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We study the oscillatory behavior of radial solutions of the nonlinear partial
differential equation Au + f(u) + g(|x|,u) = 0 in R", where f and g are continu-
ous restoring functions, uf(u) > 0 and ug(|x|,u) > 0 for u # 0. We assume that
for fixed g lim,, _, o(If@)l/lul’) = B > 0, for 1 < g < n/(n — 2), and, additionally,
that 2F(u) > (1 — 2/muf(u) when n/(n —2) <q <(n+2)/(n — 2), where
F(u) = [§f(s)ds. We give conditions that guarantee that the solution oscillates
infinitely and tends to zero as r — . Finally, we give bounds for the amplitude of
the oscillations and show that the period of the oscillations increases as r — .
© 1997 Academic Press

1. INTRODUCTION

Numerous authors (see [DN, DN2, L, LN1, LN2, LN3, N2, NY, P, Po))
have given substantial attention to the existence, nonexistence, uniqueness,
and nonuniqueness of positive solutions of semilinear elliptic equations of
the form

Au + K(x)u? =0, (1.1)

on the ball |x| <R or in R". Equation (1.1) is said to involve critical
Sobolev exponents if ¢ =n* =(n + 2)/(n — 2), and is then known to
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have a one parameter family of positive solutions (u(x) > 0) in R" when
K = 1. Berestycki et al. [BLP] have shown that if K= 1 and g > n* then
(1.1) has a positive solution provided u(0) > 0. For radial K(r) > Cr?,
C >0, p = —2, near infinity, and n > 3, Ni [N2, Theorem 3.35] has shown
that if u is a positive solution to (1.1) on R", then

rPD/AD >y (p) > o2, (1.2)

for large r. Hence for constant K > 0, so that p = 0, the existence of a
positive solution to (1.1) in R” requires that ¢ > n/(n — 2). A compre-
hensive treatment of (1.1) for a wide range of functions K(x) is given in
[LN1].

It is well known (see [DN, DN2, G, L, LN1, LN2, LN3, N2]) that, under
suitable conditions, the analysis of positive solutions of (1.1) extends to the
more general equation

Au + f(x,u) =0, in R". (1.3)

If f(x,u) behaves like K(|x])u? for large |x| and small u > O, then it is
reasonable to expect that a solution to (1.3) may behave like a solution to
(1.1). Gui [G] has established several comparison theorems for solutions of
(1.1) and (1.3).

In this paper we shall study the radial solutions of the nonlinear partial
differential equation

Au + f(u) + g(Ixl,u) =0, in R",

where f and g are continuous restoring functions; that is, where uf(u) > 0
and ug(|x|, u) > 0 whenever u + 0. Such equations arise in many areas of
applied mathematics (see [BN, JK, KNY, N2, NY, Po2)]); positive solutions
that exist in R" and satisfy u(x) — 0 as |x| — « are called ground states.
Since we consider only radial solutions, our problem reduces to studying
the singular initial-value problem

n
u" +

u' +f(u) +g(r,u) =0

for0 <r <o, u(0) =uy, #0=u'(0), (1.4)

r

where f and g are continuous restoring functions. At various times we
shall assume that g(r,u) = 0, so our results will then apply to solutions of

u" + u' + f(u) =0, for0 <r <o, u(0) =uy, # 0 =u'(0).

(1.5)
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Suppose
lim |f(u)l/lul’ =B > 0, (1.6)
u—0

for fixed g, 1 <g <n/(n—2). It is not hard to show for restoring
functions f and g that (1.4) will have no positive or negative solutions in
a <r <o, a>0.Consequently, under these conditions, solutions to (1.4)
must oscillate about 0 infinitely often. But what is the nature of these
oscillations? Do the solutions converge to 0 or oscillate but have no limit
as r — «? In Section 3 we prove.

THEOREM 1.7. Let u be the solution to (1.5) with f(u) a continuous
restoring function. Suppose that (1.6) holds for fixed q, 1 < q < n*, and that

2
2F(u) > (1 - ;)uf(u) for u # 0, (1.8)
where
F(u) = fo”f(s) ds. (1.9)

Then u will oscillate infinitely and tend to 0 as r — .

Having shown that the solution oscillates to zero, it is interesting to
examine the decay of the solution as r — « and the period between
consecutive zeros of the solution. In Section 4 we prove:

THEOREM 1.10.  Let t; be the jth local extremum of the solution u of

n
u" + u' + (blul"_1 + Iul”_l)u =0, u(0) # 0 =u'(0), (1.11)

1 < g <p < n*. Then there is a positive constant ¢ such that

lim (200~ D/ Iy (1)) = c.

j—)oc
Thus, the decay rate is of the order |u(r)| < cr 2"~ D/W*3) a5 r — oo,

Finally, we prove:

THEOREM 1.12.  Let r; be the jth zero of the solution of (1.11). Then there
is a positive constant ¢ such that

— (n—=1(g-1)/(q+3)
Fipg —Fp=cr .

Hence, the period between zeros increases as r — .
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Although Section 4 is limited to solutions of (1.11), it is not hard to find
conditions that extend these results to more general restoring functions.

2. ELEMENTARY RESULTS

In what follows, we shall need some elementary facts concerning solu-
tions of the initial value problem (1.4). Suppose f and g are continuous.
Then

(r"=hw) = =" f(u) +g(rou)].

Integration of this equality from 0 to r yields

1
w(r) = = [[f(u(s)) + (s u(s)]s" Hds. (2)

LEMMA 2.2.  If f(u) and g(r, u) are continuous restoring functions, and u
is a positive solution of the equation (1.4), then u is strictly decreasing and
tends to 0 asr — .

Proof. Since the integrand in (2.1) is positive, u’ < 0 so the solution is
strictly decreasing. Hence, there is a number ¢ > 0 such that u(r) de-
creases to ¢ as r — « and u'(r) —» 0 as r — . Suppose ¢ > 0, then since
f is continuous on the interval [c, uy] it has a minimum f,.,, > 0 on this
interval. Hence,

n

() = [TH() + g(s,u(3)]5"Hds > i,

implying that u'(r) < —f,i.(r/n) = —o. This is a contradiction and hence
u tends to zero as r — <.

Suppose the solution u of (1.4) oscillates about zero a finite number of
times and has a local maximum at r, for which u(r) > 0 for all » > r,. We
call such solutions eventually positive solutions. Then, because u'(r,) = 0,

1
w(r) = = [ () +g(s,u(s)]s" s, (23)

so that again u is strictly decreasing for r > r,, and the same proof as
above shows that u and u’ converge to 0 as r — . A similar argument
holds for eventually negative solutions.
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LEMMA 2.4. Let u be a positive solution of the initial value problem (1.4),
and suppose (1.6) holds for q > 1. Then, for sufficiently large r,

u(r) <cr?/-b, (2.5)

Proof.  Since u decreases to 0 by Lemma 2.2, some r, exists for which
| fl/lul? > B/2 for r > r,. By (2.1) and Lemma 2.2

du
— < u(s)) +g(s,u(s))]s" *ds
dr
< u(s))s" tds
r B Buq(r) e
< —2rn71fr0uq(s)s ds < — e fro Lds.

Integrating the resulting inequality:

(r) _ —C
furu qdus—/ r—rirttt] dr
n

u(rg)

yields an inequality from which the result follows for r > 2r,.

Inequality (2.5) also holds for eventually positive or eventually negative
solutions of (1.4) by applying the argument above at the last value r, at
which u'(r,) = 0. For positive solutions, (2.5) corresponds to the upper
half of (1.2).

Unless otherwise stated, assume from now on in this section that
g(r,u) = 0. By the uniqueness theorem for solutions of initial value
problems, a solution of (1.5) cannot satisfy both u'(r) = 0 and f(u(r)) = 0,
unless u is constant. Thus, except for such cases, the critical points of any
solution of (1.5) are isolated, and are minima whenever f(u(r)) < 0 and
maxima whenever f(u(r)) > 0. Let u(r) be a solution of (1.5) and define
the “energy function” of [MTWI:

o(u(r)) = (”(r)) + F(u(r)). (2.6)

If (1.5) is multiplied by u’, one obtains

o ((w)
EZ(T+F(”))

-1 )
(u")" <0.
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This implies that the “energy” function Q is strictly decreasing because the
critical points of u are isolated.

LEMMA 2.7.  Let u have a critical point at ry. If u(ry) is a local maximum,
then u(r) < u(ry) for all r > r,, and if u(ry) is a local minimum, then
u(r) > u(ry) forall r > r,.

Proof.  Suppose u(r,) = u(r,) for r; > ry. Then

0(u(r)) = 4 F(u(r)) = F(u(r)) = Q(u(ry)).

contradicting the fact that Q is strictly decreasing.

We also need the following “energy” version of Pokhozhaev’s second
identity valid for continuous f and functions u that are C2(R") and radial
(see [Po)):

for(Au + f(u))(su' + au)s*ds

=k 0(u(r)) + arfu(ryu’(r)

+%(n -1- k)rk’luz(r)

+(2n -3 -k - 2a)/:Q(u(s))sk ds

n—1-k)(k—-1) .
a( 2)( )fuz(s)skfzds
0

+fr[auf(u) —2(n—1— a)F(u)]s*ds
0

for integers k > 1, and « real. (2.8)

Here u = u(s) inside the integrals. If Au + f(u) = 0, then the left side of
(2.8) is zero. Verification of this identity is a routine task by using (1.5)
instead of Au + f(u).

LEMMA 2.9.  Let u be a solution of (1.5) and let

J(rou) =r"u'?(r) + (n — 2)r" *u(r)u'(r) + 2r"F(u). (2.10)
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If u'(ry) = 0 for some ry > 0, then for all r > ry,

J(r,u) = fr[ZnF(u(s)) — (n = 2)u(s)f(u(s))]s" tds + 2r{F(u(r,)).
0 (2.11)
Proof. Differentiate (2.10) with respect to r and substitute (1.5) into
the resulting equation to obtain
= [2nF(u) — (n — 2)uf(u)]r" L.
An integration yields the desired result.

LEMMA 2.12.  If u is a solution of (1.5) and lim,_ O(u(r)) = B, then,
for any r,

1

Im —

I
r—>o I

frrF(u(s)) ds = B. (2.13)
Proof. Equation (2.8) also holds when k = a = 0, yielding
rQ(u(r) + (2n = 3) [ Q(u(s)) ds = 2(n — 1) [ F(u(s)) ds. (214)
Evaluating (2.14) at r, and subtracting from (2.14) yields
() = roQ(u(rd) + (21 = 3 [ Q(u(s)) ds = 2(n — B [ F(u(9) ds.
Dividing by r and taking the limit asor - w yields 0
B+ (2n=3) lim ~ [Q(u(s)) ds = 2(n = 1) lim ~ ['F(u()) s

Using L’Hopital’s rule, we obtain (2.13).

As mentioned in Section 1, problem (1.5) does not have positive radial
solutions if the order of growth ¢ of f(u) to zero as u — 0 + is in the
interval 1 < g < n/(n — 2). For g outside this interval, positive solutions
may exist: for example, if n = 3 and ¢ > n/(n — 2) = 3, then

2 4qu, ( u )qu
u + —u' + ———

(g —1)" i

u(0) =uy, >0, u’(0) =0,
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has the positive solution u(r) = uy(1 + r?)*/@~9, The following result
provides an elementary proof of the nonexistence of positive (or eventually
positive) solutions for problem (1.4), and is included for completeness.

LEMMA 2.15.  If f and g are continuous restoring functions and (1.6) holds
for 1 <q<n/(n—2), then problem (1.4) has no positive or negative
solutions ina <r <, a > 0.

Proof. We prove the result for positive solutions; the case for negative
solutions follows immediately by setting v = —u and applying the positive
case. Suppose a local maximum of the solution exists at r, such that
u(r) > 0 for all r > r,. By Lemma 2.2 and the remark following its proof,
it follows that u - 0and u" — 0 as r — .

By L’Hopital’s rule and (2.3) we have

o 4w B (u(s)) g u(s)) s ds
im —— = lim ————— = lim ,
r—w 7'2 " r—w (2_7’1)7'1 n r— o n—2

(2.16)
Since the integral in (2.16) is positive, some constant ¢, > 0 exists so that
u(r) =cor2="  forall r > r,. (2.17)

This proves the bottom half of (1.2). Using (1.2), 2 <(n — 2)(g — 1) or
n < (n — 2)q, contradicting the hypothesis. Hence no positive solution
exists in ry <r < o,

Remark 2.18. A similar result can be obtained for problem (1.5) when
n/(n — 2) < q < n*, provided the restoring function f satisfies a
Pokhozaev inequality (1.8). Suppose that the conclusion is not true. Then
there exists a point r,, > 0 such that u(r) > 0 for all » > r, > 0. Using
(2.3) with g(r,u) = 0 and Lemma 2.4, we get

11£ﬂu@nwlm

C 2Bc? .r C
fsn—l—Zq/(q—n ds < — + Cyr-@tb/a-D,
r'e

To

lu'(r)l

rn

< — + —
rnl rnl

where we choose ry > r,, such that 0 < f(u(r))/u?(r) < 2B for r > r,.
Since ¢ = n/(n — 2), it follows that n — 1 > (¢ + 1) /(¢ — 1) and

u'(r)| < cpr @YD for large r. (2.19)
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By L’Hopital’s rule, we have from (1.6)
F(u(r)) Jo " f(w)du f(u(r)) B

lim = lim —————— = |lim = .
roow uq“(r) r—oow uq“(r) row (q+1)u"(r) qg+1

(2.20)

Now, using (2.5), (2.19), and (2.20) and « = 2(qg + 1)/(g — 1) — n > 0, we
get

F(u(r 41
r"F(u(r)) <r" u£—+f(r))) [er /@ D) < ore

and both
" ru(r)lu' (r)l < e,
r”Iu’(r)I2 <cr ¢,

for large r. Let r; be the first maximum point such that u(r) > 0 for all
r >ry. Then u'(r;) = 0. Using Lemma 2.9 and (1.8) we get

T(r )l < el (7)) P+ (n = 2)r Yu(r)| ' (1))
+ 2r"F(u) < (n + 1)cr ¢ (2.21)

and

J(r,u) = fr[ZnF(u(s)) —(n = 2)u(s)f(u(s))]s" tds + 2r{F(u(ry))

> 2r{F(u(ry)) > 0. (2.22)

Letting r — o, we see that (2.21) contradicts (2.22), so the remark is
proved. The result also holds for negative solutions by a similar argument.

ExAMPLE 2.23. The function f(u) = u® + uV1 + u? satisfies the hy-
potheses of Remark 2.18, so (1.5) has no eventually positive or negative
solutions in R* for this function. The function f(u) = u® + u* satisfies
(2.18) except that f is not restoring since f(u) > 0in —1 <u < 0. Thus,
(1.5) has no eventually positive solution, but may (and does; see [CCD])
have an eventually negative solution.

3. OSCILLATORY BEHAVIOR

As was mentioned in Section 1, a solution to (1.4) or (1.5) satisfying the
hypotheses of Lemma 2.15 or Remark 2.18, respectively, must oscillate
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infinitely as » — . In this section we will give conditions guaranteeing
that the solution converges to 0 as r — . For simplicity, we will assume
that g(r,u) = 0.

First we show that with a stronger condition than Remark 2.18 we can
prove that the solution converges to zero as r — .

LEMMA 3.1. Let f(u) be a continuous restoring function satisfying (1.6)
for 1 < g < n*, and assume that

2
(n = 2)uf(u) > 2F(u) > (1— ;)uf(u) >0 foru+#0. (3.2)

Then, if u is a solution of the initial-value problem (1.5),

lu(r)l < cr2/4*D  for large r. (3.3)

Proof. Pokhozhaev’s first identity [Po] with « = n — 2 can be rewritten
as
rPF(u(r)) + 3lr'(r) + (n = 2)u(r)]®

(n = 2*u(0).

+j;)’[(n_2)u(s)f(u(s)) — 2F(u(s))]sds = 5

Since the second and third terms on the left side of this equation are
nonnegative, we have by (3.2)

(n = 2'(0)

2

o D)

n r

Thus, F(u(r)) = 0 as r — «, and by the first inequality, F is only zero at
u=0.Hence, u > 0as r — . Then

T f(w)l _ (= 2)u*(0)

lul” T r?

and using (1.6) the conclusion in (3.3) follows.

Observe that the function f(u) = u® + u® in R® satisfies the hypotheses
of Lemma 3.1 with g = 3. Hence, the solution to (1.5) with this f will
decay as |u(r)| < cr '/? as r —» «. On the other hand, f(u) = (u/(1 +
u?))? satisfies only the second inequality in (3.2) for u + 0, so the conclu-
sion (3.3) cannot be assumed.
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Lemma 3.4. Let u be the solution of the initial value problem (1.5).
Suppose that u oscillates infinitely about the value b and converges to b as
r — o, Then f(b) = 0.

Proof.  Assume f(b) #+ 0. By continuity it follows that f(u(r)) does not
change sign for r sufficiently large. Without loss of generality assume
fu(r)) < 0for r > r,. Let r, > r, be the value of the first local maximum
of u(r) after r,. Then by (2.3), for all r > r,

171 frf(u(s))s"*lds >0,

u'(r) = —

rn

which is impossible, since u(r,) is a local maximum. Thus f(b) = 0.

Next we show that for certain functions f(u), we need not assume
convergence of u to b, as r — o, in order to get that f(b) = 0.

LEMMA 3.5. Let f(u) be continuous and suppose F(b) = inf{F(u):u €
R}. Suppose the solution of (1.5) oscillates about b as r — «, and assumes no
other root of f(u) = 0 for large r. Then lim,_,, u(r) = b.

Proof. Since f is continuous, f(b) = F'(b) =0, so b is a root of f.
Suppose

limsupu(r) # liminfu(r).

r— 0

Let the local minimums of u(r) occur at r,;_, and the local maximums at
r,;- Then, by Lemma 2.7,

u(ry) <u(ry) <u(rg) < - <u(rg) <u(ry) <u(ry).

Thus, the maximums are bounded below, while the minimums are bounded
above, so both sequences converge, say to u, and u_, respectively, with
u,>u_. The energy function Q(u(r)) decreases and is bounded below
since

F(u,) = lim F(u(ry)) = jler;Q(”(VZj)) = r"_)”JOQ(”(”))

jo®

j'L”lQ(u(”zjfl)) = jILn;F(u(ijfl)) =F(u_).

By Lemma 2.12, with 8 = F(u,),

1
lim —
r—>wo I ro

[F(u,) — F(u(s))] ds = 0. (3.6)
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Let g(s) = F(u,) — F(u(s)). Then g(s) oscillates between the maximums
g(t) = B — F(b) at u(t;,) = b, and local minimums g(r,) = B — F(u(r,))
— 0 as i = o, with ¢, <r,. Select i, sufficiently large so that g(r,) > —§
for i > iy, where 8 <[ B — F(b)]/5 and the only root of f(u) =0isu =b
for r > r, . Then |f(w)] < N and, by the mean value theorem for j > i,

1 L 1j_l fiva
o) sy = L [Ts(s) ds

Ji=ig ti

171 .
= t—jigog(sl*)(m — ) = [irl]fg(s;")](l - %)

If we can show that inf; g(s¥) > 0, then

1 .
lim —ft’g(s) ds > 0,
Iindes j Tt

which will be a contradiction of (3.6).
Set A, ={s e (t,t,,,):1g(s)l < 8} and B, = (¢,,¢,,,) \ 4,. Denote the
Lebesgue measure of a set 4 by meas(4). Then

1 Liv1
g(sf) = T t/t g(s) ds
1
= meas(A,) + meas(B)) (/A,-g(s) ds + fBig(s) ds)
& meas( B;) 8 meas(A4,)

> - .
~ meas(A;) + meas(B;) meas(A;) + meas(B,)

If we can prove that meas(4,) < (¢, — #,), then it will follow that
g(sf) > 25 — 16 = 15. From (2.6), since Q and F are bounded, it follows
that |u'| < M < «. By applying the mean value theorem,

0 <F(u,)—F(b) <lg(r) —g(ti)l
= f(u*) ' (*)r; =t < NM(8;,0 — 17).

Similarly, F(u,) — F(b) < NM(r; — t;), so it follows that (¢,,, — ¢;) > a >
0 for all i (see Fig. 1).
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Since |u"| < M, for all r > 0, we have

' (r)] =

< Mylr —rj for all i.

fru” s) ds

For every £ > 0, we can find an % independent of i such that |u'(r)| < &
when |r — r,| < m. Since f2(u(r,)) > &, > 0, for all i, and

{(” — Df(u(r))

g"(r) =f*(u(r)) + = f'(u(r))u'(r) u'(r), (3.7)
there is an n independent of i such that g"(r) > 3&,, for |r —r| < n.
Then |g'(r)|l = S&,lr — r,, so that

g(r; £ m) —g(n) = z5om%, org(r; £ m) > 5&m° (3.8)

for i sufficiently large. Choose & < 3e,m?, and let § = g(p,) = g(p}).
Then p} — p, < 2m and n can be chosen less than za, so that

meas(A;) = pf —p; <2< 3a < 3(t;4 — 1). (3.9)

THeOREM 3.10. Let f(u) be a continuous restoring function satisfying
(1.8) and assume that (1.6) holds for 1 < q < n*. Then the solution of (1.5)
will oscillate infinitely and tend to 0 as r — .

Proof. From (1.6) and (1.8) it follows that the hypotheses of Remark
2.18 are satisfied, so the solution u of (1.5) must oscillate infinitely about
0. By (1.8) and continuity, it follows that u = 0 is the only root of f(u) = 0
and F(u) > F(0) = 0. The conclusion follows from Lemma 3.5.
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ExampLE 3.11. From Example 2.23 it follows that f(u) =u® +
u*V1 + u? satisfies the hypotheses of Theorem 3.10. Hence, the solution
to (1.5) with this function and u, # 0 oscillates infinitely and tends to 0 as
r — oo, A similar conclusion holds in R" for

f(u) = u(lul™ " + alul”™?),  1<q<n* (3.12)

However, Theorem 3.10 does not hold in R*® for solutions u of (1.5) when
f(u) = u® + u*, since inequality (1.8) fails to be satisfied because f(u) > 0
in —1 <u < 0. The behavior in this case, where f(u) is not restoring, is
substantially more complicated and will be explored in another paper
[CCDL.

It is worthwhile to comment on Theorem 2.B of [J], where he points out
that nonlinearities of the form f(u) = |ul’u + |u|’u, 0 < p < o, arise in
the study of stationary or standing waves and in the Klein—Gordon or
Schradinger equations. Our Theorem 3.10 shows that for many choices of
o and p (e.g, n =3, o =4, p=23) a solution exists which oscillates to
zero. Theorem 2.B of [J] states that for o = 4/(n — 2), n > 2, and for
0 < p < o — 1, the problem

n
u" + u' + |ul’u + |ulu =0, u(R) =0, u'(0) =0,

has no solutions with zeros in 0 < R < 1, which means that u(r) is
positive in 0 < r < R. The statements in [J] about positive solutions are
relative to some bounded interval [ 0, R) and not to [ 0, «) .

4. AMPLITUDES AND PERIODS OF OSCILLATION

In this section we will study the amplitude and period of the oscillations
of the singular initial-value problem

u" + u' + (blul"_1 + Iulp_l)u =0, u(0) # 0 =u’(0), (4.1)
with b >0and 1 <¢g <p <n*=(n+ 2)/(n — 2). While our proof will
be limited to this binomial expression for f(u), it is not difficult to extend
our technique to more general f(u). Following our results on the ampli-
tude and period of the oscillations of (4.1), we will indicate some condi-
tions that can be used in proving a more general result.

Theorem 3.10 guarantees that the solution u of (4.1) oscillates infinitely
often and that u converges to 0 as » — . However, it does not provide a
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rate of convergence. Lemma 3.1 provides such a rate: |u| < cr~2/¢* D, put
requires additional hypotheses. However, this rate is far too coarse and
can be improved on substantially.

Let r; be the zeros of u(r) and t; be the local extremum points of u(r)
with r; <t; <r;,;. Then the zeros and extrema of u satisfy the following
result.

THEOREM 4.2.  There exists a positive constant c,, such that

lim 202/ @90 (u(r)) = ¢y, (43)
implying that
j|Lr720t]2(n*1)/(q+3)|u(tj)| _ [(q + 1)cl/b]1/(q+1),
fim =X DD (1) = (2¢), (44)

Proof. Applying Pokhozhaev's second identity with o =2(n — 1)/
(g +3)and

B 2(q+1)(n—2)—4+1_ 2(g+1)(n—-1) B
- q+3 B q+3

1<k 1

n+2—-—(n—2
=n-—-1- ( )q<n—1, (4.5)
q+3

we have

rRQ(u(r) + artu(rw(r) + e () + e [ lu(s)|sds
0

= c4f0ru2(s)sk*2ds, (4.6)

or

g+1 p+l
™ blu(r)| lu(r)l n _rk+1u/2(r)

P
q+t+1 p+t1 4

1 r
+ Zrkfl[m’(r) + Za(u(r)]2 + 63/ lu( )17 sk ds
0

< 64'/:142(.5‘)5/{72 ds + a’r* " 1u?(r), (4.7
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where
_-Dln+2-gq(r-2]  _2An-H(r-q)
(q +3)° O (g+3)(p+1)
c, =cy(k—1)>0.

By Young's inequality with p’ =(p +1/2 and ¢' =(p+1/(p — D),
we have

cqu?(5)s 7% = (uP(5) 2K/ P TD) (o sk 272K/ DY < colu(s)1P T sE 4+ es

€2

(4.8)
where
,u=(k—2— 2k p—|—1= L,
pt+1l/p—-1 p—1
_2(q+1)(n—1)_3_ 4
B qg+3 p—1
C Aq+)((n+ ) -p(n =D +4p-a)
= TERED) 1< -1. (49

Also, by (4.8), a?r* " *u?(r) = rla?r* 2u?(r)] < rl(1/2(p + D)r¥u(r)|P ™t
+ cr*], so substituting this inequality and (4.8) into (4.7) yields

blu(r)|?*? lu(r)|?*? 1 r
phrt (r) (r) + —=rf w2 (r) + Csf lu( )17 sk ds
q-+1 p+1 4 0

1 r r
< c4f u?(s)sk2ds + cgf lu(s)1”* sk ds + cfs“ds
0 1 1

+1
—lzu((l:)l_pl) L 4 oeprtl (4.10)
Thus we have proved simultaneously that
rO(u(r)) <c, lu(r)l < o b/ard,
lu'(r)l < cr= @+ Din=/a+3), (4.11)

Consequently we have, from (4.11),
larku(ryu'(r)] < crér 2=/ 3= @+ D=1/ (g +3)
< Cr*((n+2)*q(n*2))/(q+3)' (4_12)

P2 (r) < o A0 D=1/ ) (4.13)
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Letting » — o in (4.6) and using (4.12) and (4.13), we have
lim r* 10 (u(r)) = c4/ u?(s)s*"ds — c3/ lu(s)IP* sk ds. (4.14)
r—o 0 0
We claim that
lim r**'Q(u(r)) > 0. (4.15)

Suppose otherwise, then lim, . r***Q(u(r)) = 0, since Q(u(r)) > 0 for
all »> 0. Set

n+2—(n-2)q 2(n-1)(p—q)
qg+3 ’ qg+3

/\=min{ } — &y >2(q+1)gy > 0,
for small &,. By L'Hopital’s rule, (4.11)—(4.14), we get

c4f0ruz(s)sk_2 ds — c3for|u(s)lp+lsk ds

lim
r— o r_)‘
T 2 Atk—1 ; ptLl a+1+k
< —[ limu(r)r + limfu(r)I” " r ]
)\ r— 0 r— ™
c
< _[ limrr—24r+t2-(=2q1/@+3) L |im rAfZ(pfq)(nfl)/(qH)] =0.
- )\ r— % r— ®

(4.16)

Hence, multiplying (4.6) by r* and using (4.12) and (4.13), we have

limr** 120 (u(r)) =0,  or |u(r)l < cr 2= D/@rH=Ma+D - (4.17)
r— ®

Consequently, we have from (4.11) and (4.17),
|u(r)|p+1rk+l < cr 2= D=/ (q+H=Ap+D/(g+ D) (4.18)
and
larfu(Pu' (9|
< o D=q(=2)/(g+3)=1/(q+1) < p=(n+2)=q(n=2)/(q+3)~ 2¢0

(4.19)

We can repeat the process in (4.16) using

n+2-q(n-2) o 2(n-1)(p—q) N AMp+1)
qg+3 0 qg+3 g+1

A, =min

—&9>2(q+ 1)gy; > 0,



442 DERRICK, CHEN, AND CIMA

to obtain
lim r¥* %0 (u(r)) =0,  or lu(r)| < cr 20D/ @+H= 0 /(gD
(4.20)
If
n+2-gq(n-2) 2(n—1)(p—q) AMp+1)
+2¢, < +
qg+3 q+3 qg+1
then, by Lemma 2.9,
2rj”Q(u(rj))
nln+2—qg(n—2
_ f! q( )b|u(s)|q+l
0 q+ 1

n+2-p(n-—2)

P Iu(s)lp”l s""lds > e, >0, (4.21)

contradicting (4.20), since k + 1 + A, =n + g, > n. If

n+2-gq(n-2) 26, > 2(n=1(p—-9q) Mp+1)
(g +3) (g +3) qg+1

then, from (4.20),

|u(r)|p+ lok+1
< or~ 20D ~9/@+3)=20=Dp —p+ 1/ @+3Nq+ )= M+ D/ @+ D+ 2o(p+1/(g+1)

< o 2=D(P=9)/(q+3)=Mp+1)? /(g +1)?
Repeating the process in (4.16) with
A=A,

n+2—q(n—2) 2n-1)(p—q) Ap+D° _

= min - (q+3) 220, (q +3) (q+1)°

€0

rli_)nlrk““‘?Q(u(r)) = 0.
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Continue in this fashion until there is an i such that

20n—1)(p—q) AMp+1) _nt2-a(n-2)
(q +3) (g +1) ~ (q +3)

+ 2¢,.

Then repeat the process in (4.21) to get a contradiction. Hence (4.15) is
always true. The rest of the assertions follow immediately from the
definition of the energy function.

We now show that the period between zeros of (4.1) grows longer as
r — o,

THEOREM 4.22.  There exits a positive constant ¢, such that

Fivr 775

P DD/ a+D) 2 C. (4.23)

Proof. Since

rQ(u(ry)) = %r]—k“u'z(rj),

u'(r) = — ]-_l'/:[b|u(s)|q—l n |M(S)|p—1]u(s)snfl ds

rn

for ¢, <r and since u'(¢;)) = 0, it follows from (4.4) and (4.11) that, for j
large enough,

Tiv1
\/a < rj(ﬁl)/zlu’(rjﬂ)I < rj’f{”’l)/(q”)fﬁ [Dlu(s)|? + lu(s)|?]s"*ds
L

_o(n— Tivr 4 _
< er+2l(n 1)/(q+3)[ n—1-2¢(n=1)/(q+3) gg
t:

7
.

— = 2(n=1)/(q+3) [T B-g)n-1)/(q+3

= cr b/ )/ $B=(n=1/(q+3) 4o (4.24)
4

If ¢ < 3 then the integrand is monotone increasing so that

r
—(q—-1)n—-1)/(g+3) [/** —(q—-1)(n—1)/(q+3
Yo, <erp g v/ia )f ds < crp =V —1y).
t.
J
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If g > 3, then the integrand in (4.24) is monotone decreasing and
r
fe, < crjffl(”*“/(q*3)t;3*4)(”*1)/(4+3)f’“a’s
t.
7

—(g=D(n=1)/(q+3) _
<t ATV @I (L — 1)

The rest of the proof is immediate.

Remark 4.25. Theorems 4.2 and 4.22 can be extended, with very minor
modifications in their proofs, to restoring functions f(u) satisfying (1.6),
(1.8) for all u, and the condition:

uf(u) — (g + 1) F(u) = clmin(lulp“,l), F(u) > czmin(|u|q+1'l)
(4.26)
for all u, for 1 < g <p < n*. For large r, it follows, since u — 0, that

e u(r)| 7" < r**1F(u(r)) and the integrand uf(u) — (g + 1)F(u) >
clul”**, so we can replace (4.7) by

1 1
crF  u(r)litt + Zrk”u’z(r) + Zrk_l[m'(r) + 2au(r)]2

+ acljrlu(s)lp“sk ds + a/oro[u(s)f(u(s)) — (g + ) F(u(s))]s*ds

Scsforuz(s)sk_zds + a?rftu(r). (4.27)

Using Young’s inequality on the two terms on the right involving u?, we
bound the right side of (4.27) by

T r
Caf 0uz(s)skfzds + af lu( )17 *skds + er**Hu(r)" +c,
0 o

with & sufficiently small so that (4.11) applies. Minor adjustments to the
proof also need to be made in (4.16) and (4.21). Note that Theorem 4.22
implies that the period between zeros is bounded by a constant when
qg =1
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