Design of an Ice-Class Propeller for the MV Yahtse, an Icebreaking, Car and Cargo, RoRo Ferry

Mara Kramer
University of New Orleans

Follow this and additional works at: https://scholarworks.uno.edu/honors_theses
Part of the Ocean Engineering Commons

Recommended Citation

Kramer, Mara, "Design of an Ice-Class Propeller for the MV Yahtse, an Icebreaking, Car and Cargo, RoRo Ferry" (2021). Senior Honors Theses. 138.
https://scholarworks.uno.edu/honors_theses/138

This Honors Thesis-Unrestricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Honors Thesis-Unrestricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself.

This Honors Thesis-Unrestricted has been accepted for inclusion in Senior Honors Theses by an authorized administrator of ScholarWorks@UNO. For more information, please contact scholarworks@uno.edu.

Design of an Ice-Class Propeller for the MV Yahtse,

 an Icebreaking, Car and Cargo, RoRo FerryAn Honors Thesis
Presented to
the School of Naval Architecture and Marine Engineering of the University of New Orleans
In Partial Fulfillment
of the Requirements for the Degree of Bachelor of Science, with University High Honors and Honors in Naval Architecture and Marine Engineering
by
Mara Kramer

May 2021

Table of Contents

LIST OF TABLES III
LIST OF FIGURES IV
ABSTRACT V

1. INTRODUCTION 1
2. RESISTANCE AND PROPULSION ANALYSIS 4
3. PROPELLER OPTIMIZATION 12
4. PROPELLER STRUCTURAL ANALYSIS AND DESIGN 17
5. CONCLUSION 27
REFERENCES. 29
APPENDIX A: R\&P CODE - NAME3150RPHOLTROP.PY 31
APPENDIX B: PROPELLER GEOMETRY CODE - WBSERIESPROPGEOMETRY.PY 53
APPENDIX C: PROPELLER STRUCTURAL CODE - MVYAHTSEPROPELLERDEV.PY 73
APPENDIX D: PYTHON RESISTANCE RESULTS 87
APPENDIX E: NAVCAD HOLTROP AND MENNEN RESULTS 91
APPENDIX F: NAVCAD ANDERSEN RESULTS 96
APPENDIX G: NAVCAD FUNG (CRTS) RESULTS 101
APPENDIX H: NAVCAD FUNG (HSTS) RESULTS 106
APPENDIX I: POLYNOMIAL CODE - WBPOLYNOMIALS.PY 111
APPENDIX J: OPTIMIZATION CODE - WBOPT.PY 117

List of Tables

Table 1: Comparison of Holtrop and Mennen total resistance values.
Table 2: Optimum propeller characteristics for the MV Yahtse.
Table 3: Propeller steel properties, calculated stress, and allowable stress.
Table 4: Maximum minimum blade edge thicknesses.

List of Figures

Figure 1: Resistance components and total resistance (without icebreaking) from Python.
Figure 2: Total resistance for each method calculated using NavCAD.
Figure 3: Open water chart with self-propulsion points.
Figure 4: Blade moment and stress calculation tables from Marine Engineering Vol. 1 [12].
Figure 5: Blade cross-section geometry as defined by Marine Engineering Vol. 1 [12].
Figure 6: Blade cross-section geometry as defined by Oosterveld and Oossanen [7].
Figure 7: Edge thickness ratios for conventional, low-skew propellers [13].
Figure 7: Hydrofoil cross-section located on a propeller blade [16].
Figure 8: Minimum required blade edge thickness distribution.
Figure 8: Propeller model for blade visualization from B-Series Propeller Generator [18].

Abstract

During early-stage ship design, a propulsion system must be matched with data from a resistance and propulsion analysis to determine the propulsion power required for the vessel to run at its design speed. Typically, this process is completed within NavCAD; however, NavCAD does not have a method to calculate icebreaking resistance or design a propeller to meet the ice-class criteria stipulated by the International Association of Classification Societies (IACS). This paper displays and discusses Python scripts written to complete the resistance and propulsion analysis, propeller optimization, and propeller structural design meeting IACS criteria for an icebreaking, RoRo car and cargo ferry, the MV Yahtse. This code was designed to complete propeller design for the preliminary design stage of the vessel; however, the code can be modified for any stage of design as well as for use with any icebreaking vessel with principal characteristics that fall within the parameters required for the use of Holtrop and Mennen's resistance and propulsion analysis method. The Python scripts were proven to be able to generate resistance and propulsion analysis results comparable to the results found from NavCAD as well as design two propellers suitable for the MV Yahtse that pass the criteria imposed by the IACS ice-class regulations.

Keywords: resistance, icebreaking, propeller, Python, Wageningen B-Series

1. Introduction

Typically, during the ship design process, engineers will match a propeller with their ship based on results obtained through a resistance and propulsion analysis completed either with a simulation tool (such as NavCad) or model testing. This step is critical for both early-stage design and subsequent iterations as it determines the amount of propulsive power the vessel requires to operate at its design speed, and from this information the engines can be sized. However, for ships with a unique design, a propeller must be designed that considers any special operating conditions or missions that the vessel is designed to handle without compromising performance. The MV Yahtse is one of these outlying cases. It is an overnight, car and cargo, roll on-roll off (RoRo), twin-screw (two propellers) ferry designed to service the Alaskan coast from the southwest Aleutian Islands to the north slope town of Utqiagivik (formerly known as Barrow) which lies within the Arctic Circle. Due to the geographical range over which the MV Yahtse will provide service, the hull will be Ice-Class 3 according to the International Association of Classification Societies" (IACS) "Requirements Concerning Polar Class" [1] and any additional American Bureau of Shipping (ABS) guidelines in "Guidance Notes on Ice Class" [2]. This ice class operational requirement imposes special design considerations upon the propulsion system. To aid in the design of the propeller regarding these requirements, a propeller design tool for the preliminary vessel design stage has been written in Python. This paper aims to breakdown the operation of the Python script as well as the theory and methodology for the propeller design methods used within.

To write the propeller design tool, five major "steps" had to be coded. The first step completed a resistance and propulsion analysis using Holtrop and Mennen's method. The second step used the Wageningen B systematic propeller series developed by the Netherlands Ship Model

Basin (MARIN) and the results from the resistance and propulsion analysis of the MV Yahtse to optimize a propeller for the vessel. Next, the geometry of the propeller was calculated. Then, using the propeller geometry, the maximum stresses acting on the blade were calculated. Finally, using the IACS requirements, the required thickness of the blade edges as well as an evaluation on whether the blade would meet the stress requirements was determined.

The code developed for this project is intended to be run in an iterative manner, assuming the propeller would not meet the structural criteria immediately. The propeller was designed with the ship running at service speed without any icebreaking resistance. This decision was made since the ship will only be using its icebreaking capabilities in a few specific scenarios (i.e., winter cargo deliveries to Utqiagvik). This set of input values also served as the basis for a comparison to NavCAD, as NavCAD does not have any icebreaking resistance calculation tools. A second set of inputs was used to design and test the structure of the propeller. This set of inputs used the propeller parameters optimized from the first run and resistance and propulsion results considering the ship running at design speed while icebreaking. This is a very unrealistic scenario, as the power required to run at 15 knots through a meter of ice is unreasonable for a vessel the size of the MV Yahtse; however, due to the absurdity, this condition will be sure to blanket any other operating condition that could possibly require the highest propulsion power. If the designed propeller can withstand the forces imposed by this extreme, then it stands to reason that there should be no concerns about the propeller's structural integrity for all normal operation conditions.

Utilizing Holtrop and Mennen's method for the resistance and propulsion analysis as well as Wageningen B-Series propeller data, two propellers were able to be designed to work optimally on the MV Yahtse and further geometry was developed such that these propellers met the ice-class
criteria. However, the developed propellers are meant solely for a preliminary design and there are plenty of areas in which the processes and code can be improved for later design stages.

2. Resistance and Propulsion Analysis

A resistance and propulsion analysis is an essential part of the ship design process. There have been many methods developed to complete this process, optimized for a wide variety of ships. However, they all fundamentally complete the same process. Principal characteristics of a vessel's hull form (and superstructure as necessary) act as input values and resistance estimates are made using developed formulas suitable for that vessel type. Then, using established theory, the thrust values required to propel the vessel over a range of speeds (including the design speed) are calculated. This data, in combination with propeller's geometric data and characteristics, will provide data points for required power and the efficiency of the propulsion system, completing the resistance and propulsion analysis.

There is no complete resistance estimation method dedicated to ice-breaking vessels, so the resistance and propulsion analysis was completed using Holtrop and Mennen's method [3,4] with the addition of the Jeong formulas for icebreaking resistance. Holtrop and Mennen's method was chosen as it is a complete resistance and propulsion method developed using statistical regression on data of both full-scale ships and model tests completed at MARIN. Due to the vast range of data used to develop the method, Holtrop and Mennen's method provides accurate results for a wide range of ships. In general, this method will work for monohull vessels that fall approximately into the following range of values for Froude number, prismatic coefficient, and length-to-beam ratio [5]:

$$
\begin{gather*}
F r \leq 0.45 \\
0.55 \leq C_{P} \leq 0.85 \tag{Eq.1}\\
3.9 \leq \frac{L}{B} \leq 9.5
\end{gather*}
$$

The MV Yahtse meets these three criteria, so Holtrop and Mennen's method was used as the basis for the resistance and propulsion analysis.

The selection of the icebreaking resistance formula followed much more simple reasoning. All the older icebreaking formulas were developed using detailed hull parameters (stem angle, flare angle, buttock angle, etc.) as variables, whereas Jeong et. al, in "Ice Resistance Prediction for Standard Icebreaker Model Ship" [6], proposed a resistance estimation method that did not require the same level of hull detail. This was critical for the stage of design in which the resistance and propulsion analysis was completed, as the hull form was not yet designed with certainty for such items as the stem angle, flare angle, etc. Additionally, as the icebreaking mission of the standard icebreaker model used in Jeong et. al's study is the same as the MV Yahtse's (breaking first-year ice), the Jeong formulas were determined to be an adequate fit for an icebreaking resistance estimate. The Jeong formulas are as follows:

$$
\begin{gather*}
R_{I}=13.14 V^{2}+C_{B} \Delta \rho g h_{i} B T+C_{C} F_{h}^{-\alpha} \rho_{i} B h_{i} V^{2}+C_{B R} S_{N}^{-\beta} \rho_{i} B h_{i} V^{2} \tag{Eq.2}\\
F_{h}=\frac{V}{\sqrt{g h_{i}}} \tag{Eq.3}\\
S_{N}=\frac{V}{\sqrt{\frac{\sigma_{f} h_{i}}{\rho_{i} B}}} \tag{Eq.4}
\end{gather*}
$$

where $\mathrm{C}_{\mathrm{B}}=0.5$ is the coefficient of ice buoyancy resistance, $\mathrm{C}_{\mathrm{C}}=1.11$ is the coefficient of ice clearing resistance, and $\mathrm{C}_{\mathrm{BR}}=2.73$ is the coefficient of the ice breaking resistance; F_{h} is the Froude number of the ice thickness, h_{i}, and S_{N} is the strength number. Finally, $\alpha=1.157, \beta=1.54$, ρ_{i} is the ice density and $\Delta \rho$ is the difference between the ice and water densities, V is the ship speed, and σ_{f} is the flexural strength of the ice.

The full resistance and propulsion Python script can be seen in Appendix A, but next few paragraphs aim to summarize the general structure of the script and the outcome of each portion.

The first portion of the code is dedicated to defining and calculating the ship hull characteristics necessary to complete Holtrop and Mennen's method. This involves correcting several values to the same frame of reference used by Holtrop and Mennen as well as estimating the remaining required values as necessary, which depends current stage of design for which the resistance and propulsion estimate is being completed. For a preliminary estimate, a good portion of the ship particulars will likely still be estimated using regression formulas or formulas outlined in Holtrop and Mennen's method. For a later stage resistance and propulsion analysis, it is expected that all the necessary input values are measured straight from a completed hull model.

The next portion of the code completed the resistance estimate. This is simply a long string of equations for resistance components or coefficients that ends in the total resistance being calculated with the following formula:

$$
\begin{equation*}
R_{T}=(1+k) R_{F}+R_{A P P}+R_{A}+R_{W}+R_{T R}+R_{A A}+R_{I} \tag{Eq.5}
\end{equation*}
$$

where k is the ITTC form factor, R_{F} is the frictional resistance, $\mathrm{R}_{\text {APP }}$ is the total appendage resistance, R_{A} is the correlation allowance resistance, R_{W} is the wave resistance, R_{TR} is the transom resistance, $\mathrm{R}_{\text {AA }}$ is the air resistance, and R_{I} is the icebreaking resistance found from the Jeong formulas.

The final part of Holtrop and Mennen's method completes a powering estimate by estimating the wake fraction, thrust deduction fraction, advance speed, and required thrust for the vessel with regression formulas developed by Holtrop and Mennen. Much like the resistance components, these values would normally be found during a model test and then scaled up for the full-size ship. However, due to the cost, ship models are not developed for feasibility studies and the preliminary design of a vessel, so these estimation methods serve to help engineers complete
a vital part of the ship design process with high accuracy (typically within 10% error) at a fraction of the time and cost.

Holtrop and Mennen do provide a method for estimating the relative rotative efficiency and open water efficiency of a Wageningen B-Series propeller in their paper; however, they simply provide some small corrections for a full-scale propeller built upon the work completed by Oosterveld and Van Oossanen in "Further Computer-Analyzed Data of the Wageningen B-Screw Series" [7]. Additionally, Holtrop and Mennen's work is only suitable for a situation in which the propeller characteristics are already known. Therefore, the powering estimate of the vessel will be completed as part of the propeller optimization using Oosterveld and Van Oossanen's work.

Before completing the propeller optimization and structural design, it is critical to determine that (a) the code developed thus far produces accurate results for Holtrop and Mennen's method and (b) Holtrop and Mennen's method serves as a good resistance and propulsion analysis method for the MV Yahtse. The first concern serves to simply check the correctness of the results generated by the Python script; however, the second concern exists on a much more theoretical plane. While Holtrop and Mennen's method was developed from regression analyses of a wide variety of ships, giving the method its broad range of applicability, this general applicability can sometimes cause Holtrop and Mennen's method to be rather inaccurate for unique vessel designs that do not follow the general trends found in the relations used by Holtrop and Mennen during their regression analyses. The MV Yahtse is a unique vessel design, as very few passenger vessels operate within the arctic circle, much less RoRo car ferries. Therefore, before proceeding, the resistance results from Python were compared to several resistance estimation methods in NavCAD, a resistance, propulsion, and propeller-selection software. Four methods were compared in NavCAD - Holtrop and Mennen, Andersen, Fung Transom-Stern (CRTS), and Fung High-

Speed Transom-Stern (HSTS). Andersen's method is named after the work published by Andersen and Guldhammer developing a numerical method for Guldhammer's earlier graphical procedure, "A Computer-Oriented Power Prediction Procedure" [8]. The last two methods were developed by Fung for early-stage resistance prediction of general transom-stern hulls and high-speed transom stern hulls in "Resistance and Powering Prediction for Transom-Stern Hull Forms During Early-Stage Ship Design" [9] and "Revised Speed-Dependent Powering Predictions for HighSpeed Transom-Stern Hull Forms" [10] respectively. The MV Yahtse was evaluated by NavCAD to fulfill the parameters for each of these methods and each method was manually reviewed to ensure that the MV Yahtse fell within the intended vessel type(s) for each method. Figure 1 shows the resistance components and total resistance as calculated with the Python script and Figure 2 shows the comparison of all four methods in NavCAD. As NavCAD does not have any method to calculate icebreaking resistance, for the purpose of comparison, the icebreaking resistance does not factor into the total resistance calculated for Figure 1 even though it is displayed on the graph as a component.

Figure 1: Resistance components and total resistance (without icebreaking) from Python.

Figure 2: Total resistance for each method calculated using NavCAD.

Table 1 presents a comparison of the total resistance values calculated by Holtrop and Mennen's method in Python and in NavCAD. For a complete comparison of the resistance components and total resistance calculated via Python and for all methods run in NavCad, please see Appendices D-H.

Table 1: Comparison of Holtrop and Mennen total resistance values.

Speed (kt)	Python R with icebreaking (kN)	Python $\mathrm{R}_{\mathrm{T}} \mathrm{w} / \mathrm{o}$ icebreaking (kN)	NavCAD R (kN)	$\%$ Error
10.00	737.756	106.236	106.12	0.109
11.00	808.749	138.548	138.87	0.232
12.00	893.236	185.271	186.56	0.691
13.00	998.766	253.848	256.96	1.211
14.00	1130.821	349.677	355.67	1.685
14.50	1212.564	413.558	421.46	1.875
15.00	1310.723	494.009	504.64	2.107
15.50	1420.611	586.339	600.62	2.378
16.00	1530.893	679.205	697.34	2.601
17.00	1755.402	869.285	893.46	2.706

Table 1 proves that the Python code meets the first condition required before proceeding on to the propeller development - the Holtrop and Mennen resistance estimate compares well to that calculated through NavCAD. As the vessel speed increases, the percent error between the two sets of results does increase, but this is expected as any small differences between the two methods become magnified; however, even at the largest speed of 17 knots, the error is still well under 5%. For the preliminary stage of vessel design, a 5\% error is very much acceptable, so this proves that Holtrop and Mennen's method as coded in Python is working properly. Secondly, this data establishes that Holtrop and Mennen's method is a good resistance and propulsion analysis method for the MV Yahtse. Typically for a preliminary resistance estimate, a conservative estimate is best
as it is unwise to risk under-designing the vessel for the missions and specifications it is to meet. In this regard, looking at Figure 1, there are two conservative options to choose from. Fung (HSTS) is greatly conservative for lower Froude numbers (vessel speeds) and at the higher speeds, Holtrop and Mennen's method outstrips it. However, Fung's (HSTS) method can be discarded in favor of Holtrop and Mennen's method as, although NavCAD suggests that Fung's (HSTS) method is a good fit, reading the original literature, this method is clearly meant for high-speed (large Froude number) vessels and the MV Yahtse does not meet this criterion. Therefore, when comparing Holtrop and Mennen's method to several other prediction methods, Holtrop and Mennen's method is still the best choice for preliminary vessel design and the results from this method can be used for propeller optimization.

3. Propeller Optimization

The propeller optimization is completed within the same script used for Holtrop and Mennen's method as it is necessary to obtain and use propeller characteristics to complete the powering estimate (as noted in the section above). Due to the simplicity in design and abundance of research done on them, Wageningen B-Series propellers were chosen for the MV Yahtse. The geometry of this series is very well documented so that optimizing a propeller of this series for any type of ship is possible. Additionally, to aid in maneuvering into all manner of ports, many of them simplistic or practically non-existent, it was determined that the propellers would have to be controllable pitch propellers (CPP) which sets an additional criterion to have an expanded area ratio no greater than 0.75 . This criterion ensures that each blade can rotate a compete 180° without contacting another blade, which would prevent the propeller from providing fully reversible thrust.

To implement propeller optimization code into the resistance and propulsion estimate, two supplementary scripts were written. The first script (shown in Appendix I) uses the open water thrust $\left(\mathrm{K}_{\mathrm{T}}\right)$ and torque $\left(\mathrm{K}_{\mathrm{Q}}\right)$ curve polynomials defined by Oosterveld and Van Oossanen to create functions for the open water efficiency and the self-propulsion point (the operating point for a propeller at an advance speed). Finally, the first script contains a function to calculate the minimum area ratio required by Burrill's criteria for cavitation [11]. For merchant vessels, Burrill's 5\% back cavitation limit curve was chosen meaning that up to 5% of the back of the blade can be covered with cavitation. This limit is expressed with the following regression curve and equations:

$$
\begin{align*}
\tau_{c} & =0.715 \sigma_{b}^{0.814}-0.437 \tag{Eq.6}\\
\sigma_{b} & =\frac{p_{0}-p_{v}}{0.5 \rho v_{1}^{2}} \tag{Eq.7}\\
p_{0} & =p_{A}+\rho g e \tag{Eq.8}\\
v_{1} & =\sqrt{v_{A}^{2}+(0.7 \pi n D)^{2}} \tag{Eq.9}
\end{align*}
$$

In Equations 6-9, p_{v} is the vapor pressure of water, p_{A} is the atmospheric pressure, and e is the propeller shaft submergence depth. Using these supplemental equations, the minimum required area ratio to meet the set cavitation criteria as defined by Burrill is

$$
\begin{equation*}
\left(\frac{A_{E}}{A_{0}}\right)_{r e q}=\frac{T}{0.5 \rho v_{1}{ }^{2} \tau_{c}\left(1.067-\frac{0.229 P}{D}\right) \frac{\pi D^{2}}{4}} \tag{Eq.10}
\end{equation*}
$$

The second script (shown in Appendix J) defines a function to iterate and converge upon an optimal propeller considering the self-propulsion point and the minimum area ratio. The propeller optimization is done using what is known as "design task 4 " which uses the inputs of propeller blade number (Z), propeller diameter (D), required thrust (T), and speed of advance $\left(\mathrm{v}_{\mathrm{A}}\right)$ to optimize the pitch-diameter ratio and expanded area ratio of the propeller [12]. This design task was chosen since it is the most logical task for preliminary ship design. Compared to the other characteristics, the number of blades is slightly more arbitrary and for the MV Yahtse, the number of blades was chosen by looking at the propeller characteristics of vessels within the Alaskan Marine Highway System (AMHS). The diameter of the propeller was chosen as the maximum propeller diameter that would work for the hull form of the MV Yahtse to maximize efficiency. The optimization functions defined in the two supplementary scripts were imported for use in the Holtrop and Mennen script.

Within the resistance and propulsion estimation code, the optimization functions were imported and run with the appropriate input values from Holtrop and Mennen's method. To use the optimization function, initial guesses for the pitch-diameter ratio and expanded area ratio had to be calculated to give the algorithm a starting point. The initial pitch-diameter ratio was simply given a common value, but the initial expanded area ratio was calculated using Keller's formula which was developed to calculate an initial expanded area ratio that would avoid cavitation [13].

$$
\begin{equation*}
\left(\frac{A_{E}}{A_{0}}\right)_{r e q}=\frac{(1.3+0.3 Z) T}{\left(p_{0}-p_{v}\right) D^{2}}+K \tag{Eq.11}
\end{equation*}
$$

After running the optimization function, the self-propulsion points of the propellers were found as defined in the Wageningen B-Series polynomial functions.

The optimal propeller characteristics were calculated without icebreaking resistance as the propeller of a vessel should always be designed to operate optimally in the normal service condition and the MV Yahtse is only expected to operate as an icebreaking ship for a small portion of the year for a few route locations. The propeller characteristics for both propellers as well as the optimum efficiency at the design speed are shown below in Table 2.

Table 2: Optimum propeller characteristics for the MV Yahtse.

Optimum Propeller Characteristics	Value
Number of Blades (Z)	5
Diameter (D)	3.048 m
Pitch-Diameter Ratio (PD)	0.7568
Expanded Area Ratio (ar)	0.7520
Open Water Efficiency at Design Speed $\left(\eta_{O S}\right)$	0.4542
RPM at Design Speed (n)	338.3 rpm

The open water chart with self-propulsion points marking the $\mathrm{K}_{\mathrm{T}}, \mathrm{K}_{\mathrm{Q}}$, and open water efficiency $\left(\eta_{0}\right)$ values for each speed is shown below in Figure 3.

Figure 3: Open water chart with self-propulsion points.

An open water chart plots the thrust, torque, and open water efficiency curves over a range of advance ratios, J .

$$
\begin{equation*}
J=\frac{v_{A}}{n D} \tag{Eq.12}
\end{equation*}
$$

The design constant curves for each advance speed are then plotted on the graph. For design task 4, the design constant is defined as

$$
\begin{equation*}
\left[\frac{K_{T}}{J^{2}}\right]=\frac{T}{\rho D^{2} v_{A}{ }^{2}} \tag{Eq.13}
\end{equation*}
$$

For plotting, the design constant is multiplied by the denominator on the left-hand side of the equation which, for this design task, is \mathbf{J}^{2}. The intersection between each of these design curves is marked where it intersects with the K_{T} polynomial curve and these points of intersection are
extrapolated vertically to the K_{Q} and efficiency curves. This series of self-propulsion points can be seen marked on Figure 3 with open circles. The optimum propeller efficiency is then chosen from this data by finding the efficiency self-propulsion point at the design speed.

4. Propeller Structural Analysis and Design

While these propeller characteristics work in theory, IACS ice class rules impose additional structural requirements upon the propeller to ensure that both the material used for the propeller and the blades themselves are strong enough to withstand the forces and stresses imposed upon them during icebreaking. However, to complete the structural analysis of the propeller, the maximum stress acting on the blade must be calculated. The stress on the blade will be greatest at the root of the blade, so the IACS criteria can be completed by evaluating the blade using this maximum stress. Normally, the maximum stress is found using finite element analysis. However, for early-stage design without a propeller model, this is not possible. Therefore, an alternative method for finding the maximum stress had to be used. The blade stress was calculated using Tables 2 and 3 from Section 3: Propeller Blade Stress from "Marine Engineering Vol. 1" [14]. The bending moment and blade stress calculation tables are shown below in Figure 4.

Table 2.-Bending Moment Calculation

Item	Symbol	Formula	Units	Fig. 1	Fig. 6	Fig. 2
Diameter over blade tips	D		in.	210	135	236
Diameter at root section	d		in.	35.5	24	50
Thrust moment arm factor	K_{T}	$0.66 D-d$	in.	103	65	106
Shaft horsepower per screw	P		hp	4000	25,000	4000
Propulsive efficiency	e			0.77	0.57	0.77
Speed of ship	v		knots	14.5	37.8	13.6
Number of blades	n			4	3	
Thrust deduction factor	1-t			0.80	0.99	0.81
Moment due to thrust	M_{T}	$163 \mathrm{PeK}_{T} / v n(1-t)$	in-lb	1,120,000	1,350,000	1,210,000
Shaft revolutions per minute	N		rpm	87	390	
Developed area of propeller	A_{d}		sq ft	110	73.6	121.6
Maximum thickness at root	t_{T}		in.	7.12	6.88	8.40
Centrifugal force	F	$D N^{2} A_{d} t_{r} / 7450 n$	lb	41,500	462,000	50,000
Arm due to rake	r		in.	4		
Moment due to rake	M_{R}	F	in-lb	166,000	924,000	300,000
Total axial moment	$M_{\text {A }}$	$M_{T}+M_{R}$	in-lb	1,290,000	2,270,000	1,510,000
Torque moment arm ratio	KQ	$1-1.67 d / D$		0.72	0.70	0.65
Moment due to torque	M_{Q}	63,000 P $K_{Q} / n N$	in-lb	522,000	942,000	518,000
Arm due to skewback	b		in.	-1	0	0
Moment due to skewback	M_{s}	$b F$	in-lb	-41,500		
Total circumferential moment	M_{C}	$M_{Q}-M_{s}$	in-lb	560,000	942,000	518,000
Pitch at root section			in.	167	148.5	182
Tangent of pitch angle	${ }_{x}$	$p / \pi d$...	1.50	1.97	1.16
Secant of pitch angle	y	$\sqrt{1+x^{2}}$	\ldots	1.80	2.21	1.53
Moment normal to root	M_{N}	$M_{A} / y+x M_{C} / y$	in-lb	1,180,000	1,850,000	1,380,000
Moment parallel to root	M_{P}	$x M_{A} / y-M_{C} / y$	in-lb	760,000	1,610,000	800,000

Table 3.-Blade Stress Calculation

Length of root section	l		in.	38.3	55.0	43.7
Moment of inertia of section, normal	I_{N}	$K_{N} l t_{T}{ }^{3}$	(in.) ${ }^{4}$	672	810	1160
Distance from $N-A$ to point t, normal	y_{t}		in.	+3.03	+3.19	+3.75
Stress at t due to M_{N}	s_{1}	$M_{N} y_{t} / I_{N}$	psi	+5320	+7280	+4450
Moment of inertia of section, parallel	I_{P}	$K_{P}{ }^{3} t_{t}$	(in.) ${ }^{4}$	16,300	42,000	26,700
Distance from $N-A$ to point t, parallel	x_{t}		in.	+13.7	+8.0	+5.8
-Stress at t due to M_{P}	s_{2}	$M_{P} x_{t} / I_{P}$	psi	+640	+310	170
Area of section	A_{r}	$K_{A} l_{\text {d }}$	sq in	203	266	258
Stress due to F	S_{P}	F / A_{r}	psi	+200	+1740	+190
Total stress at t		$s_{1}+s_{2}+s_{P}$	psi	+6160	+9330	+4810
Distance from $N-A$ to point c, normal	$y_{\text {c }}$		in.	-4.09	-3.69	-4.65
Stress at c due to M_{N}	s_{3}	$M_{N} y_{c} / I_{N}$	psi	-7180	-8420	-5520
Distance from $N-A$ to point c, parallel	x_{c}		in.	-5.4	0	-8.6
Stress at c due to M_{P}	s_{4}	$M_{P} x_{c} / I_{P}$	psi	-250	0	-260
Total stress at c		$s_{3}+s_{4}+s_{F}$	psi	-7230	-6680	-5590
Note: Use signs for $x_{c}, x_{t}, y_{c}, y_{t}$ in a	ord	th Figs. 11 a				

Figure 4: Blade moment and stress calculation tables from Marine Engineering Vol. 1 [14].
To complete the stress calculations, a significant amount of information about the geometry
of the propeller had to be found, including the rake arm, skewback arm, and several distances (yt ,
x_{t}, y_{c}, and x_{c}) which are found according to Figure 11 in the original document or Figure 5 shown below.

Fig. 11.-Combination of Stresses on Aerofoil Blade Section

Figure 5: Blade cross-section geometry as defined by Marine Engineering Vol. 1 [14].
All these distances require information about centers of gravity, whether this be the individual center of gravity of each radial cross-section of the blade (as seen in Figure 5) or the center of gravity of the entire blade, which is necessary to determine the rake and skewback arms. Therefore, an additional Python script was written dedicated to the integration of the blade cross-sections (Appendix B). Firstly, the coordinate points outlining each radial cross-section were calculated using the following equations from Oosterveld and Van Oossanen's paper

$$
\begin{align*}
y_{\text {face }} & =\left\{\begin{array}{l}
V_{1}\left(t_{\max }-t_{t e}\right) \text { for } P \leq 0 \\
V_{1}\left(t_{\max }-t_{l e}\right) \text { for } P>0
\end{array}\right. \tag{Eq.14}\\
y_{\text {back }} & =\left\{\begin{array}{l}
\left(V_{1}+V_{2}\right)\left(t_{\max }-t_{\text {te }}\right)+t_{\text {te }} \\
\left(V_{1}+V_{2}\right)\left(t_{\max }-t_{l e}\right)+t_{l e} \\
\text { for } P \leq 0
\end{array}\right. \tag{Eq.15}
\end{align*}
$$

where yface and yback are the ordinate points on the face and back of the blade cross-section, respectively, for the corresponding coordinate P that varies from -1 to 1 from the trailing edge (TE) to the leading edge (LE) as seen below in Figure 6 [7].

Figure 6: Blade cross-section geometry as defined by Oosterveld and Van Oossanen [7].
$\mathrm{t}_{\text {max }}, \mathrm{t}_{\mathrm{t}}$, and t_{le} are the blade thicknesses at the position of maximum thickness $(\mathrm{P}=0)$, trailing edge, and leading edge respectively. The maximum blade section thickness can be found from geometry tables found in "Further Computer-Analyzed Data of the Wageningen B-Screw Series" [7], but the trailing edge thickness and leading edge thickness for each blade section were found from Carlton's "Marine Propellers and Propulsion" as seen below in Figure 7 [15].

r / R	Edge thickness ratios $\frac{t\left(x_{\mathrm{c}} / x=0 \text { or } 1.0\right)}{t_{\max }}$	
	Leading edge	Trailing edge
0.9	0.245	0.245
0.8	0.170	0.152
0.7	0.143	0.120
0.6	0.134	0.100
0.5	0.130	0.085
0.4	0.127	0.075
0.3	0.124	0.068
0.2	0.120	0.057

Figure 7: Edge thickness ratios for conventional, low-skew propellers [15].
With the coordinate point series for each radial cross section of the blade having been defined, the integrations and calculations of the centers of gravity could begin. The first set of integrations integrated over the coordinate points to find the area and center of gravity of each cross-sectional slice. This was done using equations for the integration of a closed loop. However, due to the small thickness at the trailing edge, the first and last point of each array did not completely close, and each section is not truly a closed loop. But the offset between these points is minimal compared to the overall propeller, the error was determined to be insignificant.

$$
\begin{align*}
& A=\frac{1}{2} \sum_{i=1}^{n}\left[\left(y_{i+1}-y_{i}\right)\left(x_{i}+x_{i+1}\right)\right] \tag{Eq.16}\\
& M_{x}=-\frac{1}{6} \sum_{i=1}^{n}\left[\left(x_{i+1}-x_{i}\right)\left(y_{i}^{2}+y_{i} y_{i+1}+y_{i+1}^{2}\right)\right] \tag{Eq.17}\\
& M_{Y}=\frac{1}{6} \sum_{i=1}^{n}\left[\left(y_{i+1}-y_{i}\right)\left(x_{i}^{2}+x_{i} x_{i+1}+x_{i+1}^{2}\right)\right] \tag{Eq.18}\\
& C G_{X}=\frac{M_{Y}}{A} \tag{Eq.19}\\
& C G_{Y}=\frac{M_{X}}{A} \tag{Eq.20}
\end{align*}
$$

After integrating to find the area and the area moments, the centers of gravity in both the x and y directions were calculated using Equations 19 and 20.

The overall center of gravity with respect to the x, y, and r dimensions was found by integrating all the cross-sections vertically with respect to r. Before doing this, the radial slice centers of gravity had to be adjusted with respect to the generator line. This is because propeller surfaces are curved, so the individual radial slices have a constantly changing pitch angle making the centers of gravity have additional offsets from each other in addition to the offsets caused by the changing cross-sectional areas.

Figure 7: Hydrofoil cross-section located on a propeller blade [16].

After this correction was performed, the volumes were calculated using trapezoidal rule and the centers of gravity were found analogously to the calculation performed for the cross-sectional areas.

$$
\begin{align*}
& V=\frac{1}{2} \sum_{i=1}^{n}\left[\left(A_{i+1}+A_{i}\right)\left(r_{i}-r_{i+1}\right)\right] \tag{Eq.21}\\
& C G_{r}=\frac{M_{V r}}{V} \tag{Eq.22}
\end{align*}
$$

With the centers of gravity, the equations in Figure 4 for the blade bending moment and blade stress calculations could be completed (Appendix C). However, two inputs required for the calculation of the bending moment equations, skewback arm and rake arm, had to be estimated. As of right now, no good method to calculate the rake and skewback arm of the propeller without a fully defined model. This may have contributed towards the obsolescence of the method presented in Marine Engineering Vol. 1 as finite element analysis requires a full propeller model [14]. However, finite element analysis would produce more accurate results with the same set of input data.

The final step of the propeller design process was to compare the results from the stress calculation and to the requirements set by IACS [1]. The result of the IACS requirements was the maximum allowable propeller stress and a set of minimum blade edge thicknesses. Both requirements ensure that the propeller can repeatedly withstand the forces imposed upon it as the vessel is icebreaking as well as any occasional ice collisions into the propeller itself. The material used for the calculations, 316/316L stainless steel, was chosen according to the ABS Guidance Notes section on material requirements for ice-class propellers [2]. The allowable stress for the propellers was calculated as follows:

$$
\sigma_{r e f}=\left\{\begin{array}{c}
0.7 \sigma_{u} \tag{Eq.23}\\
0.6 \sigma_{y}+0.4 \sigma_{u}
\end{array}\right. \text { whichever is less }
$$

$$
\begin{equation*}
\sigma_{a l l}=\frac{\sigma_{r e f}}{s}, \mathrm{~S}=1.5 \tag{Eq.24}
\end{equation*}
$$

where σ_{u} is the ultimate strength of $316 / 316 \mathrm{~L}$ stainless steel and σ_{y} is the yield strength. S is a safety factor to ensure that the calculated stress does not come close to reaching the limit strengths of the material. The stress values and comparison are presented in Table 3 below.

Table 3: Propeller steel properties, calculated stress, and allowable stress.

$316 / 316$ stainless steel ultimate strength [17]	627 MPa
$316 / 316$ stainless steel yield strength [17]	290 MPa
Calculated maximum stress	60.328 MPa
Allowable stress	283.200 MPa

Finally, the minimum blade edge thicknesses were calculated along the radius of the blade. The edge thickness calculation has three components: leading edge thickness, trailing edge thickness, and tip thickness (which is the thickness for any edge above a radius ratio of 0.975). Figure 8 presents the minimum thickness distribution along the radius for each edge.

Figure 8: Minimum required blade edge thickness distribution.
The thickness calculation is dependent on the chord length at each radial section and the distribution reflects that. However, this type of distribution is impractical to implement, as a fluctuating thickness distribution would only make some areas of the blade edge more prone to failure as additional stresses are imposed on them. Figure 8 seems to suggest that near the tip of the blade, the edge should suddenly increase after a steady decrease of both the leading and trailing edge minimums. However, having a thick tip at the end of a thinner blade would only make that tip prone to snapping off due to torque or ice impact. Therefore, Figure 8 does not represent what a real thickness distribution on a propeller would look like. More preferably, the blade edge would have a near uniform thickness for the midsection, decreasing thickness at the tip where the blade section itself becomes as thin as the edge itself, and increasing thickness at the root to provide the propeller with more strength at the base. Table 4 below shows the maximum thickness value
calculated from each category to provide a more realistic picture of what the propeller edges are likely to look like.

Table 4: Maximum minimum blade edge thicknesses.

Trailing edge thickness $\left(\mathrm{t}_{\mathrm{te}}\right)$	0.7528 mm
Leading edge thickness $\left(\mathrm{t}_{\mathrm{e}}\right)$	1.0539 mm
Tip thickness $\left(\mathrm{t}_{\mathrm{tip}}\right)$	0.7518 mm

Modeling the propeller to meet the minimum blade edge thickness requirements as well as the principal characteristics developed using the optimization algorithm, the blades of the propeller can be visualized. The propeller seen in Figure 8 is for visualization purposes only and does not represent a realistically constructed propeller, since the hub diameter used in this model is far too small for a controllable-pitch propeller. This model was created using the free browser tool "BSeries Propeller Generator" by Friendship Services AG which is still in its beta phase of development and does not yet allow for precise hub design [18].

Figure 8: Propeller model for blade visualization from B-Series Propeller Generator [18].

5. Conclusion

Combining the results of the resistance and propulsion analysis, propeller optimization algorithm, and IACS structural requirements, the code developed for the purpose of designing iceclass Wageningen B-Series propellers did find success creating propellers for the MV Yahtse. The propeller optimization criteria were able to converge to a solution for optimal propeller characteristics and the IACS requirements validated the propeller for ice-breaking applications. However, these scripts have only been proven to work for the MV Yahtse and are only applicable for a preliminary design. Due to the lack of some information and the inability to choose more accurate methods for the icebreaking resistance estimate and the stress calculation, the code has room for improvements, and under those new conditions, the current propeller design may fail. Additionally, it has not been investigated how suitable Holtrop and Mennen's method is for this type of vessel, only that it produces the most conservative result from a small selection of applicable methods. Holtrop and Mennen's method was developed using regression analyses with data from existing ships, but since the MV Yahtse attempts to combine aspects of typically disparate types of ships (icebreaking bow with a wide and shallow RoRo midbody), Holtrop and Mennen's method has a significant chance for inaccuracy. Ideally, model tests would be used for a vessel like the MV Yahtse; however, as stated above that is not feasible for early-stage design. There is also a similar issue in the decision to use Wageningen B-Series propellers for this vessel. Wageningen B-Series propellers were designed as fixed-pitch propellers and can not operate optimally with the area ratio restriction required for fully reversible controllable-pitch propellers. For iterations of this code intended to complete post-preliminary design of ice-class controllablepitch propellers, the following improvements should be considered:

1. A model test (for post-preliminary work) or CFD analysis (future preliminary work) should be completed to obtain the most accurate resistance and propulsion data possible for the propeller optimization.
2. If the model test or CFD analysis is completed without ice conditions, calculate and compare several icebreaking resistance estimate methods and choose the most applicable and conservative among them.
3. Alternative systematic propeller series should be investigated. For controllable-pitch propellers, the recently developed Wageningen C systematic series for open, CPPs is likely most suitable [19].
4. More accurate stress calculations should be performed for the completion of the IACS iceclass requirements calculations. This should be done preferably with finite element analysis; however, other preliminary methods should be researched.

References

[1] IACS. (2019). Requirements concerning polar class.
[2] ABS. (2014). Guidance notes on ice class.
[3] Holtrop J. and Mennen G. J. J. (1982.) An approximate power prediction method.
International Shipbuilding Progress, 29(335):166-170.
[4] Holtrop, J. (1984). A statistical re-analysis of resistance and propulsion data. International Shipbuilding Progress, 31(363):3-5.
[5] Birk, L. (2019). NAME 3150 Lecture 19: Holtop and Mennen's Method.
[6] Jeong et. al (2010). Ice resistance prediction for standard icebreaker model ship. $20^{\text {th }}$ International Offshore and Polar Engineering Conference, 1300-1304.
[7] Oosterveld, M. W. C. and Van Oossanen, P. (1975). Further computer-analyzed data of the Wageningen B-screw series. International Shipbuilding Progress, 22(251):3-14.
[8] Andersen, P. and Guldhammer, H. E. (1986). A computer-oriented power prediction procedure. International Conference on Computer Aided Design, Manufacture and Operation in the Marine and Offshore Industries.
[9] Fung, S. C. (1992). Resistance and powering prediction for transom-stern hull forms during early-stage ship design. SNAME Transactions, 99:29-74.
[10] Fung, S. C. and Leibman, L. (1995). Revised speed-dependent powering predictions for highspeed transom-stern hull forms. $3^{\text {rd }}$ International Conference on Fast Sea Transportation (FAST), 151-165.
[11] Burrill, L. and Emerson, A. (1963). Propeller cavitation: further tests on 16in propeller models in the King's College cavitation tunnel. Transactions of the North East Coast Institution of Engineers and Shipbuilders (NECIES), 79:295-320.
[12] Birk, L. (2019). NAME 3150 Lecture 25: Propeller Series Data and Propeller Selection. [13] auf'm Keller J (1966). Enige aspecten bij het antwerpen van scheepsschroeven. Schpen en Werf, 33(24): 658-663.
[14] Tingey, Richard H. (1942). Propeller Blade Stress, Propellers and Shafting, Section 3, SNAME Marine Engineering Vol 1. SNAME, 281-291.
[15] Carlton, J. S. (2007). Marine Propellers and Propulsion. Elsevier Butterworth-Heinemann, pg. 46.
[16] Birk, L. (2021). NAME 4160 Lecture 2: Foil and Propeller Geometry.
[17] AK Steel (2016). 316/316L stainless steel product data bulletin. AK Steel.
[18] Friendship Services AG (2021). B-Series Propeller Generator. https://www.wageningen-b-series-propeller.com/.
[19] Boom, H. J. J. et al. (2013). The Wageningen C- and D-series propellers. $12^{\text {th }}$ International Conference on Fast Sea Transportation (FAST).

Appendix A: R\&P Code - NAME3150RPHoltrop.py

```
# NAME 3150 RP Analysis Holtrop
# Date Last Modified: 04/28/2021
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import fsolve,minimize
from WBPolynomials import K_Tfunc,K_Qfunc,eta_Ofunc
from WBPolynomials import findJTS2,openwaterchart
from WBOpt import optimumprop
## Steps for Holtrop and Mennen's Method:
## 1. Input Data (check by using paper's provided example
## to see if calculations and answers are correct)
## 2. Derived Data
## 3. Resistance Estimate
## 4. Powering Estimate + Propeller Optimization
## 5. Save Data to a File
## 6. Generate Plots
##
```

\#\# 1. Input Data
$\mathrm{g}=9.807$
rho $=1027.8336 \# \mathrm{~kg} / \mathrm{m}^{\wedge} 3$; density at $4^{\circ} \mathrm{C}$
$\mathrm{nu}=1.6262 \mathrm{e}-6 \# \mathrm{~m}^{\wedge} 2 / \mathrm{s}$; viscosity at $4^{\circ} \mathrm{C}$
L_pp=97.319 \#m
L_fore $=4.39 \mathrm{\# m}$
L_aft=0.25 \#m
$\mathrm{B}=21.616$ \#m
$\mathrm{T}=4.72$ \#m
T_F=T
T_A=T
L_wl=L_pp+L_aft

```
print('L_wl = {:6.4f} m'.format(L_wl))
# lcb is estimated until known
#Fr_d=15.0*1852./3600./np.sqrt(g*L_wl)
#lcbp=-(0.44*Fr_d -0.094)*100. #lcb percentage
#print('lcbp = {:6.4f} '.format(lcbp))
V=7413.03895 #m_3
# S is estimated until a hydrostatic analysis is completed, need C_M
S=1931.231 #m^2
#A_M=341.803 #m^2
# no A_BT for senior design project
A_BT=0. #m^2
A_T=0. #m^2
A_V=108.7 #m^2
# wetted surface of each appendage in this order:
# rudder behind stern, twin screw rudder, shaft brackets, skeg,
# strut bossing, hull bossing, exposed shafts (10'), bilge keels
S_APPi=np.array([16.72,16.72,11.89,87.33,6.69,9.48,14.86,196.03]) #m^2
h_B=0. #m
# rudder behind stern, twin screw rudder, shaft brackets, skeg,
# strut bossing, hull bossing, exposed shafts (10'), bilge keels
k_2i=np.array([0.5,1.5,3.0,1.0,3.0,1.0,1.0,0.4])
C_B=0.7459
C_M=0.9313
C_P=0.8009
C_WP=0.9181 #if using formula, need C_P
C_stern=10.
k_s=150.*10**-6. #from ITTC procedures since no test data
# required propeller input data
Z=5.
D=3.048 #m
v_kn=np.linspace(10.0,19.0,num=19) #kn
```

\#number within v_kn range that the service speed is \#starts counting at 0 (i.e. $0=10,1=10.5$, etc.)
ssid=10
\# air properties
rho_A=1.225
C_DA=0.8

\#\# 2. Derived Data
\#lcb=L_aft -lcbp/100.*L_pp +L_pp/2. -L_wl/2. \#with respect to aft $\mathrm{lcb}=50.32 \mathrm{\# m}$
LCB=(lcb-L_wl/2.)/L_wl*100. \#must be a percentage
print('LCB $=\{: 6.4 \mathrm{f}\}$ \% L_wl'.format(LCB))
v_s=v_kn*1852./3600. \#m/s
v_ss=v_s[ssid] \#m/s
print('service speed $=\{: 6.4 \mathrm{f}\} \mathrm{m} / \mathrm{s}$ '.format($\mathrm{v} _$_ss $)$)

Fr=v_s/np.sqrt(g*L_wl)
Re=v_s*L_wl/nu

C_Bwl=C_B*L_pp/L_wl \#conversion of C_B based on L_wl
print('C_Bwl = $\{: 6.4 \mathrm{f}\}$ '.format(C_Bwl))
C_WPwl=C_WP
\#C_WPwl=0.763*(C_Pwl+0.34)
print('C_WPwl $=\{: 6.4 \mathrm{f}\}$ '.format($\left.\left(\mathrm{C} _\mathrm{WPwl}\right)\right)$
\#C_P=V/A_M/L_pp
C_Pwl=C_P*L_pp/L_wl
print('C_Pwl $=\{: 6.4 \mathrm{f}\}$ '.format(C_Pwl))
\# once A_M is known, switch
\#C_Mwl=A_M/B/T
\#C_Mwl=1./(1.+(1.-C_Bwl)**3.5)
C_Mwl=C_M
print('C_Mwl = \{:6.4f $\}$ '.format(C_Mwl))

```
#waterline entrance angle
L_R=L_wl*(1.-C_Pwl+(0.06*C_Pwl*LCB)/(4.*C_Pwl -1.))
print('L_R = {:6.4f} m'.format(L_R))
a_1=(L_wl/B)**0.80856
a_2=(1.-C_WPwl)**0.30484
a_3=(1.-C_Pwl -0.0225*LCB)**0.6367
a_4=(L_R/B)**0.34574
a_5=((100.*V)/L_wl**3.)**0.16302
a=-(a_1*a_2*a_3*a_4*a_5)
print('a = {:6.4f}'.format(a))
i_E=1.+89.*np.exp(a)
#i_E=55.4 #deg.
print('i_E = {:6.4f} degrees'.format(i_E))
##-----------------------------------------------------------------------------------
## 3. Resistance Estimate
C_F=0.075/(np.log10(Re)-2.)**2
R_F=0.5*rho*(v_s**2)*S*C_F
c_14=1.+0.011*C_stern
print('c_14 = {:6.4f} '.format(c_14))
k_a=(B/L_wl)**1.06806
k_b=(T/L_wl)**0.46106
k_c=(L_wl/L_R)**0.121563
k_d=((L_wl**3)/V)**0.36486
k_e=(1.-C_Pwl)**-0.604247
k=-0.07+ 0.487118*c_14*(k_a*k_b*k_c*k_d*k_e)
```

```
print('k = {:6.4f} '.format(k))
for i in range(len(k_2i)):
    print('k_2i = {:6.4f} '.format(k_2i[i]))
for i in range(len(S_APPi)):
    print('S_APPi = {:6.4f} '.format(S_APPi[i]))
S_APP=np.sum(S_APPi)
k_app=np.sum((1.+k_2i)*S_APPi)/np.sum(S_APPi)
print('S_APP = {:6.4f} '.format(S_APP))
print('k_app = {:6.4f} '.format(k_app))
#tunnel thrusters:
d_TH=1.54 #m
n_TH=2.
C_DTH=0.003+ 0.003*(10*d_TH/T -1.)
R_TH=rho*(v_s**2)*np.pi*(d_TH**2)*C_DTH
R_APP=0.5*rho*(v_s**2)*k_app*C_F*S_APP +n_TH*R_TH
```

\#wave resistance coefficients/calculation:
if (B/L_wl) <= 0.11:
$c_{-} 7=0.229577^{*}\left(\mathrm{~B} / \mathrm{L}_{-} \mathrm{wl}\right) * *(1 / 3)$
elif (B/L_wl) <= 0.25 :
c_7=B/L_wl
else:
c_7=0.5-0.0625*(L_wl/B)
print('c_7 = \{:6.6f $\}$ '.format(c_7))
$\mathrm{c} _1=2223105^{*}\left(\mathrm{c} _7 * * 3.78613\right)^{*}\left((\mathrm{~T} / \mathrm{B})^{* *} 1.07961\right){ }^{*}\left(90 .-\mathrm{i} _\mathrm{E}\right)^{* *-1.37565}$
print('c_1 = \{:6.6f $\}$ '.format(c_1))
c_3a=B*T*(0.31*np.sqrt(A_BT)+T_F-h_B)
print('c_3a $=\{: 6.6 f\}$ '.format(c_3a))
c_3 $=0.56 *\left(\mathrm{~A}_{2} \mathrm{BT}^{* *} 1.5\right) / \mathrm{c} _3 \mathrm{a}$
print('c_3 = \{:6.6f $\}$ '.format(c_3))

```
c_2=np.exp(-1.89*np.sqrt(c_3))
print('c_2 = {:6.6f} '.format(c_2))
c_5=1.-0.8*A_T/B/T/C_Mwl
print('c_5 = {:6.6f}'.format(c_5))
if (L_wl**3)/V <= 512.:
    c_15=-1.69385
elif (L_wl**3)/V <=1726.91:
    c_15a=L_wl/(V**(1/3))-8.
    c_15=-1.69385+c_15a/2.36
else:
    c_15=0.
print('c_15 = {:6.6f} '.format(c_15))
if C_Pwl <=0.8:
    c_16=8.07981*C_Pwl- 13.8673*(C_Pwl**2)+6.984388*(C_Pwl**3)
else:
    c_16=1.73014-0.7067*C_Pwl
print('c_16 = {:6.6f} '.format(c_16))
d=-0.9
if (L_wl/B) <= 12.:
        lamb=1.446*C_Pwl -0.03*L_wl/B
else:
        lamb=1.446*C_Pwl -0.36
print('lambda = {:6.6f}'.format(lamb))
m_1a=0.0140407*L_wl/T
m_1b=1.75254*(V**(1/3))/L_wl
m_1c=4.79323*B/L_wl
m_1=m_1a-m_1b-m_1c-c_16
print('m_1 = {:6.6f}'.format(m_1))
m_4=0.4*c_15*np.exp(-0.034*(Fr**-3.29))
for i in range(len(v_s)):
    print('m_4 = {:6.6f}'.format(m_4[i]))
```

```
r_1=m_1*(Fr**d)+m_4*np.cos(lamb*Fr**-2)
R_Wa=c_1*c_2*c_5*rho*g*V*np.exp(r_1)
c_17a=C_Mwl**-1.3346
c_17b=(V/(L_wl**3))**2.00977
c_17c=(L_wl/B -2.)**1.40692
c_17=6919.3*c_17a*c_17b*c_17c
print('c_17 = {:6.6f} '.format(c_17))
m_3a=(B/L_wl)**0.326869
m_3b=(T/B)**0.605375
m_3=-7.2035*m_3a*m_3b
print('m_3 = {:6.6f}'.format(m_3))
r_2=m_3*(Fr**d)+m_4*np.cos(lamb*Fr**-2)
R_Wb=c_17*c_2*c_5*rho*g*V*np.exp(r_2)
m_4a=0.4*c_15*np.e**(-0.034*(0.4**-3.29)) #interpolation of R_Wa
r_1a=m_1*(0.4**d)+m_4a*np.cos(lamb* 0.4**-2)
R_Waa=c_1*c_2*c_5*rho*g*V*np.exp(r_1a)
m_4b=0.4*c_15*np.e**(-0.034*(0.55**-3.29)) #interpolation of R_Wb
r_2b=m_3* (0.55**d)+m_4b*np.cos(lamb*0.55**-2)
R_Wbb=c_17*c_2*c_5*rho*g*V*np.exp(r_2b)
```

R_W=np.zeros((len(Fr)),float)
for i in range(len(Fr)):
if $\mathrm{Fr}[\mathrm{i}]<=0.4$:

$$
\text { R_W }[\mathrm{i}]=\mathrm{R} _\mathrm{Wa}[\mathrm{i}]
$$

```
elif Fr[i] > 0.55:
    R_W[i]=R_Wb[i]
```

else:

```
        R_W[i]=R_Waa+(20.*Fr[i]- 8.)/3.*(R_Wbb- R_Waa)
```

\#bulbous bow resistance:
\#h_f=C_Pwl*C_Mwl*B*T/L_wl*(136.- 316.3*Fr)*(Fr**3)
\#h_F=np.where(-0.01 *L_wl <= h_f,h_f,-0.01*L_wl)
\#h_w=i_E*(v_s**2)/400./g
\#h_W=np.where($-0.01 *$ L_wl <=h_w,h_w, $-0.01 * L_{-}$wl)
\#r_i=g*(T_F-h_B- 0.25^{*} np.sqrt(A_BT)+h_F+h_W)
\#Fr_i=v_s/np.sqrt(r_i)
\#P_B=0.56*np.sqrt(A_BT)/(T_F-1.5*h_B+h_F)
\#R_B=0.11*rho*g*(np.sqrt(A_BT)**3)*(Fr_i**3)/(1+Fr_i**2)*np.exp(-3.*(P_B**-2))
\#transom resistance:
$\mathrm{r}_{-} \mathrm{t}=\mathrm{np} . \operatorname{sqrt}\left(2 . * \mathrm{~g}^{*} \mathrm{~A}_{-} \mathrm{T} /\left(\mathrm{B}+\mathrm{B} * \mathrm{C}_{-} \mathrm{WPwl}\right)\right)$
if $\mathrm{A}_{-} \mathrm{T}>0$.:
Fr_T=v_s/r_t
else:
Fr_T=np.zeros((len(Fr)),float)
c_6=np.where(Fr_T<5., $0.2 *\left(1-0.2 *\right.$ Fr_T $\left.\left._{-}\right), 0.\right)$
for i in range(len(v_s)):
print('c_6 = \{:6.6f\}'.format(c_6[i]))

\#correlation allowance resistance:
if T_F/L_wl <= 0.04:
c_4=T_F/L_wl
else:
c_4=0.04
print('c_4 = \{:6.6f $\}$ '.format(c_4))

C_Aa=np.sqrt(L_wl/7.5)*(C_Bwl**4)*c_2*(0.04-c_4)

C_A $=0.00546 *\left(\left(\mathrm{~L} _w l+100 .\right)^{* *}-0.16\right)-0.002+0.003 *$ C_Aa
$\operatorname{print}\left(\right.$ C_A $_{-}$* $1000=\{: 6.4 \mathrm{f}\}$ '.format(C_A*1000.))
if $\mathrm{k} _\mathrm{s}>150 .{ }^{*} 10 . .^{* *} 6:$
deltaC_A $=\left(0.105^{*}\left(\mathrm{k}_{-} \mathrm{s}^{* *}(1 . / 3).\right)-0.005579\right) / \mathrm{L} _\mathrm{wl} \mathrm{l}^{* *}(1 . / 3$.
else:
deltaC_A=0.
print('k_s = \{:6.6f \}'.format(k_s))
print('deltaC_A $=\{: 6.6 f\}$ '.format(deltaC_A))

R_A $=0.5 *$ rho* $\left.\left(\mathrm{v} _\mathrm{s}^{* *}\right)^{2}\right)\left(\mathrm{C} _A+d e l t a C _A\right) *\left(S+n p . s u m\left(S _A P P i\right)\right)$
\#air resistance

R_AA $=0.5 *$ rho_A $*\left(v _\right.$s $\left.* * 2\right) * C _D A * A _V$
\# icebreaking resistance
\# Jeong formulas (2010)
c_B=0.5
c_C=1.11
c_BR=2.73
$\mathrm{h} _\mathrm{i}=1$. \#m; ice thickness
T_i=-2. $\#^{\circ} \mathrm{C}$; ice temperature
\# Arnol'd - Aliab'ev ice flexural stength formula
sigma_f=4.7-0.96*T_i $-0.31 * T _i * * 2 ~ \# k g / \mathrm{cm}^{\wedge} 2$; ice flexural strength
sigma_f=sigma_f*100.**2 \#kg/m^2
rho_i=918.9 \#kg/m^3; density of ice at $-10^{\circ} \mathrm{C}$
rho_diff=rho-rho_i \#kg/m^3

F_h=v_s/np.sqrt(g*h_i)
S_N=v_s/np.sqrt(sigma_f*h_i/rho_i/B)
ai=c_B*rho_diff*g*h_i*B*T
bi=c_C*(F_h**-1.157)*rho_i*B*h_i*v_s**2
$\mathrm{ci}=\mathrm{c} _\mathrm{BR} *\left(\mathrm{~S} _\mathrm{N}^{* *}-1.54\right){ }^{*}$ rho_i*B*h_i*v_s**2

R_I=13.14* ${ }^{2}$ _s**2 $+\mathrm{ai}+\mathrm{bi}+\mathrm{ci}$
\#total resistance
R_T $=(1 .+\mathrm{k})$ *R_F+R_APP+R_A+R_W+R_TR+R_AA \#+R_I \#+R_B
"""
NOTE: Icebreaking resistance is only being used to calculate the extreme operating condition of propeller operation.
The vessel and propeller are not being designed for continuous icebreaking.
"""

C_W=R_W/0.5/rho/S/(v_s**2)
C_T=R_T/0.5/rho/S/(v_s**2)

\#\# 4. Powering Estimate
\#viscous resistance coefficient
C_Va=(1.+k)*R_F+R_APP+R_A
C_Vb=0.5* ${ }^{\text {rho }}{ }^{*}\left(\mathrm{v}_{\text {_ }}{ }^{* *}{ }^{*}\right) *(\mathrm{~S}+\mathrm{np}$. sum(S_APPi) $)$
C_V=C_Va/C_Vb
\#wake fraction coefficients
if $\mathrm{B} / \mathrm{T}_{-} \mathrm{A}<=5$.:
c_8=S/L_wl/D*B/T_A
else:
c_8=S*(7.*B/T_A- 25.)/L_wl/D/(B/T_A- 3.)
print('c_8 = \{:6.6f $\}$ '.format(c_8))
if $\mathrm{c} _8<=28$.:
c_9=c_8
else:
c_9=32.- 16./(c_8-24.)
print('c_9 = \{:6.6f $\}$ '.format(c_9))
if $\mathrm{T}_{-} \mathrm{A} / \mathrm{D}<=2$.:
c_11=T_A/D
else:
c_11=0.0833333*((T_A/D)**3)+ 1.33333
print('c_11 = \{:6.6f $\}$ '.format(c_11))
if C_Pwl <= 0.7:
c_19=0.12997/(0.95 -C_Bwl)- 0.11056/(0.95 -C_Pwl)
else:
c_19=0.18567/(1.3571 -C_Mwl)-0.71276 +0.38648*C_Pwl
print('c_19 = \{:6.6f $\}$ '.format(c_19))
c_20 $=1 .+0.015 *$ C_stern
print('c_20 = \{:6.6f $\}$ '.format(c_20))
C_P1=1.45*C_Pwl-0.315-0.0225*LCB
$\operatorname{print}($ C_P1 $=\{: 6.6 f\}$ '.format(C_P1))
\#full scale wake fraction (single screw)
\#w_sa=c_9*c_20*C_V*L_wl/T_A*(0.050776+ 0.93405*c_11*C_V/(1.-C_P1))
\#w_sb=0.27915*c_20*np.sqrt(B/L_wl/(1.-C_P1))+c_19*c_20
\#w_s=w_sa+w_sb
\#full scale wake fraction (twin screw)
w_s $=0.3095 *$ C_Bwl $+10 . *$ C_V*C_Bwl - $0.23 *$ D/np.sqrt(B*T)

```
for i in range(len(v_s)):
    print('w_s = {:6.4f} '.format(w_s[i]))
#thrust deduction fraction (single screw)
#t_a=0.25014*((B/L_wl)**0.28956)*((np.sqrt(B*T)/D)**0.2624)
#t_b=(1.-C_Pwl +0.0225*LCB)**0.01762
#t=t_a/t_b +0.0015*C_stern
#thrust deduction fraction (twin screw)
t=0.325*C_Bwl -0.1885*D/np.sqrt(B*T)
print('t = {:6.6f} '.format(t))
v_as=(1.-w_s)*v_s
for i in range(len(v_s)):
    print('v_a = {:6.4f} m/s'.format(v_as[i]))
T_req=R_T/(1.-t)
for i in range(len(v_s)):
    print('T_req ={:6.4f} kN'.format(T_req[i]/1000.))
C_S=S/2./(D**2)*C_T/(1.-t)/(1.-w_s)**2
###########################################################################
## Propeller Selection Program
# more realistic estimation of e
e=T- 0.5*D-0.03*D
p_A=101325. #Pa
p_v=1671. #Pa
p_0=p_A+rho*g*e
# find design constant at design speed (service speed)
v_aserv=v_as[ssid]
T_reqs=T_req[ssid]/2. # half the thrust is taken since 2 props
```

```
dc_4=T_reqs/(rho*(D**2)*(v_aserv**2))
```

\# additional arguments for objective functions
propargs=(dc_4,Z,D,T_reqs,v_aserv,rho,e,'CPP')
\#initial values of free variables
$\mathrm{PD} 0=1.0$ \#initial guess at pitch/diameter ratio
\# Keller's formula
$\mathrm{K}=0.2$
ar0 $=(1.3+0.3 * Z) * T _r e q s /\left(p_{-} 0-p _v\right) /(D * * 2)+K$
$\mathrm{x} 0=\mathrm{np} . \operatorname{array}([\mathrm{PD} 0, \operatorname{ar} 0])$
\#use optimization algorithm
res=minimize (optimumprop, $\mathrm{x} 0, \operatorname{args}=$ propargs $)$
\#unpack results
$\mathrm{PD}=$ res.x[0] \#optimum pitch diameter ratio
ar=res.x[1] \#optimum expanded area ratio
print(")
print(")
print('Optimum Propeller Data:')
print(' design constant dc_4 $=\{: 8.4 \mathrm{f}\}$ '.format(dc_4))
print(' number of blades $\mathrm{Z}=\{: 8.4 \mathrm{f}\}$ '.format(Z))
print(' propeller diameter $\mathrm{D}=\{: 8.4 \mathrm{f}\} \mathrm{m}$ '.format(D))
print(' pitch-dia. ratio $P D=\{: 8.4 \mathrm{f}\}$ '.format(PD))
print(' area ratio ar $=\{: 8.4 \mathrm{f}\}$ '.format(ar))
print(")
print('For total thrust reversal on a CPP propeller, the expanded')
print('area ratio must have a maximum of 0.75. .)
print(")
\#relative rotative efficiency (single screw)
\#eta_R=0.9922-0.05908*ar $+0.07424 *$ (C_Pwl -0.0225*LCB)
\#relative rotative efficiency (twin screw)
eta_R=0.9737 +0.111*(C_Pwl -0.0225*LCB) -0.06325*PD

```
print(' r.r. efficiency eta_R = {:6.6f}'.format(eta_R))
#self-propulsion points
J_TS=np.zeros((len(C_S)),float)
K_TS=np.zeros((len(C_S)),float)
K_QTS=np.zeros((len(C_S)),float)
eta_OS=np.zeros((len(C_S)),float)
for j in range(len(C_S)):
    J_TS[j]=findJTS2(C_S[j],PD,ar,Z)
    K_TS[j]=K_Tfunc(J_TS[j],PD,ar,Z)
    K_QTS[j]=K_Qfunc(J_TS[j],PD,ar,Z)
    eta_OS[j]=eta_Ofunc(J_TS[j],PD,ar,Z)
    #print('J_TS = {:6.4f} '.format(J_TS[j]))
    #print('K_TS = {:6.4f} '.format(K_TS[j]))
    #print('10K_QTS = {:6.4f} '.format(10.*K_QTS[j]))
    #print('eta_OS = {:6.4f} '.format(eta_OS[j]))
eta_OSs=eta_OS[ssid]
print(' opt. efficiency eta_OS = {:8.4f} '.format(eta_OSs))
print(")
# rate of revolution
n=v_as/(J_TS*D)
fori in range(len(v_s)):
    print('n = {:6.4f} 1/s'.format(n[i]))
K_QB=K_QTS/eta_R #behind condition K_Q
# behind efficiency
eta_B=eta_OS*eta_R
# torque
```

$\mathrm{Q}=\mathrm{rho*}(\mathrm{n} * * 2) *(\mathrm{D} * * 5) * \mathrm{~K} _\mathrm{QB}$

```
# delivered power
P_D=2.*np.pi*n*Q
for i in range(len(v_s)):
    print('P_D = {:6.4f} kW'.format(P_D[i]/1000.))
# effective power
P_E=R_T*V_s
# delivered efficiency
eta_D=P_E/P_D
# hull efficiency
eta_H=eta_D/(eta_OS*eta_R)
```

\#
\#\# 5. Save Data to a File
\# allows files of the same project to be grouped together with the
\# same base name
base='Holtrop\&MennenResistanceAnalysis'
datafile=base+'.dat'
fp=open(datafile,'w')
fp.write('ln')
fp.write('Coefficients:')
fp.write(' $\ln \backslash n '$)
fp.write('c1= $: 6.6 \mathrm{f}\}$ '.format(c_1))
fp.write('\n')
fp.write('c2= $\{: 6.6 \mathrm{f}\}$ '.format(c_2))
fp.write('\ln')
fp.write('c3= $\{: 6.6 \mathrm{f}\}$ '.format(c_3))
fp.write('ln')
fp.write('c4= $: 6.6 \mathrm{f}\}$ '.format(c_4))
fp.write('\n')
fp.write('c5= \{:6.6f \}'.format(c_5))
fp.write('\} \backslash ')
fp.write('c7= \{:6.6f\}'.format(c_7))
fp.write('ln')
fp.write('c8= \{:6.6f\}'.format(c_8))
fp.write('\ln')
fp.write('c9= $\{: 6.6 \mathrm{f}\}$ '.format(c_9))
fp.write('\} \ n')
fp.write('c11= \{:6.6f\}'.format(c_11))
fp.write('\n')
fp.write('c14= \{:6.6f\}'.format(c_14))
fp.write('\ln')
fp.write('c15= $: 6.6 \mathrm{f}\}$ '.format(c_15))
fp.write('\n')
fp.write('c $16=\{: 6.6 \mathrm{f}\}$ '.format(c_16))
fp.write('ln')
fp.write('c17= $: 6.6 \mathrm{f}\}$ '.format(c_17))
fp.write('\ln')
fp.write('c 19= $: 6.6 \mathrm{f}\}$ '.format(c_19))
fp.write('\} { } ^ { \prime } ')
fp.write('c20= $\{: 6.6 \mathrm{f}\}$ '.format(c_20))
fp.write('ln')
fp.write('d= $\{: 6.6 \mathrm{f}\}$ '.format(d))
fp.write('\ln')
fp.write('lambda= $\{: 6.6 \mathrm{f}\}$ '.format(lamb))
fp.write(' $\backslash n$ ')
fp.write('m1= \{:6.6f\}'.format(m_1))
fp.write('\ln')
fp.write('m3= \{:6.6f $\}$ '.format(c_1))
fp.write('\} \ ')
fp.write('C_P1= \{:6.6f $\}$ '.format(C_P1))
fp.write('\n\n')
fp.write('\} { } ^ { \prime \prime } ')
fp.write('Froude Numbers and Misc. Coefficients:')
fp.write('In\n')
fp.write('v_kn'.center(12))
fp.write('Fr'.center(11))
\#fp.write('Fr_i'.center(15))

```
fp.write('Fr_T'.center(15))
fp.write('c_6'.center(15))
fp.write('m3(Fr^d)'.center(10))
fp.write('m4'.center(9))
fp.write('m4cos(lambda/Fr^2)'.center(9))
#fp.write('P_B'.center(9))
fp.write('\n')
fp.write('[kn]'.center(12))
fp.write([[-]'.center(17))
#fp.write([[-]'.center(17))
fp.write([[-]'.center(15))
fp.write('[-]'.center(15))
fp.write([[-]'.center(20))
fp.write([[-]'.center(14))
fp.write([[-]'.center(18))
#fp.write('[-]'.center(37))
fp.write('\n')
for i in range(len(v_s)):
    fp.write(' {:6.2f}'.format(v_kn[i]))
    fp.write(' {:10.5f}'.format(Fr[i]))
    #fp.write(' {:10.5f}'.format(Fr_i[i]))
    fp.write(' {:10.5f}'.format(Fr_T[i]))
    fp.write(' {:10.4f}'.format(c_6[i]))
    fp.write(' {:10.5f}'.format(m_3*Fr[i]**d))
    fp.write(' {:10.5f}'.format(m_4[i]))
    fp.write(' {:10.5f}'.format(m_4[i]*np.cos(lamb/Fr[i]**2)))
    #fp.write(' {:20.5f}'.format(P_B[i]))
    fp.write('\n')
fp.write('\n\n')
fp.write('\n')
fp.write('Resistance Components and Total Resistance:')
fp.write('\n\n')
fp.write('v_kn'.center(12))
fp.write('Fr'.center(10))
fp.write('R_F'.center(18))
```

```
fp.write('R_A'.center(10))
fp.write('R_W'.center(13))
#fp.write('R_B'.center(10))
fp.write('R_APP'.center(11))
fp.write('R_AA'.center(7))
fp.write('R_TR'.center(15))
fp.write('R_I'.center(12))
fp.write('R_T'.center(8))
fp.write('\ln')
fp.write('[kn]'.center(12))
fp.write('[-]'.center(15))
fp.write('[kN]'.center(15))
fp.write([[kN]'.center(15))
fp.write([[kN]'.center(14))
#fp.write([[kN]'.center(12))
fp.write([[kN]'.center(13))
fp.write('[kN]'.center(14))
fp.write([[kN]'.center(14))
fp.write('[kN]'.center(11))
fp.write([[kN]'.center(12))
fp.write('\n')
for i in range(len(v_s)):
    fp.write(' {:6.2f}'.format(v_kn[i]))
    fp.write(' {:10.5f}'.format(Fr[i]))
    fp.write(' {:10.3f}'.format(R_F[i]/1000))
    fp.write(' {:10.3f}'.format(R_A[i]/1000))
    fp.write(' {:10.3f}'.format(R_W[i]/1000))
    #fp.write(' {:10.3f}'.format(R_B[i]/1000))
    fp.write(' {:10.3f}'.format(R_APP[i]/1000))
    fp.write(' {:10.3f}'.format(R_AA[i]/1000))
    fp.write(' {:10.3f}'.format(R_TR[i]/1000))
    fp.write(' {:10.3f}'.format(R_I[i]/1000))
    fp.write(' {:10.3f}'.format(R_T[i]/1000))
    fp.write('\n')
fp.write('\n\n')
fp.write('\n')
```


fp.write('Self-Propulsion Point:')

fp.write(' $\ln \backslash n '$ ')
fp.write('v_kn'.center(12))
fp.write('Fr'.center(10))
fp.write('w_s'.center(17))
fp.write('v_a'.center(13))
fp.write('T_req'.center(12))
fp.write('C_S'.center(13))
fp.write('J_TS'.center(12))
fp.write('K_TS'.center(12))
fp.write('10K_QTS'.center(10))
fp.write('ln')
fp.write('[kn]'.center(12))
fp.write('[-]'.center(15))
fp.write('[-]'.center(17))
fp.write('[m/s]'.center(15))
fp.write('[kN]'.center(12))
fp.write('[-]'.center(19))
fp.write('[-]'.center(15))
fp.write('[-]'.center(16))
fp.write(['[-]'.center(16))
fp.write('\n')
for i in range $($ len $(\mathrm{v}$ _s s$)$):
fp.write(' \{:6.2f\}'.format(v_kn[i]))
fp.write(' $\{: 10.5 f\}$ '.format($\operatorname{Fr}[\mathrm{i}])$)
fp.write(' \{:10.4f\}'.format(w_s[i]))
fp.write(' $\{: 10.4 \mathrm{f}\}$ '.format(v_as[i]))
fp.write(' \{:10.4f\}'.format(T_req[i]/1000.))
fp.write(' $\{: 10.5 f\}$ '.format(C_S[i]))
fp.write(' $\{: 10.4 \mathrm{f}\}$ '.format(J_TS[i]))
fp.write(' \{:10.4f\}'.format(K_TS[i]))
fp.write(' \{:10.4f\}'.format(10.*K_QTS[i]))
fp.write('\n')
fp.write(' $\ln \backslash n '$)
fp.write('ln')

fp.write('Efficiency and Powering:')

fp.write(' $\ln \backslash n '$)
fp.write('v_kn'.center(12))
fp.write('Fr'.center(10))
fp.write('eta_H'.center(17))
fp.write('eta_O'.center(5))
fp.write('eta_D'.center(18))
fp.write('n'.center(10))
fp.write('n'.center(17))
fp.write('P_D'.center(12))
fp.write('ln')
fp.write($([\mathrm{kn}]$ '.center(12))
fp.write('[-]'.center(17))
fp.write(['[-]'.center(15))
fp.write('[-]'.center(16))
fp.write('[-]'.center(15))
fp.write('[1/s]'.center(17))
fp.write('[rpm]'.center(10))
fp.write('[kW]'.center(12))
fp.write('ln')
for i in range $\left(\right.$ len $\left.^{\left(\mathrm{v} _\mathrm{s}\right)}\right)$:
fp.write(' \{:6.2f\}'.format(v_kn[i]))
fp.write(' $\{: 10.5 \mathrm{f}\}$ '.format($\operatorname{Fr}[\mathrm{i}])$)
fp.write(' \{:10.4f\}'.format(eta_H[i]))
fp.write(' $\{: 10.4 \mathrm{f}\}$ '.format(eta_OS[i]))
fp.write(' \{:10.4f\}'.format(eta_D[i]))
fp.write(' \{:10.3f\}'.format(n[i]))
fp.write(' $\{: 10.3 \mathrm{f}\}$ '.format($60 * n[\mathrm{i}])$)
fp.write(' \{:10.2f\}'.format(P_D[i]/1000.))
fp.write('\n')
fp.close()
\#\#--
\#\# 6. Generate Plots
fig=plt.figure $($ figsize $=(15,10))$

```
plt.plot(Fr,C_T*1000,lw=2, label=r"Total Resistance Coefficient $[C_T]$")
plt.plot(Fr,C_F*1000,lw=2, label=r"Coefficient of Friction $[C_F]$")
plt.plot(Fr,C_W*1000,lw=2, label=r"Wave Resistance Coefficient $[C_W]$")
plt.title("Resistance Coefficients vs. Froude Number")
plt.xlabel("Froude Number, $Fr$ $[-]$")
plt.ylabel("Friction Coefficient Magnitude, $[-]$")
plt.legend()
plt.grid()
plt.show()
fig=plt.figure(figsize=(15,10))
plt.plot(Fr,R_T/1000,lw=2, label=r"Total Resistance $[R_T]$")
plt.plot(Fr,R_F/1000,lw=2, label=r"Frictional Resistance $[R_F]$")
plt.plot(Fr,R_W/1000,lw=2, label=r"Wave Resistance $[R_W]$")
plt.plot(Fr,R_A/1000,lw=2, label=r"Correlation Resistance $[R_A]$")
plt.plot(Fr,R_AA/1000,lw=2, label=r"Air Resistance $[R_{AA}]$")
plt.plot(Fr,R_APP/1000,lw=2, label=r"Appendage Resistance $[R_{APP}]$")
#plt.plot(Fr,R_B/1000,lw=2, label=r"Bulbous Bow Resistance $[R_B]$")
plt.plot(Fr,R_TR/1000,lw=2, label=r"Transom Resistance $[R_{TR}]$")
plt.plot(Fr,R_I/1000,lw=2, label=r"Icebreaking $[R_{I}]$")
plt.title("Resistance Components and Total Resistance")
plt.xlabel("Froude Number, $Fr$ $[-]$")
plt.ylabel("Resistance Magnitude, $[kN]$")
plt.legend()
plt.grid()
plt.show()
```

plt.figure(figsize=(15,10))
$\mathrm{J}=$ np.linspace ($0 ., 0.83$,num $=100$)
openwaterchart(J,PD,ar,Z)
for j in range(len(C_S)):
plt.plot(J_TS[j],K_TS[j],'o',color='r',fillstyle='none')
plt.plot(J_TS[j],10.*K_QTS[j],'o',color='g',fillstyle='none')
plt.plot(J_TS[j],eta_OS[j],'o',color='b',fillstyle='none')
plt.plot(J,C_S[j]*J**2,'+-')
plt.xlabel(r'Advance Ratio, \$J\$ \$[-]\$')

```
plt.ylabel(r'$K_T$, $10K_Q$, $eta_O$, and $C_SJ^2$ $[-]$')
plt.title("Open Water Chart and Self-Propulsion Points")
plt.legend()
plt.grid()
plt.show()
plt.figure(figsize=(15,10))
plt.plot(v_kn,n,lw=2,label=r"Rate of Revolution, $n$")
plt.title("Rate of Revolution vs. Speed")
plt.xlabel(r'Ship Speed, $v_{kn}$ $[kn]$')
plt.ylabel(r'Rate of Revolution, $n$ $[1/s]$')
plt.grid()
plt.show()
plt.figure(figsize=(15,10))
plt.plot(v_kn,P_D/1000,lw=2,label=r"Delivered Power, $P_D$")
plt.title("Delivered Power vs. Speed")
plt.xlabel(r'Ship Speed, $v_{kn}$ $[kn]$')
plt.ylabel(r'Delivered Power, $P_D$ $[kN]$')
plt.grid()
plt.show()
plt.figure(figsize=(15,10))
plt.plot(n,P_D/1000,lw=2,label=r"Delivered Power, $P_D$")
plt.title("Delivered Power vs. Rate of Revolution")
plt.xlabel(r'Rate of Revolution, $n$ $[1/s]$')
plt.ylabel(r'Delivered Power, $P_D$ $[kN]$')
plt.grid()
plt.show()
```


Appendix B: Propeller Geometry Code - WBSeriesPropGeometry.py

```
# Prop Geometry for W-B Series Propellers
# Date Last Modified: 04/26/2021
#from NAME3150RPHoltrop import Z,D,ar,PD
import numpy as np
Z=5.
D=3.0480 #m
ar=0.7520
PD=0.7568
##########################################################################
# maximum thickness (tmax) calculation
rR=np.array([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70,0.80,0.85,0.90,\
    0.95,0.975,1.0])
Ar=np.array([0.0588,0.0526,0.0495,0.0464,0.0402,0.0340,0.0278,0.0216,\
    0.0154,0.0123,0.0092,0.0061,0.00455,0.003])
Br=np.array([0.00425,0.0040,0.00375,0.0035,0.0030,0.0025,0.0020,0.0015,\
    0.0010,0.00075,0.0005,0.00025,0.000125,0.0])
tmax=D*(Ar-Br*Z)
# edge thickness approximation code provided by Dr. Birk
# Typical blade edge thickness ratios edge thickness/tmax
# from Carlton, p.46. this seems to work
# reduced initial values for x=0.15, 200422, lb
# r/R order: [0.15,0.20,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,..,1.0]
tetfactor = np.array ([0.049,0.057,0.063,0.068,0.075,0.085,0.100,0.120,\
    0.152,0.192,0.245,0.245,0.245,0.245])
letfactor = np.array ([0.115,0.120,0.1224,0.124,0.127,0.130,0.134,0.143,\
        0.170,0.205,0.245,0.245,0.245,0.245])
```

\#trailing edge thickness
tte $=$ tetfactor*tmax

```
#leading edge thickness
tle = letfactor*tmax
# chord length calculation
Cr=np.array([1.473,1.600,1.719,1.832,2.023,2.163,2.243,2.247,2.132,\
    2.005,1.798,1.434,1.122,0.0])
cl=Cr*D/Z*ar
# chord length for calculating tip thicknesses
cltip=1.122*D/Z*ar
# distances for adjusting xc
# assuming linear interpolation
brcr=np.array([0.350,0.350,0.350,0.350,0.351,0.355,0.389,0.443,0.479,\
    (0.479+0.5)/2.,0.500,0.250,0.125,0.0])
br=brcr*cl
```



```
    0.524,0.463,(0.463+0.351)/2.,0.351,(0.351/2.),\
    (0.351/4.),0.0])
ar=arcr*cl
```

\#
\#\# center of gravity integration
\# split each array into positive and negative according to the P-values
\# shown below for each of the different y equations
Parrayn=np.array([-1.0,-0.95,-0.90,-0.80,-0.70,-0.60,-0.50,-0.40,-0.20])
Parrayp=np.array $([0.0,0.20,0.40,0.50,0.60,0.70,0.80,0.85,0.90,0.95,1.0])$
\# V1 arrays
V1_15n=np.array([0.3,0.2824,0.265,0.23,0.195,0.161,0.128,0.0955,\}
$0.0365,0.0])$
V1_15p=np.array $([0.0096,0.0384,0.0615,0.092,0.132,0.187,0.223,0.2642, \backslash$
0.315,0.386])

```
V1_20n=np.array([0.2826,0.263,0.24,0.1967,0.157,0.1207,0.088,0.0592,\ \(0.0172,0.0])\)
```

```
V1_20p=np.array([0.0049,0.0304,0.052,0.0804,0.118,0.1685,0.2,0.2353,\
```

V1_20p=np.array([0.0049,0.0304,0.052,0.0804,0.118,0.1685,0.2,0.2353,\
0.2821,0.356])
V1_25n=np.array([0.2598,0.2372,0.2115,0.1651,0.1246,0.0899,0.0579,\
0.035,0.0084,0.0])
V1_25p=np.array([0.0031,0.0224,0.0417,0.0669,0.1008,0.1465,0.1747,\
0.2068,0.2513,0.3256])
V1_30n=np.array([0.2306,0.204,0.179,0.1333,0.0943,0.0623,0.0376,0.0202,\
0.0033,0.0])
V1_30p=np.array([0.0027,0.0148,0.03,0.0503,0.079,0.1191,0.1445,0.176,\
0.2186,0.2923])
V1_40n=np.array([0.1467,0.12,0.0972,0.063,0.0395,0.0214,0.0116,0.0044,\
0.0,0.0])
V1_40p=np.array([0.0,0.0033,0.009,0.0189,0.0357,0.0637,0.0833,0.1088,\
0.1467,0.2181])
V1_50n=np.array([0.0522,0.042,0.033,0.019,0.01,0.004,0.0012,0.0,0.0,0.0])
V1_50p=np.array([0.0,0.0,0.0008,0.0034,0.0085,0.0211,0.0328,0.05,0.0778,\
0.1278])
V1_60n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_60p=np.array([0.0,0.0,0.0,0.0,0.0,0.0006,0.0022,0.0067,0.0169,\
0.0382])
V1_70n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_70p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_80n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

```
```

V1_80p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_85n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_85p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_90n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_90p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_95n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_95p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_975n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_975p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_100n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])
V1_100p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0])

V2 arrays

V2_15n=np.array([0.0,0.054,0.1325,0.287,0.428,0.5585,0.677,0.7805,\
0.9360,1.0])
V2_15p=np.array([0.976,0.8825,0.8055,0.7105,0.5995,0.452,0.3665,0.26,\
0.13,0.0])
V2_20n=np.array([0.0,0.064,0.1455,0.306,0.4535,0.5842,0.6995,0.7984,\
0.9446,1.0])
V2_20p=np.array([0.975,0.8875,0.817,0.7277,0.619,0.4777,0.3905,0.284,\
0.156,0.0])
V2_25n=np.array([0.0,0.0725,0.1567,0.3228,0.474,0.605,0.7184,0.8139,\
0.9519,1.0])

```
```

V2_25p=np.array([0.9751,0.8899,0.8259,0.7415,0.6359,0.4982,0.4108,\
0.3042,0.1758,0.0])
V2_30n=np.array([0.0,0.8,0.167,0.336,0.4885,0.6195,0.7335,0.8265,\
0.9583,1.0])
V2_30p=np.array([0.975,0.892,0.8315,0.752,0.6505,0.513,0.4265,0.3197,\
0.189,0.0])
V2_40n=np.array([0.0,0.0905,0.181,0.035,0.504,0.6353,0.7525,0.8415,\
0.9645,1.0])
V2_40p=np.array([0.9725,0.8933,0.8345,0.7593,0.659,0.522,0.4335,\
0.3235,0.1935,0.0])
V2_50n=np.array([0.0,0.095,0.1865,0.3569,0.514,0.6439,0.758,0.8456,\
0.9639,1.0])
V2_50p=np.array([0.971,0.888,0.8275,0.7478,0.643,0.5039,0.4135,0.3056,\
0.175,0.0])
V2_60n=np.array([0.0,0.0965,0.1885,0.3585,0.511,0.6415,0.753,0.8426,\
0.9613,1.0])
V2_60p=np.array([0.969,0.879,0.809,0.72,0.606,0.462,0.3775,0.272,\
0.1485,0.0])
V2_70n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])
V2_70p=np.array([0.9675,0.866,0.785,0.684,0.5615,0.414,0.33,0.2337,\
0.124,0.0])
V2_80n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])
V2_80p=np.array([0.9635,0.852,0.7635,0.6545,0.5265,0.3765,0.2925,\
0.2028,0.105,0.0])
V2_85n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])
V2_85p=np.array([0.9615,0.845,0.755,0.6455,0.516,0.366,0.283,0.195,\

```
0.1,0.0])

V2_90n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_90p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0])

V2_95n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_95p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0])

V2_975n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_975p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0])

V2_100n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0])

V2_100p=np. \(\operatorname{array}([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0])\)
\#\# blade outline calculations (y_face and y_back):
\# x-coordinates are P-values
\# goes from -1 to 1 and then back again
x_coor=np.concatenate((Parrayn,Parrayp))
x_coor=np.concatenate((x_coor,np.flip(x_coor)))
\# r/R=0.15
rRid=0
\(\mathrm{a}=\) tmax[rRid]
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\) tle[rRid]
yf_15n=V1_15n*(a-b)
yf_15p=V1_15p*(a-c)
yf_15=np.concatenate((yf_15n,yf_15p))
\# np.min used becuase max y_face is at a minimum offset
yfmax=np.min(yf_15)
print(")
print('Maximum y_face and y_back values for stress calc.')
```

print('r/R=15: max. y_face ={:8.4f} m'.format(yfmax))
print('r/R=15: corresponding P = 0.0')
yb_15n=(V1_15n+V2_15n)*(a-b) + b
yb_15p=(V1_15p+V2_15p)*(a-c) + c
yb_15=np.concatenate((yb_15n,yb_15p))
$y b m a x=y b _15 . \max ()$
print('r/R=15: max. y_back ={:8.4f} m'.format(ybmax))
print('r/R=15: corresponding P = {:8.4f}'.format(x_coor[np.argmax(yb_15)]))
y_15=np.concatenate((yf_15,np.flip(yb_15)))
A_15=0.5*np.sum((y_15[1:]-y_15[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_15=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_15[:-1]**2\
+y_15[:-1]*y_15[1:]+y_15[1:]**2))
My_15=1./6.*np.sum((y_15[1:]-y_15[:-1])*(x_coor[:-1]**2\
+x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))
xc_15=br[rRid]+My_15/A_15
xc_15=ar[rRid]-xc_15
yc_15=Mx_15/A_15

r/R=0.20

rRid=1
a=tmax[rRid]
b=tte[rRid]
c=tle[rRid]
yf_20n=V1_20n*(a-b)
yf_20p=V1_20p*(a-c)
yf_20=np.concatenate((yf_20n,yf_20p))
yb_20n=(V1_20n+V2_20n)*(a-b) + b
yb_20p=(V1_20p+V2_20p)*(a-c) + c
yb_20=np.concatenate((yb_20n,yb_20p))

```
y_20=np.concatenate((yf_20,np.flip(yb_20)))
A_20=0.5*np.sum( \(\left(\mathrm{y} \_20[1:]-\mathrm{y} \_20[:-1]\right) *\left(x \_\operatorname{coor}[:-1]+\mathrm{x} \_\right.\)coor \(\left.\left.[1:]\right)\right)\)
Mx_20=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_20[:-1]**2
\(\left.\left.+y \_20[:-1] * y \_20[1:]+y \_20[1:]^{* * 2}\right)\right)\)
My_20=1./6.*np.sum((y_20[1:]-y_20[:-1])*(x_coor[:-1]**2 \(+x \_\)coor \([:-1]^{*} x \_\)coor[1:]+x_coor[1:]**2))
xc_20=br[rRid]+My_20/A_20
xc_20=ar[rRid]-xc_20
yc_20=Mx_20/A_20
\# r/R=0.25
rRid=2
\(\mathrm{a}=\) tmax[rRid]
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\mathrm{tle}\) [rRid]
yf_25n=V1_25n*(a-b)
yf_25p=V1_25p*(a-c)
yf_25=np.concatenate((yf_25n,yf_25p))
\(\mathrm{yb} \_25 \mathrm{n}=\left(\mathrm{V} 1 \_25 \mathrm{n}+\mathrm{V} 2 \_25 \mathrm{n}\right) *(\mathrm{a}-\mathrm{b})+\mathrm{b}\)
\(\mathrm{yb} \_25 \mathrm{p}=\left(\mathrm{V} 1 \_25 \mathrm{p}+\mathrm{V} 2 \_25 \mathrm{p}\right)^{*}(\mathrm{a}-\mathrm{c})+\mathrm{c}\)
yb_25=np.concatenate((yb_25n,yb_25p))
y_25=np.concatenate((yf_25,np.flip(yb_25)))

A_25=0.5*np.sum((y_25[1:]-y_25[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_25=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_25[:-1]**2\
\(\left.\left.+y \_25[:-1] * y \_25[1:]+y \_25[1:]^{* * 2}\right)\right)\)
My_25=1./6.*np.sum((y_25[1:]-y_25[:-1])*(x_coor[:-1]**2
\(+x \_\)coor \([:-1]^{*} x \_\)coor \(\left.\left.[1:]+x \_\operatorname{coor}[1:]^{* *} 2\right)\right)\)
xc_25=br[rRid]+My_25/A_25
xc_25=ar[rRid]-xc_25
```

yc_25=Mx_25/A_25

r/R=0.30

rRid=3
a=tmax[rRid]
b=tte[rRid]
c=tle[rRid]
yf_30n=V1_30n*(a-b)
yf_30p=V1_30p*(a-c)
yf_30=np.concatenate((yf_30n,yf_30p))
yb_30n=(V1_30n+V2_30n)*(a-b) + b
yb_30p=(V1_30p+V2_30p)*(a-c) + c
yb_30=np.concatenate((yb_30n,yb_30p))
y_30=np.concatenate((yf_30,np.flip(yb_30)))

```
A_30=0.5*np.sum((y_30[1:]-y_30[:-1])*(x_coor[:-1]+x_coor[1:]))
\(\mathrm{Mx} \_30=-1 . / 6 . *\) np.sum \(\left(\left(\mathrm{x} \_\right.\right.\)coor \(\left.[1:]-\mathrm{x} \_\operatorname{coor}[:-1]\right) *\left(\mathrm{y} \_30[:-1] * * 2 \backslash\right.\)
    \(\left.\left.+y \_30[:-1] * y \_30[1:]+y \_30[1:]^{* *} 2\right)\right)\)
My_30=1./6.*np.sum((y_30[1:]-y_30[:-1])*(x_coor[:-1]**2
        \(+x \_\)coor \([:-1]^{*} x \_\)coor \(\left.[1:]+x \_\operatorname{coor}[1:]^{* *} 2\right)\) )
xc_30=br[rRid]+My_30/A_30
xc_30=ar[rRid]-xc_30
yc_30=Mx_30/A_30
\# r/R=0.40
rRid=4
\(\mathrm{a}=\mathrm{tmax}[\mathrm{rRid}]\)
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\mathrm{tle}[\mathrm{rRid}]\)
yf_40n=V1_40n*(a-b)
yf_40p=V1_40p*(a-c)
yf_40=np.concatenate((yf_40n,yf_40p))
```

yb_40n=(V1_40n+V2_40n)*(a-b) +b
yb_40p=(V1_40p+V2_40p)*(a-c)+c
yb_40=np.concatenate((yb_40n,yb_40p))
y_40=np.concatenate((yf_40,np.flip(yb_40)))
A_40=0.5*np.sum((y_40[1:]-y_40[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_40=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_40[:-1]**2\
+y_40[:-1]*y_40[1:]+y_40[1:]**2))

```
My_40=1./6.*np.sum((y_40[1:]-y_40[:-1])*(x_coor[:-1]**2
    \(+x \_\)coor \([:-1]^{*} x \_\)coor \(\left.[1:]+x \_\operatorname{coor}[1:]^{* *} 2\right)\) )
\(\mathrm{xc} \_40=\) br[rRid] \(+\mathrm{My} \_40 / \mathrm{A} \_40\)
xc_40=ar[rRid]-xc_40
yc_40=Mx_40/A_40
\# r/R=0.50
rRid=5
\(\mathrm{a}=\operatorname{tmax}[\mathrm{rRid}]\)
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\mathrm{tle}\) [rRid]
yf_50n=V1_50n*(a-b)
yf_50p=V1_50p*(a-c)
yf_50=np.concatenate((yf_50n,yf_50p))
yb_50n=(V1_50n+V2_50n)*(a-b) + b
\(\mathrm{yb} \_50 \mathrm{p}=\left(\mathrm{V} 1 \_50 \mathrm{p}+\mathrm{V} 2 \_50 \mathrm{p}\right) *(\mathrm{a}-\mathrm{c})+\mathrm{c}\)
yb_50=np.concatenate((yb_50n,yb_50p))
y_50=np.concatenate((yf_50,np.flip(yb_50)))
A_50=0.5*np.sum((y_50[1:]-y_50[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_50=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_50[:-1]**2
    \(\left.\left.+y \_50[:-1] * y \_50[1:]+y \_50[1:]^{* * 2}\right)\right)\)
My_50=1./6.*np.sum((y_50[1:]-y_50[:-1])*(x_coor[:-1]**2
```

+x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))

```
```

xc _50=br[rRid]+My_50/A_50
xc _ $50=\mathrm{ar}[\mathrm{rRid}]-\mathrm{xc}$ _50
yc_50=Mx_50/A_50
\# r/R=0.60
rRid=6
$\mathrm{a}=\mathrm{tmax}[\mathrm{rRid}]$
$\mathrm{b}=\mathrm{tte}$ [rRid]
$\mathrm{c}=\mathrm{tle}$ [rRid]
yf_60n=V1_60n*(a-b)
yf_60p=V1_60p*(a-c)
yf_60=np.concatenate((yf_60n,yf_60p))
yb _60n=(V1_60n+V2_60n)*(a-b) +b
$\mathrm{yb} _60 \mathrm{p}=\left(\mathrm{V} 1 _60 \mathrm{p}+\mathrm{V} 2 _60 \mathrm{p}\right) *(\mathrm{a}-\mathrm{c})+\mathrm{c}$
yb_60=np.concatenate((yb_60n,yb_60p))
y_60=np.concatenate((yf_60,np.flip(yb_60)))
A_60=0.5*np.sum($\left(\mathrm{y} _60[1:]-\mathrm{y} _60[:-1]\right) *\left(\mathrm{x} _\right.$coor $[:-1]+\mathrm{x} _$coor $\left.\left.[1:]\right)\right)$
Mx_60=-1./6.*np.sum($\left(x _\right.$coor $\left.[1:]-x _\operatorname{coor}[:-1]\right) *\left(y _60[:-1] * * 2 \backslash\right.$
$\left.\left.+y _60[:-1]^{*} y _60[1:]+y _60[1:]^{* * 2}\right)\right)$

```
My_60=1./6.*np.sum((y_60[1:]-y_60[:-1])*(x_coor[:-1]**2
        \(+x \_\)coor \([:-1]^{*} x \_\)coor[1:]+x_coor[1:]**2))
xc_60=br[rRid]+My_60/A_60
\(\mathrm{xc} \_60=\operatorname{ar}[\mathrm{rRid}]-\mathrm{xc} \_60\)
yc_60=Mx_60/A_60
\# r/R=0.70
rRid=7
\(a=t m a x[r R i d]\)
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\mathrm{tle}\) [rRid]
```

yf_70n=V1_70n*(a-b)
yf_70p=V1_70p*(a-c)
yf_70=np.concatenate((yf_70n,yf_70p))

```
yb_70n=(V1_70n+V2_70n)*(a-b) +b
\(\mathrm{yb} \_70 \mathrm{p}=\left(\mathrm{V} 1 \_70 \mathrm{p}+\mathrm{V} 2 \_70 \mathrm{p}\right) *(\mathrm{a}-\mathrm{c})+\mathrm{c}\)
yb_70=np.concatenate((yb_70n,yb_70p))
y_70=np.concatenate((yf_70,np.flip(yb_70)))
A_70=0.5*np.sum((y_70[1:]-y_70[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_70=-1./6.*np.sum( \(\left(\mathrm{x} \_\right.\)coor \([1:]-\mathrm{x} \_\)coor \(\left.[:-1]\right) *\left(\mathrm{y} \_70[:-1] * * 2 \backslash\right.\)
    \(\left.+y \_70[:-1] * y_{-} 70[1:]+y \_70[1:]^{* * 2}\right)\) )
My_70=1./6.*np.sum((y_70[1:]-y_70[:-1])*(x_coor[:-1]**2
    \(+x \_\)coor[:-1]*x_coor[1:]+x_coor[1:]**2))
xc_70=br[rRid]+My_70/A_70
xc_70=ar[rRid]-xc_70
yc_70=Mx_70/A_70
\# r/R=0.80
rRid=8
\(\mathrm{a}=\) tmax[rRid]
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\mathrm{tle}\) [rRid]
```

yf_80n=V1_80n*(a-b)
yf_80p=V1_80p*(a-c)
yf_80=np.concatenate((yf_80n,yf_80p))
yb_80n=(V1_80n+V2_80n)*(a-b) +b
yb_80p=(V1_80p+V2_80p)*(a-c) + c
yb_80=np.concatenate((yb_80n,yb_80p))
y_80=np.concatenate((yf_80,np.flip(yb_80)))

```

A_80=0.5*np.sum((y_80[1:]-y_80[:-1])*(x_coor[:-1]+x_coor[1:]))
\[
\begin{gathered}
\mathrm{Mx} \_80=-1 . / 6 . * \text { np.sum }\left(( \mathrm { x } \_ \text { coor } [ 1 : ] - \mathrm { x } \_ \text { coor } [ : - 1 ] ) * \left(\mathrm{y} \_80[:-1]^{* *} 2 \backslash\right.\right. \\
\left.\left.+\mathrm{y} \_80[:-1] * \mathrm{y} \_80[1:]+\mathrm{y} \_80[1:] * 2\right)\right)
\end{gathered}
\]

My_80=1./6.*np.sum( \((\mathrm{y}\) _80[1:]-y_80[:-1])*(x_coor[:-1]**2 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))
xc_80=br[rRid]+My_80/A_80
xc_ \(80=\) ar[rRid]-xc_80
yc_80=Mx_80/A_80
\# r/R=0.85
rRid=9
\(a=t m a x[r R i d]\)
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\mathrm{tle}\) [rRid]
yf \(\_85 \mathrm{n}=\mathrm{V} 1 \_85 \mathrm{n} *(\mathrm{a}-\mathrm{b})\)
yf_85p=V1_85p*(a-c)
yf_85=np.concatenate((yf_85n,yf_85p))
\(\mathrm{yb} \_85 \mathrm{n}=\left(\mathrm{V} 1 \_85 \mathrm{n}+\mathrm{V} 2 \_85 \mathrm{n}\right) *(\mathrm{a}-\mathrm{b})+\mathrm{b}\)
\(\mathrm{yb} \_85 \mathrm{p}=\left(\mathrm{V} 1 \_85 \mathrm{p}+\mathrm{V} 2 \_85 \mathrm{p}\right) *(\mathrm{a}-\mathrm{c})+\mathrm{c}\)
yb_85=np.concatenate((yb_85n,yb_85p))
y_85=np.concatenate((yf_85,np.flip(yb_85)))
A_85=0.5*np.sum((y_85[1:]-y_85[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_85=-1./6.*np.sum( \(\left(x \_\right.\)coor \([1:]-\mathrm{x} \_\)coor \(\left.[:-1]\right) *\left(y \_85[:-1] * * 2 \backslash\right.\) \(\left.\left.+y \_85[:-1] * y \_85[1:]+y \_85[1:] * * 2\right)\right)\)

My_85=1./6.*np.sum((y_85[1:]-y_85[:-1])*(x_coor[:-1]**2 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))
xc_85=br[rRid]+My_85/A_85
xc_85=ar[rRid]-xc_85
yc_85=Mx_85/A_85
\# r/R=0.90
rRid=10
```

a=tmax[rRid]
b=tte[rRid]
c=tle[rRid]
yf_90n=V1_90n*(a-b)
yf_90p=V1_90p*(a-c)
yf_90=np.concatenate((yf_90n,yf_90p))
yb_90n=(V1_90n+V2_90n)*(a-b) + b
yb_90p=(V1_90p+V2_90p)*(a-c) + c
yb_90=np.concatenate((yb_90n,yb_90p))
y_90=np.concatenate((yf_90,np.flip(yb_90)))

```
A_90=0.5*np.sum((y_90[1:]-y_90[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_90=-1./6.*np.sum( \(\left(\mathrm{x} \_\right.\)coor \([1:]-\mathrm{x} \_\)coor \(\left.[:-1]\right) *(\mathrm{y}\) _90[:-1]**2
    \(\left.\left.+y \_90[:-1] * y \_90[1:]+y \_90[1:]^{* * 2}\right)\right)\)
My_90=1./6.*np.sum((y_90[1:]-y_90[:-1])*(x_coor[:-1]**2
        \(+x \_\)coor \([:-1]^{*} x \_\)coor \(\left.\left.[1:]+x \_\operatorname{coor}[1:]^{* *} 2\right)\right)\)
xc_90=br[rRid]+My_90/A_90
xc_90=ar[rRid]-xc_90
yc_90=Mx_90/A_90
\# r/R=0.95
rRid=11
\(a=t m a x[r R i d]\)
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\mathrm{tle}\) [rRid]
yf_95n=V1_95n*(a-b)
yf_95p=V1_95p*(a-c)
yf_95=np.concatenate((yf_95n,yf_95p))
yb _95n=(V1_95n+V2_95n)*(a-b) +b
yb _95p=(V1_95p+V2_95p)*(a-c) + c
yb_95=np.concatenate((yb_95n,yb_95p))
y_95=np.concatenate((yf_95,np.flip(yb_95)))
A_95=0.5*np.sum((y_95[1:]-y_95[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_95=-1./6.*np.sum( \(\left(x \_\operatorname{coor}[1:]-x \_\operatorname{coor}[:-1]\right) *\left(y \_95[:-1] * * 2 \backslash\right.\) \(+y \_95[:-1] *\) y_95[1:]+y_95[1:]**2)) \(^{*}\)

My_95=1./6.*np.sum((y_95[1:]-y_95[:-1])*(x_coor[:-1]**2 +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))
xc_95=br[rRid]+My_95/A_95
xc_95=ar[rRid]-xc_95
yc_95=Mx_95/A_95
\# r/R=0.975
rRid=12
\(\mathrm{a}=\) tmax[rRid]
\(\mathrm{b}=\mathrm{tte}\) [rRid]
\(\mathrm{c}=\mathrm{tle}\) [rRid]
yf_975n=V1_975n*(a-b)
yf_975p=V1_975p*(a-c)
yf_975=np.concatenate((yf_975n,yf_975p))
\(\mathrm{yb} \_975 \mathrm{n}=\left(\mathrm{V} 1 \_975 \mathrm{n}+\mathrm{V} 2 \_975 \mathrm{n}\right) *(\mathrm{a}-\mathrm{b})+\mathrm{b}\)
\(\mathrm{yb} \_975 \mathrm{p}=\left(\mathrm{V} 1 \_975 \mathrm{p}+\mathrm{V} 2 \_975 \mathrm{p}\right)^{*}(\mathrm{a}-\mathrm{c})+\mathrm{c}\)
yb_975=np.concatenate((yb_975n,yb_975p))
y_975=np.concatenate((yf_975,np.flip(yb_975)))
A_975=0.5*np.sum((y_975[1:]-y_975[:-1])*(x_coor[:-1]+x_coor[1:]))

Mx_975=-1./6.*np.sum( \(\left(\mathrm{x} \_\right.\)coor[1:]-x_coor[:-1])*(y_975[:-1]**2
+y_975[:-1]*y_975[1:]+y_975[1:]**2))

My_975=1./6.*np.sum((y_975[1:]-y_975[:-1])*(x_coor[:-1]**2
\(+x \_\)coor \(\left.\left.[:-1]^{*} x \_c o o r[1:]+x \_\operatorname{coor}[1:]^{* *} 2\right)\right)\)
xc_975=br[rRid]+My_975/A_975
xc_975=ar[rRid]-xc_975
```

yc_975=Mx_975/A_975

r/R=0.100

rRid=13
a=tmax[rRid]
b=tte[rRid]
c=tle[rRid]
yf_100n=V1_100n*(a-b)
yf_100p=V1_100p*(a-c)
yf_100=np.concatenate((yf_100n,yf_100p))
yb_100n=(V1_100n+V2_100n)*(a-b) + b
yb_100p=(V1_100p+V2_100p)*(a-c) + c
yb_100=np.concatenate((yb_100n,yb_100p))
y_100=np.concatenate((yf_100,np.flip(yb_100)))
A_100=0.5*np.sum((y_100[1:]-y_100[:-1])*(x_coor[:-1]+x_coor[1:]))
Mx_100=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_100[:-1]**2\
+y_100[:-1]*y_100[1:]+y_100[1:]**2))
My_100=1./6.*np.sum((y_100[1:]-y_100[:-1])*(x_coor[:-1]**2\
+x_coor[:-1]*x_coor[1:]+x_coor[1:]**2))
xc_100=br[rRid]+My_100/A_100
xc_100=ar[rRid]-xc_100
yc_100=Mx_100/A_100

xc is center of gravity x-offset from P=0

yc is center of gravity y-offset from pitch (reference) line

print(")
print('Propeller Blade Cross-Sectional Areas:')
print('r/R=15: A = {:8.4f } m^2'.format(A_15))
print('r/R=20: A = {:8.4f} m^2'.format(A_20))
print('r/R=25: A = {:8.4f} m^2'.format(A_25))
print('r/R=30: A = {:8.4f} m^2'.format(A_30))

```
```

print('r/R=40: A = {:8.4f} m^2'.format(A_40))
print('r/R=50: A = {:8.4f} m^2'.format(A_50))
print('r/R=60: A = {:8.4f} m^2'.format(A_60))
print('r/R=70: A = {:8.4f} m^2'.format(A_70))
print('r/R=80: A = {:8.4f} m^2'.format(A_80))
print('r/R=85: A = {:8.4f} m^2'.format(A_85))
print('r/R=90: A = {:8.4f} m^2'.format(A_90))
print('r/R=95: A = {:8.4f} m^2'.format(A_95))
print('r/R=97.5: A = {:8.4f} m^2'.format(A_975))
print('r/R=100: A = {:8.4f} m^2'.format(A_100))
print(")
print('Propeller Blade X-Moments:')
print('r/R=15: Mx = {:8.4f } m^3'.format(Mx_15))
print('r/R=20: Mx={:8.4f} m^3'.format(Mx_20))
print('r/R=25: Mx={:8.4f} m^3'.format(Mx_25))
print('r/R=30: Mx={:8.4f} m^3'.format(Mx_30))
print('r/R=40: Mx = {:8.4f} m^3'.format(Mx_40))
print('r/R=50: Mx={:8.4f} m^3'.format(Mx_50))
print('r/R=60: Mx={:8.4f} m^3'.format(Mx_60))
print('r/R=70: Mx = {:8.4f} m^3'.format(Mx_70))
print('r/R=80: Mx = {:8.4f} m^3'.format(Mx_80))
print('r/R=85: Mx = {:8.4f} m^3'.format(Mx_85))
print('r/R=90: Mx={:8.4f} m^3'.format(Mx_90))
print('r/R=95: Mx={:8.4f} m^3'.format(Mx_95))
print('r/R=97.5: Mx = {:8.4f} m^3'.format(Mx_975))
print('r/R=100: Mx = {:8.4f} m^3'.format(Mx_100))

```
print(")
print('Propeller Blade Y-Moments:')
\(\operatorname{print}\left(\right.\) ('r/R=15: \(\quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\). format(My_15))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=20: \quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\right.\). format( \(\left.\mathrm{My} \_20\right)\) )
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=25: \quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\right.\). format( \(\mathrm{My} \_25\) ) \()\)
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=30: \quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\right.\). .format( \(\left.\mathrm{My} \_30\right)\) )
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=40: \quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\right.\). format( \(\left.\mathrm{My}^{\prime} 40\right)\) )
\(\operatorname{print}\left(\right.\) ('r/R=50: \(\quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\). format(My_50))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=60: \quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\right.\). format( \(\mathrm{My} \_60\) ) )
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=70: \quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\right.\). format( \(\left.\mathrm{My}_{-} 70\right)\) )
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=80: \quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\right.\). format( \(\left.\mathrm{My} \_80\right)\) )
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=85: \quad \mathrm{My}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3\right.\) '.format( \(\mathrm{My} \_85\) ) \()\)
```

print('r/R=90: My = {:8.4f} m^3'.format(My_90))
print('r/R=95: My = {:8.4f} m^3'.format(My_95))
print('r/R=97.5: My = {:8.4f} m^3'.format(My_975))
print('r/R=100: My = {:8.4f} m^3'.format(My_100))

```
print(")
print('Center of Gravity X-Offset:')
\(\operatorname{print}(' \mathrm{r} / \mathrm{R}=15: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(xc_15))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=20: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format(xc_20))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=25: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format(xc_25))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=30: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format \(\left.\left(\mathrm{xc} \_30\right)\right)\)
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=40: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(xc_40))
\(\operatorname{print}\left(' \mathrm{r} / \mathrm{R}=50: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format(xc_50))
print('r/R=60: \(\quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(xc_60))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=70: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format \(\left.\left(\mathrm{xc} \_70\right)\right)\)
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=80: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(xc_80))
\(\operatorname{print}\left(' \mathrm{r} / \mathrm{R}=85: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format \(\left.\left(\mathrm{xc} \_85\right)\right)\)
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=90: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(xc_90))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=95: \quad \mathrm{xc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format \(\left.\left(\mathrm{xc} \_95\right)\right)\)
\(\operatorname{print}(\) ('r/R=97.5: xc \(=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format( xc _975) \()\)
\(\operatorname{print}(\) 'r/R=100: xc \(=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(xc_100))
print(")
print('Center of Gravity Y-Offset:')
print('r/R=15: yc \(=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_15))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=20: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format \(\left(\mathrm{yc} \_20\right)\) )
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=25: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_25))
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=30: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_30))
print('r/R=40: yc \(=\{: 8.4 \mathrm{f}\}\) m'.format(yc_40))
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=50: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_50))
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=60: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_60))
\(\operatorname{print}(' \mathrm{r} / \mathrm{R}=70: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_70))
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=80: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_80))
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=85: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_85))
\(\operatorname{print}\left(\mathrm{r} / \mathrm{R}=90: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\prime}\right.\). format \(\left(\mathrm{yc} \_90\right)\) )
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=95: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_95))
\(\operatorname{print}\left(\left(\mathrm{r} / \mathrm{R}=97.5: \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\right.\right.\) '.format( \(\left.\mathrm{yc} \_975\right)\) )
\(\operatorname{print}(\mathrm{r} / \mathrm{R}=100: \quad \mathrm{yc}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(yc_100))
\#\# volume integrations:
```

r=D/2.*np.array([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70,0.80,0.85,\
0.90,0.95,0.975,1.0]) \#m
A=np.array([A_15,A_20,A_25,A_30,A_40,A_50,A_60,A_70,A_80,A_85,A_90,\
A_95,A_975,A_100])
rarray=np.flip(r)
Aarray=np.flip(A)

pitch angle

phi=np.arctan(PD*D/(2.*np.pi))

rake array

rake=np.tan(np.deg2rad(15.))*r \#m

centers

xcarray=np.array([xc_15,xc_20,xc_25,xc_30,xc_40,xc_50,xc_60,xc_70,\
xc_80,xc_85,xc_90,xc_95,xc_975,xc_100])
ycarray=np.array([yc_15,yc_20,yc_25,yc_30,yc_40,yc_50,yc_60,yc_70,\
yc_80,yc_85,yc_90,yc_95,yc_975,yc_100])
xc=np.cos(phi)*xcarray -np.sin(phi)*ycarray
yc=np.sin(phi)*xcarray +np.cos(phi)*ycarray
yc=yc-rake

volumes

volume found via integration

V=0.5*np.sum((Aarray[1:]+Aarray[:-1])*(rarray[:-1]-rarray[1:]))

volume found with trapezoidal method

Vtrap=np.trapz(A,r)

volume of the prism containing blade

Vp=tmax[0]*cl[0]*D/2.

radial volume center

```
\(\mathrm{M} \_\mathrm{Vr}=\mathrm{np} . \operatorname{trapz}\left(\mathrm{r}^{*} \mathrm{~A}, \mathrm{r}\right)\)

CGr=M_Vr/V \#m
\(M_{-} V x=n p . \operatorname{trapz}\left(x c^{*} A, r\right)\)

CGy=M_Vx/V \#m
\(M_{-} V y=n p . \operatorname{trapz}\left(y^{*} * A, r\right)\)
CGx=M_Vy/V \#m
print(")
print('Volume Integration Results:')
print('volume: \(\quad \mathrm{V}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\).format( V ))
print('volume (trap.): \(\mathrm{V}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\).format(Vtrap))
print('volume (prism): V \(=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 3^{\prime}\). format( \(\left.\mathrm{V} p\right)\) )
print('radial v.mom: \(\quad \operatorname{Mvr}=\{: 8.4 \mathrm{f}\} \mathrm{m}^{\wedge} 4\) '.format(M_Vr))
print('radial CG: \(\quad \mathrm{CGr}=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(CGr))
print('radial CG (r/R): CGr \(=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format( \(\mathrm{CGr} /(\mathrm{D} / 2))\).
print('x-direction CG: CGx \(=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(CGx))
print('y-direction CG: CGy \(=\{: 8.4 \mathrm{f}\} \mathrm{m}\) '.format(CGy))

\section*{Appendix C: Propeller Structural Code - MVYahtsePropellerDev.py}

\author{
\# Honors Program Capstone Project \\ \# Ice Class Propeller Design \\ \# Date Last Modified: 04/30/2021 \\ " "'" \\ Design and ice-class propeller for the MV Yahtse - an overnighting, ice-class, car ferry servicing the Alaskan coast and Bering Sea.
}

Propeller must meet IACS ice-class requirements
```

Ice Class - PC 3
Number of Propellers - 2
Type - CPP, open
"""
import numpy as np
from scipy.interpolate import CubicSpline
import matplotlib.pyplot as plt
from NAME3150RPHoltrop import n,T_req,v_kn,eta_H,eta_OS,eta_R,t
\#from NAME3150RPHoltrop import Z,D,ar,PD
from WBSeriesPropGeometry import cl,cltip,rR,xc_15,yc_15,yfmax,ybmax

```
\(\mathrm{Z}=5\).
\(\mathrm{D}=3.0480\) \#m
ar=0.7520
\(\mathrm{PD}=0.7568\)

\section*{\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#}
\#\# Variables
\# for a worst case scenario, look at service speed + icebreaking
\# since H\&M code designs the propeller at service speed, this will see
\# if the service speed propeller can survive worst conditions
ssid=10
\(\mathrm{n} \_\mathrm{ss}=\mathrm{n}[\mathrm{ssid}]\) \# nominal rotational speed at MCR free-running condition
\# from W-B series chord equations
c_7=2.247*D/Z*ar \#m; length of the blade chord at 0.7 R (radius)
P_7 \(=0.7 *\) PD*D \#m; propeller pitch at 0.7 R
\(\mathrm{t} \_7=\mathrm{D} *\left(0.0216-0.0015^{*} \mathrm{Z}\right)\) \#m; max thickness at 0.7 R
\# if bollard thrust (T_n) is known, use instead of T and tab out T_n
\# estimation calculation
\(\mathrm{T}=\mathrm{T} \_\)req[ssid] \(] / 2000\). \#kN; per propeller thrust at MCR open water cond.
\# measurements of cylindrical root section of the blade at the weakest \# section outside root fillet; typically will be at the termination of \# the fillet into the blade profile.
\# root section measurements
\# assuming root is at \(16.5 \%\) of the total blade diameter
d_h=0.165*D \#m; propeller hub diameter
d_r=d_h \#approximately true
\# cut off at a \(\mathrm{x}=\mathrm{r} / \mathrm{R}\) of 0.7 becuase independant variable must be
\# increasing only for CubicSpline to work
\(\mathrm{x}=\mathrm{np} . \operatorname{array}([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70])\)
\(\mathrm{Cr}=\) np. \(\operatorname{array}([1.473,1.600,1.719,1.832,2.023,2.163,2.243,2.247])\)
\(\mathrm{y}=\mathrm{Cr} * \mathrm{D} / \mathrm{Z}^{*}\) ar
cs=CubicSpline(Cr,y)
Crx=np.interp(0.165,x,Cr)
print(")
print('C_rx = \{:6.4f \} '.format(Crx))
\(\mathrm{c} \_\mathrm{r}=\mathrm{cs}(\mathrm{Crx}) \# \mathrm{~m}\); chord length at the root
print('c_r = \{:6.4f \(\}\) m'.format(c_r))
\(\mathrm{xp}=\mathrm{np} . \operatorname{array}([0.15,0.20,0.25])\)
\(\operatorname{Ar}=\mathrm{np} . \operatorname{array}([0.0588,0.0526,0.0495])\)
\(\mathrm{Br}=\mathrm{np} . \operatorname{array}([0.00425,0.0040,0.00375])\)
\(\mathrm{fp}=\mathrm{D}^{*}(\mathrm{Ar}-\mathrm{Br} * \mathrm{Z})\)
t r\(=\mathrm{np}\).interp \((0.165, \mathrm{xp}, \mathrm{fp})\) \#m; thickness at the root
print('t_r = \{:6.4f \(\}\) m'.format(t_r))
```

p=PD*D \#m; pitch at root section, constant pitch
r=d_r/2. \#m; radius

blade material constants

Blade materials are in accordance with ABS

Stainless Steel 316/316L

sigma_y is the 0.2% proof stress conventionally considered as

yield stress

sigma_y=290.0e3 \#kPa

sigma_u is the ultimate strength

sigma_u=627.0e3 \#kPa

```
\#\# must be done in Imperial units and converted at end
\#\# from 1942 SNAME Marine Engieering Vol. 1
\#\# Bending Moment Calculation
D_i=D*39.37 \#in.
d_ri=d_r*39.37 \#in.; diameter at root section
\(\mathrm{P}=3655\). \#hp; shaft horsepower per screw
\(\mathrm{v}=\mathrm{v} \_\mathrm{kn}[\) ssid] \#knots; ship speed
\(\mathrm{N}=\mathrm{n}\) _ss*60. \#rpm; shaft revolutions per minute
A_d=ar*np.pi*(D_i/24.)**2 \#ft^2; approximately true A_d=A_e
t_ri=t_r*39.37 \#in.; maximum thickness at root
\# note on coordinate system being used:
\# x - horizontal along the face of the blade
\# y - horizontal through blade thickness
\# z/r - tangent out from hub/blade root
\# assume center of root is half of the root thickness
a_r=c_r*0.617 \#distance from LE to generator line at (approx.) the root
\(\mathrm{CRb}=\mathrm{a} \_\)r*39.37 \#in.; distance of center of root in y -direction
CRr=t_r/2.*39.27 \#in.; distance of center of root in z-direction
\(\mathrm{p}=\mathrm{p} * 39.37\) \#in.; pitch at root section
```


method needs to be found to determine these from blade geometry

r=5.1 \#in.; arm due to rake [**GUESS VALUE**]
b=5.1 \#in.; arm due to skewback [**GUESS VALUE**]

thrust moment arm factor

K_T=0.66*D_i -d_ri \#in.

moment due to thrust

eta_H=eta_H[ssid] \#hull efficiency
eta_OS=eta_OS[ssid]
e=eta_H*eta_OS*eta_R \#propulsive efficiency
M_T=163.*P*e*K_T/(v*Z*(1.-t)) \#in.-lb

centrifugal force

F_c=D_i*N**2*A_d*t_ri/(7450.*Z) \#lb

moment due to rake

M_R=r*F_c \#in.-lb

total axial moment

M_A=M_T + M_R \#in.-lb

torque moment arm ratio

K_Q=1. -1.67*d_ri/D_i

moment due to torque

M_Q=63000.*P*K_Q/(Z*N) \#in.-lb

moment due to skewback

M_S=b*F_c \#in.-lb

total circumferential moment

M_C=M_Q - M_S \#in.-lb

tangent of pitch angle

x=p/(np.pi*d_ri)

secant of pitch angle

```
```

y=np.sqrt(1.+x**2)

moment normal to root

M_N=M_A/y + x*M_C/y \#in.-lb

moment parallel to root

M_P=x*M_A/y - M_C/y \#in.-lb

Blade Stress Calculation

only check most extreme values (at r/R=0.15 where x\&y are largest)

check if correct

l=c_r*39.37 \#in.; length of root section

moment of inertia of section, normal

K_N=0.046
I_N=K_N*I*t_ri**3 \#in.^4

stress at t due to M_N

y_t is distance between yc and y_back at trailing edge of r/R=0.15

distance from NA to point t, normal (fig. 11)

y_t=np.abs(yc_15-ybmax)*39.37 \#in.
s1=M_N*y_t/I_N \#psi

moment of inertia of section, parallel

K_P=0.039
I_P=K_P*l**3*t_ri \#in.^4

stress at t due to M_P

x_t is distance between xc and P=-1 of y_face at r/R=0.15

distance from NA to point t, parallel (fig.11)

x_t=(cl[0]-0.350*cl[0]+xc_15)*39.37 \#in.
s2=M_P*x_t/I_P \#psi

area of section

K_A=0.71
A_r=K_A*l*t_ri \#in.^2

stress due to F

```
```

s_F=F_c/A_r \#psi

total stress at t

s_t=s1 + s2 + s_F \#psi

stress at c due to M_N

y_c is greatest distance between yc and y_face at r/R=0.15

distance from NA to point c, normal (fig.11)

y_c=np.abs(yc_15-yfmax)*39.37 \#in.
s3=M_N*y_c/I_N \#psi

stress at c due to M_P

x_c is greatest distance between xc and P=0 of y_face at r/R=0.15

distance from NA to point c, parallel (fig.11)

x_c=xc_15*39.37 \#in.
s4=M_P*x_c/I_P \#psi

total stress at c

s_c=s3 + s4 + s_F \#psi

Calculated Blade Stress

if s_t > s_c:
s_calc=s_t \#psi
else:
s_calc=s_c \#psi
sigma_calc=s_calc*6.895 \#kPa
print('calc. stress ={:6.4f} kPa'.format(sigma_calc))
\#

```
\#\# IACS Propeller Requirements
"""
I3.4 Ice Interaction Load:
I3.4.1 Propeller Ice Interaction:

The loads given in section I3.4 are total loads (unless otherwise stated) during ice interaction and are to be applied separately (unless otherwise stated) and are intended for component strength calculations only. The different loads given here are to be applied separately.
Fb is a force bending a propeller blade backwards when the propeller mills an ice block while rotating ahead. Ff is a force bending a propeller blade forwards when a propeller interacts with an ice block while rotating ahead.

H_ice=3.0 \# m; Ice thickness for machinery strength design S_ice=1.1 \# Ice strength index for blade ice force
S_qice=1.15 \# Ice strength index for blade ice torque
"""
I3.4.3 Design Ice Loads for Open Propeller:
I3.4.3.1 Maximum Backward Blade Force, Fb:
"""

D_limit=0.85*H_ice**1.4 \#m
if D < D_limit:
\[
\text { F_b=-27.*S_ice*(n_ss*D) }{ }^{* *} 0.7^{*}(\mathrm{ar} / \mathrm{Z})^{* *} 0.3^{*}(\mathrm{D})^{* *} 2 \# \mathrm{kN}
\]
else:
F_b \(=-23 . *\) S_ice \({ }^{*}\left(\mathrm{n} \_\mathrm{ss} * \mathrm{D}\right)^{* *} 0.7^{*}(\mathrm{ar} / \mathrm{Z})^{* *} 0.3^{*}\left(\mathrm{H} \_\mathrm{ice}\right)^{* *} 1.4^{*} \mathrm{D} \# \mathrm{kN}\)
print('F_b \(=\{: 6.4 \mathrm{f}\} \mathrm{kN}\) '.format(F_b))
"""
Fb is to be applied as a uniform pressure distribution to an area on the back (suction) side of the blade for the following load cases:
a) Load case 1 : from 0.6 R to the tip and from the blade leading edge to a value of 0.2 chord length.
b) Load case 2: a load equal to \(50 \%\) of the Fb is to be applied on the propeller tip area outside of 0.9 R .
c) Load case 5: for reversible propellers a load equal to \(60 \%\) of the Fb is to be applied from 0.6 R to the tip and from the blade trailing edge to a value of 0.2 chord length.

D_limit=2./(1.-d_h/D)*H_ice \#m
if D < D_limit:
F_f=250.*ar/Z*D**2 \#kN
else:
F_f=500./(1.-d_h/D)*H_ice*ar/Z*D \#kN
\(\operatorname{print}\left(' F \_f=\{: 6.4 f\} k N ' . f o r m a t\left(F \_f\right)\right)\)
"""
Ff is to be applied as a uniform pressure distribution to an area on the face (pressure) side of the blade for the following loads cases:
a) Load case 3 : from 0.6 R to the tip and from the blade leading edge to a value of 0.2 chord length.
b) Load case 4: a load equal to \(50 \%\) of the Ff is to be applied on the propeller tip area outside of 0.9 R .
c) Load case 5: for reversible propellers a load equal to \(60 \% \mathrm{Ff}\) is to be applied from 0.6R to the tip and from the blade trailing edge to a value of 0.2 chord length.

\section*{I3.4.3.3 Maximum Blade Spindle Torque, Qsmax:}

Spindle torque Qsmax around the spindle axis of the blade fitting shall be calculated both for the load cases described in I3.4.3.1 \& I3.4.3.2 for Fb Ff . If these spindle torque values are less than the default value given below, the default minimum value shall be used.
"""

D_limit:1.81*H_ice \#m
\# F is either Fb or Ff , whichever has the greater absolute value if np.abs(F_b) > np.abs(F_f):

F=F_b \#kN
else:
F=F_f \#kN

Q_smax \(=0.25^{*} F^{*}\) c_7 \(\# \mathrm{kNm}\)
```

print('Q_smax = {:6.4f} kNm'.format(Q_smax))
if D < D_limit:
Q_max=105.*(1-d_h/D)*S_qice*(P_7/D)**0.16*(t_7/D)**0.6*(n_ss*D)**0.17*D**3

```
else:
    Q_max=202.*(1-
d_h/D)*S_qice*H_ice** \(1.1 *\left(\mathrm{P} \_7 / \mathrm{D}\right)^{* *} 0.16^{*}\left(\mathrm{t} \_7 / \mathrm{D}\right)^{* *} 0.6^{*}\left(\mathrm{n} \_\right.\)ss*D)\({ }^{* *} 0.17^{*} \mathrm{D}^{* *} 1.9\)
if Q_max < Q_smax:
    Q_max=Q_smax \#kNm
else:
    Q_max=Q_max \#kNm
\(\operatorname{print}\left(' \mathrm{Q} \_\right.\)max \(=\{: 6.4 \mathrm{f}\} \mathrm{kNm}\) '.format(Q_max))
"""

For CP propellers, propeller pitch, P 0.7 shall correspond to MCR in bollard condition. If not known, P 0.7 is to be taken as \(0.7 \cdot \mathrm{P} 0.7 \mathrm{n}\), where P 0.7 n is propeller pitch at MCR free running condition.

I3.4.3.5 Maximum Propeller Ice Thrust applied to the shaft:
"'" "

T_f=1.1*F_f \#kN
T_b=1.1*F_b \#kN
print('T_f \(=\{: 6.4 \mathrm{f}\} \mathrm{kN}\) '.format(T_f))
print('T_b \(=\{: 6.4 \mathrm{f}\} \mathrm{kN}\) '.format(T_b))
\# Structural Design
""
I3.4.6.2 Maximum Response Thrust:
Maximum thrust along the propeller shaft line is to be calculated
with the formulae below. The factors 2.2 and 1.5 take into account the dynamic magnification due to axial vibration. Alternatively, the propeller thrust magnification factor may be calculated by dynamic analysis.
```

"""

```
T_n=1.25*T \#kN
T_for=T_n + 2.2*T_f \#kN
T_rev=1.5*T_b \#kN
```

print('T_for = {:6.4f} kN'.format(T_for))
print('T_rev = {:6.4f} kN'.format(T_rev))

```
"""

I3.4.6.3 Blade Failure Load for both Open and Nozzle Propeller:
The force is acting at 0.8 R in the weakest direction of the blade and at a spindle arm of \(2 / 3\) of the distance of axis of blade rotation of leading and trailing edge which ever is the greatest.
```

"""

```
sigma_ref \(=0.6 *\) sigma_y \(+0.4 *\) sigma_u \#kPa

print('F_ex \(=\{: 6.4 \mathrm{f}\} \mathrm{kN}\) '.format( \(\left.\left(\mathrm{F} \_\mathrm{ex}\right)\right)\)
"" "

I3.5 Design:
I3.5.1 Design Principle:
The strength of the propulsion line shall be designed
a) for maximum loads in I3.4;
b) such that the plastic bending of a propeller blade shall not cause damages in other propulsion line components;
c) with sufficient fatigue strength.

\section*{I3.5.3 Blade Design:}

\section*{I3.5.3.1 Maximum Blade Stresses:}

Blade stresses are to be calculated using the backward and forward loads given in section \(4.3 \& 4.4\). The stresses shall be calculated with recognised and well documented
```

 FE-analysis or other acceptable alternative method. The stresses on the blade shall not exceed the allowable stresses sigma_all for the blade material given below.
 """
sigma_ref1=0.7*sigma_u
sigma_ref2=0.6*sigma_y + 0.4*sigma_u
if sigma_ref1 < sigma_ref2:
sigma_ref=sigma_ref1
else:
sigma_ref=sigma_ref2
S=1.5
sigma_all=sigma_ref/S
print('all. stress ={:6.4f} kPa'.format(sigma_all))
if sigma_calc < sigma_all:
print("PASS")
else:
print("FAIL")
""""

```

\section*{I3.5.3.2 Blade Edge Thickness:}
```

The blade edge thicknesses and tip thickness are to be greater than t _edge given by the following formula:
""""

```
```


Trailing Edges:

```
## Trailing Edges:
# distance from the blade edge measured along the cylindrical sections
# distance from the blade edge measured along the cylindrical sections
# from the edge and shall be 2.5% of chord length, however, not to be
# from the edge and shall be 2.5% of chord length, however, not to be
# taken greater than 45 mm
# taken greater than 45 mm
# rRid starts at 0 for 0.15
```


rRid starts at 0 for 0.15

```
```

rRid=13
cl=cl[rRid]
x=0.025*cl*1000. \#mm
if x > 45.:
x=45.\#mm
else:
x=x \#mm
S=2.5 \#safety factor

calculate for trailing edge

p_ice=16. \#MPa; ice pressure
t_te=x*S*S_ice*np.sqrt(3.*p_ice/sigma_ref)

Leading Edges:

distance from the blade edge measured along the cylindrical sections

from the edge and shall be 2.5% of chord length, however, not to be

taken greater than 45 mm

```
if \(x>45\).:
    \(\mathrm{x}=45\). \(\# \mathrm{~mm}\)
else:
    \(\mathrm{x}=\mathrm{x} \# \mathrm{~mm}\)
S=3.5 \#safety factor
p_ice=16. \#MPa; ice pressure
t_le=x*S*S_ice*np.sqrt(3.*p_ice/sigma_ref)
\#\# Blade Tips:
\# In the tip area (above 0.975 R radius) x shall be taken as \(2.5 \%\) of
\# 0.975R section length and is to be measured perpendicularly to the
\# edge, however, not to be taken greater than 45 mm
x=0.025*cltip*1000. \#mm
if \(x>45\).:
\[
\mathrm{x}=45 . \# \mathrm{~mm}
\]
else:
\[
\mathrm{x}=\mathrm{x} \# \mathrm{~mm}
\]

S=5. \#safety factor
p_ice \(=16\). \#MPa; ice pressure
t_tip \(=x * S *\) S_ice*np.sqrt(3.*p_ice/sigma_ref)
print(")
print('Blade Thickness Requirements:')
print('current r/R ratio \(x=\{: 8.4 \mathrm{f}\}\) '.format(rR[rRid]))
if \(r \operatorname{Rid}<12\) :
print('min. trailing edge \(t=\{: 8.4 \mathrm{f}\} \mathrm{mm}\) '.format( t _te) )
print('min. leading edge \(\mathrm{t}=\{: 8.4 \mathrm{f}\} \mathrm{mm}\) '.format(t_le))
else:
print('min. tip thick. \(\quad \mathrm{t}=\{: 8.4 \mathrm{f}\} \mathrm{mm}\) '.format(t_tip))
" " " "
NOTE: If the propeller is not a reversible rotation open propeller, the trailing edge requirement can be ignored.
"""
rRedge \(=\mathrm{np} . \operatorname{array}([0.15,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.95])\)
t _te \(=\) np. \(\operatorname{array}([0.4935,0.5360,0.5759,0.6137,0.6777,0.7246,0.7514,0.7528,1\) \(0.7143,0.6717,0.6024,0.4804])\)
t _le=np.array \(([0.6909,0.7504,0.8062,0.8592,0.9488,1.0145,1.0520,1.0539, \\)
1.0000,0.9404,0.8433,0.6726])
rRtip=np.array \(([0.975,1.0])\)
t_tip=np.array \(([0.7518,0.7518])\)
plt.figure \((\) figsize \(=(5,10))\)
plt.plot(t_te,rRedge,lw=2,label=r"Trailing Edge Thickness")
plt.plot(t_le,rRedge,lw=2,label=r"Leading Edge Thickness")
plt.plot(t_tip,rRtip,lw=2,label=r"Tip Thickness")
plt.xlabel(r'Blade Thickness, \$t\$ \$[mm]\$')
plt.ylabel(r'Radius Ratio, \$r/R\$ \$[-]\$')
plt.title("Minimum Required Blade Thicknesses at Each Radius")
plt.legend()
plt.grid()
plt.show()

\section*{Appendix D: Python Resistance Results}

Coefficients:
\[
\begin{aligned}
& c 1=10.864806 \\
& c 2=1.000000 \\
& c 3=0.000000 \\
& c 4=0.040000 \\
& c 5=1.000000 \\
& c 7=0.221546 \\
& c 8=29.739985 \\
& c 9=29.212536 \\
& c 11=1.548556 \\
& \mathrm{c} 14=1.110000 \\
& \mathrm{c} 15=-1.693850 \\
& \mathrm{c} 16=1.165591 \\
& \mathrm{c} 17=1.691058 \\
& \mathrm{c} 19=0.032029 \\
& \mathrm{c} 20=1.150000 \\
& \mathrm{~d}=-0.900000 \\
& \text { lambda }=1.019722 \\
& \mathrm{~m} 1=-2.287501 \\
& \mathrm{~m} 3=10.864806 \\
& \mathrm{C} \_\mathrm{P} 1=0.807920
\end{aligned}
\]

Froude Numbers and Misc. Coefficients:
\begin{tabular}{rcccccc} 
v_kn & Fr & \(\mathrm{Fr} \_\mathrm{T}\) & c _6 & \(\mathrm{m} 3\left(\mathrm{Fr}^{\wedge} \mathrm{d}\right)\) & m 4 & \(\mathrm{~m} 4 \cos \left(\mathrm{lambda} / \mathrm{Fr}^{\wedge} 2\right)\) \\
{\([\mathrm{kn}]\)} & {\([-]\)} & {\([-]\)} & {\([-]\)} & {\([-]\)} & {\([-]\)} & {\([-]\)} \\
10.00 & 0.16631 & 0.00000 & 0.2000 & -8.80483 & -0.00000 & -0.00000 \\
10.50 & 0.17462 & 0.00000 & 0.2000 & -8.42656 & -0.00002 & 0.00001 \\
11.00 & 0.18294 & 0.00000 & 0.2000 & -8.08104 & -0.00008 & -0.00004 \\
11.50 & 0.19125 & 0.00000 & 0.2000 & -7.76413 & -0.00026 & 0.00024 \\
12.00 & 0.19957 & 0.00000 & 0.2000 & -7.47236 & -0.00074 & -0.00066 \\
12.50 & 0.20789 & 0.00000 & 0.2000 & -7.20281 & -0.00173 & -0.00006 \\
13.00 & 0.21620 & 0.00000 & 0.2000 & -6.95299 & -0.00357 & 0.00352 \\
13.50 & 0.22452 & 0.00000 & 0.2000 & -6.72079 & -0.00659 & -0.00125 \\
14.00 & 0.23283 & 0.00000 & 0.2000 & -6.50438 & -0.01111 & -0.01110 \\
14.50 & 0.24115 & 0.00000 & 0.2000 & -6.30216 & -0.01739 & -0.00442
\end{tabular}
\begin{tabular}{lllllll}
15.00 & 0.24946 & 0.00000 & 0.2000 & -6.11278 & -0.02560 & 0.01994 \\
15.50 & 0.25778 & 0.00000 & 0.2000 & -5.93502 & -0.03579 & 0.03347 \\
16.00 & 0.26609 & 0.00000 & 0.2000 & -5.76784 & -0.04791 & 0.01252 \\
16.50 & 0.27441 & 0.00000 & 0.2000 & -5.61029 & -0.06183 & -0.03466 \\
17.00 & 0.28272 & 0.00000 & 0.2000 & -5.46156 & -0.07735 & -0.07594 \\
17.50 & 0.29104 & 0.00000 & 0.2000 & -5.32092 & -0.09423 & -0.08141 \\
18.00 & 0.29936 & 0.00000 & 0.2000 & -5.18771 & -0.11220 & -0.04199 \\
18.50 & 0.30767 & 0.00000 & 0.2000 & -5.06135 & -0.13102 & 0.02901 \\
19.00 & 0.31599 & 0.00000 & 0.2000 & -4.94132 & -0.15041 & 0.10607
\end{tabular}

Resistance Components and Total Resistance:
\begin{tabular}{rccccccccc} 
v_kn & Fr & R_F & R_A & R_W & R_APP & R_AA & R_TR & R_I & R_T \\
{\([\mathrm{kn}]\)} & {\([-]\)} & {\([\mathrm{kN}]\)} \\
10.00 & 0.16631 & 46.778 & 10.705 & 8.259 & 19.445 & 1.410 & 0.000 & 631.519 & 106.236 \\
10.50 & 0.17462 & 51.238 & 11.803 & 13.534 & 21.327 & 1.554 & 0.000 & 650.982 & 120.967 \\
11.00 & 0.18294 & 55.887 & 12.953 & 21.248 & 23.292 & 1.706 & 0.000 & 670.201 & 138.548 \\
11.50 & 0.19125 & 60.723 & 14.158 & 32.146 & 25.338 & 1.864 & 0.000 & 689.191 & 159.724 \\
12.00 & 0.19957 & 65.747 & 15.416 & 47.009 & 27.467 & 2.030 & 0.000 & 707.965 & 185.271 \\
12.50 & 0.20789 & 70.956 & 16.727 & 66.878 & 29.676 & 2.203 & 0.000 & 726.537 & 216.230 \\
13.00 & 0.21620 & 76.351 & 18.092 & 93.001 & 31.967 & 2.382 & 0.000 & 744.918 & 253.848 \\
13.50 & 0.22452 & 81.930 & 19.510 & 125.338 & 34.339 & 2.569 & 0.000 & 763.117 & 298.082 \\
14.00 & 0.23283 & 87.692 & 20.982 & 164.633 & 36.791 & 2.763 & 0.000 & 781.144 & 349.677 \\
14.50 & 0.24115 & 93.637 & 22.508 & 215.814 & 39.323 & 2.964 & 0.000 & 799.007 & 413.558 \\
15.00 & 0.24946 & 99.764 & 24.087 & 283.167 & 41.936 & 3.172 & 0.000 & 816.714 & 494.009 \\
15.50 & 0.25778 & 106.072 & 25.719 & 362.001 & 44.628 & 3.387 & 0.000 & 834.272 & 586.339 \\
16.00 & 0.26609 & 112.561 & 27.406 & 440.975 & 47.400 & 3.609 & 0.000 & 851.688 & 679.205 \\
16.50 & 0.27441 & 119.229 & 29.145 & 516.719 & 50.251 & 3.838 & 0.000 & 868.968 & 769.237 \\
17.00 & 0.28272 & 126.077 & 30.938 & 602.085 & 53.181 & 4.074 & 0.000 & 886.117 & 869.285 \\
17.50 & 0.29104 & 133.103 & 32.785 & 719.503 & 56.190 & 4.317 & 0.000 & 903.142 & 1001.778 \\
18.00 & 0.29936 & 140.307 & 34.685 & 890.607 & 59.278 & 4.567 & 0.000 & 920.046 & 1188.349 \\
18.50 & 0.30767 & 147.688 & 36.639 & 1127.631 & 62.444 & 4.824 & 0.000 & 936.834 & 1441.231 \\
19.00 & 0.31599 & 155.247 & 38.646 & 1424.617 & 65.689 & 5.089 & 0.000 & 953.511 & 1754.464
\end{tabular}

Self-Propulsion Point:
\begin{tabular}{rcccccccc} 
v_kn & Fr & w_s & v_a & T_req & C_S & J_TS & K_TS & 10K_QTS \\
{\([\mathrm{kn}]\)} & {\([-]\)} & {\([-]\)} & {\([\mathrm{m} / \mathrm{s}]\)} & {\([\mathrm{kN}]\)} & {\([-]\)} & {\([-]\)} & {\([-]\)} & {\([-]\)} \\
10.00 & 0.16631 & 0.1839 & 4.1983 & 130.3379 & 0.77441 & 0.4684 & 0.1699 & 0.2315 \\
10.50 & 0.17462 & 0.1838 & 4.4089 & 148.4104 & 0.79956 & 0.4638 & 0.1720 & 0.2336 \\
11.00 & 0.18294 & 0.1837 & 4.6195 & 169.9801 & 0.83417 & 0.4577 & 0.1748 & 0.2364 \\
11.50 & 0.19125 & 0.1836 & 4.8302 & 195.9595 & 0.87961 & 0.4501 & 0.1782 & 0.2399 \\
12.00 & 0.19957 & 0.1834 & 5.0408 & 227.3025 & 0.93680 & 0.4411 & 0.1823 & 0.2439 \\
12.50 & 0.20789 & 0.1833 & 5.2515 & 265.2854 & 1.00737 & 0.4308 & 0.1869 & 0.2486 \\
13.00 & 0.21620 & 0.1832 & 5.4622 & 311.4373 & 1.09314 & 0.4192 & 0.1921 & 0.2537 \\
13.50 & 0.22452 & 0.1832 & 5.6730 & 365.7072 & 1.19003 & 0.4073 & 0.1974 & 0.2590 \\
14.00 & 0.23283 & 0.1831 & 5.8837 & 429.0069 & 1.29779 & 0.3952 & 0.2027 & 0.2642 \\
14.50 & 0.24115 & 0.1830 & 6.0945 & 507.3801 & 1.43055 & 0.3818 & 0.2085 & 0.2700 \\
15.00 & 0.24946 & 0.1829 & 6.3053 & 606.0826 & 1.59650 & 0.3669 & 0.2149 & 0.2763 \\
15.50 & 0.25778 & 0.1828 & 6.5161 & 719.3594 & 1.77426 & 0.3528 & 0.2209 & 0.2822 \\
16.00 & 0.26609 & 0.1827 & 6.7269 & 833.2941 & 1.92847 & 0.3419 & 0.2255 & 0.2867 \\
16.50 & 0.27441 & 0.1827 & 6.9378 & 943.7509 & 2.05336 & 0.3338 & 0.2288 & 0.2900 \\
17.00 & 0.28272 & 0.1826 & 7.1486 & 1066.4964 & 2.18556 & 0.3259 & 0.2321 & 0.2932 \\
17.50 & 0.29104 & 0.1825 & 7.3595 & 1229.0482 & 2.37641 & 0.3154 & 0.2364 & 0.2975 \\
18.00 & 0.29936 & 0.1825 & 7.5704 & 1457.9452 & 2.66413 & 0.3014 & 0.2421 & 0.3030 \\
18.50 & 0.30767 & 0.1824 & 7.7813 & 1768.1979 & 3.05829 & 0.2851 & 0.2486 & 0.3094 \\
19.00 & 0.31599 & 0.1823 & 7.9922 & 2152.4933 & 3.52907 & 0.2688 & 0.2550 & 0.3156
\end{tabular}

Efficiency and Powering:
\begin{tabular}{rccccccc} 
v_kn & Fr & eta_H & eta_O & eta_D & n & n & P_D \\
{\([\mathrm{kn}]\)} & {\([-]\)} & {\([-]\)} & {\([-]\)} & {\([-]\)} & {\([1 / \mathrm{s}]\)} & {\([\mathrm{rpm}]\)} & {\([\mathrm{kW}]\)} \\
10.00 & 0.16631 & 0.9988 & 0.5471 & 0.5522 & 2.941 & 176.445 & 989.79 \\
10.50 & 0.17462 & 0.9986 & 0.5435 & 0.5484 & 3.119 & 187.127 & 1191.41 \\
11.00 & 0.18294 & 0.9985 & 0.5386 & 0.5434 & 3.311 & 198.668 & 1442.69 \\
11.50 & 0.19125 & 0.9983 & 0.5323 & 0.5371 & 3.521 & 211.232 & 1759.46 \\
12.00 & 0.19957 & 0.9982 & 0.5247 & 0.5293 & 3.749 & 224.942 & 2160.87 \\
12.50 & 0.20789 & 0.9981 & 0.5157 & 0.5201 & 3.999 & 239.970 & 2673.44 \\
13.00 & 0.21620 & 0.9980 & 0.5052 & 0.5095 & 4.275 & 256.489 & 3331.98 \\
13.50 & 0.22452 & 0.9978 & 0.4941 & 0.4982 & 4.570 & 274.195 & 4155.04 \\
14.00 & 0.23283 & 0.9977 & 0.4825 & 0.4865 & 4.885 & 293.073 & 5176.65 \\
14.50 & 0.24115 & 0.9976 & 0.4693 & 0.4731 & 5.237 & 314.237 & 6520.40 \\
15.00 & 0.24946 & 0.9975 & 0.4542 & 0.4578 & 5.638 & 338.298 & 8326.11 \\
15.50 & 0.25778 & 0.9974 & 0.4395 & 0.4430 & 6.059 & 363.543 & 10552.79
\end{tabular}
\begin{tabular}{llllllll}
16.00 & 0.26609 & 0.9973 & 0.4279 & 0.4313 & 6.455 & 387.279 & 12961.46 \\
16.50 & 0.27441 & 0.9973 & 0.4192 & 0.4225 & 6.818 & 409.100 & 15454.73 \\
17.00 & 0.28272 & 0.9972 & 0.4106 & 0.4137 & 7.197 & 431.802 & 18375.12 \\
17.50 & 0.29104 & 0.9971 & 0.3990 & 0.4020 & 7.655 & 459.307 & 22432.80 \\
18.00 & 0.29936 & 0.9970 & 0.3833 & 0.3862 & 8.239 & 494.361 & 28492.37 \\
18.50 & 0.30767 & 0.9969 & 0.3647 & 0.3674 & 8.954 & 537.226 & 37334.78 \\
19.00 & 0.31599 & 0.9969 & 0.3457 & 0.3483 & 9.754 & 585.232 & 49239.70
\end{tabular}

\section*{Appendix E: NavCAD Holtrop and Mennen Results}

Resistance
26 Apr 2021 12:34 PM
HydroComp NavCad 2020 [Premium]
Analysis parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Vessel drag & & ITTC-78 (CT) & \multicolumn{2}{|l|}{Added drag} \\
\hline Technique: & [Calc] & Prediction & Appendage: & [Calc] Holtrop (Component) \\
\hline Prediction: & & Holtrop & Wind: & [Off] \\
\hline Reference ship: & & & Seas: & [Off] \\
\hline Model LWL: & & & Shallow/channel: & [Off] \\
\hline Expansion: & & Custom & Towed: & [Off] \\
\hline Friction line: & & ITTC-57 & Margin: & [Off] \\
\hline Hull form factor: & [On] & 1.421 & \multicolumn{2}{|l|}{Water properties} \\
\hline Speed corr: & [Off] & & Water type: & Salt \\
\hline Spray drag corr: & [Off] & & Density: & \(1026.00 \mathrm{~kg} / \mathrm{m} 3\) \\
\hline Corr allowance: Roughness [mm]: & [On] & \[
\begin{aligned}
& 0.000344 \\
& 0.15
\end{aligned}
\] & Viscosity: & \(1.18920 \mathrm{e}-6 \mathrm{~m} 2 / \mathrm{s}\) \\
\hline
\end{tabular}

Prediction method check [Holtrop]
\begin{tabular}{|c|ccccc|}
\hline Parameters & FN [design] & CP & LWL/BWL & BWL/T & Lambda \\
\hline Value & 0.25 & 0.80 & 4.51 & \(4.58^{*}\) & 1.02 \\
Range & \(0.06 \cdot 0.26\) & \(0.55 \cdot 0.85\) & \(3.90 \cdot 14.90\) & \(2.10 \cdot 4.00\) & \(0.01 \cdot 1.07\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{SPEED COEFS} & \multicolumn{7}{|c|}{ITTC-78 COEFS} \\
\hline \[
\begin{aligned}
& \text { SPEED } \\
& {[\mathrm{kt}]} \\
& \hline
\end{aligned}
\] & FN & FV & RN & CF & [CV/CF] & CR & dCF & CA & CT \\
\hline 10.00 & 0.166 & 0.372 & 4.22 e 8 & 0.001709 & 1.421 & 0.000335 & 0.000000 & 0.000344 & 0.003107 \\
\hline 11.00 & 0.183 & 0.409 & 4.64 e 8 & 0.001687 & 1.421 & 0.000706 & 0.000000 & 0.000344 & 0.003447 \\
\hline 12.00 & 0.200 & 0.446 & 5.06e8 & 0.001668 & 1.421 & 0.001306 & 0.000000 & 0.000344 & 0.004021 \\
\hline 13.00 & 0.216 & 0.484 & 5.49 e 8 & 0.001651 & 1.421 & 0.002196 & 0.000000 & 0.000344 & 0.004887 \\
\hline 14.00 & 0.233 & 0.521 & 5.91e8 & 0.001636 & 1.421 & 0.003348 & 0.000000 & 0.000344 & 0.006017 \\
\hline 14.50 & 0.241 & 0.539 & 6.12 e 8 & 0.001628 & 1.421 & 0.004087 & 0.000000 & 0.000344 & 0.006745 \\
\hline +15.00 + & 0.249 & 0.558 & 6.33 e 8 & 0.001621 & 1.421 & 0.005009 & 0.000000 & 0.000344 & 0.007657 \\
\hline 15.50 & 0.258 & 0.576 & 6.54 e 8 & 0.001614 & 1.421 & 0.006002 & 0.000000 & 0.000344 & 0.008641 \\
\hline 16.00 ! & 0.266 & 0.595 & 6.75 e 8 & 0.001608 & 1.421 & 0.006869 & 0.000000 & 0.000344 & 0.009498 \\
\hline 17.00 ! & 0.283 & 0.632 & 7.18 e 8 & 0.001596 & 1.421 & 0.008295 & 0.000000 & 0.000344 & 0.010906 \\
\hline & \multicolumn{9}{|c|}{RESISTANCE} \\
\hline \begin{tabular}{l}
SPEED \\
[kt]
\end{tabular} & RBARE [kN] & \[
\begin{aligned}
& \text { RAPP } \\
& {[\mathrm{kN}]} \\
& \hline
\end{aligned}
\] & RWIND [kN] & RSEAS [kN] & \[
\begin{aligned}
& \text { RCHAN } \\
& {[\mathrm{kN}]}
\end{aligned}
\] & \[
\begin{aligned}
& \text { RTOWED } \\
& {[\mathrm{kN}]} \\
& \hline
\end{aligned}
\] & RMARGIN [kN] & \[
\begin{aligned}
& \text { RTOTAL } \\
& {[\mathrm{kN}]}
\end{aligned}
\] & \\
\hline 10.00 & 81.47 & 24.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 106.12 & \\
\hline 11.00 & 109.37 & 29.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 138.87 & \\
\hline 12.00 & 151.81 & 34.75 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 186.56 & \\
\hline 13.00 & 216.55 & 40.41 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 256.96 & \\
\hline 14.00 & 309.20 & 46.48 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 355.67 & \\
\hline 14.50 & 371.81 & 49.66 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 421.46 & \\
\hline +15.00 + & 451.71 & 52.94 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 504.64 & \\
\hline 15.50 & 544.30 & 56.31 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 600.62 & \\
\hline 16.00 ! & 637.55 & 59.79 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 697.34 & \\
\hline 17.00 ! & 826.42 & 67.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 893.46 & \\
\hline & \multicolumn{2}{|l|}{EFFECTIVE POWER} & \multicolumn{3}{|c|}{OTHER} & & & & \\
\hline \begin{tabular}{l}
SPEED \\
[kt]
\end{tabular} & \begin{tabular}{l}
PEBARE \\
[kW]
\end{tabular} & \[
\begin{aligned}
& \text { PETOTAL } \\
& {[\mathrm{kW}]} \\
& \hline
\end{aligned}
\] & CTLR & CTLT & RBARE/W & & & & \\
\hline 10.00 & 419.1 & 545.9 & 0.00425 & 0.03942 & 0.00109 & & & & \\
\hline 11.00 & 618.9 & 785.8 & 0.00895 & 0.04374 & 0.00146 & & & & \\
\hline 12.00 & 937.2 & 1151.7 & 0.01657 & 0.05102 & 0.00203 & & & & \\
\hline 13.00 & 1448.2 & 1718.5 & 0.02787 & 0.06201 & 0.00290 & & & & \\
\hline 14.00 & 2226.9 & 2561.6 & 0.04249 & 0.07634 & 0.00414 & & & & \\
\hline 14.50 & 2773.5 & 3143.9 & 0.05185 & 0.08558 & 0.00498 & & & & \\
\hline +15.00 + & 3485.7 & 3894.2 & 0.06356 & 0.09715 & 0.00605 & & & & \\
\hline 15.50 & 4340.2 & 4789.3 & 0.07616 & 0.10964 & 0.00729 & & & & \\
\hline 16.00 ! & 5247.7 & 5739.9 & 0.08716 & 0.12052 & 0.00853 & & & & \\
\hline 17.00 ! & 7227.5 & 7813.8 & 0.10525 & 0.13838 & 0.01106 & & & & \\
\hline
\end{tabular}


\section*{Resistance}

26 Apr 2021 12:34 PM
HydroComp NavCad 2020 [Premium]

Project ID
Description
File name

MV Yahtse Holtrop
Ro-Ro Car/Cargo Alaskan Ferry
NAME 4175 MV Yahtse NavCAD Holtrop.henc
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Appendage data} \\
\hline General & & Skeg/Keel & \\
\hline Definition: & Component & Count: & 1 \\
\hline Percent of hull drag: & 0.00\% & Type: & Skeg \\
\hline \multicolumn{2}{|l|}{Planing influence} & Mean length: & 0.000 m \\
\hline LCE fwd TR: & 0.000 m & Mean width: & 0.000 m \\
\hline VCE below WL: & 0.000 m & Height aft: & 0.000 m \\
\hline \multicolumn{2}{|l|}{Shafting} & Height mid: & 0.000 m \\
\hline Count: & 2 & Height fwd: & 0.000 m \\
\hline Max prop diameter: & 3048.0 mm & Projected area: & 0.000 m 2 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Shaft angle to WL: \\
Exposed shaft length:
\end{tabular}} & 10.00 deg & Wetted surface: & 87.330 m 2 \\
\hline & 0.000 m & \multicolumn{2}{|l|}{Stabilizer} \\
\hline Shaft diameter: & 0.000 m & Count: & 0 \\
\hline Wetted surface: & 14.860 m 2 & Root chord: & 0.000 m \\
\hline Strut bossing length: & 0.000 m & Tip chord: & 0.000 m \\
\hline Bossing diameter: & 0.000 m & Span: & 0.000 m \\
\hline Wetted surface: & 6.690 m 2 & T/C ratio: & 0.000 \\
\hline Hull bossing length: & 0.000 m & LE sweep: & 0.00 deg \\
\hline Bossing diameter: & 0.000 m & Wetted surface: & 0.000 m 2 \\
\hline Wetted surface: & 9.480 m 2 & \multirow[t]{2}{*}{Projected area: Dynamic multiplier:} & 0.000 m 2 \\
\hline \multicolumn{2}{|l|}{Strut (per shaft line)} & & 1.00 \\
\hline Count: & 2 & \multicolumn{2}{|l|}{Bilge keel} \\
\hline Root chord: & 0.000 m & Count: & 2 \\
\hline Tip chord: & 0.000 mm & Mean length: & 0.000 m \\
\hline Span: & 0.000 m & Mean base width: & 0.000 m \\
\hline T/C ratio: & 0.000 & Mean projection: & 0.000 m \\
\hline Projected area: & 0.000 m 2 & Wetted surface: & 196.030 m 2 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Wetted surface: \\
Exposed palm depth: \\
Exposed palm width:
\end{tabular}} & 3.723 m 2 & \multicolumn{2}{|l|}{Tunnel thruster} \\
\hline & 0.000 m & Count: & 2 \\
\hline & 0.000 m & Diameter: & 0.000 m \\
\hline \multicolumn{2}{|l|}{Rudder} & \multicolumn{2}{|l|}{Sonar dome} \\
\hline Count: & 1 & Count: & 0 \\
\hline Rudder location: & Behind propeller & Wetted surface: & 0.000 m 2 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type: \\
Root chord:
\end{tabular}} & Balanced foil & \multicolumn{2}{|l|}{Miscellaneous} \\
\hline & 0.000 m & Count: & 0 \\
\hline Tip chord: & 0.000 m & Drag area: & 0.000 m 2 \\
\hline Span: & 0.000 m & \multirow[t]{2}{*}{Drag coef:} & 0.00 \\
\hline \multirow[t]{2}{*}{T/C ratio:} & 0.000 & & \\
\hline & 0.00 deg & & \\
\hline Projected area: & 0.000 m 2 & & \\
\hline Wetted surface: & 16.720 m 2 & & \\
\hline \multicolumn{4}{|l|}{Environment data} \\
\hline \multicolumn{2}{|l|}{Wind} & \multicolumn{2}{|l|}{Seas} \\
\hline \multirow[t]{3}{*}{Wind speed: Angle off bow: Gradient correction:} & 0.00 kt & \multirow[t]{2}{*}{Significant wave ht: Modal wave period:} & 0.000 m \\
\hline & 0.00 deg & & 0.0 sec \\
\hline & Off & \multicolumn{2}{|l|}{Shallow/channel} \\
\hline \multicolumn{2}{|l|}{Exposed hull} & Water depth: & 0.000 m \\
\hline Transverse area: & 0.000 m 2 & Type: & Shallow water \\
\hline VCE above WL: & 0.000 m & Channel width: & 0.000 m \\
\hline Profile area: & 66.890 m 2 & Channel side slope: & 0.00 deg \\
\hline \multicolumn{2}{|l|}{Superstructure} & \multirow[t]{5}{*}{Hull girth:} & 0.000 m \\
\hline Superstructure shape: & Ferry/Liner & & \\
\hline Transverse area: & 0.000 m 2 & & \\
\hline VCE above WL: & 0.000 m & & \\
\hline Profile area: & 41.810 m 2 & & \\
\hline
\end{tabular}

\section*{Resistance \\ 26 Apr 2021 12:34 PM \\ HydroComp NavCad 2020 [Premium]}

Project ID MV Yahtse Holtrop
Description Ro-Ro Car/Cargo Alaskan Ferry
File name NAME 4175 MV Yahtse NavCAD Holtrop.henc

Symbols and values
\begin{tabular}{rl} 
SPEED & \(=\) Vessel speed \\
FN & \(=\) Froude number [LWL] \\
FV & \(=\) Froude number [VOL] \\
RN & \(=\) Reynolds number [LWL] \\
CF & \(=\) Frictional resistance coefficient \\
CV/CF & \(=\) Viscous/frictional resistance coefficient ratio [dynamic form factor] \\
CR & \(=\) Residuary resistance coefficient \\
dCF & \(=\) Added frictional resistance coefficient for roughness \\
CA & \(=\) Correlation allowance [dynamic] \\
CT & \(=\) Total bare-hull resistance coefficient \\
RBARE & \(=\) Bare-hull resistance \\
RAPP & \(=\) Additional appendage resistance \\
RWIND & \(=\) Additional wind resistance \\
RSEAS & \(=\) Additional sea-state resistance \\
RCHAN & \(=\) Additional shallow/channel resistance \\
RTOWED & \(=\) Additional towed object resistance \\
RMARGIN & \(=\) Resistance margin \\
RTOTAL & \(=\) Total vessel resistance \\
PEBARE & \(=\) Bare-hull effective power \\
PETOTAL & \(=\) Total effective power \\
CTLR & \(=\) Telfer residuary resistance coefficient \\
CTLT & \(=\) Telfer total bare-hull resistance coefficient \\
RBARE/W & \(=\) Bare-hull resistance to weight ratio \\
& + \\
* Design speed indicator & \(=\) Exceeds parameter limit
\end{tabular}

FN = Froude number [LWL]
FV = Froude number [VOL]
RN = Reynolds number [LWL]
CF = Frictional resistance coefficient
V/CF = Viscous/frictional resistance coefficient ratio [dynamic form factor]
dCF = Added frictional resistance coefficient for roughness
CA = Correlation allowance [dynamic]
CT = Total bare-hull resistance coefficient
RBARE \(=\) Bare-hull resistance
RWIND = Additional wind resistance
RSEAS = Additional sea-state resistance
RCHAN = Additional shallow/channel resistance
= Additional towed object resistance
RMARGIN = Resistance margin

PEBARE \(=\) Bare-hull effective power
PETOTAL \(=\) Total effective power
CTLR \(=\) Telfer residuary resistance coefficient
CTLT = Telfer total bare-hull resistance coefficient
+ = Design speed indicator
* \(=\) Exceeds parameter limit

\section*{Appendix F: NavCAD Andersen Results}

Resistance
26 Apr 2021 12:32 PM
HydroComp NavCad 2020 [Premium]
Analysis parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Vessel drag & & ITTC-78 (CT) & \multicolumn{2}{|l|}{Added drag} \\
\hline Technique: & [Calc] & Prediction & Appendage: & [Calc] Holtrop (Component) \\
\hline Prediction: & & Andersen & Wind: & [Off] \\
\hline Reference ship: & & & Seas: & [Off] \\
\hline Model LWL: & & & Shallow/channel: & [Off] \\
\hline Expansion: & & Custom & Towed: & [Off] \\
\hline Friction line: & & ITTC-57 & Margin: & [Off] \\
\hline Hull form factor: & [On] & 1.421 & \multicolumn{2}{|l|}{Water properties} \\
\hline Speed corr: & [Off] & & Water type: & Salt \\
\hline Spray drag corr: & [Off] & & Density: & \(1026.00 \mathrm{~kg} / \mathrm{m} 3\) \\
\hline \begin{tabular}{l}
Corr allowance: \\
Roughness [mm]:
\end{tabular} & [On] & \[
\begin{aligned}
& 0.000344 \\
& 0.15
\end{aligned}
\] & Viscosity: & \(1.18920 \mathrm{e}-6 \mathrm{~m} 2 / \mathrm{s}\) \\
\hline
\end{tabular}

Prediction method check [Andersen]
\begin{tabular}{|c|cccc|}
\hline Parameters & FN [design] & CVOL & CB & LWL/BWL \\
\hline Value & 0.25 & 5.00 & 0.75 & \(4.51^{*}\) \\
Range & \(0.05 \cdot \cdot 0.33\) & \(4.00 \cdot 6.00\) & \(0.55 \cdot 0.85\) & \(5.00 \cdot 8.00\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{SPEED COEFS} & \multicolumn{7}{|c|}{ITTC-78 COEFS} \\
\hline \begin{tabular}{l}
SPEED \\
[kt]
\end{tabular} & FN & FV & RN & CF & [CV/CF] & CR & dCF & CA & CT \\
\hline 10.00 & 0.166 & 0.372 & 4.22 e 8 & 0.001709 & 1.421 & 0.000020 & 0.000000 & 0.000344 & 0.002792 \\
\hline 11.00 & 0.183 & 0.409 & 4.64 e 8 & 0.001687 & 1.421 & 0.000259 & 0.000000 & 0.000344 & 0.003001 \\
\hline 12.00 & 0.200 & 0.446 & 5.06e8 & 0.001668 & 1.421 & 0.000585 & 0.000000 & 0.000344 & 0.003300 \\
\hline 13.00 & 0.216 & 0.483 & 5.49 e 8 & 0.001651 & 1.421 & 0.001044 & 0.000000 & 0.000344 & 0.003735 \\
\hline 14.00 & 0.233 & 0.521 & 5.91e8 & 0.001636 & 1.421 & 0.001721 & 0.000000 & 0.000344 & 0.004389 \\
\hline 14.50 & 0.241 & 0.539 & 6.12 e 8 & 0.001628 & 1.421 & 0.002187 & 0.000000 & 0.000344 & 0.004845 \\
\hline + 15.00 + & 0.249 & 0.558 & 6.33 e 8 & 0.001621 & 1.421 & 0.002778 & 0.000000 & 0.000344 & 0.005426 \\
\hline 15.50 & 0.258 & 0.576 & 6.54 e 8 & 0.001614 & 1.421 & 0.003542 & 0.000000 & 0.000344 & 0.006180 \\
\hline 16.00 & 0.266 & 0.595 & 6.75 e 8 & 0.001608 & 1.421 & 0.004542 & 0.000000 & 0.000344 & 0.007171 \\
\hline 17.00 & 0.283 & 0.632 & 7.18 e 8 & 0.001596 & 1.421 & 0.007559 & 0.000000 & 0.000344 & 0.010170 \\
\hline & \multicolumn{9}{|c|}{RESISTANCE} \\
\hline SPEED [kt] & RBARE [kN] & \[
\begin{aligned}
& \text { RAPP } \\
& {[\mathrm{kN}]} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { RWIND } \\
& {[\mathrm{kN}]}
\end{aligned}
\] & \[
\begin{aligned}
& \text { RSEAS } \\
& {[\mathrm{kN}]}
\end{aligned}
\] & \begin{tabular}{l}
RCHAN \\
[kN]
\end{tabular} & \[
\begin{aligned}
& \text { RTOWED } \\
& {[\mathrm{kN}]} \\
& \hline
\end{aligned}
\] & RMARGIN [kN] & \[
\begin{aligned}
& \text { RTOTAL } \\
& {[\mathrm{kN}]}
\end{aligned}
\] & \\
\hline 10.00 & 73.21 & 24.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 97.86 & \\
\hline 11.00 & 95.22 & 29.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 124.71 & \\
\hline 12.00 & 124.60 & 34.75 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 159.35 & \\
\hline 13.00 & 165.49 & 40.41 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 205.91 & \\
\hline 14.00 & 225.56 & 46.48 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 272.04 & \\
\hline 14.50 & 267.07 & 49.66 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 316.72 & \\
\hline +15.00 + & 320.11 & 52.94 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 373.04 & \\
\hline 15.50 & 389.31 & 56.31 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 445.63 & \\
\hline 16.00 & 481.32 & 59.79 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 541.11 & \\
\hline 17.00 & 770.66 & 67.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 837.70 & \\
\hline & \multicolumn{2}{|l|}{EFFECTIVE POWER} & \multicolumn{3}{|c|}{OTHER} & & & & \\
\hline SPEED [kt] & PEBARE [kW] & \[
\begin{aligned}
& \text { PETOTAL } \\
& {[\mathrm{kW}]} \\
& \hline
\end{aligned}
\] & CTLR & CTLT & RBARE/W & & & & \\
\hline 10.00 & 376.6 & 503.5 & 0.00026 & 0.03542 & 0.00098 & & & & \\
\hline 11.00 & 538.8 & 705.7 & 0.00329 & 0.03807 & 0.00127 & & & & \\
\hline 12.00 & 769.2 & 983.7 & 0.00742 & 0.04186 & 0.00167 & & & & \\
\hline 13.00 & 1106.8 & 1377.1 & 0.01325 & 0.04738 & 0.00221 & & & & \\
\hline 14.00 & 1624.5 & 1959.3 & 0.02183 & 0.05568 & 0.00302 & & & & \\
\hline 14.50 & 1992.2 & 2362.6 & 0.02774 & 0.06146 & 0.00357 & & & & \\
\hline +15.00 + & 2470.2 & 2878.7 & 0.03525 & 0.06884 & 0.00428 & & & & \\
\hline 15.50 & 3104.3 & 3553.4 & 0.04493 & 0.07840 & 0.00521 & & & & \\
\hline 16.00 & 3961.8 & 4453.9 & 0.05762 & 0.09097 & 0.00644 & & & & \\
\hline 17.00 & 6739.8 & 7326.2 & 0.09589 & 0.12902 & 0.01031 & & & & \\
\hline
\end{tabular}


\section*{Resistance}

26 Apr 2021 12:32 PM
HydroComp NavCad 2020 [Premium]

Project ID
Description
File name

MV Yahtse Andersen
Ro-Ro Car/Cargo Alaskan Ferry
NAME 4175 MV Yahtse NavCAD Andersen.henc
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Appendage data} \\
\hline General & & Skeg/Keel & \\
\hline Definition: & Component & Count: & 1 \\
\hline Percent of hull drag: & 0.00\% & Type: & Skeg \\
\hline \multicolumn{2}{|l|}{Planing influence} & Mean length: & 0.000 m \\
\hline LCE fwd TR: & 0.000 m & Mean width: & 0.000 m \\
\hline VCE below WL: & 0.000 m & Height aft: & 0.000 m \\
\hline \multicolumn{2}{|l|}{Shafting} & Height mid: & 0.000 m \\
\hline Count: & 2 & Height fwd: & 0.000 m \\
\hline Max prop diameter: & 3048.0 mm & Projected area: & 0.000 m 2 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Shaft angle to WL: \\
Exposed shaft length:
\end{tabular}} & 10.00 deg & Wetted surface: & 87.330 m 2 \\
\hline & 0.000 m & \multicolumn{2}{|l|}{Stabilizer} \\
\hline Shaft diameter: & 0.000 m & Count: & 0 \\
\hline Wetted surface: & 14.860 m 2 & Root chord: & 0.000 m \\
\hline Strut bossing length: & 0.000 m & Tip chord: & 0.000 m \\
\hline Bossing diameter: & 0.000 m & Span: & 0.000 m \\
\hline Wetted surface: & 6.690 m 2 & T/C ratio: & 0.000 \\
\hline Hull bossing length: & 0.000 m & LE sweep: & 0.00 deg \\
\hline Bossing diameter: & 0.000 m & Wetted surface: & 0.000 m 2 \\
\hline Wetted surface: & 9.480 m 2 & \multirow[t]{2}{*}{Projected area: Dynamic multiplier:} & 0.000 m 2 \\
\hline \multicolumn{2}{|l|}{Strut (per shaft line)} & & 1.00 \\
\hline Count: & 2 & \multicolumn{2}{|l|}{Bilge keel} \\
\hline Root chord: & 0.000 m & Count: & 2 \\
\hline Tip chord: & 0.000 mm & Mean length: & 0.000 m \\
\hline Span: & 0.000 m & Mean base width: & 0.000 m \\
\hline T/C ratio: & 0.000 & Mean projection: & 0.000 m \\
\hline Projected area: & 0.000 m 2 & Wetted surface: & 196.030 m 2 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Wetted surface: \\
Exposed palm depth: \\
Exposed palm width:
\end{tabular}} & 3.723 m 2 & \multicolumn{2}{|l|}{Tunnel thruster} \\
\hline & 0.000 m & Count: & 2 \\
\hline & 0.000 m & Diameter: & 0.000 m \\
\hline \multicolumn{2}{|l|}{Rudder} & \multicolumn{2}{|l|}{Sonar dome} \\
\hline Count: & 1 & Count: & 0 \\
\hline Rudder location: & Behind propeller & Wetted surface: & 0.000 m 2 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type: \\
Root chord:
\end{tabular}} & Balanced foil & \multicolumn{2}{|l|}{Miscellaneous} \\
\hline & 0.000 m & Count: & 0 \\
\hline Tip chord: & 0.000 m & Drag area: & 0.000 m 2 \\
\hline Span: & 0.000 m & \multirow[t]{2}{*}{Drag coef:} & 0.00 \\
\hline \multirow[t]{2}{*}{T/C ratio:} & 0.000 & & \\
\hline & 0.00 deg & & \\
\hline Projected area: & 0.000 m 2 & & \\
\hline Wetted surface: & 16.720 m 2 & & \\
\hline \multicolumn{4}{|l|}{Environment data} \\
\hline \multicolumn{2}{|l|}{Wind} & \multicolumn{2}{|l|}{Seas} \\
\hline \multirow[t]{3}{*}{Wind speed: Angle off bow: Gradient correction:} & 0.00 kt & \multirow[t]{2}{*}{Significant wave ht: Modal wave period:} & 0.000 m \\
\hline & 0.00 deg & & 0.0 sec \\
\hline & Off & \multicolumn{2}{|l|}{Shallow/channel} \\
\hline \multicolumn{2}{|l|}{Exposed hull} & Water depth: & 0.000 m \\
\hline Transverse area: & 0.000 m 2 & Type: & Shallow water \\
\hline VCE above WL: & 0.000 m & Channel width: & 0.000 m \\
\hline Profile area: & 66.890 m 2 & Channel side slope: & 0.00 deg \\
\hline \multicolumn{2}{|l|}{Superstructure} & \multirow[t]{5}{*}{Hull girth:} & 0.000 m \\
\hline Superstructure shape: & Ferry/Liner & & \\
\hline Transverse area: & 0.000 m 2 & & \\
\hline VCE above WL: & 0.000 m & & \\
\hline Profile area: & 41.810 m 2 & & \\
\hline
\end{tabular}

\section*{Resistance \\ 26 Apr 2021 12:32 PM \\ HydroComp NavCad 2020 [Premium]}

Project ID MV Yahtse Andersen
Description Ro-Ro Car/Cargo Alaskan Ferry
File name NAME 4175 MV Yahtse NavCAD Andersen.henc

Symbols and values


FN = Froude number [LWL]
FV = Froude number [VOL]
RN = Reynolds number [LWL]
CF = Frictional resistance coefficient
CV/CF = Viscous/frictional resistance coefficient ratio [dynamic form factor] \(\mathrm{CR}=\) Residuary resistance coefficient
CF = Added frictional resistance coefficient for roughness
CA = Correlation allowance [dynamic]

BBARE \(=\) Bare-hull resistance
RAPP = Additional appendage resistance
RWND = Additional wind resistance
RSEAS = Additional sea-state resistance
RCHAN = Additional shallow/channel resistance
object resistance
RMARGIN = Resistance margin

PEBARE \(=\) Bare-hull effective power
PETOTAL \(=\) Total effective power
CTLR = Telfer residuary resistance coefficient
CTLT = Telfer total bare-hull resistance coefficient
\(+=\) Design speed indicator
* \(=\) Exceeds parameter limit

\section*{Appendix G: NavCAD Fung (CRTS) Results}

Resistance
26 Apr 2021 12:33 PM
HydroComp NavCad 2020 [Premium]
Analysis parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Vessel drag & & ITTC-78 (CT) & \multicolumn{2}{|l|}{Added drag} \\
\hline Technique: & [Calc] & Prediction & Appendage: & [Calc] Holtrop (Component) \\
\hline Prediction: & & Fung (CRTS) & Wind: & [Off] \\
\hline Reference ship: & & & Seas: & [Off] \\
\hline Model LWL: & & & Shallow/channel: & [Off] \\
\hline Expansion: & & Custom & Towed: & [Off] \\
\hline Friction line: & & ITTC-57 & Margin: & [Off] \\
\hline Hull form factor: & [On] & 1.421 & Water properties & \\
\hline Speed corr: & [Off] & & Water type: & Salt \\
\hline Spray drag corr: & [Off] & & Density: & \(1026.00 \mathrm{~kg} / \mathrm{m} 3\) \\
\hline Corr allowance: & & 0.000344 & Viscosity: & \(1.18920 \mathrm{e}-6 \mathrm{~m} 2 / \mathrm{s}\) \\
\hline Roughness [mm]: & [On] & 0.15 & & \\
\hline
\end{tabular}

Prediction method check [Fung (CRTS)]
\begin{tabular}{|c|cccccccc|}
\hline Parameters & FN [design] & CVOL & CP & BWL/T & IE & ABT/AX & ATR/AX & BTR/BWL \\
\hline Value & 0.25 & 5.00 & \(0.80^{\star}\) & 4.58 & \(23.5^{\star}\) & 0.00 & 0.00 & 0.00 \\
Range & \(0.18 \cdot \cdot 0.40\) & \(4.85 \cdot 11.27\) & \(0.52 \cdot 0.70\) & \(2.20 \cdot 5.20\) & \(\mathbf{4 . 0} \cdot \mathbf{2 0 . 0}\) & \(\mathbf{0 . 0 0 \cdot 0 . 1 0}\) & \(0.00 \cdot 0.40\) & \(0.00 \cdot 0.85\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{SPEED COEFS} & \multicolumn{7}{|c|}{ITTC-78 COEFS} \\
\hline \[
\begin{gathered}
\hline \text { SPEED } \\
{[\mathrm{kt}]}
\end{gathered}
\] & FN & FV & RN & CF & [CV/CF] & CR & dCF & CA & CT \\
\hline 10.00 ! & 0.166 & 0.372 & 4.22 e 8 & 0.001709 & 1.421 & 0.000001 & 0.000000 & 0.000344 & 0.002773 \\
\hline 11.00 & 0.183 & 0.409 & 4.64 e 8 & 0.001687 & 1.421 & 0.000001 & 0.000000 & 0.000344 & 0.002743 \\
\hline 12.00 & 0.200 & 0.446 & 5.06e8 & 0.001668 & 1.421 & 0.000196 & 0.000000 & 0.000344 & 0.002911 \\
\hline 13.00 & 0.216 & 0.484 & 5.49e8 & 0.001651 & 1.421 & 0.000530 & 0.000000 & 0.000344 & 0.003220 \\
\hline 14.00 & 0.233 & 0.521 & 5.91 e 8 & 0.001636 & 1.421 & 0.000799 & 0.000000 & 0.000344 & 0.003467 \\
\hline 14.50 & 0.241 & 0.539 & 6.12 e 8 & 0.001628 & 1.421 & 0.000948 & 0.000000 & 0.000344 & 0.003606 \\
\hline + 15.00 + & 0.249 & 0.558 & 6.33 e 8 & 0.001621 & 1.421 & 0.001131 & 0.000000 & 0.000344 & 0.003779 \\
\hline 15.50 & 0.258 & 0.576 & 6.54 e 8 & 0.001614 & 1.421 & 0.001372 & 0.000000 & 0.000344 & 0.004011 \\
\hline 16.00 & 0.266 & 0.595 & 6.75 e 8 & 0.001608 & 1.421 & 0.001694 & 0.000000 & 0.000344 & 0.004323 \\
\hline 17.00 & 0.283 & 0.632 & 7.18 e 8 & 0.001596 & 1.421 & 0.002594 & 0.000000 & 0.000344 & 0.005206 \\
\hline \multicolumn{10}{|c|}{RESISTANCE} \\
\hline \begin{tabular}{l}
SPEED \\
[kt]
\end{tabular} & RBARE [kN] & \[
\begin{aligned}
& \text { RAPP } \\
& {[\mathrm{kN}]}
\end{aligned}
\] & RWIND [kN] & RSEAS [kN] & \begin{tabular}{l}
RCHAN \\
[kN]
\end{tabular} & \[
\begin{aligned}
& \text { RTOWED } \\
& {[\mathrm{kN}]} \\
& \hline
\end{aligned}
\] & RMARGIN [kN] & RTOTAL [kN] & \\
\hline 10.00 ! & 72.70 & 24.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 97.36 & \\
\hline 11.00 & 87.02 & 29.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 116.52 & \\
\hline 12.00 & 109.90 & 34.75 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 144.65 & \\
\hline 13.00 & 142.69 & 40.41 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 183.11 & \\
\hline 14.00 & 178.17 & 46.48 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 224.65 & \\
\hline 14.50 & 198.77 & 49.66 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 248.43 & \\
\hline + 15.00 + & 222.95 & 52.94 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 275.89 & \\
\hline 15.50 & 252.64 & 56.31 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 308.95 & \\
\hline 16.00 & 290.18 & 59.79 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 349.97 & \\
\hline 17.00 & 394.48 & 67.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 461.52 & \\
\hline & \multicolumn{2}{|l|}{EFFECTIVE POWER} & \multicolumn{3}{|c|}{OTHER} & & & & \\
\hline \begin{tabular}{l}
SPEED \\
[kt]
\end{tabular} & PEBARE [kW] & PETOTAL [kW] & CTLR & CTLT & RBARE/W & & & & \\
\hline 10.00 ! & 374.0 & 500.8 & 0.00001 & 0.03518 & 0.00097 & & & & \\
\hline 11.00 & 492.4 & 659.4 & 0.00001 & 0.03480 & 0.00116 & & & & \\
\hline 12.00 & 678.4 & 893.0 & 0.00248 & 0.03693 & 0.00147 & & & & \\
\hline 13.00 & 954.3 & 1224.6 & 0.00672 & 0.04086 & 0.00191 & & & & \\
\hline 14.00 & 1283.2 & 1618.0 & 0.01014 & 0.04399 & 0.00238 & & & & \\
\hline 14.50 & 1482.7 & 1853.1 & 0.01203 & 0.04575 & 0.00266 & & & & \\
\hline + 15.00 + & 1720.4 & 2128.9 & 0.01436 & 0.04795 & 0.00298 & & & & \\
\hline 15.50 & 2014.5 & 2463.5 & 0.01741 & 0.05089 & 0.00338 & & & & \\
\hline 16.00 & 2388.5 & 2880.7 & 0.02150 & 0.05485 & 0.00388 & & & & \\
\hline 17.00 & 3449.9 & 4036.2 & 0.03292 & 0.06605 & 0.00528 & & & & \\
\hline
\end{tabular}


\section*{Resistance}

26 Apr 2021 12:33 PM
HydroComp NavCad 2020 [Premium]
\begin{tabular}{ll} 
Project ID & MV Yahtse Fung (CRTS) \\
Description & Ro-Ro Car/Cargo Alaskan Ferry \\
File name & NAME 4175 MV Yahtse NavCAD Fung (CRTS).hcnc
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Appendage data} \\
\hline General & & Skeg/Keel & \\
\hline Definition: & Component & Count: & 1 \\
\hline Percent of hull drag: & 0.00\% & Type: & Skeg \\
\hline \multicolumn{2}{|l|}{Planing influence} & Mean length: & 0.000 m \\
\hline LCE fwd TR: & 0.000 m & Mean width: & 0.000 m \\
\hline VCE below WL: & 0.000 m & Height aft: & 0.000 m \\
\hline \multicolumn{2}{|l|}{Shafting} & Height mid: & 0.000 m \\
\hline Count: & 2 & Height fwd: & 0.000 m \\
\hline Max prop diameter: & 3048.0 mm & Projected area: & 0.000 m 2 \\
\hline Shaft angle to WL: & 10.00 deg & Wetted surface: & 87.330 m 2 \\
\hline Exposed shaft length: & 0.000 m & \multicolumn{2}{|l|}{Stabilizer} \\
\hline Shaft diameter: & 0.000 m & Count: & 0 \\
\hline Wetted surface: & 14.860 m 2 & Root chord: & 0.000 m \\
\hline \multirow[t]{3}{*}{Strut bossing length: Bossing diameter: Wetted surface:} & 0.000 m & Tip chord: & 0.000 m \\
\hline & 0.000 m & Span: & 0.000 m \\
\hline & 6.690 m 2 & T/C ratio: & 0.000 \\
\hline Hull bossing length: & 0.000 m & LE sweep: & 0.00 deg \\
\hline Bossing diameter: & 0.000 m & Wetted surface: & 0.000 m 2 \\
\hline Wetted surface: & \(9.480 \mathrm{m2}\) & \multirow[t]{2}{*}{Projected area: Dynamic multiplier:} & 0.000 m 2 \\
\hline \multicolumn{2}{|l|}{Strut (per shaft line)} & & 1.00 \\
\hline Count: & 2 & \multicolumn{2}{|l|}{Bilge keel} \\
\hline Root chord: & 0.000 m & Count: & 2 \\
\hline Tip chord: & 0.000 mm & Mean length: & 0.000 m \\
\hline Span: & 0.000 m & Mean base width: & 0.000 m \\
\hline T/C ratio: & 0.000 & Mean projection: & 0.000 m \\
\hline Projected area: & 0.000 m 2 & Wetted surface: & 196.030 m 2 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Wetted surface: \\
Exposed palm depth: \\
Exposed palm width:
\end{tabular}} & 3.723 m 2 & \multicolumn{2}{|l|}{Tunnel thruster} \\
\hline & 0.000 m & Count: & 2 \\
\hline & 0.000 m & Diameter: & 0.000 m \\
\hline \multicolumn{2}{|l|}{Rudder} & \multicolumn{2}{|l|}{Sonar dome} \\
\hline Count: & 1 & Count: & 0 \\
\hline Rudder location: & Behind propeller & Wetted surface: & 0.000 m 2 \\
\hline Type: & Balanced foil & \multicolumn{2}{|l|}{Miscellaneous} \\
\hline Root chord: & 0.000 m & Count: & 0 \\
\hline Tip chord: & 0.000 m & Drag area: & 0.000 m 2 \\
\hline Span: & 0.000 m & Drag coef: & 0.00 \\
\hline T/C ratio: & 0.000 & & \\
\hline LE sweep: & 0.00 deg & & \\
\hline Projected area: & 0.000 m 2 & & \\
\hline Wetted surface: & 16.720 m 2 & & \\
\hline \multicolumn{4}{|l|}{Environment data} \\
\hline \multicolumn{2}{|l|}{Wind} & \multicolumn{2}{|l|}{Seas} \\
\hline \multirow[t]{3}{*}{Wind speed: Angle off bow: Gradient correction:} & \multirow[t]{3}{*}{\begin{tabular}{l}
0.00 deg \\
Off
\end{tabular}} & \multirow[t]{2}{*}{Significant wave ht: Modal wave period:} & 0.000 m \\
\hline & & & 0.0 sec \\
\hline & & \multicolumn{2}{|l|}{Shallow/channel} \\
\hline \multicolumn{2}{|l|}{Exposed hull} & Water depth: & 0.000 m \\
\hline Transverse area: & 0.000 m 2 & Type: & Shallow water \\
\hline VCE above WL: & 0.000 m & Channel width: & 0.000 m \\
\hline Profile area: & 66.890 m 2 & Channel side slope: & 0.00 deg \\
\hline \multicolumn{2}{|l|}{Superstructure} & \multirow[t]{5}{*}{Hull girth:} & 0.000 m \\
\hline Superstructure shape: & Ferry/Liner & & \\
\hline Transverse area: & 0.000 m 2 & & \\
\hline VCE above WL: & 0.000 m & & \\
\hline Profile area: & 41.810 m 2 & & \\
\hline
\end{tabular}

\section*{Resistance \\ 26 Apr 2021 12:33 PM \\ HydroComp NavCad 2020 [Premium]}

Project ID MV Yahtse Fung (CRTS)
Description Ro-Ro Car/Cargo Alaskan Ferry
File name NAME 4175 MV Yahtse NavCAD Fung (CRTS).henc

Symbols and values
\begin{tabular}{rl} 
SPEED & \(=\) Vessel speed \\
FN & \(=\) Froude number [LWL] \\
FV & \(=\) Froude number [VOL] \\
RN & \(=\) Reynolds number [LWL] \\
CF & \(=\) Frictional resistance coefficient \\
CV/CF & \(=\) Viscous/frictional resistance coefficient ratio [dynamic form factor] \\
CR & \(=\) Residuary resistance coefficient \\
CFF & Added frictional resistance coefficient for roughness \\
CA & \(=\) Correlation allowance [dynamic] \\
CT & \(=\) Total bare-hull resistance coefficient \\
RBARE & \(=\) Bare-hull resistance \\
RAPP & \(=\) Additional appendage resistance \\
RWIND & \(=\) Additional wind resistance \\
RSEAS & \(=\) Additional sea-state resistance \\
RCHAN & \(=\) Additional shallow/channel resistance \\
RTOWED & \(=\) Additional towed object resistance \\
RMARGIN & \(=\) Resistance margin \\
RTOTAL & \(=\) Total vessel resistance \\
PEBARE & \(=\) Bare-hull effective power \\
PETOTAL & \(=\) Total effective power \\
CTLR & \(=\) Telfer residuary resistance coefficient \\
CTLT & \(=\) Telfer total bare-hull resistance coefficient \\
RBARE/W & \(=\) Bare-hull resistance to weight ratio \\
+ & \(=\) Design speed indicator \\
* & Exceeds parameter limit
\end{tabular}

FN = Froude number [LWL]
FV = Froude number [VOL]
RN = Reynolds number [LWL]
\(C F=\) Frictional resistance coefficient
V/CF = Viscous/frictional resistance coefficient ratio [dynamic form factor]
dCF = Added frictional resistance coefficient for roughness
CA = Correlation allowance [dynamic]
CT = Total bare-hull resistance coefficient
RBARE \(=\) Bare-hull resistance
RWIND = Additional wind resistance
RSEAS = Additional sea-state resistance
RCHAN = Additional shallow/channel resistance
ject resistance
RMARGIN = Resistance margin

PEBARE \(=\) Bare-hull effective power
PETOTAL \(=\) Total effective power
CTLR = Telfer residuary resistance coefficient
CTLT = Telfer total bare-hull resistance coefficient
\(+=\) Design speed indicator
* \(=\) Exceeds parameter limit

\section*{Appendix H: NavCAD Fung (HSTS) Results}

Resistance
26 Apr 2021 12:33 PM
HydroComp NavCad 2020 [Premium]
Analysis parameters
\begin{tabular}{|c|c|c|c|c|}
\hline Vessel drag & & ITTC-78 (CT) & \multicolumn{2}{|l|}{Added drag} \\
\hline Technique: & [Calc] & Prediction & Appendage: & [Calc] Holtrop (Component) \\
\hline Prediction: & & Fung (HSTS) & Wind: & [Off] \\
\hline Reference ship: & & & Seas: & [Off] \\
\hline Model LWL: & & & Shallow/channel: & [Off] \\
\hline Expansion: & & Custom & Towed: & [Off] \\
\hline Friction line: & & ITTC-57 & Margin: & [Off] \\
\hline Hull form factor: & [On] & 1.421 & Water properties & \\
\hline Speed corr: & [Off] & & Water type: & Salt \\
\hline Spray drag corr: & [0ff] & & Density: & \(1026.00 \mathrm{~kg} / \mathrm{m} 3\) \\
\hline Corr allowance: & & 0.000344 & Viscosity: & \(1.18920 \mathrm{e}-6 \mathrm{~m} 2 / \mathrm{s}\) \\
\hline Roughness [mm]: & [On] & 0.15 & & \\
\hline
\end{tabular}

Prediction method check [Fung (HSTS)]
\begin{tabular}{|c|cccccccc|}
\hline Parameters & FN [design] & CVOL & CP & LWL/BWL & BWL/T & XCB/LWL & IE & ATR/AX \\
\hline Value & 0.25 & 5.00 & \(0.80^{\star}\) & 4.51 & 4.58 & \(0.516^{\star}\) & 23.2 & 0.00 \\
Range & \(0.15 \cdot \cdot 0.40\) & \(4.73 \cdot 10.60\) & \(0.55 \cdot 0.72\) & \(\mathbf{3 . 4 0 \cdot 1 2 . 1 0}\) & \(\mathbf{2 . 1 0 \cdot 6 . 9 0}\) & \(0.440 \cdot 0.510\) & \(\mathbf{3 . 7} \cdot \mathbf{2 6 . 0}\) & \(0.00 \cdot 0.54\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{SPEED COEFS} & \multicolumn{7}{|c|}{ITTC-78 COEFS} \\
\hline \[
\begin{gathered}
\hline \text { SPEED } \\
{[\mathrm{kt}]}
\end{gathered}
\] & FN & FV & RN & CF & [CV/CF] & CR & dCF & CA & CT \\
\hline 10.00 & 0.166 & 0.372 & 4.22 e 8 & 0.001709 & 1.421 & 0.006985 & 0.000000 & 0.000344 & 0.009757 \\
\hline 11.00 & 0.183 & 0.409 & 4.64 e 8 & 0.001687 & 1.421 & 0.005689 & 0.000000 & 0.000344 & 0.008431 \\
\hline 12.00 & 0.200 & 0.446 & 5.06e8 & 0.001668 & 1.421 & 0.005020 & 0.000000 & 0.000344 & 0.007735 \\
\hline 13.00 & 0.216 & 0.484 & 5.49e8 & 0.001651 & 1.421 & 0.004491 & 0.000000 & 0.000344 & 0.007181 \\
\hline 14.00 & 0.233 & 0.521 & 5.91 e 8 & 0.001636 & 1.421 & 0.004200 & 0.000000 & 0.000344 & 0.006869 \\
\hline 14.50 & 0.241 & 0.539 & 6.12 e 8 & 0.001628 & 1.421 & 0.004342 & 0.000000 & 0.000344 & 0.007000 \\
\hline + 15.00 + & 0.249 & 0.558 & 6.33 e 8 & 0.001621 & 1.421 & 0.004474 & 0.000000 & 0.000344 & 0.007122 \\
\hline 15.50 & 0.258 & 0.576 & 6.54 e 8 & 0.001614 & 1.421 & 0.004449 & 0.000000 & 0.000344 & 0.007087 \\
\hline 16.00 & 0.266 & 0.595 & 6.75 e 8 & 0.001608 & 1.421 & 0.004271 & 0.000000 & 0.000344 & 0.006900 \\
\hline 17.00 & 0.283 & 0.632 & 7.18 e 8 & 0.001596 & 1.421 & 0.003892 & 0.000000 & 0.000344 & 0.006503 \\
\hline \multicolumn{10}{|c|}{RESISTANCE} \\
\hline \begin{tabular}{l}
SPEED \\
[kt]
\end{tabular} & RBARE [kN] & \[
\begin{aligned}
& \text { RAPP } \\
& {[\mathrm{kN}]}
\end{aligned}
\] & RWIND [kN] & RSEAS [kN] & \begin{tabular}{l}
RCHAN \\
[kN]
\end{tabular} & \[
\begin{aligned}
& \text { RTOWED } \\
& {[\mathrm{kN}]} \\
& \hline
\end{aligned}
\] & RMARGIN [kN] & RTOTAL [kN] & \\
\hline 10.00 & 255.82 & 24.65 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 280.47 & \\
\hline 11.00 & 267.49 & 29.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 296.99 & \\
\hline 12.00 & 292.03 & 34.75 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 326.78 & \\
\hline 13.00 & 318.21 & 40.41 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 358.62 & \\
\hline 14.00 & 352.98 & 46.48 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 399.46 & \\
\hline 14.50 & 385.90 & 49.66 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 435.56 & \\
\hline + 15.00 + & 420.14 & 52.94 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 473.07 & \\
\hline 15.50 & 446.46 & 56.31 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 502.77 & \\
\hline 16.00 & 463.17 & 59.79 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 522.96 & \\
\hline 17.00 & 492.79 & 67.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 559.83 & \\
\hline & \multicolumn{2}{|l|}{EFFECTIVE POWER} & \multicolumn{3}{|c|}{OTHER} & & & & \\
\hline \begin{tabular}{l}
SPEED \\
[kt]
\end{tabular} & PEBARE [kW] & PETOTAL [kW] & CTLR & CTLT & RBARE/W & & & & \\
\hline 10.00 & 1316.0 & 1442.9 & 0.08863 & 0.12380 & 0.00342 & & & & \\
\hline 11.00 & 1513.7 & 1680.6 & 0.07219 & 0.10698 & 0.00358 & & & & \\
\hline 12.00 & 1802.8 & 2017.3 & 0.06369 & 0.09814 & 0.00391 & & & & \\
\hline 13.00 & 2128.1 & 2398.4 & 0.05698 & 0.09112 & 0.00426 & & & & \\
\hline 14.00 & 2542.3 & 2877.0 & 0.05330 & 0.08715 & 0.00472 & & & & \\
\hline 14.50 & 2878.6 & 3249.0 & 0.05510 & 0.08882 & 0.00517 & & & & \\
\hline + 15.00 + & 3242.0 & 3650.5 & 0.05677 & 0.09036 & 0.00562 & & & & \\
\hline 15.50 & 3560.0 & 4009.1 & 0.05645 & 0.08993 & 0.00598 & & & & \\
\hline 16.00 & 3812.4 & 4304.5 & 0.05420 & 0.08755 & 0.00620 & & & & \\
\hline 17.00 & 4309.7 & 4896.0 & 0.04938 & 0.08252 & 0.00660 & & & & \\
\hline
\end{tabular}


\section*{Resistance}

26 Apr 2021 12:33 PM
HydroComp NavCad 2020 [Premium]
\begin{tabular}{ll} 
Project ID & MV Yahtse Fung (HSTS) \\
Description & Ro-Ro Car/Cargo Alaskan Ferry \\
File name & NAME 4175 MV Yahtse NavCAD Fung (HSTS).henc
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Appendage data} \\
\hline General & & Skeg/Keel & \\
\hline Definition: & Component & Count: & 1 \\
\hline Percent of hull drag: & 0.00\% & Type: & Skeg \\
\hline \multicolumn{2}{|l|}{Planing influence} & Mean length: & 0.000 m \\
\hline LCE fwd TR: & 0.000 m & Mean width: & 0.000 m \\
\hline VCE below WL: & 0.000 m & Height aft: & 0.000 m \\
\hline \multicolumn{2}{|l|}{Shafting} & Height mid: & 0.000 m \\
\hline Count: & 2 & Height fwd: & 0.000 m \\
\hline Max prop diameter: & 3048.0 mm & Projected area: & 0.000 m 2 \\
\hline Shaft angle to WL: & 10.00 deg & Wetted surface: & 87.330 m 2 \\
\hline \multirow[t]{2}{*}{Exposed shaft length:
Shaft diameter:} & 0.000 m & \multicolumn{2}{|l|}{Stabilizer} \\
\hline & 0.000 m & Count: & 0 \\
\hline Wetted surface: & 14.860 m 2 & Root chord: & 0.000 m \\
\hline Strut bossing length: & 0.000 m & Tip chord: & 0.000 m \\
\hline Bossing diameter: & 0.000 m & Span: & 0.000 m \\
\hline Wetted surface: & 6.690 m 2 & T/C ratio: & 0.000 \\
\hline Hull bossing length: & 0.000 m & LE sweep: & 0.00 deg \\
\hline Bossing diameter: & 0.000 m & Wetted surface: & 0.000 m 2 \\
\hline Wetted surface: & 9.480 m 2 & Projected area: & 0.000 m 2 \\
\hline \multicolumn{2}{|l|}{Strut (per shaft line)} & Dynamic multiplier: & 1.00 \\
\hline Count: & 2 & \multicolumn{2}{|l|}{Bilge keel} \\
\hline Root chord: & 0.000 m & Count: & 2 \\
\hline Tip chord: & 0.000 mm & Mean length: & 0.000 m \\
\hline Span: & 0.000 m & Mean base width: & 0.000 m \\
\hline T/C ratio: & 0.000 & Mean projection: & 0.000 m \\
\hline Projected area: & 0.000 m 2 & Wetted surface: & 196.030 m 2 \\
\hline Wetted surface: & 3.723 m 2 & Tunnel thruster & \\
\hline Exposed palm depth: & 0.000 m & Count: & 2 \\
\hline Exposed palm width: & 0.000 m & Diameter: & 0.000 m \\
\hline \multicolumn{2}{|l|}{Rudder} & \multicolumn{2}{|l|}{Sonar dome} \\
\hline Count: & 1 & Count: & 0 \\
\hline \multirow[t]{2}{*}{Rudder location:
Type:} & \multirow[t]{2}{*}{Behind propeller Balanced foil} & Wetted surface: & 0.000 m 2 \\
\hline & & \multicolumn{2}{|l|}{Miscellaneous} \\
\hline Root chord: & 0.000 m & Count: & 0 \\
\hline Tip chord: & 0.000 m & Drag area: & 0.000 m 2 \\
\hline Span: & 0.000 m & Drag coef: & 0.00 \\
\hline T/C ratio: & 0.000 & & \\
\hline LE sweep: & 0.00 deg & & \\
\hline Projected area: & 0.000 m 2 & & \\
\hline Wetted surface: & 16.720 m 2 & & \\
\hline \multicolumn{4}{|l|}{Environment data} \\
\hline \multicolumn{2}{|l|}{Wind} & \multicolumn{2}{|l|}{Seas} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Wind speed: \\
Angle off bow: \\
Gradient correction:
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& 0.00 \mathrm{kt} \\
& 0.00 \mathrm{deg}
\end{aligned}
\]
Off} & \multirow[t]{2}{*}{Significant wave ht: Modal wave period:} & 0.000 m \\
\hline & & & 0.0 sec \\
\hline & & \multicolumn{2}{|l|}{Shallow/channel} \\
\hline \multicolumn{2}{|l|}{Exposed hull} & Water depth: & 0.000 m \\
\hline Transverse area: & 0.000 m 2 & Type: & Shallow water \\
\hline VCE above WL: & 0.000 m & Channel width: & 0.000 m \\
\hline Profile area: & 66.890 m 2 & Channel side slope: & 0.00 deg \\
\hline \multicolumn{2}{|l|}{Superstructure} & \multirow[t]{5}{*}{Hull girth:} & 0.000 m \\
\hline Superstructure shape: & Ferry/Liner & & \\
\hline Transverse area: & 0.000 m 2 & & \\
\hline VCE above WL: & 0.000 m & & \\
\hline Profile area: & 41.810 m 2 & & \\
\hline
\end{tabular}

\section*{Resistance \\ 26 Apr 2021 12:33 PM \\ HydroComp NavCad 2020 [Premium]}
\begin{tabular}{ll} 
Project ID & MV Yahtse Fung (HSTS) \\
Description & Ro-Ro Car/Cargo Alaskan Ferry \\
File name & NAME \(\mathbf{4 1 7 5}\) MV Yahtse NavCAD Fung (HSTS).henc
\end{tabular}

Symbols and values
\begin{tabular}{rl} 
SPEED & \(=\) Vessel speed \\
FN & \(=\) Froude number [LWL] \\
FV & \(=\) Froude number [VOL] \\
RN & \(=\) Reynolds number [LWL] \\
CF & \(=\) Frictional resistance coefficient \\
CV/CF & \(=\) Viscous/frictional resistance coefficient ratio [dynamic form factor] \\
CR & \(=\) Residuary resistance coefficient \\
dCF & \(=\) Added frictional resistance coefficient for roughness \\
CA & \(=\) Correlation allowance [dynamic] \\
CT & \(=\) Total bare-hull resistance coefficient \\
RBARE & \(=\) Bare-hull resistance \\
RAPP & \(=\) Additional appendage resistance \\
RWIND & \(=\) Additional wind resistance \\
RSEAS & \(=\) Additional sea-state resistance \\
RCHAN & \(=\) Additional shallow/channel resistance \\
RTOWED & \(=\) Additional towed object resistance \\
RMARGIN & \(=\) Resistance margin \\
RTOTAL & \(=\) Total vessel resistance \\
PEBARE & \(=\) Bare-hull effective power \\
PETOTAL & \(=\) Total effective power \\
CTLR & \(=\) Telfer residuary resistance coefficient \\
CTLT & \(=\) Telfer total bare-hull resistance coefficient \\
RBARE/W & \(=\) Bare-hull resistance to weight ratio \\
+ & = Design speed indicator \\
&
\end{tabular}

\section*{Appendix I: Polynomial Code - WBPolynomials.py}
\# NAME 3150 Honors Work
\# Date Last Modified: 05/13/2020
" " "
Honors Assignment:
Given the Wageningen B-Series polynomials for determining the K_T and K_Q curves and example data, program in Python open water chart graphs for any given propeller data.
"""
import numpy as \(n p\)
import matplotlib.pyplot as plt
from scipy.optimize import fsolve

\section*{\#\#}

\section*{\#\# 2. K_T polynomial values and sum}
```

def K_Tfunc(J,PD,ar,Z):

```
\[
\begin{aligned}
& \mathrm{T} 1=0.00880496^{*}(\mathrm{~J} * * 0) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 2=-0.204554^{*}(\mathrm{~J} * * 1)^{*}\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 3=0.166351^{*}(\mathrm{~J} * * 0) *\left(\mathrm{PD}^{* *} 1\right) *\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 4=0.158114^{*}\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *} 2\right) *\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 5=-0.147581^{*}\left(\mathrm{~J}^{* *} 2\right)^{*}\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 6=-0.481497 *(\mathrm{~J} * * 1)^{*}\left(\mathrm{PD}^{* *} 1\right) *\left(\mathrm{ar}^{* *} 1\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 7=0.415437 *\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *} 2\right)^{*}\left(\mathrm{ar}^{* *} 1\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 8=0.0144043^{*}(\mathrm{~J} * * 0) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{T} 9=-0.0530054 *(\mathrm{~J} * * 2) *\left(\mathrm{PD}^{* *} 0\right) *(\mathrm{ar} * * 0) *\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{T} 10=0.0143481^{*}(\mathrm{~J} * * 0) *\left(\mathrm{PD}^{* *} 1\right) *\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{T} 11=0.0606826^{*}(\mathrm{~J} * * 1) *\left(\mathrm{PD}^{* *} 1\right)^{*}\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{T} 12=-0.0125894 *(\mathrm{~J} * * 0)^{*}\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{T} 13=0.0109689^{*}(\mathrm{~J} * * 1) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 1\right) *\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{T} 14=-0.133698^{*}(\mathrm{~J} * * 0) *\left(\mathrm{PD}^{* *} 3\right) *(\mathrm{ar} * * 0) *\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 15=0.00638407 *(\mathrm{~J} * * 0) *(\mathrm{PD} * * 6) *(\mathrm{ar} * * 0) *\left(\mathrm{Z}^{* *} 0\right) \\
& \left.\mathrm{T} 16=-0.00132718^{*}(\mathrm{~J} * * 2)^{*}\left(\mathrm{PD}^{* *} 6\right) *\left(\mathrm{ar}{ }^{* *} 0\right)\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{T} 17=0.168496^{*}(\mathrm{~J} * * 3) *(\mathrm{PD} * * 0) *\left(\mathrm{ar}^{* *} 1\right) *\left(\mathrm{Z}^{* *} 0\right)
\end{aligned}
\]
```

 T18=-0.0507214*(J**0)*(PD**0)*(ar**2)*(Z**0)
 T19=0.0854559*(J**2)*(PD**0)*(ar**2)*(Z**0)
 T20=-0.0504475*(J**3)*(PD**0)*(ar**2)*(Z**0)
 T21=0.010465*(J**1)*(PD**6)*(ar**2)*(Z**0)
 T22=-0.00648272*(J**2)*(PD**6)*(ar**2)*(Z**0)
 T23=-0.00841728*(J**0)*(PD**3)*(ar**0)*(Z**1)
 T24=0.0168424*(J**1)*(PD**3)*(ar**0)*(Z**1)
 T25=-0.00102296*(J**3)*(PD**3)*(ar**0)*(Z**1)
 T26=-0.0317791*(J**0)*(PD**3)*(ar**1)*(Z**1)
 T27=0.018604*(J**1)*(PD**0)*(ar**2)*(Z**1)
 T28=-0.00410798*(J**0)*(PD**2)*(ar**2)*(Z**1)
 T29=-0.000606848*(J**0)*(PD**0)*(ar**0)*(Z**2)
 T30=-0.0049819*(J**1)*(PD**0)*(ar**0)*(Z**2)
 T31=0.0025983*(J**2)*(PD**0)*(ar**0)*(Z**2)
 T32=-0.000560528*(J**3)*(PD**0)*(ar**0)*(Z**2)
 T33=-0.00163652*(J**1)*(PD**2)*(ar**0)*(Z**2)
 T34=-0.000328787*(J**1)*(PD**6)*(ar**0)*(Z**2)
 T35=0.000116502*(J**2)*(PD**6)*(ar**0)*(Z**2)
 T36=0.000690904*(J**0)*(PD**0)*(ar**1)*(Z**2)
 T37=0.00421749*(J**0)*(PD**3)*(ar**1)*(Z**2)
 T38=0.0000565229*(J**3)*(PD**6)*(ar**1)*(Z**2)
 T39=-0.00146564*(J**0)*(PD**3)*(ar**2)*(Z**2)
    ```
\(\mathrm{K} \_\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4+\mathrm{T} 5+\mathrm{T} 6+\mathrm{T} 7+\mathrm{T} 8+\mathrm{T} 9+\mathrm{T} 10+\mathrm{T} 11+\mathrm{T} 12+\mathrm{T} 13+\mathrm{T} 14+\mathrm{T} 15+\mathrm{T} 16+\mathrm{T} 17+\mathrm{T} 18+\mathrm{T} 19\)
।
    \(+\mathrm{T} 20+\mathrm{T} 21+\mathrm{T} 22+\mathrm{T} 23+\mathrm{T} 24+\mathrm{T} 25+\mathrm{T} 26+\mathrm{T} 27+\mathrm{T} 28+\mathrm{T} 29+\mathrm{T} 30+\mathrm{T} 31+\mathrm{T} 32+\mathrm{T} 33+\mathrm{T} 34+\mathrm{T} 35+\mathrm{T} 36 \backslash\)
    +T37+T38+T39
    return K_T
\#\# ======================================================================1
\#\# 3. K_Q polynomial values and sum
def K_Qfunc(J,PD,ar,Z):
\[
\mathrm{Q} 1=0.00379368 *(\mathrm{~J} * * 0) *(\mathrm{PD} * * 0) *\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 0\right)
\]
\[
\begin{aligned}
& \left.\mathrm{Q} 2=0.00886523^{*}\left(\mathrm{~J}^{* *} 2\right)^{*}\left(\mathrm{PD}^{* *} 0\right)\right)^{*}\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{Q} 3=-0.032241^{*}\left(\mathrm{~J}^{* *} 1\right)^{*}\left(\mathrm{PD}{ }^{* *}\right)^{*}\left(\mathrm{ar}{ }^{* *} 0\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{Q} 4=0.00344778^{*}\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *} 2\right)^{*}\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{Q} 5=-0.0408811^{*}\left(\mathrm{~J}^{* *} 0\right)^{*}\left(\mathrm{PD}^{* *} 1\right)^{*}\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \text { Q6=-0.108009*(J**1)*(PD**1)*(ar**1)*(Z**0) } \\
& \mathrm{Q} 7=-0.0885381^{*}\left(\mathrm{~J}^{* *} 2\right)^{*}\left(\mathrm{PD}^{* *} 1\right) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \text { Q8=0.188561*(J**0)*(PD**2)*(ar**1)*(Z**0) } \\
& \mathrm{Q} 9=-0.00370871^{*}(\mathrm{~J} * * 1)^{*}\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 10=0.00513696^{*}\left(\mathrm{~J}^{* *} 0\right)^{*}\left(\mathrm{PD}^{* *} 1\right)^{*}\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 11=0.0209449^{*}\left(\mathrm{~J}^{* *} 1\right) *\left(\mathrm{PD}^{* *} 1\right) *\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 12=0.00474319^{*}\left(\mathrm{~J}^{* *} 2\right)^{*}\left(\mathrm{PD}^{* *}\right)^{*}\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \text { Q13 }=-0.00723408^{*}\left(\mathrm{~J}^{*} * 2\right) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 1\right) *\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 14=0.00438388^{*}\left(\mathrm{~J}^{* *} 1\right)^{*}\left(\mathrm{PD}^{* *} 1\right)^{*}\left(\mathrm{ar}^{* *}\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \text { Q15=-0.0269403*(J**0)*(PD**2)*(ar**1)*(Z**1) } \\
& \mathrm{Q} 16=0.0558082^{*}\left(\mathrm{~J}^{* *} 3\right) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \text { Q17 }=0.0161886^{*}\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *} 3\right) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{Q} 18=0.00318086^{*}(\mathrm{~J} * * 1) *(\mathrm{PD} * * 3) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \text { Q19 }=0.015896 *\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{Q} 20=0.0471729^{*}\left(\mathrm{~J}^{* *} 1\right) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{Q} 21=0.0196283^{*}\left(\mathrm{~J}^{* *} 3\right) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \text { Q22 }=-0.0502782^{*}\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *} 1\right)^{*}\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{Q} 23=-0.030055^{*}\left(\mathrm{~J}^{* *} 3\right)^{*}\left(\mathrm{PD}^{* *} 1\right) *\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 0\right) \\
& \mathrm{Q} 24=0.0417122^{*}(\mathrm{~J} * * 2) *\left(\mathrm{PD}^{* *} 2\right) *\left(\mathrm{ar}^{* *} 2\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \text { Q25=-0.0397722*( } \left.\mathrm{J}^{* *} 0\right)^{*}\left(\mathrm{PD}^{* *} 3\right) *\left(\mathrm{ar}^{* *} 2\right) *\left(\mathrm{Z}^{* *} 0\right) \\
& \text { Q26=-0.00350024*(J**0)*(PD**6)*(ar**2)*(Z**0) } \\
& \mathrm{Q} 27=-0.0106854^{*}\left(\mathrm{~J}^{* *} 3\right)^{*}\left(\mathrm{PD}^{* *} 0\right)^{*}\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 28=0.00110903^{*}\left(\mathrm{~J}^{* *} 3\right)^{*}\left(\mathrm{PD}^{* *} 3\right)^{*}\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \text { Q29 }=-0.000313912 *\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *} 6\right) *\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 30=0.0035985^{*}\left(\mathrm{~J}^{* *} 3\right) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *}\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \text { Q31 }=-0.00142121^{*}\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *} 6\right)^{*}\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 32=-0.00383637 *(\mathrm{~J} * * 1) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 33=0.0126803^{*}(\mathrm{~J} * * 0) *\left(\mathrm{PD}^{* *} 2\right) *\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \text { Q34=-0.00318278*(J**2)*(PD**3)*( } \left.\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 1\right) \\
& \text { Q35 }=0.00334268^{*}\left(\mathrm{~J}^{* *} 0\right) *(\mathrm{PD} * * 6) *\left(\mathrm{ar}^{* *} 2\right) *\left(\mathrm{Z}^{* *} 1\right) \\
& \mathrm{Q} 36=-0.00183491 *(\mathrm{~J} * * 1) *\left(\mathrm{PD}^{* *} 1\right)^{*}\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{*} * 2\right) \\
& \text { Q37 }=0.000112451^{*}\left(\mathrm{~J}^{* *} 3\right)^{*}\left(\mathrm{PD}^{* *} 2\right)^{*}\left(\mathrm{ar}^{* *} 0\right)^{*}\left(\mathrm{Z}^{* *} 2\right) \\
& \text { Q38 }=-0.0000297228 *\left(\mathrm{~J}^{* *} 3\right) *(\mathrm{PD} * * 6)^{*}\left(\mathrm{ar}^{* *} 0\right) *\left(\mathrm{Z}^{* *} 2\right) \\
& \mathrm{Q} 39=0.000269551^{*}\left(\mathrm{~J}^{* *} 1\right)^{*}\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 2\right) \\
& \mathrm{Q} 40=0.00083265^{*}\left(\mathrm{~J}^{* *} 2\right)^{*}\left(\mathrm{PD}{ }^{* *} 0\right)^{*}\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 2\right) \\
& \mathrm{Q} 41=0.00155334 *\left(\mathrm{~J}^{* *} 0\right) *\left(\mathrm{PD}^{* *}\right) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 2\right)
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{Q} 42=0.000302683^{*}(\mathrm{~J} * * 0) *\left(\mathrm{PD}^{* *} 6\right) *\left(\mathrm{ar}^{* *} 1\right)^{*}\left(\mathrm{Z}^{* *} 2\right) \\
& \mathrm{Q} 43=-0.0001843^{*}(\mathrm{~J} * * 0) *\left(\mathrm{PD}^{* *} 0\right) *\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 2\right) \\
& \text { Q44=-0.000425399*(J**0)*(PD**3)*(ar**2)*(Z**2) } \\
& \mathrm{Q} 45=0.0000869243 *(\mathrm{~J} * * 3) *(\mathrm{PD} * * 3) *\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 2\right) \\
& \text { Q46=-0.0004659*(J**0)*(PD**6)*(ar**2)*(Z**2) } \\
& \mathrm{Q} 47=0.0000554194^{*}(\mathrm{~J} * * 1)^{*}(\mathrm{PD} * * 6)^{*}\left(\mathrm{ar}^{* *} 2\right)^{*}\left(\mathrm{Z}^{* *} 2\right)
\end{aligned}
\]
```

K_Q=Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8+Q9+Q10+Q11+Q12+Q13+Q14+Q15+Q16+Q17+Q18
+Q19 \
+Q20+Q21+Q22+Q23+Q24+Q25+Q26+Q27+Q28+Q29+Q30+Q31+Q32+Q33+Q34+Q35+Q36
\
+Q37+Q38+Q39+Q40+Q41+Q42+Q43+Q44+Q45+Q46+Q47

```
    return K_Q
\#
\#\# 4. eta_O function
def eta_Ofunc(J,PD,ar,Z):
    KT=K_Tfunc(J,PD,ar,Z)
    KQ=K_Qfunc(J,PD,ar,Z)
    eta_O=J/(2.*np.pi)*KT/KQ
    return eta_O
\#\# =========================================================================1
\#\# 3. Open Water Chart graphing
def openwaterchart(J,PD,ar,Z):
    \#plt.figure(figsize=(15,10))
    plt.plot(J,K_Tfunc(J,PD,ar,Z),lw=2,label=r"\$[K_T]\$")
    plt.plot(J,10.*K_Qfunc(J,PD,ar,Z),lw=2,label=r"\$[10K_Q]\$")
```

 plt.plot(J,eta_Ofunc(J,PD,ar,Z),lw=2,label=r"$[eta_O]$")
 plt.title("Open Water Chart for Wageningen B-Series Propeller")
 plt.xlabel("Advance Ratio, J $[-]$")
 plt.ylabel("Thrust and Torque Coefficients, K_T, $10K_Q$ $[-]$")
 plt.legend()
 #plt.grid()
 #plt.show()
    ```
\# use find function to find self prop point for dc_4
def findJTS2(dc_4,PD,ar,Z):
    """
    Find the self-propulsion point as intersection of
    parabola dc_ \(4 * \mathrm{~J} * * 2\) and KT curve
    """
    J_0=0.7 \#initial guess for J
    \# solve for intersection point
    \# needs to be , after JTS so that fsolve only
    \# returns desired value
    JTS,=fsolve(lambda J:dc_4*(J**2)-K_Tfunc(J,PD,ar,Z),J_0)
    return JTS
\# finding minimum area ratio from Burrill criterion
def ar_min(n,PD,D,T_req,v_as,e,rho):
    \(\mathrm{g}=9.807 \mathrm{\# m} / \mathrm{s}^{\wedge} 2\)
    rho \(=1026.021 \# \mathrm{~kg} / \mathrm{m}^{\wedge} 3\)
    p_A=101325. \#Pa
    p_v=1671. \#Pa
    p_0=p_A+rho*g*e
    \(\mathrm{v} \_1=\mathrm{np} . \operatorname{sqrt}\left(\left(\mathrm{v} \_\right.\right.\)as**2)\(\left.+\left(0.7 * n \mathrm{p} . \mathrm{pi}^{*} \mathrm{n}^{*} \mathrm{D}\right){ }^{* *} 2\right)\)
    sigma_b=(p_0-p_v)/(0.5*rho*v_1**2)
    tau_c=0.715*(sigma_b**0.184)-0.437
    \(\mathrm{r} 1=0.5^{*}\) rho* \({ }^{*}\left(\mathrm{v} \_1 * * 2\right)^{*} \mathrm{tau}_{\mathrm{c}} \mathrm{c}^{*}(1.067-0.229 * \mathrm{PD}) * \mathrm{np} . \mathrm{pi}{ }^{*}\left(\mathrm{D}^{* *} 2\right) / 4\).
    arm=T_req/r1
return arm
\# test
if __name__ == '__main__':
\(\mathrm{Z}=4.0\)
\(\mathrm{PD}=0.70\)
ar=0.5500 \#expanded area ratio
\(\mathrm{J}=\mathrm{np} . \operatorname{array}([0.0,0.2,0.4,0.6,0.8,1.0])\)
plt.figure(figsize \(=(15,10)\) )
openwaterchart(J,PD,ar,Z)
plt.grid()
plt.show()

\section*{Appendix J: Optimization Code - WBOpt.py}
```


NAME 3155 Project: Propeller Optimization Tool

Date Last Modified: 04/28/2021

"""
Propeller Selection Program:
Use the Wageningen B-Series polynomials and Holtrop and
Mennen's Resistance and Propulsion estimate method to
vary propeller design parameters and optimize a propeller
for any given vessel particulars.
from WBPolynomials import eta_Ofunc,findJTS2,ar_min
g=9.807
rho=1027.8336 \#kg/m^3; density at 4}\mp@subsup{4}{}{\circ}\textrm{C
nu}=1.6262\textrm{e}-6\#\mp@subsup{\textrm{m}}{}{\wedge}2/\textrm{s};\mathrm{ viscosity at 4}\mp@subsup{4}{}{\circ}\textrm{C

Step 1: Define Design Constants

completed in project code

Step 2: Open-Water Diagram for Chosen Design Constant

completed in project code

Step 3: Extract Max Efficiency from Diagram

def optimumprop(x,dc_4,Z,D,T_req,v_as,rho,e,proptype):
\#retreive free variables
PD=x[0]
ar=x[1]
\#find JTS for this prop
JTS=findJTS2(dc_4,PD,ar,Z)
\#rate of revolution at self-propulsion point
nTS=v_as/(JTS*D)
\#compute open water efficiency

```
eta_O=eta_Ofunc(JTS,PD,ar,Z)
\#compute constraints
\(\mathrm{p}=0\). \#initial value
if ar < ar_min(nTS,PD,D,T_req,v_as,e,rho): \(\mathrm{p}=\mathrm{p}+(\) ar_min(nTS,PD,D,T_req,v_as,e,rho)-ar)**2
\(\operatorname{print}(\mathrm{p}=\mathrm{e}, \mathrm{p})\)
if proptype=='CPP':
\(\operatorname{armax}=0.75\)
if ar > armax:
\(\mathrm{p}=\mathrm{p}+7\).*(ar-armax\()^{* *} 2\)
\(\operatorname{print}(\mathrm{p}=\mathrm{\prime}, \mathrm{p})\)
if \(\mathrm{PD}>1.4\) : \(\mathrm{p}=\mathrm{p}+(\mathrm{PD}-1.4)^{* *} 2\)
obj=1.-eta_O+10.*p
\(\operatorname{print}(' p=\) ',p)
print(")
return obj```

