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Abstract 

 

 

Spatial point pattern analysis investigates the localizations of random events in a defined spatial 

space usually conveyed in the form of images. Spatial distribution of two types of events 

observed in these images reflects their underlying interactions, which is the focus of co-

localization analysis in spatial statistics. Malkusch et al. (Malkusch, et al., 2012) recently 

proposed the Coordinate-based Colocalization (CBC) method for co-localization analysis. 

However, the method did not incorporate edge corrections for point proportions and ignored 

their correlations over nested incremental observational regions. Hence, it yields false positive 

results for even complete spatial random distributions. In this research, we propose the new 

K(r) function Coordinate-based Colocalization (KCBC) method to quantify co-localization of 

two species by utilizing local bivariate Ripley's K and Pearson’s Correlation Coefficient. 

Simulation studies are conducted to demonstrate the unbiasedness of the new method. An 

application to real life data was provided to illustrate its applicability. 

 

Keywords: Colocalization, Spatial point pattern, Spatial statistics, Pearson’s correlation, 

Ripley’s K(r) function.
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1. Introduction 

 

 

1.1.Spatial Point Patterns 

Spatial statistics studies statistical methods that are particularly for analyzing data that has 

spatial characteristics associated with it where the locational information plays one of the most 

important roles (Unwin, 2009). Spatial point pattern data therefore generally refers to the 

collection of points randomly located on some underlying mathematical space, i.e., the data on 

the locations of events on some predefined mathematical space (Unwin, 2009). A classic 

example is the data on the locations of the centers of 42 biological cells observed under optical 

microscopy in a histological section (Ripley, 1977), where the locations show a regular 

distribution, see Figure 1 (a). Whilst the descriptive analysis uses visualization and numerical 

methods in analyzing the structure of the spatial point pattern, inferential statistical methods 

analyze the pattern as a stated hypothesis, where complete spatial randomness (CSR) is used 

as the reference to determine how the other spatial point patterns deviate from it. Different from 

cluster point processes (see Figure 1 (b) for an example), CSR is formed from a homogenous 

Poisson process (Figure 1 (c)) and it describes a point process whereby points occur within a 

given study area in a completely random fashion so that each point in the point pattern is 

independent of another and they all have equal probability of occurring at any location in the 

given study region. CSR patterns therefore do not exhibit co-localization or dispersion if there 

are two or more CSR processes marked as different species in the same study region.  
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Figure 1:  Three different types of point patterns. (a) Regular pattern: a sample square containing 

localizations of 42 biological cells (Graph adopted from (Ripley, 1977)); (b) A simulated image derived 

from a Matern Cluster process; (c) A simulated complete spatial random point pattern. 

 

1.2.Complete Spatial Randomness (CSR) 

Complete spatial randomness (CSR) is foundational to quantitative and inferential description 

of spatial point patterns. A CSR is realization of a homogeneous Poisson process (Diggle P. , 

1983) in a bounded region of a 2-dimensional or a 3-dimensional space which absorbs a single 

parameter 𝜆, as the intensity (mean number of events per unit area) of the spatial point pattern, 

with the actual number of events observed in the region being N. Therefore, N is an observation 

of the Poisson process with mean 𝜆|𝐴|, where |𝐴| is the area of the observational study region 

in the spatial point pattern. Conditional on N, CSR has the following characteristics (Diggle P. 

J., (1986) ): 

i. Each event is equally likely to occur at any location of the study region. 

ii.  All the events are located independently of each other. 

The CSR pattern therefore usually serves as a basis for hypothesis testing in analyzing spatial 

distributions. One of the most popular methods, the Ripley’s K functions (Dixon, 2002), uses 

the CSR as the benchmark accompanied by Monte Carlo simulations. 
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1.3.Co-localization Analysis 

Analyzing the interactions between different species in spatial point patterns exist largely in 

many disciplines such as biology, epidemiology, ecology, natural resource management and 

criminology to give different ideas in making decisions. Co-localization analysis therefore can 

be seen as the technique used to investigate the interactions in a completely mapped spatial 

point patterns. It involves the measurement of the spatial overlap between spatial events to see 

if the events are located in the same area or close to one another (Fig. 2(a)). The opposite case 

is that the events of different channels tend to locate in different areas or far from one another 

(Fig. 2(b)), showing a dispersive interaction.  These spatial patterns have marked information 

such as the types of species/channels in the point pattern. When such information is known, 

analyzing co-localization in the spatial point patterns with multiple channels can be thought to 

reflect two components: the co-occurrence and co-distribution along or around the different 

channels in the spatial point pattern. 

 Over the years, few methods have been developed for co-localization analysis. The 

most common ones include the mean nearest distance methods, the Ripley’s K function, cross 

correlation, among others. (Dixon, 2002) summarized how the multivariate Ripley’s K(r) 

functions describe the spatial point processes at many distance scales. He showed that under 

independent CSR (Fig 2(c)), the cross-channel K(r) function is 𝐾12(𝑟) = 𝜋𝑟2. The results are 

unbiased due to edge corrections in the calculation of the K functions.  

Recently, a new method, named as Coordinate-Based Co-localization (CBC) method, 

was proposed by Malkusch in 2012 (Malkusch, et al., 2012) and later employed in their 

software LAMA (Malkusch & Heilemann, (2016)). The method was developed for analyzing 

interactions of different types of biomolecules using their localizational information in super-

resolution microscopic imaging data. 
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              (a)      (b)         (c) 

Figure 2: Three different types of bivariate point patterns (red and green species).; (a) A simulated image 

derived from a Matern Cluster process; b) A simulated regular pattern (c) A simulated complete spatial 

random point pattern 

 

The CBC method selects one channel as the base channel and around each base-channel signal 

the CBC calculates neighboring point proportions of both channels, respectively, within a 

series of equally spaced radii of the center between r = 0 and r = Rmax. The method uses the 

particular Rmax = 250nm as the largest distance Rmax to accommodate the diffraction limit of 

light (Malkusch & Heilemann, (2016)). The Spearman correlation of the point proportions of 

the two types of molecules across the series of concentric circles is then calculated as a 

quantitative measure of co-localization index for that particular signal at the center. The mode 

of correlation values around all base-channel signals is utilized as the co-localization index for 

the whole image. However, ignoring the association of point proportions within different sizes 

of nested circles around the center and failing to incorporate edge corrections yield false 

positive results even for the independent CSR point processes.   

 

1.4.Problem Statement and Objective of the Thesis 

The limitation in the CBC algorithm therefore serves the motivation for this thesis. The main 

idea for this research is to incorporate bivariate local K functions to correct edge effects and 

then the K functions of both channels are calculated over a sequence of neighboring rings of 
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equal widths around each base-channel signal. The rings instead of concentric solid circles are 

used in order to remove the inherent correlation of K function values across different sizes of 

nested circles due to the natural overlapping. In the last, the Pearson Correlation Coefficient of 

the local bivariate K functions between the two channels across the series of rings is used to 

quantify co-localization at the base-channel signal. The average of correlations at all base-

channel signals serves as the measure of co-localization of cross-channel towards the base-

channel for the whole image. We name the novel method the KCBC method. Basically, if the 

correlation is toward 1, the two channels are considered to be positively co-localized; if the 

correlation is closer to -1, the two channels show a dispersive interaction; if the correlation is 

at around 0, then we can conclude the two types of events have no interactions. The objective 

is to develop the new method in order to correct the biasedness in the CBC method and produce 

unbiased results for two independent CSR point patterns. Hence later, the method can be used 

for hypothesis testing using CSR as reference.  

 

1.5.Organization of the Thesis 

In this thesis, Chapter 2 reviews the K function, Ripley’s K function, bivariate Ripley’s K 

function and local bivariate Ripley’s K function. In Chapter 3, we briefly go over the CBC 

method. Chapter 4 is devoted to demonstrating the methodology of our KCBC method. 

Simulation studies and an empirical application are provided in Chapter 5 and Chapter 6 

respectively to illustrate the validity and applicability of our new method. Conclusion and 

future work are discussed in Chapter 7. The R software and the package spatstat are used for 

our simulation and empirical studies. 
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2. The K(r) Function 

 

 

2.1.Introduction 

In this chapter, we would review the K function, the edge corrected K function known as the 

Ripley’s K function, the bivariate Ripley’s K function for spatial patterns with two types of 

events and finally the local bivariate Ripley’s K function. 

 

2.2.Theoretical K(r) Function 

The K function is a second-order statistics used to analyze data on the location of events 

(Dixon, 2002). It analyzes spatial point patterns by measuring the expected number of events 

found within some distance r from a randomly selected event which is then normalized by the 

intensity (mean number of events per unit area). It has the ability to describe a spatial point 

pattern at different distance scales, however, a spatial point pattern is not uniquely defined by 

the K function, i.e., different spatial point patterns can have the same K(r) function (Baddeley 

& Silverman, 1984). Mathematically, the K(r) is defined as 

𝐾(𝑟) = λ
−1𝐸[𝑁0(𝑟)]                  (2.1) 

where, λ is the intensity (number of points per unit area) of the image and 𝐸[𝑁0(𝑟)] counts the 

expected number of events found within the radius r of a randomly selected event in the spatial 

point pattern. 𝐸[𝑁0(𝑟)] can however be estimated as, 

�̂�[𝑁0(𝑟)] = 𝑁−1 ∑ ∑ 𝐼(𝑑𝑖𝑗 < 𝑟)𝑗≠𝑖                (2.2) 

where, 𝑑𝑖𝑗 represents the distance between the randomly selected 𝑖𝑡ℎ point to the 𝑗𝑡ℎ point, N 

is the observed number of points in the image and 𝐼 is the indicator function which has a value 

of 1 if 𝑑𝑖𝑗 is within distance r and 0 otherwise.  

Therefore, the K(r) function can be estimated as, 
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�̂�(𝑟) = �̂�−1 ∑ ∑ 𝐼(𝑑𝑖𝑗<𝑟)𝑗≠𝑖

𝑁
 ,               (2.3) 

where �̂� = 𝑁/|𝐴|, and |𝐴| is the area of the observation window. 

 

2.3.The Ripley’s K(r) function 

Since observation window is bounded, it is intuitive and necessary to consider edge effects 

especially when r is large. Ignoring edge effects is likely to yield biased results for the events 

close to the boundary of the study region and/or as r gets large. This is because for large radii 

and for events close to the boundaries of the study region, neighboring points outside the 

boundaries are not observed and hence not counted even if they fall inside the neighborhood 

of distance r of the selected events. In view of this, edge effects corrections must be considered 

in order to avoid biased results. The most popular edge-corrected estimator used in the literature 

is known as the Ripley’s K function proposed by Ripley (Ripley B. D., 1981) which adds a 

weight 𝑤 to the indicator function in (2.3), 

�̂�(𝑟) = �̂�−1 ∑ ∑ 𝑤(𝑥𝑖 , 𝑥𝑗)
−1

𝑗≠𝑖𝑖
𝐼(𝑑𝑖𝑗<𝑟)

𝑁
 ,             (2.4) 

The function 𝑤(𝑥𝑖, 𝑥𝑗) has a value equal to the proportion of the circumference of the circle 

with center 𝑥𝑖 and passing through the point 𝑥𝑗 found within the study region. The Ripley K 

function can be estimated for all r; however, it is more efficient and common practice to use an 

r, that is less than one quarter of the smallest dimension of the enclosing rectangle of the study 

region.   

 

2.4.Bivariate Ripley’s K function 

The bivariate Ripley’s K function is a Ripley’s K function that is in particular for localizations 

of two channels. For example, for an image having the channels A and B, it measures the 

expected number of events in channel B found within some distance r from a randomly selected 
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event in channel A which is then normalized by the intensity of the signals in channel B and 

vice versa. Considering edge effect corrections, it is estimated as, 

�̂�𝐴𝐵(𝑟) = (�̂�𝐵)−1 ∑ ∑ 𝑤(𝑥𝑖𝑥𝑘∈𝐵𝑥𝑖∈𝐴 , 𝑥𝑘)
−1 𝐼(𝑑𝑖𝑘<𝑟)

𝑁𝐴
,             (2.5) 

where, �̂�𝐵 is the intensity of the channel B (number of points of channel B per unit area). 

 

2.5.Local Bivariate Ripley’s K(r) Function 

The local bivariate Ripley’s K is of the bivariate Ripley K function at a particular base-channel 

signal. For an image having channels A and B, it calculates the number of extra events in 

channel B found within distance r of a selected signal point 𝑥𝐴 in channel A, which is then 

normalized by the intensity of the signals in channel B. Considering edge effect corrections, 

the local bivariate Ripley’s K estimator is given as below, 

�̂�𝐴𝐵(𝑟, 𝑥𝑖) = (�̂�𝐵)−1 ∑ 𝑤(𝑥𝑖, 𝑥𝑘)−1
𝑥𝑘∈𝐵  𝐼(𝑑𝑖𝑘 < 𝑟).            (2.6) 

Essentially, bivariate Ripley’s K function is the average of local bivariate Ripley’s K functions 

across all base-channel signals to provide overall information of the whole image. Local 

bivariate Ripley’s K function can instead be used to investigate the distribution of cross-

channel events around each particular base-channel event if people are more interested in 

interactions of two channels for a particular subregion or for a particular location/event.  

Theoretically, under CSR, Ripley’s K functions and local bivariate Ripley’s K functions are 

expected to be equal to the area 𝜋𝑟2. 
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3. Coordinate-Based Colocalization (CBC) Method 

 

 

3.1.Introduction 

In this chapter we review the CBC method. It serves as one of the main motivations to build 

our proposed KCBC method in Chapter 4. 

 

3.2.The CBC Method 

As we have introduced previously, the CBC method (Malkusch, et al., 2012) calculates the 

correlation of point proportions of two channels (A, B) across a series of distances around each 

base-channel signal. To find the co-localization value at a base-channel signal point 𝐴𝑖 in 

channel A, it uses the scaled ratio of the total count of signal points on a sequence of circular 

neighborhoods ranging from a minimum r=0 value to a maximum value 𝑅𝑚𝑎𝑥 of each base-

channel signal point to get two ratios for the two channels. 

𝐷𝐴𝑖,,𝐴
(𝑟) =  

𝑁𝐴𝑖,𝐴(𝑟)

𝑁𝐴𝑖,𝐴(𝑅𝑚𝑎𝑥 )
 .

𝑅𝑚𝑎𝑥 2

𝑟2 ,             (3.1) 

𝐷𝐴𝑖,,𝐵
(𝑟) =  

𝑁𝐴𝑖,𝐵(𝑟)

𝑁𝐴𝑖,𝐵(𝑅𝑚𝑎𝑥 )
 .

𝑅𝑚𝑎𝑥 2

𝑟2 ,              (3.2) 

where, 𝑁𝐴𝑖,𝐴(𝑟) is the number of points in species A found within the r neighborhood of the 

selected base-channel signal point 𝐴𝑖, 𝑁𝐴𝑖,𝐵(𝑟) is the number of points in species B found 

within the r neighborhood of the selected base-channel signal point 𝐴𝑖.   

A rank correlation coefficient, the Spearman’s correlation, is then calculated at each 

base signal point for the ratios in (3.1) and (3.2): 

𝑆𝐴𝑖
=  

∑ (𝑂𝐷𝐴𝑖,𝐴
(𝑟)−�̅�𝐷𝐴𝑖,𝐴

)(𝑂𝐷𝐴𝑖,𝐵
(𝑟)−�̅�𝐷𝐴𝑖,𝐵

)
𝑅𝑚𝑎𝑥
𝑟𝑗=0

√∑ (𝑂𝐷𝐴𝑖,𝐴
(𝑟)−�̅�𝐷𝐴𝑖,𝐴

)2 
𝑅𝑚𝑎𝑥
𝑟𝑗=0  √∑ (𝑂𝐷𝐴𝑖,𝐵

(𝑟)−�̅�𝐷𝐴𝑖,𝐵
)2𝑅𝑚𝑎𝑥

𝑟𝑗=0

,             (3.3) 

where, 𝑂𝐷𝐴𝑖,𝐴
(𝑟) is the rank of 𝐷𝐴𝑖,,𝐴

(𝑟) and �̅�𝐷𝐴𝑖,𝐴
 is the average of 𝑂𝐷𝐴𝑖,𝐴

(𝑟) (Malkusch, et 

al., 2012). 
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Finally, each of the Spearman rank correlation is calibrated into a scaled ratio rank 

correlation and then serves as the colocalization value for each signal point 𝐴𝑖. The calibrated 

rank correlation is calculated as:  

𝐶𝐴𝑖
=  𝑆𝐴𝑖

 . 𝑒
(− 

𝐸𝐴𝑖,𝐵

𝑅𝑚𝑎𝑥
 )

,               (3.4) 

where, 𝐸𝐴𝑖,𝐵 is the distance from 𝐴𝑖 to its nearest neighbor in the cross species 𝐵. This 

calibration is to reduce false positives if the nearest cross-channel neighbor is too far away. 

The overall co-localization index at each 𝑟 is given by the mode of the co-localization values 

of all the base-channel signal points. Under CSR the value for 𝐷(𝑟) is expected to be 1 for all 

𝑟, hence the scaled rank correlation coefficient is expected to be 0. However, because the CBC 

algorithm does not consider edge correction and ignores the correlation of point proportions 

over different sizes of nested circles it is prone to produce false positive errors, resulting in 

upward biased colocalization values even under CSR. 

  



  11 

4. K(r) Coordinate-Based Colocalization (KCBC) Method 

 

 

4.1. Introduction 

In this chapter, we describe our novel method for co-localization analysis. The local Ripley’s 

K function and the CBC method serves as the foundation for the construction of the KCBC 

method. 

 

4.2.Construction of the KCBC Method 

To construct the KCBC method, we incorporate local Ripley’s K function to modify the CBC 

method in order to correct the false positive errors. We denote our study region by  Υ, which 

contains 𝑛 signal points 𝑋 from two species 𝐴 and 𝐵, i.e., Υ: 𝑋 = 𝑋𝐴  ∪ 𝑋𝐵. To calculate the 

co-localization index for each base signal point 𝐴𝑖, the local bivariate Ripley K(r) function is 

first used to estimate the expected number of signal points from both channels 𝐴 𝑎𝑛𝑑 𝐵 found 

within the r neighborhood of the particular point 𝐴𝑖 which is then scaled by the intensity of 

image. The estimates are calculated as: 

�̂�𝐴𝐴(𝑟, 𝐴𝑖) = (�̂�𝐴)−1 ∑ 𝑤(𝑥𝑖, 𝑥𝑘)−1
𝑥𝑘∈𝐴   𝐼(𝑑𝑖𝑘 < 𝑟),            (4.1) 

�̂�𝐴𝐵(𝑟, 𝐴𝑖) = (�̂�𝐵)−1 ∑ 𝑤(𝑥𝑖, 𝑥𝑘)−1
𝑥𝑘∈𝐵   𝐼(𝑑𝑖𝑘 < 𝑟).           (4.2) 

The local bivariate Ripley’s K functions are estimated on a sequence of 𝑟 values ranging from 

some minimum 𝑟 to a maximum value, i.e., 0 = 𝑟0, 𝑟1, . . . , 𝑟𝐽 = 𝑅𝑚𝑎𝑥. In our KCBC method, 

the selected base signal point 𝐴𝑖 is added to the local bivariate K(r) values 

�̂�𝐴𝐴(𝑟𝑗, 𝐴𝑖) = �̂�𝐴𝐴(𝑟𝑗 , 𝐴𝑖) + (𝑁𝐴 − 1)−1 ,              (4.3) 

Hence the local K functions are now interpreted as expected number of base-channel signals 

around an observed base-channel event normalized by the image intensity. Under CSR, the 

local K functions are equal to the area of the corresponding circle 
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𝐾𝐴𝐴(𝑟𝑗, 𝐴𝑖) = 𝜋𝑟𝑗
2,              (4.4) 

𝐾𝐴𝐵(𝑟𝑗 , 𝐴𝑖) = 𝜋𝑟𝑗
2 .              (4.5) 

To eliminate the correlation of these K functions over different sizes of solid circles due to 

overlapping, we subtract the neighboring K functions and get the K functions over disjoint 

rings: 

�̂�𝐴𝐴(𝑟𝑗, 𝐴𝑖)\�̂�𝐴𝐴(𝑟𝑗−1, 𝐴𝑖) = �̂�𝐴𝐴(𝑟𝑗, 𝐴𝑖) − �̂�𝐴𝐴(𝑟𝑗−1, 𝐴𝑖) ,            (4.6) 

�̂�𝐴𝐵(𝑟𝑗 , 𝐴𝑖)\�̂�𝐴𝐵(𝑟𝑗−1, 𝐴𝑖) = �̂�𝐴𝐵(𝑟𝑗, 𝐴𝑖) − �̂�𝐴𝐵(𝑟𝑗−1, 𝐴𝑖) ,            (4.7) 

for 𝑗 = 1, … , 𝐽. Normalization is then applied using the areas of the rings to get our new local 

K values: 

𝑁�̂�𝐴𝐴
(𝑟𝑗 , 𝐴𝑖) =

�̂�𝐴𝐴(𝑟𝑗,𝐴𝑖)−�̂�𝐴𝐴(𝑟𝑗−1,𝐴𝑖)

𝜋𝑟𝑗
2−𝜋𝑟𝑗−1

2  ,             (4.8) 

𝑁�̂�𝐴𝐵
(𝑟𝑗, 𝐴𝑖) =

�̂�𝐴𝐵(𝑟𝑗,𝐴𝑖)−�̂�𝐴𝐵(𝑟𝑗−1,𝐴𝑖)

𝜋𝑟𝑗
2−𝜋𝑟𝑗−1

2  .             (4.9) 

This process is repeated for each base-channel signal point 𝐴𝑖, and at each 𝐴𝑖, the Pearson’s 

correlation coefficient 𝑃𝐴𝑖
 for the normalized pairs (𝑁�̂�𝐴𝐴

(𝑟𝑗 , 𝐴𝑖) , 𝑁�̂�𝐴𝐵
(𝑟𝑗, 𝐴𝑖)) is computed, 

where 𝑖 = 1, . . . , 𝑁𝐴 and 𝑗 = 1, . . . , 𝐽. The Pearson’s correlation coefficient 𝑃𝐴𝑖
 serves as the co-

localization index for the point 𝐴𝑖.  

𝑃𝐴𝑖
=

∑ [𝑁�̂�𝐴𝐴
(𝑟𝑗,𝐴𝑖)−𝑁�̂�𝐴𝐴

(𝐴𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ][𝑁�̂�𝐴𝐵
(𝑟𝑗,𝐴𝑖)−𝑁�̂�𝐴𝐵

(𝐴𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
𝐽
𝑗=1

√ ∑ [𝑁�̂�𝐴𝐴
(𝑟𝑗,𝐴𝑖)−𝑁�̂�𝐴𝐴

(𝐴𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
2𝐽

𝑗=1
∑ [𝑁�̂�𝐴𝐵

(𝑟𝑗,𝐴𝑖)−𝑁�̂�𝐴𝐵
(𝐴𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]

2𝐽
𝑗=1

,          (4.10) 

where 𝑁�̂�𝐴𝐴
(𝐴𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

1

𝐽
∑ 𝑁�̂�𝐴𝐴

(𝑟𝑗 , 𝐴𝑖)𝐽
𝑗=1  and 𝑁�̂�𝐴𝐵

(𝐴𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝐽
∑ 𝑁�̂�𝐴𝐵

(𝑟𝑗 , 𝐴𝑖)𝐽
𝑗=1 . 𝑃𝐴𝑖

 takes on the 

values between − 1 and  1.  The KCBC algorithm sets 𝑃𝐴𝑖
 to −1 in cases where there is extreme 

exclusion, 0 for lack of interaction and 1 when the two channels are completely colocalized. 

At the 𝑅𝑚𝑎𝑥, the mean of correlations across all base-channel signals is computed as the overall 

measure of co-localization of the cross-channel events towards the base channel signal points. 
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5. Simulation Studies 

 

 

5.1. Introduction 

In this chapter, we conduct simulation studies to investigate the performance of the KCBC 

algorithm proposed in Chapter 4.  

 

5.2. Simulation Studies on CSR Images. 

In the study, we set the unit square [0,1] × [0,1] in  𝑅2 as our observation window.  Independent 

homogenous Poisson processes were simulated for red species with intensity of 300 and green 

species of intensity of 175.  A total of 500 images were obtained. One example image is given 

in Figure 3. In order to examine the effect of selection of 𝑅𝑚𝑎𝑥 to the index, we applied KCBC 

to each image at different choices of  𝑅𝑚𝑎𝑥. Also, for purposes of comparison, the CBC method 

was applied to the same images for each 𝑅𝑚𝑎𝑥, too. Means of co-localization indices by KCBC 

and modes of the measures from CBC method are collected, respectively, for all simulated 

images. Results of the two methods are summarized in Table 1 and displayed in Figure 4. 

The box plot in Figure 4 shows clearly that, results of CBC method for very small 𝑅𝑚𝑎𝑥 are 

almost not biased, however, as 𝑅𝑚𝑎𝑥 gets larger, the CBC yields upward biased co-localization 

index values. This upward bias is corrected in the KCBC method by using the local bivariate 

Ripley’s K functions over disjoint rings. Results from the KCBC method show that the upward 

biasedness of co-localization values in the CBC has been significantly reduced for all 𝑅𝑚𝑎𝑥. 

This reflects no interactions between the two species. The results are extremely well for 

relatively larger r’s. See Table 1 for the information of 95% confidence intervals for each 𝑅𝑚𝑎𝑥.  
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Figure 3: A simulated independent CSR Patterns of 290 red events and 189 green events. 

 

 

 

 

Rmax CBC Index LCL UCL 
KCBC 

Index 
LCL UCL 

0.05 0.00 0.0011 0.0015 0.00 0.002 0.004 

0.07 0.02 0.0196 0.0296 0.01 0.007 0.009 

0.09 0.20 0.1909 0.2148 0.01 0.007 0.010 

0.11 0.24 0.2281 0.2486 0.01 0.006 0.009 

0.13 0.23 0.2157 0.2345 0.01 0.005 0.008 

0.15 0.20 0.1903 0.2082 0.01 0.004 0.007 

0.17 0.17 0.1652 0.1833 0.00 0.002 0.006 

0.19 0.16 0.1499 0.1676 0.00 0.001 0.005 

0.21 0.16 0.1477 0.1664 0.00 0.000 0.004 

0.23 0.15 0.1391 0.1584 0.00 0.000 0.004 

0.25 0.15 0.1407 0.1596 0.00 0.000 0.004 

Table 1: KCBC and CBC results of 500 simulated CSR images. The table shows the summary of the modes and 

the 95% confidence intervals, lower confidence limit (LCL) and upper confidence limit (UCL) of the CBC 

values and mean and 95% confidence interval of the KCBC indexes at each 𝑹𝒎𝒂𝒙.  
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Figure 4: Boxplots showing the summary of co-localization indexes for the 500 simulated CSR images at the each 𝑅𝑚𝑎𝑥 

obtained by CBC and KCBC, respectively.   
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6. An Empirical Study 

 

 

6.1.Introduction 

In this chapter, we apply the KCBC method to a real-life data which contains locational 

information of two type ants. The ants (Harkness & Isham, 1983) dataset can be found in the 

spatstat.data package accessible from the CRAN repository (https://cran.r-

project.org/web/packages/spatstat.data/index.html).  

 

6.2.Background of the Ants Data 

The ants dataset shown in Figure 5 demonstrates the spatial distribution of locations of 97 nests 

of two types of ant species (68 Cataglyphis and 29 Messor). The nests for all the ant species 

are beneath the ground and most often have only one opening at the surface of the ground 

which serves as the passage for the ants. Earlier studies reveals that each species has its unique 

way of gathering food. The Messor species collects seeds as food by embarking the search in 

“trunk tails” before the individual Messor ants disperse. The trunk tails from each nest however 

do not intersect. The Cataglyphis species on the other hand leaves their nests in ones and in 

every direction in search of food. They collect dead insects which mostly are the dead Messor 

ants and usually travel at least 50ft before they return to their nests. The Messor ants are 

however most often hunted and killed by Zodarium frenatum, a hunter spider at in and around 

the opening of their nests and then they are carried away by the spider or other Messor ants. 

There is therefore an obvious biological relationship between the types of ant species with dead 

Messor ants serving as food for Cataglyphis ants. It is therefore of much interest to determine 

whether the locations of the nests of the Cataglyphis ants are as a result of the biological 

relationship that exist between the two species.  
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Figure 5:Map of the 97 locations of nests of two species of ants, 68 Messor wasmanni (∆) and 29 Cataglyphis bicolor (o) in 

an irregular region 425 feet in diameter. 

 

The map covers a total area of about 1 hectare in which there is an open scrub in the north-

western part of the map and field lands at the south-western part of the entire region. The ants 

however are not able to build in the parts of the scrubs lands where there are bushes are 

growing. The map also shows that, whilst the nests of the Messor ants are located all over the 

region, the Cataglyphis ants has few nests in the scrub, and they also are located at some 

particular sections of the entire region. Our map can therefore be divided into two subregions 

(A and B) as shown in Figure 6, where A covers both the scrub land and field land, and B 

covers only the field land. 

 

6.3.Application of the KCBC Method on the Empirical Data 

We apply the KCBC method to the empirical data to answer our question of interest. In 

investigating whether the nests of the Cataglyphis ants are as a result of the biological 

relationship that exist between the two species, we use both the subregions A and B as the study 

regions and the results are compared.  
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Figure 6: Map of the 97 locations of nests of two species of ants divided into subregion A and subregion B, Messor (∆) and 

Cataglyphis (o) (Graph adopted from (Baddeley & Turner, 2005)). 

 

We first perform our analysis using subregion A (Figure 7(a)). This subregion consists of the 

location of nests found in both the scrub and the field lands. The observation window for the 

subregion is a in  𝑅2 rectangular region defined on [8,686] × [31,717]. Messor is used as the 

base species and Cataglyphis as the second species and we aim to investigate whether the nests 

of the two species interact with each other by either through co-clustering together or, there is 

any form of repulsion between the nests of the two species such that they tend to be more 

regularly spaced than in the case of CSR.  

On a sequence of r values ranging from 0 = 𝑟0, 𝑟1, . . . , 𝑟𝐽 = 𝑅𝑚𝑎𝑥, where 𝑅𝑚𝑎𝑥  = (50, 62, 86, 

98, 110, 122, 134, 146, 158, 170), the local bivariate Ripley’s K function is first used to estimate 

the expected number of signal points from both species found within the r neighborhood of the 

each base signal point which is then scaled by the intensity of image. 

 The bivariate local K values are then transformed into disjoint rings as described in the 

methodology and then each pair is normalized, and the Pearson’s correlation coefficient for the 

normalized pairs is computed for each base signal point. 
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(a)         (b) 

Figure 7: Bounded study regions for the ant data. (a) Subregion A, (b) Subregion B 

 

The Pearson’s correlation coefficient at the selected base signal point is the co-localization 

index for that signal point.  The colocalization index at all the 𝑅𝑚𝑎𝑥 is displayed in Figure 8. 

The results show that the data does not display a clear pattern of interactions. The KCBC values 

at all the 𝑅𝑚𝑎𝑥’s are centered around 0. Hence there is no strong evidence to prove that there 

is any interaction between the nest of the two species. The CBC yields a dispersion for the 

smallest 𝑅𝑚𝑎𝑥 = 50, does not support either colocalization or dispersion for 𝑅𝑚𝑎𝑥 ∈ [62,86], 

but shows a positive co-localization of Cataglyphis nests toward Messor nests for mostly 

𝑅𝑚𝑎𝑥 > 98 except for 𝑅𝑚𝑎𝑥 = 158; however, KCBC supports a dispersion of Cataglyphis 

nests from Messor nests for all 𝑅𝑚𝑎𝑥 except for 𝑅𝑚𝑎𝑥 = 74. 

Another test is carried out using the subregion B, which consists of nests found only in 

the field land. The subregion B is defined on a 𝑅2 rectangular region measuring [136,803] × [-

47,549]. On a sequence of r values ranging from 0 = 𝑟0, 𝑟1, . . . , 𝑟𝐽 = 𝑅𝑚𝑎𝑥, where 𝑅𝑚𝑎𝑥 = 

(45,55.5,66,76.5,87.97.5,108,118.5,129,139.5,150), the same procedure used in finding the co-

localization index at each base signal point (Messor) in region A using the KCBC method is 

applied to region B. The results are shown in Figure 9 and table 3. We could see the results are 

similar as those for Region A. CBC shows a dispersion for 𝑅𝑚𝑎𝑥 = 55.5, no evidence of any 
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relation for 𝑅𝑚𝑎𝑥 = 45, but significantly positive co-localization for 𝑅𝑚𝑎𝑥 > 66; while KCBC 

shows a dispersion for all 𝑅𝑚𝑎𝑥 except 𝑅𝑚𝑎𝑥 = 66. Obviously the two methods yield different 

results.   

Rmax 
CBC 

Index 
LCL UCL 

KCBC 

Index LCL UCL 

50 -0.0011 0.0001 0.0003 -0.0255 -0.0052 -0.0021 

62 0.0046 0.0002 0.0004 -0.0277 0.0026 0.0074 

74 0.0142 0.0023 0.0030 0.0154 0.0066 0.0120 

86 0.0180 0.0043 0.0058 0.0011 0.0117 0.0175 

98 0.3382 0.0089 0.0113 -0.0287 0.0172 0.0231 

110 0.3340 0.0167 0.0221 -0.0104 0.0182 0.0241 

122 0.2945 0.0219 0.0509 -0.0311 0.0219 0.0280 

134 0.3498 0.0609 0.1014 -0.0011 0.0265 0.0331 

146 0.2684 0.1724 0.2133 -0.0382 0.0250 0.0320 

158 0.0144 0.2037 0.2395 -0.0466 0.0238 0.0305 

170 0.2149 0.2199 0.2552 -0.0126 0.0275 0.0342 

Table 2. Co-localization indices obtained from KCBC and CBC algorithms for Region A. The modes of the CBC values and 

the means of the KCBC indices at various 𝑹𝒎𝒂𝒙  ranging from 50 to 170. The table also shows the summary of the 

modes and the 95% confidence intervals, lower confidence limit (LCL) and upper confidence limit (UCL) of the 

CBC values and mean and 95% confidence interval of the KCBC indexes at each 𝑹𝒎𝒂𝒙. 

 

 
Figure 8:Line plot showing the co-localization indexes for the CBC and KCBC methods at each 𝑅𝑚𝑎𝑥 for subregion A.  
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Rmax 
CBC 

Index 
LCL UCL 

KCBC 

Index LCL UCL 

45 -0.0001 -0.0003 0.0000 -0.0270 -0.0057 -0.0019 

55.5 -0.0001 0.0005 0.0009 -0.0364 -0.0045 0.0002 

66 0.0328 0.0022 0.0031 0.0146 0.0010 0.0069 

76.5 0.1145 0.0090 0.0162 -0.0458 0.0049 0.0111 

87 0.1733 0.0230 0.0346 0.0017 0.0080 0.0148 

97.5 0.2059 0.0495 0.0666 -0.0020 0.0093 0.0164 

108 0.3427 0.0773 0.0974 -0.0178 0.0111 0.0186 

118.5 0.3304 0.1022 0.1248 0.0053 0.0151 0.0227 

129 0.3110 0.1235 0.1474 -0.0509 0.0138 0.0221 

139.5 0.2959 0.1388 0.1634 0.0396 0.0150 0.0232 

150 0.2366 0.1535 0.1788 -0.0090 0.0172 0.0255 

Table 3: KCBC and CBC indices of Region B. The modes of the CBC values and the means of the KCBC indices at various 

𝑹𝒎𝒂𝒙  ranging from 45 to 150 are given. The table also shows the summary of the modes and the 95% confidence 

intervals, lower confidence limit (LCL) and upper confidence limit (UCL) of the CBC values and mean and 95% 

confidence interval of the KCBC indexes at each 𝑹𝒎𝒂𝒙. 

 

 
 
Figure 9: Line plot showing the co-localization indices for the CBC and KCBC methods at each 𝑅𝑚𝑎𝑥 for subregion B.   
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7. Conclusion and Future Work 
 

 

7.1. Introduction 

In our final chapter, we summarize the research conducted in the thesis and discuss directions 

of future work. 

 

7.2. The KCBC Method 

We have discussed co-localization analysis and how the ways they are analysed. We saw that 

the co-localization indices seem to be upward biased when edge effect corrections are ignored 

especially when r is too large, and when the correlation of point proportions in nested circles 

is not taken care of in the CBC method. To correct the false positives, we develop the new 

KCBC method. 

The main idea in KCBC is to employ the Ripley’s K function over disjoint rings to 

correct the errors as a result of edge effects and ignorance of correlation of point proportions 

over nested circles.  We conducted a simulation study using 500 CSR images to investigate the 

performance of the KCBC method. Results for the simulation study justifies the unbiasedness 

of the KCBC model for the CSR processes, especially for large r’s. Finally, we applied the 

KCBC method on a real-life dataset to investigate interactions between two types of ants’ nests. 

The two methods give quite different results.  

 

7.3. Future work 

In building our model, it was expected that the KCBC values approach +1 when there is co-

localization and -1 when there is repulsion in the bivariate spatial point pattern. In future 

research, we will investigate more types of point patterns, such as cluster images, regular 
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images, one-dimensional images, etc. Also, in our CSR simulations, there is a very slight bias 

for medium valued distances though there is no bias for either small or large distances. We will 

investigate the reasons in future studies.    



  24 

Bibliography 

 

ants. (n.d.). Retrieved from CRAN repository: https://cran.r-

project.org/web/packages/spatstat.data/index.html 

Baddeley, A. J., & Silverman, B. W. (1984). A cautionary example on the use of second-

order methods for analyzing point patterns. Biometrics, 40, 1089–1093. 

Baddeley, A., & Turner, R. (2005). spatstat: An R Package for Analyzing Spatial Point 

Patterns. Journal of Statistical Software, Volume 12(Issue). 

Diggle, P. (1983). Statistical Analysis of Spatial Point Patterns.  

Diggle, P. J. ((1986) ). Displaced amacrine cells in the retina of a rabbit: analysis of a 

bivariate spatial point pattern. Journal of Neuroscience Methods, 18, 115-125. 

Dixon, P. M. (2002). Ripley's K function. Encyclopedia of Environmetrics, Volume 3, pp 

1796 – 1803. 

Dunn, K. W., Kamocka, M. M., & McDonald, J. H. (2011). A practical guide to evaluating 

colocalization in biological microscopy. American Journal of Physiology-Cell 

Physiology, Vol. 300, No. 4, C723–C742. 

Harkness, R., & Isham, V. (1983). A Bivariate Spatial Point Pattern of Ants' Nests. Journal 

of the Royal Statistical Society. Series C (Applied Statistics), 

32(3)(doi:10.2307/2347952), 293-303. 

Liu, X., Xu, J., Guy, C. S., Romero, E. B., Green, D., Cheng, C., & Zhang, H. (n.d.). 

Unbiased and Robust Analysis of Co-localization in Super-resolution Images. 

Malkusch, S., & Heilemann, M. ((2016)). Extracting quantitative information from single-

molecule superresolution imaging data with LAMA – LocAlization Microscopy 

Analyzer. Sci. Rep., 6(34486; doi: 10.1038/srep34486 ). 

Malkusch, S., Endesfelder, U., Mondry, J., Gelléri, M., Verveer, P. J., & Heilemann, M. 

(2012). Coordinate-based colocalization analysis of single-molecule localization 

microscopy data. Springer-Verlag. 

Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z., & Hagen, G. M. (2014, Aug 15). 

ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data 

analysis and super-resolution imaging. Bioinformatics. , 30((16)), 2389–2390. 

Ripley. (1977). Modelling spatial patterns (with discussion). Journal of the Royal Statistical 

Society(Series B 39), 172–212. 

Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons. 

Unwin, D. J. (2009). Spatial Statistics. International Encyclopedia of Human Geography , 

Pages 452-457. 

 

  



  25 

Vita 
 

The author, Stephan Cobby Komladzei, was born in Koforidua, Ghana. He obtained his 

undergraduate degree from the Kwame Nkrumah University of Science and Technology in 

Ghana, where he majored in BSc Actuarial Science. In January 2019, he enrolled as a graduate 

student at the Department of Mathematics, University of New Orleans (UNO) to pursue a 

masters’ degree in Mathematics. At the Department of Mathematics at UNO, his concentration 

was mostly in Statistics related courses. He also worked as a graduate teaching assistant at the 

Department of Mathematics in his duration of study at UNO. His research interests lie in spatial 

statistics, clinical trials and statistical learning methods.  

 


	Co-localization Analysis of Bivariate Spatial Point Pattern
	Recommended Citation

	tmp.1619313093.pdf.OpNgS

