
University of New Orleans University of New Orleans

ScholarWorks@UNO ScholarWorks@UNO

Senior Honors Theses Undergraduate Showcase

5-2021

Design of an Ice-Class Propeller for the MV Yahtse, an Design of an Ice-Class Propeller for the MV Yahtse, an

Icebreaking, Car and Cargo, RoRo Ferry Icebreaking, Car and Cargo, RoRo Ferry

Mara Kramer
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/honors_theses

 Part of the Ocean Engineering Commons

Recommended Citation Recommended Citation
Kramer, Mara, "Design of an Ice-Class Propeller for the MV Yahtse, an Icebreaking, Car and Cargo, RoRo
Ferry" (2021). Senior Honors Theses. 138.
https://scholarworks.uno.edu/honors_theses/138

This Honors Thesis-Unrestricted is protected by copyright and/or related rights. It has been brought to you by
ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Honors Thesis-Unrestricted
in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses
you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative
Commons license in the record and/or on the work itself.

This Honors Thesis-Unrestricted has been accepted for inclusion in Senior Honors Theses by an authorized
administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

https://scholarworks.uno.edu/
https://scholarworks.uno.edu/honors_theses
https://scholarworks.uno.edu/undergrad
https://scholarworks.uno.edu/honors_theses?utm_source=scholarworks.uno.edu%2Fhonors_theses%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/302?utm_source=scholarworks.uno.edu%2Fhonors_theses%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uno.edu/honors_theses/138?utm_source=scholarworks.uno.edu%2Fhonors_theses%2F138&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uno.edu

Design of an Ice-Class Propeller for the MV Yahtse,

an Icebreaking, Car and Cargo, RoRo Ferry

An Honors Thesis

Presented to

the School of Naval Architecture and Marine Engineering

of the University of New Orleans

In Partial Fulfillment

of the Requirements for the Degree of

Bachelor of Science, with University High Honors

and Honors in Naval Architecture and Marine Engineering

by

Mara Kramer

May 2021

 ii

Table of Contents

LIST OF TABLES ... III

LIST OF FIGURES ... IV

ABSTRACT ... V

1. INTRODUCTION .. 1

2. RESISTANCE AND PROPULSION ANALYSIS .. 4

3. PROPELLER OPTIMIZATION ... 12

4. PROPELLER STRUCTURAL ANALYSIS AND DESIGN ... 17

5. CONCLUSION ... 27

REFERENCES ... 29

APPENDIX A: R&P CODE – NAME3150RPHOLTROP.PY .. 31

APPENDIX B: PROPELLER GEOMETRY CODE – WBSERIESPROPGEOMETRY.PY 53

APPENDIX C: PROPELLER STRUCTURAL CODE – MVYAHTSEPROPELLERDEV.PY 73

APPENDIX D: PYTHON RESISTANCE RESULTS .. 87

APPENDIX E: NAVCAD HOLTROP AND MENNEN RESULTS ... 91

APPENDIX F: NAVCAD ANDERSEN RESULTS .. 96

APPENDIX G: NAVCAD FUNG (CRTS) RESULTS ... 101

APPENDIX H: NAVCAD FUNG (HSTS) RESULTS .. 106

APPENDIX I: POLYNOMIAL CODE – WBPOLYNOMIALS.PY .. 111

APPENDIX J: OPTIMIZATION CODE – WBOPT.PY ... 117

 iii

List of Tables

Table 1: Comparison of Holtrop and Mennen total resistance values.

Table 2: Optimum propeller characteristics for the MV Yahtse.

Table 3: Propeller steel properties, calculated stress, and allowable stress.

Table 4: Maximum minimum blade edge thicknesses.

 iv

List of Figures

Figure 1: Resistance components and total resistance (without icebreaking) from Python.

Figure 2: Total resistance for each method calculated using NavCAD.

Figure 3: Open water chart with self-propulsion points.

Figure 4: Blade moment and stress calculation tables from Marine Engineering Vol. 1 [12].

Figure 5: Blade cross-section geometry as defined by Marine Engineering Vol. 1 [12].

Figure 6: Blade cross-section geometry as defined by Oosterveld and Oossanen [7].

Figure 7: Edge thickness ratios for conventional, low-skew propellers [13].

Figure 7: Hydrofoil cross-section located on a propeller blade [16].

Figure 8: Minimum required blade edge thickness distribution.

Figure 8: Propeller model for blade visualization from B-Series Propeller Generator [18].

 v

Abstract

During early-stage ship design, a propulsion system must be matched with data from a resistance

and propulsion analysis to determine the propulsion power required for the vessel to run at its

design speed. Typically, this process is completed within NavCAD; however, NavCAD does not

have a method to calculate icebreaking resistance or design a propeller to meet the ice-class criteria

stipulated by the International Association of Classification Societies (IACS). This paper displays

and discusses Python scripts written to complete the resistance and propulsion analysis, propeller

optimization, and propeller structural design meeting IACS criteria for an icebreaking, RoRo car

and cargo ferry, the MV Yahtse. This code was designed to complete propeller design for the

preliminary design stage of the vessel; however, the code can be modified for any stage of design

as well as for use with any icebreaking vessel with principal characteristics that fall within the

parameters required for the use of Holtrop and Mennen’s resistance and propulsion analysis

method. The Python scripts were proven to be able to generate resistance and propulsion analysis

results comparable to the results found from NavCAD as well as design two propellers suitable for

the MV Yahtse that pass the criteria imposed by the IACS ice-class regulations.

Keywords: resistance, icebreaking, propeller, Python, Wageningen B-Series

 1

1. Introduction

Typically, during the ship design process, engineers will match a propeller with their ship

based on results obtained through a resistance and propulsion analysis completed either with a

simulation tool (such as NavCad) or model testing. This step is critical for both early-stage design

and subsequent iterations as it determines the amount of propulsive power the vessel requires to

operate at its design speed, and from this information the engines can be sized. However, for ships

with a unique design, a propeller must be designed that considers any special operating conditions

or missions that the vessel is designed to handle without compromising performance. The MV

Yahtse is one of these outlying cases. It is an overnight, car and cargo, roll on-roll off (RoRo),

twin-screw (two propellers) ferry designed to service the Alaskan coast from the southwest

Aleutian Islands to the north slope town of Utqiaġvik (formerly known as Barrow) which lies

within the Arctic Circle. Due to the geographical range over which the MV Yahtse will provide

service, the hull will be Ice-Class 3 according to the International Association of Classification

Societies’ (IACS) “Requirements Concerning Polar Class” [1] and any additional American

Bureau of Shipping (ABS) guidelines in “Guidance Notes on Ice Class” [2]. This ice class

operational requirement imposes special design considerations upon the propulsion system. To aid

in the design of the propeller regarding these requirements, a propeller design tool for the

preliminary vessel design stage has been written in Python. This paper aims to breakdown the

operation of the Python script as well as the theory and methodology for the propeller design

methods used within.

To write the propeller design tool, five major “steps” had to be coded. The first step

completed a resistance and propulsion analysis using Holtrop and Mennen’s method. The second

step used the Wageningen B systematic propeller series developed by the Netherlands Ship Model

 2

Basin (MARIN) and the results from the resistance and propulsion analysis of the MV Yahtse to

optimize a propeller for the vessel. Next, the geometry of the propeller was calculated. Then, using

the propeller geometry, the maximum stresses acting on the blade were calculated. Finally, using

the IACS requirements, the required thickness of the blade edges as well as an evaluation on

whether the blade would meet the stress requirements was determined.

The code developed for this project is intended to be run in an iterative manner, assuming

the propeller would not meet the structural criteria immediately. The propeller was designed with

the ship running at service speed without any icebreaking resistance. This decision was made since

the ship will only be using its icebreaking capabilities in a few specific scenarios (i.e., winter cargo

deliveries to Utqiaġvik). This set of input values also served as the basis for a comparison to

NavCAD, as NavCAD does not have any icebreaking resistance calculation tools. A second set of

inputs was used to design and test the structure of the propeller. This set of inputs used the propeller

parameters optimized from the first run and resistance and propulsion results considering the ship

running at design speed while icebreaking. This is a very unrealistic scenario, as the power required

to run at 15 knots through a meter of ice is unreasonable for a vessel the size of the MV Yahtse;

however, due to the absurdity, this condition will be sure to blanket any other operating condition

that could possibly require the highest propulsion power. If the designed propeller can withstand

the forces imposed by this extreme, then it stands to reason that there should be no concerns about

the propeller’s structural integrity for all normal operation conditions.

Utilizing Holtrop and Mennen’s method for the resistance and propulsion analysis as well

as Wageningen B-Series propeller data, two propellers were able to be designed to work optimally

on the MV Yahtse and further geometry was developed such that these propellers met the ice-class

 3

criteria. However, the developed propellers are meant solely for a preliminary design and there are

plenty of areas in which the processes and code can be improved for later design stages.

 4

2. Resistance and Propulsion Analysis

A resistance and propulsion analysis is an essential part of the ship design process. There

have been many methods developed to complete this process, optimized for a wide variety of ships.

However, they all fundamentally complete the same process. Principal characteristics of a vessel’s

hull form (and superstructure as necessary) act as input values and resistance estimates are made

using developed formulas suitable for that vessel type. Then, using established theory, the thrust

values required to propel the vessel over a range of speeds (including the design speed) are

calculated. This data, in combination with propeller’s geometric data and characteristics, will

provide data points for required power and the efficiency of the propulsion system, completing the

resistance and propulsion analysis.

There is no complete resistance estimation method dedicated to ice-breaking vessels, so

the resistance and propulsion analysis was completed using Holtrop and Mennen’s method [3,4]

with the addition of the Jeong formulas for icebreaking resistance. Holtrop and Mennen’s method

was chosen as it is a complete resistance and propulsion method developed using statistical

regression on data of both full-scale ships and model tests completed at MARIN. Due to the vast

range of data used to develop the method, Holtrop and Mennen’s method provides accurate results

for a wide range of ships. In general, this method will work for monohull vessels that fall

approximately into the following range of values for Froude number, prismatic coefficient, and

length-to-beam ratio [5]:

𝐹𝑟 ≤ 0.45

0.55 ≤ 𝐶𝑃 ≤ 0.85 (Eq. 1)

3.9 ≤
𝐿

𝐵
≤ 9.5

 5

The MV Yahtse meets these three criteria, so Holtrop and Mennen’s method was used as the basis

for the resistance and propulsion analysis.

The selection of the icebreaking resistance formula followed much more simple reasoning.

All the older icebreaking formulas were developed using detailed hull parameters (stem angle,

flare angle, buttock angle, etc.) as variables, whereas Jeong et. al, in “Ice Resistance Prediction for

Standard Icebreaker Model Ship” [6], proposed a resistance estimation method that did not require

the same level of hull detail. This was critical for the stage of design in which the resistance and

propulsion analysis was completed, as the hull form was not yet designed with certainty for such

items as the stem angle, flare angle, etc. Additionally, as the icebreaking mission of the standard

icebreaker model used in Jeong et. al’s study is the same as the MV Yahtse’s (breaking first-year

ice), the Jeong formulas were determined to be an adequate fit for an icebreaking resistance

estimate. The Jeong formulas are as follows:

𝑅𝐼 = 13.14𝑉2 + 𝐶𝐵∆𝜌𝑔ℎ𝑖𝐵𝑇 + 𝐶𝐶𝐹ℎ
−𝛼𝜌𝑖𝐵ℎ𝑖𝑉

2 + 𝐶𝐵𝑅𝑆𝑁
−𝛽𝜌𝑖𝐵ℎ𝑖𝑉

2 (Eq. 2)

𝐹ℎ =
𝑉

√𝑔ℎ𝑖
 (Eq. 3)

𝑆𝑁 =
𝑉

√
𝜎𝑓ℎ𝑖
𝜌𝑖𝐵

 (Eq. 4)

where CB=0.5 is the coefficient of ice buoyancy resistance, CC=1.11 is the coefficient of ice

clearing resistance, and CBR=2.73 is the coefficient of the ice breaking resistance; Fh is the Froude

number of the ice thickness, hi, and SN is the strength number. Finally, 𝛼 = 1.157, 𝛽 = 1.54, 𝜌𝑖

is the ice density and ∆𝜌 is the difference between the ice and water densities, V is the ship speed,

and 𝜎𝑓 is the flexural strength of the ice.

The full resistance and propulsion Python script can be seen in Appendix A, but next few

paragraphs aim to summarize the general structure of the script and the outcome of each portion.

 6

The first portion of the code is dedicated to defining and calculating the ship hull characteristics

necessary to complete Holtrop and Mennen’s method. This involves correcting several values to

the same frame of reference used by Holtrop and Mennen as well as estimating the remaining

required values as necessary, which depends current stage of design for which the resistance and

propulsion estimate is being completed. For a preliminary estimate, a good portion of the ship

particulars will likely still be estimated using regression formulas or formulas outlined in Holtrop

and Mennen’s method. For a later stage resistance and propulsion analysis, it is expected that all

the necessary input values are measured straight from a completed hull model.

The next portion of the code completed the resistance estimate. This is simply a long string

of equations for resistance components or coefficients that ends in the total resistance being

calculated with the following formula:

𝑅𝑇 = (1 + 𝑘)𝑅𝐹 + 𝑅𝐴𝑃𝑃 + 𝑅𝐴 + 𝑅𝑊 + 𝑅𝑇𝑅 + 𝑅𝐴𝐴 + 𝑅𝐼 (Eq. 5)

where k is the ITTC form factor, RF is the frictional resistance, RAPP is the total appendage

resistance, RA is the correlation allowance resistance, RW is the wave resistance, RTR is the transom

resistance, RAA is the air resistance, and RI is the icebreaking resistance found from the Jeong

formulas.

The final part of Holtrop and Mennen’s method completes a powering estimate by

estimating the wake fraction, thrust deduction fraction, advance speed, and required thrust for the

vessel with regression formulas developed by Holtrop and Mennen. Much like the resistance

components, these values would normally be found during a model test and then scaled up for the

full-size ship. However, due to the cost, ship models are not developed for feasibility studies and

the preliminary design of a vessel, so these estimation methods serve to help engineers complete

 7

a vital part of the ship design process with high accuracy (typically within 10% error) at a fraction

of the time and cost.

Holtrop and Mennen do provide a method for estimating the relative rotative efficiency

and open water efficiency of a Wageningen B-Series propeller in their paper; however, they simply

provide some small corrections for a full-scale propeller built upon the work completed by

Oosterveld and Van Oossanen in “Further Computer-Analyzed Data of the Wageningen B-Screw

Series” [7]. Additionally, Holtrop and Mennen’s work is only suitable for a situation in which the

propeller characteristics are already known. Therefore, the powering estimate of the vessel will be

completed as part of the propeller optimization using Oosterveld and Van Oossanen’s work.

Before completing the propeller optimization and structural design, it is critical to

determine that (a) the code developed thus far produces accurate results for Holtrop and Mennen’s

method and (b) Holtrop and Mennen’s method serves as a good resistance and propulsion analysis

method for the MV Yahtse. The first concern serves to simply check the correctness of the results

generated by the Python script; however, the second concern exists on a much more theoretical

plane. While Holtrop and Mennen’s method was developed from regression analyses of a wide

variety of ships, giving the method its broad range of applicability, this general applicability can

sometimes cause Holtrop and Mennen’s method to be rather inaccurate for unique vessel designs

that do not follow the general trends found in the relations used by Holtrop and Mennen during

their regression analyses. The MV Yahtse is a unique vessel design, as very few passenger vessels

operate within the arctic circle, much less RoRo car ferries. Therefore, before proceeding, the

resistance results from Python were compared to several resistance estimation methods in

NavCAD, a resistance, propulsion, and propeller-selection software. Four methods were compared

in NavCAD – Holtrop and Mennen, Andersen, Fung Transom-Stern (CRTS), and Fung High-

 8

Speed Transom-Stern (HSTS). Andersen’s method is named after the work published by Andersen

and Guldhammer developing a numerical method for Guldhammer’s earlier graphical procedure,

“A Computer-Oriented Power Prediction Procedure” [8]. The last two methods were developed

by Fung for early-stage resistance prediction of general transom-stern hulls and high-speed

transom stern hulls in “Resistance and Powering Prediction for Transom-Stern Hull Forms During

Early-Stage Ship Design” [9] and “Revised Speed-Dependent Powering Predictions for High-

Speed Transom-Stern Hull Forms” [10] respectively. The MV Yahtse was evaluated by NavCAD

to fulfill the parameters for each of these methods and each method was manually reviewed to

ensure that the MV Yahtse fell within the intended vessel type(s) for each method. Figure 1 shows

the resistance components and total resistance as calculated with the Python script and Figure 2

shows the comparison of all four methods in NavCAD. As NavCAD does not have any method to

calculate icebreaking resistance, for the purpose of comparison, the icebreaking resistance does

not factor into the total resistance calculated for Figure 1 even though it is displayed on the graph

as a component.

 9

Figure 1: Resistance components and total resistance (without icebreaking) from Python.

Figure 2: Total resistance for each method calculated using NavCAD.

 10

Table 1 presents a comparison of the total resistance values calculated by Holtrop and Mennen’s

method in Python and in NavCAD. For a complete comparison of the resistance components and

total resistance calculated via Python and for all methods run in NavCad, please see Appendices

D-H.

Table 1: Comparison of Holtrop and Mennen total resistance values.

Speed

(kt)

Python RT with

icebreaking (kN)

Python RT w/o

icebreaking (kN)

NavCAD RT

(kN)

%

Error

10.00 737.756 106.236 106.12 0.109

11.00 808.749 138.548 138.87 0.232

12.00 893.236 185.271 186.56 0.691

13.00 998.766 253.848 256.96 1.211

14.00 1130.821 349.677 355.67 1.685

14.50 1212.564 413.558 421.46 1.875

15.00 1310.723 494.009 504.64 2.107

15.50 1420.611 586.339 600.62 2.378

16.00 1530.893 679.205 697.34 2.601

17.00 1755.402 869.285 893.46 2.706

Table 1 proves that the Python code meets the first condition required before proceeding on to the

propeller development – the Holtrop and Mennen resistance estimate compares well to that

calculated through NavCAD. As the vessel speed increases, the percent error between the two sets

of results does increase, but this is expected as any small differences between the two methods

become magnified; however, even at the largest speed of 17 knots, the error is still well under 5%.

For the preliminary stage of vessel design, a 5% error is very much acceptable, so this proves that

Holtrop and Mennen’s method as coded in Python is working properly. Secondly, this data

establishes that Holtrop and Mennen’s method is a good resistance and propulsion analysis method

for the MV Yahtse. Typically for a preliminary resistance estimate, a conservative estimate is best

 11

as it is unwise to risk under-designing the vessel for the missions and specifications it is to meet.

In this regard, looking at Figure 1, there are two conservative options to choose from. Fung (HSTS)

is greatly conservative for lower Froude numbers (vessel speeds) and at the higher speeds, Holtrop

and Mennen’s method outstrips it. However, Fung’s (HSTS) method can be discarded in favor of

Holtrop and Mennen’s method as, although NavCAD suggests that Fung’s (HSTS) method is a

good fit, reading the original literature, this method is clearly meant for high-speed (large Froude

number) vessels and the MV Yahtse does not meet this criterion. Therefore, when comparing

Holtrop and Mennen’s method to several other prediction methods, Holtrop and Mennen’s method

is still the best choice for preliminary vessel design and the results from this method can be used

for propeller optimization.

 12

3. Propeller Optimization

 The propeller optimization is completed within the same script used for Holtrop and

Mennen’s method as it is necessary to obtain and use propeller characteristics to complete the

powering estimate (as noted in the section above). Due to the simplicity in design and abundance

of research done on them, Wageningen B-Series propellers were chosen for the MV Yahtse. The

geometry of this series is very well documented so that optimizing a propeller of this series for any

type of ship is possible. Additionally, to aid in maneuvering into all manner of ports, many of them

simplistic or practically non-existent, it was determined that the propellers would have to be

controllable pitch propellers (CPP) which sets an additional criterion to have an expanded area

ratio no greater than 0.75. This criterion ensures that each blade can rotate a compete 180º without

contacting another blade, which would prevent the propeller from providing fully reversible thrust.

To implement propeller optimization code into the resistance and propulsion estimate, two

supplementary scripts were written. The first script (shown in Appendix I) uses the open water

thrust (KT) and torque (KQ) curve polynomials defined by Oosterveld and Van Oossanen to create

functions for the open water efficiency and the self-propulsion point (the operating point for a

propeller at an advance speed). Finally, the first script contains a function to calculate the minimum

area ratio required by Burrill’s criteria for cavitation [11]. For merchant vessels, Burrill’s 5% back

cavitation limit curve was chosen meaning that up to 5% of the back of the blade can be covered

with cavitation. This limit is expressed with the following regression curve and equations:

𝜏𝑐 = 0.715𝜎𝑏
0.814 − 0.437 (Eq. 6)

𝜎𝑏 =
𝑝0−𝑝𝑣

0.5𝜌𝑣1
2 (Eq. 7)

𝑝0 = 𝑝𝐴 + 𝜌𝑔𝑒 (Eq. 8)

𝑣1 = √𝑣𝐴
2 + (0.7𝜋𝑛𝐷)2 (Eq. 9)

 13

In Equations 6-9, pv is the vapor pressure of water, pA is the atmospheric pressure, and e is the

propeller shaft submergence depth. Using these supplemental equations, the minimum required

area ratio to meet the set cavitation criteria as defined by Burrill is

(
𝐴𝐸

𝐴0
)

𝑟𝑒𝑞
=

𝑇

0.5𝜌𝑣1
2𝜏𝑐(1.067−

0.229𝑃

𝐷
)

𝜋𝐷2

4

 (Eq. 10)

The second script (shown in Appendix J) defines a function to iterate and converge upon an optimal

propeller considering the self-propulsion point and the minimum area ratio. The propeller

optimization is done using what is known as “design task 4” which uses the inputs of propeller

blade number (Z), propeller diameter (D), required thrust (T), and speed of advance (vA) to

optimize the pitch-diameter ratio and expanded area ratio of the propeller [12]. This design task

was chosen since it is the most logical task for preliminary ship design. Compared to the other

characteristics, the number of blades is slightly more arbitrary and for the MV Yahtse, the number

of blades was chosen by looking at the propeller characteristics of vessels within the Alaskan

Marine Highway System (AMHS). The diameter of the propeller was chosen as the maximum

propeller diameter that would work for the hull form of the MV Yahtse to maximize efficiency.

The optimization functions defined in the two supplementary scripts were imported for use in the

Holtrop and Mennen script.

 Within the resistance and propulsion estimation code, the optimization functions were

imported and run with the appropriate input values from Holtrop and Mennen’s method. To use

the optimization function, initial guesses for the pitch-diameter ratio and expanded area ratio had

to be calculated to give the algorithm a starting point. The initial pitch-diameter ratio was simply

given a common value, but the initial expanded area ratio was calculated using Keller’s formula

which was developed to calculate an initial expanded area ratio that would avoid cavitation [13].

 14

(
𝐴𝐸

𝐴0
)

𝑟𝑒𝑞
=

(1.3+0.3𝑍)𝑇

(𝑝0−𝑝𝑣)𝐷2 + 𝐾 (Eq. 11)

After running the optimization function, the self-propulsion points of the propellers were found as

defined in the Wageningen B-Series polynomial functions.

The optimal propeller characteristics were calculated without icebreaking resistance as the

propeller of a vessel should always be designed to operate optimally in the normal service

condition and the MV Yahtse is only expected to operate as an icebreaking ship for a small portion

of the year for a few route locations. The propeller characteristics for both propellers as well as the

optimum efficiency at the design speed are shown below in Table 2.

Table 2: Optimum propeller characteristics for the MV Yahtse.

Optimum Propeller Characteristics Value

Number of Blades (Z) 5

Diameter (D) 3.048 m

Pitch-Diameter Ratio (PD) 0.7568

Expanded Area Ratio (ar) 0.7520

Open Water Efficiency at Design Speed (𝜂𝑂𝑆) 0.4542

RPM at Design Speed (n) 338.3 rpm

The open water chart with self-propulsion points marking the KT, KQ, and open water efficiency

(𝜂𝑂) values for each speed is shown below in Figure 3.

 15

Figure 3: Open water chart with self-propulsion points.

An open water chart plots the thrust, torque, and open water efficiency curves over a range of

advance ratios, J.

𝐽 =
𝑣𝐴

𝑛𝐷
 (Eq. 12)

The design constant curves for each advance speed are then plotted on the graph. For design task

4, the design constant is defined as

[
𝐾𝑇

𝐽2] =
𝑇

𝜌𝐷2𝑣𝐴
2 (Eq. 13)

For plotting, the design constant is multiplied by the denominator on the left-hand side of the

equation which, for this design task, is J2. The intersection between each of these design curves is

marked where it intersects with the KT polynomial curve and these points of intersection are

 16

extrapolated vertically to the KQ and efficiency curves. This series of self-propulsion points can

be seen marked on Figure 3 with open circles. The optimum propeller efficiency is then chosen

from this data by finding the efficiency self-propulsion point at the design speed.

 17

4. Propeller Structural Analysis and Design

While these propeller characteristics work in theory, IACS ice class rules impose additional

structural requirements upon the propeller to ensure that both the material used for the propeller

and the blades themselves are strong enough to withstand the forces and stresses imposed upon

them during icebreaking. However, to complete the structural analysis of the propeller, the

maximum stress acting on the blade must be calculated. The stress on the blade will be greatest at

the root of the blade, so the IACS criteria can be completed by evaluating the blade using this

maximum stress. Normally, the maximum stress is found using finite element analysis. However,

for early-stage design without a propeller model, this is not possible. Therefore, an alternative

method for finding the maximum stress had to be used. The blade stress was calculated using

Tables 2 and 3 from Section 3: Propeller Blade Stress from “Marine Engineering Vol. 1” [14]. The

bending moment and blade stress calculation tables are shown below in Figure 4.

 18

Figure 4: Blade moment and stress calculation tables from Marine Engineering Vol. 1 [14].

To complete the stress calculations, a significant amount of information about the geometry

of the propeller had to be found, including the rake arm, skewback arm, and several distances (yt,

 19

xt, yc, and xc) which are found according to Figure 11 in the original document or Figure 5 shown

below.

Figure 5: Blade cross-section geometry as defined by Marine Engineering Vol. 1 [14].

All these distances require information about centers of gravity, whether this be the individual

center of gravity of each radial cross-section of the blade (as seen in Figure 5) or the center of

gravity of the entire blade, which is necessary to determine the rake and skewback arms. Therefore,

an additional Python script was written dedicated to the integration of the blade cross-sections

(Appendix B). Firstly, the coordinate points outlining each radial cross-section were calculated

using the following equations from Oosterveld and Van Oossanen’s paper

𝑦𝑓𝑎𝑐𝑒 = {
𝑉1(𝑡𝑚𝑎𝑥 − 𝑡𝑡𝑒) 𝑓𝑜𝑟 𝑃 ≤ 0

𝑉1(𝑡𝑚𝑎𝑥 − 𝑡𝑙𝑒) 𝑓𝑜𝑟 𝑃 > 0
 (Eq. 14)

𝑦𝑏𝑎𝑐𝑘 = {
(𝑉1 + 𝑉2)(𝑡𝑚𝑎𝑥 − 𝑡𝑡𝑒) + 𝑡𝑡𝑒 𝑓𝑜𝑟 𝑃 ≤ 0
(𝑉1 + 𝑉2)(𝑡𝑚𝑎𝑥 − 𝑡𝑙𝑒) + 𝑡𝑙𝑒 𝑓𝑜𝑟 𝑃 > 0

 (Eq. 15)

 20

where yface and yback are the ordinate points on the face and back of the blade cross-section,

respectively, for the corresponding coordinate P that varies from -1 to 1 from the trailing edge (TE)

to the leading edge (LE) as seen below in Figure 6 [7].

Figure 6: Blade cross-section geometry as defined by Oosterveld and Van Oossanen [7].

tmax, tte, and tle are the blade thicknesses at the position of maximum thickness (P=0), trailing edge,

and leading edge respectively. The maximum blade section thickness can be found from geometry

tables found in “Further Computer-Analyzed Data of the Wageningen B-Screw Series” [7], but

the trailing edge thickness and leading edge thickness for each blade section were found from

Carlton’s “Marine Propellers and Propulsion” as seen below in Figure 7 [15].

 21

Figure 7: Edge thickness ratios for conventional, low-skew propellers [15].

With the coordinate point series for each radial cross section of the blade having been

defined, the integrations and calculations of the centers of gravity could begin. The first set of

integrations integrated over the coordinate points to find the area and center of gravity of each

cross-sectional slice. This was done using equations for the integration of a closed loop. However,

due to the small thickness at the trailing edge, the first and last point of each array did not

completely close, and each section is not truly a closed loop. But the offset between these points

is minimal compared to the overall propeller, the error was determined to be insignificant.

𝐴 =
1

2
∑ [(𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖 + 𝑥𝑖+1)]𝑛

𝑖=1 (Eq. 16)

𝑀𝑥 = −
1

6
∑ [(𝑥𝑖+1 − 𝑥𝑖)(𝑦𝑖

2 + 𝑦𝑖𝑦𝑖+1 + 𝑦𝑖+1
2)]𝑛

𝑖=1 (Eq. 17)

𝑀𝑌 =
1

6
∑ [(𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖

2 + 𝑥𝑖𝑥𝑖+1
𝑛
𝑖=1 + 𝑥𝑖+1

2)] (Eq. 18)

𝐶𝐺𝑋 =
𝑀𝑌

𝐴
 (Eq. 19)

𝐶𝐺𝑌 =
𝑀𝑋

𝐴
 (Eq. 20)

 22

After integrating to find the area and the area moments, the centers of gravity in both the x and y-

directions were calculated using Equations 19 and 20.

 The overall center of gravity with respect to the x, y, and r dimensions was found by

integrating all the cross-sections vertically with respect to r. Before doing this, the radial slice

centers of gravity had to be adjusted with respect to the generator line. This is because propeller

surfaces are curved, so the individual radial slices have a constantly changing pitch angle making

the centers of gravity have additional offsets from each other in addition to the offsets caused by

the changing cross-sectional areas.

Figure 7: Hydrofoil cross-section located on a propeller blade [16].

 23

After this correction was performed, the volumes were calculated using trapezoidal rule and the

centers of gravity were found analogously to the calculation performed for the cross-sectional

areas.

𝑉 =
1

2
∑ [(𝐴𝑖+1 + 𝐴𝑖)(𝑟𝑖 − 𝑟𝑖+1)]𝑛

𝑖=1 (Eq. 21)

𝐶𝐺𝑟 =
𝑀𝑉𝑟

𝑉
 (Eq. 22)

With the centers of gravity, the equations in Figure 4 for the blade bending moment and blade

stress calculations could be completed (Appendix C). However, two inputs required for the

calculation of the bending moment equations, skewback arm and rake arm, had to be estimated.

As of right now, no good method to calculate the rake and skewback arm of the propeller without

a fully defined model. This may have contributed towards the obsolescence of the method

presented in Marine Engineering Vol. 1 as finite element analysis requires a full propeller model

[14]. However, finite element analysis would produce more accurate results with the same set of

input data.

The final step of the propeller design process was to compare the results from the stress calculation

and to the requirements set by IACS [1]. The result of the IACS requirements was the maximum

allowable propeller stress and a set of minimum blade edge thicknesses. Both requirements ensure

that the propeller can repeatedly withstand the forces imposed upon it as the vessel is icebreaking

as well as any occasional ice collisions into the propeller itself. The material used for the

calculations, 316/316L stainless steel, was chosen according to the ABS Guidance Notes section

on material requirements for ice-class propellers [2]. The allowable stress for the propellers was

calculated as follows:

𝜎𝑟𝑒𝑓 = {
0.7𝜎𝑢

0.6𝜎𝑦 + 0.4𝜎𝑢
 whichever is less (Eq. 23)

 24

𝜎𝑎𝑙𝑙 =
𝜎𝑟𝑒𝑓

𝑆
 , S=1.5 (Eq. 24)

where 𝜎𝑢 is the ultimate strength of 316/316L stainless steel and 𝜎𝑦 is the yield strength. S is a

safety factor to ensure that the calculated stress does not come close to reaching the limit strengths

of the material. The stress values and comparison are presented in Table 3 below.

Table 3: Propeller steel properties, calculated stress, and allowable stress.

316/316 stainless steel ultimate strength [17] 627 MPa

316/316 stainless steel yield strength [17] 290 MPa

Calculated maximum stress 60.328 MPa

Allowable stress 283.200 MPa

Finally, the minimum blade edge thicknesses were calculated along the radius of the blade. The

edge thickness calculation has three components: leading edge thickness, trailing edge thickness,

and tip thickness (which is the thickness for any edge above a radius ratio of 0.975). Figure 8

presents the minimum thickness distribution along the radius for each edge.

 25

Figure 8: Minimum required blade edge thickness distribution.

The thickness calculation is dependent on the chord length at each radial section and the

distribution reflects that. However, this type of distribution is impractical to implement, as a

fluctuating thickness distribution would only make some areas of the blade edge more prone to

failure as additional stresses are imposed on them. Figure 8 seems to suggest that near the tip of

the blade, the edge should suddenly increase after a steady decrease of both the leading and trailing

edge minimums. However, having a thick tip at the end of a thinner blade would only make that

tip prone to snapping off due to torque or ice impact. Therefore, Figure 8 does not represent what

a real thickness distribution on a propeller would look like. More preferably, the blade edge would

have a near uniform thickness for the midsection, decreasing thickness at the tip where the blade

section itself becomes as thin as the edge itself, and increasing thickness at the root to provide the

propeller with more strength at the base. Table 4 below shows the maximum thickness value

 26

calculated from each category to provide a more realistic picture of what the propeller edges are

likely to look like.

Table 4: Maximum minimum blade edge thicknesses.

Trailing edge thickness (tte) 0.7528 mm

Leading edge thickness (tle) 1.0539 mm

Tip thickness (ttip) 0.7518 mm

 Modeling the propeller to meet the minimum blade edge thickness requirements as well as

the principal characteristics developed using the optimization algorithm, the blades of the propeller

can be visualized. The propeller seen in Figure 8 is for visualization purposes only and does not

represent a realistically constructed propeller, since the hub diameter used in this model is far too

small for a controllable-pitch propeller. This model was created using the free browser tool “B-

Series Propeller Generator” by Friendship Services AG which is still in its beta phase of

development and does not yet allow for precise hub design [18].

Figure 8: Propeller model for blade visualization from B-Series Propeller Generator [18].

 27

5. Conclusion

 Combining the results of the resistance and propulsion analysis, propeller optimization

algorithm, and IACS structural requirements, the code developed for the purpose of designing ice-

class Wageningen B-Series propellers did find success creating propellers for the MV Yahtse. The

propeller optimization criteria were able to converge to a solution for optimal propeller

characteristics and the IACS requirements validated the propeller for ice-breaking applications.

However, these scripts have only been proven to work for the MV Yahtse and are only applicable

for a preliminary design. Due to the lack of some information and the inability to choose more

accurate methods for the icebreaking resistance estimate and the stress calculation, the code has

room for improvements, and under those new conditions, the current propeller design may fail.

Additionally, it has not been investigated how suitable Holtrop and Mennen’s method is for this

type of vessel, only that it produces the most conservative result from a small selection of

applicable methods. Holtrop and Mennen’s method was developed using regression analyses with

data from existing ships, but since the MV Yahtse attempts to combine aspects of typically

disparate types of ships (icebreaking bow with a wide and shallow RoRo midbody), Holtrop and

Mennen’s method has a significant chance for inaccuracy. Ideally, model tests would be used for

a vessel like the MV Yahtse; however, as stated above that is not feasible for early-stage design.

There is also a similar issue in the decision to use Wageningen B-Series propellers for this vessel.

Wageningen B-Series propellers were designed as fixed-pitch propellers and can not operate

optimally with the area ratio restriction required for fully reversible controllable-pitch propellers.

For iterations of this code intended to complete post-preliminary design of ice-class controllable-

pitch propellers, the following improvements should be considered:

 28

1. A model test (for post-preliminary work) or CFD analysis (future preliminary work) should

be completed to obtain the most accurate resistance and propulsion data possible for the

propeller optimization.

2. If the model test or CFD analysis is completed without ice conditions, calculate and

compare several icebreaking resistance estimate methods and choose the most applicable

and conservative among them.

3. Alternative systematic propeller series should be investigated. For controllable-pitch

propellers, the recently developed Wageningen C systematic series for open, CPPs is likely

most suitable [19].

4. More accurate stress calculations should be performed for the completion of the IACS ice-

class requirements calculations. This should be done preferably with finite element

analysis; however, other preliminary methods should be researched.

 29

References

[1] IACS. (2019). Requirements concerning polar class.

[2] ABS. (2014). Guidance notes on ice class.

[3] Holtrop J. and Mennen G. J. J. (1982.) An approximate power prediction method.

International Shipbuilding Progress, 29(335):166-170.

[4] Holtrop, J. (1984). A statistical re-analysis of resistance and propulsion data. International

Shipbuilding Progress, 31(363):3-5.

[5] Birk, L. (2019). NAME 3150 Lecture 19: Holtop and Mennen’s Method.

[6] Jeong et. al (2010). Ice resistance prediction for standard icebreaker model ship. 20th

International Offshore and Polar Engineering Conference, 1300-1304.

[7] Oosterveld, M. W. C. and Van Oossanen, P. (1975). Further computer-analyzed data of the

Wageningen B-screw series. International Shipbuilding Progress, 22(251):3-14.

[8] Andersen, P. and Guldhammer, H. E. (1986). A computer-oriented power prediction procedure.

International Conference on Computer Aided Design, Manufacture and Operation in the Marine

and Offshore Industries.

[9] Fung, S. C. (1992). Resistance and powering prediction for transom-stern hull forms during

early-stage ship design. SNAME Transactions, 99:29-74.

[10] Fung, S. C. and Leibman, L. (1995). Revised speed-dependent powering predictions for high-

speed transom-stern hull forms. 3rd International Conference on Fast Sea Transportation (FAST),

151-165.

[11] Burrill, L. and Emerson, A. (1963). Propeller cavitation: further tests on 16in propeller models

in the King’s College cavitation tunnel. Transactions of the North East Coast Institution of

Engineers and Shipbuilders (NECIES), 79:295-320.

 30

[12] Birk, L. (2019). NAME 3150 Lecture 25: Propeller Series Data and Propeller Selection.

[13] auf’m Keller J (1966). Enige aspecten bij het antwerpen van scheepsschroeven. Schpen en

Werf, 33(24): 658-663.

[14] Tingey, Richard H. (1942). Propeller Blade Stress, Propellers and Shafting, Section 3,

SNAME Marine Engineering Vol 1. SNAME, 281-291.

[15] Carlton, J. S. (2007). Marine Propellers and Propulsion. Elsevier Butterworth-Heinemann,

pg. 46.

[16] Birk, L. (2021). NAME 4160 Lecture 2: Foil and Propeller Geometry.

[17] AK Steel (2016). 316/316L stainless steel product data bulletin. AK Steel.

[18] Friendship Services AG (2021). B-Series Propeller Generator. https://www.wageningen-b-

series-propeller.com/.

[19] Boom, H. J. J. et al. (2013). The Wageningen C- and D-series propellers. 12th International

Conference on Fast Sea Transportation (FAST).

https://www.wageningen-b-series-propeller.com/
https://www.wageningen-b-series-propeller.com/

 31

Appendix A: R&P Code – NAME3150RPHoltrop.py

NAME 3150 RP Analysis Holtrop

Date Last Modified: 04/28/2021

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import fsolve,minimize

from WBPolynomials import K_Tfunc,K_Qfunc,eta_Ofunc

from WBPolynomials import findJTS2,openwaterchart

from WBOpt import optimumprop

Steps for Holtrop and Mennen's Method:

1. Input Data (check by using paper's provided example

to see if calculations and answers are correct)

2. Derived Data

3. Resistance Estimate

4. Powering Estimate + Propeller Optimization

5. Save Data to a File

6. Generate Plots

===

1. Input Data

g=9.807

rho=1027.8336 #kg/m^3; density at 4ºC

nu=1.6262e-6 #m^2/s; viscosity at 4ºC

L_pp=97.319 #m

L_fore=4.39 #m

L_aft=0.25 #m

B=21.616 #m

T=4.72 #m

T_F=T

T_A=T

L_wl=L_pp+L_aft

 32

print('L_wl = {:6.4f} m'.format(L_wl))

lcb is estimated until known

#Fr_d=15.0*1852./3600./np.sqrt(g*L_wl)

#lcbp=-(0.44*Fr_d -0.094)*100. #lcb percentage

#print('lcbp = {:6.4f} '.format(lcbp))

V=7413.03895 #m_3

S is estimated until a hydrostatic analysis is completed, need C_M

S=1931.231 #m^2

#A_M=341.803 #m^2

no A_BT for senior design project

A_BT=0. #m^2

A_T=0. #m^2

A_V=108.7 #m^2

wetted surface of each appendage in this order:

rudder behind stern, twin screw rudder, shaft brackets, skeg,

strut bossing, hull bossing, exposed shafts (10º), bilge keels

S_APPi=np.array([16.72,16.72,11.89,87.33,6.69,9.48,14.86,196.03]) #m^2

h_B=0. #m

rudder behind stern, twin screw rudder, shaft brackets, skeg,

strut bossing, hull bossing, exposed shafts (10º), bilge keels

k_2i=np.array([0.5,1.5,3.0,1.0,3.0,1.0,1.0,0.4])

C_B=0.7459

C_M=0.9313

C_P=0.8009

C_WP=0.9181 #if using formula, need C_P

C_stern=10.

k_s=150.*10**-6. #from ITTC procedures since no test data

required propeller input data

Z=5.

D=3.048 #m

v_kn=np.linspace(10.0,19.0,num=19) #kn

 33

#number within v_kn range that the service speed is

#starts counting at 0 (i.e. 0=10, 1=10.5, etc.)

ssid=10

air properties

rho_A=1.225

C_DA=0.8

##---

2. Derived Data

#lcb=L_aft -lcbp/100.*L_pp +L_pp/2. -L_wl/2. #with respect to aft

lcb=50.32 #m

LCB=(lcb-L_wl/2.)/L_wl*100. #must be a percentage

print('LCB = {:6.4f} % L_wl'.format(LCB))

v_s=v_kn*1852./3600. #m/s

v_ss=v_s[ssid] #m/s

print('service speed = {:6.4f} m/s'.format(v_ss))

Fr=v_s/np.sqrt(g*L_wl)

Re=v_s*L_wl/nu

C_Bwl=C_B*L_pp/L_wl #conversion of C_B based on L_wl

print('C_Bwl = {:6.4f} '.format(C_Bwl))

C_WPwl=C_WP

#C_WPwl=0.763*(C_Pwl+0.34)

print('C_WPwl = {:6.4f} '.format(C_WPwl))

#C_P=V/A_M/L_pp

C_Pwl=C_P*L_pp/L_wl

print('C_Pwl = {:6.4f} '.format(C_Pwl))

once A_M is known, switch

#C_Mwl=A_M/B/T

#C_Mwl=1./(1.+(1.-C_Bwl)**3.5)

C_Mwl=C_M

print('C_Mwl = {:6.4f} '.format(C_Mwl))

 34

#waterline entrance angle

L_R=L_wl*(1.-C_Pwl+(0.06*C_Pwl*LCB)/(4.*C_Pwl -1.))

print('L_R = {:6.4f} m'.format(L_R))

a_1=(L_wl/B)**0.80856

a_2=(1.-C_WPwl)**0.30484

a_3=(1.-C_Pwl -0.0225*LCB)**0.6367

a_4=(L_R/B)**0.34574

a_5=((100.*V)/L_wl**3.)**0.16302

a=-(a_1*a_2*a_3*a_4*a_5)

print('a = {:6.4f} '.format(a))

i_E=1.+89.*np.exp(a)

#i_E=55.4 #deg.

print('i_E = {:6.4f} degrees'.format(i_E))

##---

3. Resistance Estimate

C_F=0.075/(np.log10(Re)-2.)**2

R_F=0.5*rho*(v_s**2)*S*C_F

c_14=1.+0.011*C_stern

print('c_14 = {:6.4f} '.format(c_14))

k_a=(B/L_wl)**1.06806

k_b=(T/L_wl)**0.46106

k_c=(L_wl/L_R)**0.121563

k_d=((L_wl**3)/V)**0.36486

k_e=(1.-C_Pwl)**-0.604247

k=-0.07+ 0.487118*c_14*(k_a*k_b*k_c*k_d*k_e)

 35

print('k = {:6.4f} '.format(k))

for i in range(len(k_2i)):

 print('k_2i = {:6.4f} '.format(k_2i[i]))

for i in range(len(S_APPi)):

 print('S_APPi = {:6.4f} '.format(S_APPi[i]))

S_APP=np.sum(S_APPi)

k_app=np.sum((1.+k_2i)*S_APPi)/np.sum(S_APPi)

print('S_APP = {:6.4f} '.format(S_APP))

print('k_app = {:6.4f} '.format(k_app))

#tunnel thrusters:

d_TH=1.54 #m

n_TH=2.

C_DTH=0.003+ 0.003*(10*d_TH/T -1.)

R_TH=rho*(v_s**2)*np.pi*(d_TH**2)*C_DTH

R_APP=0.5*rho*(v_s**2)*k_app*C_F*S_APP +n_TH*R_TH

#wave resistance coefficients/calculation:

if (B/L_wl) <= 0.11:

 c_7=0.229577*(B/L_wl)**(1/3)

elif (B/L_wl) <= 0.25:

 c_7=B/L_wl

else:

 c_7=0.5- 0.0625*(L_wl/B)

print('c_7 = {:6.6f} '.format(c_7))

c_1=2223105*(c_7**3.78613)*((T/B)**1.07961)*(90.-i_E)**-1.37565

print('c_1 = {:6.6f} '.format(c_1))

c_3a=B*T*(0.31*np.sqrt(A_BT)+T_F-h_B)

print('c_3a = {:6.6f} '.format(c_3a))

c_3=0.56*(A_BT**1.5)/c_3a

print('c_3 = {:6.6f} '.format(c_3))

 36

c_2=np.exp(-1.89*np.sqrt(c_3))

print('c_2 = {:6.6f} '.format(c_2))

c_5=1.-0.8*A_T/B/T/C_Mwl

print('c_5 = {:6.6f} '.format(c_5))

if (L_wl**3)/V <= 512.:

 c_15=-1.69385

elif (L_wl**3)/V <=1726.91:

 c_15a=L_wl/(V**(1/3))-8.

 c_15=-1.69385+c_15a/2.36

else:

 c_15=0.

print('c_15 = {:6.6f} '.format(c_15))

if C_Pwl <=0.8:

 c_16=8.07981*C_Pwl- 13.8673*(C_Pwl**2)+ 6.984388*(C_Pwl**3)

else:

 c_16=1.73014- 0.7067*C_Pwl

print('c_16 = {:6.6f} '.format(c_16))

d=-0.9

if (L_wl/B) <= 12.:

 lamb=1.446*C_Pwl -0.03*L_wl/B

else:

 lamb=1.446*C_Pwl -0.36

print('lambda = {:6.6f} '.format(lamb))

m_1a=0.0140407*L_wl/T

m_1b=1.75254*(V**(1/3))/L_wl

m_1c=4.79323*B/L_wl

m_1=m_1a-m_1b-m_1c-c_16

print('m_1 = {:6.6f} '.format(m_1))

m_4=0.4*c_15*np.exp(-0.034*(Fr**-3.29))

for i in range(len(v_s)):

 print('m_4 = {:6.6f} '.format(m_4[i]))

 37

r_1=m_1*(Fr**d)+m_4*np.cos(lamb*Fr**-2)

R_Wa=c_1*c_2*c_5*rho*g*V*np.exp(r_1)

c_17a=C_Mwl**-1.3346

c_17b=(V/(L_wl**3))**2.00977

c_17c=(L_wl/B -2.)**1.40692

c_17=6919.3*c_17a*c_17b*c_17c

print('c_17 = {:6.6f} '.format(c_17))

m_3a=(B/L_wl)**0.326869

m_3b=(T/B)**0.605375

m_3=-7.2035*m_3a*m_3b

print('m_3 = {:6.6f} '.format(m_3))

r_2=m_3*(Fr**d)+m_4*np.cos(lamb*Fr**-2)

R_Wb=c_17*c_2*c_5*rho*g*V*np.exp(r_2)

m_4a=0.4*c_15*np.e**(-0.034*(0.4**-3.29)) #interpolation of R_Wa

r_1a=m_1*(0.4**d)+m_4a*np.cos(lamb*0.4**-2)

R_Waa=c_1*c_2*c_5*rho*g*V*np.exp(r_1a)

m_4b=0.4*c_15*np.e**(-0.034*(0.55**-3.29)) #interpolation of R_Wb

r_2b=m_3*(0.55**d)+m_4b*np.cos(lamb*0.55**-2)

R_Wbb=c_17*c_2*c_5*rho*g*V*np.exp(r_2b)

R_W=np.zeros((len(Fr)),float)

for i in range(len(Fr)):

 if Fr[i] <= 0.4:

 38

 R_W[i]=R_Wa[i]

 elif Fr[i] > 0.55:

 R_W[i]=R_Wb[i]

 else:

 R_W[i]=R_Waa+(20.*Fr[i]- 8.)/3.*(R_Wbb- R_Waa)

#bulbous bow resistance:

#h_f=C_Pwl*C_Mwl*B*T/L_wl*(136.- 316.3*Fr)*(Fr**3)

#h_F=np.where(-0.01*L_wl <= h_f,h_f,-0.01*L_wl)

#h_w=i_E*(v_s**2)/400./g

#h_W=np.where(-0.01*L_wl <= h_w,h_w,-0.01*L_wl)

#r_i=g*(T_F-h_B- 0.25*np.sqrt(A_BT)+h_F+h_W)

#Fr_i=v_s/np.sqrt(r_i)

#P_B=0.56*np.sqrt(A_BT)/(T_F- 1.5*h_B+h_F)

#R_B=0.11*rho*g*(np.sqrt(A_BT)**3)*(Fr_i**3)/(1+Fr_i**2)*np.exp(-3.*(P_B**-2))

#transom resistance:

r_t=np.sqrt(2.*g*A_T/(B+B*C_WPwl))

if A_T > 0.:

 Fr_T=v_s/r_t

else:

 Fr_T=np.zeros((len(Fr)),float)

c_6=np.where(Fr_T< 5.,0.2*(1- 0.2*Fr_T),0.)

for i in range(len(v_s)):

 print('c_6 = {:6.6f}'.format(c_6[i]))

R_TR=0.5*rho*(v_s**2)*A_T*c_6

#correlation allowance resistance:

if T_F/L_wl <= 0.04:

 c_4=T_F/L_wl

 39

else:

 c_4=0.04

print('c_4 = {:6.6f}'.format(c_4))

C_Aa=np.sqrt(L_wl/7.5)*(C_Bwl**4)*c_2*(0.04-c_4)

C_A=0.00546*((L_wl+ 100.)**-0.16)-0.002+ 0.003*C_Aa

print('C_A*1000 = {:6.4f}'.format(C_A*1000.))

if k_s > 150.*10.**-6:

 deltaC_A=(0.105*(k_s**(1./3.))-0.005579)/L_wl**(1./3.)

else:

 deltaC_A=0.

print('k_s = {:6.6f}'.format(k_s))

print('deltaC_A = {:6.6f}'.format(deltaC_A))

R_A=0.5*rho*(v_s**2)*(C_A+deltaC_A)*(S+np.sum(S_APPi))

#air resistance

R_AA=0.5*rho_A*(v_s**2)*C_DA*A_V

icebreaking resistance

Jeong formulas (2010)

c_B=0.5

c_C=1.11

c_BR=2.73

h_i=1. #m; ice thickness

T_i=-2. #ºC; ice temperature

Arnol'd - Aliab'ev ice flexural stength formula

sigma_f=4.7- 0.96*T_i -0.31*T_i**2 #kg/cm^2; ice flexural strength

sigma_f=sigma_f*100.**2 #kg/m^2

rho_i=918.9 #kg/m^3; density of ice at -10ºC

 40

rho_diff=rho-rho_i #kg/m^3

F_h=v_s/np.sqrt(g*h_i)

S_N=v_s/np.sqrt(sigma_f*h_i/rho_i/B)

ai=c_B*rho_diff*g*h_i*B*T

bi=c_C*(F_h**-1.157)*rho_i*B*h_i*v_s**2

ci=c_BR*(S_N**-1.54)*rho_i*B*h_i*v_s**2

R_I=13.14*v_s**2 +ai +bi +ci

#total resistance

R_T=(1.+k)*R_F+R_APP+R_A+R_W+R_TR+R_AA #+R_I #+R_B

"""

NOTE: Icebreaking resistance is only being used to calculate the

extreme operating condition of propeller operation.

The vessel and propeller are not being designed for continuous ice-

breaking.

"""

C_W=R_W/0.5/rho/S/(v_s**2)

C_T=R_T/0.5/rho/S/(v_s**2)

##---

4. Powering Estimate

#viscous resistance coefficient

C_Va=(1.+k)*R_F+R_APP+R_A

C_Vb=0.5*rho*(v_s**2)*(S+np.sum(S_APPi))

C_V=C_Va/C_Vb

#wake fraction coefficients

if B/T_A <= 5.:

 c_8=S/L_wl/D*B/T_A

else:

 c_8=S*(7.*B/T_A- 25.)/L_wl/D/(B/T_A- 3.)

 41

print('c_8 = {:6.6f} '.format(c_8))

if c_8 <= 28.:

 c_9=c_8

else:

 c_9=32.- 16./(c_8- 24.)

print('c_9 = {:6.6f} '.format(c_9))

if T_A/D <= 2.:

 c_11=T_A/D

else:

 c_11=0.0833333*((T_A/D)**3)+ 1.33333

print('c_11 = {:6.6f} '.format(c_11))

if C_Pwl <= 0.7:

 c_19=0.12997/(0.95 -C_Bwl)- 0.11056/(0.95 -C_Pwl)

else:

 c_19=0.18567/(1.3571 -C_Mwl)-0.71276 +0.38648*C_Pwl

print('c_19 = {:6.6f} '.format(c_19))

c_20=1. +0.015*C_stern

print('c_20 = {:6.6f} '.format(c_20))

C_P1=1.45*C_Pwl -0.315 -0.0225*LCB

print('C_P1 = {:6.6f} '.format(C_P1))

#full scale wake fraction (single screw)

#w_sa=c_9*c_20*C_V*L_wl/T_A*(0.050776+ 0.93405*c_11*C_V/(1.-C_P1))

#w_sb=0.27915*c_20*np.sqrt(B/L_wl/(1.-C_P1))+c_19*c_20

#w_s=w_sa+w_sb

#full scale wake fraction (twin screw)

w_s=0.3095*C_Bwl +10.*C_V*C_Bwl -0.23*D/np.sqrt(B*T)

 42

for i in range(len(v_s)):

 print('w_s = {:6.4f} '.format(w_s[i]))

#thrust deduction fraction (single screw)

#t_a=0.25014*((B/L_wl)**0.28956)*((np.sqrt(B*T)/D)**0.2624)

#t_b=(1.-C_Pwl +0.0225*LCB)**0.01762

#t=t_a/t_b +0.0015*C_stern

#thrust deduction fraction (twin screw)

t=0.325*C_Bwl -0.1885*D/np.sqrt(B*T)

print('t = {:6.6f} '.format(t))

v_as=(1.-w_s)*v_s

for i in range(len(v_s)):

 print('v_a = {:6.4f} m/s'.format(v_as[i]))

T_req=R_T/(1.-t)

for i in range(len(v_s)):

 print('T_req = {:6.4f} kN'.format(T_req[i]/1000.))

C_S=S/2./(D**2)*C_T/(1.-t)/(1.-w_s)**2

Propeller Selection Program

more realistic estimation of e

e=T- 0.5*D- 0.03*D

p_A=101325. #Pa

p_v=1671. #Pa

p_0=p_A+rho*g*e

find design constant at design speed (service speed)

v_aserv=v_as[ssid]

T_reqs=T_req[ssid]/2. # half the thrust is taken since 2 props

 43

dc_4=T_reqs/(rho*(D**2)*(v_aserv**2))

additional arguments for objective functions

propargs=(dc_4,Z,D,T_reqs,v_aserv,rho,e,'CPP')

#initial values of free variables

PD0=1.0 #initial guess at pitch/diameter ratio

Keller's formula

K=0.2

ar0=(1.3+ 0.3*Z)*T_reqs/(p_0-p_v)/(D**2) +K

x0=np.array([PD0,ar0])

#use optimization algorithm

res=minimize(optimumprop,x0,args=propargs)

#unpack results

PD=res.x[0] #optimum pitch diameter ratio

ar=res.x[1] #optimum expanded area ratio

print('')

print('')

print('Optimum Propeller Data:')

print(' design constant dc_4 = {:8.4f} '.format(dc_4))

print(' number of blades Z = {:8.4f} '.format(Z))

print(' propeller diameter D = {:8.4f} m'.format(D))

print(' pitch-dia. ratio PD = {:8.4f} '.format(PD))

print(' area ratio ar = {:8.4f} '.format(ar))

print('')

print('For total thrust reversal on a CPP propeller, the expanded')

print('area ratio must have a maximum of 0.75.')

print('')

#relative rotative efficiency (single screw)

#eta_R=0.9922 -0.05908*ar +0.07424*(C_Pwl -0.0225*LCB)

#relative rotative efficiency (twin screw)

eta_R=0.9737 +0.111*(C_Pwl -0.0225*LCB) -0.06325*PD

 44

print(' r.r. efficiency eta_R = {:6.6f} '.format(eta_R))

#self-propulsion points

J_TS=np.zeros((len(C_S)),float)

K_TS=np.zeros((len(C_S)),float)

K_QTS=np.zeros((len(C_S)),float)

eta_OS=np.zeros((len(C_S)),float)

for j in range(len(C_S)):

 J_TS[j]=findJTS2(C_S[j],PD,ar,Z)

 K_TS[j]=K_Tfunc(J_TS[j],PD,ar,Z)

 K_QTS[j]=K_Qfunc(J_TS[j],PD,ar,Z)

 eta_OS[j]=eta_Ofunc(J_TS[j],PD,ar,Z)

 #print('J_TS = {:6.4f} '.format(J_TS[j]))

 #print('K_TS = {:6.4f} '.format(K_TS[j]))

 #print('10K_QTS = {:6.4f} '.format(10.*K_QTS[j]))

 #print('eta_OS = {:6.4f} '.format(eta_OS[j]))

eta_OSs=eta_OS[ssid]

print(' opt. efficiency eta_OS = {:8.4f} '.format(eta_OSs))

print('')

rate of revolution

n=v_as/(J_TS*D)

for i in range(len(v_s)):

 print('n = {:6.4f} 1/s'.format(n[i]))

K_QB=K_QTS/eta_R #behind condition K_Q

behind efficiency

eta_B=eta_OS*eta_R

torque

 45

Q=rho*(n**2)*(D**5)*K_QB

delivered power

P_D=2.*np.pi*n*Q

for i in range(len(v_s)):

 print('P_D = {:6.4f} kW'.format(P_D[i]/1000.))

effective power

P_E=R_T*v_s

delivered efficiency

eta_D=P_E/P_D

hull efficiency

eta_H=eta_D/(eta_OS*eta_R)

5. Save Data to a File

allows files of the same project to be grouped together with the

same base name

base='Holtrop&MennenResistanceAnalysis'

datafile=base+'.dat'

fp=open(datafile,'w')

fp.write('\n')

fp.write('Coefficients:')

fp.write('\n\n')

fp.write('c1= {:6.6f}'.format(c_1))

fp.write('\n')

fp.write('c2= {:6.6f}'.format(c_2))

fp.write('\n')

fp.write('c3= {:6.6f}'.format(c_3))

fp.write('\n')

fp.write('c4= {:6.6f}'.format(c_4))

fp.write('\n')

 46

fp.write('c5= {:6.6f}'.format(c_5))

fp.write('\n')

fp.write('c7= {:6.6f}'.format(c_7))

fp.write('\n')

fp.write('c8= {:6.6f}'.format(c_8))

fp.write('\n')

fp.write('c9= {:6.6f}'.format(c_9))

fp.write('\n')

fp.write('c11= {:6.6f}'.format(c_11))

fp.write('\n')

fp.write('c14= {:6.6f}'.format(c_14))

fp.write('\n')

fp.write('c15= {:6.6f}'.format(c_15))

fp.write('\n')

fp.write('c16= {:6.6f}'.format(c_16))

fp.write('\n')

fp.write('c17= {:6.6f}'.format(c_17))

fp.write('\n')

fp.write('c19= {:6.6f}'.format(c_19))

fp.write('\n')

fp.write('c20= {:6.6f}'.format(c_20))

fp.write('\n')

fp.write('d= {:6.6f}'.format(d))

fp.write('\n')

fp.write('lambda= {:6.6f}'.format(lamb))

fp.write('\n')

fp.write('m1= {:6.6f}'.format(m_1))

fp.write('\n')

fp.write('m3= {:6.6f}'.format(c_1))

fp.write('\n')

fp.write('C_P1= {:6.6f}'.format(C_P1))

fp.write('\n\n')

fp.write('\n')

fp.write('Froude Numbers and Misc. Coefficients:')

fp.write('\n\n')

fp.write('v_kn'.center(12))

fp.write('Fr'.center(11))

#fp.write('Fr_i'.center(15))

 47

fp.write('Fr_T'.center(15))

fp.write('c_6'.center(15))

fp.write('m3(Fr^d)'.center(10))

fp.write('m4'.center(9))

fp.write('m4cos(lambda/Fr^2)'.center(9))

#fp.write('P_B'.center(9))

fp.write('\n')

fp.write('[kn]'.center(12))

fp.write('[-]'.center(17))

#fp.write('[-]'.center(17))

fp.write('[-]'.center(15))

fp.write('[-]'.center(15))

fp.write('[-]'.center(20))

fp.write('[-]'.center(14))

fp.write('[-]'.center(18))

#fp.write('[-]'.center(37))

fp.write('\n')

for i in range(len(v_s)):

 fp.write(' {:6.2f}'.format(v_kn[i]))

 fp.write(' {:10.5f}'.format(Fr[i]))

 #fp.write(' {:10.5f}'.format(Fr_i[i]))

 fp.write(' {:10.5f}'.format(Fr_T[i]))

 fp.write(' {:10.4f}'.format(c_6[i]))

 fp.write(' {:10.5f}'.format(m_3*Fr[i]**d))

 fp.write(' {:10.5f}'.format(m_4[i]))

 fp.write(' {:10.5f}'.format(m_4[i]*np.cos(lamb/Fr[i]**2)))

 #fp.write(' {:20.5f}'.format(P_B[i]))

 fp.write('\n')

fp.write('\n\n')

fp.write('\n')

fp.write('Resistance Components and Total Resistance:')

fp.write('\n\n')

fp.write('v_kn'.center(12))

fp.write('Fr'.center(10))

fp.write('R_F'.center(18))

 48

fp.write('R_A'.center(10))

fp.write('R_W'.center(13))

#fp.write('R_B'.center(10))

fp.write('R_APP'.center(11))

fp.write('R_AA'.center(7))

fp.write('R_TR'.center(15))

fp.write('R_I'.center(12))

fp.write('R_T'.center(8))

fp.write('\n')

fp.write('[kn]'.center(12))

fp.write('[-]'.center(15))

fp.write('[kN]'.center(15))

fp.write('[kN]'.center(15))

fp.write('[kN]'.center(14))

#fp.write('[kN]'.center(12))

fp.write('[kN]'.center(13))

fp.write('[kN]'.center(14))

fp.write('[kN]'.center(14))

fp.write('[kN]'.center(11))

fp.write('[kN]'.center(12))

fp.write('\n')

for i in range(len(v_s)):

 fp.write(' {:6.2f}'.format(v_kn[i]))

 fp.write(' {:10.5f}'.format(Fr[i]))

 fp.write(' {:10.3f}'.format(R_F[i]/1000))

 fp.write(' {:10.3f}'.format(R_A[i]/1000))

 fp.write(' {:10.3f}'.format(R_W[i]/1000))

 #fp.write(' {:10.3f}'.format(R_B[i]/1000))

 fp.write(' {:10.3f}'.format(R_APP[i]/1000))

 fp.write(' {:10.3f}'.format(R_AA[i]/1000))

 fp.write(' {:10.3f}'.format(R_TR[i]/1000))

 fp.write(' {:10.3f}'.format(R_I[i]/1000))

 fp.write(' {:10.3f}'.format(R_T[i]/1000))

 fp.write('\n')

fp.write('\n\n')

fp.write('\n')

 49

fp.write('Self-Propulsion Point:')

fp.write('\n\n')

fp.write('v_kn'.center(12))

fp.write('Fr'.center(10))

fp.write('w_s'.center(17))

fp.write('v_a'.center(13))

fp.write('T_req'.center(12))

fp.write('C_S'.center(13))

fp.write('J_TS'.center(12))

fp.write('K_TS'.center(12))

fp.write('10K_QTS'.center(10))

fp.write('\n')

fp.write('[kn]'.center(12))

fp.write('[-]'.center(15))

fp.write('[-]'.center(17))

fp.write('[m/s]'.center(15))

fp.write('[kN]'.center(12))

fp.write('[-]'.center(19))

fp.write('[-]'.center(15))

fp.write('[-]'.center(16))

fp.write('[-]'.center(16))

fp.write('\n')

for i in range(len(v_s)):

 fp.write(' {:6.2f}'.format(v_kn[i]))

 fp.write(' {:10.5f}'.format(Fr[i]))

 fp.write(' {:10.4f}'.format(w_s[i]))

 fp.write(' {:10.4f}'.format(v_as[i]))

 fp.write(' {:10.4f}'.format(T_req[i]/1000.))

 fp.write(' {:10.5f}'.format(C_S[i]))

 fp.write(' {:10.4f}'.format(J_TS[i]))

 fp.write(' {:10.4f}'.format(K_TS[i]))

 fp.write(' {:10.4f}'.format(10.*K_QTS[i]))

 fp.write('\n')

fp.write('\n\n')

fp.write('\n')

 50

fp.write('Efficiency and Powering:')

fp.write('\n\n')

fp.write('v_kn'.center(12))

fp.write('Fr'.center(10))

fp.write('eta_H'.center(17))

fp.write('eta_O'.center(5))

fp.write('eta_D'.center(18))

fp.write('n'.center(10))

fp.write('n'.center(17))

fp.write('P_D'.center(12))

fp.write('\n')

fp.write('[kn]'.center(12))

fp.write('[-]'.center(17))

fp.write('[-]'.center(15))

fp.write('[-]'.center(16))

fp.write('[-]'.center(15))

fp.write('[1/s]'.center(17))

fp.write('[rpm]'.center(10))

fp.write('[kW]'.center(12))

fp.write('\n')

for i in range(len(v_s)):

 fp.write(' {:6.2f}'.format(v_kn[i]))

 fp.write(' {:10.5f}'.format(Fr[i]))

 fp.write(' {:10.4f}'.format(eta_H[i]))

 fp.write(' {:10.4f}'.format(eta_OS[i]))

 fp.write(' {:10.4f}'.format(eta_D[i]))

 fp.write(' {:10.3f}'.format(n[i]))

 fp.write(' {:10.3f}'.format(60*n[i]))

 fp.write(' {:10.2f}'.format(P_D[i]/1000.))

 fp.write('\n')

fp.close()

##---

6. Generate Plots

fig=plt.figure(figsize=(15,10))

 51

plt.plot(Fr,C_T*1000,lw=2, label=r"Total Resistance Coefficient $[C_T]$")

plt.plot(Fr,C_F*1000,lw=2, label=r"Coefficient of Friction $[C_F]$")

plt.plot(Fr,C_W*1000,lw=2, label=r"Wave Resistance Coefficient $[C_W]$")

plt.title("Resistance Coefficients vs. Froude Number")

plt.xlabel("Froude Number, Fr $[-]$")

plt.ylabel("Friction Coefficient Magnitude, $[-]$")

plt.legend()

plt.grid()

plt.show()

fig=plt.figure(figsize=(15,10))

plt.plot(Fr,R_T/1000,lw=2, label=r"Total Resistance $[R_T]$")

plt.plot(Fr,R_F/1000,lw=2, label=r"Frictional Resistance $[R_F]$")

plt.plot(Fr,R_W/1000,lw=2, label=r"Wave Resistance $[R_W]$")

plt.plot(Fr,R_A/1000,lw=2, label=r"Correlation Resistance $[R_A]$")

plt.plot(Fr,R_AA/1000,lw=2, label=r"Air Resistance $[R_{AA}]$")

plt.plot(Fr,R_APP/1000,lw=2, label=r"Appendage Resistance $[R_{APP}]$")

#plt.plot(Fr,R_B/1000,lw=2, label=r"Bulbous Bow Resistance $[R_B]$")

plt.plot(Fr,R_TR/1000,lw=2, label=r"Transom Resistance $[R_{TR}]$")

plt.plot(Fr,R_I/1000,lw=2, label=r"Icebreaking $[R_{I}]$")

plt.title("Resistance Components and Total Resistance")

plt.xlabel("Froude Number, Fr $[-]$")

plt.ylabel("Resistance Magnitude, $[kN]$")

plt.legend()

plt.grid()

plt.show()

plt.figure(figsize=(15,10))

J=np.linspace(0.,0.83,num=100)

openwaterchart(J,PD,ar,Z)

for j in range(len(C_S)):

 plt.plot(J_TS[j],K_TS[j],'o',color='r',fillstyle='none')

 plt.plot(J_TS[j],10.*K_QTS[j],'o',color='g',fillstyle='none')

 plt.plot(J_TS[j],eta_OS[j],'o',color='b',fillstyle='none')

 plt.plot(J,C_S[j]*J**2,'+-')

plt.xlabel(r'Advance Ratio, J $[-]$')

 52

plt.ylabel(r'K_T, $10K_Q$, eta_O, and C_SJ^2 $[-]$')

plt.title("Open Water Chart and Self-Propulsion Points")

plt.legend()

plt.grid()

plt.show()

plt.figure(figsize=(15,10))

plt.plot(v_kn,n,lw=2,label=r"Rate of Revolution, n")

plt.title("Rate of Revolution vs. Speed")

plt.xlabel(r'Ship Speed, v_{kn} $[kn]$')

plt.ylabel(r'Rate of Revolution, n $[1/s]$')

plt.grid()

plt.show()

plt.figure(figsize=(15,10))

plt.plot(v_kn,P_D/1000,lw=2,label=r"Delivered Power, P_D")

plt.title("Delivered Power vs. Speed")

plt.xlabel(r'Ship Speed, v_{kn} $[kn]$')

plt.ylabel(r'Delivered Power, P_D $[kN]$')

plt.grid()

plt.show()

plt.figure(figsize=(15,10))

plt.plot(n,P_D/1000,lw=2,label=r"Delivered Power, P_D")

plt.title("Delivered Power vs. Rate of Revolution")

plt.xlabel(r'Rate of Revolution, n $[1/s]$')

plt.ylabel(r'Delivered Power, P_D $[kN]$')

plt.grid()

plt.show()

 53

Appendix B: Propeller Geometry Code – WBSeriesPropGeometry.py

Prop Geometry for W-B Series Propellers

Date Last Modified: 04/26/2021

#from NAME3150RPHoltrop import Z,D,ar,PD

import numpy as np

Z=5.

D=3.0480 #m

ar=0.7520

PD=0.7568

maximum thickness (tmax) calculation

rR=np.array([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70,0.80,0.85,0.90,\

 0.95,0.975,1.0])

Ar=np.array([0.0588,0.0526,0.0495,0.0464,0.0402,0.0340,0.0278,0.0216,\

 0.0154,0.0123,0.0092,0.0061,0.00455,0.003])

Br=np.array([0.00425,0.0040,0.00375,0.0035,0.0030,0.0025,0.0020,0.0015,\

 0.0010,0.00075,0.0005,0.00025,0.000125,0.0])

tmax=D*(Ar-Br*Z)

edge thickness approximation code provided by Dr. Birk

Typical blade edge thickness ratios edge thickness/tmax

from Carlton, p.46. this seems to work

reduced initial values for x=0.15, 200422, lb

r/R order: [0.15,0.20,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,...,1.0]

tetfactor = np.array([0.049,0.057,0.063,0.068,0.075,0.085,0.100,0.120,\

 0.152,0.192,0.245,0.245,0.245,0.245])

letfactor = np.array([0.115,0.120,0.1224,0.124,0.127,0.130,0.134,0.143,\

 0.170,0.205,0.245,0.245,0.245,0.245])

#trailing edge thickness

tte = tetfactor*tmax

 54

#leading edge thickness

tle = letfactor*tmax

chord length calculation

Cr=np.array([1.473,1.600,1.719,1.832,2.023,2.163,2.243,2.247,2.132,\

 2.005,1.798,1.434,1.122,0.0])

cl=Cr*D/Z*ar

chord length for calculating tip thicknesses

cltip=1.122*D/Z*ar

distances for adjusting xc

assuming linear interpolation

brcr=np.array([0.350,0.350,0.350,0.350,0.351,0.355,0.389,0.443,0.479,\

 (0.479+0.5)/2.,0.500,0.250,0.125,0.0])

br=brcr*cl

arcr=np.array([0.617,0.617,(0.617+0.613)/2.,0.613,0.601,0.586,0.561,\

 0.524,0.463,(0.463+0.351)/2.,0.351,(0.351/2.),\

 (0.351/4.),0.0])

ar=arcr*cl

center of gravity integration

split each array into positive and negative according to the P-values

shown below for each of the different y equations

Parrayn=np.array([-1.0,-0.95,-0.90,-0.80,-0.70,-0.60,-0.50,-0.40,-0.20])

Parrayp=np.array([0.0,0.20,0.40,0.50,0.60,0.70,0.80,0.85,0.90,0.95,1.0])

V1 arrays

V1_15n=np.array([0.3,0.2824,0.265,0.23,0.195,0.161,0.128,0.0955,\

 0.0365,0.0])

V1_15p=np.array([0.0096,0.0384,0.0615,0.092,0.132,0.187,0.223,0.2642,\

 0.315,0.386])

 55

V1_20n=np.array([0.2826,0.263,0.24,0.1967,0.157,0.1207,0.088,0.0592,\

 0.0172,0.0])

V1_20p=np.array([0.0049,0.0304,0.052,0.0804,0.118,0.1685,0.2,0.2353,\

 0.2821,0.356])

V1_25n=np.array([0.2598,0.2372,0.2115,0.1651,0.1246,0.0899,0.0579,\

 0.035,0.0084,0.0])

V1_25p=np.array([0.0031,0.0224,0.0417,0.0669,0.1008,0.1465,0.1747,\

 0.2068,0.2513,0.3256])

V1_30n=np.array([0.2306,0.204,0.179,0.1333,0.0943,0.0623,0.0376,0.0202,\

 0.0033,0.0])

V1_30p=np.array([0.0027,0.0148,0.03,0.0503,0.079,0.1191,0.1445,0.176,\

 0.2186,0.2923])

V1_40n=np.array([0.1467,0.12,0.0972,0.063,0.0395,0.0214,0.0116,0.0044,\

 0.0,0.0])

V1_40p=np.array([0.0,0.0033,0.009,0.0189,0.0357,0.0637,0.0833,0.1088,\

 0.1467,0.2181])

V1_50n=np.array([0.0522,0.042,0.033,0.019,0.01,0.004,0.0012,0.0,0.0,0.0])

V1_50p=np.array([0.0,0.0,0.0008,0.0034,0.0085,0.0211,0.0328,0.05,0.0778,\

 0.1278])

V1_60n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_60p=np.array([0.0,0.0,0.0,0.0,0.0,0.0006,0.0022,0.0067,0.0169,\

 0.0382])

V1_70n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_70p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_80n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

 56

V1_80p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_85n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_85p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_90n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_90p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_95n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_95p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_975n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_975p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_100n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V1_100p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V2 arrays

V2_15n=np.array([0.0,0.054,0.1325,0.287,0.428,0.5585,0.677,0.7805,\

 0.9360,1.0])

V2_15p=np.array([0.976,0.8825,0.8055,0.7105,0.5995,0.452,0.3665,0.26,\

 0.13,0.0])

V2_20n=np.array([0.0,0.064,0.1455,0.306,0.4535,0.5842,0.6995,0.7984,\

 0.9446,1.0])

V2_20p=np.array([0.975,0.8875,0.817,0.7277,0.619,0.4777,0.3905,0.284,\

 0.156,0.0])

V2_25n=np.array([0.0,0.0725,0.1567,0.3228,0.474,0.605,0.7184,0.8139,\

 0.9519,1.0])

 57

V2_25p=np.array([0.9751,0.8899,0.8259,0.7415,0.6359,0.4982,0.4108,\

 0.3042,0.1758,0.0])

V2_30n=np.array([0.0,0.8,0.167,0.336,0.4885,0.6195,0.7335,0.8265,\

 0.9583,1.0])

V2_30p=np.array([0.975,0.892,0.8315,0.752,0.6505,0.513,0.4265,0.3197,\

 0.189,0.0])

V2_40n=np.array([0.0,0.0905,0.181,0.035,0.504,0.6353,0.7525,0.8415,\

 0.9645,1.0])

V2_40p=np.array([0.9725,0.8933,0.8345,0.7593,0.659,0.522,0.4335,\

 0.3235,0.1935,0.0])

V2_50n=np.array([0.0,0.095,0.1865,0.3569,0.514,0.6439,0.758,0.8456,\

 0.9639,1.0])

V2_50p=np.array([0.971,0.888,0.8275,0.7478,0.643,0.5039,0.4135,0.3056,\

 0.175,0.0])

V2_60n=np.array([0.0,0.0965,0.1885,0.3585,0.511,0.6415,0.753,0.8426,\

 0.9613,1.0])

V2_60p=np.array([0.969,0.879,0.809,0.72,0.606,0.462,0.3775,0.272,\

 0.1485,0.0])

V2_70n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_70p=np.array([0.9675,0.866,0.785,0.684,0.5615,0.414,0.33,0.2337,\

 0.124,0.0])

V2_80n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_80p=np.array([0.9635,0.852,0.7635,0.6545,0.5265,0.3765,0.2925,\

 0.2028,0.105,0.0])

V2_85n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_85p=np.array([0.9615,0.845,0.755,0.6455,0.516,0.366,0.283,0.195,\

 58

 0.1,0.0])

V2_90n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_90p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0])

V2_95n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_95p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0])

V2_975n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_975p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0])

V2_100n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_100p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0])

blade outline calculations (y_face and y_back):

x-coordinates are P-values

goes from -1 to 1 and then back again

x_coor=np.concatenate((Parrayn,Parrayp))

x_coor=np.concatenate((x_coor,np.flip(x_coor)))

r/R=0.15

rRid=0

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_15n=V1_15n*(a-b)

yf_15p=V1_15p*(a-c)

yf_15=np.concatenate((yf_15n,yf_15p))

np.min used becuase max y_face is at a minimum offset

yfmax=np.min(yf_15)

print('')

print('Maximum y_face and y_back values for stress calc.')

 59

print('r/R=15: max. y_face = {:8.4f} m'.format(yfmax))

print('r/R=15: corresponding P = 0.0 ')

yb_15n=(V1_15n+V2_15n)*(a-b) + b

yb_15p=(V1_15p+V2_15p)*(a-c) + c

yb_15=np.concatenate((yb_15n,yb_15p))

ybmax=yb_15.max()

print('r/R=15: max. y_back = {:8.4f} m'.format(ybmax))

print('r/R=15: corresponding P = {:8.4f}'.format(x_coor[np.argmax(yb_15)]))

y_15=np.concatenate((yf_15,np.flip(yb_15)))

A_15=0.5*np.sum((y_15[1:]-y_15[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_15=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_15[:-1]**2\

 +y_15[:-1]*y_15[1:]+y_15[1:]**2))

My_15=1./6.*np.sum((y_15[1:]-y_15[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_15=br[rRid]+My_15/A_15

xc_15=ar[rRid]-xc_15

yc_15=Mx_15/A_15

r/R=0.20

rRid=1

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_20n=V1_20n*(a-b)

yf_20p=V1_20p*(a-c)

yf_20=np.concatenate((yf_20n,yf_20p))

yb_20n=(V1_20n+V2_20n)*(a-b) + b

yb_20p=(V1_20p+V2_20p)*(a-c) + c

yb_20=np.concatenate((yb_20n,yb_20p))

 60

y_20=np.concatenate((yf_20,np.flip(yb_20)))

A_20=0.5*np.sum((y_20[1:]-y_20[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_20=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_20[:-1]**2\

 +y_20[:-1]*y_20[1:]+y_20[1:]**2))

My_20=1./6.*np.sum((y_20[1:]-y_20[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_20=br[rRid]+My_20/A_20

xc_20=ar[rRid]-xc_20

yc_20=Mx_20/A_20

r/R=0.25

rRid=2

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_25n=V1_25n*(a-b)

yf_25p=V1_25p*(a-c)

yf_25=np.concatenate((yf_25n,yf_25p))

yb_25n=(V1_25n+V2_25n)*(a-b) + b

yb_25p=(V1_25p+V2_25p)*(a-c) + c

yb_25=np.concatenate((yb_25n,yb_25p))

y_25=np.concatenate((yf_25,np.flip(yb_25)))

A_25=0.5*np.sum((y_25[1:]-y_25[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_25=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_25[:-1]**2\

 +y_25[:-1]*y_25[1:]+y_25[1:]**2))

My_25=1./6.*np.sum((y_25[1:]-y_25[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_25=br[rRid]+My_25/A_25

xc_25=ar[rRid]-xc_25

 61

yc_25=Mx_25/A_25

r/R=0.30

rRid=3

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_30n=V1_30n*(a-b)

yf_30p=V1_30p*(a-c)

yf_30=np.concatenate((yf_30n,yf_30p))

yb_30n=(V1_30n+V2_30n)*(a-b) + b

yb_30p=(V1_30p+V2_30p)*(a-c) + c

yb_30=np.concatenate((yb_30n,yb_30p))

y_30=np.concatenate((yf_30,np.flip(yb_30)))

A_30=0.5*np.sum((y_30[1:]-y_30[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_30=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_30[:-1]**2\

 +y_30[:-1]*y_30[1:]+y_30[1:]**2))

My_30=1./6.*np.sum((y_30[1:]-y_30[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_30=br[rRid]+My_30/A_30

xc_30=ar[rRid]-xc_30

yc_30=Mx_30/A_30

r/R=0.40

rRid=4

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_40n=V1_40n*(a-b)

yf_40p=V1_40p*(a-c)

yf_40=np.concatenate((yf_40n,yf_40p))

 62

yb_40n=(V1_40n+V2_40n)*(a-b) + b

yb_40p=(V1_40p+V2_40p)*(a-c) + c

yb_40=np.concatenate((yb_40n,yb_40p))

y_40=np.concatenate((yf_40,np.flip(yb_40)))

A_40=0.5*np.sum((y_40[1:]-y_40[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_40=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_40[:-1]**2\

 +y_40[:-1]*y_40[1:]+y_40[1:]**2))

My_40=1./6.*np.sum((y_40[1:]-y_40[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_40=br[rRid]+My_40/A_40

xc_40=ar[rRid]-xc_40

yc_40=Mx_40/A_40

r/R=0.50

rRid=5

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_50n=V1_50n*(a-b)

yf_50p=V1_50p*(a-c)

yf_50=np.concatenate((yf_50n,yf_50p))

yb_50n=(V1_50n+V2_50n)*(a-b) + b

yb_50p=(V1_50p+V2_50p)*(a-c) + c

yb_50=np.concatenate((yb_50n,yb_50p))

y_50=np.concatenate((yf_50,np.flip(yb_50)))

A_50=0.5*np.sum((y_50[1:]-y_50[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_50=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_50[:-1]**2\

 +y_50[:-1]*y_50[1:]+y_50[1:]**2))

My_50=1./6.*np.sum((y_50[1:]-y_50[:-1])*(x_coor[:-1]**2\

 63

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_50=br[rRid]+My_50/A_50

xc_50=ar[rRid]-xc_50

yc_50=Mx_50/A_50

r/R=0.60

rRid=6

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_60n=V1_60n*(a-b)

yf_60p=V1_60p*(a-c)

yf_60=np.concatenate((yf_60n,yf_60p))

yb_60n=(V1_60n+V2_60n)*(a-b) + b

yb_60p=(V1_60p+V2_60p)*(a-c) + c

yb_60=np.concatenate((yb_60n,yb_60p))

y_60=np.concatenate((yf_60,np.flip(yb_60)))

A_60=0.5*np.sum((y_60[1:]-y_60[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_60=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_60[:-1]**2\

 +y_60[:-1]*y_60[1:]+y_60[1:]**2))

My_60=1./6.*np.sum((y_60[1:]-y_60[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_60=br[rRid]+My_60/A_60

xc_60=ar[rRid]-xc_60

yc_60=Mx_60/A_60

r/R=0.70

rRid=7

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

 64

yf_70n=V1_70n*(a-b)

yf_70p=V1_70p*(a-c)

yf_70=np.concatenate((yf_70n,yf_70p))

yb_70n=(V1_70n+V2_70n)*(a-b) + b

yb_70p=(V1_70p+V2_70p)*(a-c) + c

yb_70=np.concatenate((yb_70n,yb_70p))

y_70=np.concatenate((yf_70,np.flip(yb_70)))

A_70=0.5*np.sum((y_70[1:]-y_70[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_70=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_70[:-1]**2\

 +y_70[:-1]*y_70[1:]+y_70[1:]**2))

My_70=1./6.*np.sum((y_70[1:]-y_70[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_70=br[rRid]+My_70/A_70

xc_70=ar[rRid]-xc_70

yc_70=Mx_70/A_70

r/R=0.80

rRid=8

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_80n=V1_80n*(a-b)

yf_80p=V1_80p*(a-c)

yf_80=np.concatenate((yf_80n,yf_80p))

yb_80n=(V1_80n+V2_80n)*(a-b) + b

yb_80p=(V1_80p+V2_80p)*(a-c) + c

yb_80=np.concatenate((yb_80n,yb_80p))

y_80=np.concatenate((yf_80,np.flip(yb_80)))

A_80=0.5*np.sum((y_80[1:]-y_80[:-1])*(x_coor[:-1]+x_coor[1:]))

 65

Mx_80=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_80[:-1]**2\

 +y_80[:-1]*y_80[1:]+y_80[1:]**2))

My_80=1./6.*np.sum((y_80[1:]-y_80[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_80=br[rRid]+My_80/A_80

xc_80=ar[rRid]-xc_80

yc_80=Mx_80/A_80

r/R=0.85

rRid=9

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_85n=V1_85n*(a-b)

yf_85p=V1_85p*(a-c)

yf_85=np.concatenate((yf_85n,yf_85p))

yb_85n=(V1_85n+V2_85n)*(a-b) + b

yb_85p=(V1_85p+V2_85p)*(a-c) + c

yb_85=np.concatenate((yb_85n,yb_85p))

y_85=np.concatenate((yf_85,np.flip(yb_85)))

A_85=0.5*np.sum((y_85[1:]-y_85[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_85=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_85[:-1]**2\

 +y_85[:-1]*y_85[1:]+y_85[1:]**2))

My_85=1./6.*np.sum((y_85[1:]-y_85[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_85=br[rRid]+My_85/A_85

xc_85=ar[rRid]-xc_85

yc_85=Mx_85/A_85

r/R=0.90

rRid=10

 66

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_90n=V1_90n*(a-b)

yf_90p=V1_90p*(a-c)

yf_90=np.concatenate((yf_90n,yf_90p))

yb_90n=(V1_90n+V2_90n)*(a-b) + b

yb_90p=(V1_90p+V2_90p)*(a-c) + c

yb_90=np.concatenate((yb_90n,yb_90p))

y_90=np.concatenate((yf_90,np.flip(yb_90)))

A_90=0.5*np.sum((y_90[1:]-y_90[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_90=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_90[:-1]**2\

 +y_90[:-1]*y_90[1:]+y_90[1:]**2))

My_90=1./6.*np.sum((y_90[1:]-y_90[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_90=br[rRid]+My_90/A_90

xc_90=ar[rRid]-xc_90

yc_90=Mx_90/A_90

r/R=0.95

rRid=11

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_95n=V1_95n*(a-b)

yf_95p=V1_95p*(a-c)

yf_95=np.concatenate((yf_95n,yf_95p))

yb_95n=(V1_95n+V2_95n)*(a-b) + b

yb_95p=(V1_95p+V2_95p)*(a-c) + c

yb_95=np.concatenate((yb_95n,yb_95p))

 67

y_95=np.concatenate((yf_95,np.flip(yb_95)))

A_95=0.5*np.sum((y_95[1:]-y_95[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_95=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_95[:-1]**2\

 +y_95[:-1]*y_95[1:]+y_95[1:]**2))

My_95=1./6.*np.sum((y_95[1:]-y_95[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_95=br[rRid]+My_95/A_95

xc_95=ar[rRid]-xc_95

yc_95=Mx_95/A_95

r/R=0.975

rRid=12

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_975n=V1_975n*(a-b)

yf_975p=V1_975p*(a-c)

yf_975=np.concatenate((yf_975n,yf_975p))

yb_975n=(V1_975n+V2_975n)*(a-b) + b

yb_975p=(V1_975p+V2_975p)*(a-c) + c

yb_975=np.concatenate((yb_975n,yb_975p))

y_975=np.concatenate((yf_975,np.flip(yb_975)))

A_975=0.5*np.sum((y_975[1:]-y_975[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_975=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_975[:-1]**2\

 +y_975[:-1]*y_975[1:]+y_975[1:]**2))

My_975=1./6.*np.sum((y_975[1:]-y_975[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_975=br[rRid]+My_975/A_975

xc_975=ar[rRid]-xc_975

 68

yc_975=Mx_975/A_975

r/R=0.100

rRid=13

a=tmax[rRid]

b=tte[rRid]

c=tle[rRid]

yf_100n=V1_100n*(a-b)

yf_100p=V1_100p*(a-c)

yf_100=np.concatenate((yf_100n,yf_100p))

yb_100n=(V1_100n+V2_100n)*(a-b) + b

yb_100p=(V1_100p+V2_100p)*(a-c) + c

yb_100=np.concatenate((yb_100n,yb_100p))

y_100=np.concatenate((yf_100,np.flip(yb_100)))

A_100=0.5*np.sum((y_100[1:]-y_100[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_100=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_100[:-1]**2\

 +y_100[:-1]*y_100[1:]+y_100[1:]**2))

My_100=1./6.*np.sum((y_100[1:]-y_100[:-1])*(x_coor[:-1]**2\

 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

xc_100=br[rRid]+My_100/A_100

xc_100=ar[rRid]-xc_100

yc_100=Mx_100/A_100

xc is center of gravity x-offset from P=0

yc is center of gravity y-offset from pitch (reference) line

print('')

print('Propeller Blade Cross-Sectional Areas:')

print('r/R=15: A = {:8.4f} m^2'.format(A_15))

print('r/R=20: A = {:8.4f} m^2'.format(A_20))

print('r/R=25: A = {:8.4f} m^2'.format(A_25))

print('r/R=30: A = {:8.4f} m^2'.format(A_30))

 69

print('r/R=40: A = {:8.4f} m^2'.format(A_40))

print('r/R=50: A = {:8.4f} m^2'.format(A_50))

print('r/R=60: A = {:8.4f} m^2'.format(A_60))

print('r/R=70: A = {:8.4f} m^2'.format(A_70))

print('r/R=80: A = {:8.4f} m^2'.format(A_80))

print('r/R=85: A = {:8.4f} m^2'.format(A_85))

print('r/R=90: A = {:8.4f} m^2'.format(A_90))

print('r/R=95: A = {:8.4f} m^2'.format(A_95))

print('r/R=97.5: A = {:8.4f} m^2'.format(A_975))

print('r/R=100: A = {:8.4f} m^2'.format(A_100))

print('')

print('Propeller Blade X-Moments:')

print('r/R=15: Mx = {:8.4f} m^3'.format(Mx_15))

print('r/R=20: Mx = {:8.4f} m^3'.format(Mx_20))

print('r/R=25: Mx = {:8.4f} m^3'.format(Mx_25))

print('r/R=30: Mx = {:8.4f} m^3'.format(Mx_30))

print('r/R=40: Mx = {:8.4f} m^3'.format(Mx_40))

print('r/R=50: Mx = {:8.4f} m^3'.format(Mx_50))

print('r/R=60: Mx = {:8.4f} m^3'.format(Mx_60))

print('r/R=70: Mx = {:8.4f} m^3'.format(Mx_70))

print('r/R=80: Mx = {:8.4f} m^3'.format(Mx_80))

print('r/R=85: Mx = {:8.4f} m^3'.format(Mx_85))

print('r/R=90: Mx = {:8.4f} m^3'.format(Mx_90))

print('r/R=95: Mx = {:8.4f} m^3'.format(Mx_95))

print('r/R=97.5: Mx = {:8.4f} m^3'.format(Mx_975))

print('r/R=100: Mx = {:8.4f} m^3'.format(Mx_100))

print('')

print('Propeller Blade Y-Moments:')

print('r/R=15: My = {:8.4f} m^3'.format(My_15))

print('r/R=20: My = {:8.4f} m^3'.format(My_20))

print('r/R=25: My = {:8.4f} m^3'.format(My_25))

print('r/R=30: My = {:8.4f} m^3'.format(My_30))

print('r/R=40: My = {:8.4f} m^3'.format(My_40))

print('r/R=50: My = {:8.4f} m^3'.format(My_50))

print('r/R=60: My = {:8.4f} m^3'.format(My_60))

print('r/R=70: My = {:8.4f} m^3'.format(My_70))

print('r/R=80: My = {:8.4f} m^3'.format(My_80))

print('r/R=85: My = {:8.4f} m^3'.format(My_85))

 70

print('r/R=90: My = {:8.4f} m^3'.format(My_90))

print('r/R=95: My = {:8.4f} m^3'.format(My_95))

print('r/R=97.5: My = {:8.4f} m^3'.format(My_975))

print('r/R=100: My = {:8.4f} m^3'.format(My_100))

print('')

print('Center of Gravity X-Offset:')

print('r/R=15: xc = {:8.4f} m'.format(xc_15))

print('r/R=20: xc = {:8.4f} m'.format(xc_20))

print('r/R=25: xc = {:8.4f} m'.format(xc_25))

print('r/R=30: xc = {:8.4f} m'.format(xc_30))

print('r/R=40: xc = {:8.4f} m'.format(xc_40))

print('r/R=50: xc = {:8.4f} m'.format(xc_50))

print('r/R=60: xc = {:8.4f} m'.format(xc_60))

print('r/R=70: xc = {:8.4f} m'.format(xc_70))

print('r/R=80: xc = {:8.4f} m'.format(xc_80))

print('r/R=85: xc = {:8.4f} m'.format(xc_85))

print('r/R=90: xc = {:8.4f} m'.format(xc_90))

print('r/R=95: xc = {:8.4f} m'.format(xc_95))

print('r/R=97.5: xc = {:8.4f} m'.format(xc_975))

print('r/R=100: xc = {:8.4f} m'.format(xc_100))

print('')

print('Center of Gravity Y-Offset:')

print('r/R=15: yc = {:8.4f} m'.format(yc_15))

print('r/R=20: yc = {:8.4f} m'.format(yc_20))

print('r/R=25: yc = {:8.4f} m'.format(yc_25))

print('r/R=30: yc = {:8.4f} m'.format(yc_30))

print('r/R=40: yc = {:8.4f} m'.format(yc_40))

print('r/R=50: yc = {:8.4f} m'.format(yc_50))

print('r/R=60: yc = {:8.4f} m'.format(yc_60))

print('r/R=70: yc = {:8.4f} m'.format(yc_70))

print('r/R=80: yc = {:8.4f} m'.format(yc_80))

print('r/R=85: yc = {:8.4f} m'.format(yc_85))

print('r/R=90: yc = {:8.4f} m'.format(yc_90))

print('r/R=95: yc = {:8.4f} m'.format(yc_95))

print('r/R=97.5: yc = {:8.4f} m'.format(yc_975))

print('r/R=100: yc = {:8.4f} m'.format(yc_100))

volume integrations:

 71

r=D/2.*np.array([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70,0.80,0.85,\

 0.90,0.95,0.975,1.0]) #m

A=np.array([A_15,A_20,A_25,A_30,A_40,A_50,A_60,A_70,A_80,A_85,A_90,\

 A_95,A_975,A_100])

rarray=np.flip(r)

Aarray=np.flip(A)

pitch angle

phi=np.arctan(PD*D/(2.*np.pi))

rake array

rake=np.tan(np.deg2rad(15.))*r #m

centers

xcarray=np.array([xc_15,xc_20,xc_25,xc_30,xc_40,xc_50,xc_60,xc_70,\

 xc_80,xc_85,xc_90,xc_95,xc_975,xc_100])

ycarray=np.array([yc_15,yc_20,yc_25,yc_30,yc_40,yc_50,yc_60,yc_70,\

 yc_80,yc_85,yc_90,yc_95,yc_975,yc_100])

xc=np.cos(phi)*xcarray -np.sin(phi)*ycarray

yc=np.sin(phi)*xcarray +np.cos(phi)*ycarray

yc=yc-rake

volumes

volume found via integration

V=0.5*np.sum((Aarray[1:]+Aarray[:-1])*(rarray[:-1]-rarray[1:]))

volume found with trapezoidal method

Vtrap=np.trapz(A,r)

volume of the prism containing blade

Vp=tmax[0]*cl[0]*D/2.

radial volume center

 72

M_Vr=np.trapz(r*A,r)

CGr=M_Vr/V #m

M_Vx=np.trapz(xc*A,r)

CGy=M_Vx/V #m

M_Vy=np.trapz(yc*A,r)

CGx=M_Vy/V #m

print('')

print('Volume Integration Results:')

print('volume: V = {:8.4f} m^3'.format(V))

print('volume (trap.): V = {:8.4f} m^3'.format(Vtrap))

print('volume (prism): V = {:8.4f} m^3'.format(Vp))

print('radial v.mom: Mvr = {:8.4f} m^4'.format(M_Vr))

print('radial CG: CGr = {:8.4f} m'.format(CGr))

print('radial CG (r/R): CGr = {:8.4f} m'.format(CGr/(D/2.)))

print('x-direction CG: CGx = {:8.4f} m'.format(CGx))

print('y-direction CG: CGy = {:8.4f} m'.format(CGy))

 73

Appendix C: Propeller Structural Code – MVYahtsePropellerDev.py

Honors Program Capstone Project

Ice Class Propeller Design

Date Last Modified: 04/30/2021

"""

Design and ice-class propeller for the MV Yahtse - an overnighting,

ice-class, car ferry servicing the Alaskan coast and Bering Sea.

Propeller must meet IACS ice-class requirements

Ice Class - PC 3

Number of Propellers - 2

Type - CPP, open

"""

import numpy as np

from scipy.interpolate import CubicSpline

import matplotlib.pyplot as plt

from NAME3150RPHoltrop import n,T_req,v_kn,eta_H,eta_OS,eta_R,t

#from NAME3150RPHoltrop import Z,D,ar,PD

from WBSeriesPropGeometry import cl,cltip,rR,xc_15,yc_15,yfmax,ybmax

Z=5.

D=3.0480 #m

ar=0.7520

PD=0.7568

Variables

for a worst case scenario, look at service speed + icebreaking

since H&M code designs the propeller at service speed, this will see

if the service speed propeller can survive worst conditions

 74

ssid=10

n_ss=n[ssid] # nominal rotational speed at MCR free-running condition

from W-B series chord equations

c_7=2.247*D/Z*ar #m; length of the blade chord at 0.7R (radius)

P_7=0.7*PD*D #m; propeller pitch at 0.7R

t_7=D*(0.0216 -0.0015*Z) #m; max thickness at 0.7R

if bollard thrust (T_n) is known, use instead of T and tab out T_n

estimation calculation

T=T_req[ssid]/2000. #kN; per propeller thrust at MCR open water cond.

measurements of cylindrical root section of the blade at the weakest

section outside root fillet; typically will be at the termination of

the fillet into the blade profile.

root section measurements

assuming root is at 16.5% of the total blade diameter

d_h=0.165*D #m; propeller hub diameter

d_r=d_h #approximately true

cut off at a x=r/R of 0.7 becuase independant variable must be

increasing only for CubicSpline to work

x=np.array([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70])

Cr=np.array([1.473,1.600,1.719,1.832,2.023,2.163,2.243,2.247])

y=Cr*D/Z*ar

cs=CubicSpline(Cr,y)

Crx=np.interp(0.165,x,Cr)

print('')

print('C_rx = {:6.4f} '.format(Crx))

c_r=cs(Crx) #m; chord length at the root

print('c_r = {:6.4f} m'.format(c_r))

xp=np.array([0.15,0.20,0.25])

Ar=np.array([0.0588,0.0526,0.0495])

Br=np.array([0.00425,0.0040,0.00375])

fp=D*(Ar-Br*Z)

t_r=np.interp(0.165,xp,fp) #m; thickness at the root

print('t_r = {:6.4f} m'.format(t_r))

 75

p=PD*D #m; pitch at root section, constant pitch

r=d_r/2. #m; radius

blade material constants

Blade materials are in accordance with ABS

Stainless Steel 316/316L

sigma_y is the 0.2% proof stress conventionally considered as

yield stress

sigma_y=290.0e3 #kPa

sigma_u is the ultimate strength

sigma_u=627.0e3 #kPa

must be done in Imperial units and converted at end

from 1942 SNAME Marine Engieering Vol. 1

Bending Moment Calculation

D_i=D*39.37 #in.

d_ri=d_r*39.37 #in.; diameter at root section

P=3655. #hp; shaft horsepower per screw

v=v_kn[ssid] #knots; ship speed

N=n_ss*60. #rpm; shaft revolutions per minute

A_d=ar*np.pi*(D_i/24.)**2 #ft^2; approximately true A_d=A_e

t_ri=t_r*39.37 #in.; maximum thickness at root

note on coordinate system being used:

x - horizontal along the face of the blade

y - horizontal through blade thickness

z/r - tangent out from hub/blade root

assume center of root is half of the root thickness

a_r=c_r*0.617 #distance from LE to generator line at (approx.) the root

CRb=a_r*39.37 #in.; distance of center of root in y-direction

CRr=t_r/2.*39.27 #in.; distance of center of root in z-direction

p=p*39.37 #in.; pitch at root section

 76

method needs to be found to determine these from blade geometry

r=5.1 #in.; arm due to rake [**GUESS VALUE**]

b=5.1 #in.; arm due to skewback [**GUESS VALUE**]

thrust moment arm factor

K_T=0.66*D_i -d_ri #in.

moment due to thrust

eta_H=eta_H[ssid] #hull efficiency

eta_OS=eta_OS[ssid]

e=eta_H*eta_OS*eta_R #propulsive efficiency

M_T=163.*P*e*K_T/(v*Z*(1.-t)) #in.-lb

centrifugal force

F_c=D_i*N**2*A_d*t_ri/(7450.*Z) #lb

moment due to rake

M_R=r*F_c #in.-lb

total axial moment

M_A=M_T + M_R #in.-lb

torque moment arm ratio

K_Q=1. -1.67*d_ri/D_i

moment due to torque

M_Q=63000.*P*K_Q/(Z*N) #in.-lb

moment due to skewback

M_S=b*F_c #in.-lb

total circumferential moment

M_C=M_Q - M_S #in.-lb

tangent of pitch angle

x=p/(np.pi*d_ri)

secant of pitch angle

 77

y=np.sqrt(1.+x**2)

moment normal to root

M_N=M_A/y + x*M_C/y #in.-lb

moment parallel to root

M_P=x*M_A/y - M_C/y #in.-lb

Blade Stress Calculation

only check most extreme values (at r/R=0.15 where x&y are largest)

check if correct

l=c_r*39.37 #in.; length of root section

moment of inertia of section, normal

K_N=0.046

I_N=K_N*l*t_ri**3 #in.^4

stress at t due to M_N

y_t is distance between yc and y_back at trailing edge of r/R=0.15

distance from NA to point t, normal (fig. 11)

y_t=np.abs(yc_15-ybmax)*39.37 #in.

s1=M_N*y_t/I_N #psi

moment of inertia of section, parallel

K_P=0.039

I_P=K_P*l**3*t_ri #in.^4

stress at t due to M_P

x_t is distance between xc and P=-1 of y_face at r/R=0.15

distance from NA to point t, parallel (fig.11)

x_t=(cl[0]-0.350*cl[0]+xc_15)*39.37 #in.

s2=M_P*x_t/I_P #psi

area of section

K_A=0.71

A_r=K_A*l*t_ri #in.^2

stress due to F

 78

s_F=F_c/A_r #psi

total stress at t

s_t=s1 + s2 + s_F #psi

stress at c due to M_N

y_c is greatest distance between yc and y_face at r/R=0.15

distance from NA to point c, normal (fig.11)

y_c=np.abs(yc_15-yfmax)*39.37 #in.

s3=M_N*y_c/I_N #psi

stress at c due to M_P

x_c is greatest distance between xc and P=0 of y_face at r/R=0.15

distance from NA to point c, parallel (fig.11)

x_c=xc_15*39.37 #in.

s4=M_P*x_c/I_P #psi

total stress at c

s_c=s3 + s4 + s_F #psi

Calculated Blade Stress

if s_t > s_c:

 s_calc=s_t #psi

else:

 s_calc=s_c #psi

sigma_calc=s_calc*6.895 #kPa

print('calc. stress = {:6.4f} kPa'.format(sigma_calc))

IACS Propeller Requirements

"""

I3.4 Ice Interaction Load:

 I3.4.1 Propeller Ice Interaction:

 79

 The loads given in section I3.4 are total loads (unless

 otherwise stated) during ice interaction and are to be applied

 separately (unless otherwise stated) and are intended for

 component strength calculations only. The different loads given

 here are to be applied separately.

 Fb is a force bending a propeller blade backwards when the

 propeller mills an ice block while rotating ahead. Ff is a force

 bending a propeller blade forwards when a propeller interacts

 with an ice block while rotating ahead.

"""

H_ice=3.0 # m; Ice thickness for machinery strength design

S_ice=1.1 # Ice strength index for blade ice force

S_qice=1.15 # Ice strength index for blade ice torque

"""

I3.4.3 Design Ice Loads for Open Propeller:

 I3.4.3.1 Maximum Backward Blade Force, Fb:

"""

D_limit=0.85*H_ice**1.4 #m

if D < D_limit:

 F_b=-27.*S_ice*(n_ss*D)**0.7*(ar/Z)**0.3*(D)**2 #kN

else:

 F_b=-23.*S_ice*(n_ss*D)**0.7*(ar/Z)**0.3*(H_ice)**1.4*D #kN

print('F_b = {:6.4f} kN'.format(F_b))

"""

Fb is to be applied as a uniform pressure distribution to an area on the

back (suction) side of the blade for the following load cases:

 a) Load case 1: from 0.6R to the tip and from the blade leading edge

 to a value of 0.2 chord length.

 b) Load case 2: a load equal to 50% of the Fb is to be applied on

 the propeller tip area outside of 0.9R.

 c) Load case 5: for reversible propellers a load equal to 60% of

 the Fb is to be applied from 0.6R to the tip and from the blade

 trailing edge to a value of 0.2 chord length.

 80

I3.4.3.2 Maximum Forward Blade Force, Ff:

"""

D_limit=2./(1.-d_h/D)*H_ice #m

if D < D_limit:

 F_f=250.*ar/Z*D**2 #kN

else:

 F_f=500./(1.-d_h/D)*H_ice*ar/Z*D #kN

print('F_f = {:6.4f} kN'.format(F_f))

"""

Ff is to be applied as a uniform pressure distribution to an area on the

face (pressure) side of the blade for the following loads cases:

 a) Load case 3: from 0.6R to the tip and from the blade leading edge

 to a value of 0.2 chord length.

 b) Load case 4: a load equal to 50% of the Ff is to be applied on

 the propeller tip area outside of 0.9R.

 c) Load case 5: for reversible propellers a load equal to 60% Ff is

 to be applied from 0.6R to the tip and from the blade trailing

 edge to a value of 0.2 chord length.

I3.4.3.3 Maximum Blade Spindle Torque, Qsmax:

 Spindle torque Qsmax around the spindle axis of the blade fitting

 shall be calculated both for the load cases described in I3.4.3.1 &

 I3.4.3.2 for Fb Ff. If these spindle torque values are less than

 the default value given below, the default minimum value shall be

 used.

"""

D_limit:1.81*H_ice #m

F is either Fb or Ff, whichever has the greater absolute value

if np.abs(F_b) > np.abs(F_f):

 F=F_b #kN

else:

 81

 F=F_f #kN

Q_smax=0.25*F*c_7 #kNm

print('Q_smax = {:6.4f} kNm'.format(Q_smax))

if D < D_limit:

 Q_max=105.*(1-d_h/D)*S_qice*(P_7/D)**0.16*(t_7/D)**0.6*(n_ss*D)**0.17*D**3

else:

 Q_max=202.*(1-

d_h/D)*S_qice*H_ice**1.1*(P_7/D)**0.16*(t_7/D)**0.6*(n_ss*D)**0.17*D**1.9

if Q_max < Q_smax:

 Q_max=Q_smax #kNm

else:

 Q_max=Q_max #kNm

print('Q_max = {:6.4f} kNm'.format(Q_max))

"""

For CP propellers, propeller pitch, P0.7 shall correspond to MCR in

bollard condition. If not known, P0.7 is to be taken as 0.7⋅P0.7n ,

where P0.7n is propeller pitch at MCR free running condition.

I3.4.3.5 Maximum Propeller Ice Thrust applied to the shaft:

"""

T_f=1.1*F_f #kN

T_b=1.1*F_b #kN

print('T_f = {:6.4f} kN'.format(T_f))

print('T_b = {:6.4f} kN'.format(T_b))

Structural Design

"""

I3.4.6.2 Maximum Response Thrust:

 Maximum thrust along the propeller shaft line is to be calculated

 82

 with the formulae below. The factors 2.2 and 1.5 take into account

 the dynamic magnification due to axial vibration. Alternatively, the

 propeller thrust magnification factor may be calculated by dynamic

 analysis.

"""

T_n=1.25*T #kN

T_for=T_n + 2.2*T_f #kN

T_rev=1.5*T_b #kN

print('T_for = {:6.4f} kN'.format(T_for))

print('T_rev = {:6.4f} kN'.format(T_rev))

"""

I3.4.6.3 Blade Failure Load for both Open and Nozzle Propeller:

 The force is acting at 0.8R in the weakest direction of the blade

 and at a spindle arm of 2/3 of the distance of axis of blade

 rotation of leading and trailing edge which ever is the greatest.

"""

sigma_ref=0.6*sigma_y + 0.4*sigma_u #kPa

F_ex=0.3*c_r*t_r**2*sigma_ref/(0.8*D- 2.*r)*10.**3 #kN

print('F_ex = {:6.4f} kN'.format(F_ex))

"""

I3.5 Design:

 I3.5.1 Design Principle:

 The strength of the propulsion line shall be designed

 a) for maximum loads in I3.4;

 b) such that the plastic bending of a propeller blade shall

 not cause damages in other propulsion line components;

 c) with sufficient fatigue strength.

 I3.5.3 Blade Design:

 I3.5.3.1 Maximum Blade Stresses:

 Blade stresses are to be calculated using the backward and

 forward loads given in section 4.3 & 4.4. The stresses

 shall be calculated with recognised and well documented

 83

 FE-analysis or other acceptable alternative method. The

 stresses on the blade shall not exceed the allowable

 stresses sigma_all for the blade material given below.

"""

sigma_ref1=0.7*sigma_u

sigma_ref2=0.6*sigma_y + 0.4*sigma_u

if sigma_ref1 < sigma_ref2:

 sigma_ref=sigma_ref1

else:

 sigma_ref=sigma_ref2

S=1.5

sigma_all=sigma_ref/S

print('all. stress = {:6.4f} kPa'.format(sigma_all))

if sigma_calc < sigma_all:

 print("PASS")

else:

 print("FAIL")

"""

I3.5.3.2 Blade Edge Thickness:

 The blade edge thicknesses and tip thickness are to be greater than

 t_edge given by the following formula:

"""

Trailing Edges:

distance from the blade edge measured along the cylindrical sections

from the edge and shall be 2.5% of chord length, however, not to be

taken greater than 45 mm

rRid starts at 0 for 0.15

 84

rRid=13

cl=cl[rRid]

x=0.025*cl*1000. #mm

if x > 45.:

 x=45. #mm

else:

 x=x #mm

S=2.5 #safety factor

calculate for trailing edge

p_ice=16. #MPa; ice pressure

t_te=x*S*S_ice*np.sqrt(3.*p_ice/sigma_ref)

Leading Edges:

distance from the blade edge measured along the cylindrical sections

from the edge and shall be 2.5% of chord length, however, not to be

taken greater than 45 mm

if x > 45.:

 x=45. #mm

else:

 x=x #mm

S=3.5 #safety factor

p_ice=16. #MPa; ice pressure

t_le=x*S*S_ice*np.sqrt(3.*p_ice/sigma_ref)

Blade Tips:

In the tip area (above 0.975R radius) x shall be taken as 2.5% of

0.975R section length and is to be measured perpendicularly to the

edge, however, not to be taken greater than 45 mm

x=0.025*cltip*1000. #mm

if x > 45.:

 85

 x=45. #mm

else:

 x=x #mm

S=5. #safety factor

p_ice=16. #MPa; ice pressure

t_tip=x*S*S_ice*np.sqrt(3.*p_ice/sigma_ref)

print('')

print('Blade Thickness Requirements:')

print('current r/R ratio x={:8.4f} '.format(rR[rRid]))

if rRid < 12:

 print('min. trailing edge t={:8.4f} mm'.format(t_te))

 print('min. leading edge t={:8.4f} mm'.format(t_le))

else:

 print('min. tip thick. t={:8.4f} mm'.format(t_tip))

"""

NOTE: If the propeller is not a reversible rotation open propeller, the

trailing edge requirement can be ignored.

"""

rRedge=np.array([0.15,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.95])

t_te=np.array([0.4935,0.5360,0.5759,0.6137,0.6777,0.7246,0.7514,0.7528,\

 0.7143,0.6717,0.6024,0.4804])

t_le=np.array([0.6909,0.7504,0.8062,0.8592,0.9488,1.0145,1.0520,1.0539,\

 1.0000,0.9404,0.8433,0.6726])

rRtip=np.array([0.975,1.0])

t_tip=np.array([0.7518,0.7518])

plt.figure(figsize=(5,10))

plt.plot(t_te,rRedge,lw=2,label=r"Trailing Edge Thickness")

plt.plot(t_le,rRedge,lw=2,label=r"Leading Edge Thickness")

plt.plot(t_tip,rRtip,lw=2,label=r"Tip Thickness")

plt.xlabel(r'Blade Thickness, t $[mm]$')

plt.ylabel(r'Radius Ratio, r/R $[-]$')

plt.title("Minimum Required Blade Thicknesses at Each Radius")

 86

plt.legend()

plt.grid()

plt.show()

 87

Appendix D: Python Resistance Results

Coefficients:

c1= 10.864806

c2= 1.000000

c3= 0.000000

c4= 0.040000

c5= 1.000000

c7= 0.221546

c8= 29.739985

c9= 29.212536

c11= 1.548556

c14= 1.110000

c15= -1.693850

c16= 1.165591

c17= 1.691058

c19= 0.032029

c20= 1.150000

d= -0.900000

lambda= 1.019722

m1= -2.287501

m3= 10.864806

C_P1= 0.807920

Froude Numbers and Misc. Coefficients:

 v_kn Fr Fr_T c_6 m3(Fr^d) m4 m4cos(lambda/Fr^2)

 [kn] [-] [-] [-] [-] [-] [-]

 10.00 0.16631 0.00000 0.2000 -8.80483 -0.00000 -0.00000

 10.50 0.17462 0.00000 0.2000 -8.42656 -0.00002 0.00001

 11.00 0.18294 0.00000 0.2000 -8.08104 -0.00008 -0.00004

 11.50 0.19125 0.00000 0.2000 -7.76413 -0.00026 0.00024

 12.00 0.19957 0.00000 0.2000 -7.47236 -0.00074 -0.00066

 12.50 0.20789 0.00000 0.2000 -7.20281 -0.00173 -0.00006

 13.00 0.21620 0.00000 0.2000 -6.95299 -0.00357 0.00352

 13.50 0.22452 0.00000 0.2000 -6.72079 -0.00659 -0.00125

 14.00 0.23283 0.00000 0.2000 -6.50438 -0.01111 -0.01110

 14.50 0.24115 0.00000 0.2000 -6.30216 -0.01739 -0.00442

 88

 15.00 0.24946 0.00000 0.2000 -6.11278 -0.02560 0.01994

 15.50 0.25778 0.00000 0.2000 -5.93502 -0.03579 0.03347

 16.00 0.26609 0.00000 0.2000 -5.76784 -0.04791 0.01252

 16.50 0.27441 0.00000 0.2000 -5.61029 -0.06183 -0.03466

 17.00 0.28272 0.00000 0.2000 -5.46156 -0.07735 -0.07594

 17.50 0.29104 0.00000 0.2000 -5.32092 -0.09423 -0.08141

 18.00 0.29936 0.00000 0.2000 -5.18771 -0.11220 -0.04199

 18.50 0.30767 0.00000 0.2000 -5.06135 -0.13102 0.02901

 19.00 0.31599 0.00000 0.2000 -4.94132 -0.15041 0.10607

Resistance Components and Total Resistance:

 v_kn Fr R_F R_A R_W R_APP R_AA R_TR R_I R_T

 [kn] [-] [kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]

 10.00 0.16631 46.778 10.705 8.259 19.445 1.410 0.000 631.519 106.236

 10.50 0.17462 51.238 11.803 13.534 21.327 1.554 0.000 650.982 120.967

 11.00 0.18294 55.887 12.953 21.248 23.292 1.706 0.000 670.201 138.548

 11.50 0.19125 60.723 14.158 32.146 25.338 1.864 0.000 689.191 159.724

 12.00 0.19957 65.747 15.416 47.009 27.467 2.030 0.000 707.965 185.271

 12.50 0.20789 70.956 16.727 66.878 29.676 2.203 0.000 726.537 216.230

 13.00 0.21620 76.351 18.092 93.001 31.967 2.382 0.000 744.918 253.848

 13.50 0.22452 81.930 19.510 125.338 34.339 2.569 0.000 763.117 298.082

 14.00 0.23283 87.692 20.982 164.633 36.791 2.763 0.000 781.144 349.677

 14.50 0.24115 93.637 22.508 215.814 39.323 2.964 0.000 799.007 413.558

 15.00 0.24946 99.764 24.087 283.167 41.936 3.172 0.000 816.714 494.009

 15.50 0.25778 106.072 25.719 362.001 44.628 3.387 0.000 834.272 586.339

 16.00 0.26609 112.561 27.406 440.975 47.400 3.609 0.000 851.688 679.205

 16.50 0.27441 119.229 29.145 516.719 50.251 3.838 0.000 868.968 769.237

 17.00 0.28272 126.077 30.938 602.085 53.181 4.074 0.000 886.117 869.285

 17.50 0.29104 133.103 32.785 719.503 56.190 4.317 0.000 903.142 1001.778

 18.00 0.29936 140.307 34.685 890.607 59.278 4.567 0.000 920.046 1188.349

 18.50 0.30767 147.688 36.639 1127.631 62.444 4.824 0.000 936.834 1441.231

 19.00 0.31599 155.247 38.646 1424.617 65.689 5.089 0.000 953.511 1754.464

Self-Propulsion Point:

 89

 v_kn Fr w_s v_a T_req C_S J_TS K_TS 10K_QTS

 [kn] [-] [-] [m/s] [kN] [-] [-] [-] [-]

 10.00 0.16631 0.1839 4.1983 130.3379 0.77441 0.4684 0.1699 0.2315

 10.50 0.17462 0.1838 4.4089 148.4104 0.79956 0.4638 0.1720 0.2336

 11.00 0.18294 0.1837 4.6195 169.9801 0.83417 0.4577 0.1748 0.2364

 11.50 0.19125 0.1836 4.8302 195.9595 0.87961 0.4501 0.1782 0.2399

 12.00 0.19957 0.1834 5.0408 227.3025 0.93680 0.4411 0.1823 0.2439

 12.50 0.20789 0.1833 5.2515 265.2854 1.00737 0.4308 0.1869 0.2486

 13.00 0.21620 0.1832 5.4622 311.4373 1.09314 0.4192 0.1921 0.2537

 13.50 0.22452 0.1832 5.6730 365.7072 1.19003 0.4073 0.1974 0.2590

 14.00 0.23283 0.1831 5.8837 429.0069 1.29779 0.3952 0.2027 0.2642

 14.50 0.24115 0.1830 6.0945 507.3801 1.43055 0.3818 0.2085 0.2700

 15.00 0.24946 0.1829 6.3053 606.0826 1.59650 0.3669 0.2149 0.2763

 15.50 0.25778 0.1828 6.5161 719.3594 1.77426 0.3528 0.2209 0.2822

 16.00 0.26609 0.1827 6.7269 833.2941 1.92847 0.3419 0.2255 0.2867

 16.50 0.27441 0.1827 6.9378 943.7509 2.05336 0.3338 0.2288 0.2900

 17.00 0.28272 0.1826 7.1486 1066.4964 2.18556 0.3259 0.2321 0.2932

 17.50 0.29104 0.1825 7.3595 1229.0482 2.37641 0.3154 0.2364 0.2975

 18.00 0.29936 0.1825 7.5704 1457.9452 2.66413 0.3014 0.2421 0.3030

 18.50 0.30767 0.1824 7.7813 1768.1979 3.05829 0.2851 0.2486 0.3094

 19.00 0.31599 0.1823 7.9922 2152.4933 3.52907 0.2688 0.2550 0.3156

Efficiency and Powering:

 v_kn Fr eta_H eta_O eta_D n n P_D

 [kn] [-] [-] [-] [-] [1/s] [rpm] [kW]

 10.00 0.16631 0.9988 0.5471 0.5522 2.941 176.445 989.79

 10.50 0.17462 0.9986 0.5435 0.5484 3.119 187.127 1191.41

 11.00 0.18294 0.9985 0.5386 0.5434 3.311 198.668 1442.69

 11.50 0.19125 0.9983 0.5323 0.5371 3.521 211.232 1759.46

 12.00 0.19957 0.9982 0.5247 0.5293 3.749 224.942 2160.87

 12.50 0.20789 0.9981 0.5157 0.5201 3.999 239.970 2673.44

 13.00 0.21620 0.9980 0.5052 0.5095 4.275 256.489 3331.98

 13.50 0.22452 0.9978 0.4941 0.4982 4.570 274.195 4155.04

 14.00 0.23283 0.9977 0.4825 0.4865 4.885 293.073 5176.65

 14.50 0.24115 0.9976 0.4693 0.4731 5.237 314.237 6520.40

 15.00 0.24946 0.9975 0.4542 0.4578 5.638 338.298 8326.11

 15.50 0.25778 0.9974 0.4395 0.4430 6.059 363.543 10552.79

 90

 16.00 0.26609 0.9973 0.4279 0.4313 6.455 387.279 12961.46

 16.50 0.27441 0.9973 0.4192 0.4225 6.818 409.100 15454.73

 17.00 0.28272 0.9972 0.4106 0.4137 7.197 431.802 18375.12

 17.50 0.29104 0.9971 0.3990 0.4020 7.655 459.307 22432.80

 18.00 0.29936 0.9970 0.3833 0.3862 8.239 494.361 28492.37

 18.50 0.30767 0.9969 0.3647 0.3674 8.954 537.226 37334.78

 19.00 0.31599 0.9969 0.3457 0.3483 9.754 585.232 49239.70

 91

Appendix E: NavCAD Holtrop and Mennen Results

 92

 93

 94

 95

 96

Appendix F: NavCAD Andersen Results

 97

 98

 99

 100

 101

Appendix G: NavCAD Fung (CRTS) Results

 102

 103

 104

 105

 106

Appendix H: NavCAD Fung (HSTS) Results

 107

 108

 109

 110

 111

Appendix I: Polynomial Code – WBPolynomials.py

NAME 3150 Honors Work

Date Last Modified: 05/13/2020

"""

Honors Assignment:

Given the Wageningen B-Series polynomials for determining

the K_T and K_Q curves and example data, program in Python open

water chart graphs for any given propeller data.

"""

import numpy as np

import matplotlib.pyplot as plt

from scipy.optimize import fsolve

===

2. K_T polynomial values and sum

def K_Tfunc(J,PD,ar,Z):

 T1=0.00880496*(J**0)*(PD**0)*(ar**0)*(Z**0)

 T2=-0.204554*(J**1)*(PD**0)*(ar**0)*(Z**0)

 T3=0.166351*(J**0)*(PD**1)*(ar**0)*(Z**0)

 T4=0.158114*(J**0)*(PD**2)*(ar**0)*(Z**0)

 T5=-0.147581*(J**2)*(PD**0)*(ar**1)*(Z**0)

 T6=-0.481497*(J**1)*(PD**1)*(ar**1)*(Z**0)

 T7=0.415437*(J**0)*(PD**2)*(ar**1)*(Z**0)

 T8=0.0144043*(J**0)*(PD**0)*(ar**0)*(Z**1)

 T9=-0.0530054*(J**2)*(PD**0)*(ar**0)*(Z**1)

 T10=0.0143481*(J**0)*(PD**1)*(ar**0)*(Z**1)

 T11=0.0606826*(J**1)*(PD**1)*(ar**0)*(Z**1)

 T12=-0.0125894*(J**0)*(PD**0)*(ar**1)*(Z**1)

 T13=0.0109689*(J**1)*(PD**0)*(ar**1)*(Z**1)

 T14=-0.133698*(J**0)*(PD**3)*(ar**0)*(Z**0)

 T15=0.00638407*(J**0)*(PD**6)*(ar**0)*(Z**0)

 T16=-0.00132718*(J**2)*(PD**6)*(ar**0)*(Z**0)

 T17=0.168496*(J**3)*(PD**0)*(ar**1)*(Z**0)

 112

 T18=-0.0507214*(J**0)*(PD**0)*(ar**2)*(Z**0)

 T19=0.0854559*(J**2)*(PD**0)*(ar**2)*(Z**0)

 T20=-0.0504475*(J**3)*(PD**0)*(ar**2)*(Z**0)

 T21=0.010465*(J**1)*(PD**6)*(ar**2)*(Z**0)

 T22=-0.00648272*(J**2)*(PD**6)*(ar**2)*(Z**0)

 T23=-0.00841728*(J**0)*(PD**3)*(ar**0)*(Z**1)

 T24=0.0168424*(J**1)*(PD**3)*(ar**0)*(Z**1)

 T25=-0.00102296*(J**3)*(PD**3)*(ar**0)*(Z**1)

 T26=-0.0317791*(J**0)*(PD**3)*(ar**1)*(Z**1)

 T27=0.018604*(J**1)*(PD**0)*(ar**2)*(Z**1)

 T28=-0.00410798*(J**0)*(PD**2)*(ar**2)*(Z**1)

 T29=-0.000606848*(J**0)*(PD**0)*(ar**0)*(Z**2)

 T30=-0.0049819*(J**1)*(PD**0)*(ar**0)*(Z**2)

 T31=0.0025983*(J**2)*(PD**0)*(ar**0)*(Z**2)

 T32=-0.000560528*(J**3)*(PD**0)*(ar**0)*(Z**2)

 T33=-0.00163652*(J**1)*(PD**2)*(ar**0)*(Z**2)

 T34=-0.000328787*(J**1)*(PD**6)*(ar**0)*(Z**2)

 T35=0.000116502*(J**2)*(PD**6)*(ar**0)*(Z**2)

 T36=0.000690904*(J**0)*(PD**0)*(ar**1)*(Z**2)

 T37=0.00421749*(J**0)*(PD**3)*(ar**1)*(Z**2)

 T38=0.0000565229*(J**3)*(PD**6)*(ar**1)*(Z**2)

 T39=-0.00146564*(J**0)*(PD**3)*(ar**2)*(Z**2)

K_T=T1+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16+T17+T18+T19

\

 +T20+T21+T22+T23+T24+T25+T26+T27+T28+T29+T30+T31+T32+T33+T34+T35+T36 \

 +T37+T38+T39

 return K_T

==

3. K_Q polynomial values and sum

def K_Qfunc(J,PD,ar,Z):

 Q1=0.00379368*(J**0)*(PD**0)*(ar**0)*(Z**0)

 113

 Q2=0.00886523*(J**2)*(PD**0)*(ar**0)*(Z**0)

 Q3=-0.032241*(J**1)*(PD**1)*(ar**0)*(Z**0)

 Q4=0.00344778*(J**0)*(PD**2)*(ar**0)*(Z**0)

 Q5=-0.0408811*(J**0)*(PD**1)*(ar**1)*(Z**0)

 Q6=-0.108009*(J**1)*(PD**1)*(ar**1)*(Z**0)

 Q7=-0.0885381*(J**2)*(PD**1)*(ar**1)*(Z**0)

 Q8=0.188561*(J**0)*(PD**2)*(ar**1)*(Z**0)

 Q9=-0.00370871*(J**1)*(PD**0)*(ar**0)*(Z**1)

 Q10=0.00513696*(J**0)*(PD**1)*(ar**0)*(Z**1)

 Q11=0.0209449*(J**1)*(PD**1)*(ar**0)*(Z**1)

 Q12=0.00474319*(J**2)*(PD**1)*(ar**0)*(Z**1)

 Q13=-0.00723408*(J**2)*(PD**0)*(ar**1)*(Z**1)

 Q14=0.00438388*(J**1)*(PD**1)*(ar**1)*(Z**1)

 Q15=-0.0269403*(J**0)*(PD**2)*(ar**1)*(Z**1)

 Q16=0.0558082*(J**3)*(PD**0)*(ar**1)*(Z**0)

 Q17=0.0161886*(J**0)*(PD**3)*(ar**1)*(Z**0)

 Q18=0.00318086*(J**1)*(PD**3)*(ar**1)*(Z**0)

 Q19=0.015896*(J**0)*(PD**0)*(ar**2)*(Z**0)

 Q20=0.0471729*(J**1)*(PD**0)*(ar**2)*(Z**0)

 Q21=0.0196283*(J**3)*(PD**0)*(ar**2)*(Z**0)

 Q22=-0.0502782*(J**0)*(PD**1)*(ar**2)*(Z**0)

 Q23=-0.030055*(J**3)*(PD**1)*(ar**2)*(Z**0)

 Q24=0.0417122*(J**2)*(PD**2)*(ar**2)*(Z**0)

 Q25=-0.0397722*(J**0)*(PD**3)*(ar**2)*(Z**0)

 Q26=-0.00350024*(J**0)*(PD**6)*(ar**2)*(Z**0)

 Q27=-0.0106854*(J**3)*(PD**0)*(ar**0)*(Z**1)

 Q28=0.00110903*(J**3)*(PD**3)*(ar**0)*(Z**1)

 Q29=-0.000313912*(J**0)*(PD**6)*(ar**0)*(Z**1)

 Q30=0.0035985*(J**3)*(PD**0)*(ar**1)*(Z**1)

 Q31=-0.00142121*(J**0)*(PD**6)*(ar**1)*(Z**1)

 Q32=-0.00383637*(J**1)*(PD**0)*(ar**2)*(Z**1)

 Q33=0.0126803*(J**0)*(PD**2)*(ar**2)*(Z**1)

 Q34=-0.00318278*(J**2)*(PD**3)*(ar**2)*(Z**1)

 Q35=0.00334268*(J**0)*(PD**6)*(ar**2)*(Z**1)

 Q36=-0.00183491*(J**1)*(PD**1)*(ar**0)*(Z**2)

 Q37=0.000112451*(J**3)*(PD**2)*(ar**0)*(Z**2)

 Q38=-0.0000297228*(J**3)*(PD**6)*(ar**0)*(Z**2)

 Q39=0.000269551*(J**1)*(PD**0)*(ar**1)*(Z**2)

 Q40=0.00083265*(J**2)*(PD**0)*(ar**1)*(Z**2)

 Q41=0.00155334*(J**0)*(PD**2)*(ar**1)*(Z**2)

 114

 Q42=0.000302683*(J**0)*(PD**6)*(ar**1)*(Z**2)

 Q43=-0.0001843*(J**0)*(PD**0)*(ar**2)*(Z**2)

 Q44=-0.000425399*(J**0)*(PD**3)*(ar**2)*(Z**2)

 Q45=0.0000869243*(J**3)*(PD**3)*(ar**2)*(Z**2)

 Q46=-0.0004659*(J**0)*(PD**6)*(ar**2)*(Z**2)

 Q47=0.0000554194*(J**1)*(PD**6)*(ar**2)*(Z**2)

K_Q=Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8+Q9+Q10+Q11+Q12+Q13+Q14+Q15+Q16+Q17+Q18

+Q19 \

+Q20+Q21+Q22+Q23+Q24+Q25+Q26+Q27+Q28+Q29+Q30+Q31+Q32+Q33+Q34+Q35+Q36

\

 +Q37+Q38+Q39+Q40+Q41+Q42+Q43+Q44+Q45+Q46+Q47

 return K_Q

==

4. eta_O function

def eta_Ofunc(J,PD,ar,Z):

 KT=K_Tfunc(J,PD,ar,Z)

 KQ=K_Qfunc(J,PD,ar,Z)

 eta_O=J/(2.*np.pi)*KT/KQ

 return eta_O

==

3. Open Water Chart graphing

def openwaterchart(J,PD,ar,Z):

 #plt.figure(figsize=(15,10))

 plt.plot(J,K_Tfunc(J,PD,ar,Z),lw=2,label=r"$[K_T]$")

 plt.plot(J,10.*K_Qfunc(J,PD,ar,Z),lw=2,label=r"$[10K_Q]$")

 115

 plt.plot(J,eta_Ofunc(J,PD,ar,Z),lw=2,label=r"$[eta_O]$")

 plt.title("Open Water Chart for Wageningen B-Series Propeller")

 plt.xlabel("Advance Ratio, J $[-]$")

 plt.ylabel("Thrust and Torque Coefficients, K_T, $10K_Q$ $[-]$")

 plt.legend()

 #plt.grid()

 #plt.show()

use find function to find self prop point for dc_4

def findJTS2(dc_4,PD,ar,Z):

 """

 Find the self-propulsion point as intersection of

 parabola dc_4*J**2 and KT curve

 """

 J_0=0.7 #initial guess for J

 # solve for intersection point

 # needs to be , after JTS so that fsolve only

 # returns desired value

 JTS,=fsolve(lambda J:dc_4*(J**2)-K_Tfunc(J,PD,ar,Z),J_0)

 return JTS

finding minimum area ratio from Burrill criterion

def ar_min(n,PD,D,T_req,v_as,e,rho):

 g = 9.807 #m/s^2

 rho=1026.021 #kg/m^3

 p_A=101325. #Pa

 p_v=1671. #Pa

 p_0=p_A+rho*g*e

 v_1=np.sqrt((v_as**2)+(0.7*np.pi*n*D)**2)

 sigma_b=(p_0-p_v)/(0.5*rho*v_1**2)

 tau_c=0.715*(sigma_b**0.184)-0.437

 r1=0.5*rho*(v_1**2)*tau_c*(1.067- 0.229*PD)*np.pi*(D**2)/4.

 arm=T_req/r1

 116

 return arm

test

if __name__ == '__main__':

 Z=4.0

 PD=0.70

 ar=0.5500 #expanded area ratio

 J=np.array([0.0,0.2,0.4,0.6,0.8,1.0])

 plt.figure(figsize=(15,10))

 openwaterchart(J,PD,ar,Z)

 plt.grid()

 plt.show()

 117

Appendix J: Optimization Code – WBOpt.py

NAME 3155 Project: Propeller Optimization Tool

Date Last Modified: 04/28/2021

"""

Propeller Selection Program:

 Use the Wageningen B-Series polynomials and Holtrop and

 Mennen's Resistance and Propulsion estimate method to

 vary propeller design parameters and optimize a propeller

 for any given vessel particulars.

"""

from WBPolynomials import eta_Ofunc,findJTS2,ar_min

g=9.807

rho=1027.8336 #kg/m^3; density at 4ºC

nu=1.6262e-6 #m^2/s; viscosity at 4ºC

Step 1: Define Design Constants

completed in project code

Step 2: Open-Water Diagram for Chosen Design Constant

completed in project code

Step 3: Extract Max Efficiency from Diagram

def optimumprop(x,dc_4,Z,D,T_req,v_as,rho,e,proptype):

 #retreive free variables

 PD=x[0]

 ar=x[1]

 #find JTS for this prop

 JTS=findJTS2(dc_4,PD,ar,Z)

 #rate of revolution at self-propulsion point

 nTS=v_as/(JTS*D)

 #compute open water efficiency

 118

 eta_O=eta_Ofunc(JTS,PD,ar,Z)

 #compute constraints

 p=0. #initial value

 if ar < ar_min(nTS,PD,D,T_req,v_as,e,rho):

 p=p+(ar_min(nTS,PD,D,T_req,v_as,e,rho)-ar)**2

 print('p = ',p)

 if proptype=='CPP':

 armax=0.75

 if ar > armax:

 p=p+7.*(ar-armax)**2

 print('p = ',p)

 if PD > 1.4:

 p=p+(PD-1.4)**2

 obj=1.-eta_O+ 10.*p

 print('p = ',p)

 print('')

 return obj

	Design of an Ice-Class Propeller for the MV Yahtse, an Icebreaking, Car and Cargo, RoRo Ferry
	Recommended Citation

	Mara cover sheet
	NAME 3900 Honors Thesis Paper
	List of Tables
	List of Figures
	Abstract
	1. Introduction
	2. Resistance and Propulsion Analysis
	3. Propeller Optimization
	4. Propeller Structural Analysis and Design
	5. Conclusion
	References
	Appendix A: R&P Code – NAME3150RPHoltrop.py
	Appendix B: Propeller Geometry Code – WBSeriesPropGeometry.py
	Appendix C: Propeller Structural Code – MVYahtsePropellerDev.py
	Appendix D: Python Resistance Results
	Appendix E: NavCAD Holtrop and Mennen Results
	Appendix F: NavCAD Andersen Results
	Appendix G: NavCAD Fung (CRTS) Results
	Appendix H: NavCAD Fung (HSTS) Results
	Appendix I: Polynomial Code – WBPolynomials.py
	Appendix J: Optimization Code – WBOpt.py

