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Abstract 

During early-stage ship design, a propulsion system must be matched with data from a resistance 

and propulsion analysis to determine the propulsion power required for the vessel to run at its 

design speed. Typically, this process is completed within NavCAD; however, NavCAD does not 

have a method to calculate icebreaking resistance or design a propeller to meet the ice-class criteria 

stipulated by the International Association of Classification Societies (IACS). This paper displays 

and discusses Python scripts written to complete the resistance and propulsion analysis, propeller 

optimization, and propeller structural design meeting IACS criteria for an icebreaking, RoRo car 

and cargo ferry, the MV Yahtse. This code was designed to complete propeller design for the 

preliminary design stage of the vessel; however, the code can be modified for any stage of design 

as well as for use with any icebreaking vessel with principal characteristics that fall within the 

parameters required for the use of Holtrop and Mennen’s resistance and propulsion analysis 

method. The Python scripts were proven to be able to generate resistance and propulsion analysis 

results comparable to the results found from NavCAD as well as design two propellers suitable for 

the MV Yahtse that pass the criteria imposed by the IACS ice-class regulations. 
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1. Introduction 

Typically, during the ship design process, engineers will match a propeller with their ship 

based on results obtained through a resistance and propulsion analysis completed either with a 

simulation tool (such as NavCad) or model testing. This step is critical for both early-stage design 

and subsequent iterations as it determines the amount of propulsive power the vessel requires to 

operate at its design speed, and from this information the engines can be sized. However, for ships 

with a unique design, a propeller must be designed that considers any special operating conditions 

or missions that the vessel is designed to handle without compromising performance. The MV 

Yahtse is one of these outlying cases. It is an overnight, car and cargo, roll on-roll off (RoRo), 

twin-screw (two propellers) ferry designed to service the Alaskan coast from the southwest 

Aleutian Islands to the north slope town of Utqiaġvik (formerly known as Barrow) which lies 

within the Arctic Circle. Due to the geographical range over which the MV Yahtse will provide 

service, the hull will be Ice-Class 3 according to the International Association of Classification 

Societies’ (IACS) “Requirements Concerning Polar Class” [1] and any additional American 

Bureau of Shipping (ABS) guidelines in “Guidance Notes on Ice Class” [2]. This ice class 

operational requirement imposes special design considerations upon the propulsion system. To aid 

in the design of the propeller regarding these requirements, a propeller design tool for the 

preliminary vessel design stage has been written in Python. This paper aims to breakdown the 

operation of the Python script as well as the theory and methodology for the propeller design 

methods used within. 

To write the propeller design tool, five major “steps” had to be coded. The first step 

completed a resistance and propulsion analysis using Holtrop and Mennen’s method. The second 

step used the Wageningen B systematic propeller series developed by the Netherlands Ship Model 
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Basin (MARIN) and the results from the resistance and propulsion analysis of the MV Yahtse to 

optimize a propeller for the vessel. Next, the geometry of the propeller was calculated. Then, using 

the propeller geometry, the maximum stresses acting on the blade were calculated. Finally, using 

the IACS requirements, the required thickness of the blade edges as well as an evaluation on 

whether the blade would meet the stress requirements was determined. 

The code developed for this project is intended to be run in an iterative manner, assuming 

the propeller would not meet the structural criteria immediately. The propeller was designed with 

the ship running at service speed without any icebreaking resistance. This decision was made since 

the ship will only be using its icebreaking capabilities in a few specific scenarios (i.e., winter cargo 

deliveries to Utqiaġvik). This set of input values also served as the basis for a comparison to 

NavCAD, as NavCAD does not have any icebreaking resistance calculation tools. A second set of 

inputs was used to design and test the structure of the propeller. This set of inputs used the propeller 

parameters optimized from the first run and resistance and propulsion results considering the ship 

running at design speed while icebreaking. This is a very unrealistic scenario, as the power required 

to run at 15 knots through a meter of ice is unreasonable for a vessel the size of the MV Yahtse; 

however, due to the absurdity, this condition will be sure to blanket any other operating condition 

that could possibly require the highest propulsion power. If the designed propeller can withstand 

the forces imposed by this extreme, then it stands to reason that there should be no concerns about 

the propeller’s structural integrity for all normal operation conditions. 

Utilizing Holtrop and Mennen’s method for the resistance and propulsion analysis as well 

as Wageningen B-Series propeller data, two propellers were able to be designed to work optimally 

on the MV Yahtse and further geometry was developed such that these propellers met the ice-class 
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criteria. However, the developed propellers are meant solely for a preliminary design and there are 

plenty of areas in which the processes and code can be improved for later design stages. 

  



 4 

2. Resistance and Propulsion Analysis 

A resistance and propulsion analysis is an essential part of the ship design process. There 

have been many methods developed to complete this process, optimized for a wide variety of ships. 

However, they all fundamentally complete the same process. Principal characteristics of a vessel’s 

hull form (and superstructure as necessary) act as input values and resistance estimates are made 

using developed formulas suitable for that vessel type. Then, using established theory, the thrust 

values required to propel the vessel over a range of speeds (including the design speed) are 

calculated. This data, in combination with propeller’s geometric data and characteristics, will 

provide data points for required power and the efficiency of the propulsion system, completing the 

resistance and propulsion analysis. 

There is no complete resistance estimation method dedicated to ice-breaking vessels, so 

the resistance and propulsion analysis was completed using Holtrop and Mennen’s method [3,4] 

with the addition of the Jeong formulas for icebreaking resistance. Holtrop and Mennen’s method 

was chosen as it is a complete resistance and propulsion method developed using statistical 

regression on data of both full-scale ships and model tests completed at MARIN. Due to the vast 

range of data used to develop the method, Holtrop and Mennen’s method provides accurate results 

for a wide range of ships. In general, this method will work for monohull vessels that fall 

approximately into the following range of values for Froude number, prismatic coefficient, and 

length-to-beam ratio [5]: 

𝐹𝑟 ≤ 0.45        

0.55 ≤ 𝐶𝑃 ≤ 0.85          (Eq. 1) 

3.9 ≤
𝐿

𝐵
≤ 9.5         
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The MV Yahtse meets these three criteria, so Holtrop and Mennen’s method was used as the basis 

for the resistance and propulsion analysis.  

The selection of the icebreaking resistance formula followed much more simple reasoning. 

All the older icebreaking formulas were developed using detailed hull parameters (stem angle, 

flare angle, buttock angle, etc.) as variables, whereas Jeong et. al, in “Ice Resistance Prediction for 

Standard Icebreaker Model Ship” [6], proposed a resistance estimation method that did not require 

the same level of hull detail. This was critical for the stage of design in which the resistance and 

propulsion analysis was completed, as the hull form was not yet designed with certainty for such 

items as the stem angle, flare angle, etc. Additionally, as the icebreaking mission of the standard 

icebreaker model used in Jeong et. al’s study is the same as the MV Yahtse’s (breaking first-year 

ice), the Jeong formulas were determined to be an adequate fit for an icebreaking resistance 

estimate. The Jeong formulas are as follows: 

𝑅𝐼 = 13.14𝑉2 + 𝐶𝐵∆𝜌𝑔ℎ𝑖𝐵𝑇 + 𝐶𝐶𝐹ℎ
−𝛼𝜌𝑖𝐵ℎ𝑖𝑉

2 + 𝐶𝐵𝑅𝑆𝑁
−𝛽𝜌𝑖𝐵ℎ𝑖𝑉

2  (Eq. 2)  

𝐹ℎ =
𝑉

√𝑔ℎ𝑖
      (Eq. 3) 

𝑆𝑁 =
𝑉

√
𝜎𝑓ℎ𝑖
𝜌𝑖𝐵

       (Eq. 4) 

where CB=0.5 is the coefficient of ice buoyancy resistance, CC=1.11 is the coefficient of ice 

clearing resistance, and CBR=2.73 is the coefficient of the ice breaking resistance; Fh is the Froude 

number of the ice thickness, hi, and SN is the strength number. Finally, 𝛼 = 1.157, 𝛽 = 1.54, 𝜌𝑖  

is the ice density and ∆𝜌 is the difference between the ice and water densities, V is the ship speed, 

and 𝜎𝑓 is the flexural strength of the ice. 

The full resistance and propulsion Python script can be seen in Appendix A, but next few 

paragraphs aim to summarize the general structure of the script and the outcome of each portion. 
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The first portion of the code is dedicated to defining and calculating the ship hull characteristics 

necessary to complete Holtrop and Mennen’s method. This involves correcting several values to 

the same frame of reference used by Holtrop and Mennen as well as estimating the remaining 

required values as necessary, which depends current stage of design for which the resistance and 

propulsion estimate is being completed. For a preliminary estimate, a good portion of the ship 

particulars will likely still be estimated using regression formulas or formulas outlined in Holtrop 

and Mennen’s method. For a later stage resistance and propulsion analysis, it is expected that all 

the necessary input values are measured straight from a completed hull model.  

The next portion of the code completed the resistance estimate. This is simply a long string 

of equations for resistance components or coefficients that ends in the total resistance being 

calculated with the following formula: 

𝑅𝑇 = (1 + 𝑘)𝑅𝐹 + 𝑅𝐴𝑃𝑃 + 𝑅𝐴 + 𝑅𝑊 + 𝑅𝑇𝑅 + 𝑅𝐴𝐴 + 𝑅𝐼   (Eq. 5) 

where k is the ITTC form factor, RF is the frictional resistance, RAPP is the total appendage 

resistance, RA is the correlation allowance resistance, RW is the wave resistance, RTR is the transom 

resistance, RAA is the air resistance, and RI is the icebreaking resistance found from the Jeong 

formulas. 

The final part of Holtrop and Mennen’s method completes a powering estimate by 

estimating the wake fraction, thrust deduction fraction, advance speed, and required thrust for the 

vessel with regression formulas developed by Holtrop and Mennen. Much like the resistance 

components, these values would normally be found during a model test and then scaled up for the 

full-size ship. However, due to the cost, ship models are not developed for feasibility studies and 

the preliminary design of a vessel, so these estimation methods serve to help engineers complete 
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a vital part of the ship design process with high accuracy (typically within 10% error) at a fraction 

of the time and cost. 

Holtrop and Mennen do provide a method for estimating the relative rotative efficiency 

and open water efficiency of a Wageningen B-Series propeller in their paper; however, they simply 

provide some small corrections for a full-scale propeller built upon the work completed by 

Oosterveld and Van Oossanen in “Further Computer-Analyzed Data of the Wageningen B-Screw 

Series” [7]. Additionally, Holtrop and Mennen’s work is only suitable for a situation in which the 

propeller characteristics are already known. Therefore, the powering estimate of the vessel will be 

completed as part of the propeller optimization using Oosterveld and Van Oossanen’s work. 

Before completing the propeller optimization and structural design, it is critical to 

determine that (a) the code developed thus far produces accurate results for Holtrop and Mennen’s 

method and (b) Holtrop and Mennen’s method serves as a good resistance and propulsion analysis 

method for the MV Yahtse. The first concern serves to simply check the correctness of the results 

generated by the Python script; however, the second concern exists on a much more theoretical 

plane. While Holtrop and Mennen’s method was developed from regression analyses of a wide 

variety of ships, giving the method its broad range of applicability, this general applicability can 

sometimes cause Holtrop and Mennen’s method to be rather inaccurate for unique vessel designs 

that do not follow the general trends found in the relations used by Holtrop and Mennen during 

their regression analyses. The MV Yahtse is a unique vessel design, as very few passenger vessels 

operate within the arctic circle, much less RoRo car ferries. Therefore, before proceeding, the 

resistance results from Python were compared to several resistance estimation methods in 

NavCAD, a resistance, propulsion, and propeller-selection software. Four methods were compared 

in NavCAD – Holtrop and Mennen, Andersen, Fung Transom-Stern (CRTS), and Fung High-
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Speed Transom-Stern (HSTS). Andersen’s method is named after the work published by Andersen 

and Guldhammer developing a numerical method for Guldhammer’s earlier graphical procedure, 

“A Computer-Oriented Power Prediction Procedure” [8]. The last two methods were developed 

by Fung for early-stage resistance prediction of general transom-stern hulls and high-speed 

transom stern hulls in “Resistance and Powering Prediction for Transom-Stern Hull Forms During 

Early-Stage Ship Design” [9] and “Revised Speed-Dependent Powering Predictions for High-

Speed Transom-Stern Hull Forms” [10] respectively. The MV Yahtse was evaluated by NavCAD 

to fulfill the parameters for each of these methods and each method was manually reviewed to 

ensure that the MV Yahtse fell within the intended vessel type(s) for each method. Figure 1 shows 

the resistance components and total resistance as calculated with the Python script and Figure 2 

shows the comparison of all four methods in NavCAD. As NavCAD does not have any method to 

calculate icebreaking resistance, for the purpose of comparison, the icebreaking resistance does 

not factor into the total resistance calculated for Figure 1 even though it is displayed on the graph 

as a component.  
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Figure 1: Resistance components and total resistance (without icebreaking) from Python. 

 

Figure 2: Total resistance for each method calculated using NavCAD. 
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Table 1 presents a comparison of the total resistance values calculated by Holtrop and Mennen’s 

method in Python and in NavCAD. For a complete comparison of the resistance components and 

total resistance calculated via Python and for all methods run in NavCad, please see Appendices 

D-H. 

Table 1: Comparison of Holtrop and Mennen total resistance values. 

Speed 

(kt) 

Python RT with 

icebreaking (kN) 

Python RT w/o 

icebreaking (kN) 

NavCAD RT 

(kN) 

% 

Error 

10.00 737.756 106.236 106.12 0.109 

11.00 808.749 138.548 138.87 0.232 

12.00 893.236 185.271 186.56 0.691 

13.00 998.766 253.848 256.96 1.211 

14.00 1130.821 349.677 355.67 1.685 

14.50 1212.564 413.558 421.46 1.875 

15.00 1310.723 494.009 504.64 2.107 

15.50 1420.611 586.339 600.62 2.378 

16.00 1530.893 679.205 697.34 2.601 

17.00 1755.402 869.285 893.46 2.706 

 

Table 1 proves that the Python code meets the first condition required before proceeding on to the 

propeller development – the Holtrop and Mennen resistance estimate compares well to that 

calculated through NavCAD. As the vessel speed increases, the percent error between the two sets 

of results does increase, but this is expected as any small differences between the two methods 

become magnified; however, even at the largest speed of 17 knots, the error is still well under 5%. 

For the preliminary stage of vessel design, a 5% error is very much acceptable, so this proves that 

Holtrop and Mennen’s method as coded in Python is working properly. Secondly, this data 

establishes that Holtrop and Mennen’s method is a good resistance and propulsion analysis method 

for the MV Yahtse. Typically for a preliminary resistance estimate, a conservative estimate is best 
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as it is unwise to risk under-designing the vessel for the missions and specifications it is to meet. 

In this regard, looking at Figure 1, there are two conservative options to choose from. Fung (HSTS) 

is greatly conservative for lower Froude numbers (vessel speeds) and at the higher speeds, Holtrop 

and Mennen’s method outstrips it. However, Fung’s (HSTS) method can be discarded in favor of 

Holtrop and Mennen’s method as, although NavCAD suggests that Fung’s (HSTS) method is a 

good fit, reading the original literature, this method is clearly meant for high-speed (large Froude 

number) vessels and the MV Yahtse does not meet this criterion. Therefore, when comparing 

Holtrop and Mennen’s method to several other prediction methods, Holtrop and Mennen’s method 

is still the best choice for preliminary vessel design and the results from this method can be used 

for propeller optimization. 
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3. Propeller Optimization 

 The propeller optimization is completed within the same script used for Holtrop and 

Mennen’s method as it is necessary to obtain and use propeller characteristics to complete the 

powering estimate (as noted in the section above). Due to the simplicity in design and abundance 

of research done on them, Wageningen B-Series propellers were chosen for the MV Yahtse. The 

geometry of this series is very well documented so that optimizing a propeller of this series for any 

type of ship is possible. Additionally, to aid in maneuvering into all manner of ports, many of them 

simplistic or practically non-existent, it was determined that the propellers would have to be 

controllable pitch propellers (CPP) which sets an additional criterion to have an expanded area 

ratio no greater than 0.75. This criterion ensures that each blade can rotate a compete 180º without 

contacting another blade, which would prevent the propeller from providing fully reversible thrust. 

To implement propeller optimization code into the resistance and propulsion estimate, two 

supplementary scripts were written. The first script (shown in Appendix I) uses the open water 

thrust (KT) and torque (KQ) curve polynomials defined by Oosterveld and Van Oossanen to create 

functions for the open water efficiency and the self-propulsion point (the operating point for a 

propeller at an advance speed). Finally, the first script contains a function to calculate the minimum 

area ratio required by Burrill’s criteria for cavitation [11]. For merchant vessels, Burrill’s 5% back 

cavitation limit curve was chosen meaning that up to 5% of the back of the blade can be covered 

with cavitation. This limit is expressed with the following regression curve and equations: 

𝜏𝑐 = 0.715𝜎𝑏
0.814 − 0.437     (Eq. 6) 

𝜎𝑏 =
𝑝0−𝑝𝑣

0.5𝜌𝑣1
2       (Eq. 7) 

𝑝0 = 𝑝𝐴 + 𝜌𝑔𝑒      (Eq. 8) 

𝑣1 = √𝑣𝐴
2 + (0.7𝜋𝑛𝐷)2     (Eq. 9) 
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In Equations 6-9, pv is the vapor pressure of water, pA is the atmospheric pressure, and e is the 

propeller shaft submergence depth. Using these supplemental equations, the minimum required 

area ratio to meet the set cavitation criteria as defined by Burrill is 

(
𝐴𝐸

𝐴0
)

𝑟𝑒𝑞
=

𝑇

0.5𝜌𝑣1
2𝜏𝑐(1.067−

0.229𝑃

𝐷
)

𝜋𝐷2

4

    (Eq. 10) 

The second script (shown in Appendix J) defines a function to iterate and converge upon an optimal 

propeller considering the self-propulsion point and the minimum area ratio. The propeller 

optimization is done using what is known as “design task 4” which uses the inputs of propeller 

blade number (Z), propeller diameter (D), required thrust (T), and speed of advance (vA) to 

optimize the pitch-diameter ratio and expanded area ratio of the propeller [12]. This design task 

was chosen since it is the most logical task for preliminary ship design. Compared to the other 

characteristics, the number of blades is slightly more arbitrary and for the MV Yahtse, the number 

of blades was chosen by looking at the propeller characteristics of vessels within the Alaskan 

Marine Highway System (AMHS). The diameter of the propeller was chosen as the maximum 

propeller diameter that would work for the hull form of the MV Yahtse to maximize efficiency. 

The optimization functions defined in the two supplementary scripts were imported for use in the 

Holtrop and Mennen script. 

 Within the resistance and propulsion estimation code, the optimization functions were 

imported and run with the appropriate input values from Holtrop and Mennen’s method. To use 

the optimization function, initial guesses for the pitch-diameter ratio and expanded area ratio had 

to be calculated to give the algorithm a starting point. The initial pitch-diameter ratio was simply 

given a common value, but the initial expanded area ratio was calculated using Keller’s formula 

which was developed to calculate an initial expanded area ratio that would avoid cavitation [13]. 
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(
𝐴𝐸

𝐴0
)

𝑟𝑒𝑞
=

(1.3+0.3𝑍)𝑇

(𝑝0−𝑝𝑣)𝐷2 + 𝐾     (Eq. 11) 

After running the optimization function, the self-propulsion points of the propellers were found as 

defined in the Wageningen B-Series polynomial functions. 

The optimal propeller characteristics were calculated without icebreaking resistance as the 

propeller of a vessel should always be designed to operate optimally in the normal service 

condition and the MV Yahtse is only expected to operate as an icebreaking ship for a small portion 

of the year for a few route locations. The propeller characteristics for both propellers as well as the 

optimum efficiency at the design speed are shown below in Table 2. 

Table 2: Optimum propeller characteristics for the MV Yahtse. 

Optimum Propeller Characteristics Value 

Number of Blades (Z) 5 

Diameter (D) 3.048 m 

Pitch-Diameter Ratio (PD) 0.7568 

Expanded Area Ratio (ar) 0.7520 

Open Water Efficiency at Design Speed (𝜂𝑂𝑆) 0.4542 

RPM at Design Speed (n) 338.3 rpm 

 

The open water chart with self-propulsion points marking the KT, KQ, and open water efficiency 

(𝜂𝑂) values for each speed is shown below in Figure 3. 
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Figure 3: Open water chart with self-propulsion points. 

 

An open water chart plots the thrust, torque, and open water efficiency curves over a range of 

advance ratios, J. 

𝐽 =
𝑣𝐴

𝑛𝐷
       (Eq. 12) 

The design constant curves for each advance speed are then plotted on the graph. For design task 

4, the design constant is defined as 

[
𝐾𝑇

𝐽2 ] =
𝑇

𝜌𝐷2𝑣𝐴
2      (Eq. 13) 

For plotting, the design constant is multiplied by the denominator on the left-hand side of the 

equation which, for this design task, is J2. The intersection between each of these design curves is 

marked where it intersects with the KT polynomial curve and these points of intersection are 
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extrapolated vertically to the KQ and efficiency curves. This series of self-propulsion points can 

be seen marked on Figure 3 with open circles. The optimum propeller efficiency is then chosen 

from this data by finding the efficiency self-propulsion point at the design speed. 
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4. Propeller Structural Analysis and Design 

While these propeller characteristics work in theory, IACS ice class rules impose additional 

structural requirements upon the propeller to ensure that both the material used for the propeller 

and the blades themselves are strong enough to withstand the forces and stresses imposed upon 

them during icebreaking. However, to complete the structural analysis of the propeller, the 

maximum stress acting on the blade must be calculated. The stress on the blade will be greatest at 

the root of the blade, so the IACS criteria can be completed by evaluating the blade using this 

maximum stress. Normally, the maximum stress is found using finite element analysis. However, 

for early-stage design without a propeller model, this is not possible. Therefore, an alternative 

method for finding the maximum stress had to be used. The blade stress was calculated using 

Tables 2 and 3 from Section 3: Propeller Blade Stress from “Marine Engineering Vol. 1” [14]. The 

bending moment and blade stress calculation tables are shown below in Figure 4.  
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Figure 4: Blade moment and stress calculation tables from Marine Engineering Vol. 1 [14]. 

To complete the stress calculations, a significant amount of information about the geometry 

of the propeller had to be found, including the rake arm, skewback arm, and several distances (yt, 
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xt, yc, and xc) which are found according to Figure 11 in the original document or Figure 5 shown 

below. 

 

Figure 5: Blade cross-section geometry as defined by Marine Engineering Vol. 1 [14]. 

All these distances require information about centers of gravity, whether this be the individual 

center of gravity of each radial cross-section of the blade (as seen in Figure 5) or the center of 

gravity of the entire blade, which is necessary to determine the rake and skewback arms. Therefore, 

an additional Python script was written dedicated to the integration of the blade cross-sections 

(Appendix B). Firstly, the coordinate points outlining each radial cross-section were calculated 

using the following equations from Oosterveld and Van Oossanen’s paper 

𝑦𝑓𝑎𝑐𝑒 = {
𝑉1(𝑡𝑚𝑎𝑥 − 𝑡𝑡𝑒)  𝑓𝑜𝑟 𝑃 ≤ 0

𝑉1(𝑡𝑚𝑎𝑥 − 𝑡𝑙𝑒)  𝑓𝑜𝑟 𝑃 > 0
      (Eq. 14) 

𝑦𝑏𝑎𝑐𝑘 = {
(𝑉1 + 𝑉2)(𝑡𝑚𝑎𝑥 − 𝑡𝑡𝑒) + 𝑡𝑡𝑒   𝑓𝑜𝑟 𝑃 ≤ 0
(𝑉1 + 𝑉2)(𝑡𝑚𝑎𝑥 − 𝑡𝑙𝑒) + 𝑡𝑙𝑒   𝑓𝑜𝑟 𝑃 > 0

    (Eq. 15) 
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where yface and yback are the ordinate points on the face and back of the blade cross-section, 

respectively, for the corresponding coordinate P that varies from -1 to 1 from the trailing edge (TE) 

to the leading edge (LE) as seen below in Figure 6 [7]. 

 

Figure 6: Blade cross-section geometry as defined by Oosterveld and Van Oossanen [7]. 

tmax, tte, and tle are the blade thicknesses at the position of maximum thickness (P=0), trailing edge, 

and leading edge respectively. The maximum blade section thickness can be found from geometry 

tables found in “Further Computer-Analyzed Data of the Wageningen B-Screw Series” [7], but 

the trailing edge thickness and leading edge thickness for each blade section were found from 

Carlton’s “Marine Propellers and Propulsion” as seen below in Figure 7 [15]. 
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Figure 7: Edge thickness ratios for conventional, low-skew propellers [15]. 

With the coordinate point series for each radial cross section of the blade having been 

defined, the integrations and calculations of the centers of gravity could begin. The first set of 

integrations integrated over the coordinate points to find the area and center of gravity of each 

cross-sectional slice. This was done using equations for the integration of a closed loop. However, 

due to the small thickness at the trailing edge, the first and last point of each array did not 

completely close, and each section is not truly a closed loop. But the offset between these points 

is minimal compared to the overall propeller, the error was determined to be insignificant. 

𝐴 =
1

2
∑ [(𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖 + 𝑥𝑖+1)]𝑛

𝑖=1      (Eq. 16) 

𝑀𝑥 = −
1

6
∑ [(𝑥𝑖+1 − 𝑥𝑖)(𝑦𝑖

2 + 𝑦𝑖𝑦𝑖+1 + 𝑦𝑖+1
2)]𝑛

𝑖=1    (Eq. 17) 

𝑀𝑌 =
1

6
∑ [(𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖

2 + 𝑥𝑖𝑥𝑖+1
𝑛
𝑖=1 + 𝑥𝑖+1

2)]   (Eq. 18) 

𝐶𝐺𝑋 =
𝑀𝑌

𝐴
        (Eq. 19) 

𝐶𝐺𝑌 =
𝑀𝑋

𝐴
        (Eq. 20) 
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After integrating to find the area and the area moments, the centers of gravity in both the x and y-

directions were calculated using Equations 19 and 20. 

 The overall center of gravity with respect to the x, y, and r dimensions was found by 

integrating all the cross-sections vertically with respect to r. Before doing this, the radial slice 

centers of gravity had to be adjusted with respect to the generator line. This is because propeller 

surfaces are curved, so the individual radial slices have a constantly changing pitch angle making 

the centers of gravity have additional offsets from each other in addition to the offsets caused by 

the changing cross-sectional areas. 

 

Figure 7: Hydrofoil cross-section located on a propeller blade [16]. 
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After this correction was performed, the volumes were calculated using trapezoidal rule and the 

centers of gravity were found analogously to the calculation performed for the cross-sectional 

areas. 

𝑉 =
1

2
∑ [(𝐴𝑖+1 + 𝐴𝑖)(𝑟𝑖 − 𝑟𝑖+1)]𝑛

𝑖=1      (Eq. 21) 

𝐶𝐺𝑟 =
𝑀𝑉𝑟

𝑉
        (Eq. 22) 

With the centers of gravity, the equations in Figure 4 for the blade bending moment and blade 

stress calculations could be completed (Appendix C). However, two inputs required for the 

calculation of the bending moment equations, skewback arm and rake arm, had to be estimated. 

As of right now, no good method to calculate the rake and skewback arm of the propeller without 

a fully defined model. This may have contributed towards the obsolescence of the method 

presented in Marine Engineering Vol. 1 as finite element analysis requires a full propeller model 

[14]. However, finite element analysis would produce more accurate results with the same set of 

input data. 

The final step of the propeller design process was to compare the results from the stress calculation 

and to the requirements set by IACS [1]. The result of the IACS requirements was the maximum 

allowable propeller stress and a set of minimum blade edge thicknesses. Both requirements ensure 

that the propeller can repeatedly withstand the forces imposed upon it as the vessel is icebreaking 

as well as any occasional ice collisions into the propeller itself. The material used for the 

calculations, 316/316L stainless steel, was chosen according to the ABS Guidance Notes section 

on material requirements for ice-class propellers [2]. The allowable stress for the propellers was 

calculated as follows: 

𝜎𝑟𝑒𝑓 = {
0.7𝜎𝑢

0.6𝜎𝑦 + 0.4𝜎𝑢
 whichever is less    (Eq. 23) 
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𝜎𝑎𝑙𝑙 =
𝜎𝑟𝑒𝑓

𝑆
 , S=1.5       (Eq. 24) 

where 𝜎𝑢 is the ultimate strength of 316/316L stainless steel and 𝜎𝑦 is the yield strength. S is a 

safety factor to ensure that the calculated stress does not come close to reaching the limit strengths 

of the material. The stress values and comparison are presented in Table 3 below. 

Table 3: Propeller steel properties, calculated stress, and allowable stress. 

316/316 stainless steel ultimate strength [17] 627 MPa 

316/316 stainless steel yield strength [17] 290 MPa 

Calculated maximum stress 60.328 MPa 

Allowable stress 283.200 MPa 

 

Finally, the minimum blade edge thicknesses were calculated along the radius of the blade. The 

edge thickness calculation has three components: leading edge thickness, trailing edge thickness, 

and tip thickness (which is the thickness for any edge above a radius ratio of 0.975). Figure 8 

presents the minimum thickness distribution along the radius for each edge. 
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Figure 8: Minimum required blade edge thickness distribution. 

The thickness calculation is dependent on the chord length at each radial section and the 

distribution reflects that. However, this type of distribution is impractical to implement, as a 

fluctuating thickness distribution would only make some areas of the blade edge more prone to 

failure as additional stresses are imposed on them. Figure 8 seems to suggest that near the tip of 

the blade, the edge should suddenly increase after a steady decrease of both the leading and trailing 

edge minimums. However, having a thick tip at the end of a thinner blade would only make that 

tip prone to snapping off due to torque or ice impact. Therefore, Figure 8 does not represent what 

a real thickness distribution on a propeller would look like. More preferably, the blade edge would 

have a near uniform thickness for the midsection, decreasing thickness at the tip where the blade 

section itself becomes as thin as the edge itself, and increasing thickness at the root to provide the 

propeller with more strength at the base. Table 4 below shows the maximum thickness value 
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calculated from each category to provide a more realistic picture of what the propeller edges are 

likely to look like. 

Table 4: Maximum minimum blade edge thicknesses. 

Trailing edge thickness (tte) 0.7528 mm 

Leading edge thickness (tle) 1.0539 mm 

Tip thickness (ttip) 0.7518 mm 

 

 Modeling the propeller to meet the minimum blade edge thickness requirements as well as 

the principal characteristics developed using the optimization algorithm, the blades of the propeller 

can be visualized. The propeller seen in Figure 8 is for visualization purposes only and does not 

represent a realistically constructed propeller, since the hub diameter used in this model is far too 

small for a controllable-pitch propeller. This model was created using the free browser tool “B-

Series Propeller Generator” by Friendship Services AG which is still in its beta phase of 

development and does not yet allow for precise hub design [18]. 

 

Figure 8: Propeller model for blade visualization from B-Series Propeller Generator [18]. 
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5. Conclusion 

 Combining the results of the resistance and propulsion analysis, propeller optimization 

algorithm, and IACS structural requirements, the code developed for the purpose of designing ice-

class Wageningen B-Series propellers did find success creating propellers for the MV Yahtse. The 

propeller optimization criteria were able to converge to a solution for optimal propeller 

characteristics and the IACS requirements validated the propeller for ice-breaking applications. 

However, these scripts have only been proven to work for the MV Yahtse and are only applicable 

for a preliminary design. Due to the lack of some information and the inability to choose more 

accurate methods for the icebreaking resistance estimate and the stress calculation, the code has 

room for improvements, and under those new conditions, the current propeller design may fail. 

Additionally, it has not been investigated how suitable Holtrop and Mennen’s method is for this 

type of vessel, only that it produces the most conservative result from a small selection of 

applicable methods. Holtrop and Mennen’s method was developed using regression analyses with 

data from existing ships, but since the MV Yahtse attempts to combine aspects of typically 

disparate types of ships (icebreaking bow with a wide and shallow RoRo midbody), Holtrop and 

Mennen’s method has a significant chance for inaccuracy. Ideally, model tests would be used for 

a vessel like the MV Yahtse; however, as stated above that is not feasible for early-stage design. 

There is also a similar issue in the decision to use Wageningen B-Series propellers for this vessel. 

Wageningen B-Series propellers were designed as fixed-pitch propellers and can not operate 

optimally with the area ratio restriction required for fully reversible controllable-pitch propellers. 

For iterations of this code intended to complete post-preliminary design of ice-class controllable-

pitch propellers, the following improvements should be considered: 
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1. A model test (for post-preliminary work) or CFD analysis (future preliminary work) should 

be completed to obtain the most accurate resistance and propulsion data possible for the 

propeller optimization. 

2. If the model test or CFD analysis is completed without ice conditions, calculate and 

compare several icebreaking resistance estimate methods and choose the most applicable 

and conservative among them. 

3. Alternative systematic propeller series should be investigated. For controllable-pitch 

propellers, the recently developed Wageningen C systematic series for open, CPPs is likely 

most suitable [19]. 

4. More accurate stress calculations should be performed for the completion of the IACS ice-

class requirements calculations. This should be done preferably with finite element 

analysis; however, other preliminary methods should be researched. 
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Appendix A: R&P Code – NAME3150RPHoltrop.py 

# NAME 3150 RP Analysis Holtrop 

# Date Last Modified: 04/28/2021 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import fsolve,minimize 

 

from WBPolynomials import K_Tfunc,K_Qfunc,eta_Ofunc 

from WBPolynomials import findJTS2,openwaterchart 

from WBOpt import optimumprop 

 

## Steps for Holtrop and Mennen's Method: 

## 1. Input Data (check by using paper's provided example 

##   to see if calculations and answers are correct) 

## 2. Derived Data 

## 3. Resistance Estimate 

## 4. Powering Estimate + Propeller Optimization 

## 5. Save Data to a File 

## 6. Generate Plots 

## 

===================================================================== 

 

## 1. Input Data 

 

g=9.807 

rho=1027.8336 #kg/m^3; density at 4ºC 

nu=1.6262e-6 #m^2/s; viscosity at 4ºC 

 

L_pp=97.319 #m 

L_fore=4.39 #m 

L_aft=0.25 #m 

B=21.616   #m 

T=4.72  #m 

 

T_F=T 

T_A=T 

L_wl=L_pp+L_aft 

 



 32 

print('L_wl = {:6.4f} m'.format(L_wl)) 

 

# lcb is estimated until known 

#Fr_d=15.0*1852./3600./np.sqrt(g*L_wl) 

#lcbp=-(0.44*Fr_d -0.094)*100. #lcb percentage 

#print('lcbp = {:6.4f} '.format(lcbp)) 

 

V=7413.03895 #m_3 

 

# S is estimated until a hydrostatic analysis is completed, need C_M 

S=1931.231 #m^2 

#A_M=341.803 #m^2 

# no A_BT for senior design project 

A_BT=0. #m^2 

A_T=0. #m^2 

A_V=108.7 #m^2 

 

# wetted surface of each appendage in this order: 

# rudder behind stern, twin screw rudder, shaft brackets, skeg, 

# strut bossing, hull bossing, exposed shafts (10º), bilge keels 

S_APPi=np.array([16.72,16.72,11.89,87.33,6.69,9.48,14.86,196.03]) #m^2 

 

h_B=0. #m 

 

# rudder behind stern, twin screw rudder, shaft brackets, skeg, 

# strut bossing, hull bossing, exposed shafts (10º), bilge keels 

k_2i=np.array([0.5,1.5,3.0,1.0,3.0,1.0,1.0,0.4]) 

C_B=0.7459 

C_M=0.9313 

C_P=0.8009 

C_WP=0.9181 #if using formula, need C_P 

C_stern=10. 

k_s=150.*10**-6. #from ITTC procedures since no test data 

 

 

# required propeller input data 

Z=5. 

D=3.048 #m 

 

v_kn=np.linspace(10.0,19.0,num=19) #kn 
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#number within v_kn range that the service speed is 

#starts counting at 0 (i.e. 0=10, 1=10.5, etc.) 

ssid=10 

 

 

# air properties 

rho_A=1.225 

C_DA=0.8 

 

##----------------------------------------------------------------------------- 

## 2. Derived Data 

 

#lcb=L_aft -lcbp/100.*L_pp +L_pp/2. -L_wl/2. #with respect to aft 

lcb=50.32 #m 

LCB=(lcb-L_wl/2.)/L_wl*100. #must be a percentage 

print('LCB = {:6.4f} % L_wl'.format(LCB)) 

 

v_s=v_kn*1852./3600. #m/s 

v_ss=v_s[ssid] #m/s 

print('service speed = {:6.4f} m/s'.format(v_ss)) 

 

Fr=v_s/np.sqrt(g*L_wl) 

Re=v_s*L_wl/nu 

 

C_Bwl=C_B*L_pp/L_wl #conversion of C_B based on L_wl 

print('C_Bwl = {:6.4f} '.format(C_Bwl)) 

 

C_WPwl=C_WP 

#C_WPwl=0.763*(C_Pwl+0.34) 

print('C_WPwl = {:6.4f} '.format(C_WPwl)) 

 

#C_P=V/A_M/L_pp 

C_Pwl=C_P*L_pp/L_wl 

print('C_Pwl = {:6.4f} '.format(C_Pwl)) 

 

# once A_M is known, switch 

#C_Mwl=A_M/B/T 

#C_Mwl=1./(1.+(1.-C_Bwl)**3.5) 

C_Mwl=C_M 

print('C_Mwl = {:6.4f} '.format(C_Mwl)) 
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#waterline entrance angle 

L_R=L_wl*(1.-C_Pwl+(0.06*C_Pwl*LCB)/(4.*C_Pwl -1.)) 

 

print('L_R = {:6.4f} m'.format(L_R)) 

 

a_1=(L_wl/B)**0.80856 

a_2=(1.-C_WPwl)**0.30484 

a_3=(1.-C_Pwl -0.0225*LCB)**0.6367 

a_4=(L_R/B)**0.34574 

a_5=((100.*V)/L_wl**3.)**0.16302 

 

a=-(a_1*a_2*a_3*a_4*a_5) 

 

print('a = {:6.4f} '.format(a)) 

 

i_E=1.+89.*np.exp(a) 

#i_E=55.4 #deg. 

 

print('i_E = {:6.4f} degrees'.format(i_E)) 

 

##----------------------------------------------------------------------------- 

## 3. Resistance Estimate 

 

C_F=0.075/(np.log10(Re)-2.)**2 

 

R_F=0.5*rho*(v_s**2)*S*C_F  

 

c_14=1.+0.011*C_stern 

print('c_14 = {:6.4f} '.format(c_14)) 

 

 

k_a=(B/L_wl)**1.06806 

k_b=(T/L_wl)**0.46106 

k_c=(L_wl/L_R)**0.121563 

k_d=((L_wl**3)/V)**0.36486 

k_e=(1.-C_Pwl)**-0.604247 

 

k=-0.07+ 0.487118*c_14*(k_a*k_b*k_c*k_d*k_e) 
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print('k = {:6.4f} '.format(k)) 

 

for i in range(len(k_2i)): 

    print('k_2i = {:6.4f} '.format(k_2i[i])) 

for i in range(len(S_APPi)): 

    print('S_APPi = {:6.4f} '.format(S_APPi[i])) 

     

S_APP=np.sum(S_APPi) 

k_app=np.sum((1.+k_2i)*S_APPi)/np.sum(S_APPi) 

 

print('S_APP = {:6.4f} '.format(S_APP)) 

print('k_app = {:6.4f} '.format(k_app)) 

 

 

#tunnel thrusters: 

d_TH=1.54 #m 

n_TH=2. 

C_DTH=0.003+ 0.003*(10*d_TH/T -1.) 

R_TH=rho*(v_s**2)*np.pi*(d_TH**2)*C_DTH 

 

R_APP=0.5*rho*(v_s**2)*k_app*C_F*S_APP +n_TH*R_TH 

 

 

#wave resistance coefficients/calculation: 

if (B/L_wl) <= 0.11: 

    c_7=0.229577*(B/L_wl)**(1/3) 

elif (B/L_wl) <= 0.25: 

    c_7=B/L_wl 

else: 

    c_7=0.5- 0.0625*(L_wl/B) 

print('c_7 = {:6.6f} '.format(c_7)) 

     

c_1=2223105*(c_7**3.78613)*((T/B)**1.07961)*(90.-i_E)**-1.37565 

print('c_1 = {:6.6f} '.format(c_1)) 

     

c_3a=B*T*(0.31*np.sqrt(A_BT)+T_F-h_B) 

print('c_3a = {:6.6f} '.format(c_3a)) 

     

c_3=0.56*(A_BT**1.5)/c_3a 

print('c_3 = {:6.6f} '.format(c_3)) 
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c_2=np.exp(-1.89*np.sqrt(c_3)) 

print('c_2 = {:6.6f} '.format(c_2)) 

     

c_5=1.-0.8*A_T/B/T/C_Mwl 

print('c_5 = {:6.6f} '.format(c_5)) 

   

if (L_wl**3)/V <= 512.: 

    c_15=-1.69385 

elif (L_wl**3)/V <=1726.91: 

    c_15a=L_wl/(V**(1/3))-8. 

    c_15=-1.69385+c_15a/2.36 

else: 

    c_15=0. 

print('c_15 = {:6.6f} '.format(c_15)) 

     

if C_Pwl <=0.8: 

    c_16=8.07981*C_Pwl- 13.8673*(C_Pwl**2)+ 6.984388*(C_Pwl**3) 

else: 

    c_16=1.73014- 0.7067*C_Pwl 

print('c_16 = {:6.6f} '.format(c_16)) 

   

d=-0.9 

     

if (L_wl/B) <= 12.: 

    lamb=1.446*C_Pwl -0.03*L_wl/B 

else: 

    lamb=1.446*C_Pwl -0.36 

print('lambda = {:6.6f} '.format(lamb)) 

 

m_1a=0.0140407*L_wl/T 

m_1b=1.75254*(V**(1/3))/L_wl 

m_1c=4.79323*B/L_wl 

     

m_1=m_1a-m_1b-m_1c-c_16 

print('m_1 = {:6.6f} '.format(m_1)) 

     

m_4=0.4*c_15*np.exp(-0.034*(Fr**-3.29)) 

for i in range(len(v_s)): 

    print('m_4 = {:6.6f} '.format(m_4[i])) 
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r_1=m_1*(Fr**d)+m_4*np.cos(lamb*Fr**-2) 

     

R_Wa=c_1*c_2*c_5*rho*g*V*np.exp(r_1) 

 

     

c_17a=C_Mwl**-1.3346 

c_17b=(V/(L_wl**3))**2.00977 

c_17c=(L_wl/B -2.)**1.40692 

     

c_17=6919.3*c_17a*c_17b*c_17c 

print('c_17 = {:6.6f} '.format(c_17)) 

     

m_3a=(B/L_wl)**0.326869 

m_3b=(T/B)**0.605375 

 

m_3=-7.2035*m_3a*m_3b 

print('m_3 = {:6.6f} '.format(m_3)) 

 

r_2=m_3*(Fr**d)+m_4*np.cos(lamb*Fr**-2) 

     

R_Wb=c_17*c_2*c_5*rho*g*V*np.exp(r_2) 

 

 

m_4a=0.4*c_15*np.e**(-0.034*(0.4**-3.29)) #interpolation of R_Wa 

 

r_1a=m_1*(0.4**d)+m_4a*np.cos(lamb*0.4**-2) 

     

R_Waa=c_1*c_2*c_5*rho*g*V*np.exp(r_1a) 

 

m_4b=0.4*c_15*np.e**(-0.034*(0.55**-3.29)) #interpolation of R_Wb 

 

r_2b=m_3*(0.55**d)+m_4b*np.cos(lamb*0.55**-2) 

     

R_Wbb=c_17*c_2*c_5*rho*g*V*np.exp(r_2b) 

 

 

R_W=np.zeros((len(Fr)),float) 

for i in range(len(Fr)): 

    if Fr[i] <= 0.4: 



 38 

        R_W[i]=R_Wa[i] 

     

    elif Fr[i] > 0.55: 

        R_W[i]=R_Wb[i] 

     

    else: 

        R_W[i]=R_Waa+(20.*Fr[i]- 8.)/3.*(R_Wbb- R_Waa) 

 

 

#bulbous bow resistance: 

#h_f=C_Pwl*C_Mwl*B*T/L_wl*(136.- 316.3*Fr)*(Fr**3) 

#h_F=np.where(-0.01*L_wl <= h_f,h_f,-0.01*L_wl) 

#h_w=i_E*(v_s**2)/400./g 

#h_W=np.where(-0.01*L_wl <= h_w,h_w,-0.01*L_wl)  

#r_i=g*(T_F-h_B- 0.25*np.sqrt(A_BT)+h_F+h_W) 

#Fr_i=v_s/np.sqrt(r_i) 

#P_B=0.56*np.sqrt(A_BT)/(T_F- 1.5*h_B+h_F) 

#R_B=0.11*rho*g*(np.sqrt(A_BT)**3)*(Fr_i**3)/(1+Fr_i**2)*np.exp(-3.*(P_B**-2)) 

 

 

#transom resistance: 

r_t=np.sqrt(2.*g*A_T/(B+B*C_WPwl)) 

 

if A_T > 0.: 

    Fr_T=v_s/r_t    

else: 

    Fr_T=np.zeros((len(Fr)),float) 

 

 

c_6=np.where(Fr_T< 5.,0.2*(1- 0.2*Fr_T),0.) 

 

for i in range(len(v_s)): 

    print('c_6 = {:6.6f}'.format(c_6[i])) 

 

R_TR=0.5*rho*(v_s**2)*A_T*c_6 

 

 

#correlation allowance resistance: 

if T_F/L_wl <= 0.04: 

    c_4=T_F/L_wl 



 39 

 

else: 

    c_4=0.04 

print('c_4 = {:6.6f}'.format(c_4)) 

 

C_Aa=np.sqrt(L_wl/7.5)*(C_Bwl**4)*c_2*(0.04-c_4) 

 

C_A=0.00546*((L_wl+ 100.)**-0.16)-0.002+ 0.003*C_Aa 

print('C_A*1000 = {:6.4f}'.format(C_A*1000.)) 

 

 

if k_s > 150.*10.**-6: 

    deltaC_A=(0.105*(k_s**(1./3.))-0.005579)/L_wl**(1./3.) 

 

else: 

    deltaC_A=0. 

 

print('k_s = {:6.6f}'.format(k_s)) 

print('deltaC_A = {:6.6f}'.format(deltaC_A)) 

 

R_A=0.5*rho*(v_s**2)*(C_A+deltaC_A)*(S+np.sum(S_APPi)) 

 

 

#air resistance 

 

R_AA=0.5*rho_A*(v_s**2)*C_DA*A_V 

 

# icebreaking resistance 

# Jeong formulas (2010) 

 

c_B=0.5 

c_C=1.11 

c_BR=2.73 

 

h_i=1. #m; ice thickness 

T_i=-2. #ºC; ice temperature 

# Arnol'd - Aliab'ev ice flexural stength formula 

sigma_f=4.7- 0.96*T_i -0.31*T_i**2 #kg/cm^2; ice flexural strength 

sigma_f=sigma_f*100.**2 #kg/m^2 

rho_i=918.9 #kg/m^3; density of ice at -10ºC 
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rho_diff=rho-rho_i #kg/m^3 

 

F_h=v_s/np.sqrt(g*h_i) 

S_N=v_s/np.sqrt(sigma_f*h_i/rho_i/B) 

 

ai=c_B*rho_diff*g*h_i*B*T 

bi=c_C*(F_h**-1.157)*rho_i*B*h_i*v_s**2 

ci=c_BR*(S_N**-1.54)*rho_i*B*h_i*v_s**2 

 

R_I=13.14*v_s**2 +ai +bi +ci 

 

 

#total resistance 

R_T=(1.+k)*R_F+R_APP+R_A+R_W+R_TR+R_AA #+R_I #+R_B 

 

""" 

NOTE: Icebreaking resistance is only being used to calculate the 

extreme operating condition of propeller operation. 

The vessel and propeller are not being designed for continuous ice- 

breaking. 

""" 

 

     

C_W=R_W/0.5/rho/S/(v_s**2) 

C_T=R_T/0.5/rho/S/(v_s**2) 

 

##----------------------------------------------------------------------------- 

## 4. Powering Estimate 

 

#viscous resistance coefficient 

C_Va=(1.+k)*R_F+R_APP+R_A 

C_Vb=0.5*rho*(v_s**2)*(S+np.sum(S_APPi)) 

 

C_V=C_Va/C_Vb 

 

#wake fraction coefficients 

if B/T_A <= 5.: 

    c_8=S/L_wl/D*B/T_A 

else: 

    c_8=S*(7.*B/T_A- 25.)/L_wl/D/(B/T_A- 3.) 
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print('c_8 = {:6.6f} '.format(c_8)) 

 

if c_8 <= 28.: 

    c_9=c_8 

else: 

    c_9=32.- 16./(c_8- 24.) 

 

print('c_9 = {:6.6f} '.format(c_9)) 

 

if T_A/D <= 2.: 

    c_11=T_A/D 

else: 

    c_11=0.0833333*((T_A/D)**3)+ 1.33333 

 

print('c_11 = {:6.6f} '.format(c_11)) 

 

if C_Pwl <= 0.7: 

    c_19=0.12997/(0.95 -C_Bwl)- 0.11056/(0.95 -C_Pwl) 

else: 

    c_19=0.18567/(1.3571 -C_Mwl)-0.71276 +0.38648*C_Pwl 

 

print('c_19 = {:6.6f} '.format(c_19)) 

 

c_20=1. +0.015*C_stern 

 

print('c_20 = {:6.6f} '.format(c_20)) 

 

C_P1=1.45*C_Pwl -0.315 -0.0225*LCB 

 

print('C_P1 = {:6.6f} '.format(C_P1)) 

 

 

#full scale wake fraction (single screw) 

#w_sa=c_9*c_20*C_V*L_wl/T_A*(0.050776+ 0.93405*c_11*C_V/(1.-C_P1)) 

#w_sb=0.27915*c_20*np.sqrt(B/L_wl/(1.-C_P1))+c_19*c_20 

#w_s=w_sa+w_sb 

 

#full scale wake fraction (twin screw) 

w_s=0.3095*C_Bwl +10.*C_V*C_Bwl -0.23*D/np.sqrt(B*T) 
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for i in range(len(v_s)): 

    print('w_s = {:6.4f} '.format(w_s[i])) 

 

#thrust deduction fraction (single screw) 

#t_a=0.25014*((B/L_wl)**0.28956)*((np.sqrt(B*T)/D)**0.2624) 

#t_b=(1.-C_Pwl +0.0225*LCB)**0.01762 

#t=t_a/t_b +0.0015*C_stern 

     

#thrust deduction fraction (twin screw) 

t=0.325*C_Bwl -0.1885*D/np.sqrt(B*T) 

 

print('t = {:6.6f} '.format(t)) 

 

 

v_as=(1.-w_s)*v_s 

 

for i in range(len(v_s)): 

    print('v_a = {:6.4f} m/s'.format(v_as[i])) 

 

T_req=R_T/(1.-t) 

 

for i in range(len(v_s)): 

    print('T_req = {:6.4f} kN'.format(T_req[i]/1000.)) 

 

C_S=S/2./(D**2)*C_T/(1.-t)/(1.-w_s)**2 

 

     

######################################################################## 

## Propeller Selection Program 

# more realistic estimation of e 

e=T- 0.5*D- 0.03*D 

 

p_A=101325. #Pa 

p_v=1671.  #Pa 

p_0=p_A+rho*g*e 

 

# find design constant at design speed (service speed) 

v_aserv=v_as[ssid] 

T_reqs=T_req[ssid]/2. # half the thrust is taken since 2 props 
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dc_4=T_reqs/(rho*(D**2)*(v_aserv**2)) 

 

# additional arguments for objective functions 

propargs=(dc_4,Z,D,T_reqs,v_aserv,rho,e,'CPP') 

 

#initial values of free variables 

PD0=1.0 #initial guess at pitch/diameter ratio 

 

# Keller's formula 

K=0.2 

ar0=(1.3+ 0.3*Z)*T_reqs/(p_0-p_v)/(D**2) +K 

x0=np.array([PD0,ar0]) 

 

#use optimization algorithm 

res=minimize(optimumprop,x0,args=propargs) 

 

#unpack results 

PD=res.x[0] #optimum pitch diameter ratio 

ar=res.x[1] #optimum expanded area ratio 

 

 

print('') 

print('') 

print('Optimum Propeller Data:')  

print(' design constant     dc_4  = {:8.4f} '.format(dc_4)) 

print(' number of blades    Z     = {:8.4f} '.format(Z)) 

print(' propeller diameter  D     = {:8.4f} m'.format(D)) 

print(' pitch-dia. ratio    PD    = {:8.4f} '.format(PD)) 

print(' area ratio          ar    = {:8.4f} '.format(ar)) 

 

print('') 

print('For total thrust reversal on a CPP propeller, the expanded') 

print('area ratio must have a maximum of 0.75.') 

print('') 

 

#relative rotative efficiency (single screw) 

#eta_R=0.9922 -0.05908*ar +0.07424*(C_Pwl -0.0225*LCB) 

 

#relative rotative efficiency (twin screw) 

eta_R=0.9737 +0.111*(C_Pwl -0.0225*LCB) -0.06325*PD 
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print(' r.r. efficiency     eta_R = {:6.6f} '.format(eta_R)) 

 

#self-propulsion points 

 

J_TS=np.zeros((len(C_S)),float) 

K_TS=np.zeros((len(C_S)),float) 

K_QTS=np.zeros((len(C_S)),float) 

eta_OS=np.zeros((len(C_S)),float) 

 

for j in range(len(C_S)): 

 

    J_TS[j]=findJTS2(C_S[j],PD,ar,Z) 

 

    K_TS[j]=K_Tfunc(J_TS[j],PD,ar,Z) 

    K_QTS[j]=K_Qfunc(J_TS[j],PD,ar,Z) 

    eta_OS[j]=eta_Ofunc(J_TS[j],PD,ar,Z) 

 

     

    #print('J_TS = {:6.4f} '.format(J_TS[j])) 

    #print('K_TS = {:6.4f} '.format(K_TS[j])) 

    #print('10K_QTS = {:6.4f} '.format(10.*K_QTS[j])) 

    #print('eta_OS = {:6.4f} '.format(eta_OS[j])) 

     

eta_OSs=eta_OS[ssid] 

print(' opt. efficiency    eta_OS = {:8.4f} '.format(eta_OSs)) 

print('') 

 

# rate of revolution 

n=v_as/(J_TS*D) 

 

for i in range(len(v_s)): 

    print('n = {:6.4f} 1/s'.format(n[i])) 

 

K_QB=K_QTS/eta_R #behind condition K_Q 

 

# behind efficiency 

eta_B=eta_OS*eta_R 

 

# torque 
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Q=rho*(n**2)*(D**5)*K_QB 

 

# delivered power 

P_D=2.*np.pi*n*Q 

 

for i in range(len(v_s)): 

    print('P_D = {:6.4f} kW'.format(P_D[i]/1000.)) 

 

# effective power 

P_E=R_T*v_s 

 

# delivered efficiency 

eta_D=P_E/P_D 

     

# hull efficiency 

eta_H=eta_D/(eta_OS*eta_R) 

     

     

####################################################################### 

## 5. Save Data to a File 

 

# allows files of the same project to be grouped together with the  

# same base name 

base='Holtrop&MennenResistanceAnalysis'  

datafile=base+'.dat' 

 

fp=open(datafile,'w') 

 

fp.write('\n') 

fp.write('Coefficients:') 

fp.write('\n\n') 

 

fp.write('c1= {:6.6f}'.format(c_1)) 

fp.write('\n') 

fp.write('c2= {:6.6f}'.format(c_2)) 

fp.write('\n') 

fp.write('c3= {:6.6f}'.format(c_3)) 

fp.write('\n') 

fp.write('c4= {:6.6f}'.format(c_4)) 

fp.write('\n') 
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fp.write('c5= {:6.6f}'.format(c_5)) 

fp.write('\n') 

fp.write('c7= {:6.6f}'.format(c_7)) 

fp.write('\n') 

fp.write('c8= {:6.6f}'.format(c_8)) 

fp.write('\n') 

fp.write('c9= {:6.6f}'.format(c_9)) 

fp.write('\n') 

fp.write('c11= {:6.6f}'.format(c_11)) 

fp.write('\n') 

fp.write('c14= {:6.6f}'.format(c_14)) 

fp.write('\n') 

fp.write('c15= {:6.6f}'.format(c_15)) 

fp.write('\n') 

fp.write('c16= {:6.6f}'.format(c_16)) 

fp.write('\n') 

fp.write('c17= {:6.6f}'.format(c_17)) 

fp.write('\n') 

fp.write('c19= {:6.6f}'.format(c_19)) 

fp.write('\n') 

fp.write('c20= {:6.6f}'.format(c_20)) 

fp.write('\n') 

fp.write('d= {:6.6f}'.format(d)) 

fp.write('\n') 

fp.write('lambda= {:6.6f}'.format(lamb)) 

fp.write('\n') 

fp.write('m1= {:6.6f}'.format(m_1)) 

fp.write('\n') 

fp.write('m3= {:6.6f}'.format(c_1)) 

fp.write('\n') 

fp.write('C_P1= {:6.6f}'.format(C_P1)) 

fp.write('\n\n') 

 

fp.write('\n') 

fp.write('Froude Numbers and Misc. Coefficients:') 

fp.write('\n\n') 

 

fp.write('v_kn'.center(12)) 

fp.write('Fr'.center(11)) 

#fp.write('Fr_i'.center(15)) 
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fp.write('Fr_T'.center(15)) 

fp.write('c_6'.center(15)) 

fp.write('m3(Fr^d)'.center(10)) 

fp.write('m4'.center(9)) 

fp.write('m4cos(lambda/Fr^2)'.center(9)) 

#fp.write('P_B'.center(9)) 

fp.write('\n') 

 

fp.write('[kn]'.center(12)) 

fp.write('[-]'.center(17)) 

#fp.write('[-]'.center(17)) 

fp.write('[-]'.center(15)) 

fp.write('[-]'.center(15)) 

fp.write('[-]'.center(20)) 

fp.write('[-]'.center(14)) 

fp.write('[-]'.center(18)) 

#fp.write('[-]'.center(37)) 

fp.write('\n') 

 

for i in range(len(v_s)): 

    fp.write(' {:6.2f}'.format(v_kn[i])) 

    fp.write(' {:10.5f}'.format(Fr[i])) 

    #fp.write(' {:10.5f}'.format(Fr_i[i])) 

    fp.write(' {:10.5f}'.format(Fr_T[i])) 

    fp.write(' {:10.4f}'.format(c_6[i])) 

    fp.write(' {:10.5f}'.format(m_3*Fr[i]**d)) 

    fp.write(' {:10.5f}'.format(m_4[i])) 

    fp.write(' {:10.5f}'.format(m_4[i]*np.cos(lamb/Fr[i]**2))) 

    #fp.write(' {:20.5f}'.format(P_B[i])) 

    fp.write('\n') 

     

fp.write('\n\n') 

 

fp.write('\n') 

fp.write('Resistance Components and Total Resistance:') 

fp.write('\n\n') 

 

fp.write('v_kn'.center(12)) 

fp.write('Fr'.center(10)) 

fp.write('R_F'.center(18)) 
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fp.write('R_A'.center(10)) 

fp.write('R_W'.center(13)) 

#fp.write('R_B'.center(10)) 

fp.write('R_APP'.center(11)) 

fp.write('R_AA'.center(7)) 

fp.write('R_TR'.center(15)) 

fp.write('R_I'.center(12)) 

fp.write('R_T'.center(8)) 

fp.write('\n') 

 

fp.write('[kn]'.center(12)) 

fp.write('[-]'.center(15)) 

fp.write('[kN]'.center(15)) 

fp.write('[kN]'.center(15)) 

fp.write('[kN]'.center(14)) 

#fp.write('[kN]'.center(12)) 

fp.write('[kN]'.center(13)) 

fp.write('[kN]'.center(14)) 

fp.write('[kN]'.center(14)) 

fp.write('[kN]'.center(11)) 

fp.write('[kN]'.center(12)) 

fp.write('\n') 

 

for i in range(len(v_s)): 

    fp.write(' {:6.2f}'.format(v_kn[i])) 

    fp.write(' {:10.5f}'.format(Fr[i])) 

    fp.write(' {:10.3f}'.format(R_F[i]/1000)) 

    fp.write(' {:10.3f}'.format(R_A[i]/1000)) 

    fp.write(' {:10.3f}'.format(R_W[i]/1000)) 

    #fp.write(' {:10.3f}'.format(R_B[i]/1000)) 

    fp.write(' {:10.3f}'.format(R_APP[i]/1000)) 

    fp.write(' {:10.3f}'.format(R_AA[i]/1000)) 

    fp.write(' {:10.3f}'.format(R_TR[i]/1000)) 

    fp.write(' {:10.3f}'.format(R_I[i]/1000)) 

    fp.write(' {:10.3f}'.format(R_T[i]/1000)) 

    fp.write('\n') 

 

fp.write('\n\n') 

 

fp.write('\n') 
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fp.write('Self-Propulsion Point:') 

fp.write('\n\n') 

 

fp.write('v_kn'.center(12)) 

fp.write('Fr'.center(10)) 

fp.write('w_s'.center(17)) 

fp.write('v_a'.center(13)) 

fp.write('T_req'.center(12)) 

fp.write('C_S'.center(13)) 

fp.write('J_TS'.center(12)) 

fp.write('K_TS'.center(12)) 

fp.write('10K_QTS'.center(10)) 

fp.write('\n') 

 

fp.write('[kn]'.center(12)) 

fp.write('[-]'.center(15)) 

fp.write('[-]'.center(17)) 

fp.write('[m/s]'.center(15)) 

fp.write('[kN]'.center(12)) 

fp.write('[-]'.center(19)) 

fp.write('[-]'.center(15)) 

fp.write('[-]'.center(16)) 

fp.write('[-]'.center(16)) 

fp.write('\n') 

 

for i in range(len(v_s)): 

    fp.write(' {:6.2f}'.format(v_kn[i])) 

    fp.write(' {:10.5f}'.format(Fr[i])) 

    fp.write(' {:10.4f}'.format(w_s[i])) 

    fp.write(' {:10.4f}'.format(v_as[i])) 

    fp.write(' {:10.4f}'.format(T_req[i]/1000.)) 

    fp.write(' {:10.5f}'.format(C_S[i])) 

    fp.write(' {:10.4f}'.format(J_TS[i])) 

    fp.write(' {:10.4f}'.format(K_TS[i])) 

    fp.write(' {:10.4f}'.format(10.*K_QTS[i])) 

    fp.write('\n') 

 

fp.write('\n\n') 

 

fp.write('\n') 
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fp.write('Efficiency and Powering:') 

fp.write('\n\n') 

 

fp.write('v_kn'.center(12)) 

fp.write('Fr'.center(10)) 

fp.write('eta_H'.center(17)) 

fp.write('eta_O'.center(5)) 

fp.write('eta_D'.center(18)) 

fp.write('n'.center(10)) 

fp.write('n'.center(17)) 

fp.write('P_D'.center(12)) 

fp.write('\n') 

 

fp.write('[kn]'.center(12)) 

fp.write('[-]'.center(17)) 

fp.write('[-]'.center(15)) 

fp.write('[-]'.center(16)) 

fp.write('[-]'.center(15)) 

fp.write('[1/s]'.center(17)) 

fp.write('[rpm]'.center(10)) 

fp.write('[kW]'.center(12)) 

fp.write('\n') 

 

for i in range(len(v_s)): 

    fp.write(' {:6.2f}'.format(v_kn[i])) 

    fp.write(' {:10.5f}'.format(Fr[i])) 

    fp.write(' {:10.4f}'.format(eta_H[i])) 

    fp.write(' {:10.4f}'.format(eta_OS[i])) 

    fp.write(' {:10.4f}'.format(eta_D[i])) 

    fp.write(' {:10.3f}'.format(n[i])) 

    fp.write(' {:10.3f}'.format(60*n[i])) 

    fp.write(' {:10.2f}'.format(P_D[i]/1000.)) 

    fp.write('\n') 

 

fp.close() 

 

##----------------------------------------------------------------------------- 

## 6. Generate Plots 

 

fig=plt.figure(figsize=(15,10)) 
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plt.plot(Fr,C_T*1000,lw=2, label=r"Total Resistance Coefficient $[C_T]$") 

plt.plot(Fr,C_F*1000,lw=2, label=r"Coefficient of Friction $[C_F]$") 

plt.plot(Fr,C_W*1000,lw=2, label=r"Wave Resistance Coefficient $[C_W]$") 

plt.title("Resistance Coefficients vs. Froude Number") 

plt.xlabel("Froude Number, $Fr$ $[-]$") 

plt.ylabel("Friction Coefficient Magnitude, $[-]$") 

plt.legend() 

plt.grid() 

plt.show() 

 

fig=plt.figure(figsize=(15,10)) 

plt.plot(Fr,R_T/1000,lw=2, label=r"Total Resistance $[R_T]$") 

plt.plot(Fr,R_F/1000,lw=2, label=r"Frictional Resistance $[R_F]$") 

plt.plot(Fr,R_W/1000,lw=2, label=r"Wave Resistance $[R_W]$") 

plt.plot(Fr,R_A/1000,lw=2, label=r"Correlation Resistance $[R_A]$") 

plt.plot(Fr,R_AA/1000,lw=2, label=r"Air Resistance $[R_{AA}]$") 

plt.plot(Fr,R_APP/1000,lw=2, label=r"Appendage Resistance $[R_{APP}]$") 

#plt.plot(Fr,R_B/1000,lw=2, label=r"Bulbous Bow Resistance $[R_B]$") 

plt.plot(Fr,R_TR/1000,lw=2, label=r"Transom Resistance $[R_{TR}]$") 

plt.plot(Fr,R_I/1000,lw=2, label=r"Icebreaking $[R_{I}]$") 

plt.title("Resistance Components and Total Resistance") 

plt.xlabel("Froude Number, $Fr$ $[-]$") 

plt.ylabel("Resistance Magnitude, $[kN]$") 

plt.legend() 

plt.grid() 

plt.show() 

 

 

plt.figure(figsize=(15,10)) 

J=np.linspace(0.,0.83,num=100) 

openwaterchart(J,PD,ar,Z) 

 

 

for j in range(len(C_S)): 

    plt.plot(J_TS[j],K_TS[j],'o',color='r',fillstyle='none') 

    plt.plot(J_TS[j],10.*K_QTS[j],'o',color='g',fillstyle='none') 

    plt.plot(J_TS[j],eta_OS[j],'o',color='b',fillstyle='none') 

    plt.plot(J,C_S[j]*J**2,'+-') 

     

plt.xlabel(r'Advance Ratio, $J$ $[-]$') 
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plt.ylabel(r'$K_T$, $10K_Q$, $eta_O$, and $C_SJ^2$ $[-]$') 

plt.title("Open Water Chart and Self-Propulsion Points") 

plt.legend() 

plt.grid() 

plt.show() 

 

 

plt.figure(figsize=(15,10)) 

plt.plot(v_kn,n,lw=2,label=r"Rate of Revolution, $n$") 

plt.title("Rate of Revolution vs. Speed") 

plt.xlabel(r'Ship Speed, $v_{kn}$ $[kn]$') 

plt.ylabel(r'Rate of Revolution, $n$ $[1/s]$') 

plt.grid() 

plt.show() 

 

 

plt.figure(figsize=(15,10)) 

plt.plot(v_kn,P_D/1000,lw=2,label=r"Delivered Power, $P_D$") 

plt.title("Delivered Power vs. Speed") 

plt.xlabel(r'Ship Speed, $v_{kn}$ $[kn]$') 

plt.ylabel(r'Delivered Power, $P_D$ $[kN]$') 

plt.grid() 

plt.show() 

 

 

plt.figure(figsize=(15,10)) 

plt.plot(n,P_D/1000,lw=2,label=r"Delivered Power, $P_D$") 

plt.title("Delivered Power vs. Rate of Revolution") 

plt.xlabel(r'Rate of Revolution, $n$ $[1/s]$') 

plt.ylabel(r'Delivered Power, $P_D$ $[kN]$') 

plt.grid() 

plt.show() 
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Appendix B: Propeller Geometry Code – WBSeriesPropGeometry.py 

# Prop Geometry for W-B Series Propellers 

# Date Last Modified: 04/26/2021 

 

#from NAME3150RPHoltrop import Z,D,ar,PD 

 

import numpy as np 

 

Z=5. 

D=3.0480 #m 

ar=0.7520 

PD=0.7568 

 

######################################################################### 

 

# maximum thickness (tmax) calculation 

rR=np.array([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70,0.80,0.85,0.90,\ 

             0.95,0.975,1.0]) 

Ar=np.array([0.0588,0.0526,0.0495,0.0464,0.0402,0.0340,0.0278,0.0216,\ 

             0.0154,0.0123,0.0092,0.0061,0.00455,0.003]) 

Br=np.array([0.00425,0.0040,0.00375,0.0035,0.0030,0.0025,0.0020,0.0015,\ 

             0.0010,0.00075,0.0005,0.00025,0.000125,0.0]) 

 

tmax=D*(Ar-Br*Z) 

 

# edge thickness approximation code provided by Dr. Birk 

 

# Typical blade edge thickness ratios edge thickness/tmax 

# from Carlton, p.46. this seems to work 

# reduced initial values for x=0.15, 200422, lb 

 

# r/R order: [0.15,0.20,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,...,1.0] 

tetfactor = np.array([0.049,0.057,0.063,0.068,0.075,0.085,0.100,0.120,\ 

                      0.152,0.192,0.245,0.245,0.245,0.245]) 

letfactor = np.array([0.115,0.120,0.1224,0.124,0.127,0.130,0.134,0.143,\ 

                      0.170,0.205,0.245,0.245,0.245,0.245]) 

 

#trailing edge thickness 

tte = tetfactor*tmax 
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#leading edge thickness 

tle = letfactor*tmax 

 

 

# chord length calculation 

Cr=np.array([1.473,1.600,1.719,1.832,2.023,2.163,2.243,2.247,2.132,\ 

             2.005,1.798,1.434,1.122,0.0]) 

 

cl=Cr*D/Z*ar 

 

# chord length for calculating tip thicknesses 

cltip=1.122*D/Z*ar 

 

# distances for adjusting xc 

# assuming linear interpolation 

brcr=np.array([0.350,0.350,0.350,0.350,0.351,0.355,0.389,0.443,0.479,\ 

               (0.479+0.5)/2.,0.500,0.250,0.125,0.0]) 

br=brcr*cl 

 

arcr=np.array([0.617,0.617,(0.617+0.613)/2.,0.613,0.601,0.586,0.561,\ 

               0.524,0.463,(0.463+0.351)/2.,0.351,(0.351/2.),\ 

               (0.351/4.),0.0]) 

ar=arcr*cl 

 

####################################################################### 

## center of gravity integration 

 

# split each array into positive and negative according to the P-values 

# shown below for each of the different y equations 

Parrayn=np.array([-1.0,-0.95,-0.90,-0.80,-0.70,-0.60,-0.50,-0.40,-0.20]) 

Parrayp=np.array([0.0,0.20,0.40,0.50,0.60,0.70,0.80,0.85,0.90,0.95,1.0]) 

 

# V1 arrays 

 

V1_15n=np.array([0.3,0.2824,0.265,0.23,0.195,0.161,0.128,0.0955,\ 

                 0.0365,0.0]) 

                 

V1_15p=np.array([0.0096,0.0384,0.0615,0.092,0.132,0.187,0.223,0.2642,\ 

                 0.315,0.386]) 
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V1_20n=np.array([0.2826,0.263,0.24,0.1967,0.157,0.1207,0.088,0.0592,\ 

                 0.0172,0.0]) 

 

V1_20p=np.array([0.0049,0.0304,0.052,0.0804,0.118,0.1685,0.2,0.2353,\ 

                 0.2821,0.356]) 

 

V1_25n=np.array([0.2598,0.2372,0.2115,0.1651,0.1246,0.0899,0.0579,\ 

                 0.035,0.0084,0.0]) 

 

V1_25p=np.array([0.0031,0.0224,0.0417,0.0669,0.1008,0.1465,0.1747,\ 

                 0.2068,0.2513,0.3256]) 

 

V1_30n=np.array([0.2306,0.204,0.179,0.1333,0.0943,0.0623,0.0376,0.0202,\ 

                 0.0033,0.0]) 

 

V1_30p=np.array([0.0027,0.0148,0.03,0.0503,0.079,0.1191,0.1445,0.176,\ 

                 0.2186,0.2923]) 

 

V1_40n=np.array([0.1467,0.12,0.0972,0.063,0.0395,0.0214,0.0116,0.0044,\ 

                 0.0,0.0]) 

 

V1_40p=np.array([0.0,0.0033,0.009,0.0189,0.0357,0.0637,0.0833,0.1088,\ 

                 0.1467,0.2181]) 

 

V1_50n=np.array([0.0522,0.042,0.033,0.019,0.01,0.004,0.0012,0.0,0.0,0.0]) 

 

V1_50p=np.array([0.0,0.0,0.0008,0.0034,0.0085,0.0211,0.0328,0.05,0.0778,\ 

                 0.1278]) 

 

V1_60n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_60p=np.array([0.0,0.0,0.0,0.0,0.0,0.0006,0.0022,0.0067,0.0169,\ 

                 0.0382]) 

 

V1_70n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_70p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_80n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 
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V1_80p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_85n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_85p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_90n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_90p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_95n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_95p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_975n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_975p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_100n=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

V1_100p=np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 

 

# V2 arrays 

 

V2_15n=np.array([0.0,0.054,0.1325,0.287,0.428,0.5585,0.677,0.7805,\ 

                 0.9360,1.0]) 

 

V2_15p=np.array([0.976,0.8825,0.8055,0.7105,0.5995,0.452,0.3665,0.26,\ 

                 0.13,0.0]) 

 

V2_20n=np.array([0.0,0.064,0.1455,0.306,0.4535,0.5842,0.6995,0.7984,\ 

                 0.9446,1.0]) 

 

V2_20p=np.array([0.975,0.8875,0.817,0.7277,0.619,0.4777,0.3905,0.284,\ 

                 0.156,0.0]) 

 

V2_25n=np.array([0.0,0.0725,0.1567,0.3228,0.474,0.605,0.7184,0.8139,\ 

                 0.9519,1.0]) 
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V2_25p=np.array([0.9751,0.8899,0.8259,0.7415,0.6359,0.4982,0.4108,\ 

                 0.3042,0.1758,0.0]) 

 

V2_30n=np.array([0.0,0.8,0.167,0.336,0.4885,0.6195,0.7335,0.8265,\ 

                 0.9583,1.0]) 

 

V2_30p=np.array([0.975,0.892,0.8315,0.752,0.6505,0.513,0.4265,0.3197,\ 

                 0.189,0.0]) 

 

V2_40n=np.array([0.0,0.0905,0.181,0.035,0.504,0.6353,0.7525,0.8415,\ 

                 0.9645,1.0]) 

 

V2_40p=np.array([0.9725,0.8933,0.8345,0.7593,0.659,0.522,0.4335,\ 

                 0.3235,0.1935,0.0]) 

 

V2_50n=np.array([0.0,0.095,0.1865,0.3569,0.514,0.6439,0.758,0.8456,\ 

                 0.9639,1.0]) 

 

V2_50p=np.array([0.971,0.888,0.8275,0.7478,0.643,0.5039,0.4135,0.3056,\ 

                 0.175,0.0]) 

 

V2_60n=np.array([0.0,0.0965,0.1885,0.3585,0.511,0.6415,0.753,0.8426,\ 

                 0.9613,1.0]) 

 

V2_60p=np.array([0.969,0.879,0.809,0.72,0.606,0.462,0.3775,0.272,\ 

                 0.1485,0.0]) 

 

V2_70n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0]) 

 

V2_70p=np.array([0.9675,0.866,0.785,0.684,0.5615,0.414,0.33,0.2337,\ 

                 0.124,0.0]) 

 

V2_80n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0]) 

 

V2_80p=np.array([0.9635,0.852,0.7635,0.6545,0.5265,0.3765,0.2925,\ 

                 0.2028,0.105,0.0]) 

 

V2_85n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0]) 

 

V2_85p=np.array([0.9615,0.845,0.755,0.6455,0.516,0.366,0.283,0.195,\ 
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                 0.1,0.0]) 

 

V2_90n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0]) 

 

V2_90p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0]) 

 

V2_95n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0]) 

 

V2_95p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0]) 

 

V2_975n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0]) 

 

V2_975p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0]) 

 

V2_100n=np.array([0.0,0.0975,0.19,0.36,0.51,0.64,0.75,0.84,0.96,1.0]) 

 

V2_100p=np.array([0.96,0.84,0.75,0.64,0.51,0.36,0.2775,0.19,0.0975,0.0]) 

 

## blade outline calculations (y_face and y_back): 

 

# x-coordinates are P-values 

# goes from -1 to 1 and then back again 

x_coor=np.concatenate((Parrayn,Parrayp)) 

x_coor=np.concatenate((x_coor,np.flip(x_coor))) 

 

# r/R=0.15 

rRid=0 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_15n=V1_15n*(a-b) 

yf_15p=V1_15p*(a-c) 

yf_15=np.concatenate((yf_15n,yf_15p)) 

 

# np.min used becuase max y_face is at a minimum offset 

yfmax=np.min(yf_15) 

 

print('') 

print('Maximum y_face and y_back values for stress calc.') 
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print('r/R=15: max. y_face     = {:8.4f} m'.format(yfmax)) 

print('r/R=15: corresponding P =   0.0 ') 

 

yb_15n=(V1_15n+V2_15n)*(a-b) + b 

yb_15p=(V1_15p+V2_15p)*(a-c) + c 

yb_15=np.concatenate((yb_15n,yb_15p)) 

 

ybmax=yb_15.max() 

 

print('r/R=15: max. y_back     = {:8.4f} m'.format(ybmax)) 

print('r/R=15: corresponding P = {:8.4f}'.format(x_coor[np.argmax(yb_15)])) 

 

y_15=np.concatenate((yf_15,np.flip(yb_15))) 

 

A_15=0.5*np.sum((y_15[1:]-y_15[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_15=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_15[:-1]**2\ 

                    +y_15[:-1]*y_15[1:]+y_15[1:]**2)) 

         

My_15=1./6.*np.sum((y_15[1:]-y_15[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_15=br[rRid]+My_15/A_15 

xc_15=ar[rRid]-xc_15 

yc_15=Mx_15/A_15 

 

# r/R=0.20 

rRid=1 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_20n=V1_20n*(a-b) 

yf_20p=V1_20p*(a-c) 

yf_20=np.concatenate((yf_20n,yf_20p)) 

 

yb_20n=(V1_20n+V2_20n)*(a-b) + b 

yb_20p=(V1_20p+V2_20p)*(a-c) + c 

yb_20=np.concatenate((yb_20n,yb_20p)) 
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y_20=np.concatenate((yf_20,np.flip(yb_20))) 

 

A_20=0.5*np.sum((y_20[1:]-y_20[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_20=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_20[:-1]**2\ 

                    +y_20[:-1]*y_20[1:]+y_20[1:]**2)) 

         

My_20=1./6.*np.sum((y_20[1:]-y_20[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_20=br[rRid]+My_20/A_20 

xc_20=ar[rRid]-xc_20 

yc_20=Mx_20/A_20 

 

# r/R=0.25 

rRid=2 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_25n=V1_25n*(a-b) 

yf_25p=V1_25p*(a-c) 

yf_25=np.concatenate((yf_25n,yf_25p)) 

 

yb_25n=(V1_25n+V2_25n)*(a-b) + b 

yb_25p=(V1_25p+V2_25p)*(a-c) + c 

yb_25=np.concatenate((yb_25n,yb_25p)) 

 

y_25=np.concatenate((yf_25,np.flip(yb_25))) 

 

A_25=0.5*np.sum((y_25[1:]-y_25[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_25=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_25[:-1]**2\ 

                    +y_25[:-1]*y_25[1:]+y_25[1:]**2)) 

         

My_25=1./6.*np.sum((y_25[1:]-y_25[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_25=br[rRid]+My_25/A_25 

xc_25=ar[rRid]-xc_25 
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yc_25=Mx_25/A_25 

 

# r/R=0.30 

rRid=3 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_30n=V1_30n*(a-b) 

yf_30p=V1_30p*(a-c) 

yf_30=np.concatenate((yf_30n,yf_30p)) 

 

yb_30n=(V1_30n+V2_30n)*(a-b) + b 

yb_30p=(V1_30p+V2_30p)*(a-c) + c 

yb_30=np.concatenate((yb_30n,yb_30p)) 

 

y_30=np.concatenate((yf_30,np.flip(yb_30))) 

 

A_30=0.5*np.sum((y_30[1:]-y_30[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_30=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_30[:-1]**2\ 

                    +y_30[:-1]*y_30[1:]+y_30[1:]**2)) 

         

My_30=1./6.*np.sum((y_30[1:]-y_30[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_30=br[rRid]+My_30/A_30 

xc_30=ar[rRid]-xc_30 

yc_30=Mx_30/A_30 

 

# r/R=0.40 

rRid=4 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_40n=V1_40n*(a-b) 

yf_40p=V1_40p*(a-c) 

yf_40=np.concatenate((yf_40n,yf_40p)) 
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yb_40n=(V1_40n+V2_40n)*(a-b) + b 

yb_40p=(V1_40p+V2_40p)*(a-c) + c 

yb_40=np.concatenate((yb_40n,yb_40p)) 

 

y_40=np.concatenate((yf_40,np.flip(yb_40))) 

 

A_40=0.5*np.sum((y_40[1:]-y_40[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_40=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_40[:-1]**2\ 

                    +y_40[:-1]*y_40[1:]+y_40[1:]**2)) 

         

My_40=1./6.*np.sum((y_40[1:]-y_40[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_40=br[rRid]+My_40/A_40 

xc_40=ar[rRid]-xc_40 

yc_40=Mx_40/A_40 

 

# r/R=0.50 

rRid=5 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_50n=V1_50n*(a-b) 

yf_50p=V1_50p*(a-c) 

yf_50=np.concatenate((yf_50n,yf_50p)) 

 

yb_50n=(V1_50n+V2_50n)*(a-b) + b 

yb_50p=(V1_50p+V2_50p)*(a-c) + c 

yb_50=np.concatenate((yb_50n,yb_50p)) 

 

y_50=np.concatenate((yf_50,np.flip(yb_50))) 

 

A_50=0.5*np.sum((y_50[1:]-y_50[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_50=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_50[:-1]**2\ 

                    +y_50[:-1]*y_50[1:]+y_50[1:]**2)) 

         

My_50=1./6.*np.sum((y_50[1:]-y_50[:-1])*(x_coor[:-1]**2\ 
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                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_50=br[rRid]+My_50/A_50 

xc_50=ar[rRid]-xc_50 

yc_50=Mx_50/A_50 

 

# r/R=0.60 

rRid=6 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_60n=V1_60n*(a-b) 

yf_60p=V1_60p*(a-c) 

yf_60=np.concatenate((yf_60n,yf_60p)) 

 

yb_60n=(V1_60n+V2_60n)*(a-b) + b 

yb_60p=(V1_60p+V2_60p)*(a-c) + c 

yb_60=np.concatenate((yb_60n,yb_60p)) 

 

y_60=np.concatenate((yf_60,np.flip(yb_60))) 

 

A_60=0.5*np.sum((y_60[1:]-y_60[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_60=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_60[:-1]**2\ 

                    +y_60[:-1]*y_60[1:]+y_60[1:]**2)) 

         

My_60=1./6.*np.sum((y_60[1:]-y_60[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_60=br[rRid]+My_60/A_60 

xc_60=ar[rRid]-xc_60 

yc_60=Mx_60/A_60 

 

# r/R=0.70 

rRid=7 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 
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yf_70n=V1_70n*(a-b) 

yf_70p=V1_70p*(a-c) 

yf_70=np.concatenate((yf_70n,yf_70p)) 

 

yb_70n=(V1_70n+V2_70n)*(a-b) + b 

yb_70p=(V1_70p+V2_70p)*(a-c) + c 

yb_70=np.concatenate((yb_70n,yb_70p)) 

 

y_70=np.concatenate((yf_70,np.flip(yb_70))) 

 

A_70=0.5*np.sum((y_70[1:]-y_70[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_70=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_70[:-1]**2\ 

                    +y_70[:-1]*y_70[1:]+y_70[1:]**2)) 

         

My_70=1./6.*np.sum((y_70[1:]-y_70[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_70=br[rRid]+My_70/A_70 

xc_70=ar[rRid]-xc_70 

yc_70=Mx_70/A_70 

 

# r/R=0.80 

rRid=8 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_80n=V1_80n*(a-b) 

yf_80p=V1_80p*(a-c) 

yf_80=np.concatenate((yf_80n,yf_80p)) 

 

yb_80n=(V1_80n+V2_80n)*(a-b) + b 

yb_80p=(V1_80p+V2_80p)*(a-c) + c 

yb_80=np.concatenate((yb_80n,yb_80p)) 

 

y_80=np.concatenate((yf_80,np.flip(yb_80))) 

 

A_80=0.5*np.sum((y_80[1:]-y_80[:-1])*(x_coor[:-1]+x_coor[1:])) 
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Mx_80=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_80[:-1]**2\ 

                    +y_80[:-1]*y_80[1:]+y_80[1:]**2)) 

         

My_80=1./6.*np.sum((y_80[1:]-y_80[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_80=br[rRid]+My_80/A_80 

xc_80=ar[rRid]-xc_80 

yc_80=Mx_80/A_80 

 

# r/R=0.85 

rRid=9 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_85n=V1_85n*(a-b) 

yf_85p=V1_85p*(a-c) 

yf_85=np.concatenate((yf_85n,yf_85p)) 

 

yb_85n=(V1_85n+V2_85n)*(a-b) + b 

yb_85p=(V1_85p+V2_85p)*(a-c) + c 

yb_85=np.concatenate((yb_85n,yb_85p)) 

 

y_85=np.concatenate((yf_85,np.flip(yb_85))) 

 

A_85=0.5*np.sum((y_85[1:]-y_85[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_85=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_85[:-1]**2\ 

                    +y_85[:-1]*y_85[1:]+y_85[1:]**2)) 

         

My_85=1./6.*np.sum((y_85[1:]-y_85[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_85=br[rRid]+My_85/A_85 

xc_85=ar[rRid]-xc_85 

yc_85=Mx_85/A_85 

 

# r/R=0.90 

rRid=10 
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a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_90n=V1_90n*(a-b) 

yf_90p=V1_90p*(a-c) 

yf_90=np.concatenate((yf_90n,yf_90p)) 

 

yb_90n=(V1_90n+V2_90n)*(a-b) + b 

yb_90p=(V1_90p+V2_90p)*(a-c) + c 

yb_90=np.concatenate((yb_90n,yb_90p)) 

 

y_90=np.concatenate((yf_90,np.flip(yb_90))) 

 

A_90=0.5*np.sum((y_90[1:]-y_90[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_90=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_90[:-1]**2\ 

                    +y_90[:-1]*y_90[1:]+y_90[1:]**2)) 

         

My_90=1./6.*np.sum((y_90[1:]-y_90[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_90=br[rRid]+My_90/A_90 

xc_90=ar[rRid]-xc_90 

yc_90=Mx_90/A_90 

 

# r/R=0.95 

rRid=11 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_95n=V1_95n*(a-b) 

yf_95p=V1_95p*(a-c) 

yf_95=np.concatenate((yf_95n,yf_95p)) 

 

yb_95n=(V1_95n+V2_95n)*(a-b) + b 

yb_95p=(V1_95p+V2_95p)*(a-c) + c 

yb_95=np.concatenate((yb_95n,yb_95p)) 
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y_95=np.concatenate((yf_95,np.flip(yb_95))) 

 

A_95=0.5*np.sum((y_95[1:]-y_95[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_95=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_95[:-1]**2\ 

                    +y_95[:-1]*y_95[1:]+y_95[1:]**2)) 

         

My_95=1./6.*np.sum((y_95[1:]-y_95[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_95=br[rRid]+My_95/A_95 

xc_95=ar[rRid]-xc_95 

yc_95=Mx_95/A_95 

 

# r/R=0.975 

rRid=12 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_975n=V1_975n*(a-b) 

yf_975p=V1_975p*(a-c) 

yf_975=np.concatenate((yf_975n,yf_975p)) 

 

yb_975n=(V1_975n+V2_975n)*(a-b) + b 

yb_975p=(V1_975p+V2_975p)*(a-c) + c 

yb_975=np.concatenate((yb_975n,yb_975p)) 

 

y_975=np.concatenate((yf_975,np.flip(yb_975))) 

 

A_975=0.5*np.sum((y_975[1:]-y_975[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_975=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_975[:-1]**2\ 

                    +y_975[:-1]*y_975[1:]+y_975[1:]**2)) 

         

My_975=1./6.*np.sum((y_975[1:]-y_975[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_975=br[rRid]+My_975/A_975 

xc_975=ar[rRid]-xc_975 
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yc_975=Mx_975/A_975 

 

# r/R=0.100 

rRid=13 

a=tmax[rRid] 

b=tte[rRid] 

c=tle[rRid] 

 

yf_100n=V1_100n*(a-b) 

yf_100p=V1_100p*(a-c) 

yf_100=np.concatenate((yf_100n,yf_100p)) 

 

yb_100n=(V1_100n+V2_100n)*(a-b) + b 

yb_100p=(V1_100p+V2_100p)*(a-c) + c 

yb_100=np.concatenate((yb_100n,yb_100p)) 

 

y_100=np.concatenate((yf_100,np.flip(yb_100))) 

 

A_100=0.5*np.sum((y_100[1:]-y_100[:-1])*(x_coor[:-1]+x_coor[1:])) 

 

Mx_100=-1./6.*np.sum((x_coor[1:]-x_coor[:-1])*(y_100[:-1]**2\ 

                    +y_100[:-1]*y_100[1:]+y_100[1:]**2)) 

         

My_100=1./6.*np.sum((y_100[1:]-y_100[:-1])*(x_coor[:-1]**2\ 

                    +x_coor[:-1]*x_coor[1:]+x_coor[1:]**2)) 

 

xc_100=br[rRid]+My_100/A_100 

xc_100=ar[rRid]-xc_100 

yc_100=Mx_100/A_100 

 

 

# xc is center of gravity x-offset from P=0 

# yc is center of gravity y-offset from pitch (reference) line 

 

print('') 

print('Propeller Blade Cross-Sectional Areas:') 

print('r/R=15:    A =  {:8.4f} m^2'.format(A_15)) 

print('r/R=20:    A =  {:8.4f} m^2'.format(A_20)) 

print('r/R=25:    A =  {:8.4f} m^2'.format(A_25)) 

print('r/R=30:    A =  {:8.4f} m^2'.format(A_30)) 



 69 

print('r/R=40:    A =  {:8.4f} m^2'.format(A_40)) 

print('r/R=50:    A =  {:8.4f} m^2'.format(A_50)) 

print('r/R=60:    A =  {:8.4f} m^2'.format(A_60)) 

print('r/R=70:    A =  {:8.4f} m^2'.format(A_70)) 

print('r/R=80:    A =  {:8.4f} m^2'.format(A_80)) 

print('r/R=85:    A =  {:8.4f} m^2'.format(A_85)) 

print('r/R=90:    A =  {:8.4f} m^2'.format(A_90)) 

print('r/R=95:    A =  {:8.4f} m^2'.format(A_95)) 

print('r/R=97.5:  A =  {:8.4f} m^2'.format(A_975)) 

print('r/R=100:   A =  {:8.4f} m^2'.format(A_100)) 

 

print('') 

print('Propeller Blade X-Moments:') 

print('r/R=15:    Mx = {:8.4f} m^3'.format(Mx_15)) 

print('r/R=20:    Mx = {:8.4f} m^3'.format(Mx_20)) 

print('r/R=25:    Mx = {:8.4f} m^3'.format(Mx_25)) 

print('r/R=30:    Mx = {:8.4f} m^3'.format(Mx_30)) 

print('r/R=40:    Mx = {:8.4f} m^3'.format(Mx_40)) 

print('r/R=50:    Mx = {:8.4f} m^3'.format(Mx_50)) 

print('r/R=60:    Mx = {:8.4f} m^3'.format(Mx_60)) 

print('r/R=70:    Mx = {:8.4f} m^3'.format(Mx_70)) 

print('r/R=80:    Mx = {:8.4f} m^3'.format(Mx_80)) 

print('r/R=85:    Mx = {:8.4f} m^3'.format(Mx_85)) 

print('r/R=90:    Mx = {:8.4f} m^3'.format(Mx_90)) 

print('r/R=95:    Mx = {:8.4f} m^3'.format(Mx_95)) 

print('r/R=97.5:  Mx = {:8.4f} m^3'.format(Mx_975)) 

print('r/R=100:   Mx = {:8.4f} m^3'.format(Mx_100)) 

 

print('') 

print('Propeller Blade Y-Moments:') 

print('r/R=15:    My = {:8.4f} m^3'.format(My_15)) 

print('r/R=20:    My = {:8.4f} m^3'.format(My_20)) 

print('r/R=25:    My = {:8.4f} m^3'.format(My_25)) 

print('r/R=30:    My = {:8.4f} m^3'.format(My_30)) 

print('r/R=40:    My = {:8.4f} m^3'.format(My_40)) 

print('r/R=50:    My = {:8.4f} m^3'.format(My_50)) 

print('r/R=60:    My = {:8.4f} m^3'.format(My_60)) 

print('r/R=70:    My = {:8.4f} m^3'.format(My_70)) 

print('r/R=80:    My = {:8.4f} m^3'.format(My_80)) 

print('r/R=85:    My = {:8.4f} m^3'.format(My_85)) 
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print('r/R=90:    My = {:8.4f} m^3'.format(My_90)) 

print('r/R=95:    My = {:8.4f} m^3'.format(My_95)) 

print('r/R=97.5:  My = {:8.4f} m^3'.format(My_975)) 

print('r/R=100:   My = {:8.4f} m^3'.format(My_100)) 

 

print('') 

print('Center of Gravity X-Offset:') 

print('r/R=15:    xc = {:8.4f} m'.format(xc_15)) 

print('r/R=20:    xc = {:8.4f} m'.format(xc_20)) 

print('r/R=25:    xc = {:8.4f} m'.format(xc_25)) 

print('r/R=30:    xc = {:8.4f} m'.format(xc_30)) 

print('r/R=40:    xc = {:8.4f} m'.format(xc_40)) 

print('r/R=50:    xc = {:8.4f} m'.format(xc_50)) 

print('r/R=60:    xc = {:8.4f} m'.format(xc_60)) 

print('r/R=70:    xc = {:8.4f} m'.format(xc_70)) 

print('r/R=80:    xc = {:8.4f} m'.format(xc_80)) 

print('r/R=85:    xc = {:8.4f} m'.format(xc_85)) 

print('r/R=90:    xc = {:8.4f} m'.format(xc_90)) 

print('r/R=95:    xc = {:8.4f} m'.format(xc_95)) 

print('r/R=97.5:  xc = {:8.4f} m'.format(xc_975)) 

print('r/R=100:   xc = {:8.4f} m'.format(xc_100)) 

 

print('') 

print('Center of Gravity Y-Offset:') 

print('r/R=15:    yc = {:8.4f} m'.format(yc_15)) 

print('r/R=20:    yc = {:8.4f} m'.format(yc_20)) 

print('r/R=25:    yc = {:8.4f} m'.format(yc_25)) 

print('r/R=30:    yc = {:8.4f} m'.format(yc_30)) 

print('r/R=40:    yc = {:8.4f} m'.format(yc_40)) 

print('r/R=50:    yc = {:8.4f} m'.format(yc_50)) 

print('r/R=60:    yc = {:8.4f} m'.format(yc_60)) 

print('r/R=70:    yc = {:8.4f} m'.format(yc_70)) 

print('r/R=80:    yc = {:8.4f} m'.format(yc_80)) 

print('r/R=85:    yc = {:8.4f} m'.format(yc_85)) 

print('r/R=90:    yc = {:8.4f} m'.format(yc_90)) 

print('r/R=95:    yc = {:8.4f} m'.format(yc_95)) 

print('r/R=97.5:  yc = {:8.4f} m'.format(yc_975)) 

print('r/R=100:   yc = {:8.4f} m'.format(yc_100)) 

 

## volume integrations: 
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r=D/2.*np.array([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70,0.80,0.85,\ 

                 0.90,0.95,0.975,1.0]) #m 

 

A=np.array([A_15,A_20,A_25,A_30,A_40,A_50,A_60,A_70,A_80,A_85,A_90,\ 

            A_95,A_975,A_100]) 

 

rarray=np.flip(r) 

 

Aarray=np.flip(A) 

 

# pitch angle 

phi=np.arctan(PD*D/(2.*np.pi)) 

 

# rake array 

rake=np.tan(np.deg2rad(15.))*r #m 

 

# centers 

xcarray=np.array([xc_15,xc_20,xc_25,xc_30,xc_40,xc_50,xc_60,xc_70,\ 

                  xc_80,xc_85,xc_90,xc_95,xc_975,xc_100]) 

 

ycarray=np.array([yc_15,yc_20,yc_25,yc_30,yc_40,yc_50,yc_60,yc_70,\ 

                  yc_80,yc_85,yc_90,yc_95,yc_975,yc_100]) 

 

xc=np.cos(phi)*xcarray -np.sin(phi)*ycarray 

 

yc=np.sin(phi)*xcarray +np.cos(phi)*ycarray 

yc=yc-rake 

 

 

# volumes 

# volume found via integration 

V=0.5*np.sum((Aarray[1:]+Aarray[:-1])*(rarray[:-1]-rarray[1:])) 

 

# volume found with trapezoidal method 

Vtrap=np.trapz(A,r) 

 

# volume of the prism containing blade 

Vp=tmax[0]*cl[0]*D/2. 

 

# radial volume center 
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M_Vr=np.trapz(r*A,r) 

 

CGr=M_Vr/V #m 

 

M_Vx=np.trapz(xc*A,r) 

 

CGy=M_Vx/V #m 

 

M_Vy=np.trapz(yc*A,r) 

 

CGx=M_Vy/V #m 

 

print('') 

print('Volume Integration Results:') 

print('volume:          V     = {:8.4f} m^3'.format(V)) 

print('volume (trap.):  V     = {:8.4f} m^3'.format(Vtrap)) 

print('volume (prism):  V     = {:8.4f} m^3'.format(Vp)) 

print('radial v.mom:    Mvr   = {:8.4f} m^4'.format(M_Vr)) 

print('radial CG:       CGr   = {:8.4f} m'.format(CGr)) 

print('radial CG (r/R): CGr   = {:8.4f} m'.format(CGr/(D/2.))) 

print('x-direction CG:  CGx   = {:8.4f} m'.format(CGx)) 

print('y-direction CG:  CGy   = {:8.4f} m'.format(CGy)) 
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Appendix C: Propeller Structural Code – MVYahtsePropellerDev.py 

# Honors Program Capstone Project 

# Ice Class Propeller Design 

# Date Last Modified: 04/30/2021 

 

""" 

Design and ice-class propeller for the MV Yahtse - an overnighting, 

ice-class, car ferry servicing the Alaskan coast and Bering Sea. 

 

Propeller must meet IACS ice-class requirements 

 

Ice Class - PC 3 

Number of Propellers - 2 

Type - CPP, open 

 

""" 

 

import numpy as np 

from scipy.interpolate import CubicSpline 

import matplotlib.pyplot as plt 

 

from NAME3150RPHoltrop import n,T_req,v_kn,eta_H,eta_OS,eta_R,t 

#from NAME3150RPHoltrop import Z,D,ar,PD 

from WBSeriesPropGeometry import cl,cltip,rR,xc_15,yc_15,yfmax,ybmax 

 

 

Z=5. 

D=3.0480 #m 

ar=0.7520 

PD=0.7568 

 

######################################################################### 

 

## Variables 

 

# for a worst case scenario, look at service speed + icebreaking 

# since H&M code designs the propeller at service speed, this will see 

# if the service speed propeller can survive worst conditions 

 



 74 

ssid=10 

n_ss=n[ssid] # nominal rotational speed at MCR free-running condition 

 

# from W-B series chord equations 

c_7=2.247*D/Z*ar #m; length of the blade chord at 0.7R (radius) 

P_7=0.7*PD*D #m; propeller pitch at 0.7R 

t_7=D*(0.0216 -0.0015*Z) #m; max thickness at 0.7R 

 

# if bollard thrust (T_n) is known, use instead of T and tab out T_n 

# estimation calculation 

T=T_req[ssid]/2000. #kN; per propeller thrust at MCR open water cond. 

 

# measurements of cylindrical root section of the blade at the weakest  

# section outside root fillet; typically will be at the termination of  

# the fillet into the blade profile. 

 

# root section measurements 

# assuming root is at 16.5% of the total blade diameter 

 

d_h=0.165*D #m; propeller hub diameter 

d_r=d_h #approximately true 

 

# cut off at a x=r/R of 0.7 becuase independant variable must be 

# increasing only for CubicSpline to work 

x=np.array([0.15,0.20,0.25,0.30,0.40,0.50,0.60,0.70]) 

Cr=np.array([1.473,1.600,1.719,1.832,2.023,2.163,2.243,2.247]) 

y=Cr*D/Z*ar 

cs=CubicSpline(Cr,y) 

Crx=np.interp(0.165,x,Cr) 

print('') 

print('C_rx = {:6.4f} '.format(Crx)) 

c_r=cs(Crx) #m; chord length at the root 

print('c_r = {:6.4f} m'.format(c_r)) 

 

xp=np.array([0.15,0.20,0.25]) 

Ar=np.array([0.0588,0.0526,0.0495]) 

Br=np.array([0.00425,0.0040,0.00375]) 

fp=D*(Ar-Br*Z) 

t_r=np.interp(0.165,xp,fp) #m; thickness at the root 

print('t_r = {:6.4f} m'.format(t_r)) 
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p=PD*D #m; pitch at root section, constant pitch 

r=d_r/2. #m; radius 

 

 

# blade material constants 

# Blade materials are in accordance with ABS 

# Stainless Steel 316/316L 

# sigma_y is the 0.2% proof stress conventionally considered as 

# yield stress 

sigma_y=290.0e3 #kPa 

# sigma_u is the ultimate strength  

sigma_u=627.0e3 #kPa 

 

 

######################################################################## 

 

## must be done in Imperial units and converted at end 

## from 1942 SNAME Marine Engieering Vol. 1 

 

## Bending Moment Calculation 

 

D_i=D*39.37 #in. 

d_ri=d_r*39.37 #in.; diameter at root section 

P=3655. #hp; shaft horsepower per screw 

v=v_kn[ssid] #knots; ship speed 

N=n_ss*60. #rpm; shaft revolutions per minute 

A_d=ar*np.pi*(D_i/24.)**2 #ft^2; approximately true A_d=A_e 

t_ri=t_r*39.37 #in.; maximum thickness at root 

 

# note on coordinate system being used: 

# x - horizontal along the face of the blade 

# y - horizontal through blade thickness 

# z/r - tangent out from hub/blade root 

 

# assume center of root is half of the root thickness 

a_r=c_r*0.617 #distance from LE to generator line at (approx.) the root 

CRb=a_r*39.37 #in.; distance of center of root in y-direction 

CRr=t_r/2.*39.27 #in.; distance of center of root in z-direction 

p=p*39.37 #in.; pitch at root section 
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# method needs to be found to determine these from blade geometry 

r=5.1 #in.; arm due to rake  [**GUESS VALUE**] 

b=5.1 #in.; arm due to skewback  [**GUESS VALUE**] 

 

# thrust moment arm factor 

K_T=0.66*D_i -d_ri #in. 

 

# moment due to thrust 

eta_H=eta_H[ssid] #hull efficiency 

eta_OS=eta_OS[ssid] 

e=eta_H*eta_OS*eta_R #propulsive efficiency 

M_T=163.*P*e*K_T/(v*Z*(1.-t)) #in.-lb 

 

# centrifugal force 

F_c=D_i*N**2*A_d*t_ri/(7450.*Z) #lb 

 

# moment due to rake 

M_R=r*F_c #in.-lb 

 

# total axial moment 

M_A=M_T + M_R #in.-lb 

 

# torque moment arm ratio 

K_Q=1. -1.67*d_ri/D_i 

 

# moment due to torque 

M_Q=63000.*P*K_Q/(Z*N) #in.-lb 

 

# moment due to skewback 

M_S=b*F_c #in.-lb 

 

# total circumferential moment 

M_C=M_Q - M_S #in.-lb 

 

# tangent of pitch angle 

x=p/(np.pi*d_ri) 

 

# secant of pitch angle 
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y=np.sqrt(1.+x**2) 

 

# moment normal to root 

M_N=M_A/y + x*M_C/y #in.-lb 

 

# moment parallel to root 

M_P=x*M_A/y - M_C/y #in.-lb 

 

 

## Blade Stress Calculation 

# only check most extreme values (at r/R=0.15 where x&y are largest) 

 

# check if correct 

l=c_r*39.37 #in.; length of root section 

 

# moment of inertia of section, normal 

K_N=0.046 

I_N=K_N*l*t_ri**3 #in.^4 

 

# stress at t due to M_N 

# y_t is distance between yc and y_back at trailing edge of r/R=0.15 

# distance from NA to point t, normal (fig. 11) 

y_t=np.abs(yc_15-ybmax)*39.37 #in. 

s1=M_N*y_t/I_N #psi 

 

# moment of inertia of section, parallel 

K_P=0.039 

I_P=K_P*l**3*t_ri #in.^4 

 

# stress at t due to M_P 

# x_t is distance between xc and P=-1 of y_face at r/R=0.15 

# distance from NA to point t, parallel (fig.11) 

x_t=(cl[0]-0.350*cl[0]+xc_15)*39.37 #in. 

s2=M_P*x_t/I_P #psi 

 

# area of section 

K_A=0.71 

A_r=K_A*l*t_ri #in.^2 

 

# stress due to F 
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s_F=F_c/A_r #psi 

 

# total stress at t 

s_t=s1 + s2 + s_F #psi 

 

# stress at c due to M_N 

# y_c is greatest distance between yc and y_face at r/R=0.15 

# distance from NA to point c, normal (fig.11) 

y_c=np.abs(yc_15-yfmax)*39.37 #in. 

s3=M_N*y_c/I_N #psi 

 

# stress at c due to M_P 

# x_c is greatest distance between xc and P=0 of y_face at r/R=0.15 

# distance from NA to point c, parallel (fig.11) 

x_c=xc_15*39.37 #in. 

s4=M_P*x_c/I_P #psi 

 

# total stress at c 

s_c=s3 + s4 + s_F #psi 

 

 

## Calculated Blade Stress 

 

if s_t > s_c: 

    s_calc=s_t #psi 

 

else: 

    s_calc=s_c #psi 

     

sigma_calc=s_calc*6.895 #kPa 

 

print('calc. stress = {:6.4f} kPa'.format(sigma_calc)) 

 

######################################################################## 

 

## IACS Propeller Requirements 

 

""" 

I3.4 Ice Interaction Load: 

    I3.4.1 Propeller Ice Interaction: 
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        The loads given in section I3.4 are total loads (unless  

        otherwise stated) during ice interaction and are to be applied  

        separately (unless otherwise stated) and are intended for  

        component strength calculations only. The different loads given  

        here are to be applied separately. 

        Fb is a force bending a propeller blade backwards when the  

        propeller mills an ice block while rotating ahead. Ff is a force 

        bending a propeller blade forwards when a propeller interacts 

        with an ice block while rotating ahead. 

""" 

 

H_ice=3.0 # m; Ice thickness for machinery strength design 

S_ice=1.1 # Ice strength index for blade ice force 

S_qice=1.15 # Ice strength index for blade ice torque 

 

""" 

I3.4.3 Design Ice Loads for Open Propeller: 

    I3.4.3.1 Maximum Backward Blade Force, Fb: 

""" 

 

D_limit=0.85*H_ice**1.4 #m 

 

if D < D_limit: 

    F_b=-27.*S_ice*(n_ss*D)**0.7*(ar/Z)**0.3*(D)**2 #kN 

 

else: 

    F_b=-23.*S_ice*(n_ss*D)**0.7*(ar/Z)**0.3*(H_ice)**1.4*D #kN 

  

print('F_b = {:6.4f} kN'.format(F_b)) 

 

""" 

Fb is to be applied as a uniform pressure distribution to an area on the 

back (suction) side of the blade for the following load cases: 

    a) Load case 1: from 0.6R to the tip and from the blade leading edge 

       to a value of 0.2 chord length. 

    b) Load case 2: a load equal to 50% of the Fb is to be applied on  

       the propeller tip area outside of 0.9R. 

    c) Load case 5: for reversible propellers a load equal to 60% of  

       the Fb is to be applied from 0.6R to the tip and from the blade  

       trailing edge to a value of 0.2 chord length. 
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I3.4.3.2 Maximum Forward Blade Force, Ff: 

""" 

 

D_limit=2./(1.-d_h/D)*H_ice #m 

 

if D < D_limit: 

    F_f=250.*ar/Z*D**2 #kN 

 

else: 

    F_f=500./(1.-d_h/D)*H_ice*ar/Z*D #kN 

 

print('F_f = {:6.4f} kN'.format(F_f)) 

 

""" 

Ff is to be applied as a uniform pressure distribution to an area on the 

face (pressure) side of the blade for the following loads cases: 

    a) Load case 3: from 0.6R to the tip and from the blade leading edge 

       to a value of 0.2 chord length. 

    b) Load case 4: a load equal to 50% of the Ff is to be applied on  

       the propeller tip area outside of 0.9R. 

    c) Load case 5: for reversible propellers a load equal to 60% Ff is 

       to be applied from 0.6R to the tip and from the blade trailing  

       edge to a value of 0.2 chord length. 

 

I3.4.3.3 Maximum Blade Spindle Torque, Qsmax: 

    Spindle torque Qsmax around the spindle axis of the blade fitting  

    shall be calculated both for the load cases described in I3.4.3.1 & 

    I3.4.3.2 for Fb Ff. If these spindle torque values are less than  

    the default value given below, the default minimum value shall be  

    used. 

""" 

 

D_limit:1.81*H_ice #m 

 

# F is either Fb or Ff, whichever has the greater absolute value 

if np.abs(F_b) > np.abs(F_f): 

    F=F_b #kN 

 

else: 
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    F=F_f #kN 

 

Q_smax=0.25*F*c_7 #kNm 

 

print('Q_smax = {:6.4f} kNm'.format(Q_smax)) 

 

if D < D_limit: 

    Q_max=105.*(1-d_h/D)*S_qice*(P_7/D)**0.16*(t_7/D)**0.6*(n_ss*D)**0.17*D**3 

 

else: 

    Q_max=202.*(1-

d_h/D)*S_qice*H_ice**1.1*(P_7/D)**0.16*(t_7/D)**0.6*(n_ss*D)**0.17*D**1.9 

 

if Q_max < Q_smax: 

    Q_max=Q_smax #kNm 

     

else: 

    Q_max=Q_max #kNm 

 

print('Q_max = {:6.4f} kNm'.format(Q_max)) 

 

""" 

For CP propellers, propeller pitch, P0.7 shall correspond to MCR in  

bollard condition. If not known, P0.7 is to be taken as 0.7⋅P0.7n ,  

where P0.7n is propeller pitch at MCR free running condition. 

 

I3.4.3.5 Maximum Propeller Ice Thrust applied to the shaft: 

""" 

 

T_f=1.1*F_f #kN 

T_b=1.1*F_b #kN 

 

print('T_f = {:6.4f} kN'.format(T_f)) 

print('T_b = {:6.4f} kN'.format(T_b)) 

 

# Structural Design 

 

""" 

I3.4.6.2 Maximum Response Thrust: 

    Maximum thrust along the propeller shaft line is to be calculated  
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    with the formulae below. The factors 2.2 and 1.5 take into account  

    the dynamic magnification due to axial vibration. Alternatively, the 

    propeller thrust magnification factor may be calculated by dynamic  

    analysis. 

""" 

 

T_n=1.25*T #kN 

 

T_for=T_n + 2.2*T_f #kN 

T_rev=1.5*T_b #kN 

 

print('T_for = {:6.4f} kN'.format(T_for)) 

print('T_rev = {:6.4f} kN'.format(T_rev)) 

 

""" 

I3.4.6.3 Blade Failure Load for both Open and Nozzle Propeller: 

    The force is acting at 0.8R in the weakest direction of the blade  

    and at a spindle arm of 2/3 of the distance of axis of blade  

    rotation of leading and trailing edge which ever is the greatest. 

""" 

 

sigma_ref=0.6*sigma_y + 0.4*sigma_u #kPa 

 

F_ex=0.3*c_r*t_r**2*sigma_ref/(0.8*D- 2.*r)*10.**3 #kN 

 

print('F_ex = {:6.4f} kN'.format(F_ex)) 

 

""" 

I3.5 Design: 

    I3.5.1 Design Principle: 

        The strength of the propulsion line shall be designed 

        a) for maximum loads in I3.4; 

        b) such that the plastic bending of a propeller blade shall  

           not cause damages in other propulsion line components; 

        c) with sufficient fatigue strength. 

    I3.5.3 Blade Design: 

        I3.5.3.1 Maximum Blade Stresses: 

            Blade stresses are to be calculated using the backward and  

            forward loads given in section 4.3 & 4.4. The stresses  

            shall be calculated with recognised and well documented  
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            FE-analysis or other acceptable alternative method. The  

            stresses on the blade shall not exceed the allowable  

            stresses sigma_all for the blade material given below. 

""" 

 

sigma_ref1=0.7*sigma_u 

sigma_ref2=0.6*sigma_y + 0.4*sigma_u 

 

if sigma_ref1 < sigma_ref2: 

    sigma_ref=sigma_ref1 

 

else: 

    sigma_ref=sigma_ref2 

     

S=1.5 

 

sigma_all=sigma_ref/S 

print('all. stress = {:6.4f} kPa'.format(sigma_all)) 

 

 

if sigma_calc < sigma_all: 

    print("PASS") 

     

else: 

    print("FAIL") 

     

""" 

I3.5.3.2 Blade Edge Thickness: 

    The blade edge thicknesses and tip thickness are to be greater than 

    t_edge given by the following formula: 

""" 

 

## Trailing Edges: 

 

# distance from the blade edge measured along the cylindrical sections 

# from the edge and shall be 2.5% of chord length, however, not to be  

# taken greater than 45 mm 

 

# rRid starts at 0 for 0.15 
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rRid=13 

cl=cl[rRid] 

x=0.025*cl*1000. #mm 

 

if x > 45.: 

    x=45. #mm 

else: 

    x=x #mm 

     

S=2.5 #safety factor 

# calculate for trailing edge 

p_ice=16. #MPa; ice pressure 

 

t_te=x*S*S_ice*np.sqrt(3.*p_ice/sigma_ref) 

 

## Leading Edges: 

 

# distance from the blade edge measured along the cylindrical sections 

# from the edge and shall be 2.5% of chord length, however, not to be  

# taken greater than 45 mm 

 

if x > 45.: 

    x=45. #mm 

else: 

    x=x #mm 

 

S=3.5 #safety factor 

p_ice=16. #MPa; ice pressure 

 

t_le=x*S*S_ice*np.sqrt(3.*p_ice/sigma_ref) 

 

## Blade Tips: 

 

# In the tip area (above 0.975R radius) x shall be taken as 2.5% of  

# 0.975R section length and is to be measured perpendicularly to the  

# edge, however, not to be taken greater than 45 mm 

 

x=0.025*cltip*1000. #mm 

 

if x > 45.: 
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    x=45. #mm 

else: 

    x=x #mm 

 

S=5. #safety factor 

p_ice=16. #MPa; ice pressure 

 

t_tip=x*S*S_ice*np.sqrt(3.*p_ice/sigma_ref) 

 

print('') 

print('Blade Thickness Requirements:') 

print('current r/R ratio  x={:8.4f} '.format(rR[rRid])) 

if rRid < 12: 

    print('min. trailing edge t={:8.4f} mm'.format(t_te)) 

    print('min. leading edge  t={:8.4f} mm'.format(t_le)) 

else: 

    print('min. tip thick.    t={:8.4f} mm'.format(t_tip)) 

 

""" 

NOTE: If the propeller is not a reversible rotation open propeller, the 

trailing edge requirement can be ignored. 

""" 

 

 

rRedge=np.array([0.15,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.95]) 

t_te=np.array([0.4935,0.5360,0.5759,0.6137,0.6777,0.7246,0.7514,0.7528,\ 

               0.7143,0.6717,0.6024,0.4804]) 

t_le=np.array([0.6909,0.7504,0.8062,0.8592,0.9488,1.0145,1.0520,1.0539,\ 

               1.0000,0.9404,0.8433,0.6726]) 

 

rRtip=np.array([0.975,1.0]) 

t_tip=np.array([0.7518,0.7518]) 

 

plt.figure(figsize=(5,10)) 

plt.plot(t_te,rRedge,lw=2,label=r"Trailing Edge Thickness") 

plt.plot(t_le,rRedge,lw=2,label=r"Leading Edge Thickness") 

plt.plot(t_tip,rRtip,lw=2,label=r"Tip Thickness") 

plt.xlabel(r'Blade Thickness, $t$ $[mm]$') 

plt.ylabel(r'Radius Ratio, $r/R$ $[-]$') 

plt.title("Minimum Required Blade Thicknesses at Each Radius") 
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plt.legend() 

plt.grid() 

plt.show() 
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Appendix D: Python Resistance Results 

Coefficients: 

 

c1= 10.864806 

c2= 1.000000 

c3= 0.000000 

c4= 0.040000 

c5= 1.000000 

c7= 0.221546 

c8= 29.739985 

c9= 29.212536 

c11= 1.548556 

c14= 1.110000 

c15= -1.693850 

c16= 1.165591 

c17= 1.691058 

c19= 0.032029 

c20= 1.150000 

d= -0.900000 

lambda= 1.019722 

m1= -2.287501 

m3= 10.864806 

C_P1= 0.807920 

 

 

Froude Numbers and Misc. Coefficients: 

 

    v_kn         Fr          Fr_T          c_6       m3(Fr^d)       m4   m4cos(lambda/Fr^2) 

    [kn]          [-]            [-]             [-]            [-]              [-]             [-]         

  10.00    0.16631    0.00000     0.2000   -8.80483   -0.00000   -0.00000 

  10.50    0.17462    0.00000     0.2000   -8.42656   -0.00002    0.00001 

  11.00    0.18294    0.00000     0.2000   -8.08104   -0.00008   -0.00004 

  11.50    0.19125    0.00000     0.2000   -7.76413   -0.00026    0.00024 

  12.00    0.19957    0.00000     0.2000   -7.47236   -0.00074   -0.00066 

  12.50    0.20789    0.00000     0.2000   -7.20281   -0.00173   -0.00006 

  13.00    0.21620    0.00000     0.2000   -6.95299   -0.00357    0.00352 

  13.50    0.22452    0.00000     0.2000   -6.72079   -0.00659   -0.00125 

  14.00    0.23283    0.00000     0.2000   -6.50438   -0.01111   -0.01110 

  14.50    0.24115    0.00000     0.2000   -6.30216   -0.01739   -0.00442 
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  15.00    0.24946    0.00000     0.2000   -6.11278   -0.02560    0.01994 

  15.50    0.25778    0.00000     0.2000   -5.93502   -0.03579    0.03347 

  16.00    0.26609    0.00000     0.2000   -5.76784   -0.04791    0.01252 

  16.50    0.27441    0.00000     0.2000   -5.61029   -0.06183   -0.03466 

  17.00    0.28272    0.00000     0.2000   -5.46156   -0.07735   -0.07594 

  17.50    0.29104    0.00000     0.2000   -5.32092   -0.09423   -0.08141 

  18.00    0.29936    0.00000     0.2000   -5.18771   -0.11220   -0.04199 

  18.50    0.30767    0.00000     0.2000   -5.06135   -0.13102    0.02901 

  19.00    0.31599    0.00000     0.2000   -4.94132   -0.15041    0.10607 

 

 

 

Resistance Components and Total Resistance: 

 

    v_kn      Fr        R_F         R_A         R_W        R_APP     R_AA       R_TR         R_I       R_T    

    [kn]       [-]        [kN]        [kN]          [kN]          [kN]         [kN]          [kN]         [kN]       [kN]     

  10.00    0.16631     46.778     10.705      8.259     19.445      1.410      0.000    631.519    106.236 

  10.50    0.17462     51.238     11.803     13.534     21.327      1.554     0.000    650.982    120.967 

  11.00    0.18294     55.887     12.953     21.248     23.292      1.706     0.000    670.201    138.548 

  11.50    0.19125     60.723     14.158     32.146     25.338      1.864     0.000    689.191    159.724 

  12.00    0.19957     65.747     15.416     47.009     27.467      2.030     0.000    707.965    185.271 

  12.50    0.20789     70.956     16.727     66.878     29.676      2.203     0.000    726.537    216.230 

  13.00    0.21620     76.351     18.092     93.001     31.967      2.382     0.000    744.918    253.848 

  13.50    0.22452     81.930     19.510    125.338     34.339      2.569    0.000    763.117    298.082 

  14.00    0.23283     87.692     20.982    164.633     36.791      2.763    0.000    781.144    349.677 

  14.50    0.24115     93.637     22.508    215.814     39.323      2.964    0.000    799.007    413.558 

  15.00    0.24946     99.764     24.087    283.167     41.936      3.172    0.000    816.714    494.009 

  15.50    0.25778    106.072     25.719    362.001     44.628     3.387    0.000    834.272    586.339 

  16.00    0.26609    112.561     27.406    440.975     47.400     3.609    0.000    851.688    679.205 

  16.50    0.27441    119.229     29.145    516.719     50.251     3.838    0.000    868.968    769.237 

  17.00    0.28272    126.077     30.938    602.085     53.181     4.074    0.000    886.117    869.285 

  17.50    0.29104    133.103     32.785    719.503     56.190     4.317    0.000    903.142   1001.778 

  18.00    0.29936    140.307     34.685    890.607     59.278     4.567    0.000    920.046   1188.349 

  18.50    0.30767    147.688     36.639   1127.631     62.444    4.824    0.000    936.834   1441.231 

  19.00    0.31599    155.247     38.646   1424.617     65.689    5.089    0.000    953.511   1754.464 

 

 

 

Self-Propulsion Point: 
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    v_kn        Fr           w_s            v_a        T_req         C_S         J_TS        K_TS     10K_QTS   

    [kn]         [-]            [-]            [m/s]         [kN]          [-]            [-]            [-]             [-]        

  10.00    0.16631     0.1839     4.1983   130.3379    0.77441     0.4684     0.1699     0.2315 

  10.50    0.17462     0.1838     4.4089   148.4104    0.79956     0.4638     0.1720     0.2336 

  11.00    0.18294     0.1837     4.6195   169.9801    0.83417     0.4577     0.1748     0.2364 

  11.50    0.19125     0.1836     4.8302   195.9595    0.87961     0.4501     0.1782     0.2399 

  12.00    0.19957     0.1834     5.0408   227.3025    0.93680     0.4411     0.1823     0.2439 

  12.50    0.20789     0.1833     5.2515   265.2854    1.00737     0.4308     0.1869     0.2486 

  13.00    0.21620     0.1832     5.4622   311.4373    1.09314     0.4192     0.1921     0.2537 

  13.50    0.22452     0.1832     5.6730   365.7072    1.19003     0.4073     0.1974     0.2590 

  14.00    0.23283     0.1831     5.8837   429.0069    1.29779     0.3952     0.2027     0.2642 

  14.50    0.24115     0.1830     6.0945   507.3801    1.43055     0.3818     0.2085     0.2700 

  15.00    0.24946     0.1829     6.3053   606.0826    1.59650     0.3669     0.2149     0.2763 

  15.50    0.25778     0.1828     6.5161   719.3594    1.77426     0.3528     0.2209     0.2822 

  16.00    0.26609     0.1827     6.7269   833.2941    1.92847     0.3419     0.2255     0.2867 

  16.50    0.27441     0.1827     6.9378   943.7509    2.05336     0.3338     0.2288     0.2900 

  17.00    0.28272     0.1826     7.1486  1066.4964    2.18556     0.3259     0.2321     0.2932 

  17.50    0.29104     0.1825     7.3595  1229.0482    2.37641     0.3154     0.2364     0.2975 

  18.00    0.29936     0.1825     7.5704  1457.9452    2.66413     0.3014     0.2421     0.3030 

  18.50    0.30767     0.1824     7.7813  1768.1979    3.05829     0.2851     0.2486     0.3094 

  19.00    0.31599     0.1823     7.9922  2152.4933    3.52907     0.2688     0.2550     0.3156 

 

 

 

Efficiency and Powering: 

 

    v_kn        Fr          eta_H      eta_O      eta_D           n             n            P_D      

    [kn]           [-]             [-]           [-]         [-]            [1/s]        [rpm]       [kW]     

  10.00    0.16631     0.9988     0.5471     0.5522      2.941    176.445     989.79 

  10.50    0.17462     0.9986     0.5435     0.5484      3.119    187.127    1191.41 

  11.00    0.18294     0.9985     0.5386     0.5434      3.311    198.668    1442.69 

  11.50    0.19125     0.9983     0.5323     0.5371      3.521    211.232    1759.46 

  12.00    0.19957     0.9982     0.5247     0.5293      3.749    224.942    2160.87 

  12.50    0.20789     0.9981     0.5157     0.5201      3.999    239.970    2673.44 

  13.00    0.21620     0.9980     0.5052     0.5095      4.275    256.489    3331.98 

  13.50    0.22452     0.9978     0.4941     0.4982      4.570    274.195    4155.04 

  14.00    0.23283     0.9977     0.4825     0.4865      4.885    293.073    5176.65 

  14.50    0.24115     0.9976     0.4693     0.4731      5.237    314.237    6520.40 

  15.00    0.24946     0.9975     0.4542     0.4578      5.638    338.298    8326.11 

  15.50    0.25778     0.9974     0.4395     0.4430      6.059    363.543   10552.79 
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  16.00    0.26609     0.9973     0.4279     0.4313      6.455    387.279   12961.46 

  16.50    0.27441     0.9973     0.4192     0.4225      6.818    409.100   15454.73 

  17.00    0.28272     0.9972     0.4106     0.4137      7.197    431.802   18375.12 

  17.50    0.29104     0.9971     0.3990     0.4020      7.655    459.307   22432.80 

  18.00    0.29936     0.9970     0.3833     0.3862      8.239    494.361   28492.37 

  18.50    0.30767     0.9969     0.3647     0.3674      8.954    537.226   37334.78 

  19.00    0.31599     0.9969     0.3457     0.3483      9.754    585.232   49239.70  
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Appendix E: NavCAD Holtrop and Mennen Results 
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Appendix F: NavCAD Andersen Results 
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 101 

Appendix G: NavCAD Fung (CRTS) Results 
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Appendix H: NavCAD Fung (HSTS) Results 
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Appendix I: Polynomial Code – WBPolynomials.py 

# NAME 3150 Honors Work 

# Date Last Modified: 05/13/2020 

 

""" 

Honors Assignment: 

Given the Wageningen B-Series polynomials for determining  

the K_T and K_Q curves and example data, program in Python open 

water chart graphs for any given propeller data. 

""" 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import fsolve 

 

## 

=================================================================== 

 

## 2. K_T polynomial values and sum 

 

def K_Tfunc(J,PD,ar,Z): 

 

    T1=0.00880496*(J**0)*(PD**0)*(ar**0)*(Z**0) 

    T2=-0.204554*(J**1)*(PD**0)*(ar**0)*(Z**0) 

    T3=0.166351*(J**0)*(PD**1)*(ar**0)*(Z**0) 

    T4=0.158114*(J**0)*(PD**2)*(ar**0)*(Z**0) 

    T5=-0.147581*(J**2)*(PD**0)*(ar**1)*(Z**0) 

    T6=-0.481497*(J**1)*(PD**1)*(ar**1)*(Z**0) 

    T7=0.415437*(J**0)*(PD**2)*(ar**1)*(Z**0) 

    T8=0.0144043*(J**0)*(PD**0)*(ar**0)*(Z**1) 

    T9=-0.0530054*(J**2)*(PD**0)*(ar**0)*(Z**1) 

    T10=0.0143481*(J**0)*(PD**1)*(ar**0)*(Z**1) 

    T11=0.0606826*(J**1)*(PD**1)*(ar**0)*(Z**1) 

    T12=-0.0125894*(J**0)*(PD**0)*(ar**1)*(Z**1) 

    T13=0.0109689*(J**1)*(PD**0)*(ar**1)*(Z**1) 

    T14=-0.133698*(J**0)*(PD**3)*(ar**0)*(Z**0) 

    T15=0.00638407*(J**0)*(PD**6)*(ar**0)*(Z**0) 

    T16=-0.00132718*(J**2)*(PD**6)*(ar**0)*(Z**0) 

    T17=0.168496*(J**3)*(PD**0)*(ar**1)*(Z**0) 
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    T18=-0.0507214*(J**0)*(PD**0)*(ar**2)*(Z**0) 

    T19=0.0854559*(J**2)*(PD**0)*(ar**2)*(Z**0) 

    T20=-0.0504475*(J**3)*(PD**0)*(ar**2)*(Z**0) 

    T21=0.010465*(J**1)*(PD**6)*(ar**2)*(Z**0) 

    T22=-0.00648272*(J**2)*(PD**6)*(ar**2)*(Z**0) 

    T23=-0.00841728*(J**0)*(PD**3)*(ar**0)*(Z**1) 

    T24=0.0168424*(J**1)*(PD**3)*(ar**0)*(Z**1) 

    T25=-0.00102296*(J**3)*(PD**3)*(ar**0)*(Z**1) 

    T26=-0.0317791*(J**0)*(PD**3)*(ar**1)*(Z**1) 

    T27=0.018604*(J**1)*(PD**0)*(ar**2)*(Z**1) 

    T28=-0.00410798*(J**0)*(PD**2)*(ar**2)*(Z**1) 

    T29=-0.000606848*(J**0)*(PD**0)*(ar**0)*(Z**2) 

    T30=-0.0049819*(J**1)*(PD**0)*(ar**0)*(Z**2) 

    T31=0.0025983*(J**2)*(PD**0)*(ar**0)*(Z**2) 

    T32=-0.000560528*(J**3)*(PD**0)*(ar**0)*(Z**2) 

    T33=-0.00163652*(J**1)*(PD**2)*(ar**0)*(Z**2) 

    T34=-0.000328787*(J**1)*(PD**6)*(ar**0)*(Z**2) 

    T35=0.000116502*(J**2)*(PD**6)*(ar**0)*(Z**2) 

    T36=0.000690904*(J**0)*(PD**0)*(ar**1)*(Z**2) 

    T37=0.00421749*(J**0)*(PD**3)*(ar**1)*(Z**2) 

    T38=0.0000565229*(J**3)*(PD**6)*(ar**1)*(Z**2) 

    T39=-0.00146564*(J**0)*(PD**3)*(ar**2)*(Z**2) 

 

 

    

K_T=T1+T2+T3+T4+T5+T6+T7+T8+T9+T10+T11+T12+T13+T14+T15+T16+T17+T18+T19 

\ 

    +T20+T21+T22+T23+T24+T25+T26+T27+T28+T29+T30+T31+T32+T33+T34+T35+T36 \ 

    +T37+T38+T39 

     

    return K_T 

 

 

## ================================================================== 

 

## 3. K_Q polynomial values and sum 

 

def K_Qfunc(J,PD,ar,Z): 

 

    Q1=0.00379368*(J**0)*(PD**0)*(ar**0)*(Z**0) 
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    Q2=0.00886523*(J**2)*(PD**0)*(ar**0)*(Z**0) 

    Q3=-0.032241*(J**1)*(PD**1)*(ar**0)*(Z**0) 

    Q4=0.00344778*(J**0)*(PD**2)*(ar**0)*(Z**0) 

    Q5=-0.0408811*(J**0)*(PD**1)*(ar**1)*(Z**0) 

    Q6=-0.108009*(J**1)*(PD**1)*(ar**1)*(Z**0) 

    Q7=-0.0885381*(J**2)*(PD**1)*(ar**1)*(Z**0) 

    Q8=0.188561*(J**0)*(PD**2)*(ar**1)*(Z**0) 

    Q9=-0.00370871*(J**1)*(PD**0)*(ar**0)*(Z**1) 

    Q10=0.00513696*(J**0)*(PD**1)*(ar**0)*(Z**1) 

    Q11=0.0209449*(J**1)*(PD**1)*(ar**0)*(Z**1) 

    Q12=0.00474319*(J**2)*(PD**1)*(ar**0)*(Z**1) 

    Q13=-0.00723408*(J**2)*(PD**0)*(ar**1)*(Z**1) 

    Q14=0.00438388*(J**1)*(PD**1)*(ar**1)*(Z**1) 

    Q15=-0.0269403*(J**0)*(PD**2)*(ar**1)*(Z**1) 

    Q16=0.0558082*(J**3)*(PD**0)*(ar**1)*(Z**0) 

    Q17=0.0161886*(J**0)*(PD**3)*(ar**1)*(Z**0) 

    Q18=0.00318086*(J**1)*(PD**3)*(ar**1)*(Z**0) 

    Q19=0.015896*(J**0)*(PD**0)*(ar**2)*(Z**0) 

    Q20=0.0471729*(J**1)*(PD**0)*(ar**2)*(Z**0) 

    Q21=0.0196283*(J**3)*(PD**0)*(ar**2)*(Z**0) 

    Q22=-0.0502782*(J**0)*(PD**1)*(ar**2)*(Z**0) 

    Q23=-0.030055*(J**3)*(PD**1)*(ar**2)*(Z**0) 

    Q24=0.0417122*(J**2)*(PD**2)*(ar**2)*(Z**0) 

    Q25=-0.0397722*(J**0)*(PD**3)*(ar**2)*(Z**0) 

    Q26=-0.00350024*(J**0)*(PD**6)*(ar**2)*(Z**0) 

    Q27=-0.0106854*(J**3)*(PD**0)*(ar**0)*(Z**1) 

    Q28=0.00110903*(J**3)*(PD**3)*(ar**0)*(Z**1) 

    Q29=-0.000313912*(J**0)*(PD**6)*(ar**0)*(Z**1) 

    Q30=0.0035985*(J**3)*(PD**0)*(ar**1)*(Z**1) 

    Q31=-0.00142121*(J**0)*(PD**6)*(ar**1)*(Z**1) 

    Q32=-0.00383637*(J**1)*(PD**0)*(ar**2)*(Z**1) 

    Q33=0.0126803*(J**0)*(PD**2)*(ar**2)*(Z**1) 

    Q34=-0.00318278*(J**2)*(PD**3)*(ar**2)*(Z**1) 

    Q35=0.00334268*(J**0)*(PD**6)*(ar**2)*(Z**1) 

    Q36=-0.00183491*(J**1)*(PD**1)*(ar**0)*(Z**2) 

    Q37=0.000112451*(J**3)*(PD**2)*(ar**0)*(Z**2) 

    Q38=-0.0000297228*(J**3)*(PD**6)*(ar**0)*(Z**2) 

    Q39=0.000269551*(J**1)*(PD**0)*(ar**1)*(Z**2) 

    Q40=0.00083265*(J**2)*(PD**0)*(ar**1)*(Z**2) 

    Q41=0.00155334*(J**0)*(PD**2)*(ar**1)*(Z**2) 
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    Q42=0.000302683*(J**0)*(PD**6)*(ar**1)*(Z**2) 

    Q43=-0.0001843*(J**0)*(PD**0)*(ar**2)*(Z**2) 

    Q44=-0.000425399*(J**0)*(PD**3)*(ar**2)*(Z**2) 

    Q45=0.0000869243*(J**3)*(PD**3)*(ar**2)*(Z**2) 

    Q46=-0.0004659*(J**0)*(PD**6)*(ar**2)*(Z**2) 

    Q47=0.0000554194*(J**1)*(PD**6)*(ar**2)*(Z**2) 

 

 

    

K_Q=Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8+Q9+Q10+Q11+Q12+Q13+Q14+Q15+Q16+Q17+Q18

+Q19 \ 

    

+Q20+Q21+Q22+Q23+Q24+Q25+Q26+Q27+Q28+Q29+Q30+Q31+Q32+Q33+Q34+Q35+Q36 

\ 

    +Q37+Q38+Q39+Q40+Q41+Q42+Q43+Q44+Q45+Q46+Q47 

     

    return K_Q 

 

 

## ================================================================== 

 

## 4. eta_O function 

 

def eta_Ofunc(J,PD,ar,Z): 

     

    KT=K_Tfunc(J,PD,ar,Z) 

    KQ=K_Qfunc(J,PD,ar,Z) 

     

    eta_O=J/(2.*np.pi)*KT/KQ 

     

    return eta_O 

 

## ================================================================== 

 

## 3. Open Water Chart graphing 

 

def openwaterchart(J,PD,ar,Z): 

    #plt.figure(figsize=(15,10)) 

    plt.plot(J,K_Tfunc(J,PD,ar,Z),lw=2,label=r"$[K_T]$") 

    plt.plot(J,10.*K_Qfunc(J,PD,ar,Z),lw=2,label=r"$[10K_Q]$") 
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    plt.plot(J,eta_Ofunc(J,PD,ar,Z),lw=2,label=r"$[eta_O]$") 

    plt.title("Open Water Chart for Wageningen B-Series Propeller") 

    plt.xlabel("Advance Ratio, $J$ $[-]$") 

    plt.ylabel("Thrust and Torque Coefficients, $K_T$, $10K_Q$ $[-]$") 

    plt.legend() 

    #plt.grid() 

    #plt.show() 

 

# use find function to find self prop point for dc_4 

def findJTS2(dc_4,PD,ar,Z): 

    """ 

    Find the self-propulsion point as intersection of 

    parabola dc_4*J**2 and KT curve 

    """ 

    J_0=0.7 #initial guess for J 

     

    # solve for intersection point 

    # needs to be , after JTS so that fsolve only 

    # returns desired value 

    JTS,=fsolve(lambda J:dc_4*(J**2)-K_Tfunc(J,PD,ar,Z),J_0) 

     

    return JTS 

 

# finding minimum area ratio from Burrill criterion 

def ar_min(n,PD,D,T_req,v_as,e,rho): 

     

    g = 9.807 #m/s^2 

    rho=1026.021 #kg/m^3 

 

 

    p_A=101325. #Pa 

    p_v=1671.  #Pa 

    p_0=p_A+rho*g*e 

     

    v_1=np.sqrt((v_as**2)+(0.7*np.pi*n*D)**2) 

    sigma_b=(p_0-p_v)/(0.5*rho*v_1**2) 

    tau_c=0.715*(sigma_b**0.184)-0.437 

     

    r1=0.5*rho*(v_1**2)*tau_c*(1.067- 0.229*PD)*np.pi*(D**2)/4. 

    arm=T_req/r1 
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    return arm 

 

# test 

if __name__ == '__main__': 

 

    Z=4.0 

    PD=0.70 

    ar=0.5500 #expanded area ratio 

    J=np.array([0.0,0.2,0.4,0.6,0.8,1.0]) 

     

    plt.figure(figsize=(15,10)) 

    openwaterchart(J,PD,ar,Z) 

    plt.grid() 

    plt.show() 
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Appendix J: Optimization Code – WBOpt.py 

# NAME 3155 Project: Propeller Optimization Tool 

# Date Last Modified: 04/28/2021 

 

""" 

Propeller Selection Program: 

    Use the Wageningen B-Series polynomials and Holtrop and  

    Mennen's Resistance and Propulsion estimate method to  

    vary propeller design parameters and optimize a propeller  

    for any given vessel particulars. 

""" 

 

 

from WBPolynomials import eta_Ofunc,findJTS2,ar_min 

 

g=9.807 

rho=1027.8336 #kg/m^3; density at 4ºC 

nu=1.6262e-6 #m^2/s; viscosity at 4ºC 

 

## Step 1: Define Design Constants 

# completed in project code 

 

## Step 2: Open-Water Diagram for Chosen Design Constant 

# completed in project code 

 

## Step 3: Extract Max Efficiency from Diagram 

 

def optimumprop(x,dc_4,Z,D,T_req,v_as,rho,e,proptype):     

    #retreive free variables 

    PD=x[0] 

    ar=x[1] 

     

    #find JTS for this prop 

    JTS=findJTS2(dc_4,PD,ar,Z) 

     

    #rate of revolution at self-propulsion point 

    nTS=v_as/(JTS*D) 

     

    #compute open water efficiency 
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    eta_O=eta_Ofunc(JTS,PD,ar,Z) 

     

    #compute constraints 

    p=0. #initial value 

     

    if ar < ar_min(nTS,PD,D,T_req,v_as,e,rho): 

        p=p+(ar_min(nTS,PD,D,T_req,v_as,e,rho)-ar)**2 

     

    print('p = ',p)  

         

    if proptype=='CPP': 

        armax=0.75 

        if ar > armax: 

            p=p+7.*(ar-armax)**2 

            print('p = ',p)  

 

    if PD > 1.4: 

        p=p+(PD-1.4)**2         

             

    obj=1.-eta_O+ 10.*p 

     

    print('p = ',p)  

    print('') 

 

    return obj 
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