
Efficient Steady-State Solution Techniques for

Variably Saturated Groundwater Flow

Matthew W. Farthing, a,∗ Christopher E. Kees, b

Todd S. Coffey, c C.T. Kelley b Cass T. Miller a

aCenter for the Advanced Study of the Environment, Department of

Environmental Sciences and Engineering, University of North Carolina, Chapel

Hill, North Carolina 27599-7431, USA

bCenter for Research in Scientific Computation, Department of Mathematics,

North Carolina State University, Raleigh, North Carolina, 27695-8205, USA

cMathematical Information and Computational Sciences, Sandia National

Laboratories, Albuquerque, New Mexico, 87185-1110, USA

Abstract

We consider the simulation of steady-state variably saturated groundwater flow us-

ing Richards’ equation (RE). The difficulties associated with solving RE numerically

are well known. Most discretization approaches for RE lead to nonlinear systems

that are large and difficult to solve. The solution of nonlinear systems for steady-

state problems can be particularly challenging, since a good initial guess for the

steady-state solution is often hard to obtain, and the resulting linear systems may

be poorly scaled. Common approaches like Picard iteration or variations of New-

ton’s method have their advantages but perform poorly with standard globalization

techniques under certain conditions.

Pseudo-transient continuation has been used in computational fluid dynamics for
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some time to obtain steady-state solutions for problems in which Newton’s method

with standard line-search strategies fails. It combines aspects of backward Euler time

integration and Newton’s method to select intermediate estimates of the steady-

state solution. Here, we examine the use of pseudo-transient continuation as well as

Newton’s method combined with standard globalization techniques for steady-state

problems in heterogeneous domains. We investigate the methods’ performance with

direct and preconditioned Krylov iterative linear solvers. We then make recommen-

dations for robust and efficient approaches to obtain steady-state solutions for RE

under a range of conditions.

Notation

Roman Letters

A accumulation term for pressure head form of RE

A accumulation term contribution to Jacobian

J Jacobian

C scaling factor for Dirichlet boundary conditions

F nonlinear function for DAE formulation, semi-discrete

G nonlinear function for DAE formulation, discrete

Ks saturated hydraulic conductivity

Ks
s surface saturated hydraulic conductivity

∗ Corresponding author

Email addresses: matthew farthing@unc.edu (Matthew W. Farthing,),

chris kees@ncsu.edu (Christopher E. Kees,), tscoffe@sandia.gov (Todd S.

Coffey,), tim kelley@ncsu.edu (C.T. Kelley), casey miller@unc.edu (Cass T.

Miller).

2



Ke effective hydraulic conductivity

Nmax maximum number of iterations for nonlinear solution methods

Od discrete spatial operator

R discrete spatial operator and source term

Se effective saturation

T extent of temporal domain

Xd extent of spatial domain along xd axis

f source term for the aqueous phase evaluated at cell centers

f source term for the aqueous phase

g gravitational vector

gu unit vector, g/‖g‖

ki intrinsic permeability

kr relative permeability

mv parameter for VGM

n unit outward normal for Ω

ne total number of nodes

nv parameter for VGM

nxd number of nodes along xd axis

p pressure of the aqueous phase

t time coordinate

u mass flux

ub Neumann boundary value

ur precipitation rate

y variable for DAE formulation

y′ temporal derivative for DAE formulation

ymin lower bound for solution in test for evaluation error

ymax upper bound for solution in test for evaluation error
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Greek Letters

∆t time step for Ψtc methods

∆tmax maximum time step for Ψtc methods

∆xd spatial increment in xd direction

∆y Newton increment

Γ boundary of physical domain

ΓD portion of Γ for which Dirichlet boundary conditions are set

ΓN portion of Γ for which Neumann boundary conditions are set

Ω physical domain

αv parameter for VGM

β compressibility of the aqueous phase

εc switching tolerance in hybrid Newton-Picard method

εs sufficient decrease parameter for Armijo line search

θ volume fraction of the aqueous phase

θr residual volumetric water content

θs saturated volumetric water content

λ line-search scaling factor

λ+ intermediate scaling factor for quadratic line search

µ viscosity of the aqueous phase

% density of the aqueous phase

ρ normalized density of the aqueous phase

σmin bound parameter for quadratic line search

σmax bound parameter for quadratic line search

τ TTE parameter for truncation error estimate bound

ψ pressure head

ψb Dirichlet boundary value
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ψ0 initial condition for ψ

Subscripts and Superscripts

d coordinate axis identifier (subscript)

i cell qualifier along x1 axis (subscript)

j cell qualifier along x2 axis (subscript)

l global identifier for solution unknowns (subscript)

n time level identifier (superscript)

sn nonlinear iteration index (superscript)

Abbreviations

Clock wall clock time (seconds)

DAE differential algebraic equation

Feval function evaluation

HAS two-level hybrid additive Schwarz domain decomposition precon-

ditioner

Jeval Jacobian evaluation

LF linear iteration failure

LI linear iteration

LU-B banded LU decomposition from LAPACK

LU-S sparse LU decomposition from SPOOLES (version 2.2)

NILS Newton’s method with a quadratic line search

NLF nonlinear iteration failure

NLI nonlinear iteration

ODE ordinary differential equation
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PIH Newton-Picard hybrid approach

RE Richards’ equation

SER switched evolution relaxation Ψtc approach

Steps attempted iterations for method

TTE temporal truncation errror Ψtc approach

VGM combined van Genuchten and Mualem p-S-k relation

p-S-k pressure-saturation-relative permeability constitutive relation

Ψtc pseudo-transient continuation

1 Introduction

Variably saturated groundwater flow is commonly modeled using Richards’

equation (RE) along with a set of constitutive relations describing the interde-

pendence among fluid pressures, saturations, and relative permeabilities (p-S-

k relations). While analytical and semi-analytical approximations for variably

saturated flow exist, these are valid for limited sets of auxiliary conditions and

domains [30]. As a result, significant effort has focused on developing robust

techniques for solving RE numerically [9, 38, 29, 32, 27, 34, 36, 37]. Obtaining

solutions for RE for many realistic physical conditions remains a challenge.

Infiltration problems are often characterized by sharp fronts in both space

and time. Steady-state solution is often nontrivial as well, since the volume

fraction can vary steeply for problems with realistic boundary conditions and

heterogeneous porous media.

It is the nature of the nonlinearities introduced through standard p-S-k relations

like the van Genuchten [35] and Mualem [28] models that accounts for the ma-

jority of the difficulties associated with solving RE. A number of issues associ-
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ated with resolving this nonlinear behavior have received attention. These in-

clude solution variable transformations [4, 36], the evaluation of p-S-k relations

[33], approximation of interface conductivities in standard low-order spatial

discretizations [38, 27], choice of dependent variable [37], and time discretiza-

tion approach [9, 31, 33, 19]. Since the majority of time discretizations are

implicit, both transient and steady-state problems typically lead to the solu-

tion of a system of discrete nonlinear equations. These systems can be quite

large and difficult to solve, especially for problems with heterogeneous domains

in two and three spatial dimensions.

The nonlinear system solution method used can then have a strong impact on

the overall success of a simulator for RE. The most common approaches have

been Picard iteration [9, 10, 19] or a variant of Newton’s method [34, 37, 21].

Each of these methods has its strengths and weaknesses, and several works

have compared the robustness and efficiency of Picard and Newton approaches

for a variety of problems [29, 25, 27, 8]. Newton’s method combined with glob-

alization techniques like a line search, reduction of time step (backtracking),

or the use of Picard iteration to obtain an initial guess has proven more reli-

able and efficient than Picard iteration for several problems [29, 27]. However,

both Newton and Picard approaches have been shown to perform poorly un-

der certain conditions. The solution of nonlinear systems can be particularly

difficult for steady-state problems due to the increased difficulty of obtaining

a good initial guess for the steady-state solution. In addition, the scaling of

the linearized systems is typically worse [15], and there is no longer recourse

to reducing time steps when convergence breaks down [29].

Pseudo-transient continuation (Ψtc) has been used in computational fluid dy-

namics for some time to obtain steady-state solutions for problems in which
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Newton’s method with standard line-search strategies fails [23, 24, 11]. Ψtc

combines features of backward Euler time integration and Newton’s method

with the idea of using information about the transient physical problem to

guide selection of intermediate iterates to the steady-state solution [15]. Since

it uses information from a time-dependent problem, Ψtc can be more robust

than standard line-search strategies, while incurring less computational ex-

pense than full integration of the transient problem [23].

In this work, we seek effective techniques for obtaining steady-state solutions

to RE. We examine the use of Ψtc methods as well as Newton’s method

combined with standard globalization techniques for steady-state problems in

homogeneous and heterogeneous domains. We investigate the methods’ per-

formance with both direct and preconditioned Krylov iterative linear solvers.

We then make recommendations for robust and efficient approaches to obtain

steady-state solutions for RE under various conditions.

2 Background

Historically, Picard iteration has been the most common nonlinear solution

method used for RE [9, 31]. It’s appeal can be traced to the fact that it is

simple to implement, since it does not involve derivatives of terms involving

the p-S-k relations and produces symmetric linear systems [29]. While Picard

iteration is still used [10, 19], Newton and inexact Newton approaches have

become significantly more common [14, 18, 21], particularly for more realistic

multidimensional problems. An inexact Newton approach can be thought of

as Newton’s method where the equation for the Newton update is satisfied

only approximately [34]. This may be due to the fact that the Newton update
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is solved only approximately using, for example, a Krylov-type iterative linear

solver [18]. Or, only an approximate Jacobian may be used in the Newton

update. Common approaches for approximating the full Jacobian are to use

finite differences (a numerical Jacobian) [14] or to lag its evaluation over a

number of iterates (chord or modified Newton’s method) [33].

While these approaches may be conceptually straightforward, a number of

subtleties often arise [22]. For instance, the choice of stopping criteria and the

associated tolerances for both the nonlinear and linear solvers, the frequency

of Jacobian evaluations, and the increment used in evaluating numerical Ja-

cobians can all play a significant role in the success of an approach for a

given problem [29, 25, 27, 8, 34]. Since the convergence of Newton’s method

can be quite sensitive to the quality of initial guess, supplementing a New-

ton approach with strategies like a line search and backtracking has improved

nonlinear solver performance for some problems [27]. Line-search techniques

typically select a fraction of the full Newton correction to update the current

iterate with the step chosen to insure that the updated solution represents a

sufficient decrease in the nonlinear residual [18, 11]. For transient problems,

methods commonly adjust the time step based on nonlinear solver perfor-

mance. Specifically, in the case of poor nonlinear solver performance, the time

step is often reduced [31, 33, 8]. This can improve the scaling of the Jacobian,

since the reciprocal of the time step typically appears on the diagonal [15],

and can improve the quality of the initial guess obtained from the solution

at the previous time step [29]. Another strategy designed to address Newton

approaches’ sensitivity to initial guess is a hybrid Newton-Picard algorithm

which uses a Picard iteration initially until a certain level of convergence is

reached and then switches to Newton’s method [29, 8].
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Like the hybrid Newton-Picard algorithm, Ψtc attempts to combine the rapid

convergence of Newton’s method near the steady-state solution with a more

robust iteration far from the solution. Ψtc employs a time-stepping approach

when the iteration is far from the steady state, and thus exploits the rela-

tionship between the nonlinear system for the steady-state problem and the

initial value problem from which it is derived. The time-stepping algorithm

used in Ψtc has properties similar to forward Euler with simple heuristics,

which makes it both unstable and inaccurate as a time-integration method for

stiff ordinary differential equations (ODE’s). Nevertheless, Ψtc can effectively

maintain certain important qualities of the transient solution of some prob-

lems such as enforcing a CFL condition, and has been shown to be effective in

reaching the steady state for models with discontinuous transient phenomena

such as shocks. While RE does not exhibit shocks under physically realistic

choices of parameters, it does exhibit sharp fronts due to the nonlinearities as

well as steep gradients due to discontinuities in the porous media properties.

3 Approach

3.1 Formulation

RE can be formulated in a number of ways. We begin with an expression for

the conservation of mass for the aqueous phase in an air-water system where

the solid phase is assumed immobile, and interphase mass transfer is neglected.

Combining this with the standard extension of Darcy’s law to variable satu-
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rated conditions [26] gives

∂(ρθ)

∂t
= ∇ · ρKe(∇ψ − ρgu) + f in Ω× [0, T ] (1)

with

% = %0e
β(p−p0)

ρ = %/%0

ψ = p
%0‖g‖

gu =
g

‖g‖

Ks =
%0‖g‖ki

µ

Ke = kr(ψ)Ks

(2)

Here p, %, and µ are the pressure, density, and viscosity of the aqueous phase,

θ is the volume fraction, and f is a source term for the aqueous phase. %0 is the

density at p0, β is the compressibility of the aqueous phase, ψ is the pressure

head, and g is a vector accounting for the acceleration of gravity. Ke is the

effective hydraulic conductivity, Ks is the saturated hydraulic conductivity,

and ki is the intrinsic permeability of the porous medium. Ω ⊂ IR2 is the

spatial domain, and [0, T ] is the temporal domain.

The auxiliary conditions for eqn (1) are given by

ψ = ψb on ΓD, t ∈ [0, T ] (3)

u · n = ub on ΓN , t ∈ [0, T ] (4)

ψ = ψ0 in Ω, t = 0 (5)

where

u = −ρKe(∇ψ − ρgu) (6)
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is the mass flux, ψb, and ub are boundary condition functions. ψ0 is the initial

condition, and n is the unit outward normal for Ω. We have also set Γ = ∂Ω =

ΓD ∪ ΓN with ΓD ∩ ΓN = ∅.

The steady-state form of eqn (1) is

−∇ · ρKe(∇ψ − ρgu) = f in Ω (7)

with auxiliary data given by eqns (3) and (4) without temporal dependence.

We use non-hysteretic forms of the p-S-k relations of van Genuchten [35] and

Mualem [28] (VGM). For ψ < 0, these are given by

Se=
(θ − θr)

(θs − θr)
(8)

Se= [1 + (αv|ψ|)
nv ]−mv (9)

kr =
√

Se
[

1− (1− S1/mv

e )mv

]2
(10)

where Se is the effective saturation, θr is the residual volumetric water content,

θs is the saturated volumetric water content, αv is a parameter related to the

mean pore size, nv is a parameter related to the uniformity of the soil pore-

size distribution, and mv = 1 − 1/nv. For ψ ≥ 0, the porous medium is fully

saturated, and eqns (8)–(10) revert to

Se=1 (11)

kr =1 (12)

The pressure head form of RE is obtained from eqn (1) by applying the chain

rule to the left hand side

A(ψ)
∂ψ

∂t
=∇ · ρKe(∇ψ − ρgu) + f
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A(ψ)= θ
∂ρ

∂ψ
+ ρ

∂θ

∂ψ
(13)

3.2 Spatial discretization

We consider a discretization of Ω = [0, X1] × [0, X2] ⊂ IR2 into a regular,

orthogonal grid with ne = nx1 · nx2 nodes with ∆xd = Xd/(nxd − 1), for d =

1, 2. We apply a cell-centered finite difference approximation to the right hand

side of eqn (1) and write for a cell Ωij in the interior,

∂(ρi,jθi,j)

∂t
=−Ri,j (14)

Ri,j =−Od,i,j − fi,j (15)

i=2, . . . , nx1 − 1, j = 2, . . . , nx2 − 1

For a cell Ωi,j in the interior, the discrete spatial approximation is

Od,i,j =
1

∆x1

[

ρi+1/2,jKe,i+1/2,j

(

ψi+1,j − ψi,j
∆x1

− ρi+1/2,jgu1

)

− ρi−1/2,jKe,i−1/2,j

(

ψi,j − ψi−1,j
∆x1

− ρi−1/2,jgu1

)]

+
1

∆x2

[

ρi,j+1/2Ke,i,j+1/2

(

ψi,j+1 − ψi,j
∆x2

− ρi,j+1/2gu2

)

− ρi,j−1/2Ke,i,j−1/2

(

ψi,j − ψi,j−1
∆x2

− ρi,j−1/2gu2

)]

(16)

where the subscripts in gu = [gu1, gu2]
T indicate values for each coordinate,

and quantities with a 1/2 subscript denote values estimated at cell interfaces.

For the interface values, we use a harmonic average for saturated hydraulic

conductivity, the arithmetic average for density, and upwind the relative per-

meability

ρi+1/2,j = [ρ(ψi+1,j) + ρ(ψi,j)]/2 (17)
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Ke,i+1/2,j = kr,i+1/2,jKs,i+1/2,j

Ks,i+1/2,j =2Ks,i,jKs,i+1,j/(Ks,i,j +Ks,i+1,j)

kr,i+1/2,j =



















kr(ψi+1,j) if
ψi+1,j−ψi,j

∆x1
> ρi+1/2,jgu1

kr(ψi,j) otherwise

(18)

The corresponding terms along the other coordinate axis are defined symmet-

rically.

The physical boundaries are located at the nodes (cell centers), so specify-

ing Dirichlet conditions in pressure or volume fraction is straightforward. For

example, at a cell Ωi,j ⊂ ΓD, we set

C(ψi,j − ψbi,j) = 0, (19)

where C is a scaling factor that gives the boundary equation roughly the same

scaling as the interior nodes.

For cells along ΓN , we use linear extrapolation to apply the flux at the exterior

(artificial) cell boundary rather than the cell center. This approach allows us

to use the same nodal equation at the boundary node as we do at the interior

points for Ωi,j ⊂ ΓN . If, for example, Ω1,j ⊂ ΓN , we set

u1,1/2,j = −2u
b
1,1,j − u1,3/2,j (20)

at the fictitious left cell boundary. Here u = [u1, u2]
T .

3.3 Temporal approximation

Since we consider both direct solution of the steady-state problem eqn (7) and

integration of eqn (1) to steady state, we begin by applying the cell-centered
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finite difference spatial approximation to eqn (13) in a method of lines (MOL)

context

A(ψi,j)
∂ψi,j
∂t

=−Ri,j (21)

i=2, . . . , nx1 − 1, j = 2, . . . , nx2 − 1

with the Dirichlet and Neumann boundary conditions given by eqns (19) and

(20).

The semi-discrete system corresponding to eqn (21) can be written as a set of

differential algebraic equations (DAE’s)

F(t,y,y′) = 0 (22)

where F represents a set of equations that depend on time t, a set of dependent

variables y, and a set of first-order derivatives with respect to time of these

dependent variables, y′.

A variety of approaches can be used to integrate eqn (22). To illustrate the

structure of the nonlinear system for transient problems, we use a backward

Euler approximation to convert eqn (22) to a fully discrete system [13, 21].

G(tn+1,yn+1,
1

∆tn+1
(yn+1 − yn)) = 0 (23)

3.3.1 Nonlinear solution for the transient problem

At each time level, a full time integration approach such as backward Euler

must solve the nonlinear system eqn (23). A general Newton iteration for eqn

(23) can be written

[

Jn+1,sn

] {

∆ysn+1
}

= −
{

Gn+1,sn

}

(24)
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where {∆ysn+1} = {yn+1,sn+1} − {yn+1,sn} and sn is a nonlinear iteration

index. The Jacobian, J, is formed by differentiating eqn (23) with respect to

y. For eqn (21), we can write J as

[

Jn+1,sn

]

=
1

∆tn+1

[

An+1,sn

]

+

[

∂(Ay′)

∂y

n+1,sn
]

−

[

∂Od

∂y

n+1,sn
]

(25)

where A is diagonal with [A]l,l = A(ψi,j), ∂Ay′/∂y is also diagonal, and

∂Od/∂y will be banded with seven non-zero entries. Here, l is a global identifier

corresponding to cell Ωi,j with, for example, l = (j−1)nx1+i for i = 1, . . . , nx1,

j = 1, . . . , nx2.

For unknowns along ΓD, J is simply (see eqn (19))

[

Jn+1,sn

]

l,l
= C (26)

3.4 Ψtc approximation

Ψtc attempts to find a solution to eqn (7) by integrating eqn (21) to steady

state. The approach is straightforward and can included in many existing

steady-state or transient solvers with minor modifications. The fully discrete

Ψtc system can be obtained from eqn (21) by first applying a backward Euler

time discretization as in eqn (23) and then using Newton’s method with yn

as the initial guess.

3.4.1 Solution for Ψtc update

While applying multiple iterations of Newton’s method is possible, the form

of Ψtc which we present here performs only a single Newton update for eqn
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(23) [23]. The resulting equation for the Ψtc iterate is

[Jn]
{

∆yn+1
}

= −{Rn} = {Od(y
n)}+ {fn} (27)

with {∆yn+1} = {yn+1}− {yn} since only one Newton iteration is performed

and {yn+1,0} = {yn}. J has the same form as eqn (25), but without a derivative

of the accumulation term

[Jn] =
1

∆tn+1
[An]−

[

∂Od

∂y

n
]

(28)

Note that when ∆t is small enough [Jn] ≈ 1
∆tn+1 [A

n] and therefore

∆yn+1 ≈ −∆tn+1 [An]−1 {Rn} (29)

which is the update corresponding to the forward Euler method applied to the

ODE form of RE.

3.4.2 Ψtc step selection

Ψtc solves a series of problems of the form in eqn (27), while adapting the time

step ∆tn+1 based on the intermediate solution’s behavior. There are a number

of common strategies, for selecting ∆tn+1, including the switched evolution

relaxation (SER) [23, 15, 11]

∆tn+1 = ∆tn
‖Rn−1‖

‖Rn‖
(30)

The temporal truncation error approach (TTE) attempts to control the time

step based on the local temporal truncation error [23, 15, 11]. It chooses ∆tn+1
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so that

∣

∣

∣

∣

∣

(∆tn+1)2

2(1 + |ynl |)

∂2yl
∂t2
(tn)

∣

∣

∣

∣

∣

≤ τ (31)

for each component of the solution yl and some constant τ . Here, we estimate

∂2yl/∂t
2 at tn by [11]

∂2yl
∂t2
(tn) ≈

2

∆tn +∆tn−1

[

ynl − yn−1l

∆tn
−
yn−1l − yn−2l

∆tn−1

]

(32)

For both SER and TTE, we also enforce an upper bound ∆tmax on the chosen

time step.

3.5 Newton’s method for the steady-state problem

Following eqn (21), we can write a cell-centered finite difference spatial ap-

proximation of eqn (7) to solve the steady-state problem directly

Ri,j =0 (33)

i=2, . . . , nx1 − 1, j = 2, . . . , nx2 − 1

with Dirichlet and Neumann boundary conditions given by eqns (19) and (20)

without temporal dependence.

The Newton update for eqn (33) is

[Jsn ]
{

∆ysn+1
}

=−{Rsn}

[J] =−

[

∂Od

∂y

]

(34)
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3.5.1 Globalization techniques

A number of globalization strategies are commonly used to address the sensi-

tivity of Newton’s method to initial guess. The Armijo line-search technique

scales the original Newton update by a factor chosen to take a step as close to

the original update as possible while insuring a sufficient decrease in the non-

linear residual [18]. At iteration level sn for eqn (34), the Armijo line search

can be written

(1) Solve eqn (34) for ∆ysn+1, and set λ = λ+ = 1

(2) While ‖R(ysn + λ∆ysn+1)‖ > (1− εsλ)‖R(y
sn)‖

Choose λ+

if λ+ < σminλ, λ+ = σminλ

else if λ+ > σmaxλ, λ+ = σmaxλ

λ = λ+

(3) Set {ysn+1} = {ysn}+ λ {∆ysn+1}

where εs is a parameter controlling the amount of decrease required in the

nonlinear residual and λ is the final scaling factor. Here, we chose λ+ so that

it minimized a three-point parabolic approximation of ‖R(ysn +λ∆ysn+1)‖ =

f(λ). Bounds on λ+ are dictated by σmin and σmax. The details of this approach

can be found in Kelley [22]. For this work we set σmin = 0.1,σmax = 0.55, and

εs = 10
−4. The line search can fail if λ becomes too small. In this case, the

nonlinear solver is said to have failed due to line-search stagnation [11].

To avoid evaluation errors in the constitutive relations and to increase the

robustness of the iterations, we also include a test to make sure that the

solution is within broad, physically relevant bounds.
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(1) Solve eqn (34) for ∆ysn+1, and set λ = 1

(2) While ysn

l + λ∆y
sn+1
l 6∈ [ymin, ymax] ∀ l

λ = λ/2

(3) Set {ysn+1} = {ysn}+ λ {∆ysn+1}

In the numerical experiments presented below, we use an interval ymin =

−100 [m], ymax = 100 [m].

3.6 Picard iteration

Picard iteration has been used widely in the solution of RE [10, 19]. In brief,

a Picard linearization of eqn (33) can be formulated as the Newton update in

eqn (34) but with an approximate Jacobian in which the coefficient derivatives

∂kr/∂ψ and ∂ρ/∂ψ are omitted from ∂Od/∂y [29, 25]. The performance of

Picard iteration and Newton approaches have been compared in several works

[29, 25, 27].

In many cases, Newton’s method with line search has proven more robust

than a straightforward application of Picard iteration [27]. However, a hybrid

Newton-Picard algorithm has also been suggested for reducing the sensitivity

of Newton’s method to the quality of the initial guess [29, 8]. This approach

performs an initial number of iterations for eqn (34) using the Picard approx-

imation for J and then switches to a Newton update with the full Jacobian

[29, 8]. The motivation for this approach is that the Picard iterations are, in

general, cheaper than their Newton counterparts.

Ideally, the switch to Newton’s method is chosen so that (1) a minimal number
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of Picard iterations are performed; and, (2) upon switching, ysn is sufficiently

close to the true to solution that the asymptotic convergence rate for the

Newton updates is realized. There are several possible criteria for determining

the crossover from Picard to Newton iteration, including ‖∆ysn‖ < εc [8].

Alternatively, one can base the switch on sufficient decrease in the initial

residual,

‖Rsn+1‖ < εc‖R
0‖ (35)

We use eqn (35) in the numerical results presented below.

3.7 Linear system solution

We test five algorithms for solving the linear systems arising in the nonlinear

iteration. As a direct solver, we use both the banded LU decomposition from

LAPACK (LU-B) [1], as well as the implementation of LU from the SPOOLES

package (LU-S) [2, 3] in PETSc [6, 7, 5]. We also test the iterative method

BiCGstab using ILU preconditioning with zero fill from PETSc (BiCGstab-

ILU), and a two-level hybrid additive Schwarz domain decomposition method

(BiCGstab-HAS) [17].

4 Results

In the following sections we will present results of several numerical experi-

ments and compare the behavior of Ψtc with Newton’s method and a hybrid

Newton-Picard iteration. First we summarize the test problems on which the

numerical experiments were carried out.
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4.1 Test problems

4.1.1 Problem 1: infiltration example

The first test problem is a relatively simple one-dimensional example and pro-

vides a case where each of the methods should perform well. We consider each

test case as a transient problem with a corresponding steady-state solution.

The first example simulates infiltration in vertical domain Ω = [0, X1]. Initial

conditions for the infiltration are set to static equilibrium with the water table,

located at the bottom of the domain. Constant Dirichlet boundary conditions

are set at the top so that the steady-state solution contains both saturated

and unsaturated regions. Table 1 summarizes the relevant physical parameters

and auxiliary conditions.

4.1.2 Problem 2: hillslope example

The spatial domain for the second problem, Ω = [0, X1]× [0, X2], is illustrated

in Figure 1. The temporal domain is t ∈ [0, T ] with T chosen so that the

solution is at steady state. The relevant physical parameters and auxiliary

conditions for Problem 2 are given in Tables 2-4. The log of the saturated

hydraulic conductivity is given in Figure 2. Note that the domain is rotated

45 degrees to simulate a simple hillslope. The domain has block-heterogeneous

medium properties ranging from clay to sand.

The boundary and initial conditions are configured to reflect an imperme-

able bedrock at the X−
2 boundary, no flow at the X

+
1 boundary, and static,

saturated equilibrium along X−
1 . The surface boundary condition at X

+
2 is

a nonlinear flux boundary condition that simulates infiltrating precipitation
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Table 1

Fluid and domain properties for Problem 1

Variable Value Units

gu1 -1.0 [−]

‖g‖ 7.321×1010 [m/d2]

%0 998.2 [kg/m3]

β 6.564×10−20 [m · d/kg]

p0 0 [kg/m · d]

X1 10 [m]

ψb(x1 = 0) 0 [m]

ψb(x1 = 10) -0.05 [m]

ψ0(x1) −x1 [m]

nv 4.264 [−]

αv 5.470 [m−1]

Ks 5.040 [m/d]

until the surface becomes saturated. After saturated conditions are reached at

the surface, the outward normal flux increases to zero and becomes positive as

the pressure rises above atmospheric pressure. This condition reflects a well-

drained surface that permits very little ponding at the surface. The boundary

conditions can be summarized as follows.

ψX−
1
= x2 (36)

ub
X+

1

=0 (37)

ub
X−

2

=0 (38)

ub
X+

2

=



















ur, ψ < 0

ur +Ks
sψ, ψ > 0



















(39)

where ur is the precipitation rate and Ks
s is the saturated conductivity at the
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surface. For the numerical experiments presented, Ks
s = 10 [m/d]

The steady-state solution of the volume fraction is given in Figure 3. This so-

lution was computed by integrating the transient problem to T = 1700 [d] at

which time ‖R‖∞ < 10−5. The solution was obtained using a DAE integrator

with relative and absolute integration tolerances of 10−4 [20, 21]. The tran-

sient solution exhibits steep moving fronts throughout the domain while the

equilibrium solution shown maintains a number of steep moisture gradients

due to the layering of the media.

Fig. 1. Problem domain Ω

X+
1X−

1

X+
2

X−
2

-

6

x1

x2

(0, 0)

(X1, X2)

4.2 Numerical experiments

For both test problems, we performed several numerical experiments on a

series of grids. On each grid, we ran Newton’s method with a quadratic line

search (NILS), the Newton-Picard hybrid approach (PIH), as well as two Ψtc
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Table 2

Media distribution for Problem 2

Medium Type P1 P2 P1 P1 P1 P1 P1 P2 P2 P2

Left [m] 0 0 0.7 1.4 2.9 7.1 8.6 2.9 6.4 9.3

Bottom [m] 0 0.1 0.1 0.1 0.2 0.1 0.3 0.1 0.2 0.1

Right [m] 10 0.71 1.4 2.9 6.4 9.3 9.3 7.1 7.1 10

Top [m] 0.1 1 0.8 0.3 0.3 0.3 0.8 0.2 0.3 1

Medium Type P2 P2 P2 P2 P2 P3 P3 P3 P4 P1

Left [m] 3.6 1.4 0.7 1.4 7.1 1.4 2.9 5.0 1.4 5.0

Bottom [m] 0.4 0.6 0.8 0.7 0.7 0.4 0.7 0.4 0.3 0.5

Right [m] 5.0 8.6 9.3 2.9 8.6 3.6 7.1 8.6 8.6 8.6

Top [m] 0.6 0.7 1 0.8 0.8 0.6 0.8 0.5 0.4 0.6

Table 3

Media properties for Problem 2

Medium Type θs θr nv αv [m
−1] Ks [m/d]

P1 0.41 0.07749 2.090 0.244 1.10808×10−5

P2 0.40 0.03120 4.264 5.470 5.04000×100

P3 0.39 0.03822 2.370 0.478 1.80100×10−3

P4 0.39 0.02691 3.264 0.244 4.04000×100

methods, SER and TTE, until ‖R‖2 < (‖R0‖2+1)10
−5. The initial guess was

taken to be the initial conditions for the corresponding transient problem. For

the NILS and PIH calculations, we enforced a maximum number of nonlinear

iterations sn ≤ Nmax = 1000, while the maximum number of steps for the

SER and TTE runs was n ≤ Nmax = 5000. The maximum number of line

searches allowed was 1000 and the sufficient decrease parameter for Newton

line search was εs = 10
−4. The PIH approach used a value of εc = 10

−2 in

its switching strategy, eqn (35). The Ψtc methods used an initial time step
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Table 4

Fluid and domain properties for Problem 2

Variable Value Units

gu1 -0.7071 [−]

gu1 -0.7071 [−]

‖g‖ 7.321×1010 [m/d2]

%0 998.2 [kg/m3]

β 6.564×10−20 [m · d/kg]

p0 0 [kg/m · d]

X1 10 [m]

X2 1 [m]

ur -0.4 [m/d]

Fig. 2. log(Ks) for Problem 2
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Fig. 3. Steady-state volume fraction for second test problem
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of ∆t0 = 4.050 × 10−5, a maximum time step ∆tmax = 10
5, and the TTE

algorithm used τ = 1.0. The relevant parameters are summarized in Table 5.

The linear systems for Problem 1 were solved using the LU-B decomposition

from LAPACK with each method. For Problem 2, we ran the numerical exper-

iments for each of the four steady-state solution methods with the LU-S direct

solver as well the two iterative methods (BiCGstab-ILU and BiCGstab-HAS).

A relative residual test was used for BiCGstab with a tolerance of 10−6. The

maximum number of linear iterations allowed was 2000 except where noted.

The simulations were performed on a Pentium 4 (2.53 Ghz) workstation with

256 Mbytes of RAM running Redhat Linux 7.3. The elapsed time for the

simulations was recorded using the ANSI C clock and time intrinsics.

The results for Problem 1 on spatial grids of size ne =41–161 are presented in
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Table 5

Numerical methods summary

NILS PIH

Nmax 1000 1000

εs 10−4 -

εc - 10−2

TTE SER

Nmax 5000 5000

∆t0 4.050×10−5 4.050×10−5

∆tmax 105 105

τ 1.0 -

Table 6. The labels are as follows:

• Jeval-Jacobian evaluation

• Feval-function evaluation

• Steps-attempted iterations for method

• NLI-nonlinear iteration

• NLF-nonlinear iteration failure

• LI-linear iteration

• LF-linear iteration failure

• Clock-wall clock time (seconds)

• X-failed to converge

The simulations for Problem 1 were small and involved a homogeneous medium.

As a result, we expected the methods to have little difficulty in its solution.

Both the NILS method and the PIH iteration performed well, even though

the NILS method employed a number of line searches on each spatial grid.
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Table 6

LU-B runs for Problem 1

Jeval Feval Steps NLI NLF LI LF LS Clock

ne = 41

NILS 30 299 30 30 0 0 0 102 0.05

PIH 14 33 14 14 0 0 0 1 0.01

TTE 51 103 51 0 0 0 0 0 0.06

SER 83 167 83 0 0 0 0 0 0.04

ne = 81

NILS 26 253 26 26 0 0 0 88 0.04

PIH 15 35 15 15 0 0 0 1 0.03

TTE 104 209 104 0 0 0 0 0 0.14

SER 168 337 168 0 0 0 0 0 0.09

ne = 161

NILS 25 329 25 25 0 0 0 128 0.08

PIH 16 35 16 16 0 0 0 0 0.06

TTE 207 410 202 0 0 0 0 0 1.43

SER 353 705 351 0 0 0 0 0 0.33

PIH took roughly half as many steps as NILS and needed only one line search

once it switched to the Newton iteration, indicating that the initial Picard

iterations were more successful in advancing the intermediate iterates closer

to the steady-state solution than Newton’s method with a line search alone.

The Ψtc methods also converged to the correct solution, but required signifi-

cantly more steps than either the NILS or PIH approaches. To illustrate the

methods’ performance, Figure 4 shows the residual history for NILS and PIH.

Both methods achieved quadratic convergence as they approached the root.
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Problem 2 was more challenging than Problem 1 due to its dimensionality, het-

erogeneous medium, and the nonlinear boundary condition at the surface. Re-

sults of the numerical experiments with LU-S and BiCGstab are presented in

Tables 7-9. The increased wall clock times, iteration counts, and line searches

reflect the added difficulty of Problem 2. NILS converged for every linear solver

and spatial grid in Tables 7-9. It required a similar number of nonlinear itera-

tions and line searches for a particular grid, regardless of the linear solver used.

Unlike NILS, PIH failed for the cases considered. With one exception where

it failed in the initial linear solve, PIH did not reduce the original nonlinear

residual sufficiently to satisfy eqn (35) and switch to NILS. In these cases, it

exhausted the allowed number of nonlinear iterations.

Both the Ψtc methods converged for each spatial grid and linear solver com-

bination in Tables 7-9, with TTE consistently between 2 and 5 times faster

than SER. The run times for NILS and TTE were similar for most of the sim-

ulations. NILS was more efficient with the LU-S solver, particularly for the

81 × 81 grid. On the other hand, TTE was more efficient for the BiCGstab

calculations. The difference in run times increased for the HAS preconditioner,

where TTE was 3 and 1.4 times faster than NILS on the 41× 41 and 81× 81

grids respectively.

The results also indicate a difference in the way NILS and TTE behaved as

the spatial grid was refined. Namely, NILS required roughly the same number

of iterations to converge regardless of spatial grid or linear solver, while the

number of steps taken by TTE grew noticeably as ne increased. To investigate

the performance of TTE, we ran an additional set of calculations where τ was

set to 10−3 and scaled by ne for each grid. The corresponding τ values ranged

from 0.121 on the 11 × 11 grid to 25.9 on a grid with ne = 161 × 161. As a
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result, the TTE time step selection was slightly more conservative on coarser

grids than the original choice of τ = 1 and was more aggressive on the finer

grids. Table 10 contains the results for TTE with LU-S and BiCGstab for

ne = 11 × 11 to ne = 161 × 161 as well as the results for NILS on the finest

grid.

With the use of a scaled τ , Steps for TTE was roughly the same for ne = 11×11

to ne = 81 × 81 and each linear solver. There was still, however, an increase

in the number of steps for the finest grid, particularly for the BiCGstab-ILU

solver. TTE with the scaled τ took slightly longer than the original τ = 1

calculations on the coarser grids, but reduced the total simulation time as the

grids were refined. There was a corresponding improvement for TTE on the

larger spatial grids with all three solvers. The computational effort for NILS

and TTE with τ scaled was essentially the same for LU-S except for the finest

grid, where NILS was 1.6 times faster. For BiCGstab-ILU and BiCGstab-

HAS, TTE with τ scaled was twice as fast as the simulations with τ = 1 on

the ne = 81× 81 grid.

We also note that BiCGstab-ILU did not perform well with the ne = 161 ×

161 system. Simulations with each of the steady-state solution methods and

BiCGstab-ILU typically required significantly less computational effort than

BiCGstab-HAS for the coarser grids. However, for ne = 161 × 161 the total

number of steps, linear iterations, and simulation time increased significantly

for TTE while NILS failed after both 2000 and 10000 linear iterations.

As an example of the progress of the Ψtc iterations in comparison to the

Newton and Newton-Picard iterations, we graphed the history of ‖R‖2 versus

iteration for SER on the ne = 81×81 grid with the LU-S linear solver in Figure
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Fig. 4. NILS/PIH residual history, Problem 1
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5. As it neared the steady-state solution, the method’s convergence steepened.

This reflects the convergence of the Newton iteration that Ψtc reduces to near

the root. Unlike the globalized Newton iteration, however, Ψtc does not enforce

a decreasing sequence of residuals, and Figure 5 shows increased residuals

at some points in the SER calculations. The iteration history of TTE was

more extreme, often oscillating wildly before nearing the steady-state solution.

Figure 6 shows the TTE calculation with τ = 1 on the ne = 81 × 81 grid.

For some problems, it has been found that performing multiple sub-iterations

for eqn (27) can improve convergence [23, 15]. However, we investigated this

alternative for the SER and TTE updates for the second test problem and

found no improvement for either approach.
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Table 7

LU-S runs for Problem 2

Jeval Feval Steps NLI NLF LI LF LS Clock

ne = 11× 11

NILS 83 3901 83 83 0 83 0 1806 1.5

PIH 1000 6173 1000 1000 1 1000 0 0 X

TTE 49 99 49 0 0 49 0 0 0.26

SER 145 291 145 0 0 145 0 0 1.65

ne = 21× 21

NILS 132 7057 132 132 0 132 0 3291 2.55

PIH 1000 2239 1000 1000 1 1000 0 0 X

TTE 91 183 91 0 0 91 0 0 2.59

SER 379 759 379 0 0 379 0 0 7.5

ne = 41× 41

NILS 106 4725 106 106 0 106 0 2181 9.92

PIH 1000 2885 1000 1000 1 1000 0 0 X

TTE 173 346 172 0 0 173 0 0 12.23

SER 866 1732 865 0 0 866 0 0 53.29

ne = 81× 81

NILS 149 7369 149 149 0 149 0 3412 56.44

PIH 1000 3449 1000 1000 1 1000 0 0 X

TTE 450 888 437 0 0 450 0 0 164.43

SER 2068 4135 2066 0 0 2068 0 0 709.67

5 Discussion

We began with the goal of identifying effective methods for the steady-state

solution of RE. To this end, we performed several numerical experiments for
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Table 8

BiCGstab-ILU runs for Problem 2

Jeval Feval Steps NLI NLF LI LF LS Clock

ne = 11× 11

NILS 83 3901 83 83 0 1297 0 1806 1.58

PIH 1000 6173 1000 1000 1 7371 0 0 X

TTE 49 99 49 0 0 210 0 0 0.3

SER 145 291 145 0 0 445 0 0 1.77

ne = 21× 21

NILS 134 7205 134 134 0 6895 0 3360 4.5

PIH 1000 2239 1000 1000 1 19419 0 0 X

TTE 98 197 98 0 0 970 0 0 2.08

SER 378 757 378 0 0 2559 0 0 7.14

ne = 41× 41

NILS 111 4863 111 111 0 11153 0 2239 17.01

PIH 1000 2893 1000 1000 1 38981 0 0 X

TTE 177 354 176 0 0 2215 0 0 13.49

SER 865 1730 864 0 0 11693 0 0 54.44

ne = 81× 81

NILS 145 7127 145 145 0 31799 0 3301 148.57

PIH 1 3 1 1 0 2000 1 0 X

TTE 424 847 422 0 0 7934 0 0 136.65

SER 2068 4135 2066 0 0 50243 0 0 604

Newton’s method with two globalization techniques (NILS and PIH) as well

as two versions of Ψtc (SER and TTE). Various observations can be made

based on the results, which reflect a range of difficulty for the one and two-
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Table 9

BiCGstab-HAS runs for Problem 2

Jeval Feval Steps NLI NLF LI LF LS Clock

ne = 11× 11

NILS 84 3959 84 84 0 4200 0 1833 1.13

PIH 1000 6173 1000 1000 1 24663 0 0 X

TTE 49 99 49 0 0 425 0 0 0.38

SER 146 293 146 0 0 1076 0 0 1.99

ne = 21× 21

NILS 131 7059 131 131 0 46899 0 3293 26.3

PIH 1000 2239 1000 1000 1 51097 0 0 X

TTE 88 177 88 0 0 1628 0 0 2.63

SER 379 759 379 0 0 5799 0 0 9.04

ne = 41× 41

NILS 110 4991 110 110 0 24471 0 2305 69.02

PIH 1000 3019 1000 1000 1 74767 0 0 X

TTE 168 336 167 0 0 4814 0 0 23.93

SER 866 1732 865 0 0 26241 0 0 117.69

ne = 81× 81

NILS 148 7315 148 148 0 30762 0 3389 395.15

PIH 1000 3449 1000 1000 1 69639 0 0 X

TTE 439 867 427 0 0 11964 0 0 288.42

SER 2068 4135 2066 0 0 78706 0 0 1377.61

dimensional variably saturated flow problems examined in this work.

The use of a line search or hybrid Picard iteration made Newton’s method

more robust for Problem 1. PIH required roughly half the iterations of NILS,
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Table 10

Runs with τ scaled by ne for Problem 2

ne Jeval Feval Steps NLI NLF LI LF LS Clock

LU-S

TTE 11× 11 114 229 114 0 0 114 0 0 1.57

TTE 21× 21 127 255 127 0 0 127 0 0 2.96

TTE 41× 41 125 250 124 0 0 125 0 0 8.16

TTE 81× 81 146 281 134 0 0 146 0 0 58

TTE 161× 161 248 458 209 0 0 248 0 0 667.07

NILS 161× 161 232 12961 232 232 0 232 0 6043 429.58

BiCGstab-ILU

TTE 11× 11 113 227 113 0 0 447 0 0 0.69

TTE 21× 21 129 259 129 0 0 1132 0 0 2.36

TTE 41× 41 130 260 129 0 0 1739 0 0 9.72

TTE 81× 81 148 289 140 0 0 3474 0 0 65.85

TTE 161× 161 806 1185 378 0 0 92232 0 0 2330

NILS 161× 161 1 3 1 1 0 10000 1 0 X

BiCGstab-HAS

TTE 11× 11 115 231 115 0 0 979 0 0 1.86

TTE 21× 21 125 251 125 0 0 2173 0 0 4.28

TTE 41× 41 131 262 130 0 0 3782 0 0 18.17

TTE 81× 81 152 288 135 0 0 7192 0 0 131.9

TTE 161× 161 283 472 188 0 0 20806 0 0 1386.07

NILS 161× 161 236 13153 236 236 0 70484 0 6130 3397
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Fig. 5. SER residual history, Problem 2
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Fig. 6. TTE residual history, Problem 2
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while both it and NILS took considerably fewer steps than either SER or

TTE to reach steady state. The first test problem was intended to represent

behavior for mild problems since the boundary conditions were simple and
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the conductivity was homogeneous. The resulting linear systems were also

small and tridiagonal. Under these ideal conditions, NILS had little difficulty,

and PIH was able to speed convergence to the steady-state solution. The Ψtc

methods offered no benefit in this situation.

The methods’ relative performance changed though, as we moved to more re-

alistic conditions. The controlling factor in their performance for Problem 2

was the difficulty associated with solving the resulting linear systems for each

method. In addition to nonlinear boundary conditions, Problem 2 involved a

two-dimensional, block-heterogeneous domain with medium properties corre-

sponding to sand and clay. As a result, the linear systems for Problem 2 were

more poorly scaled than in Problem 1. On the first step of the 81×81 grid the

condition number of the NILS Jacobian was approximately 1019 and after 150

iterations was 109 (condition numbers calculated using the dgbtrf/dgbcon

routines from LAPACK).

Poor scaling of the Jacobians manifested itself in a number of ways, including

the added work required by BiCGstab to converge with both preconditioners.

In general, the difficulty of solving the linear systems can also translate into

less accurate search directions as, for example, one is forced to use coarser

linear solver tolerances to obtain results given computational limitations. The

performance of NILS with the LU-S solver illustrates the impact of the Jaco-

bian scaling on direct methods and the result of inaccurate search directions.

The results in Table 7 indicate that NILS was the most efficient approach when

LU-S was used for the LU decompositions. However, when we performed the

tests with the LU solver from PETSc which does not include pivoting, the

solution was less accurate, and NILS either exhausted the allowed nonlinear

iterations or stagnated in the line search.
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The PIH approach did not perform as it was intended for Problem 2 because

the initial Picard iterations did not adequately reduce the initial residual.

The convergence of PIH could have been improved by relaxing the switching

criterion in eqn (35) or enforcing a maximum number of Picard iterations,

so that it would have switched to the Newton updates before exhausting the

allowed iterations. However, this would be, in essence, just NILS and would

have masked the ineffectiveness of the initial Picard iterations for Problem 2.

In contrast, SER was robust but relatively inefficient. It converged for each of

the runs and linear solvers, but was significantly slower than TTE for most

cases. The two most efficient methods for Problem 2 were NILS and TTE.

Their relative efficiency was dictated largely by the computational expense

associated with the linear solvers. With both methods, the number of steps

required for a given spatial grid was similar using the LU-S and BiCGstab

solvers. However, the computational effort required changed significantly. Us-

ing a robust direct solver, NILS was three time faster than TTE with τ = 1

on the 81×81 grid. However, it required four times as many total linear itera-

tions with BiCGstab-ILU and three times as many using BiCGstab-HAS. As a

result, it was 9% slower using BiCGstab-ILU and 28% slower using BiCGstab-

HAS.

The total number of iterations for NILS was fairly consistent on the spatial

grids considered. On the other hand, TTE with τ = 1 did not scale as well

when the spatial grids were refined. The total number of steps required to

converge increased with ne, making TTE more expensive. Varying τ based on

ne led to more consistent results for TTE and improved its performance for

finer grids. NILS was still more efficient with a direct solver on the 161× 161

grid. On the other hand, TTE was between 2 and 3 times faster than NILS on

39



the finer grids using the iterative linear solvers and converged for BiCGstab-

ILU on the 161× 161 grid when NILS failed.

The value of a number of parameters like εc, εs, σmin, σmax and the linear solver

tolerances for BiCGstab effected each of the methods considered to some de-

gree. The performance of TTE for different τ values demonstrates that the

the impact of parameter choices can be significant at times. Finding a suc-

cessful configuration for a given method and problem usually requires some

effort. While different choices of parameter values may lead to improved per-

formance, the basic behavior of the methods was the same for the range of

parameters we investigated. NILS was preferable for the simulations with a

robust direct solver like LU-S, but BiCGstab performed better with the Ψtc

algorithms. TTE was more aggressive than SER and more efficient than NILS

when BiCGstab was used with either ILU or HAS preconditioning.

As a reference point, we also compared the performance of the Ψtc methods

to time-accurate integration using a variable-order, variable step-size DAE

integrator [20]. As might be expected, the full time integration was the most

reliable approach for obtaining steady-state solutions, but the computational

expense incurred was from 5 to 25 times greater than that of SER, which was

similarly robust.

An initial guess closer to the final solution would have improved the perfor-

mance of each of the methods considered. Since the goal of PIH and the Ψtc

methods is to approximate a Newton iteration near the steady-state solution,

one can expect the advantage of NILS to increase as the initial guess better

approximates the steady-state solution. However, we used static equilibrium

as a reasonable initial guess, since we are interested in evaluating the meth-
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ods for problems where good initial guesses for the steady-state solution are

difficult to obtain.

The range of spatial grids presented for the numerical experiments was rela-

tively coarse and the resulting linear systems were small to moderate in size.

Still, the Jacobians were ill-conditioned for Problem 2, which proved to be a

significant test for the direct and iterative linear solvers. For larger systems

arising from realistic two and three-dimensional problems, we can only ex-

pect the difficulties associated with the linear systems to become more severe.

Moreover, large simulations will often have to be solved in parallel to obtain

results in a reasonable timeframe. For the numerical experiments presented

here, NILS combined with the LU-S solver was the most efficient approach on

each spatial grid. However, preconditioned Krylov methods and sparse direct

solvers have their own advantages and disadvantages depending on the prob-

lem and architecture [12, 16]. A general comparison of their relative merits is

beyond the scope of this paper.

6 Conclusions

Our numerical experiments for Ψtc approaches as well as Newton’s method

with various globalization techniques lead us to the following conclusions and

recommendations:

• For problems where use of a robust direct solver is feasible, Newton’s method

with a line search is the most efficient approach for obtaining steady-state

solutions to RE.

• Using an initial number of Picard iterations for Newton’s method with line
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search can improve performance in some instances, but it does not neces-

sarily lead to more robust performance for difficult problems.

• Inexact Newton methods with standard globalization techniques have par-

ticular difficulty when the Jacobian is poorly scaled due to factors such as

heterogeneous conductivity fields.

• If Newton’s method fails or performs poorly for a given steady-state prob-

lem, it is worth examining a range of linear solver and line-search parameters

before abandoning a Newton approach.

• Ψtc is a relatively simple approach that can improve the efficiency and

robustness of existing steady-state solvers for RE on difficult problems, par-

ticularly if iterative linear solvers are used.
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