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Abstract

We consider an Eulerian-Lagrangian localized adjoint method (ELLAM) applied

to nonlinear model equations governing solute transport and sorption in porous

media. Solute transport in the aqueous phase is modeled by standard advection and

hydrodynamic dispersion processes, while sorption is modeled with a nonlinear local

equilibrium model. We present our implementation of finite volume ELLAM (FV-

ELLAM) and finite element (FE-ELLAM) discretizations to the reactive transport

model and evaluate their performance for several test problems containing self-

sharpening fronts.
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Notation

Roman Letters

C aqueous phase solute concentration

Ĉ trial solution

Cb inflow boundary value for aqueous phase solute concentration

Ce aqueous phase equilibrium solute concentration

Cn+1,m nonlinear solver’s current guess for concentration at tn+1

C∗ boundary value at −∞ for traveling wave example

C∗ boundary value at ∞ for traveling wave example

CL Riemann problem left state

CR Riemann problem right state

D hydrodynamic dispersion coefficient

Kf Freundlich sorption capacity coefficient

M normalized total concentration, C + ϕ(C)

Mh discrete spatial mesh

Rf retardation factor, 1 + dϕ
dC
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T extent of temporal domain

W FV-ELLAM approximate test function

X parameterization for tracking along solution characteristics (see

eqns (27) and (28))

Xa parameterization for tracking along adjoint characteristics (see

eqns (25) and (26))

cfr wave speed cutoff for FT tracking

d1−ε front width in traveling wave example

f continuous solute sources and sinks

n outward unit normal on ∂Ω

ne + 1 number of nodes in Mh

nf exponent in Freundlich sorption isotherm

nq number of integration points

nst number of tracking substeps

qb total flux boundary value on inflow boundary

rq numerical integration weight

t time coordinate

tn,k tracking time level, tn,k = tn + k∆τ

v mean pore velocity

w test function

x space coordinate

xL left end of spatial domain

xR right end of spatial domain

xi+1/2 FV-ELLAM cell boundary, (xi + xi+1)/2

xn+1
s intersection of shock at time level n+ 1 in Riemann example

xq numerical integration point

3



Greek Letters

∆tn+1 time step, tn+1 − tn.

∆τ tracking time step

∆xi spatial increment, xi+1/2 − xi−1/2

∆xi+1/2 spatial increment, xi+1 − xi

∆x support parameter for Wi, ∆x = ∆x/NS

∆xmin approximate minimum front resolution required

ΓO outflow spatial boundary

ΓI inflow spatial boundary

Ω spatial domain

Ωi spatial interval associated with node i

α wave speed for traveling wave example

∂Ω boundary of spatial domain

δfr discretization parameter for FT tracking

ε front width parameter for traveling wave example

η traveling wave coordinate, η = x− αt

θ porosity

λ characteristic speed, v/Rf

λa adjoint equation characteristic speed, (vC)/[C + ϕ(C)]

ρb bulk density of the solid phase

σ shock speed

ϕ normalized isotherm, [ρbωe(C)]/θ

ψ piecewise-linear Lagrangian shape function

ωe solid phase equilibrium solute mass fraction

ωf solid phase solute mass fraction
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Subscripts and Superscripts

a quantity associated with adjoint characteristics (subscript)

i nodal value (subscript)

j nodal value (subscript)

m nonlinear solver iteration level (superscript)

n time level (superscript)

˜ forward-tracked quantity (superscript)

∗ backward-tracked quantity (superscript)

Abbreviations

BE backward Euler time discretization

BE-S tracking strategy using BE with ∆τ = ∆tn+1

BL bilinear interpolation in space and time

Cr Courant number

ELLAM Eulerian-Lagrangian localized adjoint method

FE-ELLAM finite element ELLAM

FT front-tracking method

FV-ELLAM finite volume ELLAM

MMOC modified method of characteristics

NS FV-ELLAM parameter for approximate test function, W

NT number of composite trapezoidal rule intervals (in time) along

inflow boundary

Pe mesh Peclet number

RK2 second-order explicit Runge-Kutta time discretization

RK2-S tracking strategy using RK2 with ∆τ = ∆tn+1
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RK2-BL tracking strategy combining RK2 with BL

RK2-FT tracking strategy combining RK2 with FT

SSIP strategic spatial integration point

STIP strategic temporal integration point

1 Introduction

Much effort has been devoted to the numerical simulation of contaminant

transport processes in the subsurface over the last few decades [5, 28]. Despite

significant advancements, accurate and efficient simulation remains a challenge

in many cases, particularly for advective-dominated problems involving nonlin-

ear chemical reactions and mass transfer [16, 20]. Characteristic-based meth-

ods such as Lagrange-Galerkin discretizations [4, 29], the modified method of

characteristics (MMOC) [13], and ELLAMs [9] have been applied to a wide

range of transport problems. These methods typically combine a Lagrangian

approach for advection with Eulerian discretizations for other transport pro-

cesses such as physical dispersion. Since they rely on a Lagrangian framework

for advection, characteristic-based methods are often able to provide sharp res-

olution of fronts on relatively coarse grids while avoiding stability restrictions

on the Courant number commonly found in Eulerian methods [14]. Among

characteristic-based methods, ELLAM approaches have the additional advan-

tages that they provide mass conservation and incorporate boundary condi-

tions in a systematic way [31].

A general review of characteristic-based methods and ELLAM approaches

in particular is beyond the scope of this work. We refer the reader instead

to Russell and Celia [31] and Ewing and Wang [14]. In brief, ELLAM dis-
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cretizations for linear transport are mature. A number of practical two- and

three-dimensional problems have been solved successfully using ELLAM ap-

proximations [7, 8, 18, 40], and an FV-ELLAM option has been incorporated

in the USGS MOC3D code [32]. ELLAM approaches have also been consid-

ered for several nonlinear problems including two-phase flow via the Buckley-

Leverett equation with capillary pressure [11], and advective-dispersive trans-

port with biodegradation [6, 35, 41]. Initial work has been reported for general

compositional formulations of multiphase flow [42] as well. However, ELLAM

approaches for nonlinear problems are less advanced than their linear counter-

parts. Nonlinear transport problems introduce several additional complexities.

Solution fronts can, for example, be self-sharpening (shocks) rather than con-

tact discontinuities, and reaction terms can be sensitive to overshoot and un-

dershoot in the solution [27]. To realize the same level of success that has been

achieved for linear problems with nonlinear reactive transport, more work is

needed to develop approaches within the ELLAM framework that can effec-

tively maintain accurate resolution for large time steps and mass conservation

in the presence of these additional challenges [8].

Previous ELLAM approaches for nonlinear reactive transport have consid-

ered contaminant biodegradation modeled by Monod kinetics in both fully

coupled [35, 41] and operator-split frameworks [6]. Within an operator split-

ting context, ELLAM methodologies can be carried over directly to the linear

transport equation. The fully coupled formulations account for the reaction

terms in the ELLAM test functions. The methods of Wang et al. [41] and

V̊ag et al. [35] are based on linearizing the Monod reaction terms and defining

ELLAM test functions to increase or decrease along characteristics, as with

solution to problems involving transport and linear decay. Various techniques
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are then necessary to account for the error arising from the linearization. How-

ever, the basic methods for tracking information along characteristics in the

corresponding linear transport problem can still be used [35, 41]. For many

nonlinear problems of interest, this approach will not be effective.

Several Eulerian-Lagrangian discretizations including characteristic Galerkin

[12] and Lagrange-Galerkin methods [4, 23, 24] have been applied to one-

dimensional advective-dispersive transport with both equilibrium and non-

equilibrium sorption in non-divergence form. ELLAM formulations that are

applied directly to the divergence form of the underlying transport problem

have advantages in handling of boundary conditions and ensuring conservation

of mass [31]. In addition, previous Eulerian-Lagrangian methods accounted

for Lagrangian aspects of their discretization using characteristics from the

hyperbolic portion of the original transport equation [4, 23, 24]. While tracking

these characteristic curves in space and time details the propagation of solution

values, characteristics become nonunique in the presence of a shock [27]. A

potential, under-explored solution to this problem is to track characteristics

for the ELLAM test functions, which satisfy a linear adjoint equation, and

so avoid the difficulties associated with tracking characteristics of the original

transport equation when problems exhibit self-sharpening fronts.

The overall goal of this work is to advance ELLAM approaches for the solu-

tion of a common class of nonlinear transport problems using approaches that

conserve mass, are able to resolve self-sharpening fronts, and accommodate

boundary conditions naturally. The specific objectives of this work are: (1)

to summarize a common nonlinear transport model that poses challenges for

traditional ELLAM approaches; (2) to detail mass conservative FE-ELLAM

and FV-ELLAM approximation of the nonlinear problem; (3) to formulate
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alternative approaches for approximating the nonlinear tracking along char-

acteristics; and (4) to compare the various ELLAM approaches for a range of

test problems and spatial and temporal step sizes.

2 Model Formulation

We sought a nonlinear model problem that embodied the challenges of sharp-

front resolution, mass conservation, and the flexible and accurate accommo-

dation of boundary conditions, which were highlighted above as open issues.

A common nonlinear model that meets these criteria is advective-dispersive

transport in the presence of nonlinear, local-equilibrium sorption to a fixed

solid phase, which is described by the Freundlich equilibrium model [15, 20].

This model is relevant because it may be used as at least a first-cut approxima-

tion for the transport of a large number of neutral hydrophobic solutes through

porous media that include soils, sediments, and aquifer materials [2, 5]. A

weakness in this model is that it assumes that the solute achieves equilibrium

locally, or rapidly in comparison to the rate of transport through the system—

an assumption that may not hold for many frequently encountered situations

[5].

Because our focus is on methods development, we examine a one-dimensional

form of this model given by

∂C

∂t
+
ρb

θ

∂ωf

∂t
+
∂(vC)

∂x
− ∂

∂x

(

D
∂C

∂x

)

= f(x, t) in Ω × [0, T ] (1)

ωf =ωe(C) (2)

where C is the aqueous-phase solute concentration, t is time, ρb is the bulk
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density of the solid phase, θ is the porosity, ωf is the solid-phase solute mass

fraction, v is the mean pore velocity, x is the spatial coordinate, D is the

hydrodynamic dispersion coefficient, f represents a solute source or sink, Ω is

the spatial domain, [0, T ] is the temporal domain, and ωe is the solid-phase

solute mass fraction in equilibrium with the fluid-phase equilibrium solute

concentration Ce. The solid-phase equilibrium solute mass fraction is described

using the Freundlich equilibrium model

ωe =KfC
nf (3)

where Kf is a sorption capacity coefficient, and the exponent nf is a measure

of the sorption intensity.

The initial aqueous-phase solute concentration and solid-phase solute mass

fraction are denoted by C(x, t = 0) = C0(x) and ωf(x, t = 0) = ωe(C
0).

ELLAM formulations naturally incorporate a range of boundary conditions

[31]. However, we restrict ourselves to a total flux condition on the inflow

boundary and zero dispersive flux along the outflow boundary for simplicity

(

vC −D
∂C

∂x

)

· n= qb(x, t) for x ∈ ΓI ,

∂C

∂x
· n= 0 for x ∈ ΓO (4)

where ΓI ∪ ΓO = ∂Ω, ΓI ∩ ΓO = ∅, and ∂Ω is the boundary of Ω. n is the

outward unit normal on ∂Ω with v · n < 0 on ΓI and v · n ≥ 0 on ΓO. In the

the one-dimensional problems we consider here, ΓI and ΓO each consist of a

single point.

Following traditional ELLAM approaches [9, 31] and our preliminary efforts

on this model problem [15], we rewrite eqn (1) in a slightly more general form
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for convenience:

∂M(C)

∂t
+

∂

∂x

(

vC −D
∂C

∂x

)

= f(x, t) in Ω × [0, T ] (5)

M(C) = C +
ρb

θ
ωe(C) =C + ϕ(C)

We next multiply eqn (5) by a test function w(x, t), integrate over Ω × [0, T ]

and expand to obtain

∫

Ω

T
∫

0

(

∂[M(C)w]

∂t
−M(C)

∂w

∂t

)

dt dx+

T
∫

0

∫

Ω

∂

∂x

[

w

(

vC −D
∂C

∂x

)]

dx dt

−
T
∫

0

∫

Ω

(

vC
∂w

∂x
−D

∂C

∂x

∂w

∂x

)

dx dt=

T
∫

0

∫

Ω

fw dx dt (6)

After reordering terms, we have

∫

Ω

T
∫

0

∂[M(C)w]

∂t
dt dx+

T
∫

0

∫

Ω

D
∂C

∂x

∂w

∂x
dx dt+

T
∫

0

∫

Ω

[

∂

∂x

(

vCw −D
∂C

∂x
w

)]

dx dt

=

T
∫

0

∫

Ω

[

M(C)
∂w

∂t
+ vC

∂w

∂x

]

dx dt+

T
∫

0

∫

Ω

fw dx dt (7)

Next the temporal domain [0, T ] is divided into intervals [tn, tn+1]. The test

function w is required to disappear for t 6∈ [tn, tn+1] and to satisfy the formal

adjoint equation

M(C)
∂w

∂t
+ vC

∂w

∂x
=0 (8)

over [tn, tn+1]. While other choices of w are possible [33], eqn (8) corresponds

to the standard approach [31]. It is important to note that eqn (8) is nonlinear

in the concentration C but is linear in the test function w. Assuming that the

concentration is continuous over the interval [tn, tn+1] and applying Green’s

formula, we then have
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∫

Ω

M [C(x, tn+1)]w(x, tn+1) dx+

tn+1
∫

tn

∫

Ω

D
∂C

∂x

∂w

∂x
dx dt

+

tn+1
∫

tn

∫

∂Ω

(

vCw −D
∂C

∂x
w

)

· n ds dt =
∫

Ω

M [C(x, tn)]w(x, tn) dx

+

tn+1
∫

tn

∫

Ω

fw dx dt (9)

Eqn (9) consists of five integrals corresponding to the total mass at the new

time level, dispersion, boundary fluxes, mass at the old time level, and con-

tributions from sources and sinks. There are several appealing features of this

weak formulation. Specifically, it is in a fully conservative form and does not

involve differentiating the isotherm ωe(C), which is not Lipschitz continuous

at the origin for a Freundlich isotherm with 0 < nf < 1 [4]; the range of

non-Lipschitz continuity occurs routinely in applications [2].

Global mass conservation for our ELLAM approach can be seen by summing

eqn (9) over all test functions {wi}. If the test functions {wi} are required

to satisfy
∑

i wi(x, t) = 1, we obtain a statement of mass conservation for the

domain Ω and the time interval [tn, tn+1]:

∫

Ω

M [C(x, tn+1)] dx+

tn+1
∫

tn

∫

∂Ω

(

vC −D
∂C

∂x

)

· n ds dt=

∫

Ω

M [C(x, tn)] dx+

tn+1
∫

tn

∫

Ω

f dx dt (10)

Before introducing the discrete approximation to eqn (9), we identify the char-

acteristics associated with the original transport equation and adjoint equa-

tion, since these play an important role in the ELLAM approximation. The

hyperbolic portion of eqn (1) has the characteristic speed
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λ=
v

Rf

(11)

Rf = 1 +
dϕ

dC
(12)

where Rf is the retardation factor [20]. The characteristics are the solution to

dx

dt
= λ[C(x, t), x, t] = λ(C) =

v

1 + dϕ
dC

(13)

The characteristics for the adjoint eqn (8) are given instead by

dx

dt
= λa[C(x, t), x, t] = λa[C(x, t)] (14)

where the speed is

λa =
vC

C + ϕ(C)
(15)

In general, both λ and λa are nonlinear functions of the concentration C. For

the Freundlich isotherm from eqn (3) we have

λ=
v

1 +
nfKf ρb

θ
Cnf−1

, and

λa =
v

1 +
Kfρb

θ
Cnf−1

(16)

When 0 < nf < 1.0, which is the case we will focus on in our numerical

experiments, dϕ
dC

→ ∞ as C ↘ 0 and both λ and λa → 0. In addition, |λa| <

|λ| < |v| for 0 < nf < 1.0, since Kf > 0 by definition.

To provide a simple, concrete illustration of the solution and adjoint charac-

teristic behavior around a front, we consider a Riemann problem with left and

right concentrations CL = 0.9 and CR = 0.1. Figures 1 and 2 show λ and λa for

v = 1, D = 0.0, and ϕ(C) = 0.50085×C0.7. The solution is a right-going shock

moving with Rankine-Hugoniot speed σ = v(CR−CL)/[M(CR)−M(CL)]. The
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Fig. 1. λ Riemann example
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Fig. 2. λa Riemann example

characteristics defined by eqn (11) are straight lines in space-time at which

a constant concentration value propagates. These intersect to form the shock
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seen in Figure 1. On the other hand, the adjoint characteristics propagate

constant values of the test function w, and are not straight since they depend

on the solution C. At the shock, the adjoint characteristic speed jumps along

with the solution value. The characteristic trajectory itself remains continuous,

and the characteristics do not intersect. In the presence of physical dispersion,

the solution characteristics may become close, but they will not cross. Simi-

larly, the adjoint characteristic speeds will continue to change rapidly around

a sharp front but will not undergo a jump in speed at the front.

3 Solution Approach

Our first step in developing a discrete approximation for the weak formulation,

is to introduce a temporal approximation for the dispersion and source terms in

eqn (9). Although second-order Runge-Kutta methods have been used in some

cases [1], the most common approach is to use a backward Euler discretization

in time so that the source and dispersion integrals only involve values at

tn+1 [31]. With the backward Euler approximation, we have the semi-discrete

system

∫

Ω

M [C(x, tn+1)]w(x, tn+1) dx+ ∆tn+1
∫

Ω

D
∂C

∂x
(x, tn+1)

∂w

∂x
(x, tn+1) dx

+

tn+1
∫

tn

∫

∂Ω

(

vCw −D
∂C

∂x
w

)

· n ds dt =
∫

Ω

M [C(x, tn)]w(x, tn) dx

+∆tn+1
∫

Ω

f(x, tn+1)w(x, tn+1) dx (17)

where ∆tn+1 = tn+1 − tn.

We next must decide on a representation for the approximate solution to
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C and the test function w. Our approach is essentially the same whether a

FV-ELLAM or FE-ELLAM method is used. In the following, we detail both

approaches and note differences that exist.

Since the problems considered here are one-dimensional, the spatial domain

is simply Ω = [xL, xR]. We introduce a discrete mesh Mh for Ω consisting of

nodes or vertices xi, i = 0, . . . , ne. Mh is a natural description of the compu-

tational mesh for an FE-ELLAM discretization, while we interpret Mh as a

point-distributed grid with control volumes or cells around each of the interior

vertices xi, i = 1, . . . , ne−1, so that Ωi = [xi−1/2, xi+1/2], xi+1/2 = (xi+xi+1)/2,

and |Ωi| = ∆xi = xi+1/2 −xi−1/2. In the following, we use the terms mesh and

grid interchangeably to refer to Mh for convenience.

For both the FE-ELLAM and FV-ELLAM, the trial solution is represented

using the standard linear Lagrangian basis functions

C(x, t) ≈ Ĉ(x, t) =
ne
∑

i=0

Ci(t)ψi(x) (18)

where Ĉ(x, t) is the trial solution and ψi(x) is supported on [xi−1, xi+1]

ψi(x) =



















x−xi−1

∆xi−1/2
, x ∈ [xi−1, xi]

xi+1−x
∆xi+1/2

, x ∈ [xi, xi+1]

(19)

and ∆xi+1/2 = xi+1 − xi. The boundary trial functions are

ψ0 =
x1 − x

∆x1/2
, x ∈ [xL, x1]

ψne =
x− xne−1

∆xne−1/2

, x ∈ [xne−1, xR] (20)

where Ω0 = [x0, x1/2] and Ωne = [xne−1/2, xne ] at the boundaries for FV-

ELLAM. In the following, we write C(x, t) for the trial solution for conve-
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nience.

At time level tn+1, the test function wi is aligned in a regular way with Mh.

Since wi must obey eqn (8), this will not be the case in general for t < tn+1.

To reinforce this observation, we use the notation wn+1
i :

wn+1
i (x, tn+1) = ψi, for i = 0, . . . , ne FE-ELLAM (21)

wn+1
i (x, tn+1) =



















1, x ∈ [xi−1/2, xi+1/2]

0, otherwise

FV-ELLAM (22)

Similarly, the FV-ELLAM boundary test functions wn+1
0 and wn+1

ne
are indi-

cator functions associated with Ω0 and Ωne , respectively.

3.1 Evaluation of integrals

Given a choice of trial and test functions, the next step is to approximate the

various integrals in eqn (17). Since we use a backward Euler approximation for

the dispersion and source integrals (second and last terms in eqn (17)), these

terms can be evaluated identically to similar terms that appear in standard

ELLAM formulations for linear transport problems [8, 17].

3.1.1 mass at the new time level

The first term in eqn (17) accounts for the mass in Ω at the new time level.

For FE-ELLAM we have the standard (nonlinear) mass integral for a Galerkin

finite element method

∫

Ω

M(Cn+1)wn+1
i dx for i = 0, . . . , ne (23)

Similarly, for FV-ELLAM we have
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∫

Ω

M(C(x, tn+1))wn+1
i (x, tn+1) dx=

∫

Ωi

M(C(x, tn+1)) dx (24)

Eqns (23) and (24) can be approximated numerically in a straightforward man-

ner. The usual approach for FV-ELLAM discretizations is to use a composite

trapezoidal rule, which is exact for a linear problem [17]. A similar approach

can be used here for both the FV-ELLAM and FE-ELLAM discretizations,

although a larger number of subintervals may be required to approximate

the nonlinear mass term accurately. Regardless of the quadrature used, it is

also important for mass conservation that the numerical integration strategies

chosen for the old and new mass integrals be consistent [17].

3.1.2 mass from the previous time level

Tracking along characteristics plays a major role in the remaining integrals,

which account for boundary contributions and the mass in Ω at the previ-

ous time level. As a result, it is here that a nonlinear sorption isotherm can

introduce significant complexity over conservative transport problems.

Following [15], we adopt the notation

x∗a(t) = Xa(t; x, t
n+1)≡x−

tn+1
∫

t

λa{C[x∗a(τ), τ ], x
∗
a(τ), τ} dτ (25)

x̃a(t) = Xa(t; x, t
n)≡x+

t
∫

tn

λa{C[x̃a(τ), τ ], x̃a(τ), τ} dτ (26)

for tracking along adjoint characteristics given by eqn (15). For tracking along

solution characteristics we write

x∗(t) = X(t; x, tn+1)≡x−
tn+1
∫

t

λ{C[x∗(τ), τ ], x∗(τ), τ} dτ (27)
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x̃(t) = X(t; x, tn)≡x+

t
∫

tn

λ{C[x̃(τ), τ ], x̃(τ), τ} dτ (28)

Approximating the first term on the right hand side of eqn (17) numerically

gives

∫

Ω

M [C(x, tn)]wn+1
i (x, tn) dx ≈

nq−1
∑

q=0

M [Cn(xq)]w
n+1
i (xq, t

n)rq (29)

where we define the set of integration points and weights {(xq, rq)}, q =

0, . . . , nq − 1 in physical space on Ω rather than on a reference element. nq is

the total number of integration points. We employ a forward-tracking approach

where the integration weights and points are defined at tn to ensure accurate

evaluation of the mass at the old time level. The mass associated with each

point is determined by evaluating M [Cn(xq)] at the interpolated concentration

values, Cn(xq). Each integration point xq is tracked forward to tn+1 by

x̃q = (x̃q)a(t
n+1) = Xa(t

n+1; xq, t
n) (30)

using eqn (26). At tn+1, the value of wn+1
i (x̃q, t

n+1) is determined using eqn

(21) or eqn (22) depending upon the method used.

At a high level, approximating the mass term at tn simply requires iterating

through the list of integration points xq at tn and tracking them forward in

time to tn+1 along characteristics defined by eqn (26). The right hand side

vector components of eqn (17) for test functions wn+1
i that are nonzero at x̃q

then receive a corresponding contribution of mass. Unfortunately, accurately

tracking the characteristics can be difficult even in one spatial dimension. As

a result, a number of strategies have been developed to improve the tracking

procedure’s robustness. In particular, FV-ELLAM methods introduce an ap-
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proximate test function W n+1
i rather than use the actual value of wn+1

i in eqn

(29). W n+1
i is roughly a smoothed out version of wn+1

i with wider support cov-

ering three cells in one spatial dimension and is intended to help avoid some

of the difficulties that arise in distributing mass at the new time level when

tracking is inexact. The amount of smoothing for W n+1
i is given in terms of

the parameter NS [17]. For example, in the interior W n+1
i can be written

Wi(x, t
n+1)=


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0, x < xi−1/2 − ∆xi−1

∆xi

∆xi−1+∆xi

(

1 − xi−1/2−x

∆xi−1

)

, xi−1/2 − ∆xi−1 ≤ x ≤ xi−1/2

∆xi+(x−xi−1/2)∆xi−1/∆xi

∆xi−1+∆xi
, xi−1/2 ≤ x ≤ xi−1/2 + ∆xi

1, xi−1/2 + ∆xi ≤ x ≤ xi+1/2 − ∆xi

∆xi+(xi+1/2−x)∆xi+1/∆xi

∆xi+1+∆xi
, xi+1/2 − ∆xi ≤ x ≤ xi+1/2

∆xi

∆xi+1+∆xi

(

1 − x−xi+1/2

∆xi+1

)

, xi+1/2 ≤ x ≤ xi+1/2 + ∆xi+1

0, xi+1/2 + ∆xi+1 ≤ x

(31)

where ∆x = ∆x/NS. FE-ELLAM continues to use wn+1
i = ψi. Note that for

NS = 2, W n+1
i is also piecewise-linear chapeau function. However, the FV-

ELLAM and FE-ELLAM discretizations differ in their approximation of the

new mass integral, since FV-ELLAM continues to use eqn (24) with wn+1
i

given by eqn (22).

We use the composite trapezoidal rule to approximate the mass integrals, be-

cause it has superior stability properties for Eulerian-Lagrangian discretiza-

tions [29] and allows the ability to adjust the number of subintervals per mesh

cell based on the difficulty of a given problem [17]. We also follow the common

practice for FV-ELLAM of introducing additional integration points known as
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strategic spatial integration points (SSIPs) and strategic temporal integration

points (STIPs). These SSIPs and STIPs are obtained by backtracking to tn

points where the approximate test functions W n+1
i change slope and so im-

prove the distribution of mass at the new time level. Defining the support of

W n+1
i in terms of NS and including SSIPs and STIPs has proven successful for

a wide range of applications of FV-ELLAM [17, 31]. Usually, the number of

intervals in the composite trapezoidal rule is also determined by NS. Since the

problems here are nonlinear, we choose the number of subintervals per mesh

cell in the composite trapezoidal rule based on accuracy requirements for the

nonlinear mass term and use the NS parameter only to define the support of

W n+1
i .
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Fig. 3. Ω∗
i (shaded) Riemann example with CR = 0

In the following, we address the approximation of boundary conditions and

detail tracking procedures for the integration points {xq}. Before turning to

these topics, however, the behavior of solution and adjoint characteristics for

zero concentration values bears some additional comment. For 0 < nf < 1,
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the value C = 0 propagates with speed 0 even with non-zero dispersion [36]. If

we consider the example Riemann problem from §2 with CR = 0, we see that

λa = σ. Adjoint characteristics moving with speed 0 intersect the shock and

then move together at the shock speed (see Figure 3). If the shock intersects

time level tn+1 at xn+1
s , then Xa(t

n; xn+1
s , tn+1) is non-unique. Our ELLAM

approach remains well-defined computationally and mathematically, however.

In a FV-ELLAM context, for instance, if xn+1
s ∈ Ωi we can still determine the

support of wn+1
i

Ω∗
i = [(xi−1/2)

∗
a, (xi+1/2)

∗
a] (32)

from the points (xi±1/2)
∗
a = Xa(t

n; xn+1
i±1/2, t

n+1). If, say xn+1
s = xi+1/2, we choose

to set (xi+1/2)
∗
a = xi+1/2, the right-most of the non-unique values. Moreover,

since M [C(xq, t
n)] = 0 for points xq at tn that map to xn+1

s , the integral in eqn

(29) is independent of this non-unique choice. Whenever the characteristics

ahead of the shock carry nonzero mass (CR > 0), as in Figure 2, they do not

intersect, and Xa(t
n; xn+1

s , tn+1) is unique.

3.1.3 boundary integrals

The third integral in eqn (17) accounts for the influence of the physical bound-

ary. Along the inflow boundary, eqn (17) contains an additional term, which

for ΓI = xL is

−
tn+1
∫

tn

qb(xL, t)w(xL, t) dt (33)

Eqn (33) results in a contribution to the right hand side of eqn (17) for test

functions wn+1
i that intersect the inflow boundary over [tn, tn+1]. Eqn (33) can

be approximated much as eqn (29) where the numerical quadrature is in time
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along ΓI [17]. Along the outflow boundary ΓO = xR the zero-dispersive flux

condition results in an additional term

tn+1
∫

tn

v(xR, t)C(xR, t)w(xR, t) dt (34)

that must be approximated. We simply use the trapezoidal rule

tn+1
∫

tn

v(xR, t)C(xR, t) dt ≈

∆tn+1

2

[

v(xR, t
n)Cn

ne
+ v(xR, t

n+1)Cn+1
ne

]

(35)

since this requires the solution from time levels tn+1 and tn only [31]. However,

sub time-stepping along ΓO can be used for greater resolution if necessary.

3.2 Tracking techniques

In general, a numerical integration technique is required to solve eqn (14) and

determine the behavior of the ELLAM test functions. There are many options

for linear and nonlinear problems, including forward and backward Euler as

well as explicit Runge-Kutta methods [10]. To track from point (x0, τ 0) to

(x̃1
a, τ

1) with a backward Euler (BE) approximation, we set

x̃1
a = x0 + ∆τλa[C(x̃1

a, τ
1)] (36)

while a simple second-order explicit Runge-Kutta (RK2) scheme is [10]

x̃1
a =x0 + ∆τλa[C(x0, τ 0)]

τ 1 = τ 0 + ∆τ

x̃2
a =x0 +

∆τ

2

{

λa[C(x0, τ 0)] + λa[C(x̃1
a, τ

1)]
}

(37)

where ∆τ = τ 1 − τ 0 is the tracking time step.
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The ODE integration methods, eqns (36) and (37), are simple. For our pur-

poses, the main challenge in applying them to solve eqn (14) is the evaluation

of λa[C(x, t)]. Specifically, when integrating over the time interval [tn, tn+1],

the value of the approximate solution C(x, tn) and the nonlinear solver’s cur-

rent guess for C(x, tn+1) will be known. However, determining C(x, t) for

t ∈ (tn, tn+1) requires interpolation based on a representation over Ω×[tn, tn+1]

for the approximate solution. There are a variety of approaches one could take

to obtain such a representation with varying degrees of complexity depending

on the assumptions made about the solutions behavior. If one wishes to use a

tracking time step that is the same as the global time step, then eqn (37) or

eqn (36) does not require interpolation at intermediate time levels. Of course,

this suggests that the Courant number allowed may then be limited by the

accuracy necessary for the tracking step. Below, we denote backward Euler

time integration with ∆τ = ∆tn+1 as BE-S (backward Euler, single-step) and

label the combination of RK2 time integration with ∆τ = ∆tn+1 as RK2-S

(second order Runge-Kutta, single-step).

We also consider two approaches for obtaining intermediate values of C over

(tn, tn+1] to allow ∆τ < ∆tn+1. The first is to use bilinear interpolation (BL)

in space and time based on C(x, tn) and the nonlinear solver’s current guess

for the solution at the new time level, Cn+1,m(x, tn+1). The second approach is

to use a front-tracking algorithm to obtain solution estimates at intermediate

time levels, tn,k = tn + k∆τ . Specifically, we employ a front-tracking method

(FT) based on Risebro and Tveito [30] and implemented in Langseth [26],

which computes a piecewise-constant solution to the homogeneous, hyperbolic

portion of eqn (5),
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∂M(C)

∂t
+
∂(Cv)

∂x
= 0 (38)

We then use the solution to eqn (38) to evaluate λa[C(x, tn,k)] in eqn (36)

or eqn (37). The advantage of using a front-tracking strategy over other ap-

proximate solution methods is that it can accurately locate sharp fronts that

cause jumps in adjoint characteristic speeds and is not subject to a Courant

number limitation [26, 30]. We note that the front-tracking method itself can

not be applied directly to the original nonlinear transport problem due to the

second-order dispersion term, but would require a splitting approach [19, 21].

The initial data for the FT front tracking could in principle be based on

either C(x, tn) or on Cn+1,m(x, tn+1). Here, we use C(x, tn) and track forward

to tn+1. To evaluate λa[C(x, tn+1)] we use the tracking solution rather than

Cn+1,m(x, tn+1) so that the tracking procedure is independent of the solution at

the new time level. This simplifies the Jacobian calculation and nonlinear solve

dramatically, but eliminates a feedback mechanism present in the tracking

strategies that incorporate Cn+1,m(x, tn+1). Clearly, the front-tracking strategy

outlined is more involved than bilinear interpolation or relying on solution

values at tn and tn+1 alone, but it could potentially allow significantly larger

Courant numbers and so fewer nonlinear solves and tracking steps. We denote

the overall tracking procedure RK2-FT or RK2-BL when either the FT or BL

intermediate solution representation is combined with RK2 time integration.

We mention briefly the incorporation of boundary data in the tracking proce-

dures. In general, one can simply use the corresponding value from the trial

solution or from a given intermediate solution representation when evaluating

λa at boundary locations. For Dirichlet conditions, the concentration at the
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inflow boundary, Cb, can be used when evaluating λa. This may also be a

reasonable approximation for total flux inflow boundary conditions in some

cases, such as advection-dominated problems where an inflow concentration

and flow rate are used to specify qb.

3.3 Nonlinear and linear solvers

The FV-ELLAM and FE-ELLAM approximations presented above result in

a discrete nonlinear system at each time level, which we solve using Newton’s

method. This nonlinear solve can be difficult for given sets of physical param-

eters and auxiliary data. To improve robustness, we use an Armijo line search

strategy [22]. The performance of Newton’s method can also be improved dra-

matically if a good initial guess for the solution is available. A default approach

for solution of transient partial differential equations with implicit time dis-

cretizations is to use the solution from the previous time step as the initial

guess for the solution at the new time level. Obviously, the quality of this guess

degrades as the size of the time step increases if there is significant transient

behavior in the problem. To improve performance, we use a crude, predicted

value based on linear advection only. For the one-dimensional problems here,

the initial guess for v > 0 is,

Cn+1,0
i = Cn

j , j = i− bCrc (39)

where bxc is the largest integer less than or equal to x and Cr is the target

Courant number for the simulation and corresponds to the maximum char-

acteristic speed, Cr = maxi=0,ne |λ(Cn
i )|∆tn+1/∆x. For locations that track

backwards out of the domain (j < 0 in eqn (39)), we set Cn+1,0
i to the cor-
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responding boundary value. The intent of eqn (39) is to speed convergence

of the Newton solve. Its impact is largest for the RK2-S and BE-S tracking

strategies, since they incorporate values of Cn+1,m in the tracking of numerical

integration points. If there is a nonlinear solver failure, the time step is halved

and the Newton solve is repeated using the solution from the last unsuccessful

iteration as the initial guess.

Since the Freundlich isotherm is not differentiable at C = 0 when 0 < nf < 1,

we evaluate ϕ(C) and dϕ/dC using cubic splines. Whether or not a tracking

strategy depends on C(x, tn+1) has a significant impact on the complexity

associated with calculating analytical Jacobians for the Newton solve. We

use a numerical Jacobian in the results below for simplicity. The linear solve

needed at each Newton iteration was accomplished using a banded lower-upper

decomposition solver from LAPACK [3].

4 Results

We next present a series of numerical experiments to evaluate our ELLAM

approach for transport problems with self-sharpening fronts. The first set of

simulations examine the FV-ELLAM and FE-ELLAM discretizations’ perfor-

mance with the RK2-S and BE-S tracking strategies on coarse grids and the

discretizations’ mass conservation properties. We then investigate the meth-

ods’ ability to resolve fronts accurately as solutions become more steep. Last,

we consider the performance of different tracking strategies for a range of Cr.

The basic test problems were constant injection into a domain originally free

of contaminant and transport of a contaminant slug. The simulations are la-
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beled according to their problem (PA–PF), which ELLAM discretization was

used (FV or FE), and a simulation number. In all cases, the porosity and ve-

locity were θ = 0.4, v = 1. The final simulation time was t = 0.5, and sorption

was modeled by a Freundlich isotherm with Kf = 0.126 and nf = 0.7. Zero

dispersive flux was applied at the outflow boundary. For the injection test

problems, the inflow boundary condition corresponded to a constant concen-

tration of one. Otherwise, the inflow boundary value was zero. The numerical

quadrature used was the composite trapezoidal rule with six subintervals. The

nonlinear systems in all simulations were solved using Newton’s method with

a numerical Jacobian and an `2 relative residual convergence criterion. The

maximum number of nonlinear iterations and line searches allowed was twenty,

and the nonlinear solver tolerance was 10−10 unless stated otherwise.

4.1 Initial results

For the first set of experiments, we considered a constant injection example

(Problem A) and transport of a slug initial condition (Problem B) given by

C(x, t0)=


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0, 0 ≤ x < 0.15

(x− 0.15)/0.05, 0.15 ≤ x < 0.2

1, 0.2 ≤ x < 0.3

1 − (x− 0.3)/0.05, 0.3 ≤ x < 0.35

0, 0.35 ≤ x ≤ 1

(40)

The dispersion coefficient for the simulations wasD = 10−3. The other relevant

parameters are presented in Table 1, where Pe is the mesh Peclet number, and

NT is the number of composite trapezoidal rule intervals in time along the
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inflow boundary. We note that Cr is the target Courant number for a given

simulation and functions as an upper bound, since the time step is halved if

there is a nonlinear solver failure.

Table 1

Run parameters for initial results

Run Tracking ∆x Pe Cr Run Tracking ∆x Pe Cr

PA.FV.1 BE-S 1/50 20 4.5 PA.FV.6 RK2-S† 1/100 10 4.5

PA.FE.1 BE-S 1/50 20 4.5 PA.FE.6 RK2-S† 1/100 10 4.5

PA.FV.2 BE-S 1/100 10 4.5 PB.FV.1 RK2-S 1/50 20 4.5

PA.FE.2 BE-S 1/100 10 4.5 PB.FE.1 RK2-S 1/50 20 4.5

PA.FV.3 RK2-S∗ 1/50 20 4.5 PB.FV.2 RK2-S 1/100 10 4.5

PA.FE.3 RK2-S∗ 1/50 20 4.5 PB.FE.2 RK2-S 1/100 10 4.5

PA.FV.4 RK2-S∗ 1/100 10 4.5 PB.FV.3 BE-S 1/50 20 4.5

PA.FE.4 RK2-S∗ 1/100 10 4.5 PB.FE.3 BE-S 1/50 20 4.5

PA.FV.5 RK2-S† 1/50 20 4.5 PB.FV.4 BE-S 1/100 10 4.5

PA.FE.5 RK2-S† 1/50 20 4.5 PB.FE.4 BE-S 1/100 10 4.5

NS = 2; Problem A: NT = 16; Problem B: NT = 4

∗ BE-S tracking for inflow boundary

† RK2-S tracking using λa(C
b) at inflow boundary

Figures 4–7 illustrate the performance of the FV-ELLAM and FE-ELLAM dis-

cretizations with BE-S tracking for Problem A and RK2-S tracking for Prob-

lem B. The corresponding L1, L2, and mass balance values are reported in Ta-

bles 2 and 3. The dense grid solutions were obtained with a mass conservative

finite difference discretization on grids with ∆x = 1/20000 and ∆x = 1/50000,

respectively. For these simulations, the accuracy of the FV-ELLAM and FE-

ELLAM discretizations was good. The FE-ELLAM discretization had lower
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Fig. 4. ELLAM solutions Problem A, BE-S tracking, ∆x = 1/50, t = 0.5
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Fig. 5. ELLAM solutions Problem B, RK2-S tracking, ∆x = 1/50, t = 0.5

L1 and L2 error, but had some overshoot for Run PA.FE.1. Otherwise, both

spatial discretizations were able to represent the sharp fronts with negligible

over or undershoot. The mass balance results were good for both methods with

the FE-ELLAM mass error at the level of the nonlinear solver tolerance. The

FV-ELLAM mass balance error was not as low as the FE-ELLAM error due
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Fig. 6. ELLAM solutions Problem A, BE-S tracking, ∆x = 1/100, t = 0.5
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Fig. 7. ELLAM solutions Problem B, RK2-S tracking, ∆x = 1/100, t = 0.5

to the use of SSIPs and STIPs. The strategic integration points increased the

FV-ELLAM mass balance error to a level above the nonlinear solver residual

because the numerical integration was not exact, and the collection of integra-

tion points changed from one time step to the next as a result of the addition

of SSIPs and STIPs. Global mass conservation was still exact up to the non-
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Table 2

ELLAM error results for Problem A

Run L1 L2 rel. mass err

PA.FV.1 0.00514604 0.0225308 3.9826 × 10−6

PA.FE.1 0.00444420 0.0186933 —

PA.FV.2 0.00225567 0.0110125 1.8040 × 10−6

PA.FE.2 0.00177461 0.00862980 —

PA.FV.3 0.00440169 0.0201363 7.3856 × 10−6

PA.FE.3 0.00413805 0.0171043 —

PA.FV.4 0.00165866 0.00839648 7.9678 × 10−6

PA.FE.4 0.00130881 0.00651466 —

PA.FV.5 0.00442612 0.0202831 7.0136 × 10−6

PA.FE.5 0.00414199 0.0171592 —

PA.FV.6 0.00167139 0.00842405 8.3992 × 10−6

PA.FE.6 0.00130563 0.00650926 —

— less than 10−10

linear solver tolerance for each step from tn to tn+1. However, the strategic

integration points were defined by backtracking from the new time level lo-

cations where the approximate test functions W n+1
i changed slope. For this

reason, the total mass in the domain at the end of tn+1 defined by eqn (24)

was in some cases slightly different than the sum in eqn (29) for the step from

tn+1 to tn+2 due to the addition or subtraction of strategic integration points.

This effect was small, however, and the overall solution quality was improved

by the use of the STIP and SSIP points. We also note that the FV-ELLAM

discretization achieved second-order convergence in space for Problem B for

simulations where the time step was chosen small enough to eliminate tempo-
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Table 3

ELLAM error results for Problem B

Run L1 L2 rel. mass err

PB.FV.1 0.00665642 0.0208610 7.6067 × 10−5

PB.FE.1 0.00520272 0.0172889 4.2842 × 10−10

PB.FV.2 0.00284313 0.00917603 1.9665 × 10−5

PB.FE.2 0.00228041 0.00713305 4.3568 × 10−10

PB.FV.3 0.0126638 0.0287931 1.1267 × 10−4

PB.FE.3 0.00735101 0.0197214 4.2842 × 10−10

PB.FV.4 0.00485904 0.0130791 4.4658 × 10−5

PB.FE.4 0.00336044 0.00983110 4.3568 × 10−10
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Fig. 8. FV-ELLAM solutions Problem A, RK2-S tracking with BE-S tracking at

inflow, ∆x = 1/50, 1/100, t = 0.5

ral truncation error [15].

In Runs PB.[FE,FV].3–4, we considered BE-S tracking for Problem B. The

discretizations still resolved the fronts with negligible overshoot or undershoot
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and produced good mass balance results, but the L1 errors were 41% and 47%

higher on the two spatial grids for FE-ELLAM using BE-S tracking. The FV-

ELLAM L1 errors with BE-S tracking were nearly twice as large as the RK2-S

results. Moreover, the PB.FE.3 and PB.FE.4 simulations experienced one and

two nonlinear solver failures, respectively, while the PB.FV.3 and PB.FV.4

runs had four and three nonlinear solver failures, respectively. Reducing the

nonlinear solver tolerance to 10−7 and increasing the number of allowed iter-

ations and line searches to 100 did not change the number of nonlinear solver

failures or the simulations’ basic behavior.

On the other hand, RK2-S tracking did not perform as well for Problem A

because of the incompatibility between the initial data and the non-zero, to-

tal flux inflow boundary condition. The Newton solver experienced significant

difficulties when Cn was used as the initial guess for the solution at Cn+1.

Even with the initial guess from eqn (39), both FV-ELLAM and FE-ELLAM

discretizations exhibited large overshoot at early times when the trial solution

value was used to evaluate λa at the inflow boundary. There were at least two

approaches to improve the RK2-S tracking performance. Given the advection-

dominated nature of problem A, we considered incorporating a boundary con-

centration, Cb = 1, into the RK2-S tracking by using λa(C
b) for points at

the inflow boundary, xL. Another solution was simply to use RK2-S tracking

for interior points and BE-S tracking at the inflow boundary. The simulations

with the combined tracking for Problem A are PA.[FE,FV].3–4. Simulations

using λa(C
b) for inflow boundary values are labeled PA.[FE,FV].5–6. The ap-

proaches performed similarly and eliminated the nonlinear solver difficulties.

As the results in Table 2 and Figure 8 indicate, both strategies led to improved

accuracy over BE-S tracking alone for the FE-ELLAM and FV-ELLAM spa-
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tial discretizations.

4.2 Front resolution examples

In the runs for Problem A and Problem B, both the FV-ELLAM and FE-

ELLAM discretizations were able to resolve the contaminant fronts adequately

for a mesh width of ∆x = 1/50, where the solution fronts spanned approx-

imately three intervals. Given the use of a continuous, piecewise-linear rep-

resentation for the trial solution, this is essentially the minimum we could

expect and agrees with previous results for ELLAM and MMOC discretiza-

tions of linear transport problems [33]. For conditions where sharper fronts

arise, say with less physical dispersion or lower Freundlich exponents, one can

expect that the ELLAM discretizations would require finer grids to resolve

the solution monotonically.

To be more specific, we looked at the discretizations’ performance as the front

widths in our test problems decreased. A straightforward way to do this was

to look at traveling wave solutions to eqns (5)–(6) with boundary data corre-

sponding to Problem A. That is, we sought a solution C(η) to eqns (5)–(6)

over the real axis with boundary data C(−∞) = C∗ and C(∞) = C∗ where

η = x − αt and α is the wave speed [37]. For equilibrium sorption with a

Freundlich isotherm and C∗ = 0, van Duijn and Knabner [38] provide a closed

form expression for the traveling wave solution

C(η)=C∗

{

1 − exp
[

(1 − nf )
(

v − α

D

)

η
]}

1

1−nf
, for η ≤ 0

0, otherwise (41)

where the wave speed is
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α= v
C∗ − C∗

ϕ(C∗) − ϕ(C∗) + C∗ − C∗

(42)

The solution front width can be determined by inverting eqn (41) for η

η=
ln (1 − (C/C∗)1−nf )

(1 − nf )
(

v−α
D

) , for 0 < C < C∗

=D
ln (1 − (C/C∗)1−nf )

(1 − nf ) (v − α)
(43)

and calculating the distance from the point C = 0 to the point where C =

C∗(1 − ε), since the solution to the problem is non-increasing. The front is

located at η = 0, so we set the front width to be d1−ε = |η[C∗(1 − ε)]|. The

front width for a fixed ε, d0.99 for example, scales linearly with the disper-

sion D, while the front scales with
√
D at a fixed time for the solution to

the corresponding linear advection-dispersion problem [33]. In particular, eqn

(43) suggests that if our ELLAM approximation needs roughly three inter-

vals to resolve a front without overshoot or undershoot, then the minimum

discretization required will be given by

∆xmin ≈ d0.99/3 (44)

Table 4 gives run parameters for ELLAM calculations with D = 2.5 × 10−4,

∆x = 1/100, 1/200, and an initial condition given by eqn (41). Aside from D,

the physical parameters were identical to those for Problem A. The front width

was d0.99 = 1.4498× 10−2, so that d0.99/3 = 4.8327× 10−3. Figure 9 shows the

solutions for ∆x = 1/100 and Figure 10 shows the results for ∆x = 1/200.

The corresponding error values are reported in Table 5.

For Problem C, we performed simulations with FV-ELLAM using two different

values of NS. NS = 2 represents a conservative choice, since the approximate
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Table 4

Run parameters for Problem C

Run Tracking ∆x D Pe Cr NS

PC.FV.1 RK2-S∗ 1/100 2.5 × 10−4 40 4.5 2

PC.FE.1 RK2-S∗ 1/100 2.5 × 10−4 40 4.5 -

PC.FV.2 RK2-S∗ 1/200 2.5 × 10−4 20 4.5 2

PC.FE.2 RK2-S∗ 1/200 2.5 × 10−4 20 4.5 -

PC.FV.3 RK2-S∗ 1/100 2.5 × 10−4 40 4.5 16

PC.FV.4 RK2-S∗ 1/200 2.5 × 10−4 20 4.5 16

NT = 16

∗ BE-S tracking for inflow boundary

Table 5

ELLAM error results for Problem C

Run L1 L2 rel. mass err

PC.FV.1 0.00307715 0.0231885 3.9674 × 10−5

PC.FE.1 0.00321725 0.0218095 1.5572 × 10−10

PC.FV.2 0.000984260 0.00967998 9.0764 × 10−6

PC.FE.2 0.000921269 0.00836204 1.7097 × 10−9

PC.FV.3 0.00443214 0.0305197 1.7577 × 10−4

PC.FV.4 0.000906421 0.00828032 2.5945 × 10−5

test function W n+1
i is a piecewise-linear chapeau function. The wider support

for NS = 2 has the effect of spreading mass over a larger area in the approx-

imation of the old mass integral, eqn (29). Choosing NS = 16 narrows the

support for W n+1
i significantly and leads to a less diffusive approximation. As

Figure 9 shows, the difference in the solutions with NS = 2 and NS = 16

for ∆x = 1/100 was dramatic. However, for the finer grid with ∆x ≈ d0.99/3

both approximations resolved the solution front accurately without spurious
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Fig. 9. ELLAM results for Problem C, ∆x = 1/100, t = 0.5

oscillations.

The FV-ELLAM approximate test functions W n+1
i are equivalent to FE-

ELLAM test functions when NS=2. However, W n+1
i is only used in the FV-

ELLAM approximation of mass at tn, so the discretizations are not identical.

More precisely, the FE-ELLAM approximation to the mass at tn+1, eqn (23),

corresponds to a more distributed mass matrix than the FV-ELLAM approx-

imation, eqn (24), and so contains less numerical diffusion [17, 25, 31]. As a

result, the the FE-ELLAM approximation produced visible overshoot for the

coarser grid but still resolved the front accurately for ∆x ≈ d0.99/3.

We also performed simulations for the slug initial condition with ∆x = 1/100,

1/200, and D = 2.5 × 10−4. While not a traveling wave solution, the front

behavior was similar to Problem C. Table 6 gives run parameters for Problem

D and Table 7 gives the error values for the ELLAM calculations. Figures

11 and 12 show the results for the two grids. The dense grid solution was
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Fig. 10. ELLAM results for Problem C, ∆x = 1/200, t = 0.5

again obtained with a mass conservative finite difference discretization on a

grid with ∆x = 1/50000. The relative performance of the discretizations was

similar to Problem C. All the discretizations produced accurate solutions for

∆x ≈ ∆xmin, but the FE-ELLAM and the FV-ELLAM discretization with

NS = 16 exhibited overshoot on the ∆x = 1/100 grid.

Table 6

Run parameters for Problem D

Run Tracking ∆x D Pe Cr NS

PD.FV.1 RK2-S 1/100 2.5 × 10−4 40 4.5 2

PD.FE.1 RK2-S 1/100 2.5 × 10−4 40 4.5 -

PD.FV.2 RK2-S 1/200 2.5 × 10−4 20 4.5 2

PD.FE.2 RK2-S 1/200 2.5 × 10−4 20 4.5 -

PD.FV.3 RK2-S 1/100 2.5 × 10−4 40 4.5 16

PD.FV.4 RK2-S 1/200 2.5 × 10−4 20 4.5 16

NT = 4
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Table 7

ELLAM error results for Problem D

Run L1 L2 rel. mass err

PD.FV.1 0.00375488 0.0222302 2.9905 × 10−5

PD.FE.1 0.00373496 0.0211762 -

PD.FV.2 0.00127395 0.00884059 1.6434 × 10−5

PD.FE.2 0.00115919 0.00777404 8.7131 × 10−10

PD.FV.3 0.00398739 0.0218459 9.6868 × 10−5

PD.FV.4 0.00114844 0.00777340 3.5685 × 10−5

- less than 10−10
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Fig. 11. ELLAM results for Problem D, ∆x = 1/100, t = 0.5

4.3 Tracking comparison

The simulations for Problems A–D were performed using the RK2-S and BE-S

tracking strategies, which required ∆τ = ∆tn+1. While we were able to obtain

good results for Cr = 4.5, relying solely on characteristic speeds from tn and
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Fig. 12. ELLAM results for Problem D, ∆x = 1/200, t = 0.5

tn+1 is less tenable as Cr increases significantly. We next compared the RK2-S

tracking to the RK2-BL and RK2-FT strategies with ∆τ = ∆tn+1/nst, where

the number of tracking substeps, nst, was greater than one. First, we compared

the RK2-FT and RK2-BL strategies for moderate Cr where the RK2-S strat-

egy performed well. The physical parameters for the first set of simulations

(Problem E) were identical to Problem B. We then used the physical param-

eters and initial condition from Problem D to compare the tracking strategies

for significantly larger Cr (Problem F).

Tables 8 and 9 contain the relevant parameters for the simulations of Problem

E and Problem F, respectively. The main parameters controlling the perfor-

mance of the RK2-FT method are the discretization parameter δfr and the

wave speed cutoff, cfr. δfr determines the number of fronts used to represent

the solution initially and the number of shock waves used to approximate a

rarefaction. cfr is used along with δfr to provide a minimum wave strength

required for a front to be incorporated in the solution approximation. Specifi-
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cally, a front is tracked if the magnitude of the jump across the front is greater

than cfrδfr [26].

Table 8

Run parameters for Problems E

Run Tracking ∆x D Pe Cr nst δfr cfr

PE.FV.1 RK2-BL 1/50 1.0 × 10−3 20 4.5 2 - -

PE.FE.1 RK2-BL 1/50 1.0 × 10−3 20 4.5 2 - -

PE.FV.2 RK2-FT 1/50 1.0 × 10−3 20 4.5 2 1/50 0.01

PE.FE.2 RK2-FT 1/50 1.0 × 10−3 20 4.5 2 1/50 0.01

PE.FV.3 RK2-BL 1/100 1.0 × 10−3 10 4.5 2 - -

PE.FE.3 RK2-BL 1/100 1.0 × 10−3 10 4.5 2 - -

PE.FV.4 RK2-FT 1/100 1.0 × 10−3 10 4.5 2 1/100 0.01

PE.FE.4 RK2-FT 1/100 1.0 × 10−3 10 4.5 2 1/100 0.01

PE.FV.5 RK2-FT 1/100 1.0 × 10−3 10 4.5 2 1/50 0.01

PE.FE.5 RK2-FT 1/100 1.0 × 10−3 10 4.5 2 1/50 0.01

PE.FV.6 RK2-FT 1/100 1.0 × 10−3 10 4.5 2 1/200 0.01

PE.FE.6 RK2-FT 1/100 1.0 × 10−3 10 4.5 2 1/200 0.01

NS = 2, NT = 4

Figure 13 shows FV-ELLAM solutions from the RK2-BL and RK2-FT track-

ing strategies for Problem E with ∆x = 1/50 and Cr = 4.5. For comparison,

the solution using RK2-S tracking, Run PB.FV.1, is included as well. Table

10 includes the L1, L2, and mass balance errors for the RK2-BL and RK2-FT

tracking strategies. The results for the RK2-BL tracking were much poorer

than either the RK2-S or the RK2-FT methods, producing large overshoot on

both the ∆x = 1/50 and ∆x = 1/100 grids. The RK2-FT solutions were less

accurate than the RK2-S results for the same Cr for both the FE-ELLAM
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Table 9

Run parameters and results for Problems F

Run Tracking ∆x D Pe Cr nst δfr cfr

PF.FE.1 RK2-FT 1/200 2.5 × 10−4 20 16.5 2 1/200 0.01

PF.FV.1 RK2-FT 1/200 2.5 × 10−4 20 16.5 2 1/200 0.01

PF.FE.2 RK2-S 1/200 2.5 × 10−4 20 16.5 1 - -

PF.FV.2 RK2-S 1/200 2.5 × 10−4 20 16.5 1 - -

PF.FE.3† RK2-S 1/200 2.5 × 10−4 20 16.5 1 - -

PF.FV.3† RK2-S 1/200 2.5 × 10−4 20 16.5 1 - -

PF.FE.4 RK2-FT 1/200 2.5 × 10−4 20 16.5 2 1/100 0.01

PF.FV.4 RK2-FT 1/200 2.5 × 10−4 20 16.5 2 1/100 0.01

NT = 4

† nonlinear solver tolerance 10−6, max 100 line searches, 100 nonlinear iterations

and FV-ELLAM spatial discretizations. While fronts were similarly resolved,

the L1 error for the RK2-FT Runs was 35% higher for FV-ELLAM and 19%

higher for FE-ELLAM on the ∆x = 1/50 grid.

The impact of δfr on the accuracy of the RK2-FT tracking can be seen in

Runs PE.[FV,FE].4–PE.[FV,FE].6. RK2-FT tracking with δfr = 1/100 and

δfr = 1/200 produced L1 and L2 errors that were comparable to the errors from

the corresponding RK2-S tracking solutions. Increasing δfr to 2∆x produced

less accurate results, as can be seen in Figure 14 and Table 10.

Since the RK2-BL strategy performed poorly for Problem E, we considered

only the RK2-S and RK2-FT approaches for the problem with less physi-

cal dispersion. Figure 15 shows the solutions from the RK2-S and RK2-FT

strategies with FV-ELLAM and FE-ELLAM spatial discretizations for a tar-
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Table 10

Run results for Problems E

Run L1 L2 rel. mass err

PE.FV.1 0.0155545 0.0383824 4.1861 × 10−5

PE.FE.1 0.0160688 0.0396553 -

PE.FV.2 0.00899326 0.0240897 6.6298 × 10−5

PE.FE.2 0.00620536 0.0188605 -

PE.FV.3 0.00674198 0.0184749 2.4097 × 10−5

PE.FE.3 0.00711775 0.0191097 4.3568 × 10−10

PE.FV.4 0.00359544 0.0112651 2.7236 × 10−5

PE.FE.4 0.00235988 0.00807344 8.7136 × 10−10

PE.FV.5 0.00802655 0.0153431 3.1588 × 10−5

PE.FE.5 0.00698441 0.0132661 4.3568 × 10−10

PE.FV.6 0.00334196 0.0111522 1.7654 × 10−5

PE.FE.6 0.00221380 0.00813326 -

- less than 10−10

get Cr = 16.5, while Table 11 gives the L1, L2, and mass balance errors as

well as the total number of time steps taken and nonlinear solver iterations for

the simulations. The spatial discretizations performed similarly. Results with

both tracking approaches captured the sharp front well with negligible mass

balance error.

The L1 and L2 errors for the RK2-S and RK2-FT simulations with δfr = ∆x

were similar. The FE-ELLAM errors with RK2-S tracking were lower than

those for FE-ELLAM with RK2-FT tracking, while the opposite was true for

the FV-ELLAM discretization. The RK2-FT results with δfr = 2∆x were

much poorer. Although the accuracy in Runs PF.[FE,FV].2 was comparable
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Table 11

Run results for Problems F

Run L1 L2 rel. mass err time

steps

nl its

PF.FV.1 0.00217702 0.0129708 3.2722 × 10−6 5 27

PF.FE.1 0.00196901 0.0122595 1.3070 × 10−9 5 28

PF.FV.2 0.00240612 0.0106530 1.6912 × 10−4 54 462

PF.FE.2 0.00134290 0.00757244 1.7426 × 10−9 46 425

PF.FV.3 0.00189700 0.0102873 1.9320 × 10−4 36 362

PF.FE.3 0.00134111 0.00757331 6.8370 × 10−5 53 433

PF.FV.4 0.00594223 0.0162554 9.1099 × 10−6 5 27

PF.FE.4 0.00592168 0.0161490 - 5 30

- less than 10−10
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Fig. 13. FV-ELLAM results for Problem E, RK2-S, RK2-BL, and RK2-FT tracking,

∆x = 1/50, t = 0.5
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Fig. 14. FE-ELLAM results for Problem E, RK2-FT tracking δfr = 1/50, 1/100,

∆x = 1/100, t = 0.5

to that in Runs PF.[FE,FV].1, Cr = 16.5 was too large for the RK2-S tracking.

Both Runs PF.FV.2 and PF.FE.2 experienced repeated nonlinear solver fail-

ures due to the larger target Cr. The FV-ELLAM simulation had 16 failures

and took 54 time steps, while the FE-ELLAM calculation had 14 failures and

46 time steps overall. The total number of nonlinear iterations was an order of

magnitude higher as well. The failure modes for the Newton solver consisted

of both stagnation in the Armijo line search and exhausting the allowed non-

linear iterations. Since the relative residual tolerance of 10−10 was rather tight,

Runs PF.FV.3 and PF.FE.3 were performed with a tolerance of 10−6 and a

maximum of 100 nonlinear iterations and line searches. The reduced tolerance

decreased the number of failures for FV-ELLAM to 13 but increased the num-

ber of failures for the FE-ELLAM simulation to 15. The number of time steps

and nonlinear iterations required were still an order of magnitude higher for

the RK2-S tracking simulations.
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Fig. 15. ELLAM results for Problem F, RK2-S and RK2-FT tracking, ∆x = 1/200,

t = 0.5

5 Discussion

The test problems we considered were challenging because they involved self-

sharpening fronts with small physical dispersion as well as rarefaction tails.

While there were some differences, the performance and accuracy of the FV-

ELLAM and FE-ELLAM discretizations were comparable in the numerical

experiments. Both discretizations resolved the fronts accurately as long as the

mesh width was sufficient to allow three elements on a front. FE-ELLAM gen-

erally produced lower L1 and L2 error but was more prone to overshoot or

undershoot on coarse grids than FV-ELLAM with NS=2. With NS=2, our

FV-ELLAM approach had more numerical diffusion than FE-ELLAM due

to the differences in their approximations for the mass at tn+1 [17, 25, 31].

Higher values of NS reduced the numerical diffusion for FV-ELLAM and im-

proved accuracy for sufficiently resolved calculations, but naturally increased
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the likelihood of spurious oscillations on coarse grids. In general, there was

the familiar tradeoff between accuracy in smooth regions and the ability to

represent fronts monotonically [27]. Steeper physical solutions required finer

discretizations or an approximation with greater numerical diffusion to create

fronts with a minimum width for a given grid.

The global mass balance errors for the FE-ELLAM and FV-ELLAM discretiza-

tions were good. The FE-ELLAM mass balance error was at the nonlinear

solver tolerance, while the FV-ELLAM errors were below 2 × 10−4 for all the

simulations. The FV-ELLAM mass balance error was not as low as the FE-

ELLAM error due to the use of SSIPs and STIPs [15]. On the other hand, the

SSIPs and STIPs improved the overall performance of the FV-ELLAM dis-

cretization, and the FV-ELLAM relative mass balance errors remained small.

The impact of the strategic integration points on global mass balance can be

reduced by increasing the accuracy of the quadrature through, for instance,

adding more intervals in the composite trapezoidal rule formulas.

We explored two time discretizations, BE and RK2, for tracking numerical

integration points forward from tn to tn+1. The first-order BE method was not

as accurate as the second-order RK2 approximation when using characteristic

information from tn and tn+1 alone. On the other hand, it was useful for

tracking from the inflow boundary when qb > 0. One of the advantages of

ELLAM is that the tracked integration points are independent of one another,

so it was then simple to combine different tracking procedures within the same

simulation.

Since tracking required information about the solution to evaluate the ad-

joint characteristics, we also investigated different approaches for obtaining
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a solution representation at times t > tn. The RK2-S approach, which was

simple and relied solely on Cn and Cn+1,m worked well for Cr up to 4.5 in the

numerical experiments when combined with the initial guess from eqn (39).

In general, an upper bound on the time step for the RK2-S approach de-

pends on the difficulty of the problem and the spatial discretization, including

the amount of numerical diffusion. For time steps that were too large, poor

performance of the RK2-S tracking algorithm manifested itself through non-

linear solver failures for the target time step, which in turn led to time step

reductions in order to obtain convergence. On the other hand, the RK2-FT

tracking strategy, which combined RK2 time integration and a front-tracking

method to provide intermediate solution values, allowed the FE-ELLAM and

FV-ELLAM methods to obtain good solutions for very large time steps.

Accuracy of the intermediate representation naturally affected the overall so-

lution accuracy, since the tracking dictated the mass distribution from the pre-

vious time step. Using bilinear interpolation to obtain intermediate solution

representations (RK2-BL) performed poorly. For smaller time steps where the

RK2-S tracking succeeded, the RK2-FT solutions generally had higher L1 and

L2 error values than those from the RK2-S tracking algorithm. Simulations

with the two tracking strategies resolved fronts similarly. Rather, the increased

error for the RK2-FT approximation was largely around rarefactions. Increas-

ing δfr improved the FT algorithm’s approximation of rarefactions and in turn

reduced the solution error.

In our numerical experiments, both the FV-ELLAM and FE-ELLAM dis-

cretizations resolved the self-sharpening fronts monotonically as long as the

mesh width was sufficient to allow three intervals on a front. This places an

increasing computational burden on the discretizations as fronts in a prob-
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lem steepen due, for example, to reduced physical dispersion. On the other

hand, increased numerical diffusion can always be introduced using techniques

such as mass lumping [31, 34] in order to widen solution fronts sufficiently to

meet the requirements on a given mesh. Another alternative to improve per-

formance is to employ adaptive refinement around the front using patch-based

local refinement [39] or a moving mesh approach [43, 44] in order to provide

the minimal resolution necessary around fronts with coarser discretizations in

areas of smoother solution behavior.

We have not addressed the issue of computational efficiency in this work.

For multidimensional nonlinear problems, we expect the expense and suc-

cess of our approach to be dictated largely by the tracking procedure for

numerical integration points. Here, we have identified promising strategies for

one-dimensional problems. The RK2-S tracking is simple to implement and

inexpensive on a per iteration basis. The RK2-FT is more involved since it

requires the initialization and solution of a front-tracking problem every time

step. However, the RK2-FT allowed much larger time steps than the RK2-S

tracking for the problems considered. Another aspect of the RK2-FT tracking

procedure, as implemented here, was that it was independent of the solution at

the new time level. While this was not necessary, it did simplify the Jacobian

calculation and behavior of the nonlinear systems dramatically, which could

offer a significant advantage for multidimensional problems.

While our initial results are promising given the straightforward nature of the

formulation, more work is required to evaluate its performance for systems

which present significantly more complicated characteristic behavior and for

multidimensional problems. For problems in two and three spatial dimensions,

much of the current approach can be extended naturally following previous
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ELLAM work [8, 18]. The main challenge will be to develop effective tracking

procedures given the added nonlinearity of the adjoint characteristics.

6 Conclusions

In this work, we formulated FV-ELLAM and FE-ELLAM approximations for

advective-dispersive transport with nonlinear equilibrium sorption. We per-

formed a series of numerical experiments to evaluate the discretizations’ front

resolution, mass balance properties, and ability to take large time steps while

maintaining accuracy. Based on our work, we draw the following conclusions:

• Our ELLAM formulation produces solutions that maintain the mass-conservation

properties for which ELLAMs are known. Both FV-ELLAM and FE-ELLAM

discretizations based on our approach can be expected to resolve self-sharpening

fronts monotonically for one-dimensional reactive transport problems as

long as the spatial discretization is sufficiently fine to allow three intervals

on a front.

• The RK2-S tracking approach points provides a straightforward procedure

for tracking numerical integration points that can perform well for Courant

numbers several times larger than one.

• The RK2-FT tracking approach, while more involved than the RK2-S al-

gorithm, allows our ELLAM approaches to take very large time steps and

still produce accurate solutions.
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