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To study the reactivity of complex mixtures, understanding the different processes 229 

affiliated with them are key. A separation procedure was developed to obtain a complete 230 

representation of the aromatic subfraction of the light and heavy crude oil sample. The crude oils 231 

were separated into four fractions based on the number of condensed aromatic rings present. The 232 

dissolved organic matter (DOM) was generated from each fraction via thin films (30 μm) and a 12 233 

h photodegradation time. DOM generated from each fraction was subjected to a photodegradation 234 

time series from 0 – 96 h in 24 h increments. Each DOM degradation series was measured using 235 

excitation emission matrix spectroscopy (EEMs) and statistical analysis were applied using 236 

parallel factor analysis (PARAFAC), to identify the underlying fluorophores present in the sample 237 

set. The 2% loading of sample provided the desired fractions. Dissolved organic carbon and 238 

absorbance measurements collectively decreased with increasing exposure time. 239 
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Introduction 267 
 268 
 269 
Structural Complexity of DOM and the Carbon Cycle 270 

 The genesis of dissolved organic matter (DOM) can be linked to two overall sources, the 271 

first being terrestrial derived DOM and the second being marine derived DOM. Each giving rise 272 

to slightly different variations of generated DOM. Marine derived DOM is understood to come 273 

from the decay of phytoplankton and is believed to consist of 25-50% proteins, 5-25% lipids, and 274 

up to 40% carbohydrates.9 While terrestrial derived DOM is the byproduct of biological 275 

degradation (i.e. biomass, plant litter, and soil organic matter) that reaches the ocean via rivers, 276 

lakes, and glaciers. Degradation of vascular plants yields DOM containing 10% proteins, 30-50% 277 

carbohydrates, some lipids found in the roots and leaf cuticles, 15-25% lignin, and other 278 

biomacromolecules.9-12 279 

 Of the byproducts formed, carbohydrates and proteins are considered to be biolabile due 280 

to the nature of their chemical structure. This is due to their susceptibility to hydrolysis at the hands 281 

of different enzymes present in the environment. The hydrolysis reaction takes place at the areas 282 

where peptide and glycosidic bonds are located.9 Lignin, on the other hand, exists as a branched 283 

macromolecular system, comprised of repeating phenylpropanoid units, which are connected by 284 

ether and carbon-carbon bonds at differing locations throughout the structure (Figure 2). This 285 

structural design supports the chemical stability of lignin, which results in a chemical resistance to 286 

microbial degradation.9 287 

 288 
 289 

 290 

Figure 1. Chemical structure of tryptophan (left) and tyrosine (right) amino acids. 291 
 292 
 293 
 As DOM is photodegraded, a cascade effect begins to take place that inevitably ends when 294 

the starting compounds reach a point where they cannot be reduced anymore. When compounds 295 
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cannot be reduced, one of a few classifications can remain: tyrosine-like, tryptophan-like, humic-296 

like, or fulvic-like (Figure 1). 297 

 298 
 299 

 300 
 301 

Figure 2. A structural depiction of one of the chemical byproducts of vascular plant decay known as 302 
lignin1. Reprinted with permission from Prieur, B., et al., Phosphorylation of lignin: characterization and 303 
investigation of the thermal decomposition. RSC Adv., 2017. 7: p. 16866-16877. Copyright 2017 by The 304 
Royal Society of Chemistry. 305 
 306 
 307 

 Understanding the complex organic components that comprise DOM has become the 308 

primary focus of many studies over the recent years. Figure 2, illustrates a traceable structure 309 

affiliated with DOM, known as lignin, due to its resistance to degradation processes in the global 310 

carbon cycle. A detailed understanding of the molecular structures and associated reactivities of 311 

specific classes of molecules that are present in the complex mixture of DOM can allow for 312 

inferences to be made regarding how they will be broken down and subsequently cycled. Figure 3 313 

shows the different pathways by which dissolves organic carbon (DOC) is cycled. 314 
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Figure 3. To the left the main input sources can be seen (black) and to the right the degradation are 315 
degradation (DOC removal) pathways (yellow).13 316 
 317 
 318 

Insights into the structures that comprise this complex mixture can provide vital 319 

information that will inevitably help to develop an understanding of their reactivities by various 320 

degradation pathways.6, 13-18 Photochemical degradation of DOM molecules found in surface 321 

waters have already been found to considerably affect the composition and quantity of dissolved 322 

organic carbon (DOC) carried through marine systems19. 323 

Composition of Crude Oil 324 

 Crude oil is comprised of hundreds of different hydrocarbons and other organic and 325 

inorganic substances including sulfur, nitrogen, and oxygen, as well as metals like vanadium and 326 

nickel.20 The percent abundance for the different elements found in petroleum are shown in table 327 

1. 328 

 329 

 330 

 331 

 332 
 333 
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Elemental Analysis  Light Crude (wt %) Heavy Crude (wt %) 

Carbon 86.0 87.0 

Hydrogen 13.5 10 

Nitrogen 0.2 0.3-0.5 

Oxygen <0.5 <0.1 

Sulfur <2.0 3.0 

Nickel (ppm) <10.0 16 

Vanadium (ppm) <10.0 50 

Table 1. Weight percentage for carbon, hydrogen, nitrogen, oxygen, sulfur, nickel, and vanadium.4, 21 334 
 335 
 336 
 Variations in the amount of each element present gives rise to crude oils that differ in 337 

physical properties. The two types of oil used in this study are Macondo surrogate oil (MC252) 338 

and Maya sour crude oil. The properties of the two oils are detailed in Table 3. Macondo surrogate 339 

oil has an API gravity of 37.2, a low viscosity, and is classified as light oil. Whereas the Maya 340 

crude oil has an API gravity of 22.2, a highly viscous oil, and is classified as a heavy oil. Light oil 341 

contains a low concentration of heteroatoms. This can be seen by the low weight percent for 342 

nitrogen, oxygen, sulfur, nickel, and vanadium displayed in table 1. In contrast, heavy oils possess 343 

higher concentrations of heteroatoms, which is supported by the higher weight percentages found 344 

for nitrogen, oxygen, and sulfur in table 1. 345 

 346 
 347 

Aspect Macondo Maya 

API° 37.2 22.2 

Specific Gravity 0.839 0.922 

Density (g/cm
3
) 0.839 0.921 

Viscosity Low High 

Classification Light Heavy 

Table 2. Comparison of the characteristics exhibited by Macondo surrogate oil and Maya sour crude oil.4 348 
 349 
 350 
 A mixture of a heavy and light oil was used to obtain a full distribution of compounds that 351 

adequately represent the structural continuum. This is necessary because, at the molecular level, 352 

the variations found between the light and heavy oil, complement one another. The light oil 353 
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provides saturated, as well as, mono and dicyclic compounds. Heavy oil possesses the larger 354 

aromatic systems needed to represent the structural continuum (Figure 4). 355 

 356 
 357 

 358 

Figure 4. The distribution of weight percentages of typical components found in light, medium, and heavy 359 
crude oil’s2. Reprinted in part with permission from Environment, C.;  Technology, B.;  Studies, D.; 360 
Medicine, N., Spills of diluted bitumen from pipelines: A comparative study of environmental fate, effects, 361 
and response. 2016; p 1-166. Copyright 2016 by the National Academy of Sciences. 362 
 363 
 364 
 Asphaltenes are the portion of crude oil that are insoluble in alkanes, such as n-heptane and 365 

n-pentane, and are defined by their solubility characteristics in place of a specific chemical 366 

characterization.5, 22-24 Given their unique composition, heteroatoms are able to influence 367 

surrounding asphaltene compounds into sticking together by playing off the polarizability of the 368 

aromatic systems that are locked into configuration in combination with subtle variations in charge 369 

separation.22 Light oils has lower concentrations of asphaltenes than heavy oils. Oils that contain 370 

higher concentrations of asphaltenes are darker in color and exhibit a higher viscosity than that of 371 

oils with lower concentrations of asphaltenes.22 The chemical composition of the Maya crude oil 372 

used in this study is classified as a heavy oil, and as such, is prone to having higher concentrations 373 

of asphaltenes than the Macondo surrogate oil. 374 
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 The structure of asphaltenes can vary in type which can influence their properties. An 375 

example of an archipelago style asphaltene can be seen on the left in Figure 5. It is comprised of 376 

two condensed aromatic cores that are linked together by an aliphatic chain. Another style of 377 

asphaltene is the island configuration which is comprised of a single condensed aromatic core with 378 

aliphatic chains branching from outside rings.3 Asphaltenes, regardless of the structural 379 

orientation, are described as being insoluble in excess solvents made of nonpolar compounds (i.e. 380 

pentane and heptane).25 381 

 382 
 383 

 384 

Figure 5. Two examples of asphaltene chemical structures. On the left, an example of an archipelago type 385 
asphaltene. On the right, an example of an island type asphaltene3. Reprinted in part with permission from 386 
Boek, E., T. Headen, and J. Padding, Multi-scale simulation of asphaltene aggregation and deposition in 387 
capillary flow. Faraday discussions, 2010. 144: p. 271-84; discussion 323. Copyright 2010 by Faraday 388 
Discussions. 389 
 390 
 391 
 Once the asphaltenes are precipitated out of solution, the remaining product is comprised 392 

of what is described as ‘maltenes’. The maltenes fraction of crude oil is made up of saturated, 393 

aromatic, and resin like compounds.5, 26 Humic acids vary in structure depending on the source 394 

material from which it is derived. In comparison with fulvic acids, humic acids are larger have a 395 

lower oxygen content and a low solubility in water at neutral pH. The lack of solubility can be 396 

attributed to the lack of oxygen in the structure. In contrast, fulvic acids have a much higher oxygen 397 

content and dissolve more rapidly in water. 398 
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Figure 6. SARA fractionation of crude oil with subsequent fractionation of the ‘aromatic’ division into 399 
discrete bins based on the number of rings4, 5. Adapted with permission from Gaspar, A., et al., 400 
Characterization of Saturates, Aromatics, Resins, and Asphaltenes Heavy Crude Oil Fractions by 401 
Atmospheric Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. 402 
Energy & Fuels, 2012. 26(6): p. 3481-3487. Copyright 2012 by the American Chemical Society. 403 
 404 
 405 
 Sub fractionation of the aromatic portion of maltenes and Macondo surrogate oil mixture 406 

provides insight into the underlying components that gave rise to the features that define the overall 407 

sample. In order to understand the whole picture, each individual fraction possesses a unique 408 

characteristic that plays a role in the final answer. From the separated aromatic rings, photo 409 

exposure experiments can be performed to introduce oxygen atoms into the separated ring fractions 410 

to resemble compounds found in aquatic environments. This will lead to insight into identifying 411 

which core structural bins these different compounds originate from. This can be achieved because 412 

specific fluorophores are defined by specific excitation and emission wavelengths.27 413 

Boduszynski Continuum Model 414 

 Mieczyslaw Boduszynski published a series of articles that focused on the composition of 415 

heavy petroleum.6, 28, 29The first publication in the series explores variations in molecular weight, 416 

hydrogen deficiency, and heteroatom concentrations in response to the atmospheric equivalent 417 

boiling point (AEBP).30 The data obtained shows that heavy petroleum, and its residues, are not 418 

comprised of predominately high molecular weight components. But rather, contain a distribution 419 

of molecular weights, with the highest molecular weight observed not exceeding 200030. It was 420 
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also concluded that with an increase of AEBP the concentration of heteroatoms and hydrogen 421 

deficiency were seen to increase.30 422 

 The next publication in the series looks at molecular characterization utilizing two different 423 

methods31. The data obtained from the first method demonstrated changes in the concentrations of 424 

the molecular building blocks as AEBP increases and solubility decreases.30, 31 The second method 425 

centers on utilizing high-performance liquid chromatography (HPLC) to separate compound class 426 

fractions for more in-depth molecular characterization.31 Results obtained from the second method 427 

showed a diversity of molecular types, with multiple homologous series of compounds, each series 428 

having a broad carbon distribution.31 429 

 Boduszynski and his team also completed a separation of 50 polycyclic aromatic 430 

hydrocarbons (PAH) using an amino functionalized silica stationary phase6. This allowed the PAH 431 

compounds to elute based on the number of aromatic rings. By separating the PAHs based on their 432 

core ring structure, the method could potentially be applied to a more complex sample, such as the 433 

maltenes fraction of crude oil. Separating the maltenes based on their core ring structure would 434 

provide a way to reduce the complexity of the sample by yielding different subclasses that could 435 

be studied individually.  436 

Normal-Phase Liquid Chromatography (NPLC) 437 

 The properties and behavior exhibited by crude oil can be better understood by developing 438 

a fundamental understanding of the different chemical components that comprise it.26, 32 To obtain 439 

a better understanding the SARA (Saturates, Asphaltenes, Resins, and Aromatics) fractionation 440 

procedure is frequently used to separate crude oil samples into their underlying constituents.5, 33 In 441 

Figure 8 illustrates the procedure for how the SARA method fractionates crude oil into its 442 

underlying components on the basis of each fractions solubility. For this study, the aromatic 443 

fraction was chromatographically separated in a second dimension by number of aromatic rings.  444 

of the aromatics based on the number of rings, DOM was generated by photochemical oxidation 445 

of the residues that corresponded to each fraction. 446 

 The complex mixture can be separated into different classes, which will be comprised of 447 

compounds that share similar structural characteristics, by employing normal phase liquid 448 

chromatography (NPLC).6, 34, 35 This process can be achieved because of the differences in 449 

structure, and subsequently the polarity, exhibited by each of the fractions. The differences will 450 

allow the fractions to interact with the stationary phase at different strengths to increase the quality 451 
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of the separation. The stationary phase used in this study was 3-aminopropyl functionalized silica 452 

gel and is shown in Figure 7 below. 453 

 454 
 455 

 456 

Figure 7. Structural depiction for 3-aminopropyl silica functionality used in the chromatographic 457 
separation. 458 
 459 
 460 
 The elution will yield the saturates fraction first, since they are the least polar and will 461 

interact the least with the more polar stationary phase. To get the more polar fractions to elute, 462 

alterations to the mobile phase will have to be made by adding a more polar solvent to the mobile 463 

phase to mitigate the interactions occurring between them and the stationary phase. 464 

 Boduszynski and his team found that by using functionalized silica the mixture could be 465 

separated into different classes based on the number of aromatic rings found in the sample.6 In 466 

Figure 8, the results obtained by Boduszynski et al. (1983) for the separation of heavy oil at the 467 

analytical level can be seen. 468 
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Figure 8. Elution profiles of Polyaromatic Hydrocarbons (PAH) on a semiprepartive Bondpak NH2 469 
Column6. Adapted with permission from Boduszynski, M. M.;  Hurtubise, R. J.;  Allen, T. W.; Silver, H. 470 
F., Liquid-Chromatography Field-Ionization Mass-Spectrometry in the Analysis of High-Boiling and 471 
Nondistillable Coal Liquids for Hydrocarbons. Analytical Chemistry 1983, 55 (2), 225-231. Copyright 472 
1983 American Chemical Society. 473 
 474 
 475 

The use of 3-Aminopropyl functionalized silica provided the necessary means to separate 476 

the mixture based on the number of rings present, with adequate selectivity and resolution.17, 36, 37 477 

Preparative chromatography was used to scale up the separation procedure so that enough of each 478 

ring fraction could be obtained to make a 30 m oil film for the DOM generation section of the 479 

study. Upon scaling up the reaction, issues began to arise with maintaining reproducibility with 480 

respect to the column volume which affected the integrity of the separation. As a result, it can be 481 

seen how to appropriately account for intersitial volume between particles as well as pore size 482 

(Figure 9). 483 
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Figure 9. Visualization of intersititial and pore volume in relation to column volume.7, 8 484 
 485 
 486 

For the purpose of this study, a combination of Macondo surrogate oil and Maya Sour 487 

Crude oil were combined to makeup the sample (Table 2). This was to provide a sufficient balance 488 

of low molecular weight compounds with high molecular weight compounds.  489 

Removal of Carbon via Photochemical Pathways 490 

 The degradation of DOM involves a complex overlay of different disciplines including 491 

biological, chemical, and photochemical pathways.38 Photochemical removal is important when 492 

considering the fate of DOM because it yields products that are then exposed to microbial 493 

degradation.38 The production of oxygenated compounds as a function of time in the presence of 494 

sunlight has been proven to occur when petroleum is exposed to water.39-41 Upon photooxidation, 495 

compounds that started off being oil soluble are now closer to being water soluble.39 To elucidate 496 

the pathways by which these newly water soluble compounds are transported, the ring specific 497 

fractions collected from the separation described in the previous section were used to produce 498 

aromatic DOM.39  499 

 500 

 501 
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Parallel Factor Analysis (PARAFAC) 502 

Advancements in spectroscopic instrumentation (i.e. absorbance and fluorescence) and 503 

data processing programs have yielded a rapid and highly sensitive way to extract information 504 

from samples to help in the characterization of DOM.39, 42 Parallel factor analysis (PARAFAC) is 505 

a multivariate modeling statistical analyses  which highlights the underlying fluorescent 506 

components of the sum of 40 spectra reducing them to four specific components. .25, 43  507 

 The first step in obtaining any PARAFAC model begins with preprocessing the data set 508 

being used. This preprocessing step is to adjust for any biases, remove any scattering that may be 509 

present, and to normalize the data. Normalizing the signals of all samples is crucial because it 510 

allows all samples in the dataset, regardless of high or low concentration, similar weight. This 511 

allows the generated PARAFAC model to focus, not on the intensity of all the signals in the set, 512 

but rather the chemical variations exhibited between the samples.44 513 

Next, multiple exploratory phases will be completed to develop potential models in order 514 

to locate and remove any outliers present in the sample set. In this exploratory phase it will be key 515 

to identify the correct number of components, such that there is significant distribution of variation 516 

across the data, resulting in a model that only encompasses random errors.44 The model that yields 517 

the highest core consistency at the end of the exploratory phase will indicate the appropriate 518 

number of components to be used to represent the model as a whole.44, 45 519 

The final step in the PARAFAC process is the model validation step and its success is 520 

heavily reliant on using the appropriate number of components when fitting the model.44 Under or 521 

overcompensating the number of components in the dataset, when attempting to validate the 522 

method, will prevent the model from validating. When a model is fitted with an insufficient number 523 

of components, the validation failure occurs as a result of the model erroneously grouping signals 524 

that are representative of components that are distinctly different. Attempting to validate a model 525 

using too many components will fail due to an overlap of multiple components in the dataset, 526 

resulting in the model mistakenly coupling multiple PARAFAC moieties as one component.44 527 

Once the PARAFAC model is completed, the model can be uploaded to OpenFluor, an 528 

online repository containing already published fluorescence spectra, to identify similar spectra so 529 

that more information can be extracted from the model.  530 

 531 
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Experimental Methods 532 
 533 
 534 
Asphaltene Precipitation 535 

 Maya sour crude oil and n-heptane were added to a 1000 mL round bottom flask in a ratio 536 

of 1:50. The mixture was then heated and refluxed at a temperature of 100 C for 1 hour. After 1 537 

hour, the solution was removed from the heat and allowed to continue refluxing for 30 minutes 538 

and then was capped and stored overnight. The solution was then filtered through a Whatman #1 539 

filter (11 µm) to isolate the maltenes fraction of the crude oil. 540 

Column Packing and Separation Parameters 541 

 542 
 543 

Contents Fraction Column Volumes Solvent 

Saturates 1 1 n-Heptane 

1-2 Rings 2 1 n-Heptane 

3-4 Rings 3 3 n-Heptane 

5 Rings 4 2 2% Dichloromethane in n-Heptane 

5+ Rings 5 2 10% Dichloromethane in n-Heptane 
Table 3. Separation Parameters for Crude Oil Mixture. 544 
 545 
 546 
Maltenes and MC252 Sample Preparation 547 

Maltenes and MC252 oil were added to a vial in a 2:1 ratio respectively. The total mass of 548 

the sample was kept at a 2 % sample load with respect to the amount of stationary phase. 549 

Photodegradation Time Series 550 

 Using the solar simulator (Atlas Suntest CPS+, Atlas Material testing Technology LLC) 551 

set at 765 W/m2 one 24 hour interval is equivalent to four days of natural sun-light in the Gulf of 552 

Mexico18. Films were produced using each ring fraction obtained in Section 2.2. For a 30 m film 553 

thickness, 87 mg of each respective fraction is required. To provide a uniform film 87 mg of sample 554 

was dissolved into 10 mL of n-heptane and 2 mL was poured over 50 mL of nanopure water inside 555 

a 250 mL jacketed beaker thermostatically controlled at 27oC. Generation of DOM from each ring 556 

fraction was subjected to simulated sunlight for 24 hours.  The DOM from each subsequent ring 557 

fraction (30 mL) was photodegraded from 0 to 96 hours in 24 hour increments. Quartz lids securely 558 

placed over the jacketed beakers to reduce evaporation yet still allow sufficient light through 559 

during all simulations. 560 

 561 
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Total Organic Carbon Analysis 562 

 DOC concentrations were obtained via the Shimadzu total organic carbon (TOC) analyzer 563 

using a high-temperature combustion method and a platinized alumina catalyst. A ratio of 1:3 (v/v) 564 

was used to dilute the sample in nanopure water that was then acidified to a pH of 2 utilizing 12 565 

M HCl. Samples were then sparged for 5 min at 75 mL/min with ultra high purity air to remove 566 

the inorganic carbon from the samples prior to analysis. A five-point calibration curve was used 567 

to determine the samples concentration utilizing a range from 0 to 50 ppm using potassium 568 

hydrogen phthalate (KHP). To ensure the efficiency of the instrument, calibration curves ranging 569 

from 0 to 50 ppm were conducted every 10 samples as well as at the end of the run. A 5 ppm check 570 

was also integrated into the sample analysis to confirm maximum instrument efficiency. Blank 571 

samples were run before and after all checks and calibration curves. To determine the DOC 572 

concentration present in the sample, the best 3 injections of 5 were used to determine the DOC 573 

present in a sample at an injection volume of 150 µL. The best 3 injections obtained should result 574 

in a coefficient of variance of <2% for duplicate injections39. 575 

Absorbance Analysis 576 

 All samples in the study were measured on an Agilent UV-Vis absorbance instrument, from 577 

200 to 600 nm. Absorbance values corresponding to 254 nm were used for the specific UV-578 

absorbance (SUVA254) calculation in conjunction with DOC values27. 579 

Fluorescence Analysis 580 

 Excitation emission matrix spectroscopy (EEMs) measurements were collected  at an 581 

excitation range from 240 to 800 nm and emission from 240 to 800 nm using a 10 mm quartz 582 

cuvette. Excitation spectra were collected every 5 nm and emission every 3 nm at a 1.5 second 583 

integration time. Sample intensities were normalized to Raman scattering units (RSU) and 584 

statistical analysis were applied using PARAFAC analysis. Inner-filter effects were mitigated by 585 

correcting to 0.1, based on the absorbance value found at 254 nm, using nanopure water.18, 46, 47 586 

The drEEM toolbox was utilized to produce a validated model, to yield a four component 587 

PARAFAC model from  40 samples.25, 44, 48  588 

 589 
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Results and Discussion 590 
 591 
 592 
Determination of Load Capacity 593 

 Loadings of 5, 10, and 20 mg were applied to HF-Mega BE-NH2 solid phase extraction 594 

(SPE) cartridges to identify the optimal loading capacity. Based on the EEMs shown in Figure 10 595 

below, it was determined that a 2 % loading of sample to stationary phase was optimal. 596 

 597 
 598 

Figure 10.  Fluorescence spectra confirming the 2 % loading had minimal carryover for each fraction. 599 
 600 
 601 
 The saturate fraction of oil is known to possess compounds that are aliphatic and alicyclic 602 

in structure.5 Therefore, the EEMs taken for the saturate fraction should have a very small, if any, 603 

fluorescent signature. The signatures seen in Figure 10 for the saturate fraction were determined 604 

to be the 1 - 2 ring fraction that eluted earlier than anticipated. This occurred as a result of a 605 

miscalculation for the total column volume. This error was adjusted before the preliminary scale 606 

up was conducted. 607 

Preliminary Scale Up 608 

 Before the final scale up, a preliminary scale up was completed to ensure that the separation 609 

could be sufficiently reproduced without losing quality. In Figure 11 below, a comparison of the 610 
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scaled down model at 1 gram of functionalized silica alongside the preliminary scale up at 20 611 

grams of functionalized silica can be seen. The EEMs shown demonstrate that there is minimal 612 

loss of quality upon scaling up. After adjusting the column volume, the EEMs of the saturates 613 

fraction in the preliminary scale up reflects no coelution between the saturates and 1 - 2 ring 614 

fractions.  615 

 616 
 617 

Figure 11. Comparison of scaled down EEMs with preliminary scale up EEMs for 20 g (top) and 1 g 618 
(below). 619 
 620 
 621 
 The alterations made to the column volume between the scaled down separation and the 622 

preliminary scale up returned results that accurately depict what is expected with respect to 623 

chemical theory, as well as supports the findings of previously completed studies that examined 624 

the chemical composition of the subfractions that makeup oil. As a result of their structural nature, 625 

compounds eluted within the ‘saturates’ fraction lack the conjugated π bond system necessary to 626 

yield a fluorescent signature. The lack of fluorescent signature found for the saturate fraction of 627 

the preliminary scale up depicted in Figure 11, displays some small sporadic signatures, but isn’t 628 

representative of any specific moiety. For the preliminary scale up the EEM representing the 629 

saturate fraction of the separation possess some nondistinctive signatures that are shifted to the 630 

shortest wavelengths. Figure 11 shows that as the number of rings increase, the EEM’s become 631 
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shifted to longer wavelength. EEMs collected for the 5 - ring and 5+ ring fractions displayed 632 

contour plots showing little difference between the two, therefore they were combined to represent 633 

the 5 + ring fraction. 634 

Photodegradation of Fractionated Aromatic Ring Fractions 635 

 The adjustment to the column volume previously described previously, allowed for the 636 

subsequent final scale up, using the verified ratios between then preliminary scale up and the 637 

scaled down studies. The next portion of the study explores how these different fractions 638 

individual breakdown in the presence of sunlight. It can be seen in Plot 1 below, the general 639 

trend described by previous studies, that as exposure time increases the ratio of hydrogen to 640 

carbon (H/C) decreases and the ratio of oxygen to carbon (O/C) increases as oxygenation 641 

increases as a function of time.  642 

 643 
 644 

 645 

Plot 1. Absorbance values illustrating 1 - 2 ring DOM (orange), 3 - 4 ring (green) and 5 + ring (red) 646 
photodegradation time series. 647 
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 648 

Plot 2. SUVA254 (L mg * C-1 m-1) for saturates (blue), 1 - 2 ring (orange), 3 - 4 ring (green) and 5+ ring 649 
(red). A decrease in SUVA254 is observed as the photodegradation time is increased. 650 
 651 
 652 
 The application of SUVA254 can be used as a proxy for the aromatic content in DOM.49, 50 653 

In Plot 2, it can be seen for all ring fractions, a decrease in aromaticity occurs with increasing 654 

exposure times.  655 

PARAFAC Analysis 656 

 The EEMs for the photodegraded ring fractions were processed in MATLAB to remove 657 

outliers, excise and smooth the scatter regions, and to normalize to unit variance (Figure 12). The 658 

saturates timeseries displays no fluorescent signature due to the lack of conjugated double bonds. 659 

As a result, they are omitted from the PARAFAC process as outliers, because it will introduce 660 

additional variance into the model. After removal, a model can be constructed that better explains 661 

the differences between the degradation products that makeup the remaining samples. 662 

 For each fraction, the contour plot should decrease in intensity at its core and as stretch 663 

around the edges as the condensed aromatic rings begin to break and yield smaller compounds. 664 

This results as a byproduct of photooxidation. The smaller compounds will begin to introduce 665 

oxygen containing functionalities such as carboxylic acids, ketones, and aldehydes. A good 666 

representation of this trend can be seen for the 3 - 4 ring degradation series. In the 0 hour timepoint 667 

(Figure 12 - 4), a high intensity yellow core can be seen with surrounding regions that vary in 668 

shape and distance from the epicenter. The 24 hour timepoint (Figure 12 - 9), the concentric rings 669 

begin to gradually shift out as photooxidation occurs. This trend occurs throughout the remaining 670 

timepoints, and when the ninety-six hour time point is reached (Figure 12 - 15), the original 671 
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epicenter is now reduced to a small, less intense region with the outside bands stretching towards 672 

longer excitation wavelengths.  673 

 674 
 675 

 676 

Figure 12. Corrected excitation emission scans of the photodegraded ring fractions.† 677 
 678 
 679 
 The validated PARAFAC model (Figure 13) portrays the fluorescent signatures that were 680 

present in all 40 samples. The model output was uploaded into OpenFluor, to identify similar 681 

components from other studies, to aid in building a more complete picture of the data that is 682 

present. Based on the fractions expected, an increase in emission is to be expected as the number 683 

of core aromatic rings per fraction increases. Any overlap in fractions can initially be attributed to 684 

overlap of the desired fractions.  685 

 
† The corresponding file list for EEMs can be found in appendix. 
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 686 

Figure 13. Validated 4 component model (C1 – C4) from the PARAFAC analysis. 687 
 688 
 689 
 A four component PARAFAC model was validated (Figure 13) showing a shift in 690 

excitation/emission wavelengths from shorter to longer wavelengths from C4, C2, C1 and C4, 691 

respectively. The first component, C1, (Figure 13) shows a initial excitation at 250 nm and then a 692 

secondary excitation at 305 nm, resulting in an emission maximum at 427 nm. This peak is found 693 

in a region characterized as marine humic-like in nature and is most likely derived from the 5 + 694 

ring fraction.51, 52 This region can also be described as Peak A and is representative of blue shifted 695 

aromatic compounds that have a high molecular weight.52  696 

 Component 2 reflects characteristics described as protein-like and/or amino acid-like in 697 

nature.53 Component 2 (C2) has a primary excitation at 250 nm and a secondary excitation at 290 698 

nm, that result in an emission of 373 nm. With respect to C1, C2 is slightly more blue shifted and 699 

as a result is characteristic of the 3 - 4 ring fraction degradation products. The compounds present 700 

can be described as possessing low molecular weight and are high in aromaticity.52 701 

 Component 3 (C3) displayed a primary and secondary excitation at 265 nm and 370 nm, 702 

respectively. This resulted in an emission of 501 nm that can be related to the 5 + ring fraction. 703 

Despite the 5 ring and 5 + ring fractions being combined upon scale up, the PARAFAC model 704 

depicted these two fractions as two distinctly different components within the model. Since the C3 705 

exhibited the longest excitation/emission wavelengths of all the components in this model, it can 706 

be inferred that it is representative of the 5 + ring fraction in the separation. Component 3 707 

C4 

C2 

C3 

C1 C2 

C4 
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demonstrates a chlorophyll like terrestrial dominance in regard to chemical structure, which 708 

corroborates its affiliation with the 5+ ring fraction.54 709 

 Component 4 (C4) is the most blue-shifted of all the components, and as a result is 710 

considered to be best representative of the 1 - 2 ring fraction degradation products. The peak for 711 

this component can be described as mixture of tryptophan and tyrosine-type compounds, that 712 

resemble a protein like confirmation.55 C4 also displays characteristics of photobleaching, which 713 

corroborates the nature of the component in terms of the model as a whole.56At this point in the 714 

photo degradation process, when the compounds yield a ‘protein-like’ structure, they tend to be 715 

less photolabile than that of humic substances.56 716 

Conclusion 717 
 718 
 719 
 Utilizing a 2 % sample loading, with respect to the mass of the stationary phase, a uniform 720 

scale up was achieved with minimal overlap of the fractions desired. The error encountered during 721 

the scale up, using an open column separation approach, was identified to be the column volume 722 

used to define each respective fraction. When the components obtained from the validated model 723 

are rearranged, a linear relationship appears that represents the four separated fractions. The final 724 

component is indicative of compounds that are less likely, if not completely, exempt to 725 

photolability. 726 
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Appendix 890 
 891 
 892 
File list for exported corrected EEMS in Figure 12. 893 
 894 
 895 

1 1-2R 96hrSEM.dat' 

2 5+ 0hrSEM.dat' 

3 5+ 24hrSEM.dat' 

4 3-4R 0hrSEM.dat' 

5 5+ 48hrSEM.dat' 

6 5+ 72 hrSEM.dat' 

7 5+ 96hrSEM.dat' 

8 Sat 0hrSEM.dat' 

9 3-4R 24hrSEM.dat' 

10 Sat 24hrSEM.dat' 

11 3-4R 48hrSEM.dat' 

12 Sat 48hrSEM.dat' 

13 3-4R 72hrSEM.dat' 

14 Sat 72hrSEM.dat' 

15 3-4R 96hrSEM.dat' 

16 Sat 96hrSEM.dat' 

17 1-2R 0hrSEM.dat' 

18 1-2R 24hrSEM.dat' 

19 1-2R 48hrSEM.dat' 

20 1-2R 72hrSEM.dat' 
 896 
 897 
  898 
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