
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

University of New Orleans Theses and
Dissertations Dissertations and Theses

Spring 5-31-2021

The Kati Module System: Modular Design for Delivering Character The Kati Module System: Modular Design for Delivering Character

Focused Dialogue in Games Focused Dialogue in Games

Stephen J. Marcel
University of New Orleans, sjmarce2@uno.edu

Follow this and additional works at: https://scholarworks.uno.edu/td

 Part of the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Marcel, Stephen J., "The Kati Module System: Modular Design for Delivering Character Focused Dialogue
in Games" (2021). University of New Orleans Theses and Dissertations. 2855.
https://scholarworks.uno.edu/td/2855

This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with
permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright
and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-
holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the
work itself.

This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an
authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/td
https://scholarworks.uno.edu/etds
https://scholarworks.uno.edu/td?utm_source=scholarworks.uno.edu%2Ftd%2F2855&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.uno.edu%2Ftd%2F2855&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/td/2855?utm_source=scholarworks.uno.edu%2Ftd%2F2855&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

The Kati Module System: Modular Design for Delivering Character Focused Dialogue in Games

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the

requirements for the degree of

Master of Science
in

Computer Science

by

Stephen Marcel

B.F.A. Nicholls State University, 2011

May, 2021

Table of Contents

Figure List... iv

Abstract..vi

1 Introduction ...1

1.1 Motivation ..2

1.2 Objective ...2

1.3 Related Work ..3

2 System Design ..5

2.1 Kati Module System ..5

2.2 Responsibility of the Game ...6

2.3 Module Hub ..6

2.3.1 Module Hub Components ...7

2.3.2 Storyline Nodes ...8

2.3.3 Location and Character Collections ...10

2.3.4 Character and Module Accessibility Relationship ..12

2.3.5 Module Decision Mechanics ..13

2.3.6 Preparing for the Module ..13

2.3.7 Character Data ...14

2.3.8 Dialogue Package ...14

2.3.9 History ...15

2.4 Module ..17

2.4.1 Dialogue Topics and Types ..17

2.4.2 Structure of a Module ...18

2.4.3 Controller ..18

2.5 Parser ..19

2.5.1 Branch Decisions ...21

2.5.2 Required Rules ...22

2.5.3 Case for No Available Dialogue ..24

ii

2.5.4 Leads To Rules ...25

2.5.5 Response Type Dialogue ..26

2.5.6 Dialogue Chaining ..27

2.6 Dialogue String Parser ...28

3 Results and Discussion ...29

3.1 Experiment Setup ...29

3.2 Job Interview Game ..30

3.2.1 Job Interview Results ...33

3.3 Text Adventure Game ...34

3.3.1 The Eleven Townsfolk ..35

3.3.2 Adding Rule Complexity ...41

3.3.3 Changing Override Playstyle ..42

3.3.4 Reviewing Results ..46

3.4 Limitations ..47

3.5 Conclusion ...48

4 References ..49

Vita ...51

iii

List of Figures

2.1 Module’s Structure Overview ...5

2.2 Module and Module Hub Relationship ..7

2.3 Storyline Node ..9

2.4 Storyline Node Structure ..10

2.5 Location Object Scheme 1 ..11

2.6 Location Object Scheme 2 ..12

2.7 Character Module Relationship ..13

2.8 Dialogue Package ...15

2.9 History Structure ..16

2.10 History Structure Example ..17

2.11 Topic and Type Keys ...19

2.12 Topic Types ...19

2.13 Module Organization ..20

2.14 Potential Dialogue Rules ...23

2.15 Branch Tone Dialogue Chain ..26

2.16 Sample Delivery Content ..29

2.17 Rendered Sample Delivery Content ...29

3.1 Job Interview Negative Response A ..31

3.2 Job Interview Positive Reaction ..32

3.3 Job Interview Negative Response B ..32

3.4 Job Interview Negative Reaction ..32

3.5 Job Interview Game Over Screen ...33

3.6 Job Interview Survey Response Results ..34

3.7 Albrecht Positive Relationship ..37

3.8 Christina Positive Relationship ...37

3.9 Dan Positive Relationship ...37

3.10 Teta Positive Relationship ..37

iv

3.11 Final Positive Relationship Values ..37

3.12 Sample Positive Dialogue ...38

3.13 Albrecht Negative Relationship ..38

3.14 Christina Negative Relationship ..38

3.15 Dan Negative Relationship ...39

3.16 Teta Negative Relationship ...39

3.17 Final Negative Relationship Values ...39

3.18 Sample Negative Dialogue ..39

3.19 Albrecht Romantic Relationship ...40

3.20 Christina Romantic Relationship ...40

3.21 Dan Romantic Relationship ..40

3.22 Teta Romantic Relationship ..40

3.23 Final Romantic Relationship Values ..40

3.24 Sample Romantic Dialogue ...41

3.25 Sorceress Possible Dialogue Options ..42

3.26 Player Dialogue Approaches ...43

3.27 Generic Playstyle Approach Relationship Values ..44

3.28 Positive Playstyle Approach Relationship Values ...44

3.29 Romantic Playstyle Approach Relationship Values ...44

3.30 Mean Playstyle Approach Relationship Values ...44

3.31 Strategic Playstyle Approach Relationship Values ..44

3.32 Final Relationship Values with Sorceress ..45

3.33 Most Used Discussion Topics ...45

3.34 Overall Discussion Tones ..45

3.35 Sample Dialogue Strategic Playstyle ...45

3.36 Sample Dialogue Friendly Playstyle ..46

3.37 Sample Dialogue Rude Playstyle ...46

v

Abstract

The Kati Module System is an interconnected set of programming modules intended to facilitate

dynamic text authoring for interactive experiences (for example, games). It is a long-standing goal for

interactive experiences to dynamically adapt their textual output based on the user or player's choices

and predilections, but to account for this vast possibility space requires an amount of authoring that is

frequently untenable, especially for small studios. Advances in machine learning have produced

incredible progress in the field of Natural Language Generation (NLG). Though this produces impressive

surface level text, it does so without an internal representation that can be reasoned over previous

game states, resulting in output with deep local coherence and low global coherence. Kati attempts to

provide the best of both worlds by allowing authors to author configurable text snippets. Kati

dynamically rearranges and chooses dialogue phrases based on game state, allowing for high degrees of

authorial control, global coherence, and dynamic adaptability to player choice.

Keywords: Game Development, Dialogue Delivery, Modular Design, Character Relationships

vi

1. Introduction

The art of storytelling is a powerful medium that can take on many forms. Whether it be oral,

digital or written, stories have been a part of human societies for millenniums. Across traditional

narratives, a consistent underlying story structure emerged that revealed three primary processes:

staging, plot progression, and cognitive tension (Boyd et al., 2020). In this paper, the author explores

the Kati Module System, which is not concerned with developing a story but rather creating user

defined character relationships for a more robust narrative experience. This is accomplished by a series

of social interactions.

Through character social interactions, many stories are told with the relationship between said

characters dictating how the narrative comes to fruition. Social interactions made with characters with

no long standing history can undermine the sense of the player’s impact on the story and damage the

overall believability. Believability can be defined as the numerous elements that allow a character to

achieve the illusion of life, including but not limited to personality, emotion, intentionality, physiology,

and physiological movement (Riedl & Young, 2005).

Kati Module System (Kati) is a computational model designed for digital games to manage a

character relationship state with the other story characters throughout the game’s narrative. The goal

is to maintain believability on a per conversation basis as an entity in a larger story. It uses a series of

modules that define dialogue processing protocols for any number of topics. Each module deals with a

specific subject or action that a player’s character (PC) or non-player character (NPC) can encounter

throughout the game through social state (Cowley et al., 2008).

Social interactions using Kati Module System provide opportunities to affect the state of an NPC

directly. The Module Hub component determines an appropriate module based on the state of the

game and the characters involved in the conversation. The module determines a “good fit” dialogue

phrase by analyzing the game and character data and returns the selected phrase to the game. Each

conversation is built upon multiple module calls chaining a series of dialogue pieces. Each conversation

allows for player derived impact causing the next exchange with the system to change paths. These

interactions use a cause-and-effect type structure. The player does some ‘action’ linked to Kati, and the

effect of the ‘action’ changes the relationship status of the characters with dialogue encounters

following a turn-based scheme. Turn-taking is a basic dialogue control element that concerns how we

distribute and organize the moves in a conversation (Brusk & Björk, 2009). Kati allows for an alternate

method of character relationship control that can alter the state of a narrative by delivering dialogue

1

derived from the socially build relationships of game characters. This can lead to the reuse of dialogue

and more flavorful in-game character conversations.

1.1 Motivation

The motivation for creating the Kati Module System stems from RPG style games with open-

ended concepts, particularly the hit indie game “Stardew Valley” (Barone, 2016). Though not unique to

“Stardew Valley”, the game’s mechanics for building relationships with individual characters was the

base for Kati’s creation. The idea of relationship-building between game characters based solely on the

player’s in-game pursuits and actions is the Kati Module System’s crux. The goal is to build off of games

like “Stardew Valley” and expand the depth in which character’s relationships intertwine and birth a

form of a story by the player interactions and the game world their character exists in. The author

designed and constructed the Kati Module System to attempt to achieve this goal. The hope is to

establish a level of player immersion and flow (Mirvis, 1991) by eliciting a since of emotions through the

conversations of player character (PC) and non-player characters (NPC) (Oudah et al., 2018). This is

accomplished by means of appropriate dialogue delivery to a conversation that matches a situation or

relationship state that two characters share.

1.2 Objective

The Kati Module System’s core objective is to provide a way to deliver authored dialogue

content to a game directly derived from the player’s interactions. The aim is to maintain a sense of

believability throughout and supply relationship driven narratives between game characters that are

potentially unique each playthrough. It incorporates a modular design offering encapsulation of

components, where each component can work as a black box. A module needs certain data elements in

and returns dialogue data out. These data elements consist of the game’s current state like time, setting,

or trigger event, the relationship status between the active participants, the relationship statuses

between other characters or factions, and each characters’ attributes. This data allows the system to

produce chains of dialogue using a series of modules. Each module’s specifics are unique to itself and

have no bearing on the rest of the system but are combined to create a unique player experience

through dialogue. In this paper, we will focus on the individual module and how it functions in the

2

system. We will dive into the technical structure of the generic module design and all decision protocols

used thereby.

 1.3 Related Work

Games using interactive narratives through social development are not a new phenomenon. The

Sims Franchise (Wright, n.d.) is an example of a commercially successful, interactive game where much

of the gameplay centers around social interactions with other NPCs. The player controls several sims, of

interacts with other NPC sims, and can establish various relationships. Each sim is simply a virtually

simulated person containing skills, relationships and the capacity to gain employment. The Sims offers a

sense of autonomy that yields the illusion that the NPCs in the world live their own lives and make their

own choices. The Sims uses a highly visual and auditory array of elements that inform the player of the

relationships, moods, statuses, desires, and needs of the characters. These elements convey to the

player the state of the individual relationships. The Kati Module System (Kati) uses the same core ideas

of having undirected relationships between characters and establishing and presenting them differently.

Juxtaposed with the Sims visual and auditory relationship indicators, Kati relies on a human-readable

dialogue between character interactions to convey a social exchange.

The LabLabLab’s game design research headed by Jonathan Lessard, Associate Professor at

Concordia University in Montreal, has created a series of player interactive dialogue-driven games. They

have produced the games “A Tough Sell,” “Sim Prophet,” and “Sim Hamlet” with the primary goal of

utilizing interactive conversations as a game in itself. Each of these projects focused on gameplay, where

a player can accomplish a task through conversational moves. The LabLabLabs described conversational

moves as an utterance or series of utterances intending to change the conversation state (Lessard,

2016). The gameplay is reminiscent of a chat room where a player would directly type phrases to

complete a task.

The three games explore Natural Language-driven gameplay using the Chat Script chatbot

engine as the game’s primary dialogue engine. Players can respond to situations in their own words, and

Chat Script will process the input and respond. The Chat Script differs from the Kati Module System in

that Chat Script relies on Natural Language Processing (NLP), where Kati manages pre-written dialogue

based on character relationships and the current game state. Though Chat Script allows for much more

freedom of user input, the dialogue cohesion is limited to the local dialogue (Lessard, 2016). In contrast,

Kati does not process user text input, restricting freedom, but allows for a more cohesive global

narrative by maintaining the relationship state of characters and providing dialogue to fit each given

3

state throughout the entire game. Because of Chat Script Engine’s underlying nature, it can have a leaky

fictional coherence with miscommunications and amnesia concerning the conversation state. Both

designs have strengths and weaknesses, and their usefulness depends upon the application being

produced.

The Kati Module System is a system that focuses on the delivery of appropriate dialogue for a

situation based on a series of character and game factors, where dialogue coordinates information and

involves building social cohesion (Allwood, 1992) and controlling and restricting the interaction (Allen

et al., 2001). The Kati Module System differs from other systems, such as the GRIOT system, which uses

user input to algorithmically generate a series of computational output narratives (Harrell, 2006) and the

ELIZA system, which searches user input for keywords. ELIZA generates a response using a rule

associated with the keyword (Weizenbaum, 1983), in that user input is derived from pre-written

dialogue responses and other decisions made through interactions. The Kati Module System is

concerned only with dialogue delivery with consideration for past and future conversations, where

GRIOT and ELIZA focus more with NLP responding to the current state of the conversation. NLP uses

natural language understanding (NLU) (Mateas & Stern, 2004; Sabah, 2011) on input data and natural

language generation (NLG) (Koller & Petrick, 2011) on output.

Comme il Faut (CiF) (J. McCoy et al., 2010), revitalized as Ensemble (Samuel et al., 2015), is a

social dynamics engine used for the game “Prom Week” (Josh McCoy et al., 2011). CiF provides a rich

social climate using a social exchange structure powered by a malleable set of rules. Game characters

are enriched by relational situations and interconnected histories defined by experiences, social forces,

and current circumstances. Characters undergo social exchanges that contain an intent or intended

change to the social state. The volition of each character to accept or reject a social exchange depends

on an authored ruling system. By using a series of rules, character relationships can be established in a

non-linear way.

CiF, in itself, is not playable. Characters commence a social exchange, and each character

accepts or rejects the social exchange based on a series of conditions. These conditions consider the

histories between characters and the rule structures that apply to weigh the social exchange’s

acceptance or rejection.

Kati takes much inspiration from the design and functionality of CiF. It, too, is an extension that

games can use and is not playable on its own. Kati uses a form of the rules system and is built around

4

game character traits and relationships. Though many aspects of the two systems are similar, the two

differ in their core concerns. CiF is more concerned with what actions characters will do in social

exchanges, such as dating a character or becoming friends with them. In comparison, Kati does not

execute an action such as causing character “A” and character “B” to become romantically involved.

Instead, it provides a means to deliver appropriate dialogue for character “A” and character “B” for a

situation with consideration for their relationship status of “is dating.”

2 System Design

2.1 Kati Module System

It is essential to understand how each systems’ elements interact with each other and their core

responsibilities to access the Kati Module System’s full potential. The system comprises three main

components: The Module Hub, the modules, and a dialogue collection. Firstly, the Module Hub is

responsible for selecting which broad topic or module will be discussed. There can be any number of

modules available to the Hub. Each module is a container for dialogue that conforms to a specific

subject. Each module’s responsibility is to decide on the final dialogue string to be returned based on

various information (we will discuss this in detail). Lastly, the raw dialogue is needed to feed the

modules. This raw dialogue is stored in a series of JSON files to serve as a database for these strings.

Each of these elements works together in conjunction with an outside entity, the game. The game relays

information to the Module Hub, which then provides information to each module in turn.

Figure 2.1: Overview structure of the Module System in relation to the game

5

2.2 Responsibility of the Game

The game is an essential element that the system is dependent on, as Kati is not playable in

itself. Instead, the system uses vital information provided by the game before devising any dialogue

scheme. Elements such as setting, time, personal character attributes, and social character attributes are

imperative for producing meaningful dialogue. Without a regular update of the game’s current state, it

would be impossible for dialogue evolution to take place. Game elements about player location, actions

that can occur, and available characters must be defined and reflected in the raw dialogue and rules.

The game state includes all of the predefined social character attributes and personal character

attributes. Kati has a series of stats that ultimately decide the conversation tone. These stats can be

managed through the game and through the system itself. Actions, game events, and player-defined

dialogue decisions can affect these stats.

There are three primary types of parameters that Kati requires from the game. The first is game

data, such as time, setting, and event trigger elements, like the player’s Character (PC) has reached level

50 or completed a quest. This game data directly links to what the player is doing at any given time. The

second parameter required is each characters’ personal data. Kati utilizes two forms of character

attributes. The first is a character’s personality traits. Personality traits represent how that character

behaves and their personal views, interests, desires, and taboos. The third required parameter is the

social character traits. Social character traits function much like personality traits but express

relationships for other characters. A social trait would be a directed relationship like “is dating” or the

romance level two characters share. This romance level is a numerical value that gauges a quantifiable

representation of the character's romantic relationship. Social character traits have a strong influence

on the overall tone of the dialogue. If a character has a social relationship with another character, their

speech will reflect the relationship. How this could affect dialogue can be seen by how a character reacts

to something another character says.

2.3 Module Hub

Inquiry into the state of the game is the first step to discerning appropriate dialogue. This

responsibility falls on the Module Hub. It is tasked with ensuring the game and character data is current

6

and accurate. The Module Hub decides on the best module to return as a conversation to the game by

utilizing game state data. The Module Hub houses reference to all of the modules, where each module

represents a potential topic of discussion. The subject defined in the chosen module is called by the

Module Hub and passed the relevant information derived from the current game and character state to

that module. Once a module is selected and called, the module will return a Dialogue Package matching

the game and character criteria. The Dialogue Package contains the chosen dialogue string and

additional metadata to instruct the Module Hub and the game itself.

The Module hub first reads signals from the game. These signals include when to fetch a

dialogue phrase and signal appropriate types of modules to the game’s current state. Once the game

signals are accounted for, the personal character data and the social character data are considered. The

modules are ranked based on the character data, and one is chosen based on a weighted probability.

The social character data works similarly to personal data. Both the personal and social relationship

data, along with the game data, is passed to the chosen module.

Figure 2.2: Structure of the module in relation to the Module Hub

2.3.1 Module Hub Components

Inquiry into the state of the game is the first step to discerning appropriate dialogue. This

responsibility falls on the Module Hub. It is tasked with ensuring the game and character data are

current and accurate. This is done by updating pertaintent game and character information on each

iteration through the system. The Module Hub decides on the best module to return as a conversation

to the game by utilizing game state data. The Module Hub houses reference to all of the modules, where

each module represents a potential topic of discussion. The subject defined in the chosen module is

called by the Module Hub and passed the relevant information derived from the current game and

character state to that module. Once a module is selected and called, the module will return a Dialogue

Package matching the game and character criteria. The Dialogue Package contains the chosen dialogue

7

string and additional metadata to instruct the Module Hub and the game itself. Concerning the Module

Hub, these instructions may inform which module, topic, and even which dialogue value to choose next.

The Dialogue Package may signal the game informing it which portrait card to supply on the game UI or

other information like signaling that a quest conversation has been completed and the door to the quest

can now be unlocked.

The Module hub first reads data from the game. This data are established by the game

developers and relate to author defined rules provided to each module and house information like

location and setting updates or game event elements like “town is under attack.” This data includes

when to fetch a dialogue phrase and signal appropriate types of modules to the game’s current state.

Once the game signals are accounted for, the personal character data and the social character data are

considered. The modules are ranked based on the character data, and one is chosen based on a

weighted probability. The social character data works similarly to personal data. The personal and social

relationship data, along with the game data, are passed to the chosen module.

The Module Hub consists of a group of components that work together to decide which module to

select and prepare data for the selected module to make an informed choice. These components are the

Storyline node, location collection, character collections, history data, and character data. Each of these

components will be briefly discussed in the next few pages.

2.3.2 Storyline Nodes

The Module Hub’s default structure is designed to handle the separation of significant story

milestones or plot points into Storyline Nodes. Each Storyline Node encapsulates a reference to all

characters, locations, and modules associated with a particular ‘Chapter’ in the story. To better illustrate

this, consider a narrative about a country at war that contains three major plot points. The first point

occurs before the war, the second, during the war, and the last, after the war has ended. These

storyline elements fit together to make a whole, but each can have unique attributes that only fit their

respective plot point. The dialogue’s overall mood and tone can differ depending on which ‘Chapter’ the

narrative is in. Also, the possible locations and characters involved can change depending on which plot

point is currently underway. Each of these significant points in the story can be translated into a

Storyline Node. The Storyline Node idea is only to include elements of the game that currently exist in

8

the story’s context at specific points. Figure 2.4 shows a simplified diagram of a Collection of Storyline

Nodes.

Figure 2.3: Storyline Node Containing ‘N’ Chapters

Though it might be necessary for a game to include many significant shifts, whether it be the

main character’s death, setting alterations, or any other storytelling device, not all games will require

this feature. In many instances, the location, characters, and overall mood will stay the same throughout

the game’s duration. The Module Hub only requires one Storyline Node to be created with the option to

make any number of additional Storyline Nodes if needed. A Storyline Node translates vital plot points

by tracking all locations or setting elements in a specific plot point and every character available during

this ‘Chapter’. The Module Hub maintains a reference to a collection of these nodes and can set any

Storyline Node as ‘active’ guided by signals from the parent game. See figure 2.4 for the breakdown of

the Module Hub’s collection of Storyline Nodes. The active Storyline Node will provide the game with

access to all of the modules relevant to the particular state of the overall story progression.

Storyline Nodes can be arranged in any order. From the perspective of Kati, a Storyline Node is a

data structure that holds a series of references of all locations and characters of a particular chapter.

The Storyline Node structures use string values to represent the ‘Chapter’ or Storyline segment. Each

act points to a collection of string values that represent locations that are available in this act. Each

location string holds a reference to a character that can be found there. Using the war example, the

Storyline Node, “before the war,” may have a location “town item shop,” and in this location, characters

“Shopkeep” and “Mr. Muscles” can be found here. The character references link to character objects

which hold their specific data. On the second Storyline Node, “during the war,” the location “item shop”

may still be available, but only the character “Shopkeep” can be found here, “Mr. Muscles” joined the

army and is off to war.

9

Figure 2.4: Structure diagram of a collection of Storyline Nodes

2.3.3 Location and Character Collections

Location collections are just collections of locations represented by a key string value. These

keys represent locations in the game and give a reference to location-based rulings in the modules. Each

StoryLine node contains a collection of locations, and each location contains a collection of characters in

that location. The default design of the Module Hub assumes that all locations are constant to each

Storyline Node. For instance, if a specific Storyline Node has a town location, forest location, and a

mountain location, these locations will never be removed or changed, and a new location cannot be

added. However, additional features overriding this default behavior can easily be implemented by the

game developers. The Module Hub requires the current location of the dialogue sequence when a

dialogue interaction is triggered.

Locations specified in a Storyline Node can be as general or as specific as the game developers

require. For instance, locations can be as broad as a region in the game world or as specific as

someone’s bedroom in a particular house in a town located in a specific spot in a region. The more

specific a location is, the larger the potential overhead is for managing all locations.

Locations are a means to enforce rules about the Module Hub selecting a module or a module

selecting dialogue. To illustrate locations and how they fit with rulings, consider three locations pointing

to a progressively more specific game location, the first, “In town,” the second, “Martha’s House,” and

the last, “Martha’s Bedroom.” Each of these locations is located in the town, but each becomes

increasingly more specific. Rules can be applied to each of these locations that alter the Module Hub’s

decision of which module is selected, and which dialogue phase wins. Since all three locations are

essentially “in town,” any modules that are not applicable for use when the location is “in town” are

dismissed; likewise, any rule that specifies a specific location is ruled out unless they meet the

requirement of the current location. If the player is speaking to someone in Martha’s bedroom and

there are three module or dialogue options that house three different requirements, all relating to the

10

location, the outcome is dependent mainly on rulings defined by the game developers. Suppose these

three location requirements are “in town,” “Martha’s house,” and “Martha’s bedroom.” If this is the

case, then all three options may be valid, or only the option containing the requirement “Martha’s

bedroom” might be valid. This decision is up to the game developers and is established when location

rules are created. All three of these locations can exist inside of the location collection. This level of

control allows authors to create situations that are exclusive to specific locations. The designers might

want to create rules that pertain exclusively to locations, such as conversations that can only happen in

‘Martha’s bedroom’ and not ‘in town’ even though ‘Martha’s bedroom’ exists ‘in town.’ Actions Again

the design is dependent on the game developers.

With the active StoryNode and the location key, the next layer is the characters involved in the

interaction. By default, the Kati Module System assumes that one of the characters in any dialogue

interaction is the PC and the other is an NPC. Using this assumption that one character is the player, the

Module Hub’s next entry is the name or key of the NPC that the PC is speaking with. The NPC in the

interaction can be referenced, and from here, an individual module can be decided on.

Locations in the location collections can point to many characters, and multiple locations can

point to the same characters. (See figure 2.5 and 2.6 for location and character collection relationship.)

Characters can move from one location to another by altering a location’s character collection to match

the game state. This alteration is a simple way to track which characters are in a specific location at any

given time. Though the location collection feature exists in the Module System, it is not required.

Alternative solutions created outside of Kati can be implemented to track character locations to better

suit the game’s needs. It may be more comfortable or necessary for the game designers to track

characters based on specific criteria such as graphics rendering, collision signals, or grid-based

movements and pass the character’s reference in the interaction to the module system.

Figure 2.5: Location nodes point towards separate character reference lists

11

Figure 2.6: Location nodes pointing towards the same character reference lists

2.3.4 Characters and Modules Accessibility Relationships

A game can have many different dialogue modules that are used for a variety of situations. A

module's relevance can be based upon many factors such as the Storyline Node, location and Setting

elements, characters involved in the interaction, or the characters' relationships. From the Module Hub

perspective, all modules are chosen by first providing a character involved in the dialogue interaction

and then choosing a module that applies to the NPC in question. The Module Hub maintains a list of all

modules that each character can access throughout a Storyline Node. Characters can have unique

modules assigned to them as well as communal modules. Consider a game with a town guard, a

blacksmith, and a town elder. All three of these characters may be in the same village and exist in the

same Storyline Node. Since all three characters share this space in the game, it may be beneficial for

each to share access to a general "around-town" module. This localized sharing allows for one module

to service multiple characters. Even though these characters share the same space, they could have

exclusive modules that cater to their specific profession. The guard might have exclusive access to a

"Law" module, the blacksmith to a "barter" module, and the town elder to a "quest-giving" module.

Alternatively, each character can have exclusive modules designed for that specific character or

all the modules shared by all characters. Consider the module “Small Talk,” which might house just

general small talk. Many characters in a game might need this module, but the game designers may

want to customize every module for specific individuals. The developers can produce different versions

of the same small talk module like “Small Talk Tung” or “Small Talk Farah” for each character or only

those that require it. Each new “Small Talk” version of the module is a new set of dialogue that is

custom-tailored to “Tung” or “Farah.” Both versions are essentially unique instances of modules that

share the broad topic “Small Talk.” The specifics are primarily up to the game designers and content

12

creators when creating the game. Figure 2.7 illustrate an exclusive only design and an exclusive and

sharing design to the character to module accessibility.

Figure 2.7: On the left, all characters have unique modules. On the right, all characters share module
“Small Talk B” as well as having unique modules

2.3.5 Module Decision Mechanics

Using the active Storyline Node, the interaction location, and the interacting character

reference, the Module Hub has access to all possible modules that can be used in the interaction.

Because every game is different and will have unique modules and contingencies for selecting the

module, The Module Hub decision structure contains only a single default protocol for choosing a

module. It merely selects an available module to run randomly using a uniform distribution. Though this

structure exists in the Module Hub by default, it is not meant to be used per se but overridden by

functionality supplied by the game itself. This design was cemented during testing when all attempts to

find a one-size-fits-all solution proved only to complicate and limit the game itself and ultimately

unsuccessful out of the box. The Module Hub requires the game to define the rulings that narrow down

and decide which module is selected. There is no way of knowing beforehand what each game will

value as important or what qualifies as a means to select a module.

2.3.6 Preparing for the Module

After deciding which module to use, certain data elements in the Module Hub must be updated

to prepare for that module’s execution. Elements like the current state of the characters and any game-

triggers needed to be reflected in the Module Hub for the chosen module to decide which dialogue

option is best. The main form of communication between the Module System and the game takes the

13

form of game data objects and the Dialogue Package. The Dialogue Package is responsible for conveying

instructions to both the game and the Module System. The Dialogue Package needs to be updated on

each iteration of the system. Many decisions a module will make are dependent on the values in the

Dialogue Package. The game data objects update all characters’ states and elements like the previously

mentioned location data. This update provides all of the character data needed by the module. Just like

the Dialogue Package, each module requires an updated character state to make informed decisions.

2.3.7 Character Data

The Module Hub provides a place to store character attributes generated and altered by Kati

and the game itself. The character attributes supported by the Module Hub by default are personal

attributes, social attributes, and branch tone attributes. The personal attributes reflect the character’s

personality and way of thinking. For example, the attribute “selfish” would be a personal character

attribute. Social attributes are directed attributes that a character feels towards another. Attributes like

“enemy with” or “has a crush on” would be examples of social attributes where a character has a

directed relationship status with another character. Both the personal and social attributes are not

required and can be handled by the game entirely if so desired. The branch tone attributes are a type of

social attribute that tracks eight relationship types crucial to choosing dialogue in every module. Unlike

the social and personal attributes, branch tone attributes are required for the system to run correctly.

Each of these three character elements will be discussed in greater detail later on in the Module section.

2.3.8 Dialogue Package

The Dialogue Package is paramount to the functionality of the Kati Module System. It holds

signals from the game to the Module System, from the Module System to the game, and also signals

that instruct different components of Kati. The Dialogue Package contains data that allow Kati to bypass

rules, change modules, end conversations, force specific dialogue options to be picked or rejected, signal

question, statement, and response type dialogue options, and much more. The Dialogue Package also

provides the game with updates to the character's state and game state based on the module system's

decisions. An example of a decision that can alter the game state is a response-type chosen by the

player. The Dialogue Package will carry the consequences of the player's choice to the game. It is also

responsible for supplying the dialogue selected by the module to the game. In short, the Dialogue

14

Package is the main form of communication between various components of the Kati Module System

and the game that is using it.

The Dialogue package holds references that connect lines of dialogue phrases between

iterations so that the system knows exactly where it left off. It does this by tracking the next module,

module topic, module type like statement, a question or a response (See figure 2.12 for a list of the

types). It also communicates whether a conversation is pieced together with a chain of dialogues. These

chains require more than one iteration of Kati to complete and are useful for conveying long

conversations about a specific topic. The Dialogue Package also contains all of the dialogue to be

delivered to the game for each iteration of the system. This includes both the dialogue from the NPCs

and the response data for the user to choose from. The Dialogue Package also tracks the Storyline node

and current location for the current iteration of the system. It is a key element used by the History

mechanisms to log current events.

Figure 2.8: Dialogue Package contents categorized by Dialogue Data attributes, Decision Making Signals,
and History and Module Hub Signals

2.3.9 History

There are two forms of history considered in Kati. The first is the long-term history. This type is

a logging system that tracks all dialogue exchanges for each interaction throughout the game. The

second type is the short-term history. The short-term history functions precisely like the long-term

history except that elements contained in it are removed based on some duration defined by the game.

The game can also decide on how this removal should take place. Since both the long-term and short-

15

term histories function like a queue, the default removal methods are dequeuing an element or

emptying the entire short-term history bank. Figure 2.9 and 2.10 shows the history logging scheme

relative to the player.

Both the long-term and short-term history can be used for selecting dialogue in a module.

Possible rules such as “only play once” or “repeat dialogue three times only” can take advantage of the

long-term history’s inputs. If an entry exists in the long-term history that matches the module selection

dialogue in question and has the “play only once” rule, then this line is no longer available to be selected

for the entirety of the game. Rules like “don’t repeat too frequently” can take advantage of the short-

term history by checking to see if the dialogue is contained in the short-term history and if it is, then it is

no longer a candidate for selection. Since all elements of the short-term history have a limited duration,

dialogue repetition can be spaced.

Figure 2.9: Overview structure of a History Entry

16

Figure 2.10: Overview structure of a History Entry using example data

2.4 Module

We have seen the importance of the game and how it interacts with the Module Hub. We have

also discussed the Module Hub and how it links locations and characters to major plot points, the next

step is to discuss the power house of the system, the modules. A game can have any number of

modules, with each housing a single unique broad topic for conversation. Each module topic is up to the

discretion of the content author. Modules are chosen based on labels that correspond to some action

that is happening in the game. Each module can contain many subtopics that are branches of the larger

topic. Each of these subtopics can have several verbal tones, such as romantic, friendly, and hateful.

Using the data provided by the game and module Hub, a module will choose a subtopic and a verbal

tone to finally access possible dialogue phrases to be returned to the game. At this stage, a series of

rules and protocols are followed to narrow down a “good fit” dialogue phrase that best matches the

game’s current state. We will discuss the protocol to determine a “good fit” dialogue phrase in the

context of the current game state later on.

2.4.1 Dialogue Topic Types

Subtopics in each module are categorized as either a statement, questions, or responses. Each

of these categories provides different styles of conversational movement (Lessard, 2016). Statements

are dialogue collections that contain regular statements, generally, if not exclusively, conveyed by an

NPC to the PC. Question type dialogue collections pose questions to the player and almost always

require a response. Response types are simply an authored list of phrases that can be used in response

to a question.

17

2.4.2 Structure of a Module

The Module Hub holds a reference to the modules' collection, and the modules contain all

components related to broad topics of discussion. The individual modules make up the core of the

system and house most of the decision-making functionality for picking a single dialogue phrase to be

returned to the game as a response to some action. Each module is based on a generic template that

contains various components. In the following sections, we will review each of these components in

turn.

2.4.3 The Controller

The Controller is the central hub of a module. It is responsible for communicating with every

module element and delegates tasks to each in turn. It holds all information relating to the game data

and character data. This data is passed in by the Module Hub and originates from the game itself. The

Controller must decide on which subtopic to use from the library data and which topic type (See figures

2.11 and 2.12 for sample topics and type descriptions). The library data contains all of the authored

content that pertains to the current module topic, and the topic type is type’ statement’, ‘question,’ or

‘response.’ The decision of the topic type combined with the sub-topic narrows down the applicable

dialogue phrase set to be used.

 The Controller uses the game’s guidance, the Module Hub, and previous dialogue properties to

decide on the sub-topic and topic type. The decision-making constraints resides in a container called the

Dialogue Package. The Dialogue Package, as previously discussed, is a collection of instructions for

various sections of Kati along with other elements. It contains direct instructions from the game, the

Module Hub, and previous module data. The Controller checks the Dialogue Package’s state looking for

restrictions and weights to apply to the topic and type. The contents of the Dialogue Package are the

primary vehicle for choosing the sub-topic and type. The Dialogue Package is used through the system. It

contains any excluded subtopics present in the module. The Controller reads these exclusions as

instructions on which topic to include as applicable for the current game state. The next consideration is

the topic weights. By default, all topics have uniform weight, and each topic’s probability of being

chosen has a uniform distribution. The dialogue package can override this by assigning weights to

individual topics, making them more likely to be selected as the final subtopic. After processing the

Dialogue Package criteria, a topic is decided based on the currently prescribed probability.

18

With the topic chosen, the Controller ascertains the topic type. As previously mentioned, these

types are either a ‘statement,’ a ‘question,’ or a ‘response.’ Unlike the default uniform distribution of

the topics, the types have a strong bias towards ‘statements’ and zero percent default chance for the

type to be a response. Just as with the topic decision, the dialogue package can override these weights

and mandate a particular structure type must be used. This override is the only way for the response

type to be triggered. With both the topic and type decided upon, the Controller calls upon the Parser.

Figure 2.11: Example list of data keys used to access dialogue options

Figure 2.12: List of topic types

2.5 The Parser

The Controller mainly handles the communication between module sections and the hub, with

only a fraction of the final decision-making. In contrast, the Parser’s sole purpose is deciding a “good fit”

dialogue segment to return to the game by parsing the authored content and rules. Much like the

Controller, the Parser delegates tasks to subsections to narrow down the possibilities until only one

dialogue phrase remains. The term “good fit” is most appropriate for the Parser’s method. It does not

seek to find the best fit dialogue phrase but rather a “good fit.” The notion of a “best fit” dialogue

phrase is subjective and is the case only when a single phrase is applicable for return. Finding a “good

fit” dialogue phrase requires all dialogue phrases in the chosen subtopic and topic type to undergo a

19

series of checks. The first of these checks is to decide on the overall tonality of the dialogue. In music,

the tonality of a piece is distinguished by the key in which it is played and the relationship between the

notes and scales (Tonality, n.d.). Much like a song, Kati classifies the dialogue by its tone. Instead of a

music key, the dialogue uses the characters’ relationships to establish how a character will say

something. These tones are relationship factors like characters’ level of friendship or disgust with one

another. They are known as the Branch Tones and are decided by the Branch Decision Node. The Parser

calls on the Branch Decision Node to find the dialogue’s proper tone based on the game’s character

data. We will look more into the Branch Decision protocol later on.

Figure 2.13: Data organization of an example module

Once a tone is established, then a small subset of dialogue phrases is available to sort through.

Each dialogue phrase is associated with rule sets, allowing for the fine-tuning of when a specific dialogue

phrase is applicable. These rules are decided during the initial authoring of the dialogue content and are

optional. The Parser will call on a series of nodes to validate personal and social character rules, game

rules, and dialogue weights applied to any given dialogue. These rules are listed in the library data and

are established during the initial authoring of the dialogue content. We will see each of the decision rule

nodes decide on a “good fit” dialogue phrase.

Once all decision nodes are called and a dialogue phrase is selected, it is packed into the Dialogue

Package and returned to the Module Hub. The packaging of the dialogue includes the required rules and

other data connected to each dialogue phrase. The Module Hub will submit it to the game, and the

game will display it to the user interface.

20

2.5.1 Branch Decisions

Each conversation topic key (see figure 2.11 for topic key example) has subcategories nested

within. These subcategories are dialogue tones. As previously mentioned, dialogue tones correspond to

character relationship states such as a friendship and romance. These are referenced as the

conversation tone branches. Each conversation tone branch, or branch for short, is an emotion type that

contains different manners of speech for a single subject. The default tone branches are Neutral,

Romance, Friendship, Professional, Respect, Affinity, Rivalry, Disgust, and Hate. They are roughly

categorized into positive, neutral, and negative tones and are scalar. Each of these branches’ house

dialogue is modeled under the assumption that the characters speaking share this tonal relationship. If

a character has no strong tonal feelings towards the other character they are engaged in conversation

with, then the neutral tone is supplied.

The branch tone is decided by how the NPC and player view the other character in the

conversation. The raw dialogue provided by the data library does not need to contain all tone branches

for any given subject. Instead, each topic can have any number of tone branches. In some cases,

individual branches may not make sense in the context. It is up to the dialogue author’s discretion to

decide what dialogue tones should exist in each subtopic in any given module and the bounds they

encompass.

It is important to note that branch tone encompasses the longstanding core relationship view

one character has for another. If a character has a higher “Romance” tone towards another character

than a “Friend” tone, that character would be more inclined to say they love the other character than

they are friends with the other character. These tones are built throughout gameplay and are a stable

overview of how a character feels about another character. Nevertheless, they can be augmented by

character traits and temporary statuses dictated by the game. Rulings for these must be established

upon the creation of the game. An example of this temporary status might be a character with the

status of “angry.” Because of this angry status, they may get a temporary boost to the “Disgust” tone. If

they are engaged in a conversation with their lover, the “Disgust” Branch may win out over any other

branches, though their core view of the person they are conversing with does not reflect this outlook.

After a duration, the status of “angry” is removed and the boost to “Disgust” Branch is removed. Much

like many features in the Kati Module System, temporary status boosts are optional.

Not only does a branch tone not need to exist in the subtopic of a single Module, but it also does

not need to exist in the game at all. The current version of the system allows for eight branch tones and

21

a neutral tone. The naming conventions used are currently permanent, but the authored content

decides the mapping of dialogue to a tone. If the game requires a strong family bond between

characters but does not allow for a romantic bond between characters, then the author can map strong

family ties by the “romance” tone. Each tone in itself is just a means to map dialogue to a situation in

the game. One exception to the freedom of branch exclusion is that each subtopic must contain the

Neutral branch. It serves as a default branch when nothing else fits the conversation based on the

current deciding conditions. The Neutral branch also captures the conversation between characters that

are strangers or merely acquaintances.

The Branch Decision mechanism has three thresholds that mark the cut-off points for different

ordering tiers. All attributes are compared to the highest threshold first, then the middle, and finally the

lowest. After each threshold testing starting with the highest, each attribute is weighted based on where

it sits on the priority list (how prominent it is in the characters’ relationship). Each attribute is chosen

one after another and added to a master list. This method allows higher priority tones to generally take

precedence but not become predictable by always taking the lead. This same sequence happens for

both the middle and lower thresholds. The master list will contain all attributes ordered from best fit to

worse fit. Attributes that fall below the lowest threshold are subsequently dropped. Following the

threshold comparisons, the master list adds the Neutral branch as the last element. This master list is

the order of Branch Decisions in which the module will use to determine the final tone. These tone

calculations are rendered on each iteration of the system as new dialogue is required.

On the chance that all attribute values fall below the lowest threshold, the master list will

contain only the default tone of Neutral. When the master list contains only the Neutral Branch, it

reveals that the initiator has no strong relationship with the responder. Each module must contain the

Neutral branch for this very reason. If a branch tone does not exist in the data library, it is removed from

the master list. Once the master list of ordered tones has been purged, it is returned to the Parser to

move on to the next stage in decision making.

2.5.2 Required Rules

With the acceptance of the conversation tone branch, the Parser must narrow down a collection

of dialogue phrases. Each of these segments has conditions and further instructions to pass to the game

if chosen. The Parser must eliminate all dialogue segments with conditions that are not present in the

22

game’s current state and participating characters. Dialogue required rules provide a means to force

dialogue segments to only be available when individual states are achieved or are present. There are

two major required rule types. Some rules deal with the game data, such as the game’s time and setting,

and other rules deal with character data such as characters’ personalities and relationships with others.

The inclusion of required rules is solely up to the dialogue author. The benefits of required rule

inclusion allow for more specific dialogue. Consider a greeting dialogue that falls under the neutral

branch. A possible generic greeting might be “Hello.” This greeting may not require any rules. This

simple phrase is usable in any circumstance. Adding more complexity or specificity to the dialogue like,

“Good morning.” the need for a custom rule like, “time of day must be morning” may be required.

Increasing the dialogue complexity further with the addition of “It sure is a lovely day.” might require

another rule, “weather is nice.” These are three possible dialogue options that can exist in the data

library. The author can use one or all of these greetings (See figure 2.14 for a mapping of these phrases

to their potential rules). Each of these greetings provides a layer of conversation depth relative to rules

that are valid for the current instance of the game. If the dialogue options include all three of these

greetings and all of the rules are true, then the possible options for the greeting can be any of them,

they all make sense in the current context. If the game state is morning and the weather is terrible, then

the dialogue option that requires nice weather would be removed from the applicable phrases. It would

not make sense to say the weather is pleasant during a tornado. The inclusion of dialogue requirements

is a powerful way to allow for complicated and specific dialogue to exist in the game, but it comes at a

cost. The more rules used, the need for a more extensive dialogue pool to cover a broader base of

scenarios increases.

Figure 2.14: Potential rules associated with different dialogue values

There are three main categories of rules that are considered in each module. There are game

rules, personal character rules, and social character rules. Game rules deal primarily with the time,

23

setting, and events occurring in the game. Time rules include elements such as time of day, day of the

week, month, and season. The setting rules deal with the location of the player in the game and

elements such as the weather. The event rules deal with time events like when a store opens or if the

annual carnival is in town and trigger events. Trigger events are game achievement events that are

unlocked when the player reaches some goal.

Personal attributes are concerned with the traits that describe a character’s personality. These

traits include elements such as interests, physical features, and temporary statuses like injured or drunk.

Personality attributes house traits that a character is born with and are immutable and traits that can be

changed, acquired, or lost through interactions. The social rules deal with relationships that the initiator

has with other characters. Much like the branch decisions, the social rule decision mechanism uses the

initiator’s perspective when applying social rules. The exclusive cultivation of character traits through

interactions fuels the rule decisions. Both personal and social rule requirements contain Boolean and

scalar type attributes.

The Parser calls a decision mechanism for each of the rule types, which remove dialogue phrases

that contain rules that do not line up with the game’s current state. With all rule restrictions enforced,

the remaining dialogue segments can be chosen as the dialogue segment and returned to the Parser for

the next step.

2.5.3 Case for No Available Dialogue

The Parser calls a number of mechanisms that ultimately return a single dialogue string to the

game. There are instances where following the protocol for each of these decision mechanisms will lead

to a dead end. These dead ends happen when the game and character conditions do not match any

dialogue required rules, and Kati is rendered speechless. Multiple paths can be explored to combat this,

looking for a viable dialogue phrase to return to the game. The Parser will first call the Branch Decision

node, and the Branch Decision will return a list of all of the available branch tones ordered from most

influential to least influential, where the least influential is the neutral tone. The Parser will try the most

influential tone and check all rules and weights required for the game state and circumstances. If there

is no dialogue phrase, the Parser will repeat the process with all of the tones until it reaches the least

influential, neutral tone. The neutral tone is the default tone and is the only tone that is required. If

24

the neutral tone provides no results, nothing is returned to the game, and the conversation is

terminated.

2.5.4 Leads To Rules

A requisite aspect of the module structure is deciding where to start and end a conversation. We

have discussed the module system’s method to determine what dialogue topic is chosen based on a

specific set of criteria and the game’s current state. Once a dialogue phrase has been selected, it is

crucial to establish how this affects the game state and what dialogue comes next, if anything. The

system has built-in mechanics to decide what to choose next, assuming that no one topic or type is

pressing beyond its default weight such as a dialogue phrase that corresponds to an urgent rule like “the

house is on fire.” However, some dialogue phrases may lead the conversation in a specific direction.

Each dialogue phrase contains a “required rules” list and a “Leads To” list.

The “Leads To” field supplies the module with information about which module, topic, and type

to use for the system’s next iteration. The “Leads To” elements override the default decision making

mechanics and provide a way for the dialogue to take a more static structure and distribute a predefined

dialogue chain. The “Leads To” list makes dialogue chains easier to produce by allowing Kati to point to

the next dialogue phrase to be used directly, bypassing all decision-making elements.

This linking scheme is handy for creating interesting small chains of dialogue, allowing for

greater complexity and specificity of complete thoughts. Using this technique in conjunction with

tonality branches in a module can produce unique, complete thoughts that reflect how a character feels

towards another character.

25

Figure 2.15: Micro dialogue chain sample using tonality as a guide to finishing the complete thought

Another example of directing a dialogue conversation using a “Lead To” element would be a

dialogue type “Question” that might invoke a dialogue type “Response” from the player. The “Lead To”

data would direct the module to run the next dialogue instance as a response from the current module.

The response could be further narrowed by referring it to a limited number of possibilities to ensure the

response makes sense with the asked question. Beyond navigating in the current module, the “Lead To”

field could invoke elements from another module altogether.

2.5.5 Response Type Dialogue

The “lead to” option is a direct way to manipulate any conversation coherently. It is the only way

to execute the third dialogue topic type, the response. The “Statement” and “Question” types are

delivered by NPCs generally spoken to the player. A question will lead to a response, and each possible

26

response will have a requirement that connects it to the question. If the question has no particulars

about the responses required, then any response can be used. In most cases, responses will have

requirements connected to the question’s “lead to” restrictions. Response requirements ensure

responses make sense in the questions’ contexts and prolongs the dialogue’s believability.

Responses allow the player to interact with the game directly. Questions can take on many

forms, thus allowing for significant variation in responses. An NPC might ask the player their opinion on

something, ask if they will attend a function, or ask about the player’s past experiences. The response

can be as simple as a yes or no and as complex as a player choosing backstory. In the current phase of

development of Kati, responses contain groups of possible replies with a range of a very positive outlook

on the question to a very negative one. When a player is prompted to respond to an NPC, they are given

a list of replies containing one positive value, one neutral value, one negative value, and one value that

corresponds to the player’s relationship with that NPC. The idea is to allow the player to forge their

relationship with any given NPC but still gives an edge to the response type reflecting the current

relationship with the PC.

2.5.6 Changing Character Attributes through “Leads To” Lists

Responses allow the player to manipulate the conversation state and directly alter the

relationship between the player and the NPC speaking. Changing character relationships is twofold. It is

the combined responsibility of the Kati Module System and the game. Kati is concerned with the Branch

Decision tones and will use “Lead To” data to alter these scalar values. These tonality values are the only

values that are directly tracked by Kati. Since the game provides the custom personal and social

character elements defined in each game character, it is the game’s responsibility to use the “Leads To”

data to update these character attributes. Though the Kati Module System can easily use game defined

character attributes, these are optional and are implemented at the game designer and the content

author’s discretion. The “Leads To” data is stored in the Dialogue Package and returned to the game.

The game reads these entries and then updates them according to its protocol. Despite the Branch

Tones being a child of the Module System, the game can access these values and build correlations

between game derived character attributes and the Branch Tones.

27

2.6 Dialogue String Parser

A module could not function without the raw dialogue data. It contains topics with types, each

containing several tone branches. The dialogue data itself exists in one of these tone branches and

includes requirements for it to be chosen and “Lead To” elements dictating further actions needed. The

module system translates all of this data to produce a stream of dialogue that keeps a reflection of the

participating characters relationship.

One additional feature that the Kati Module System indirectly supports is key strings or tokens

embedded in the dialogue itself. These grammar tokens are built-in instructions to cue the game to

provide functionality or replace the token with a particular word or phrase. These cues can change the

game’s user interface elements, such as changing a character’s portrait card in a textbox to match the

dialogue, start a new textbox, or even trigger a game event. Figures 2.16 and 2.17 show an example of

tokens embedded in a dialogue phrase and the game’s rendered outcome.

Kati’s Dialogue String Parser works similarly to Kate Compton’s Tracery (Compton et al., 2015).

Tracery is an open-source tool used to write text-generating grammars using JSON files with the

principle of being simple to author. The Dialogue String Parser and Tracery share many similarities. The

main semantic difference between the two in function is that Kati does not include recursive symbol

translation, and Kati’s formal grammar symbols target text augmentation and game elements. Though

the Dialogue String Parser allows for signals to alter non-text elements such as portrait expressions, UI

elements and other such character emotion indicators, it is simple in comparison to middleware toolkits

like The Virtual Character Behavior Toolkit (Yang et al., 2017) or the SARA project (Arellano et al., 2018)

providing emotions through rendered characters.

Since Kati Module System doesn’t assume any information about the game’s plot or style, these

embedded tokens are the responsibility of the content authors and game designers. In short, the game

must translate these tokens. Kati’s functional goal is to deliver appropriate dialogue for a given situation

in a narrative. The game designers and content authors can use this system by introducing custom

signals to the game that correlate to certain conditions. The use of embedded tokens is just a handy way

to utilize custom signals for particular situations

28

Figure 2.16: Authored content file structure derived from a sample game Job Interview

Figure 2.17: Dialogue choice from figure 2.16 rendered to the screen in the sample game Job Interview

3 Results and Discussion

3.1 Experiment Setup

The Kati Module System aims to deliver appropriate dialogue to an application that reflects its

characters' relationship status. A simple proof of concept game was developed, "Job Interview," which

tested the success of the generic module template and used a single module. Next, a text adventure

game like integration test was constructed to tests the system as a whole. The "Job Interview" game's

premise is that the player must gain employment as an intern at a software company. The gameplay

entails the player engaging in a conversation with a hiring manager. The manager rattles on about the

company and asks the player questions along the way. The player's responses directly affect how the

manager perceives the player as a potential candidate for the job and provides dialogue mirroring the

tone representing how the manager views the player as an intern candidate. The "Job Interview" game

was developed while the Kati Module System's Module Hub was still under development. This fact led

the "Job Interview" game to focus on the generic module template's success.

After completing the "Job Interview" game and a working version of the Module Hub was

realized, an integration test resembling a text-based adventure game was created to test the addition of

the Module Hub and the overall functionality of Kati as a whole unit. Both the "Job Interview" game and

the integration test text adventure game monitored the relationship between the player and the

29

conversing NPC and delivered dialogue accordingly. Despite their similarities, the two tests are

different, both in execution and the results' nature. This section will look at the experiment and results

for the "Job Interview" game, then the text-game integration test experiment and results, and compare

and contrast the two along the way.

3.2 The Job Interview Game

The “Job Interview” game utilized a single module built directly from the generic module

template. It took minimal effort to create it and adopts many of the generic module template’s rule

decision nodes without alteration. The small number of altered elements from the template shows

promise that the design is flexible. There was very little development time spent refactoring module

components to fit the game. The entire development time to create the game was roughly two weeks,

with the time spent customizing the specific Job Interview module taking a single day of the entire

production time. The game used the Unity game engine for the user interface and incorporated simple

pixel graphics. It was launched with minimal dialogue to test the robustness, quality, and clarity of

dialogue with the few options.

The ‘Job Interview’ game uses four primary relationship values to make all decisions. The first

three are friendship, respect, and disgust. These three relationship values are the ones that determine

the dialogue decisions made throughout gameplay. All three of these values are represented on the

screen in the lower left as User Interface (UI) bars. This UI allows the player to see how they are doing at

any given time. The fourth, professional, is a hidden attribute value that determines the outcome of the

game. The professional relationship is not directly tied to any of the three relationship attributes that

control the dialogue. However, it tends to be more prevalent with dialogue selections that contain

higher positive effects, friendship, and respect, than with the negative value, disgust. All relationship

augmentations are derived through the PC selecting a response. Each response has a predetermined

value that correlates to the hiring manager that the player is interacting with.

The “Job Interview” test game’s goal was to fully implement a generic module with a specific

direction in mind. The game’s important implementation qualities were to use the PC and NPC

relationship to select dialogue phrases for the interview and incorporate game conditions outside of Kati

using the same relationship values. For this test, the game’s win condition was solely based on the

impression made by the PC on the NPC in the form to the “Professional” relationship attribute. The test

30

game was required to provide a continuously streaming conversation that was not only on topic with a

job interview but also made logical sense and correctly ordered. The game needed to demonstrate that

the system can produce long-lasting conversations that fit together chronologically and have a sense of

believability in the context of the current game state. In this context, the term ‘believability’ refers to

the player’s perception that the current dialogue being presented is not far-fetched and could be

present in an actual job interview.

Figures 3.1 through 3.4 show various screenshots of the “Job Interview” game. The main game

screen consists of a textbox that holds the hiring manager’s portrait along with dialogue and responses

provided by Kati. Figures 3.1, 3.2, 3.3 and 3.4 show a section to a play-through that deals with how

ethical the player is in the workplace. The first two, figures 3.1 and 3.2, shows a play-through where the

relationship state is predominantly friendly. This fact is displayed by the UI bar located on the left side

under the textbox. The first panel shows the player choosing a not-so-good response, and the next panel

shows how the hiring manager responds. The response is light-hearted and cheery considering the

player’s claim of lack of understanding of ethics. This positive response was chosen by Kati because of

the relationship state when the player responded. After the player responds, the evidence of the

player’s actions becomes more apparent by the shift in the relationship status displayed by the UI bar.

The Friendship relationship, denoted by the heart and red bar, drops, and the ‘disgust’ relationship,

denoted by the mean face and orange bar, increase. The next decision made about dialogue selection

will be built off of this latest change. Figures 3.3 and 3.4 show the similar discussion about ethics, but

the predominant relationship in this play-through is one of disgust. The dialogue options are different,

though the topic, work ethics, is the same. The player once again chooses the worst choice, and the

weight of their actions is seen on the disgust bar as it maxes out and the hiring manager’s retort.

Figure 3.1: Player selects a negative response during a play through with a friendly relationship

31

Figure 3.2: Hiring Manager reacts to the negative response in a friendly manner because of the
established friendly relationship

Figure 3.3: Player selects a negative response during a play through with a negative relationship

Figure 3.4: Hiring Manager reacts to the negative response in an unfriendly manner because of the
established poor relationship

32

Figure 3.5: Game Over screen for the Job Interview game

To test the success of the Job Interview game, a group of introductory computer science

students from the University of New Orleans was asked to test the game by playing it a few times then

fill out a survey. The survey consisted of 10 questions about the following, did the game’s dialogue make

logical sense, did their choice affect the outcome of the game, did the dialogue differ each play-through,

and was the dialogue presented believable in the context of the game. Unfortunately, only a small

number of students participated, giving only 19 complete responses.

3.2.1 Job Interview Results

The overall responses given by the test game tended towards the positive. This fact gives

credence that the Kati Module System functions as designed. The game scored the highest on the

content making logical sense and the next to highest was the believability of the dialogue in the current

context. The lowest score was on noticeable differences in the dialogue between play-throughs. (See

Figure 3.6 for test results) This result is not unexpected and leads to aspects of the development that

proved more difficult. The game used a minimal amount of dialogue and only used three-branch

tonalities, respect, friendship, and disgust. Authoring dialogue and rule content used half of the total

development time. This time allocation is a rather significant overhead for a minimal viable product. On

the positive side, once the content was created, the system able to accurately select good fit dialogue

that reflected the characters’ relationship. The initial authoring cost is steep, but there is potential for

33

re-usability with repeated dialogue phrases pieced together by different characters using different

branch tones under different game situations. Variation in the possible game and character states can

create different player experiences, despite the recycling of dialogue bits.

Figure 3.6: Survey response for Job Interview game

3.3 Text Adventure Integrated Test

The Job Interview game had promising results but did not test the system as a whole. With the

completion of a functioning Module Hub, a new testing mechanism was needed to test the functionality

of modules encapsulated in the Module Hub. A form of integrated testing that resembled a text

adventure game was created to test the Module Hub and the relationship building through each

interaction. The integrated test text adventure, or text game for short, is not a game in its own rights but

has game elements that resemble a role-playing game's qualities. The text game consisted of three

distinct locations, the Town of Biggs, the Gringor Forest, and the Mountains.

Twelve NPCs populated the environment, with eleven NPC sharing five modules and one NPC

having a custom module much like the Job Interview game. Each of the eleven NPCs had two or more of

the following modules as possible sources of conversation. The first and most universal is the 'Around

Town' module. This module contained dialogue about town locations, people in town, history about the

area, and greetings. The following two, 'Young Love' and 'Fighting Words,' contain relationship-driven

phrases that pertained to dialogue that their name suggests. The next, ‘Forest Talk’, held dialogue

designed for the dangerous forest that lay outside of town. The last module, ‘Questing’, was designated

for dialogue involving quests and missions brought about during gameplay. Since the text game was not

a full game, the ‘Questing’ module only contained dummy dialogue used for testing purposes. The

twelfth NPC, the sorceress, contained a single large module that supplied all of the topics of the five

modules that were shared by the other eleven NPCs but packaged into a single module. This module

34

alteration was done to experiment with alternate ways of producing similar effects but allowed for

custom dialogue decision rulings for the eleven and a unique set for the one. The eleven had a

community pool of dialogue, while the one had a custom tailored dialogue pool.

Besides the inclusion of multiple modules, the text game and the Job Interview game have many

distinct differences. The Job Interview game contained a single extended conversation in which all of the

topics of a single module were explored in a specific order. In contrast, the text game uses dozens of

short dialogue phrases chosen based on the current game state and the relationship of the characters.

The Job Interview game relied on the relationship to produce a narrative, but the conversation's overall

direction was predetermined. Instead, the text game pooled a group of possible dialogue snippets based

solely on the characters' relationship and other contributing factors like the weather, time of day,

location, which NPC the player is speaking with, and the dialogue history. The text game produced more

randomized conversations that are reminiscent of NPC characters of RPG-style games.

The text game integration test's goal was to test the system as a whole using the Module Hub to

decide on the module and the modules to decide on the specific dialogue test using a variety of rule

types. The text game used many of the prebuilt rule types (personal rules, social rules, branch attribute

rules, game rules, and leads to rules) provided by Kati along with two custom rule sets, history rules, and

location rules. Emphasis was placed on the system choosing a dialogue snippet that adheres to the

game's rules and less on creating a single cohesive conversation. Just as important as following the rules

is whether the module system's dialogue reflected the relationship established through interactions.

Less emphasis was placed on NPCs' unique values due to the limited dialogue pool and the large variety

of rules restricting the possible dialogue options.

3.3.1 The Eleven Townsfolk

The text game does not rely on “leads to” values to change the characters’ state relationships

like the Job Interview game. Instead, the text game takes the stance that gameplay elements such as

taking on quests or initiating conversations change the NPCs’ relationship states with the player. For

ease of testing, a few simple overrides were incorporated into the game. These overrides forced all

player interactions to take a friendly path, a mean path, or a romantic path. It is the equivalent to always

picking the friendliest choice, the meanest choice, or the most romantic choice, depending on which

override is enabled. The friendly path is labeled as being the ‘positive’ playstyle in that it directly affects

35

only the ‘positive’ relationship values of romance, friendship, professionalism, respect, and affinity.

Likewise, the mean path is labeled as the ‘negative’ playstyle in that it directly affects the relationship

values of disgust, hate, and rivalry. Lastly, the romantic playstyle targets the romance attribute if the

character is allowed romance with the player. If not, then the playstyle defaults to the positive, friendly

playstyle. These playstyles, positive, negative, and romantic, directly increase the relationship values

they affect. The idea was to monitor the appropriateness of the dialogue outputs of the system

compared to the current relationship state. The playstyles provided a controlling mechanism for specific

relationship attributes alterations that should produce an expected result. This expected result being

friendly dialogue, rude or harsh dialogue, and romantic dialogue, respectively.

The eleven NPCs that share the five communal modules are categorized into two main types.

Each NPC could either have or not have a romantic relationship with the player. Those that could have

romantic relationships also had access to the Young Love module and the tonal attributes’ Romance’

and ‘Affinity’, were utilized when interactions were invoked and barred access to the tonal attribute

‘Respect.’ Those that were not allowed romance with the player were denied the Young Love, the

‘Romance’ and ‘Affinity’ tone but allowed the ‘Respect’ tone. Figures 3.7 to 3.24 below follow four

characters, Albrecht, Christina, Dan, and Teta, through the three playstyles overrides for fifty separate

interactions. Albrecht and Dan are categorized as non-romantic, and Christina and Teta are categorized

as romantic. Each character’s tonal attributes are tracked, and sample dialogue snippets are captured

for each of the overridden play styles. These figures demonstrate how the module system delivered

dialogue that followed the established relationships by the game characters. This was done shuffling

through all five modules and selecting the dialogue that was deemed appropriate for the situation based

on the simple ruleset provided by the text game and JSON dialogue data.

36

Figure 3.7 (Left): Relationship values with Albrecht using a positive playstyle

Figure 3.8 (Right): Relationship values with Christina using a positive playstyle

Figure 3.9 (Left): Relationship values with Dan using a positive playstyle

Figure 3.10 (Right): Relationship values with Teta using a positive playstyle

Figure 3.11: List of all of the final relationships for Albrecht, Christina, Dan, and Teta from the positive
play-through

37

Figure 3.12: Sample Dialogue for positive play-through

Figure 3.13 (Left): Relationship values with Albrecht using a negative playstyle

Figure 3.14 (Right): Relationship values with Christina using a negative playstyle

38

Figure 3.15 (Left): Relationship values with Dan using a negative playstyle

Figure 3.16 (Right): Relationship values with Teta using a negative playstyle

Figure 3.17: List of all of the final relationships for Albrecht, Christina, Dan, and Teta from the negative
play-through

Figure 3.18: Sample Dialogue for negative play-through

39

Figure 3.19 (Left): Relationship values with Albrecht using a romantic playstyle

Figure 3.20 (Right): Relationship values with Christina using a romantic playstyle

Figure 3.21 (Left): Relationship values with Dan using a romanitic playstyle

Figure 3.22 (Right): Relationship values with Teta using a romantic playstyle

Figure 3.23: List of all of the final relationships for Albrecht, Christina, Dan, and Teta from the romantic
play-through

40

Figure 3.24: Sample Dialogue for romantic play-through

The eleven used a straightforward relationship-building scheme designed to see what dialogue

would display and focused less on how each relationship was established. This simplistic relationship

development protocol had only a few layers of dialogue output tones. Those outputs being positive,

friendly tones, negative, mean tones, and romantic dialogue tone. Even with the further lack of

conversational depth, the system shows promise. The module hub successfully followed the game-

defined rules for module selections, and the dialogue, though limited, reflected the relationships of the

characters.

3.3.2 Adding Rule Complexity

A series of simple rulings provided in the communal modules drove the eleven townsfolk,

allowing only a few tiers of difference between the most positive dialogue and the most negative

(friendliest to cruelest). Nevertheless, a difference in tone is evident and can be seen in figures 3.7

through 3.24. The conversations spun up by Kati followed the relationship patterns established

throughout the 50 iterations of each playstyle undergone by the four test NPCs. The progression of each

character’s branch tone attributes is a product of simple procedures established by the game and falls

back on whether a character can be romantic or not with the player. The joining of the module-defined

ruleset and the game’s simple attribute override protocol produce enough information for Kati to select

dialogue phrases. Even though the simple ruleset and protocols produced results, the singled out NPC,

41

the sorceress, which contains one large module, was used to test the system with a more extensive

ruleset. The sorceress has a richer set of authored rules provided with the dialogue options in the form

of required rules and leads to rules. Also, the game’s protocol on attribute augmentations based on

gameplay increased in complexity compared to the communal eleven.

The use of richer rulesets and more complex attribute protocols were established to create a

less predictable character without being random. In conjunction with these changes, the dialogue

distribution based on branch tone is not uniform. This distribution scheme played with the idea that the

sorceress would open up to the player in various degrees based on the relationship. The highest number

of possible dialogue outputs belonged to the Romance branch, with the least dialogue options belonging

to the Disgust and Hate branch. Figure 3.25 shows all of the possible dialogue outputs broken down by

relationship tone and the module’s topics.

Figure 3.25: Possible Dialogue options for the sorceress broken down by attribute and topics of
discussions

3.3.3 Changing the Override Playstyle

Since the sorceress contained a more complex protocol for changing relationship tones, a new

form of override was created to simulate playstyles. Each interaction with the sorceress began with a

prompt on how the player would approach the conversation. Figure 3.26 lists all nine approaches to any

given interaction. The goal was to simulate gameplay styles quickly and efficiently while monitoring Kati

and the dialogue produced. Five distinct play styles were tested using this scheme. The first used

scheme or strategy relied on the default settings in the Module System and game. The second was

based on a friendly approach using friendly, polite, and funny overrides (Figure 3.26. numbers 2, 3, and

4). The third was based on romance using romantic and confident approaches to each iteration (Figure

3.26 numbers 5 and 8). The fourth was based on a rude play style that incorporated being rude, mean,

and uninterested in the conversation (Figure 3.26 numbers 6,7 and 9). The final playstyle was the

strategic method. The sorceress’s dialogue pool is most extensive for the romantic attribute and the

42

romantic attribute was designed to be the most challenging relationship to build as per the game’s

protocol. The strategic method used all conversation approaches at various points except for the mean

and uninterested options (Figure 3.26 number 7 and 9).

Figure 3.26: The nine possible approaches the player can interact with the sorceress

A record was kept when running each of the five playstyles through 120 conversation iterations.

Each output was logged along with the change in the relationship between the player and the sorceress.

It was important to see how the dialogue changed compared to the change in relationship, what topics

were discussed as the relationship changed, and the overall mood of the conversations as the

relationship changed. Figures 3.27 through 3.31 graphs the relationships between the player and the

sorceress through the five playstyles, and figure 3.32 lists the total ending values of each relationship

attribute. Figure 3.33 shows the favorite topic of discussion broken down by blocks of twenty iterations

and the percent of the outputs from that topic. Accompanying Figure 3.33, Figure 3.34 shows the overall

tone based on the number of positive leaning dialogue phrases used. The dialogue contained in the

sorceress’s module was roughly divided into three categories positive, negative and neutral. All neutral

values were reserved for interactions with low relationship values and housed in the module’s greetings

topic. Positive and negative dialogue spanned across all topics and was linked to their appropriate

attribute branch. Lastly, figures 3.35, 3.36, and 3.37 show dialogue outputs from the module’s ‘Magic

Lesson’ topic from the strategic play style, rude play style, and the friendly play style. These figures are a

good representation of dialogue delivered by the system following the relationship state of the player

and the sorceress. They are separated by the number of iterations undergone before the dialogue

phrase was delivered by the system.

43

Figure 3.27 (Left): Relationship values from generic playstyle with the sorceress

Figure 3.28 (Right): Relationship values from positive playstyle with the sorceress

Figure 3.29 (Left): Relationship values from romantic playstyle with the sorceress

Figure 3.30 (Right): Relationship values from negative playstyle with the sorceress

Figure 3.31: Relationship values from strategic playstyle with the sorceress

44

Figure 3.32: Scalar value of relationship attributes after 120 interactions with each play style

Figure 3.33: Most used topics of discussion based on number of interactions and playstyle

Figure 3.34: Overall tonal values of discussion based on number of interactions and playstyle

Figure 3.35: Dialogue from the Magic Lesson topic from the strategic playstyle separated by interaction
iterations

45

Figure 3.36: Dialogue from the Magic Lesson topic from the friendly playstyle separated by interaction
iterations

Figure 3.37: Dialogue from the Magic Lesson topic from the Rude playstyle separated by interaction
iterations

4 Reviewing the Results

The eleven townsfolk outputs and the sorceress produced positive results regarding delivered

dialogue relative to the character’s relationships. The text game focuses primarily on this point. The

shortcomings of the text game’s results stemmed from the sense of randomness that the conversation

sets seemed to have. Each conversation was not connected to the previous conversation. This fact is

understandable considering that the text game test was not created with any specific conversation

organization schemes in mind but was targeting dialogue delivery based on a rule structure, character

relationships, and the use of multiple modules through the Module Hub. This fact juxtaposed with the

Job Interview game results offers passing test cases for dialogue delivery based on character

relationship, a sense of cohesion and logical dialogue progression, and flexibility for custom rules.

Overall, Kati seems to be successful.

46

4.1 Limitations

The Module System faces a few problems. One such issue is that the amount of dialogue

required is non-trivial. For a large, rich pool of dialogues between several characters to have a hope of

prolonging the player’s enjoyment, there must be an equally large pool of dialogue possibilities to exist.

The system does not minimize the amount of quality dialogue required for a game. Instead, it focuses on

the how and the why of the dialogue presentation. Metadata must be considered for each dialogue

string as well. This factor packs additional overhead into the dialogue authorship space. Each dialogue

string can contain various dialogue requirements and the “leads to” effects of the dialogue. Though the

initial cost might be steep, the possible variation of dialogue combinations produced by character

relationships and game states can account for a large amount of dialogue reuse.

The system allows and encourages developers to override predefined functionality to suit a

particular module. This customizability is a great feature that allows for a greater use-case with Kati;

even so, it introduces problems. The developer must become familiar with the system and fully

understand how each element needed to be altered functions in the default system. A robust developer

documentation body is required to allow individuals ease of use. This documentation currently doesn’t

exist.

Other issues exist in the Kati Module System. The system is still under development and has not

been thoroughly tested organically. The dialogue can have any number of inputs from any number of

writers but is still a static entity. The system is designed with a particular game design in mind and is not

a fit-all application. It is primarily focused on character relationships and providing dialogue to reflect

these relationships. Kati may not be the right choice for games using a purely linear story or for games

that require large amounts of user-defined inputs for dialogue sequences.

For the case of predictability, the Kati Module System relies on authored content. In certain

circumstances, the repetition of dialogue will occur when variants do not exist in the composed content.

The system uses a small amount of randomness when deciding on dialogue phrases. This is included as

an attempt to disrupt predictability without being overly random. The term predictability has a twofold

meaning in this context. Firstly, the inclusion of randomness will help prevent characters with a strong

tonal relationship, such as “Romance,” from only ever conversing in that tone. The second and more

difficult to control is the repetition of the same dialogue over and over again. The disruption of this

repetition falls on Kati’s robustness and the quantity of authored content that any specific module has

47

to reference. Even with guards in place, the likelihood that dialogue repetition will manifest under

certain conditions is inevitable.

Lastly, the quality of the dialogue delivered by Kati is only as good as the authored dialogue

written and the quality of the defined rules established by the game and the content authors. Kati is not

intend or able to replace the artistry that comes with creating breath-taking narratives or the control of

engineered plots. The Kati Module System is tool that is meant for an engineered ruleset to accurately

deliver artistically produced dialogue in a dynamic setting.

4.2 Conclusion

Kati’s design creates a dialogue delivery system that reflects the game world’s state and the

participating characters’ relationships. The goal is to produce dynamic dialogue structures created by

gameplay and present them to fit the current game circumstances.

Besides the effects on gameplay through in-game dialogue, specific modules can be

manufactured with minimal effort. Using the module template, creating a custom module on a range of

topics can be as easy as writing the dialogue and as complex as rewriting and extending every decision

mechanism. The Kati Module System design allows for the fine-tuning and re-defining schemas at the

discretion of the game developers and content authors.

The Kati Module System was designed with a “Stardew Valley”(Barone, 2016) style game design

in mind. This design may restrict the type and style of games that could benefit from the system.

Notwithstanding, the results are positive, and the system functions are so far successful. The notion of a

good game is cohesive, varied, has good user interaction, and offers some form of social interaction

(Bond & Beale, 2009).

Kati attempts to provide cohesive dialogue through user interactions in pseudo-social settings. In

regards to the initial trial run and testing of the system, Kati shows the potential as a valuable asset to

authors and game developers in the assistance of crafting dynamic dialogue in games.

48

5 References

Allen, J. F., Byron, D. K., Dzikovska, M., Ferguson, G., Galescu, L., & Stent, A. (2001). Toward

conversational human-computer interaction. AI Magazine.

Allwood, J. (1992). On dialogue cohesion. Gothenburg Papers in Theoretical Linguistics 65.

Arellano, D., Rauh, R., Krautheim, B., Spicker, M., Schaller, U. M., Helzle, V., & Deussen, O. (2018).
Interactive testbed for research in autism—the SARA project. Universal Access in the Information
Society. https://doi.org/10.1007/s10209-016-0521-9

Barone, E. (2016). Stardew Valley. Chucklefish.

Bond, M., & Beale, R. (2009). What makes a good game? Using reviews to inform design. People and
Computers XXIII Celebrating People and Technology - Proceedings of HCI 2009.
https://doi.org/10.14236/ewic/hci2009.52

Boyd, R. L., Blackburn, K. G., & Pennebaker, J. W. (2020). The narrative arc: Revealing core narrative
structures through text analysis. Science Advances. https://doi.org/10.1126/sciadv.aba2196

Brusk, J., & Björk, S. (2009). Gameplay design patterns for game dialogues. Breaking New Ground:
Innovation in Games, Play, Practice and Theory - Proceedings of DiGRA 2009.

Compton, K., Kybartas, B., & Mateas, M. (2015). Tracery: An Author-Focused generative text tool.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-27036-4_14

Cowley, B., Charles, D., Black, M., & Hickey, R. (2008). Toward an understanding of flow in video games.
Computers in Entertainment. https://doi.org/10.1145/1371216.1371223

Harrell, D. F. (2006). Walking blues changes undersea: Imaginative narrative in interactive poetry
generation with the GRIOT system. AAAI Workshop - Technical Report.

Koller, A., & Petrick, R. P. A. (2011). Experiences with planning for natural language generation.
Computational Intelligence. https://doi.org/10.1111/j.1467-8640.2010.00370.x

Lessard, J. (2016). Designing Natural-Language Game Conversations. Proceedings of 1st International
Joint Conference of DiGRA and FDG.

Mateas, M., & Stern, A. (2004). Natural language understanding in façade: Surface-text processing.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-540-27797-2_2

McCoy, J., Treanor, M., Samuel, B., Tearse, B., Mateas, M., & Wardrip-Fruin, N. (2010). Authoring Game-
based Interactive Narrative using Social Games and Comme il Faut. Proceedings of the 4th
International Conference & Festival of the Electronic Literature Organization: Archive & Innovate .

49

McCoy, Josh, Treanor, M., Samuel, B., Mateas, M., & Wardrip-Fruin, N. (2011). Prom Week: Social
physics as gameplay. Proceedings of the 6th International Conference on the Foundations of Digital
Games, FDG 2011. https://doi.org/10.1145/2159365.2159425

Mirvis, P. H. (1991). Flow: The Psychology of Optimal Experience. Academy of Management Review.
https://doi.org/10.5465/amr.1991.4279513

Oudah, M., Rahwan, T., Crandall, T., & Crandall, J. W. (2018). How AI wins friends and influences people
in repeated games with cheap talk. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018.

Riedl, M. O., & Young, R. M. (2005). An objective character believability evaluation procedure for multi-
agent story generation systems. Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
https://doi.org/10.1007/11550617_24

Sabah, G. (2011). Natural language understanding, where are we going? Where could we go? Computer
Journal. https://doi.org/10.1093/comjnl/bxq060

Samuel, B., Reed, A. A., Maddaloni, P., Mateas, M., & Wardrip-Fruin, N. (2015). The Ensemble Engine:
Next-Generation Social Physics. Proceedings of the 10th International Conference on the
Foundations of Digital Games (FDG 2015).

Tonality. (n.d.). Encyclopædia Britannica. available: https://www.britannica.com/art/tonality.

Weizenbaum, J. (1983). ELIZA—A Computer Program For the Study of Natural Language Communication
Between Man And Machine. Communications of the ACM. https://doi.org/10.1145/357980.357991

Wright, W. (n.d.). The Sims. Electronic Arts.

Yang, F., Li, C., Palmberg, R., Van Der Heide, E., & Peters, C. (2017). Expressive virtual characters for
social demonstration games. 2017 9th International Conference on Virtual Worlds and Games for
Serious Applications, VS-Games 2017 - Proceedings. https://doi.org/10.1109/VS-
GAMES.2017.8056604

50

https://doi.org/10.1109/VS-

Vita

The author, Stephen Marcel, obtained his bachelor’s degree in fine arts from Nicholls State

University. He joined the University of New Orleans in Spring 2017, and joined the Computer Science

Master’s program in Fall-2018. Stephen has been working under Dr. Benjamin Samuel in his L.I.G.H.T.,

Laboratory, Intelligence, Games, HCI, Technique, lab with in the Department of Computer Science, at the

University of New Orleans.

51

	The Kati Module System: Modular Design for Delivering Character Focused Dialogue in Games
	Recommended Citation

	tmp.1618839907.pdf.A0LYr

