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In this paper, the dimension ¢ and a linear basis of the commutant algebra
corresponding to the representation of the full collineation group as matrices
permuting the flags (incident point-line or point-hyperplane pairs) have been deter-
mined for each one of the four geometries PG(2,s), EG(2, s), PG(k,s), and
EG(k,s), s= p', k > 3. For the four geometries, t =6, 7, 7, and 8, respectively, and
the corresponding linear bases are (/, G, B, T, BT, TB), (I, G, B, T, BT, TB, BTB),
(I,G,B,T,BT, TB,S), and (I,G,B,T,BT,TB,BTB,S). I, G, B, T are the
relationship matrices of James (Ann. Marh. Statist. 28 (1957), 993-1082) and the
matrix S was introduced by Sysoev and Shaikin (dvtomat. i Telemekh. 5 (1976),
64-73).

1. INTRODUCTION

The analysis of variance of the observations Y from a block design, say, a
balanced incomplete block (BIB) design, based on the commonly used linear
model (E(Y)=uj+A'a+L'B, Var(Y)=0’1, is determined by the
parameters (v, k, A) of the BIB design alone and is insensitive (robust) to
other structural properties of the design, such as its group of symmetries.
Thus the two BIB designs having the same parameters v =31, k=15, 1= 17,
one, the incidence matrix of the point-hyperplane pairs of the geometry
PG(4,2) and the other generated by the difference set of the quadratic
residues (mod 31), are not distinguishablie by this model although they have
different groups of symmetries.

In order to incorporate the group of symmetries of the design in the
formulation of the linear model, we have followed the leads of McLaren [11],
Hannan (8], and Sysoev and Shaikin [13] and assumed that the covariance
matrix V of the observations Y is invariant under the action of the group of
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permutation matrices (permuting the incident point-block pairs (flags))
representing the group of symmetries (automorphisms) % of the design. This
implies that V'=3"{_, ¢, V;, where ¢ is the dimension and V;, i = 1,.., 1, is a
linear basis of the commutant algebra corresponding to the permutation
representation of %

The dimension and two alternative linear bases of the commutant algebra
corresponding to the full collineation group PC(2, 2) (represented as a group
of matrices permuting the 21 flags (incident point-line pairs)) of the
projective plane PG(2,2) were determined by Chakravarti and Burton |4]
using a theorem due to Schur (Wielandt |14, p. 80, Theorem 28.4]) and a
theorem due to Burnside |1, p. 191, Theorem VII|.

Using results from the theory of group representation and characters,
Burton [1] and Chakravarti and Burton 5] have worked out the decom-
positions into a direct sum of irreducible representations of the permutation
representations (permuting the flags of the plane) of the full collineation
groups PC(2,2) and EC(2, 3) of the finite planes PG(2,2) and EG(2, 3),
respectively, and the simple components of the corresponding commutant
algebras. Further, the irreducible representations in the decompositions of the
permutation representations of the groups PC(2,2) and EC(2, 3) have been
shown to be equivalent to real irreducible representations and hence to sets
of real orthogonal matrices (Chakravarti and Burton [4]| and Burton [2]).

In this paper, we have determined the dimension ¢ and a linear basis of the
commutant algebra corresponding to the representation of the full
collineation group as matrices permuting the flags (incident point-line or
point-hyperplane pairs) for each one of the four geometries PG(2,s),
EG(2,s), PG(k,s), and EG(k,s), s=p" and k > 3. We have shown that
t=6,7,7, and 8, respectively, for the four geometries and the four bases are
(I,G,B,T,BT,TB), (I,G,B,T,BT, TB,BTB), (I, G,B, T,BT,TB, S), and
(,G,B, T, BT, TB, BTB, S), respectively. I, G, B, and T are the relationship
matrices of James [9] and the matrix S was defined by Sysoev and
Shaikin {13].

2. FINITE PROJECTIVE AND AFFINE GEOMETRIES
AND THEIR COLLINEATIONS

A k-dimensional finite projective geometry PG(k, s), s = p’, where p is a
prime and r an integer, has a concrete representation over the GF(s). A point
of this geometry is an ordered (k + 1)-tuple x = (x,,x,,..,X;)’, where
Xg.s X, are elements of the field GF(s), at least one of which is distinct from
zero, and where it is understood that (x,,..., x;) denotes the same point as
(exys-s 4x,) for every nonzero y in GF(s). Similarly, a hyperplane ((k — 1))
space) is also defined by an ordered (k + 1)-tuple y = [ ¥y, ¥, Y4|'s Where
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Vorees ¥y are elements of the GF(s) not all zero, and [y, ¥,,..., ¥;] denotes
the same hyperplane as [uy,,..., #y,] for every nonzero u in GF(s). A point
(Xgss Xx) is incident with a hyperplane [y,,.., y,] if and only if
VoXo+ o+ + ¥iX, = 0. PG(2,s5) will then denote the finite Desarguesian
projective plane with s + 1 points on a line.

A k-dimensional finite affine geometry EG(k,s) can be derived from
PG(k, s) by deleting a hyperplane and all the points incident with that hyper-
plane. A point in this geometry can be written as an ordered k-tuple
X = (X, X3,y X)), Where x,,..., x, are elements of GF(s). A hyperplane of
the geometry is an ordered (k 4+ 1)-tuple y = [ »,,..., ), where y,,..., v, are
elements in GF(s) such that not all of y,,..., y, are zero. |y,,..., ¥,] and
|4pysees 1y, ] denote the same hyperplane for all nonzero x in GF(s). A point
(x)5. x;) is incident with a hyperplane [y,, y,..., y] if and only if
Yo+ nx,+ -+ yx,=0. So EG(2,5) will then denote the finite
Desarguesian affine plane with s points on a line.

A collineation (automorphism) of a projective or affine geometry is a
permutation of its points which maps lines into lines and hence, every
subspace is then mapped into a subspace. A balanced incomplete block
design (BIBD) constructed from a finite geometry by taking the points of the
geometry as the points of the design and the subspaces of a given dimension
of the geometry as blocks of the design will then have as its full group of
automorphisms the full collineation group of the geometry.

The parameters of the BIB design constructed from the point-hyperplane
incidences of PG(k, s) are

v=b=(""—1)/(s—1), r=k*=(@E"-1)/-1),
A=(E"""=1D/(s=1).

The parameters of the BIB design derived from the point-hyperplane
incidences of EG(k, §) are

v=sk  b=(*"'—95)/s—1), r=("-1D/(s—1),
k¥=sk"1 A=('—1)/(s—1).
The full collineation group PC(k, s) of PG(k, s) is represented analytically by

the homogeneous transformations of the points (see, for instance, Carmichael
13, p. 362]):

k
pxit =" a;xt" (=0, Lo k;u=0,1,.,r—1), .1

ji=o0
where p(+0) and the g, are elements of GF(s) such that the matrix
A=(ay), i,j=0,1,.,k, is nonsingular. (For a given value of u, two
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transformations are identical if the coefficients a,; are identical despite

distinct values of p.) The order of the group PC(k, 5) is
k

(s: 3 IIJO (K41 — 1),

and when it is considered as a permutation group on the points, it is doubly

transitive.
The following two lemmas are easy to prove and are stated without proof:
Lemma 2.1.  For a finite projective geometry PG(k, s), s = p’, if the point
vectors x = (xy, X, X)) are transformed by the collineation
Ay, xTyes xg)', m=p* for some u=0, l,..,r— 1, then the hyperplane
vectors are transformed by the map
(A) 7 (VGes VRV (2.2)
LEMMA 2.2. The collineations in PC(k, s) which fix the point (1,0,...,0)
and the hyperplane |0, 0,..., 0, 1] form a subgroup # (stabilizer) of PC(k, s)

and these are of the form
I al ay|{x7
Ax(m) =10 Al a, ) (23)
0 0 a,|\xy

m=p", u=01l.,r—1; a;j=(ag . qs_1); A 3= (A0 Q1)
A =(ay) i, j= Lo, k—1; |4, #0; ay, #0; a;; in GF(s). The order of #
is |2 = rs™ s — 1) [TA22 (5%~ — s°)

The full collineation group EC(k,s) of the geometry EG(k,s) is

represented by the nonhomogeneous transformations

u=0,l,.,r—1; (2.4)

k

Sl 31 .

xF=a,+ Y ay;x™ i=1,..k
iz

are elements of GF(s); and the matrix 4,=(a;), i,j= L.,k is

a;
nonsingular. The order of EC(k, 5) is
k—1 )
rsk N (% —sh).
i=0

We also state the following two lemmas without proof, since they are easy

to prove:
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LEMMA 2.3. For a finite affine geometry EG(k,s), if the point vectors
x = (X, X;,.., X,)' are transformed by the collineation

ay xy
a+dAx™ = ¢ |+4| : | (2.5)
Ao Xk

m=p“, u=0,1,.,r—1; |4|#0; a; in GF(s), then the hyperplane vectors
[ Yos Y1 Vi) are transformed as follows:

Yo = (¥ YO AT 2= py,
" yi
Ayl : J=pl: |}, »#0 in GF(s). (2.6)
e i
LEMMA 2.4. The collineations in EC(k,s) which fix the point (0...., 0)

and the hyperplane 0,..., 0, 1| form a subgroup # of EC(k, s) and are of the
form

x7 X7
y
Al : =[0j :2] - . .17
o w3\ p

m=p* u=0,1lu,r—1; a5 = (a1 4,=(ay), ij=1.,k—1;
{4,|# 0; ay, # 0; a;s are elements of GF(s).

We also note that if the flags of a design are taken to be incident point-
hyperplane pairs, the groups PC(k, s) and EC(k, s) are transitive on the flags
in their respective sets of flags. This is seen to be true from a result in
Dembowski [6, p. 80]: “Suppose that (r,A)= 1. If I is doubly point tran-
sitive, then I' is flag transitive.” I" here is the automorphism group of a
design; (r, A) indicates the greatest common divisor of r and A. For both the
BIB designs which are defined by the incident point-hyperplane pairs in
PG(k, s) and EG(k, s),

r=(E = 1D/s— =51+ +s+1
A==/ —D=s"2+.. +s5+ 1.

Clearly, (r,4) =1, and since PC(k, s) and EC(k, s) are doubly point tran-
sitive, they are flag transitive. This flag transitivity also follows from the fact
that the little projective group is transitive on nests (Dembowski [6, p. 37}).

For a block design, let 4 = (a;,), a;, =1 if the uth flag (incident point-
block pair, an experimental unit for a statistician) contains the ith point,

409/89/2-10
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a;, = 0 otherwise, and L = (/;,), [, = 1 if the uth flag includes the jth block,
l;, =0, otherwise. James |9] defined the relationship matrices B, T, I, G for
a block design with n experimental units (flags) as B = (b,,), b, = 1 if the
flags u and u’ share the same block, b, = 0 otherwise; T'=(t,, ), t,, = 1 if
the flags u and u’ share the same point, ¢,,. =0, otherwise; I is the n X n
identity matrix; and G=(g,,.), g, =1 for all pairs (u,u’), u,u’ = 1,... 1.
Note that B=L'L and T=A'A. If the BIB design is asymmetric (b > v),
the symmetric nonnegative definite matrices I, G, B, and T generate a seven-
dimensional noncommutative semi-simple algebra .#,, of which I, G, B, T,
BT, TB, and.BTB form a linear basis (James [9]). For a symmetric BIBD
(v="5), BTB=AG + (k—A)B and (I, G, B, T, BT, TB) is a linear basis of
the six-dimensional noncommutative semi-simple algebra .#, generated by I,
G, B, and T (Mann [10}).

James |9, pp.1001-1002] mentioned: “For certain designs, the
relationship algebra is the commutator algebra (called commutant algebra or
a centralizer ring these days) of the representtion of the experimental design.
Such will be the subject of a further paper.” (James told one of the authors
in October, 1979, that he had obtained earlier some results in this area but
never published them.)

For BIB designs, Sysoev and Shaikin [13] defined the matrix S =
where s, =1, if (BT),, =(TB),, =1, s, =0, otherwise. For
S=B+T-1L

The matrices I, G, B, T are invariant under the action of the permutation
matrices P(g) permuting the flags—incident point-block pairs—of the
design, for every element g in the automorphism group ¥ of the design. It
follows that BT, TB, BTB, and S are similarly invariant and hence belong to
the commutant algebra corresponding to the permutation representation of
the automorphism group % of the design.

Sysoev and Shaikin [13{ have shown that for the symmetric BIB designs
defined by the point-hyperplane incidences of PG(k,s), k>3, (I, G, B, T,
BT, TB, and §) is a linear basis of a seven-dimensional noncommutative
semi-simple algebra .7;. Sysoev |12] has shown that for the asymmetric BIB
designs defined by the point-hyperplane incidences of EG(k, s), k > 3, (, G,
B, T, BT, TB, BTB and §) is a linear basis of an eight-dimensional noncom-
mutative semi-simple algebra . 7.

(suu’)9
A=1,
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3. DIMENSIONS AND LINEAR BASES OF COMMUTANT ALGEBRAS
CORRESPONDING TO THE PERMUTATION REPRESENTATIONS
oF THE FuLL COLLINEATION GROUPS PC(k, s)

AND EC(k,s),s=p", k>2

3.0 Theorems Due to Schur and Burnside

Two theorems, one due to Schur and the other to Burnside, are
particularly useful in the determination of the dimensions and linear bases of
the commutant algebras considered here.

We quote from Wielandt [14, p. 80] the following theorem due to Schur
(1933):

“THEOREM 28.4. If a transitive permutation group < is regarded as a
matrix group ¥ *, then the matrices of £ * form a ring V="V(%). We
call V the centralizer ring corresponding to ¥. V is a vector space over
the complex number field, which has the matrices B(4) corresponding to
the orbits 4 of ¢, (stabilizer—subgroup of & fixing the element 1) as a
linear basis. In particular, the dimension of V coincides with the number
k of orbits of %,.”

The matrix B(d)= (v5,), @ = 1., n, corresponding to the orbit 4, is
defined as

vis=1, if there exists g € %, € 4 with 1£ =, §* = q,

=0, otherwise.

Here, 2 = {1, 2,.., n} is the set of n elements on which every permutation g
of £ acts.
The theorem due to Burnside {1, p. 191] states:

“THEOREM VII. The sum of the numbers of symbols left unchanged by
each of the permutations of a permutation group of order N is tN, where
t is the number of transitive sets (orbits) in which the group permutes
the symbols. The sum of the squares of the numbers of symbols left
unchanged by each of the permutations of a transitive group of order N
is sN, where s is the number of transitive sets in which a subgroup
leaving one symbol unchanged (stabilizer) permutes the symbols.”

3.1. The Commutant Algebra Corresponding to the Permutation Represen-
tation of PC(2,s), s=p"

The point-line incidences of the PG(2, s) define the symmetric BIB designs
with parameters v=b=s>+s+1, r=k=s5+1, A=1. There are
(s*+s+ 1)(s + 1) flags (incident point-line pairs) in such a plane (or
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design). The full collineation group PC(2,s) of the PG(2.s), s=p’. is
defined by the rs*(s* + s+ 1)(s 4+ 1)(s — 1)* point transformations

m *

Qoo Qo1 Aoz | [Xo X

(m) __ my __ *
Ax'"™ = la,, a,, a, |[{x" )=a| x] |, (3.1.1)

m *

Ay 4y Ap | \X; X3

a#0 in GF(s), m=p* u=0,1,.,r— 1, and 4 is nonsingular with coef-
ficients in GF(s). The collineations which fix the point (100) and the line
[001] (x,=0), forming the stabilizer .#, are from (2.3)

m\ *
I ay, ae | [x0 Xo
(m) _ m §__
A =10 a;; a, |{x" }=af xF |, (3.1.2)

m

*
0 0 a,|\x} X;

a, a,,, and a,, are nonzero elements of GF(s). For any such point transfor-
mation, the lines are transformed as follows (Lemma 2.1);

10 0\ [y pm
ay a, O |{y¥l=vl»') »#0) in GF(s). (3.1.3)
Ay, ay; Ay | \y5 vy

The stabilizer .7 has order r(s — 1)*s*. In order to determine the dimension
of the commutant algebra corresponding to the full collineation group
PC(2, 5), using Schur’s theorem we need to find the number of orbits of .#,
which by Burnside’s theorem is equal to (1/[#]) 3 cepca.s W( &), where

w(g) is the number of fixed flags under the action of g in PC(2, s) and |.#
TABLE 3.1.1
Conditions on the Matrices of the Stabilizer which Fix Lines
Number of lines Conditions under which a line of this
Line type of this type type is fixed (3.1.3)
[00 1] 1 Fixed for all 4 in #
[01a s a;,+aypa=a;a”
a € GF(s)
|1 a &] s’ ag; +a;a=a"
a,b in GF(s) ag, +aa+ay,b=>5"

5?4+ 5+ 1 lines
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TABLE 3.1.2

Conditions on Matrices of the Stabilizer which Fix Points

Number of points Conditions under which a point of this
Point type of this type type is fixed (3.1.2)
(100) 1 Fixed for all 4 in .#
(c10) s " +a,=a,c
¢ in GF(s)
(cdl) s? " 4 A d™ + Gy, = ay,c
¢, d in GF(s) aqd™+a,,=a,d

s + 5+ 1 points

denotes the order of #. To find this number, we consider the conditions
under which any given flag is fixed and then count the number of transfor-
mation in # satisfying these conditions. Types of lines and types of points
are first considered.

For any fixed m=p“, u=0,1,.,r—1, we display the line types in
Table 3.1.1. The third column gives the conditions on a matrix in the
stabilizer, such that a line of the given type is fixed when transformed by
such a matrix.

Likewise, for a given value of m, we show the point types in Table 3.1.2.

For each point type, we determine the lines with which it is incident. Then
by examining the conditions under which a given flag (incident point-line

TABLE 3.1.3

Number of Matrices in the Stabilizer which Fix
a Flag of Given Type

Number of Type of lines incident Number of Number of matrices
points of  with a point of given lines of  which fix a flag of

Point type this type type this type given type
(100) 1 (a) (001} 1 (s — )%’
(b) [01a], ain GF(s) s (s — 1)%?
(c10), 5 (c) [001] 1 (s ~ 1)’
¢ in GF(s) d) [lab], s (s—1)%
a=—c, b in GF(s)
{cd1), s () [0lal,a=-d 1 (s— 1%
¢, d in GF(s) ) [labl,b=-—c—ad, s (s —1)?

a in GF(s)
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pair) is fixed, we determine the number of transformation matrices in the
stabilizer .7 satisfying these conditions (see Table 3.1.3).

(a) The flag defined by the point (1 0 0) and the line [0 0 1] is fixed
for all matrices in the stabilizer. There are (s — 1)s* matrices fixing this flag
for a fixed m=p*, u=0,1,.,r—1.

(b) The flag defined by the point (1 00) and the line [0 I a,
a € GF(s), a,, +a,;a=a,,a", is fixed by (s— 1)’s’ matrices (a,,# 0;
a,, #0; a,, is determined once a,,, a,,, and a are given; a,,, a,, are free).
There are s such flags for s different a’s.

(c) The flag defined by the point (c 1 0) and the line [10 0],
"+ ay, =a,; ¢, ¢ € GF(s), is fixed by (s — 1)2s* collineations. There are s
such flags.

(d) The flag defined by the point (¢ 1 0) and the line |1, —c, b], ¢, b in
GF(s), is fixed by all collineations satisfying

c™+ay =a;c g, —a;,c+a,,b=>0" (3.1.4)

There are (s — 1)s matrices fixing this flag and s’ such flags.

(e) The flag defined by the point (c, d, 1) and the line [0, 1, —d|, ¢, d
in GF(s), is fixed by all collineations satisfying

¢ +ay,d" + ay, = a,,c, a,d"+a,=a,d (3.1.5)

There are (s — 1)’s matrices fixing this flag and there are s such flags.

(f) The flag consisting of the point (c,d,1) and the line
[1,a,—c —ad], ¢, d, and a in GF(s), is fixed by all collineations satisfying

" +ag d" + ay, =ayc,
. . (3.1.6)
a,, d" + a,; = ayd, Qg +apa=av.

(ay; + a;;a + ay,(—c — ad) = (—c — ad)™ is a linear combination of the first
three equations.) There are (s — 1)* matrices fixing this flag and there are s’
such flags.

The total number of flags fixed for a given m = p* is 6(s — 1)’s’. For
u=0, ..., r — 1, there will thus be 6r(s — 1)?s® flags fixed by the r(s — 1)’s’
collineations of the stabilizer. Thus, the number of orbits of the
stabilizer = 6 = the dimension of the commutant algebra corresponding to
the permutation representation of the collineations in PC(2, 5) permuting the
incident point-line pairs. I, G, B, T, BT, and TB form a linear basis of this
commutant algebra of dimension six, since the commutant algebra coincides
with (% (defined in Section 2).
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3.2 The Commutant Algebra Corresponding to the Permutation Represen-
tation of EC(2,s), s=p"

The point-line incidences of the EG(2, s) define the asymmetric BIB design
with parameters v =52, b=s’+s, r=s+1, k=s, A=1, and (s’ +s)s
flags. The full collineation group EC(2, s) of the EG(2, 5) is defined by the
rs*(s? — 1)(s* — s) point transformations

Ax™ 4 ¢ = (a” a”) (XZ) + (C‘) = (xi) ; (3.2.1)
a;, ax/ \X &) X
m=p*, u=0,1..r—1;a)s and ¢/s in GF(s); and 4 = (a;), i, j=1,2 is

nonsingular.
The collineations

m *
Ax‘m — ap alZ)('xl):(xl)’ by
* < 0 ay/\xy xf (3:2.2)

defining the subgroup .# of EC(2, s), fix the point (0 0) and the line [0 0 1]
(x,=0). Both a,, and a,, are nonzero elements of GF(s). The line
[ ¥os ¥1» »,] is transformed as follows

1 0 0)\/yf Vo
0 a, O yer=r{r )
0 a;, a,/\yf »y

7(# 0) in GF(s). The stabilizer -# has r(s — 1)*s elements.
As in the previous section, different line types, point types and flag types

TABLE 3.2.1

Conditions on Matrices of the Stabilizer which Fix Lines

Number of Lines Conditions under which a line of this
Line type of this type type is fixed

[0 0 1] 1 Fixed for all 4 in #
01 a s a,+aya=a,;a"

a in GF(s)
10 al s—1 aya=a"”

a+# 0)in GF(s)
[1 a b) ss—1) a,a=a"

a( 0), bin GF(s) Q,a+a,,b=>5"

s? + s lines
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are enumerated and conditions under which these are fixed by transfor-
mations of .# are determined.

For any fixed m = p*, we exhibit the line types in Table 3.2.1. Likewise,
for a given value of m, we display in Table 3.2.2, conditions for a point type
to be fixed.

Next, we examine the point-line incidences in order to determine the
number of matrices which fix each flag type (see Table 3.2.3).

TABLE 3.2.2

Conditions on Matrices in the Stabilizer which Fix Points

Number of points Conditions under which a point of

Point type of this type this type is fixed
(0 0) 1 Fixed for all 4 in .#
(c 0) s—1 a,c"=c

c#0in GF(s)
(c,d) s¢s—1) ap ¢ +ad"=c

d( 0), a,,d" =d

¢ in GF(s)

s? points
TABLE 3.2.3

Number of Matrices in the Stabilizer which Fix a Flag
of a Given Type for Fixed m = p"

Number of Type of lines Number of Number of matrices
points of incident with a lines of  which fix a flag of
Point type this type point of given type this type the given type
© 0) 1 (a) 100 1] 1 (s— )%
® (01 a] s (s—1)
a in GF(s)
(c 0) s—1 () 00 1] 1 (s — s
c( 0) in GF(s) (d) [1 ab] s s—1
a=-c",
b in GF(s)
(c,d) ss—1) (e¢) [01 a] 1 s—1
¢, d(+0) in a=—cd'
GF(s) € {10 a] 1 s—1
a=-d""
@® [l ab] s—1 I
a(# 0) in GF(s)

b=-—(+ac)d™"
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(a) The flag consisting of the point (0, 0) and the line [0, 0, 1] is fixed
for all matrices 4 in the stabilizer. There are (s — 1)’s collineations which fix
the flag.

(b) The flag consisting of the point (0,0) and the line [0, 1, al, a in
GF(s), is fixed by all collineations satisfying

ay, + apa=a;a”.

There are (s — 1)* such collineations and there are s such flags.
(c) The flag defined by the point (¢, 0) and the line [0,0, 1], c# 0 in
GF(s), is fixed by all collineations satisfying

a, c"=c.

There are (s — 1)s collineations which fix the flag and (s — 1) such flags.

(d) The flag defined by the point (c,0) and the line [1,—c ', b],
c(#0), b in GF(s), is fixed by all collineations satisfying

a,c"=c,  ayb=>b"+a,c . (3.2.4)
There are (s — 1) such collineations which fix the flag and (s — 1)s such

flags.

(e) The flag consisting of the point (¢, d) and the line [0, 1, a}, ¢,
d(# 0) in GF(s), a=—cd™", is fixed by all collineations satisfying

a,c"+a,d" =c, a,,d" =d. (3.2.5)

(Equation a,, + a,,(—ed ') =a,,c™d~"™ is a linear combination of the first
two equations.) There are (s — 1) such collineations which fix the flag and
(s — 1)s such flags.

(f) The flag consisting of the point (c,d) and the line [1,0,a],
a=—d"', ¢,d(#0) in GF(s), is fixed by all collineations satisfying

a,c™+a,d" =c, a,,d" =d. (3.2.6)

There are (s — 1) such collineations which fix the flag and there are (s — 1)s
such flags.

(g) The flag consisting of the point (¢, d) and the line [1,a, b], ¢,
d(+0) in GF(s), and b=—(1+ac)d™!, is fixed by all collineations
satisfying

a, " +a,d"=c a,,d" =d, a,a=a". (3.2.7

There is one collineation which fixes the flag and there are (s — 1)%s such
flags.
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Thus, there are 7(s — 1)*s flags fixed for a given u (m = p*) and hence,
the collineations of the stabilizer fix 7r(s — 1)’s flags in all. The dimension
of the commutant algebra is thus seven. I, G, B, T, BT, TB, and BTB form a
linear basis for this seven-dimensional noncommutative semi-simple algebra
since .#, coincides with the commutant algebra.

3.3 The Commutant Algebra Corresponding to the Permutation Represen-
tation of PC(k,s), k>3, s=p’

The point-hyperplane incidences (flags) of the PG(k, s) define a symmetric
BIB design with parameters v=>b=(s"*'—~1)/(s—1), r=k*=
(s*=1)/(s—1), A=(s*""—1)/(s—1). The full group of collineations
PC(k, s) of this geometry is given by transformations (2.1); hyperplanes are
transformed as in Lemma 2.1.

As in Section 3.1, we proceed to determine the dimension of the
commutant algebra corresponding to the full collineation group PC(k, s),
k > 3, by counting the number of flags fixed under the action of PC(k, s) and
then determining the number of orbits of -# by Burnside’s rule. For this
purpose, we first enumerate point types, hyperplane types, and types of
hyperplanes incident with given point types. For any m= p%
u=0,1,.,r—1, we have shown the hyperplane types in Table 3.3.1.
Likewise, for any given m = p¥, we exhibit the point types in Table 3.3.2.

TABLE 3.3.1

Conditions on Matrices of the Stabilizer which Fix Hyperplanes

Number of
Hyperplane hyperplanes Conditions under which a hyperplane
type of this type of this type is fixed
|0,..., 0, 1] 1 Fixed for all 4 in %
[0, by peeey by | s ' —1) b, by
b; in GF(s), 51 Ail ¢ =yt ¢ )y 0)in GF(s)
by by by, be
not all zero X
: ayb; = yby
=1
1, by by sk oy b, bY
b, in GF(s) o) A o )=l o
Aok by by,
Ao+ Ayl + o0+ au b= by
(sk+l -1
-1

hyperplanes



PG(k, s) AND EG(k, s), s = p’, k> 2 503

TABLE 3.3.2

Conditions on the Matrices in the Stabilizer which Fix Points

Number of
points of Conditions under which a point
Point type this type of this type is fixed
(1,0...,0) 1 Fixed for all 4 in #
(€15mes €45 0) s(s*71—1) el +ag ef + o +ag 4 cf = ac,
¢; in GF(s), s— 1 e c,
€25 Caomers G Ay ) =a | a(# 0) in GF(s
not all zero B )0 (s)
Ck Cx
(L‘,,C‘z,...,ck,l) s* 7 + @ €5 + o+ CF + Ay = aye
c; in GF(s) cd a, ¢,
4. 1 )+ : =y
e Ar-1,k Ck

CARERVICERY

points

Next we determine for each point type the type of hyperplanes incident
with that type. Then by examining the conditions under which a given flag
(incident point-hyperplane pair) is fixed, we determine the number of
transformation matrices in the stabilizer # satisfying these conditions.

(a) The flag consisting of the point (1,0,..,0) and the hyperplane
[0,..., 0, 1] is fixed for all 4 in the stabilizer. For a fixed m = p*, there are
(s — 1) s**'¢(s, k — 1) collineations fixing this flag, where

o(s, k—1)= ﬁz (s* ' —s').

(b) The flag consisting of the point (l1,0,...,0) and the hyperplane
[0, b,,... b ], b; in GF(s), b,,..., b, _, not all zero, is fixed by all collineations
satisfying

b, bt
Al ¢ Y=yl ¢} v#0) in GF(),
by by
auby+ -+ ab,=yb}. (3.3.1)

The subgroup PCy(k — 2, s) of PC(k — 2, s) (the full projective group, where
u =10 in (2.1)) is transitive on the hyperplanes of PG(k — 2, 5). Hence, there
exists a nonsingular matrix T such that Tb =¢ and T™b'™ =c™, where
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b+0, ¢c#0, and T = (¢]]) (m= p*, u=0,..,r— 1) is nonsingular. The
matrix equation of (3.3.1) can therefore be rewritten as 74T '¢ = ye'™.
Thus, the number of matrices 4, satisfying this matrix condition is the same
for every choice of b,..,b,_,. For by=1, b,=---=b,_, =0, the two
conditions (3.3.1) reduce to

a,=7% ay=--=ay_,=0, ayb, +ayb,=yby. (3.3.2)

There are thus (s — 1) s** ~*¢(s, k — 2) collineations fixing this flag. There
are s(s*~' — 1)/(s — 1) such flags.

(c) The flag defined by the point (c,, ¢;,..., ¢, 0) and the hyperplane

[0s..., 0, 1], ¢; in GF(s), ¢, Cy5..., ¢, not all zero, is fixed by all collineations
satisfying

3 ¢
Al I=a] i} a(=0) in GF(s),
ek Cx
v +ag el + - +ag,_ cy =ac,. (3.3.3)

Since the subgroup PC,(k — 2, 5), the full projective group of PC(k — 2, 5), is
transitive on the points of PG(k — 2, s), the number of matrices satisfying the
first condition will be the same for any choice c,, c;,..., ¢, not all zero. Thus,
fore,=1,c;=c,= -+ =¢, =0, the two conditions reduce to

a,=a, ay =ay,=--=a,_,,=0,
" m ) (3.3.4)
'+ ay, ¢y =ac,, {(a#0) in GF(s).

There are (s — 1)%5***¢(s, k — 2) collineations which fix the flag. There are
s(s*~' — 1)/(s — 1) such flags.

(d) The flag consisting of the point (c,,..., ¢;,0) and the hyperplane
[0,b,, b,,.... b], ¢;, b; in GF(s), ¢;5...,c, DOt all zero, b, ,..., b, not all zero,
¢, b+ - +¢,b,_, =0, is fixed by all collineations which satisfy the con-
ditions

4 i’ b, \ bY
A P =] i} A0 2 1=y b a(=0), »=0)
Ck Ck \bk—l \ k-1 in  GF(s),
el +ag e+ +ag,_, cf=ac, aub, + - +aub =vby. (3.3.5)
(i) Let k>4. Since the subgroup PCy(k —2,5) of PC(k —2,s), the

full projective group, is transitive on the flags (incident point-hyperplane
pairs) of PG(k—2,s), the number of matrices 4, which satisfy the two
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matrix equations will be the same for any choice of ¢,...., ¢, (not all zero),
by by, (not all zero) consistent with the restriction c¢,b, +--- +
¢yb,_, =0. For the choicec,=b, =1, ¢c;,=--=¢,=0=b,=---=b, ,,
the conditions reduce to

a,=a, A k1=

Ay =" =Q_ |, = _1,= " =0q_4.,=0,
. (3.3.6)
¢y tay, =ac,,

-1k by = ¥by, a(#0), »(+0) in GF(s).

There are (s — 1)’s*~%g(s, k — 3) collineations which fix the flag and
s3(s*~ ' — 1)(s*"? — 1)/(s — 1)? such flags.
(ii) For k =3, the conditions are

A, (g{)=a(“z), A;(b‘)zy(b;"), a(#0), p(#0) in GF(s),

m
3 C3 b, b3

el +ag €7 + ag 5 =acy, ay3by + aysby + az by = by (3.3.7)

There are (s — 1)%s* collineations which fix the flag and s*(s + 1) such flags.

{e) The flag consisting of the point (c,...., ¢;, 0) and the hyperplane
(1,6, 0], b;, ¢; in GF(s), ¢;,Cy,., ¢, DOt all zero, ¢, +c,b, + -+ +
¢y b, =0, is fixed by all collineations satisfying

m

CZ aOl bl bl

Al ; =Q E y S +A; E = E k3
m

Cx Ao, k-1 by by

Qop + @b, + - +agb,=b"  a(®#0) in GF(s). (3.3.8)

(Equation cf' + a,,¢5 + - +aq4_,Ck =ac, can be easily seen to be a
linear combination of these conditions and ¢, + ¢, + --- + ¢, b, ., =0.)
There are (s — 1)s* 2¢(s,k —2) choices of A4, satisfying the first matrix
equation. When 4, is thus determined, a, ..., a, ,_, are determined from the
second set of equations. There are thus (s — 1)s***g(s, k — 2) collineations
fixing this flag and s*(s*~' — 1)/(s — 1) such flags.

(f) The flag consisting of the point (¢,, ¢;,..., ¢x, 1) and the hyperplane
0,b,,sby], ¢, b in  GF(s), by, b, not all zero,
cby + - + b, +b,=0, is fixed by all collineations satisfying
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m 3 m

e’ a, c, b, bl
A H =aufl: | 4 =7 :
m m

Cx A1k Cy by by,

Y

CT +ag €7 + o+ dg 1 CF + Qo = A€y W#0) in GF(s). (3.39)

(Equation a,,b, + ay b, + -+ + ay b, = yby is easily shown to be a linear
combination of the other conditions.) There are (s —1)s¥~?(s, k —2)
possible matrices A satisfying the second matrix equation. Once 4| and g,
are determined, a,,, @,;,..., a,_, , are completely determined. There are thus
(s — 1)%s%~3¢(s, k — 2) collineations fixing this flag and s*(s*~' — 1)/(s — 1)
such flags.

(g) The flag consisting of the point (c,,...,¢;, 1) and the hyperplane
[1,b1,by,, B¢, ¢;5 b; in GF(8), ¢, + b+ -+ + by + b, =0, is fixed
by all collineations in -# satisfying

¢y Ak Y] Qg b, by
A] + = Qi . +Ai = s
cx Ay 1.k Cy Ao, k-1 by k-1
o+ ay b, + - +a,b,=br. (3.3.10)

There are ¢(s, k — 1) matrices 4, satisfying the first matrix equation. Once
A, and a,, are determined, all the remaining a,s are completely determined.
Therefore, there are (s — 1) ¢(s, kK — 1) collineations fixing the flag and s>~
such flags.

For a fixed u, there are thus 7(s — 1) s>~ '¢(s, k — 1) flags fixed by the
collineations of the stabilizer. Hence, there are 7Tr(s — 1) s**'¢(s, k — 1)
flags fixed by all the collineations of the stabilizer. Thus, the dimension of
the stabilizer is seven. The commutant algebra coincides with .#, (Section 2)
and I, G, B, T, BT, TB, and S form a basis of this algebra.

3.4. The Commutant Algebra Corresponding to the Permutation Represen-
tation of EC(k,s), s=p’, k>3

The point-hyperplane incidences of the EG(k,s), k > 3, define an asym-
metric BIB design with parameters v=s* b=s(*—1)/(s—1), r=
(s*=1)/(s—1), k*=s*""', and A=(s*"'—1)/(s—1). There are
sk(s* — 1)/(s — 1) flags. The full collineation group EC(k, s) is defined by the
linear nonhomogeneous transformations (2.4). The subgroup # of
collineations which fix the point (0, O,..., 0) and the hyperplane [0, 0,..., 0, 1]
consists of the transformations found in Lemma 2.4. For each of the point
transformations (2.7), we see from (2.6) that the hyperplanes are
transformed as follows:
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1o 0\ /[y v
0 4, 0 =y ) W= 0) in GF(s). (3.4.1)
0 a' a, |\ e

For a fixed m=p“ u=0,1,.,r—1, we show in Table 3.4.1, the
conditions for a line type to be fixed by the collineations of #. Likewise, for
any given value of m, we exhibit in Table 3.4.2, conditions for a point type
to be fixed by the collineations of #.

TABLE 3.4.1

Conditions on the Matrices of the Stabilizer which Fix Lines

Number of
hyperplanes Conditions under which a hyperplane
Hyperplane type of this type of this type is fixed
10,0,..., 1] 1 Fixed for all 4 in #
[0, by sy by s(s¥ = 1) b, by
b; in GF(s); s—1 A : =y ¢ |, y#0)in GF(s)
bl,...,li)k_, b, , bT
not all zero m
apb, + o +ap b+ ab=vhy
[1,0,..,0,b] s—1 y=1
b(# 0) in GF(s) ayu=b""
[1, by yen by s 1) v=
bin GF(s); ' b, by
b‘,...,bkAl A’ : — .
1 - = :
not all zero m
bk -1 bk~ 1/
L+a b+ - +aub,=by
ss*=1)
s—1
hyperplanes

Next, we determine the flag types (incident point-hyperplane pairs) and
the number of matrices in the stabilizer # fixing each flag type.

(a) The flag consisting of the point (0, 0,...,0) and the hyperplane
[0,0....,0,1] is fixed for all 4 in the stabilizer . There are
(s —1)s*'¢(s,k—1) such collineations for a fixed u (m=p"
u=0,1,.,r—1).

(b) The flag consisting of the point (0, 0,...,0) and the hyperplane
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TABLE 3.4.2

Conditions on the Matrices of the Stabilizer which Fix Points

Number of
points of Conditions under which a point
Point type this type of this type is fixed
©0,0,0,..,0) 1 Fixed for all 4 in #

(Cyyeees €415 0) s -1 e .
c; in GF(s); A8 =]
Cpames Cp_g c;:l—l Cr-1

not all zero

(Cyorees Ch 1 C1) (s—1)s*! cy ay €
ck(_vé 0); Al 0 | +ch : =1 :
¢, in GF(s) Ch-1 A1,k Cr—1

s* points

[0, by ..., b], b; in GF(s), b,,..., b,_, not all zero, is fixed by all collineations
satisfying

b, by
Al 2 =2 ¢} »&#0) in GF(s),
by by,
agb,+ - +aub,=ybg. (34.2)

The number of matrices 4! which satisfy the matrix equation for a fixed m
(m=p* u=0,1,.,r—1) is the same for all b,,b,,..,b,_, not all zero,
since the subgroup PC,(k — 2, s) of PC(k — 2, s5), the full projective group, is
transitive on the hyperplanes of PG(k —2,s). For the choice b, =1,
by,=b,=---=b,_, =0, the above conditions become

a,=y a,=--=a,;,_,=0, ay + ayb,=yby.  (3.4.3)

There are (s — 1)*s2*~*¢(s, k — 2) such collineations which fix the flag and
there are s(s*~' — 1)/(s — 1) such flags.

(c) The flag defined by the point (c,,..., ¢,_,,0) and the hyperplane
10,0,...,0, 1], ¢; in GF(s), ¢,,Cys., ¢, not all zero, is fixed by all
collineations satisfying

cr ¢
A, : = : . (3.4.4)
Ch1 Cr1

409/89/2-11
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The number of 4, which satisfy this equation is the same for all choices of
Cys Cyrees €y MOt all zero, since the subgroup PC,(k — 1, 5) is transitive on
the points of PG(k — 1,s). For the choice ¢, =1, ¢,=---=¢,_, =0, the
above equations become a,, =1, a,,=a;,=---=a,_,,=0. There are
(s — 1) s *g(k,s — 2) collineations which fix the flag and there are
(s*~' —1) such flags.

(d) The flag defined by the point (c,,...,c,_,,0) and the hyperplane
[0, By yovey By)s € b; in GF(s), €,y ¢, _, DOt all zero, b, ,..., b, _, not all zero,
b+ +c_yb,_, =0, 1is fixed by all collineations satisfying

¢, b, b
Al sl=1 ) A4 )=l o )y v#0) in GF(s),
Cr Cr-1 b i

ayb, + - +aub. =yby. (3.4.5)

The number of matrices A, satisfying the two matrix equations is the same
for all choices of c,,..,c,_, (not all zero) and b,,...,b,_, (not all zero)
subject to ¢;b, + -+« +¢,_,b,_, =0, since the subgroup PC,(k —2,s) of
PC(k —2,s) is transitive on the flags (incident point-hyperplane pairs) of
PG(k—2,s). Thus for the choice c¢,=b,_,=1, c,=c,=+-=

Cy_1=b, =+ =b,_,=0, the above conditions become
an=1 @_ =0 == =G 1= =q_14.2=0,
A1+ Ay = YO, y#0 in GF(s). (3.4.6)

For k >4, there are thus (s — 1)%s**~7¢(s, k — 3) such collineations which
fix the flag and there are s(s*~' — 1)(s*~* — 1)/(s — 1) such flags. For k = 3,
there are (s — 1)%s? collineations which fix the flag and there are s(s> — 1)
such flags.

(e) The flag defined by the point (c,,..., ¢,_,,0) and the hyperplane
[1, b5 By)s €5 b; in GF(s), €., ¢, nOt all zero, b,,..., b,_, not all zero,
14+c¢ b+ +c_1b_, =0, is fixed by all collineations satisfying

¢ b, by
4, N B B B A4, : = I
Cr-1 Cr—1 by, bi_,
ab,+ - +a,b,=by. (3.4.7)
The number of matrices A, satisfying the two matrix equations is the same

for all c,..,c¢,., not all zero, b,,.,b,_, not all zero, subject to
l+e¢by+ - +ci_1by_, =0, since the subgroup ECi(k—1,5) of
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EC(k — 1, 5) (the full affine group, where u =0 in (2.4)) is transitive on the
flags (incident point-hyperplanes) of EG(k — 1,s). For the choice ¢, =1,
by=—le¢e;=c;=+-=¢,_,=b,=---=b,_, =0, the conditions reduce to

a, =1, Ay =y = =q_;;=0,= =08 ,;,_,=0,
(3.4.8)

L m

—ay; + au b, =by.

There are (s— 1)s* ?¢(s,k —2) collineations which fix the flag and
sk=1(s*~" — 1) such flags.

(f) The flag defined by the point (c,,c,....,c,) and the hyperplane
[0,b,, by, b}, ¢;y b; in GF(s), ¢, #0, b,,..b,_, not all zero,
cb,+ - +¢,b,=0, is fixed by all collineations satisfying

m m
C ay ¢ b, b

Al oy = ) A =y

m m
Cr-1 Ay 1,k Cr-1 by, by

y#0 in GF(s), a,=c¢"" (3.4.9)

>

(The condition a, b, + :-- + a,, b, =yby is a linear combination of the
other conditions.) There are (s — 1) s*~2¢(s, k — 2) matrices A} satisfying the
second matrix equation. Once A4 is determined, ail the other coefficients in 4
are determined by the other equations. Thus, there are (s — 1) s* 24(s, k — 2)
collineations which fix the flag and s*~'(s*~' — 1) such flags.

(g) The flag defined by the point (c,,..,c,) and the hyperplane
[1,0,..,0,b], ¢; in GF(s), ¢,#0, b=—c; ', is fixed by all collineations
satisfying

cy A ¢
A, et =t ), au=c " (34.10)

A Ay 1.k Cr

There are ¢(s, k — 1) nonsingular matrices 4 ,. Given 4, all the other coef-
ficients of A are determined by the equations given above. Hence, there are
(s, k — 1) such collineations fixing the flag and there are (s — 1) s*~' such
flags.

(h) The flag consisting of the point (c;,...,c,) and the hyperplane
[1,b,ses bi]s €5 by in GF(s), ¢, # 0, by,..., b;_, not all zero, 1 +¢,b, + -+ +
¢, b, =0, is fixed by all collineations satisfying

b bY
12 . — . — al—m
A3 : = : ’ QG =Cm
b by
k—1 k—1
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m
€1 A1k €y

Al o+t o= b (3.4.11)

m
Cr_1 A1,k Cih-1

There are s“ *¢(s, k — 2) matrices 4| satisfying the first matrix equation.
Given A}, all the remaining coefficients of 4 are determined from the other
conditions. Thus, there are s"’2¢(s, k—2) such matrices and
(s — 1)s* '(s*=" — 1) such flags.

For a given u (m = p*), there are thus 8(s — 1) s*~'g(s, k — 1) flags fixed
by the collineations of the stabilizer. Therefore, 8r(s —1)s* '¢(s,k — 1)
flags are fixed by all the collineations of the stabilizer. Hence, the number of
orbits of the stabilizer is eight, which is thus also the dimension of the
commutant algebra corresponding to the permutation representation of
EC(k,s), s = p’, representing the permutations of the point-hyperplane pairs
of EG(k,s). The commutant algebra here coincides with % (defined in
Section 2) and thus I, G, B, T, BT, TB, BTB, and S form a linear basis of
this algebra.
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