k–ε–γ , is proposed which is

simpler than those published and without data correlation. It depends only on local variables.

One single intermittency equation is developed and coupled with Jones and Launder’s k–ε RANS

model. The model is only proposed for oscillating flows and for bypass transition, where turbulent

intensity greater than 1%. The phenomenon of bypass transition a characteristic os oscillating

boundary layer flows in high Reynolds number. Transition is initiated by diffusion of turbulence

into the boundary layer and the source term carries it to turbulence. The intermittency model
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was successfully able to forestall the onset of turbulence.

Numerical study was performed for Reynolds number (based on stokes thickness) ranging

from laminar to intermittently to fully turbulent flows. The predicted velocity profiles and wall

shear stress were compared to experimental data and DNS data. The prediction were in good

agreement with data. The deviations observed were within the acceptable ranges of 2% for

intermittently turbulent regime and 8% for fully turbulent regimes. The onset of transition

was observed by a sharp increase in shear stress profile. In intermittently turbulent regime,

during acceleration phase, burst of kinetic energy were observed in mid part of acceleration

phase causing transition and were sustained through late part of deceleration phases. The peak

of kinetic energy were observed to be much closer to wall as Reynolds number was increased

as well as the bursts were observed in early phases of cycle and sustained through the whole

cycle in fully turbulent regimes. The excellent agreement of predicted results with the published

data suggests that the proposed intermittency model k–ε–γ coupled with RANS equations is

capable of predicting boundary layer characteristic for unsteady oscillating flow over a flat plate

in laminar, intermittently and fully turbulent regimes.

Numerical analysis of hydrodynamics of an anguilliform-like propulsor has been performed

by applying a specific kinematics that has theoretically proven to shed no vortices in the wake.

A commercial CFD software (ANSYS-FLUENT) has been used to discretize and solve full NS

equations for anguilliform swimming motion prescribed by Vorus and Taravella (2011). Overset

meshing method is used to simulate the eel movements as it has higher tail amplitudes. This has

easily circumvented the problem of negative-cell volumes which is common with conventional

dynamic meshing methods. Fluent’s option for solving Euler equations was also exploited to

solve inviscid flow to compare to theoretical calculation (Vorus and Taravella 2011) at design

speed of the anguilliform (Re=241,844). The trust and drag were balanced at the design speed

in the inviscid flow simulation and thus comparison to theory was made. It was observed that

the magnitude of thrust and drag were higher than the theoretically calculated thrust and drag.

This difference was attributed to the fact that the theory does not account for the ends of the

anguilliform. The power losses were also higher for inviscid flow simulations leading to lower

efficiency of the motion when compared to the ideal swimming theory. When the same design
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speed simulation was performed with NS equations (include viscous effects) non-zero net force

case was observed. It was due to viscous effects which was evident and significant. Furthermore to

achieve the inline constant swimming speed case, the swimming speed was reduced (Re=183,796).

This was needed to find the efficiency of the motion as the definition would only be meaningful

at the constant swimming speed case. At high Reynolds number, viscous effects did not change

much when swimming speed was reduced. This was also observed in previous studies. There

was significant increase in thrust force produced, which balanced higher drag. The production of

thrust is mostly due to pressure variation caused by undulatory motion. The proposed motion is

much more efficient at higher speeds, both for inviscid and viscous flow simulations, as compared

to swimming motions of live eels studied by Borazjani and Sotiropoulos (2009). This can be

attributed to the proposed motion Vorus and Taravella which is designed to shed no vorticies in

wake i.e. no wake-induced drag. A mathematical model which describes this motion was easier

to solve if potential flow assumptions were made. This, however, will not be that trivial when

considering full NS equations. However, the function does produce vortex shedding in the wake

(viscous flow) but the effect of wake-induced drag is minimized, leading to higher efficiency than

the actual live swimmers. This proposed motion is of high interest to engineers that design

under water vehicle which propels itself. The proposed motion would provide an efficient means

of propulsion as compared to conventional methods.

In the present study it is clear that at such high Reynolds number the anguilliform will have

difficulties reaching its design speed with the proposed motion. However, the effect of Reynolds

number on the lateral power spent is still an open-ended question even in live eel swimmers

(Borazjani and Sotiropoulos 2009). The same is yet to be answered for the design speed versus

swimming speed. Therefore, the current work cannot yet determine conclusively the range of

efficiencies for various Reynolds number. Further simulations are underway in which it is be-

ing tested if at any such Reynolds number the design speed will match swimming speed and

what would be its efficiency. These simulation results will be reported in future communica-

tion. Nonetheless, the findings of this study do state that the proposed motion achieves higher

hydrodynamic efficiency than the one adopted by actual live anguilliform swimmers for higher

Reynolds number.
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8.2 Future Work

As discussed in chapter 7 that there were evidence of transitional behavior of the boundary

layer on an anguilliform propulsor. To study such oscillatory behavior on the anguilliform using

RANS equations, an intermittency or transitional model can be used. The proposed k–ε–γ model

can be improved upon and used for turbulent simulation of the anguilliform. The current model

proposed has the incapability of predicting transition with turbulent intensity less than 1%. It can

be only applied to to predict bypass transition only. To counter the effects of re-laminarization

of boundary layer, a phenomenon that exists in intermittent turbulent flows, perhaps a sink term

can be introduced in the proposed γ equation.

Another issue to handle will be the effects of boundary layer separation which is evident

in anguilliform at the trailing edge. This further leads to formation of vortex sheet in the

wake. The proposed turbulence model can be further developed to predicted or handle boundary

layer separation. For this as suggested more experimental work is required as suggested by

Eastridge (2020) using volumetric PIV. The data can be used to modify the turbulence model

and incorporate the effects for high pressure gradient and boundary layer separation. Finally after

making modifications to the turbulence model, RANS simulations of the anguilliform propulsor

can be used to perform optimization of the geometry and the motion function proposed by Vorus

and Taravella (2011) to produce wakeless swimming in real fluid.
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