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We introduce a calculus of singular pseudodifferential operators (SPOs) depend-
ing on wavelength e and use them to solve three different types of singular quasili-
near hyperbolic systems. Such systems arise in nonlinear geometric optics and also,
for example, in the study of incompressible limits and of nonlinear wave equations
with small nonlinear terms or small data. The SPOs act in both slow and fast
variables and are singular not only because their symbols have finite regularity and
depend on 1

e , but also because their derivatives fail to decay in the usual way in the
dual variables. There is a necessarily crude calculus with large parameter (e.g.,
residual operators are just bounded on L2), but the calculus admits the proof of
Garding inequalities and enables us to symmetrize and sometimes even diagonalize
the singular systems being considered by microlocalizing simultaneously in both
slow and fast variables. The paper culminates in a proof of the existence of oscilla-
tory multidimensional shocks on a fixed time interval independent of the wave-
length e as e Q 0. The use of SPOs allows us to eliminate the small divisor assump-
tions made in earlier work and also to construct more general oscillatory solutions
in which elliptic boundary layers are present on one or both sides of the shock.
© 2002 Elsevier Science (USA)
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PART 1. SINGULAR PSEUDODIFFERENTIAL OPERATORS

1. Introduction
In this paper we introduce a class of singular pseudodifferential opera-

tors (SPOs) depending on wavelength (e) and apply them to several types of
singular quasilinear hyperbolic systems. These systems include initial-value
and fixed-boundary problems as well as a free-boundary problem asso-
ciated with multidimensional shocks. Our focus here is on singular systems
arising from nonlinear geometric optics, but similar systems appear also,
for example, in the study of incompressible limits and of nonlinear wave
equations with small nonlinear terms or small data [M3, S].

The SPOs act in both ‘‘slow’’ and ‘‘fast’’ variables and are singular not
only because their symbols have finite regularity and depend on 1

e , but also
because their derivatives fail to decay in the usual way in the dual
variables. The paper culminates in a proof of the existence of oscillatory
multidimensional shocks on a fixed time interval independent of the wave-
length e as e Q 0. Such a theorem was proved in our paper [W2] by a
method that depended on a (generically valid) small divisor assumption to
first construct high-order approximate solutions and then find exact solu-
tions nearby. Here the use of SPOs as symmetrizers allows us to dispense
with small divisor assumptions and construct the exact shock more directly
by solving an appropriate singular shock problem (9.15). A formal
construction of oscillatory shocks was given in [MA].

Earlier work on singular quasilinear hyperbolic systems in free space
such as [JMR1, JMR2, S] used symmetric hyperbolicity assumptions to
obtain L2 estimates uniform in e by a simple integration by parts in which
the 1

e terms cancel out. In symmetric hyperbolic boundary problems this
argument fails except for rather special (e.g., maximally dissipative)
boundary conditions. The use of SPO symmetrizers allows us to obtain L2

estimates in a variety of situations where symmetry is either not assumed
(e.g., Kreiss well-posed boundary problems, nonsymmetric initial value
problems in free space) or not sufficient (e.g., symmetric hyperbolic systems
with Kreiss boundary conditions, multidimensional shocks).

For quasilinear applications L2 estimates are just a start: one needs
estimates uniform in e in norms that define algebras of bounded functions.
In singular boundary problems it is typically easy to estimate tangential
derivatives by differentiating the equations and applying L2 estimates, but
it is impossible to estimate uniformly even a single normal derivative DxN
(one would be enough). We show that in some circumstances (absence of
glancing boundary layers) microlocalization and diagonalization with SPOs
can be used to circumvent this problem.

SPO cutoffs are used to split the solution into two pieces. For one piece
it is possible to estimate a single normal derivative uniformly. The other
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piece (the hard one) satisfies a problem that can be diagonalized by SPOs.
For this piece one can prove C(xN, Hk) estimates. Recombining the pieces
we find a norm giving L. control in which it is possible to estimate the
solution without loss of derivatives ((1.36) and (1.37)). The norm is there-
fore suitable for Picard iteration.

A. Quasilinear boundary problems

On RbN+1+ ={x=(xŒ, xN)=(x0, xœ, xN) : xN \ 0} consider the m × m
quasilinear boundary problem

L(ve, Dx) ve=C
N

j=0
Aj(ve) Dxjve=F(ve)

f(ve)|xN=0=g0+eG 1xŒ, xŒ · bŒ

e
2

ve=u0 in x0 < 0,

(1.1)

where x0 is time, G(xŒ, h) ¥ C.(RN×T1, Rm) with supp G … {x0 \ 0}, and
the boundary frequency bŒ ¥ RN00. The matrices Aj ¥ C.(Rm, Rm

2
),

iF ¥ C.(Rm, Rm), f ¥ C.(Rm, Rm), and Dxj=
1
i “xj . Looking for ve as a per-

turbation ve=u0+eue of a constant state u0 such that F(u0)=0, f(u0)=g0,
we obtain for ue the system (with slightly different Aj)

L(ue, Dx) ue=C
N

j=0
Aj(eue) Dxjue=ueF(eue) — Fe(ue)

B(eue) ue |xN=0=G 1xŒ, xŒ · bŒ

e
2

ue=0 in x0 < 0,

(1.2)

where B(v) is a C.m × m real matrix defined by

f(u0+eue)=f(u0)+B(eue) eue

and Fe(0)=0.
We seek exact solutions of the form ue(x)=Ue(x, xŒ · bŒ/e), where

Ue(x, h) satisfies the singular system

C
N

j=0
Aj(eUe) DxjUe+ C

N−1

j=0
Aj(eUe) bj

Dh
e

Ue=Fe(Ue),

B(eUe)(Ue)|xN=0=G(xŒ, h),

Ue=0 in x0 < 0.

(1.3)
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We assume AN(0) is invertible, that is, xN=0 is a noncharacteristic
boundary. After multiplication by A−1N (eUe) and relabeling, (1.3) becomes

DxNUe+1 C
N−1

j=0
Aj(eUe) DxjUe+ C

N−1

j=0
Aj(eUe)

bj

e
DhUe 2

— DxNUe −A 1 eUe, DxŒ+
bŒDh

e
2 Ue=Fe(Ue),

B(eUe)(Ue)|xN=0=G(xŒ, h),

Ue=0 in x0 < 0.

(1.4)

To obtain Ue(x, h) as a limit of iterates Un
e satisfying

DxNUn+1
e −A 1 eUn

e , DxŒ+
bŒDh

e
2 Un+1

e =Fe(Un
e )

B(eUn
e ) Un+1

e |xN=0=G(xŒ, h)

Un+1
e =0 in x0 < 0

(1.5)

we need energy estimates uniform in e for the linear problem

L(eVe, D e
x, h) Ue — DxNUe −A 1 eVe, DxŒ+

bŒDh
e
2 Ue=Fe(x, h)

B(eVe) Ue |xN=0=G(xŒ, h)

Ue=0 in x0 < 0

(1.6)

in norms that define algebras of bounded functions.
The operator L(eVe, D e

x, h) is singular not just because of the 1
e depen-

dence, but also because tŒ+bŒm/e can vanish for |tŒ, m| ] 0. (Here (tŒ, tN) ¥
RN+1 are dual to (xŒ, xN) and m ¥ Z is dual to h.) Thus, if DxN −A(0, DxŒ)
is, for example, strictly hyperbolic with respect to x0, the same is not true
of L(eVe, D e

x, h), even for fixed e. Even if Kreiss symmetrizers can be con-
structed for the original system (1.2), one cannot construct symmetrizers
for (1.6) by mimicking in (xŒ, xN, h, tŒ, m)-space the usual construction
in (xŒ, xN, tŒ)-space. Instead, in situations where Kreiss symmetrizers
R(v, tŒ, c) can be constructed for the boundary problem (DxN −A(v, DxŒ),
B(v)) when v ¥ Rm is near 0, we shall define an operator associated to the
‘‘symbol’’ R(eV(x, h), tŒ+mbŒ/e, c) and show it can be used as a symme-
trizer for the singular problem (1.6).
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B. Singular Operators

Most of the singular operators we use are defined by singular symbols
built from standard symbols in the following way. Consider for k ¥ R the
usual class of smooth symbols depending on a large parameter c \ c0 > 0,

Sk={p(v, X, c) ¥ C.(Rm×RN× [1,.)) :(1.7)

|“av“
b
Xp(v, X, c)| [ Ca, bOX, cPk− |b| for all (v, X, c)},

where OX, cP=(|X|2+c2)1/2. For M ¥N let

V(x, h) ¥ C0, M
c (RbN+1+ ×T1)

(1.8)

— {V(xŒ, xN, h) ¥ C(Rb+, CM(RNxŒ ×T1, Rm)) : supp V is compact}.

Given p ¥ Sk, V ¥ C0, M
c , and a boundary frequency bŒ ¥ RN we define the

singular symbol

ps(x, h, tŒ, m, e, c) — p 1 eV(x, h), tŒ+
mbŒ

e
, c2(1.9)

and let

Sk, M
bŒ ={ps: ps is given by (1.9) for some p ¥ Sk,(1.10)

V ¥ C0, M
c , and bŒ ¥ RN00}.

Note that since |tŒ+mbŒ/e| can be small when |tŒ, m| is large, elements of
Sk, M
bŒ fail to satisfy the usual decay estimates in |tŒ, m, c| even for e fixed.
To each ps ¥Sk, M

bŒ we associate an operator whose action on U(x, h) ¥
C0,.
c , for example, is defined by

ps(DxŒ, h) U — ps(x, h, DxŒ, Dh, e, c) U=p 1 eV(x, h), DxŒ+
bŒDh

e
, c2 U

(1.11)

=F e ixŒtŒ+ihmp 1 eV(x, h), tŒ+
mbŒ

e
, c2 UN(tŒ, xN, m) dtŒ dm.

Here the dm integral is a sum over m ¥ Z and

UN(tŒ, xN, m)=U N
m (tŒ, xN) where U(x, h)= C

m ¥ Z

Um(x) e imh.

(1.12)
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It is clear that for ps ¥Sk, M
bŒ

ps(DxŒ, h): C0,.
c Q C(Rb+, C.(RN×T1)).(1.13)

Notation 1.1. We will often write spaces like the one on the right in
(1.13) as follows:

C(xN, C.(xŒ, h)) — C(Rb+, C.(RN×T1)).

Letting OPSk, M
bŒ ={ps(DxŒ, h): ps ¥Sk, M

bŒ }, we have the following L2

continuity result for OPS0, M
bŒ .

Proposition 1.1. IfM > N+1 and ps ¥S0, M
bŒ , then

ps(DxŒ, h): L2(RbN+1+ ×T1) Q L2(RbN+1+ ×T1).

Proof. A simple argument in [T1] works here as well. When
p(v, X, c)=p(X, c), ps(DxŒ, h) is just a bounded Fourier multiplier in the
tangential (xŒ, h) variables. Reduce the general case to this case by writing

p(eV(x, h), X, c)=p(0, X, c)+eVb(eV, X, c)(1.14)

=p(0, X, c)+ec(x, h, X, c),

c(x, h, DxŒ, h, c)=F e ixŒtŒ+imhecN(tŒ, xN, m, DxŒ, h, c) dtŒ dm,(1.15)

and using

|cN(tŒ, xN, m, X, c)| [ COtŒ, mP−M,(1.16)

where OtŒ, mP — (1+|tŒ|2+m2)1/2 and C is independent of (e, X, c).
The argument shows that the L2 operator norm of ps(DxŒ, h) satisfies

|ps(DxŒ, h)| [ C1+eC2(|V|C0, Mc ),(1.17)

where C1 is independent of V. L

Notation 1.2. (a) In Proposition 1.1 and henceforth, when we write

Te, c: XQY

for a family of linear operators mapping one function space into another,
we mean that the operator norm is uniformly bounded with respect to e, c

for 0 < e [ 1 and c0 [ c <..
(b) We also regard as elements of OPSk, M

bŒ operators defined by
symbols like ps=p(eV(x, h), eW(x, h), X, c) depending on more than one
member of C0, M

c , as long as p satisfies the obvious analogue of (1.7).
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(c) We ignore powers of 2p in all formulas involving Fourier trans-
forms.

In Sections 2–4 we present an ‘‘L2-calculus’’ for these operators which
includes adjoints and products and allows the proof of Garding inequali-
ties. In Section 5 we take the Kreiss symmetrizer R(v, X, c) ¥ S0 con-
structed in the classical way [CP] for a Kreiss well-posed boundary
problem (DxN −A(v, DxŒ), B(v)) and apply the calculus to show that

Rs(DxŒ, h)=R 1 eVe(x, h), DxŒ+
bŒDh

e
, c2(1.18)

symmetrizes the singular problem

1DxN −A 1 eVe, DxŒ+
bŒDh

e
2 , B(eVe)2

as in (1.6).
For use in the remainder of the Introduction and later, we collect some

notation here.

Notation 1.3. (a) Let W=RbN+1+ ×T1, WT=W 5 { −. < x0 < T}, bW=
RN×T1, bWT=WT 5 {xN=0}, and set wT=RbN+1+ 5 { −. < x0 < T}.

(b) For k ¥N={0, 1, 2, ...} Hk — Hk(bW), the standard Sobolev
space with norm OV(xŒ, h)Pk, Hk

c=ecx0Hk and |V|Hkc=OVPk, c — Oe−cx0VPk.
(c) L2Hk — L2(xN, Hk) with |U(x, h)|L2Hk — |U|0, k.
(d) CHk — C(xN, Hk) with |U(x, h)|CHk — supxN \ 0 |U(., xN, .)|Hk —

|U|., k.
(e) Similarly, Hk

T — Hk(bWT) with norm OVPk, T and L2Hk
T —

L2(xN, Hk
T), CHk

T — C(xN, Hk
T) have norms |U|0, k, T, |U|., k, T, respectively.

(f) L2Hk
c — L2(xN, Hk

c ) and CHk
c — C(xN, Hk

c ) have norms
|U(x, h)|0, k, c, |U|., k, c respectively.

(g) Hk
T={U ¥ CHk

T 5 L2Hk+1
T : U|xN=0 ¥ Hk+1

T } with the norm

||U||k, T=|U|., k, T+|U|0, k+1, T+`T OUPk+1, T.

(h) L.W1,. — L.(xN, W1,.(bW)) with norm |U|L.W1,. — |U|g. We
also write |U|L.(W)=|U|g, OVPL.(bW)=OVPg, OVPW1,.(bW) — OVPg, |U|L.(WT)=
|U|g, etc.

(i) For k, l ¥N denote by h: (R+) lQ R+ or hk: (R+) lQ R+ an
increasing function of each of its arguments independent of e, c. C always
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denotes a constant independent of e, c. h and constants C may change from
line to line or even from term to term in the text. C(K) denotes a constant
that depends on K.

( j) For any function U, Uc — e−cx0U.
(k) For r \ 0 [r] is the smallest integer > r.
(l) M0=2(N+2)+1.

(m) N e=“xŒ+bŒ“h/e , D e
xŒ, h=

1
i N

e, D e
x, h=(De

xŒ, h, DxN ).

Using Rs(DxŒ, h) as in (1.18) we obtain a uniform Kreiss-type estimate for
the singular problem (1.6),

|Uc
e |0, 0+

OUc
eP0

`c
[ C 1 |F

c
e |0, 0
c

+
OGcP0
`c
2 ,(1.19)

where C is independent of e and c and depends on the C0, M0
c norm of Ve.

C. Higher Derivatives and L. Control

Next one can differentiate (1.6) tangentially (DxŒ, h) and apply (1.19) to
obtain

|Uc
e |0, k+

OUc
ePk

`c
[ C 1 |F

c
e |0, k
c

+
OGcPk
`c
2 .(1.20)

At this point the major obstacle posed by singular multidimensional
boundary problems presents itself: it is impossible to estimate even a single
normal (DxN) derivative uniformly in e. Uniform control of |DxNUe |0, k, T for
k > N+1

2 would imply control of |Ue |L.(WT). The expression for DxNUe in
terms of tangential derivatives obtained from (1.6) contains a factor of 1e .
This difficulty does not arise for initial-value problems in free space, where
the natural norms are C(x0, Hk(xœ, xN, h)) norms and it is never necessary
to estimate derivatives transverse to x0=0, or for boundary problems in
1D, where L. estimates follow by integrating along characteristics. One
might try for uniform estimates of Ue using C(xN, Hk

T(xŒ, h)) norms, but in
fact this does not work. The examples of [W3] show that if the boundary
frequency bŒ triggers glancing modes of order \ 3 (Definition 1.1) then
|Ue |L.(WT) does in general blow up for Ue in (1.6) as e Q 0, and this leads to
examples where the maximal time of existence Te Q 0 as e Q 0 in quasilinear
problems (1.2) and (1.3).

Definition 1.1. Let L(tŒ, tN) be the m × m matrix symbol of the
constant coefficient operator

L(Dx)=DxN −A(0, DxŒ)(1.21)
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and set

p(tŒ, tN)=det L(tŒ, tN).(1.22)

For bŒ ¥ RN00 if p(bŒ, tN(bŒ))=0, we call b=(bŒ, tN(bŒ)) a characteristic
mode. A characteristic mode is hyperbolic, glancing of order k or elliptic if
the root tN(bŒ) is respectively simple real, real of order k \ 2, or nonreal. A
hyperbolic mode is incoming (resp., outgoing) if “tN/“t0(bŒ) > 0 (resp.,
< 0). The hyperbolic region of L(Dx) is H={bŒ ¥ RN00 : p(bŒ, tN)=0
has m simple real roots lj(bŒ), j=1, ..., m}. The nonglancing region is
Gc={bŒ ¥ RN00 : p(bŒ, tN)=0 has no real roots of order \ 2}. Finally,
we set G=(RN00)0Gc, the glancing region.

In [W1] we studied the constant coefficient semilinear case (replace
Aj(eUe) by Aj(0) in (1.3)) under the assumption that any glancing modes
associated to bŒ were of order [ 2. There we controlled |Ue |L.(WT) by intro-
ducing F., s, c spaces and directly estimating solutions constructed by
Fourier–Laplace transforms in the associated norms

U ¥F., s, c Z | |UN(t −0 − ic, tœ, xN, m)|L.(xN) OtŒ, m, cP s|L2(tŒ, m) <..(1.23)

That method does not work in the quasilinear case, even for bŒ ¥ Gc, since
(1.6) has variable coefficients.

Remark 1.1. The blow-up examples of [W3] show that the restriction
to glancing modes of order [ 2 cannot be relaxed without losing uniform
|Ue |L.(WT) estimates.

The strategy of this paper for handling the quasilinear case begins with
the observation that for noncharacteristic boundaries one can use Eq. (1.6)
to estimate DxN derivatives in terms of Fe and tangential DxŒ derivatives
alone, microlocally in regions of (tŒ, me , c)-space where

|tŒ, c| > d :mbŒ

e
: , for some d > 0.(1.24)

This leads us to split the problem into two pieces using pseudodifferen-
tial cutoffs qe=q(DxŒ, bŒDh/e, c) such that q — 1 on the region

|tŒ, c| [ d :mbŒ

e
: , and

supp q 1tŒ, mbŒ

e
, c2 … 3 |tŒ, c| [ dŒ :mbŒ

e
: 4 ,

(1.25)

for dŒ > d to be chosen (1.31). The action of the Fourier multiplier
q(DxŒ, bŒDh/e, c) is defined by an integral just like (1.11). For the relatively
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easy piece (1 − qe) Ue we use a 1-D Sobolev estimate and the above
observation to obtain

|(1 − qe) Uc
e |., 0 [ C |(1 − qe) DxNUc

e |0, 0(1.26)

[ C |Uc
e |0, 1+|Fce |0, 0,

for c > c0, where C, c0 are independent of e.

Remark 1.2. qe is nonlocal, so it is more convenient to work on W than
WT here.

To deal with the hard piece qeUe we assume

bŒ lies in the nonglancing region, Gc, of L(Dx).(1.27)

Suppose for example that bŒ lies in the hyperbolic region H and that
Ve(x, h) in (1.6) satisfies

|Ve(x, h)|L.(W) [ C(1.28)

uniformly in e. Set

t −c=(t0 − ic, tœ), Dx −c=(Dx0 − ic, Dxœ).(1.29)

Then for e small the symbol A(eVe(x, h), t −c+mbŒ/e) in (1.6) has m simple
eigenvalues and associated eigenvectors

lj 1 eVe(x, h), t −c+
mbŒ

e
2 , rj 1 eVe(x, h), t −c+

mbŒ

e
2 , j=1, ..., m

(1.30)

microlocally in the region

|tŒ, c| [ dŒ :mbŒ

e
:(1.31)

for dŒ small enough.
This suggests trying to diagonalize (1.6) by conjugation with S,

S−1(DxN −A) S, where S(eVe(x, h), Dx −c+bŒDh/e) ¥ OPS0, M
bŒ has an m × m

matrix symbol whose columns are the rj(eVe, t −c+mbŒ/e). Use of the
L2-calculus shows that the conjugation introduces errors uniformly
bounded with respect to e in C(xN, L2(xŒ, h)). We thereby reduce to
considering m scalar pseudodifferential equations of the form

1DxN − lj 1 eVe, Dx −c+
bŒDh

e
22Wj, c=Fj, c,(1.32)

SINGULAR PSEUDODIFFERENTIAL OPERATORS 141



with appropriate boundary conditions, where Fj, c depends on (Fe, Ue). An
integration by parts argument yields

|Wj, c |., 0 [ C 5|F
c|2., 0
c

+|Uc|20, 0+OGcP20+
OUc(0)P20

c2
6 .(1.33)

Combined with (1.20)1 and (1.26)0, this gives for c large

|Uc
e |., 0+|Uc

e |0, 1+
OUc

eP1

`c
(1.34)

[ C 51 |F
c
e |., 0
`c

+OGcP0 2+1
|Fce |0, 1

c
+
OGcP1
`c
26 .

Differentiating tangentially, applying Moser estimates to nonlinear
functions and commutators, and restricting to finite time intervals, we
obtain the main linear estimate (Corollary 7.2):

|Ue |., k, T+|Ue |0, k+1, T+
OUePk+1, T
`c

(1.35)

[ ecTC(K, E) 51 |Fe |., k, T
`c

+
|Fe |0, k+1, T

c
+
OGPk+1, T

`c
26 .

where c and C are independent of e.
This shows that we can estimate the iterates Un

e in the Hk
T norm, ||Un

e ||k, T,
without loss of derivatives for k \ [M0+

N+1
2 ]:

||Un
e ||k, T — |Un

e |0, k+1, T+|Un
e |., k, T+`T OUn

ePk+1, T.(1.36)

After proving uniform boundedness of the iterates in the Hk
T norm, we

contract in Hk−1
T for small enough T to obtain convergence to the exact

solution Ue.

Remark 1.3. It is an open question whether or not the maximal time of
existence Te Q 0 as e Q 0 when the boundary frequency bŒ in the quasilinear
problem (1.4) lies in the glancing region G, but is such that p(bŒ, tN)=0
has real roots only of order [ 2. There are competing effects that make the
behavior of the solution as e Q 0 hard to predict.

When e is small, (1.4) is close to a constant coefficient semilinear
problem for which double real roots do not cause blow-up [W1]. (Recall
that real roots of order \ 3 do cause blow-up in such problems [W3].)
However, for e > 0 fixed the operator L(eUe, D e

x, h) has variable coefficients
and thus may, for example, have gliding rays [MS, H]. We have
constructed Friedlander-type, variable coefficient, semilinear examples in
which Te Q 0 as e Q 0 when bŒ as above triggers gliding rays. Here the
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solution operator is a Fourier multiplier defined by a quotient of Airy
functions, and blow-up occurs for bŒ corresponding to zeros of the denom-
inator. Unlike (1.4) though, these examples do not approach constant
coefficient problems as e Q 0.

We hope to resolve the question of double real roots in the quasilinear
case by constructing solutions to the linearized problem (1.6) using singular
Fourier integral operators with complex phases.

D. Initial-Value Problems

In Section 8 we extend results of [JMR1, JMR2, S] for quasilinear
symmetric hyperbolic systems in free space with oscillatory initial data to
nonsymmetric hyperbolic systems for which one can construct pseudodif-
ferential symmetrizers. This class includes nonsymmetric strictly hyperbolic
systems, for example. Again, the problem is to demonstrate a time of
existence independent of the wavelength e as e Q 0. Estimates in
C(x0, L2(xœ, xN, h)) norms for the corresponding linearized singular initial-
value problem (6.1) are obtained using SPOs, which now act in the
variables (xœ, xN, h) tangent to x0=0 (actually, in Sections 6 and 8 we
relabel coordinates so that xN denotes time). C(x0, Hk(xœ, xN, h)) estimates
and L. control follow by differentiating the equations. Thus, obtaining L.

control is much easier here than in the case of boundary problems, since
C(x0, L2(xœ, xN, h)) norms are natural for the initial-value problem.

E. Multidimensional Shocks

In Section 9 we start with a planar shock solution (U ±, xN=sx0) of an
m × m system of conservation laws (9.1) and then perturb it with high-
frequency (1e) plane waves that reflect transversally off the shock. Assuming
the planar solutions are uniformly stable in the sense of Majda [M1], our
aim is to show that the perturbed solution (U ±+ev ±e , xN=sx0+efe(xŒ))
exists on a fixed time interval independent of the wavelength e as e Q 0.
Note that the amplitude of the perturbation is the critical amplitude of
weakly nonlinear geometric optics.

The problem can be formulated as a hyperbolic mixed problem with the
perturbed shock as a free boundary. After flattening the boundary by a
change of variables depending on the unknown fe(xŒ), one reduces to a
forward mixed problem similar to (1.2). The restriction to plane waves
reflecting transversally off the shock corresponds to a choice of boundary
frequency bŒ in the nonglancing region of the hyperbolic operator obtained
by linearizing at the planar shock. In contrast to [W2] here our choice of
bŒ also allows the formation of an elliptic boundary layer on one or both
sides of the shock (for elliptic boundary layers see, e.g., [W3]). The
uniform stability assumption implies Kreiss well-posedness, so we are able
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to solve the problem using SPO symmetrizers and the strategy for quasili-
near boundary problems outlined above.

We remark here that the right norm for iteration is the shock analogue
of the Hk

T norm, namely:

| ||Un, fn || |k, T(1.37)

=|Un |., k, T+|Un |0, k+1, T+`T 7Un,
fn

T
, N efn8

k+1, T
+
ON efnPk, T

`T
.

2. SPO Calculus: Adjoints, Products, Mollifiers

In order to study adjoints and products of elements of OPSk, M
bŒ (1.10), it

is helpful to define classes of amplitudes

(a) Tk={a(v, w, X, c) ¥ C.(Rm×Rm×RN× [c0,.)) :

|“a(v, w)“
b
Xa(v, w, X, c)| [ Ca, bOX, cPk− |b|}

(b) Tk, M
bŒ =3as=a 1 eV(x, h), eW(y, w), tŒ+

mbŒ

e
, c2 :

a ¥ Tk, V ¥ C0, M
c , W ¥ C0, M

c , and yN=xN 4

(2.1)

and associated operators

ãs ¥ OPTk, M
bŒ

whose action on U(x, h) is defined (formally, at first) by

ãs(U)(x, h) — F e i(xŒ−yŒ) tŒ+i(h−w) ma 1 eV(x, h), eW(y, w), tŒ+
mbŒ

e
, c2(2.2)

× U(y, w) dyŒ dw dtŒ dm.

For example, if W and U ¥ C0, M
c for M large enough, (2.2) makes sense

if the dyŒ dw integral is done first. As always the dm integral is a sum over
m ¥ Z.

Notation 2.1. We will often write tŒ+mb/e=X and gŒ+mŒbŒ/e=Y,
where (gŒ, mŒ) are variables dual to (y, w).

In order to clarify the mapping properties of SPOs and define residual
operators we introduce the following scale of spaces.
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Definition 2.1. Let Le, c (=L, for short) — ps(DxŒ, h), where

ps=OX, cP,

and e [ 1, c \ 1. For r ¥ R we set

(a) H0, r=L−rL2(RbN+1+ ×T1)

={Ue, c(x, h) : |Ue, c |H0, r — |L rUe, c |L2(xN, L2(xŒ, h)) <.}.

(b) H1, r={Ue, c(x, h) ¥H0, r : DxNUe, c ¥H0, r−1}.

(c) H r=L−rL2(RN×T1)

={Ve, c(xŒ, h) : |Ve, c |Hr — |L rVe, c |L2(xŒ, h) <.}.

(2.3)

Remark 2.1. (a) For all t ¥ R, r ¥ R L t: H0, r
QH0, r− t, and in fact

|L tUe, c |H0, r−t=|Ue, c |H0, r.

(b) H0, 0=L2(xN, L2(xŒ, h)), but for r ] 0 H0, r has only a limited
resemblance to the standard Sobolev space L2(xN, H r(xŒ, h)). Suppose
Ue, c(xŒ, xN, h) ¥H0, r is continuous in xN. Then for xN fixed, Ue, c is H r

microlocally away from tŒ+mbŒ/e=0 in (tŒ, m)-space, but the H r

regularity is not uniform in e. Moreover, even if r ± 0, Ue, c is only
microlocally L2 near tŒ+mbŒ/e=0.

Proposition 2.1. IfM > N+1 and ps ¥Sk, M
bŒ for some k ¥ R, then

ps(DxŒ, h): H0, r
QH0, r−k for all r.

Proof. The result is clear for Fourier multipliers of order k. Reduce to
that case just as in Proposition 1.1. L

Since “bXa(eV, eW, tŒ+mb
e , c) fails to decay in |tŒ, m|, we can not hope for

residual operators that are smoothing in the usual sense. Instead we have

Definition 2.2. Let k \ 0. A linear operator re, c is called residual of
order k if

re, c: H0, 0
QH0, 0

with operator norm [ Cc−k, for C independent of e, c.
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Parallel to Proposition 1.1 we have

Proposition 2.2. IfM > N+1 and

as=a 1 eV(x, h), eW(y, w), tŒ+
mbŒ

e
, c2 ¥T0, M

bŒ ,

then

ãs: H0, 0
QH0, 0.

Proof. 1. First assume a(v, w, X, c)=a(w, X, c), write

a(eV, eW, X, c)=a(eW, X, c)=a(0, X, c)+eWb(eW, X, c)(2.4)

=a(0, X, c)+ec(y, w, X, c),

and so reduce to considering

c̃s(U)(x, h) — F e i(xŒ−yŒ) tŒ+i(h−w) mc(y, w, X, c) U(y, w) dyŒ dw dtŒ dm,(2.5)

where X=tŒ+mbŒ/e. c has compact support in yŒ and w ¥ T1, so after
integrating dyŒdw and using the Plancherel theorem, we find

|c̃s(U)|L2(x, h)

(2.6)

=:F cN(tŒ− gŒ, xN, m − mŒ, X, c) UN(gŒ, xN, mŒ) dgŒ dmŒ :
L2(tŒ, xN, m)

.

Now

|cN(tŒ− gŒ, xN, m − mŒ, X, c)| [ COtŒ− gŒ, m − mŒP−M,(2.7)

so Young’s inequality gives (2.6) [ C |U|L2 since M > N+1.
2. Reduce the general case to the case just treated by writing

a(eV, eW, X, c)=a(0, eW, X, c)+ec(x, h, eW, X, c)(2.8)

and using

|cN(tŒ, xN, m, eW, X, c)| [ COtŒ, mP−M

as in the proof of Proposition 1.1. L
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Proposition 2.3. SupposeM > N+2 and

as=a(eV(x, h), eW(y, w), X, c) ¥Tk, M
bŒ

for some k ¥ [0, 1]. Then

ãs=ps(DxŒ, h)+re, c,(2.9)

where ps=a(eV(x, h), eW(x, h), X, c) ¥Sk, M
bŒ and re, c is residual of order

1 − k (Definition 2.2).

Proof. 1. Write

a(eV(x, h), eW(y, w), X, c)(2.10)

=a(eV(x, h), 0, X, c)+eW(y, w) a1(eV, eW, X, c),

and thereby reduce to considering operators defined by symbols

cs=ec(x, h, y, w, X, c)

(convenient abuse of notation here) for which

there exists a compact set K … RbN+1+ such that cs — 0 for y ¥ Kc.(2.11)

2. Choose f ¥ C. with proper support in RbN+1+ ×RbN+1+ and f — 1 on
|x − y| [ 1. Consider first

ec1s=ef(x, y) c(x, h, y, w, X, c),(2.12)

which has compact support in (x, y). With c̃1s the SPO defined by c1s, as
usual set

p1s(x, h, tŒ, m, e, c)=e−ixŒtŒ−ihmec̃1s(e ixŒtŒ+ihm),(2.13)

let

b(x, h, y, w, X, c)=ec1s(x, h, x+y, h+w, X, c)

and note that

p1s=F bN(x, h, gŒ, mŒ, X+Y, c) dgŒ dmŒ(2.14)

(recall Notation 2.1). Since W ¥ C0, M
c we have for |a|=1

|“aXbN(x, h, gŒ, mŒ, X, c)| [ CeOgŒ, mŒP−M OX, cPk−1.(2.15)
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Taking a first-order Taylor expansion of bN in (2.14) gives

bN(x, h, gŒ, mŒ, X+Y, c)
(2.16)

=bN(x, h, gŒ, mŒ, X, c)+ C
|a|=1

F
1

0

“
abN

“Xa
(x, h, gŒ, mŒ, X+tY, c) Ya dt

=bN+F
1

0
bN
1 dt.

Observe that

F bN(x, h, gŒ, mŒ, X, c) dgŒ dmŒ=ec1s(x, h, x, h, X, c).

3. We claim that > b N
1 dt in (2.16) corresponds to a residual operator

of order 1 − k. Indeed,

|Ya| [ C
OgŒ, mŒP

e
,

so (2.15) implies

|b N
1 | [ COgŒ, mŒP−(M−1) OX+tY, cPk−1(2.17)

[ COgŒ, mŒP−(M−1) ck−1.

If b N
1 had no (x, h) dependence, the Fourier multiplier given by

F b N
1 dgŒ dmŒ

would be residual of order 1 − k, since M − 1 > N+1 in (2.17). Reduce to
that case, using the fact that b1 has compact support and is CM in (x, h), by
arguing just as in Proposition 1.1.

4. It remains to consider

ec2s=e(1 − f(x, y)) c(x, h, y, w, X, c).(2.18)

We claim

c̃2s is residual of order j, for all j > 0.(2.19)

For j ¥N, j > > k, write

c̃2s(U)=F e i(xŒ−yŒ) tŒ+i(h−w) m
1 − f(x, y)
|xŒ− yŒ|2j

(gtŒ) j c(x, h, y, w, X, c)(2.20)

× U(y, w) dyŒ dw dtŒ dm.
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Note that

|(gtŒ) j c| [ C < X, c > k−2j.(2.21)

Suppose first that

1 − f(x, y)
|xŒ− yŒ|2j

(gtŒ) j c(x, h, y, w, X, c)(2.22)

in (2.20) is replaced by a function d(y, w, X, c) satisfying

|dN(gŒ, yN, mŒ, X, c| [ COgŒ, mŒP−M ck−2j.(2.23)

Then part 1 in the proof of Proposition 2.2 gives (2.19). Reduce to this
case by taking the Fourier transform in (xŒ, h) of (2.22), using (2.11), and
superposing operators via the inverse Fourier transform as in the proof of
Proposition 1.1. L

Proposition 2.3 yields results on adjoints and products as corollaries.

Notation 2.2. ps(DxŒ, h)g denotes the adjoint of the operator ps(DxŒ, h),
while pg

s (DxŒ, h) denotes the operator associated to the matrix symbol
pg(eV, X, c).

Proposition 2.4 (Adjoints). SupposeM > N+2 and

ps=p(eV(x, h), X, c) ¥Sk, M
bŒ

for some k ¥ [0, 1]. Then

ps(DxŒ, h)g=pg
s (DxŒ, h)+re, c,(2.24)

where re, c is residual of order 1 − k.

Proof. ps(DxŒ, h)g=ãs, where as=pg(eV(y, w), X, c) ¥Tk, M
bŒ , so the

conclusion follows immediately from Proposition 2.3. L

Observe that if ãs is defined by the amplitude a(eV(x, h), eW(y, w), X, c),
then ãg

s is defined by ag(eV(y, w), eW(x, h), X, c).

Corollary 2.1. Let re, c denote the residual operator of order 1 − k
appearing in (2.9) or (2.13). Then rg

e, c is also residual of order 1 − k.

Proof. This follows immediately from Propositions 2.3 and 2.4 and the
preceding observation. L
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Proposition 2.5 (Products, I). SupposeM > N+2 and

ps=p(eV(x, h), X, c) ¥Sk1, M
bŒ , qs=q(eW(x, h), X, c) ¥Sk2, M

bŒ

for k1, k2 ¥ R such that 0 [ k1+k2 [ 1. Set

ts=p(eV(x, h), X, c) qg(eW(x, h), X, c).

Then

ps(DxŒ, h) qs(DxŒ, h)g=ts(DxŒ, h)+re, c,(2.25)

where re, c is residual of order 1 − (k1+k2).

Proof. qs(DxŒ, h)g=ãs, where as=qg(eW(y, w), X, c). Thus

ps(DxŒ, h) qs(DxŒ, h)g=b̃s,

where

bs=p(eV(x, h), X, c) qg(eW(y, w), X, c) ¥Tk1+k2, M
bŒ ,

and Proposition 2.3 gives (2.25). L

Proposition 2.6 (Products, II). SupposeM > N+2 and

ps=p(eV(x, h), X, c) ¥Sk1, M
bŒ , qs=q(eW(x, h), X, c) ¥Sk2, M

bŒ

for k1 [ 0, 0 [ k1+k2 [ 1. Set

ts=p(eV(x, h), X, c) q(eW(x, h), X, c).

Then

ps(DxŒ, h) qs(DxŒ, h)=ts(DxŒ, h)+re, c,(2.26)

where re, c is residual of order 1 − (k1+k2).

Proof. Using Proposition 2.4 and its proof and Corollary 2.1, write

qs(DxŒ, h)=qs(DxŒ, h)gg=qg
s (DxŒ, h)g+re, c(2.27)

=Q̃s+re, c,

where Qs=q(eW(y, w), X, c) and re, c is residual of order 1 − k2. Set
Ts=p(eV(x, h), X, c) q(eW(y, w), X, c) ¥Tk2, M

bŒ , and note that

ps(DxŒ, h) qs(DxŒ, h)=T̃s+ps(DxŒ, h) re, c,(2.28)
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where ps(DxŒ, h) re, c is residual of order 1 − k1 − k2 since

ps(DxŒ, h): H0, k1
QH0, 0.

Finally, apply Proposition 2.3 to get (2.26). L

Remark 2.2. If k1 > 0 and 0 [ k1+k2 [ 1, the error term ps(DxŒ, h) re, c
in (2.28) is not obviously residual or even bounded on L2. We use a
different argument in the following proposition.

Proposition 2.7 (Products, III). Suppose M1 \ N+2, M2 \ 2(N+2)+1,
ps=p(eV(x, h), X, c) ¥Sk1, M1

bŒ , and qs=q(eW(x, h), X, c) ¥Sk2, M2
bŒ for 0 [

k1 [ 1, k2=0. Set

ts=t(eV(x, h), eW(x, h), X, c)=p(eV, X, c) q(eW, X, c).

Then

A — ps(DxŒ, h) qs(DxŒ, h)=ts(DxŒ, h)+re, c,(2.29)

where re, c is residual of order 1 − k1.

Proof. 1. As usual there is nothing to prove if q(eW, X, c)=q(X, c),
so reduce to considering

ps(DxŒ, h) ecs(DxŒ, h),

where cs=c(x, h, X, c) has compact support in x and is given by

q(eW, X, c)=q(0, X, c)+eWb(eW, X, c)(2.30)

=q(0, X, c)+ec(x, h, X, c).

2. Write

AU(x, h)=F e ixŒtŒ+ihmde(x, h, X, c) UN(tŒ, xN, m) dtŒ dm,(2.31)

where, with X=tŒ+mb −

e , Y=gŒ+m −b −

e

de(x, h, X, c)
(2.32)

=F e i(xŒ−yŒ) gŒ+i(h−w) mŒp(eV(x, h), X+Y, c) ec(y, w, X, c) dyŒ dw dgŒ dmŒ.

Expand p(eV, X+Y, c) about X to obtain

de=p(eV(x, h) X, c) ec(x, h, X, c)+Re,
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where

Re(x, h, X, c)= C
|a|=1

F F
1

0
e ixŒgŒ+ihmŒ

“
ap
“Xa

(eV(x, h), X+tY, c)(2.33)

× YaecN(gŒ, xN, mŒ, X, c) dt dgŒ dmŒ.

3. It remains to show that Re defines a residual operator of order
1 − k1. The modulus of the integrand in (2.33) is

[ COX+tY, cPk1 −1
OgŒ, mŒP

e
· e ·OgŒ, mŒP−M2(2.34)

[ COgŒ, mŒP−(M2 −1) ck1 −1.

Write

“
ap
“Xa

(eV, X+tY, c)=
“
ap
“Xa

(0, X+tY, c)+eh(x, h, X+tY, c),(2.35)

where h has compact support and regularity of order M1 in (x, h). Corre-
sponding to (2.35)

Re=Re, 1(x, h, X, c)+Re, 2(x, h, X, c).(2.36)

As in (2.34) we have

|R N
e, 1(gŒ, xN, mŒ, X, c)| [ COgŒ, mŒP−(M2 −1) ck1 −1,(2.37)

so Re, 1, s(DxŒ, h) is residual of order 1 − k1. We claim that Re, 2(x, h, X, c) has
compact support and regularity of order N+2 in (x, h). This follows by
differentiating under the integral sign since

|h(x, h, X+tY, c) YaecN(gŒ, xN, mŒ, X, c)| [ COgŒ, mŒP−(M2 −1) ck1 −1,

with M1 \ N+2 and (M2 − 1) − (N+2) \ N+2. This implies

|R N
e, 2(gŒ, xN, mŒ, X, c)| [ COgŒ, mŒP−(N+2) ck1 −1,(2.38)

so Re, 2, s(DxŒ, h) is also residual of order 1 − k1. L

Remark 2.3. This argument fails when k2 > 0. Suppose, for example,
that 0 < k2 [ 1 − k1. When |Y| < r |X| for some r < 1, the contribution
OX+tY, cPk1 −1 from “ap/“Xa in (2.33) controls the growth OX, cPk2 of cN.
In spite of the good decay in OgŒ, mŒP, we do not see how to control cN

uniformly in e when |Y| \ r |X|.
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Mollifiers.

Proposition 2.8. For d > 0 let

Ld=1+dL,

where L=ts(DxŒ, h) for ts=OX, cP. Suppose U(x, h) ¥H0, 0, M > N+2.
Then

(a) L−1d U ¥H0, 1 and L−1d U Q U inH0, 0 as d Q 0.
(b) For ps(DxŒ, h) ¥ OPS1, M

bŒ , [L−1d , ps(DxŒ, h)] is bounded on H0, 0

uniformly with respect to e, c, d.

Proof. 1. (a) is immediate, since

(L−1d U)N (tŒ, xN, m)=(1+dOX, cP)−1 UN(tŒ, xN, m).

2. We have ps(DxŒ, h) L−1d =qs(DxŒ, h), where

qs=p(eV, X, c)(1+dOX, cP)−1.

Proposition 2.6 implies

L−1d ps(DxŒ, h)=qs(DxŒ, h)+re, c,

where re, c is residual of order 0 uniformly with respect to d since

{(1+dOX, c, P)−1}d > 0

is a bounded subset of S0. This gives (b). L

Extended calculus. It is now easy to extend the SPO calculus to a
larger class of symbols that includes pseudodifferential cutoffs qe=
q(DxŒ, bŒDh/e, c) like those described in the Introduction (1.25). Define
extended classes of symbols and amplitudes

(a) eSk={p(v, X, Z, c) ¥ C.(Rm×RN×R2N× [1,.)) :
(2.39)

|“av“
b
(X, Z)p(v, X, Z, c)| [ Ca, bOX, cPk− |b| whenever |Z| \ |X|},

(b) eSk, M
bŒ =3ps=p 1 eV(x, h), tŒ+

mbŒ

e
, tŒ,

mbŒ

e
, c2

for some p ¥ eSk, V ¥ C0, M
c , and bŒ ¥ RN004 ,
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(a) eTk={a(v, w, X, Z, c) ¥ C.(Rm×RN×R2N× [1,.)) :

|“a(v, w)“
b
(X, Z)a(v, w, X, Z, c)| [ Ca, bOX, cPk− |b|

whenever |Z| \ |X|},

(b) eTk, M
bŒ =3as=a 1 eV(x, h), eW(y, w), tŒ+

mbŒ

e
, tŒ,

mbŒ

e
, c2 :

a ¥ eTk, V ¥ C0, M
c , W ¥ C0, M

c , and yN=xN 4 .

(2.40)

Given ps ¥ eSk, M
bŒ , as ¥ eTk, M

bŒ we define corresponding operators
ps(DxŒ, h) ¥ OPeSk, M

bŒ , ãs ¥ OPeTk, M
bŒ by the same formulas as before, (1.11)

and (2.2), respectively.

Remark 2.4. (a) The analogues of Propositions (1.1), and (2.2)–(2.7)
all remain true for the extended operators. The proofs involve only minor
changes. For example, with X=tŒ+mbŒ/e, Y=gŒ+mŒbŒ/e, Z=(tŒ, mbŒ/e)
and ZŒ=(gŒ, mŒbŒ/e), (2.15) and (2.17) become respectively

|“a(X, Z)b
N(x, h, gŒ, mŒ, X, Z, c)| [ CeOgŒ, mŒP−M OX, cPk−1,(2.41)

|b N
1 | [ COgŒ, mŒP−(M−1) OX+tY, cPk−1 [ COgŒ, mŒP−(M−1) ck−1,(2.42)

where

b N
1 = C

|a|=1
“
a
(X, Z)b

N(x, h, gŒ, mŒ, X+tY, Z+tZŒ, c)(Y, ZŒ)a.

(b) Suppose q(Z, c) ¥ C.(R2N× [1,.)) and

|“bZq(Z, c)| [ CbOZ, cP−|b|.

Then

q(Z, c) ¥ eS0.(2.43)

If p(v, X, Z, c) ¥ eSk, then

p(v, X, Z, c) q(Z, c) ¥ eSk.(2.44)

(c) Let Z=(Z1, Z2) ¥ R2N. To arrange (1.25) we will choose q ¥ eS0

such that

supp q(Z, c) … {|Z1, c| [ dŒ |Z2 |}.(2.45)
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3. Garding Inequalities

Notation 3.1. In Sections 3–5 we let (,) (resp. O ,P) and | |0 (resp. O P0)
denote L2 inner products and L2 norms on RbN+1+ (resp. RN). We shall use
the same notation for L2 inner products and norms on W — RbN+1+ ×T1 and
bW=RN×T1. In Section 7 we will revert to Notation 1.3.

Proposition 3.1. Suppose M > N+2, ps=p(eV, X, c) ¥S0, M
bŒ , and

Re p(eV, X, c) \ C > 0. Fix d > 0. Then there exists c0 > 0 such that for
c \ c0, U ¥H0, 0

Re (ps(DxŒ, h) U, U) \ (C − d) |U|20.(3.1)

Proof. Let

qs=q(eV, X, c)=Re p(eV, X, c) − (C − d)

and

bs(eV, X, c)=(q(eV, X, c))
1
2 ¥S0, M

bŒ ,

a positive self-adjoint matrix. By Proposition 2.4

bs(DxŒ, h)g=bs(DxŒ, h)+re, c,(3.2)

where re, c is residual of order 1. Proposition 2.6 and (3.2) imply

bs(DxŒ, h)g bs(DxŒ, h)=qs(DxŒ, h)+re, c,(3.3)

where again re, c is residual of order 1. Equation (3.3) yields

(qs(DxŒ, h) U, U)=(bs(DxŒ, h) U, bs(DxŒ, h) U)+(re, cU, U).(3.4)

This implies (3.1) for c0 large enough, since

Re ps(DxŒ, h) − (C − d)=1
2 [ps(DxŒ, h)+ps(DxŒ, h)g] − (C − d)

=qs(DxŒh)+re, c,

where re, c is residual of order 1. L

Corollary 3.1. Suppose M > N+2, ps=p(eV, X, c) ¥Sk, M
bŒ , k \ 0,

and

Re p(eV, X, c) \ COX, cPk, C > 0.
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Fix d > 0. Then there exists c0 > 0 such that for c \ c0, U ¥H0, k

Re (ps(DxŒ, h) U, U) \ (C − d) |U|2H0, k/2.(3.5)

Proof. Let

qs=q(eV, X, c)=OX, cP−
k
2 p(eV, X, c)OX, cP−

k
2 ¥S0, M

bŒ .(3.6)

Proposition 2.6 with k1=−k2 , k2=
k
2 implies

L−
k
2ps(DxŒ, h) L−

k
2=qs(DxŒ, h)+re, c,(3.7)

where re, c is residual of order 1. Setting V=Lk/2U and applying Proposi-
tion 3.1 gives

Re(qs(DxŒ, h) V, V) \ 1C −
d

2
2 |V|2H0, 0=1C −

d

2
2 |U|2H0, k/2(3.8)

for c0 large enough. This implies (3.5) for c0 possibly larger since

(re, cV, V) [
C
c

|V|2H0, 0=
C
c

|U|2H0, k/2. L(3.9)

4. Modifications

A. (c=1) In contrast to Section 3, it was never necessary to take c

large in the proofs of Section 2. Consequently, we obtain a singular cal-
culus without large parameter by setting c=1 in the proofs of that section.
Thus, OXP=(|X|2+1)1/2, and all residual operators re are residual of order
0, i.e., bounded on L2 uniformly with respect to e. Garding inequalities can
be proved by letting e instead of 1c play the role of a small parameter (see
Proposition 4.6).

B. (Homogeneous symbols) In the application to initial value
problems we will need to work with operators defined by symbols homo-
geneous in X and depending on h ¥ TL.

For j=1, ..., L let b −j ¥ RN and set bŒ=(b −1, ..., b −L). For m ¥ ZL let
mbŒ=;L

j=1 mjb
−

j.

Definition 4.1. For k \ 0 let
(a) Skh={p(v, X) ¥ C.(Rm× (RN00)) : p is homogeneous of degree k

in X}.
(b) Sk, M

bŒ, h={ps=p(eV(x, h), X) : p ¥ Skh , X=tŒ+mb −

e , V ¥ C0, M
c (RbN+1+

×TL)}.
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(c) Tkh={a(v, w, X) ¥ C.(Rm×Rm× (RN00)): a is homogeneous of
degree k in X}.

(d) Tk, M
bŒ, h={as=a(eV(x, h), eW(y, w), X) : a ¥ Tkh , X=tŒ+mb −

e ,
V ¥ C0, M

c , and yN=xN}.

To symbols ps ¥Sk, M
bŒ, h and amplitudes as ¥Tk, M

bŒ, h we associate operators
ps(DxŒ, h) and ãs defined by the obvious analogues of (1.11) and (2.2). In
these formulas the symbols are homogeneous in all of |X| ] 0; i.e., we do
not modify the symbols to be — 0 for |X| small. Such a modification
introduces an error that is generally no better than bounded on L2, which is
too large if, for example, k=0.

Versions of Propositions 1.1 and 2.2 for OPS0, M
bŒ, h and OPT0, M

bŒ, h follow
by the same proofs if one assumes the regularity index M > N+L. In
Section 6 we will need the following calculus results for OPSk, M

bŒ, h and
OPTk, M

bŒ, h . When using the homogeneous calculus, we define

re is residual Z re : H0, 0
QH0, 0.(4.1)

Proposition 4.1. SupposeM > N+L+1 and as=a(eV(x, h), eW(y, w),
X) ¥Tk, M

bŒ, h for some k ¥ [0, 1]. Then

ãs=ps(DxŒ, h)+re,

where ps=a(eV(x, h), eW(x, h), X) ¥Sk, M
bŒ, h and re is residual. (The state-

ment is trivial when k=0.)

Proposition 4.2. Suppose M > N+L+1 and ps=p(eV(x, h), X) ¥
Sk, M
bŒ, h for some k ¥ [0, 1]. Then

ps(DxŒ, h)g=pg
s (DxŒ, h)+re,

where re is residual.

Proposition 4.3. Suppose M > N+L+1 and ps=p(eV(x, h), X) ¥
Sk1, M
bŒ, h , qs=q(eW(x, h), X) ¥Sk2, M

bŒ, h where k1 \ 0, k2 \ 0, k1+k2 [ 1. Set

ts=p(eV(x, h), X) qg(eW(x, h), X).

Then

ps(DxŒ, h) qs(DxŒ, h)g=ts(DxŒ, h)+re,

where re is residual.
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Proposition 4.4. SupposeM > N+L+1 and

ps=p(eV(x, h), X) ¥S0, M
bŒ, h , qs=q(eW(x, h), X) ¥Sk2, M

bŒ, h ,

where 0 [ k2 [ 1. Set

ts=p(eV(x, h), X) q(eW(x, h), X).

Then

ps(DxŒ, h) qs(DxŒ, h)=ts(DxŒ, h)+re,

where re is residual.

Proposition 4.5. Suppose M1 \ N+L+1, M2 \ 2(N+L+1)+1, ps=
p(eV(x, h), X) ¥S1, M1

bŒ, h , qs=q(eW(x, h), X) ¥S0, M2
bŒ, h . Set

ts=p(eV(x, h), X) q(eW(x, h), X).

Then

ps(DxŒ, h) qs(DxŒ, h)=ts(DxŒ, h)+re,

where re is residual.

Proof. Proof of Propositions 4.1–4.5. We will point out just the
changes needed in the corresponding proofs of Section 2.

1. (Proposition 4.1) Write as=a1s+a2s, where

a1s — 0 for |X| [ 1
2 , a2s=as for |X| \ 1.

ã1s is residual, so the result follows from Proposition 2.3 in the c=1
calculus (modification A with h ¥ TL) applied to a2s.

2. (Propositions 4.2–4.4) No changes in the proofs.
3. (Proposition 4.5) In (2.34) OX+tY, cPk1 −1 is now replaced by

|X+tY|k1 −1, but this is not a problem since k1=1. L

C. (h ¥ TL, c \ 1) The propositions of sections 2 and 3 remain true
for the original large parameter calculus when h ¥ TL, provided the
regularity index M is increased as in Propositions 4.1–4.5.

D. (Tangential calculus) In the definition of the operators ps(DxŒ, h)
and ãs, the xN variable is just a continuous parameter. All the results of
Sections 2, 3, and above hold for the operators on RN×TL obtained by
fixing xN.
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The following simple Garding inequality for tangential, homogeneous
SPOs is needed in Section 6.

Proposition 4.6. SupposeM > N+L, Rs=R(eV(x, h), X) ¥S0, M
bŒ, h , and

Re R(eV, X) \ C > 0. Let Rs, xN (DxŒ, h) be the tangential operator obtained by
fixing a particular xN. For some K > 0 assume |V|C0, Mc [ K. Then there exists
e1(K) such that for 0 < e [ e1(K), U ¥H0,

ReORs, xN (DxŒ, h) U, UP \
C
2
OUP20.

Proof. Write

R(eV, X)=R(0, X)+eVb(eV, X)=r1s+er2s.

Clearly, Re Or1s(DxŒ, h) V, VP \ COVP20, so the L2 boundedness of r2s implies
the result. L

E. (Paradifferential calculus) There may be a paradifferential version
of the SPO calculus that would allow a large reduction in the amount of
(x, h) regularity assumed for the symbols p(eV(x, h), X, c). We have
decided not to pursue that possibility here.

PART 2. SYMMETRIZERS FOR SINGULAR SYSTEMS

5. L2 Estimates for Boundary Problems

In this section we obtain L2 estimates uniform in e for singular boundary
problems

L(eVe, D e
x, h) Ue(5.1)

=DxNUe −A 1 eVe, DxŒ+
bŒDh

e
2 Ue=Fe(x, h) in xN > 0

B(eVe) Ue=Ge(xŒ, h) on xN=0,

where

A(v, tŒ)= C
N−1

j=0
Aj(v) tj for Aj ¥ C.(Rm, Rm

2
)

and B(v) is a real m × m matrix C. in v.
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Consider first the nonsingular analogue

L(v, Dx) u=DxNu −A(v, DxŒ) u=f

B(v) u=g on xN=0,
(5.2)

where v(x) ¥ C.

c (for now) with values in BR={v ¥ Rm : |v| [ R} for some
fixed R. Set w=uc — e−cx0u,

A(v, Dx −c )=A(v, Dx0 − ic, Dxœ), A(v, t −c)=A(v, t0 − ic, tœ)

and rewrite (5.2)

DxNw −A(v, Dx −c ) w=fc

B(v) w=gc on xN=0.
(5.3)

Kreiss Symmetrizers

We now briefly recall the method of Kreiss symmetrizers [K] for
proving energy estimates. More detailed expositions may be found in [CP,
Met2].

Definition 5.1. A symmetrizer for (5.3) is a family Rc(xN), xN \ 0,
c \ 1 of bounded self-adjoint operators on L2(RN) which define bounded
self-adjoint operators on L2(RbN+1+ ) via

(Rcw)(., xN)=Rc(xN) w(., xN).

In addition there exist constants C, c, c0 such that for all w ¥ H1(RbN+1+ ) and
c \ c0

(a) |Rcw|0 [ C |w|0

(b) |[“xN , Rc] w|0 [ C |w|0

(c) Im(RcA(v, Dx −c ) w, w) \ cc |w|20

(d) ORcw, wP+COB(v) wP20 \ cOwP20.

(5.4)

Proposition 5.1. Suppose Rc is a symmetrizer for (5.3). Then there
exist C1, c1 depending only on C, c, c0 in (5.4) such that for all w ¥ H1(RbN+1+ )
and c \ c1

|w|0+
1

`c
OwP0 [ C1 1

1
c

|(DxN −A(Dx −c )) w|0+
1

`c
OB(v) wP0 2 .(5.5)
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Proof. Integrate “xN (Rcw, w) in xN from 0 to . to obtain

ORcw, wP+Im(RcA(v, Dx −c ) w, w)(5.6)

=2 Im((DxN −A(v, Dx −c )) w, Rcw) − ([“xN , Rc] w, w).

The estimate (5.5) is now a simple consequence of (5.6) and the properties
(5.4). L

A symmetrizer can be constructed as a pseudodifferential operator when
the boundary problem (5.3) is Kreiss well-posed. Set

BR={v ¥ Rm : |v| [ R} and z=(v, tŒ, c) ¥ BR ×RN× (0,.).

Definition 5.2 [K, Met2]. The problem (5.2) is Kreiss well-posed for
v ¥ BR if there exists an m × m matrix-valued function

R(z) ¥ C.(BR ×RN× (0,.)),

homogeneous of degree zero in (tŒ, c), and satisfying:

(a) R(z)=Rg(z);
(b) there exist C > 0, c > 0 such that for all z

R(z)+C Bg(v) B(v) \ c;(5.7)

(c) there exist finite sets of C. matrices on BR ×RN× (0,.), Tl(z),
Hl(z), and El(z) such that

(i) Im R(z) A(v, t −c)=C
l

Tl(z) rcHl(z) 0
0 El(z)
s Tg

l (z);(5.8)

(ii) Tl, Hl are homogeneous of degree zero in (tŒ, c), El is homoge-
neous of degree one;

(iii) Hl(z)=Hg
l (z), El(z)=Eg

l (z);
(iv) there exist C, c > 0 such that

C
l

Tl(z) Tg
l (z) \ c, Hl(z) \ c, El(z) \ c(|tŒ|+c).(5.9)

The dimension of Hl and El can vary with l.

Remark 5.1. (a) Kreiss [K] proved that strictly hyperbolic systems
with boundary conditions satisfying the uniform Lopatinski condition are
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well-posed in the sense of Definition 5.2. A Kreiss symmetrizer for (5.3) is
given by

Rc=
1
2 [R(v, DxŒ, c)+R(v, DxŒ, c)g],

where R(v, DxŒ, c) is the (standard) pseudodifferential operator associated
to R(v, tŒ, c). Using paradifferential operators Metivier [Met1, Met2] and
Mokrane [Mo] extended the construction to the case where v(x) is only
Lipschitz.

(b) Many physical examples of hyperbolic systems are not strictly
hyperbolic, for example, the linearized Euler equations of gas dynamics. In
the Kreiss construction strict hyperbolicity is only used to show that
A(v, t −c) has a suitable block structure (the main difficulty being near
glancing boundary frequencies tŒ ¥ G). Majda [M1] showed that this block
structure condition is satisfied by several nonstrictly hyperbolic systems, in
particular the linearized shock front equations of gas dynamics. Recently,
Metivier [Met3] has shown that, more generally, all symmetrizable
hyperbolic systems with constant multiplicity satisfy the block structure
assumption. Boundary problems for such systems which satisfy the uniform
Lopatinski condition are therefore Kreiss well-posed.

(c) Sometimes one has to allow the boundary operator in (5.3) to be
a pseudodifferential operator B(v, DxŒ, c) associated to a C. symbol
B(v, tŒ, c) homogeneous of degree zero in (tŒ, c). Such boundary conditions
arise, for example, in the study of shocks (9.51) and also when one reduces
an mth order scalar problem with differential boundary conditions to an
m × m first-order system. The formulation of Kreiss well-posedness for such
problems is unchanged except for the replacement of B(v) by B(z) in (5.7).
Again, block structure and the uniform Lopatinski condition together
imply Kreiss well-posedness and the existence of Kreiss symmetrizers.

Singular Symmetrizers

Notation 5.1. For 0 < e [ 1, c \ 1, Ve ¥ C0, M
c , W=RbN+1+ ×T1, let

(a) As=A 1 eVe, (t0 − ic, tœ)+
mbŒ

e
2 ¥S1, M

bŒ and

As(DxŒ, h)=A 1 eVe, (Dx0 − ic, Dxœ)+
bŒDh

e
2 .

(b) For k ¥ R

H0, k
c =ecx0H0, k={U(x, h): |Lk(e−cx0U)|L2(W) <.}

(L, H0, k as in Definition 2.1).
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(c) H1, k
c =ecx0H1, k.

(d) Hk
c (bW)={V(xŒ, h): |Lk(e−cx0V)|L2(bW) <.}.

(e) |U|H0, 0
c

=|U|0, c and OVPH
0
c
=OVP0, c.

The main result of this section is that if R(v, DxŒ, c) symmetrizes (5.2),
then Rs(DxŒ, h)=R(eVe, DxŒ+bŒDh/e, c) symmetrizes the singular problem
(5.1).

Definition 5.3. A symmetrizer for the singular problem (5.1) is a
family Re, c ¥ OPS0, M

bŒ , e ¥ (0, e0], c \ 1, such that

Re, c −Rg
e, c

is residual of order 1. In addition there exist constants C, c, c0 independent
of e such that for all W(x, h) ¥H0, 1 and c \ c0

(a) |Re, cW|0 [ C |W|0

(b) |[“xN , Re, c] W|0 [ C |W|0

(c) Im(Re, cAs(DxŒ, h) W, W) \ cc |W|20

(d) ReORe, cW, WP+COB(eVe) WP20 \ cOWP20.

(5.10)

Theorem 5.1. Suppose (5.2) is Kreiss well-posed for v ¥ BR and let
R(z)=R(v, tŒ, c) be as in Definition 5.2. Fix K > 0 and e0 > 0. Suppose
Ve(x, h) ¥ C0, M0

c forM0=2(N+2)+1 and satisfies for 0 < e [ e0

(a) |eVe(x, h)|L.(W) [ R

(b) |Ve |C0, M0c
[ K

(c) |e“xNVe |L.(W) [ h(|Ve |C0, 1c ),

(5.11)

for some increasing function h: R+Q R+. Set

Rs=R(eVe(x, h), X, c) ¥S0, M
bŒ .

Then

Re, c=Rs(DxŒ, h), e ¥ (0, e0], c \ 1(5.12)

is a symmetrizer for the singular problem (5.1).

Proof. 1. We use the SPO calculus to check properties (5.10.a)–
(5.10d). The argument parallels the classical one, but extra care is needed
because our residual operators are not smoothing. See Remark 5.2.

Property (5.10a) follows directly from Proposition 1.1.
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2. Note that

[“xN , Rs(DxŒ, h)]=e
“Ve
“xN

(x, h) ts(DxŒ, h), where

ts=
“R
“v

(eVe(x, h), X, c)

so (5.11c) and Proposition 1.1 give (5.10b).
3. Let Tl(eVe, X, c), Hl(eVe, X, c) ¥S0, M

bŒ and El(eVe, X, c) ¥S1, M
bŒ be

given by the functions Tl, Hl, El in (5.8). For W(x, h) ¥H1 set

Yl=Tl(DxŒ, h)g W=(Yl1 , Yl2 ),(5.13)

where the components of Yl correspond to the blocks in (5.8).
With

Fl(eVe, X, c)=Tl(eVe, X, c) rcHl(eVe, X, c) 0
0 El(eVe, X, c)

s

Proposition 2.6 gives

Fl(DxŒ, h)=Tl(DxŒ, h) r
cHl(DxŒ, h) 0

0 El(DxŒ, h)
s+re, c,(5.14)

where re, c is residual of order 0. Setting

G(eV, X, c)=Im R(eV, X, c) As(eV, X, c)(5.15)

and using Proposition 2.5 to compute Fl(DxŒ, h) Tl(DxŒ, h)g, we obtain

G(DxŒ, h)=C
l

Tl(DxŒ, h) r
cHl(DxŒ, h) 0

0 El(DxŒ, h)
s Tl(DxŒ, h)g+re, c,(5.16)

where re, c is residual of order 0.
Equation (5.9) and Corollary 3.1 (Garding inequality) imply for c large

enough

Re(cHl(DxŒ, h) Yl1 , Yl1 ) \ cc |Yl1 |
2
0

Re(El(DxŒ, h) Yl2 , Yl2 ) \ c |Yl2 |
2
H
0, 1/2 \ cc |Yl2 |

2
0,

(5.17)

and hence, summing over l,

Re G(DxŒ, h) W, W) \ cc C
l

|Yl |
2
0(5.18)

for c large.
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Proposition 2.5 shows that for re, c residual of order 1

C
l

Tl(DxŒ, h) Tl(DxŒ, h)g=qs(DxŒ, h)+re, c,(5.19)

where qs=; l Tl(eVe, X, c) Tg
l (eVe, X, c). Thus, by (5.9) and Corollary 3.1

|W|20 [ C C
l

|Yl |
2
0 for c large.(5.20)

Now Proposition 2.6 (for Rs(DxŒ, h) As(DxŒ, h)) and Proposition 2.5 (for
As(DxŒ, h)g Rs(DxŒ, h)g) imply

Im Rs(DxŒ, h) As(DxŒ, h)=Re Gs(DxŒ, h)+re, c,(5.21)

where re, c is residual of order 0. Property (5.10c) now follows from (5.18),
(5.20), and (5.21).

4. (5.7) and Corollary 3.1 imply for c large

ReORs(DxŒ, h) W, WP+COB(eVe) W, B(eVe) WP \ cOWP20,(5.22)

which is (5.10d) in Definition 5.3. This concludes the proof of Theorem 5.1.
Note that the constants C, c, c0 in (5.10) depend only on K in (5.11) and
the constants in Definition 5.3. L

Remark 5.2. If ps(DxŒ, h) ¥ OPS1, M
bŒ and re, c is residual of order 1, the

product ps(DxŒ, h) re, c is not necessarily bounded on L2. We avoid this
problem in the above proof by defining

Re, c=Rs(DxŒ, h) instead of 12 [Rs(DxŒ, h)+Rs(DxŒ, h)g]

and also by using Proposition 2.5 instead of a combination of Propositions
2.4 and 2.7.

Corollary 5.1. Under the hypotheses of Theorem 5.1 there exist
constants C1(K), c1(K), such that for allW(x, h) ¥H1, 1 and c \ c1

|W|0+
1

`c
OWP0 [ C1 1

1
c

|(DxN −As(DxŒ, h)) W|0+
1

`c
OB(eVe) WP0 2 .

(5.23)

Proof. Propositions 2.7 (for As(DxŒ, h)g Rs(DxŒ, h)) and 2.5 (for
As(DxŒ, h)g Rs(DxŒ, h)g) show that

Im Rs(DxŒ, h) As(DxŒ, h)=Rs(DxŒ, h) As(DxŒ, h) −As(DxŒ, h)g Rs(DxŒ, h)+re, c,
(5.24)
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where re, c is residual of order 0. Thus, integrating “xN (Rs(DxŒ, h) W, W) in
xN from 0 to . yields

ORs(DxŒ, h) W, WP+Im(Rs(DxŒ, h) As(DxŒ, h) W, W)
(5.25)

=2 Im((DxN −As(DxŒ, h)) W, Rs(DxŒ, h) W) − ([“xN , Rs(DxŒ, h)] W, W)

+O(|W|20).

With (5.10) this easily implies (5.23). L

Applying Corollary 5.1 to W=e−cx0Ue, we now rephrase (5.23) in terms
of the original singular system (5.1).

Corollary 5.2. Under the hypotheses of Theorem 5.1 there exist con-
stants C1(K), c1(K) independent of e such that for all Ue(x, h) ¥H1, 1

c (W)
and c \ c1, 0 < e [ e0

|Ue |0, c+
1

`c
OUeP0, c [ C1 1

1
c

|L(eVe, D e
x, h) Ue |0, c+

1

`c
OB(eVe) UeP0, c 2 .

(5.26)

Existence and Uniqueness

Corresponding to the (nonsingular) boundary problem (5.2) there is a
dual boundary problem and a notion of backward uniform Lopatinski con-
dition for the dual problem obtained by changing x0 to − x0 in the original
condition [CP, Chap. 7]. It is known that when the original problem satis-
fies the uniform Lopatinski condition and is either strictly hyperbolic [CP]
or symmetrizable hyperbolic with constant multiplicity [Met2, Met3], then
the dual problem satisfies the backward uniform Lopatinski condition and
is thus Kreiss well-posed.

When the dual problem is Kreiss well-posed for v ¥ BR, Corollary 5.1
implies that the corresponding singular dual problem satisfies an estimate
like (5.23) for Ve as in (5.11). Standard arguments [CP] using functional
analysis (for existence), the mollifiers of Proposition 2.8 (to show L2

solutions satisfy the estimate (5.23) and are thus unique), and the fact that

sup
j

|V|0, c+j <.S V=0 in x0 < 0

(for the support property) yield the following theorem for the system (5.1).
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Theorem 5.2. Suppose (5.2) and the corresponding dual problem are
both Kreiss well-posed for v ¥ BR. Fix K > 0 and e0 > 0. Assume
Ve(x, h) ¥ C0, M

c for M \ 2(N+1)+1 and satisfies (5.11) for 0 < e [ e0.
There is a constant c0(K) such that for 0 < e [ e0, c \ c0, Fe(x, h) ¥
H0, 0
c (W), Ge(xŒ, h) ¥H0

c(bW), there is a unique solution Ue(x, h) ¥H0, 0
c (W)

to the singular problem

L(eVe, D e
x, h) Ue=Fe(x, h) in xN > 0

B(eVe) Ue=G(xŒ, h) on xN=0,
(5.27)

and Ue satisfies the estimate (5.26). Moreover, if Fe, Ge vanish in x0 < 0, the
same is true of Ue.

6. L2 Estimates for Initial Value Problems

We continue to work on RbN+1+ ={(xŒ, xN): xN \ 0}, but in this section xN
denotes time. For j=1, ..., L let b −j ¥ RN, and set bŒ=(b −1, ..., b −L). For
h ¥ TL we set Dh=(Dh1 , ..., DhL ) and consider the singular initial value
problem

L(eVe, D e
x, h) Ue — DxNUe −A 1 eVe, DxŒ+

bŒDh
e
2 Ue=Fe(x, h)

Ue=G(xŒ, h) on xN=0

(6.1)

with A, Fe as in (1.4). Quasilinear initial value problems

C
N

j=0
Aj(ve) Dxjve=F(ve) in xN > 0

ve=u0+eG 1xŒ, xŒb −1
e

, ...,
xŒb −L

e
2 on xN=0

(6.2)

lead to problems like (6.1) in the same way that (1.1) led to (1.6); namely,
one looks for

ve=u0+eUe(x, h)|h=xŒbŒ
e

.(6.3)

Definition 6.1 [CP]. DxN −A(v, DxŒ) is symmetrizable for v ¥ BR if
there exist R(v, tŒ) ¥ C.(BR × (RN00)) homogeneous of degree 0 in tŒ and
c > 0 such that for all (v, tŒ)

(a) R(v, tŒ)=Rg(v, tŒ),
(b) R(v, tŒ) A(v, tŒ) is hermitian,
(c) R(v, tŒ) \ c.
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Remark 6.1. (a) First-order systems strictly hyperbolic with respect to
xN are symmetrizable [CP].

(b) If DxN −A(v, DxŒ) is symmetrizable by R(v, tŒ), then DxN −
A(v, DxŒ)g is symmetrizable by R−1(v, tŒ).

Note that R(v, X) ¥ S0h (Definition 4.1). Our goal is to show that for
R(v, tŒ) as in Definition 6.1, if Rs=R(eVe(x, h), X) then Rs(DxŒ, h) ¥
OPS0, M

bŒ, h symmetrizes the singular problem (6.1).

Notation 6.1. (a) Let OT={(x, h) ¥ RN+1×TL : xN ¥ [0, T]} and set
C0, M
c, T ={V(x, h) ¥ C([0, T], CM(RN×TL, Rm)) : supp V is compact}.

(b) O ,P (resp. O P0) denotes the L2 inner product (resp. norm) on
RN×TL.

(c) For t ¥ [0, T], As(t) —A(eVe(xŒ, t, h), DxŒ+
b
−Dh
e ) .

(d) Set F(t)=(L(eVe, D e
x, h) Ue)(t).

Theorem 6.1. Let DxN −A(v, DxŒ) be symmetrizable for v ¥ BR. Fix
K > 0 and e0 > 0. Suppose Ve(x, h) ¥ C0, M0

c, T for M0=2(N+L+1)+1 and
satisfies for 0 < e [ e0

(a) |eVe |L.(OT) [ R

(b) |Ve |C0, M0c, T
[ K

(c) |e“xNVe |L.(OT) [ h(|Ve |C0, 1c, T ),

(6.4)

for some increasing function h: R+Q R+. Then there exist C(K), C1(e, K),
e1(K) [ e0 such that for xN ¥ [0, T] and Ue ¥ C0([0, T], H1) 5 C1([0, T], H0)
(Hk as in Definition 2.1), we have for 0 < e [ e1(K) the estimate

OUe(xN)P0 [ C1(e, K) eC(K) xNOUe(0)P0+C(K) F
xN

0
eC(K)(xN −t)OF(t)P0 dt.

(6.5)

Here

C1(e, K)=C2+eC3(K),(6.6)

where C2 is independent of K.

Proof. 1. Letting Re(t)=Rs, t(DxŒ, h), where Rs, t=R(eVe(xŒ, t, h), X)
for R(v, tŒ) as in Definition 6.1, as usual we have
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“

“t
ORe(t) Ue(t), Ue(t)P

(6.7)

=iO(Re(t) As(t) −As(t)g Re(t)) Ue(t), Ue(t)P+iORe(t) F(t), Ue(t)P

+ORe(t) Ue(t), iF(t)P+O[“t, Re(t)] Ue(t), Ue(t)P

=iO(Re(t) As(t) −As(t)g Re(t)) Ue(t), Ue(t)P+H(t).(6.8)

Here

|H(t)| [ C(K)(OUe(t)P20+OF(t)P20),

since Re(t) and [“t, Re(t)] are bounded on H0 (see part 2 of the proof of
Theorem 5.1).

In view of Definition 6.1(a), (b), use of Proposition 4.4 in the homoge-
neous calculus (for Re(t) As(t)), Proposition 4.5 (for As(t)g Re(t)), and
Proposition 4.3 (for As(t)g Re(t)g) implies that the first term in (6.8) is
dominated by C(K)OUe(t)P20. Thus, integrating (6.7) and taking real parts
gives

ReORe(xN) Ue(xN), Ue(xN)P(6.9)

[ C1(e, K)OUe(0)P20+C(K) F
xN

0
(OUe(t)P20+OF(t)P20) dt,

for C1(e, K) as in (6.6) (recall (1.17)). The Garding inequality for homoge-
neous SPOs of Proposition 4.6 and Gronwall’s inequality now provide a
choice of e1(K) such that (6.5) holds. L

Standard arguments [CP] using functional analysis (for existence of L2

solutions) and the mollifiers of Proposition 2.4 (to show that L2 solutions
satisfy the estimate (6.5) and are thus unique) yield:

Theorem 6.2. Let Fe(x, h) ¥ L2(OT), Ge(xŒ, h) ¥ L2(RN×TL). Under the
hypotheses of Theorem 6.1, there exist C(K), e1(K) [ e0 such that for
0 < e [ e1(K) the singular problem

L(eVe, D e
x, h) Ue=Fe in OT

Ue=Ge on xN=0

has a unique solution Ue ¥ C0([0, T], H0), and Ue satisfies the estimate
(6.5).
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PART 3. QUASILINEAR PROBLEMS WITH OSCILLATORY DATA

7. Fixed Boundaries

In this section we revert to the use of Notation 1.3.

7.1. Main Results

Theorem 7.1. (a) Consider the quasilinear boundary problem (1.1),
where G(xŒ, h) ¥ Hk+1(bW), k \ [M0+

N+1
2 ] satisfies

supp G … {x0 \ 0} 5 {|xŒ| [ D} for some D > 0(7.1)

and bŒ ¥ Gc (Definition 1.1). Fix R > 0 and, with A(v, tŒ), B(v), Fe as in
(1.4), suppose

(DxN −A(v, DxŒ), B(v))(7.2)

and the corresponding dual problem are Kreiss well-posed for v ¥ BR (Defini-
tion 4.10). Suppose a <. is an upper bound for the propagation speed of
(7.2) when v ¥ BR. There exist an e1(k) > 0, a Tk > 0 independent of
e ¥ (0, e1(k)], and a unique Ue(x, h) ¥ CHk

Tk satisfying the singular problem

DxNUe −A 1 eUe, DxŒ+
bŒDh

e
2 Ue=Fe(Ue),

B(eUe)(Ue)|xN=0=G(xŒ, h),

Ue=0 in x0 < 0,

(7.3)

and such that

ve=u0+eUe 1x,
xŒbŒ

e
2

is the unique C1 solution of (1.1) on wTk
.

(b) (Finite propagation speed) a is an upper bound for the propagation
speed of (7.3). Thus, if y=(y0, ȳ) ¥ RbN+1+ and G vanishes inside the
backward cone

Cy={(x0, x̄, h) ¥ W : |x̄ − ȳ| [ a |x0 − y0 |, x0 [ y0},

then Ue vanishes in Cy (recall Fe(0)=0). For the systems described in
Remark 5.1 there exists an upper bound a <. for the propagation speed.

170 MARK WILLIAMS



7.2. L2H1
c and CH0

c Estimates

When the data in Theorem 5.2 have higher tangential regularity, so does Ue.

Proposition 7.1. (a) Fix R > 0 and e0 > 0. Suppose

(DxN −A(v, tŒ), B(v))

and the corresponding dual problem are Kreiss well-posed for v ¥ BR. Suppose
Ve(x, h) ¥ C0, M0

c and satisfies for 0 < e [ e0

(a) |eVe(x, h)|g [ R

(b) |e“xNVe |g [ h(|Ve |C0, 1c )
(7.4)

(with h as in Notation 1.3). Then there is a constant c0(|Ve |C0, M0c
) such that

for 0 < e [ e0, c \ c0, Fe(x, h) ¥ L2H1
c , Ge(xŒ, h) ¥ H1

c there is a unique
solution Ue(x, h) ¥ L2H1

c to the singular problem

(a) L(eVe, D e
x, h) Ue

=DxNUe −A 1 eVe, DxŒ+
bŒDh

e
2 Ue=Fe in W

(b) B(eVe) Ue=G(xŒ, h) on bW,

(7.5)

and Ue satisfies

|Ue |0, 1, c+
1

`c
OUeP1, c(7.6)

[ h(|Ve |C0, M0c
) 51

c
|Fe |0, 1, c+

1

`c
OGP1, c6 .

(b) If Fe, Ge vanish in x0 < 0, the same is true of Ue.
(c) (Finite propagation speed) Suppose a is an upper bound for the

propagation speed of (DxN −A(v, DxŒ), B(v)) when v ¥ BR. Then a is an upper
bound for the propagation speed of (7.5). Thus, if y=(y0, ȳ) ¥ RbN+1+ and Fe,
G vanish inside the backward cone

Cy={(x0, x̄, h) ¥ W : |x̄ − ȳ| [ a |x0 − y0 |, x0 [ y0},

then Ue vanishes in Cy.
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Proof. (a) Write

A 1 eVe, DxŒ+
bŒDh

e
2

=A 10, DxŒ+
bŒDh

e
2+eVeA1 1 eVe, DxŒ+

bŒDh
e
2 .

A standard mollifier argument [CP, Chap. 7] based on the L2 estimate
(5.26) shows Ue ¥ L2H1

c , the key point here being that the mollifiers
commute exactly with the singular part A(0, DxŒ+

b
−Dh
e ).

To establish (7.6) differentiate (7.5) with “a(xŒ, h) where |a| [ 1, apply the L2

estimate (5.26), and observe that

: 5A 1 eVe, DxŒ+
bŒDh

e
2 , “a(xŒ, h)6 Ue :

0, 0, c
[ h(|Ve |C0, 1c ) |Ue |0, 1, c,(7.7)

O[B(eVe), “a(xŒ, h)] UeP0, c [ h(|Ve |C0, 1c )OUeP0, c(7.8)

[ h(|Ve |C0, 1c )
OUeP1, c

c
.

For (7.7) we have used [A(0, DxŒ+bŒDh/e), “a(xŒ, h)]=0.
(b) This follows from Theorem 5.2.
(c) Let ve(x)=Ve(x, bŒxŒ/e) and ue(x)=Ue(x, bŒxŒ/e), and note that

DxNue −A(eve, DxŒ) ue=Fe 1x,
bŒxŒ

e
2

B(eve) ue=G 1xŒ, bŒxŒ
e
2 .

(7.9)

Thus, the propagation speed of Ue is bounded above by a as well. L

Proposition 7.2. Fix 0 < d < dŒ < 1. Choose q(Z, c)=q(Z1, Z2, c) ¥ eS0

(2.39) such that

0 [ q [ 1

q — 1 on |Z1, c| [ d |Z2 |

supp q … {|Z1, c| [ dŒ |Z2 |},

(7.10)
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and let qs(DxŒ, h) ¥ OPeS0,.
bŒ be the associated operator. Let Ve, Ue, Fe be as

in Proposition 7.1. Then for e, c as in Proposition 7.1

(a) |(1 − qs(DxŒ, h)) Uc
e |., 0 [ C|DxN (1 − qs(DxŒ, h)) Uc

e |0, 0

(b) |DxN (1 − qs(DxŒ, h)) Uc
e |0, 0 [ h(|Ve |g) |Ue |0, 1, c+|Fe |0, 0, c.

(7.11)

Proof. (a) is a 1 − D Sobolev estimate.
(b) With As(DxŒ, h)=A(eVe, (Dx0 − ic, Dxœ)+b

−Dh
e ) ¥ OPS1, M0

bŒ we have

|DxN (1 − qs(DxŒ, h)) Uc
e |0, 0

(7.12)

[ |As(DxŒ, h)(1 − qs) Uc
e |0, 0+|(1 − qs) Fce |0, 0+|[1 − qs, As] Uc

e |0, 0.

[1 − qs, A(0, Dx −c+
b
−Dh
e )]=0, so the commutator term is dominated by

h(|Ve |g) |Uc
e |0, 1.(7.13)

Note the calculus is not needed here since As is differential and qs is a
bounded Fourier multiplier.

The first term on the right in (7.12) is [ (7.13) as well since

7(t0 − ic, tœ)+
mbŒ

e
8 :1 − q 1tŒ, mbŒ

e
, c2 : [ COt0 − ic, tœP(7.14)

by (7.10). L

We estimate |qs(DxŒ, h) Uc
e |., 0 in the following key proposition.

Proposition 7.3 (CH0
c estimate). Fix R > 0, e0 > 0, and RŒ [ R as in

(7.23). Suppose

(DxN −A(v, DxŒ), B(v))

and the corresponding dual problem are Kreiss well-posed for v ¥ BR. Assume
bŒ ¥ Gc and suppose Ve ¥ C0, M0

c satisfies for 0 < e [ e0

(a) |eVe(x, h)|g [ RŒ

(b) |Ve |C0, M0c
[ K

(c) |e“xNVe |g [ h(|Ve |C0, 1c ),

(7.15)
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forM0=2(N+2)+1. Suppose Ue satisfies

L(eVe, D e
x, h) Ue=Fe(x, h) in W

B(eVe) Ue=G(xŒ, h) on bW,
(7.16)

where Fe ¥ L2H1
c 5 CH0

c , G ¥ H1
c , and supp Fe … {0 [ xN [ E}.

If dŒ > 0 in (7.10) is small enough, there exists a constant c0(K) such that
for c \ c0, 0 < e [ e0

|qsU
c
e |., 0 [ C(K, E) 5|F

c
e |., 0
`c

+OGcP0+|Uc
e |0, 0+

OUc
eP0

c
6 ,(7.17)

|Uc
e |., 0 [ C(K, E) 51 |F

c
e |., 0
`c

+OGcP0 2+1
|Fce |0, 1

c
+
OGcP1
`c
26 .(7.18)

The first step in the proof of Proposition 7.3 is a block structure lemma.
Let li( ± bŒ), i=1, ..., M( ± bŒ) be the distinct roots of

p( ± bŒ, tN)=det(tN −A(0, ± bŒ))=0,

indexed so that li(−bŒ)=−li(bŒ). Denoting the (algebraic) multiplicity of
li( ± bŒ) by mi( ± bŒ), we have mi(bŒ)=mi(−bŒ).

Since bŒ ¥ Gc we can write the index set {1, 2, ..., M( ± bŒ)} as a disjoint
union of subsets O( ± bŒ), P( ± bŒ), I( ± bŒ), N( ± bŒ) corresponding to the
roots li( ± bŒ) for which the associated modes ( ± bŒ, li( ± bŒ)) are respec-
tively outgoing, such that Im li( ± bŒ) is positive, incoming or such that
Im li( ± bŒ) is negative (Definition 1.1). When (bŒ, li(bŒ)) is outgoing (resp.
incoming), (−bŒ, −li(bŒ)) is also outgoing (resp. incoming). Moreover,
p(bŒ, tN) has real coefficients, so we may take O(bŒ)=O(−bŒ), ..., N(bŒ)=
N(−bŒ).

Set

m+= C
i ¥P(bŒ)

mi(bŒ), m−= C
i ¥N(bŒ)

mi(bŒ)

and note m+=m− . For i ¥ O(bŒ) 2I(bŒ) we have, of course, mi(bŒ)=1.
Set

mO=card O(bŒ) and mI=card I(bŒ).

Lemma 7.1 [K, CP]. Let

S={z=(v, X, c) ¥ BR ×RN× [0,.) : (X, c) ] 0}
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and A(z)=A(v, t0 − ic, tœ). There exists an invertible m × m matrix S(z),
homogeneous of degree zero in (X, c) and C. for z in a conic neighborhood C

of {(0, bŒ, 0), (0, −bŒ, 0)} in S, such that

S−1(z) A(z) S(z)=L(z),(7.19)

where L(z) has the block diagonal form with blocks of dimension mO, m+,
mI, m− :

L(z)=|
LO(z)

L+(z)

LI(z)

L−(z)

} .(7.20)

LO(z) (resp. LI(z)) is a diagonal matrix whose entries are simple eigenvalues
li(z) (abuse of notation here) ofA(z) satisfying for some C > 0 and z ¥ C:

Im li(z)=cHi(z) \ Cc, i ¥ O(bŒ)

(resp., Im li(z)=−cHi(z) [ − Cc, i ¥I(bŒ)),
(7.21)

where Hi(z) is homogeneous of degree zero. Moreover,

Im L+(z) \ COX, cP

Im L−(z) [ − COX, cP
(7.22)

for z ¥ C.
For z

¯
=(0, ± bŒ, 0) the entries of LO(z

¯
) (resp. LI(z

¯
)) are li( ± bŒ),

i ¥ O(bŒ) (resp. I(bŒ)). The eigenvalues of L+(z
¯

) (resp. L−(z
¯

)) are
li( ± bŒ), i ¥P(bŒ) (resp.N(bŒ)).
We may take

C=BRŒ × C −

bŒ(7.23)

for some RŒ [ R, C −

bŒ … RN× [0,.).

Remark 7.1. (a) (Lopatinski determinant) Denote the columns of
S(z), ordered from left to right, by ri(z), where i belongs consecutively to
O(bŒ), P(bŒ), I(bŒ), and N(bŒ). Write

S(z)=[S+(z) S−(z)],(7.24)

where S+(z) (resp. S−(z)) is the matrix whose columns are ri(z),
i ¥ O(bŒ) 2P(bŒ) (resp. i ¥I(bŒ) 2N(bŒ)), and set

B ±(z)=B(v) S ±(z)(7.25)
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for z ¥ C. A necessary condition for the Kreiss well-posedness assumed in
Proposition 7.3 is that B+(z) is a m × m matrix such that

det B+(z) > C > 0(7.26)

for z ¥ C ([K]).
(b) (Extension to S) We need to extend A(z)|C, S(z), and L(z) so

that (7.19)–(7.22), (7.26) hold for all z ¥ S. For this, first extend L(z) to
L̃(z) ¥ S1 (1.7) of the form (7.20) satisfying (7.21), (7.22), and extend the
ri(z) to m independent columns defining

S̃(z)=[S̃+(z) S̃−(z)] ¥ S0

such that B̃+(z)=B(v) S̃+(z) satisfies (7.26). Then set

Ã(z)=S̃(z) L̃(z) S̃−1(z) ¥ S1.(7.27)

Henceforth, we will drop the tildes on L̃, S̃, B̃+, but not on Ã(z) (in
order to avoid confusion with A(z) which is already defined on S).

(c) With C=BRŒ × C −

bŒ as in (7.23) observe that if dŒ > 0 in (7.10) is
small enough, then

(X, c) ¥ C −

bŒ for X=Z1+Z2 when (Z1, Z2, c)=1tŒ, mbŒ

e
, c2 ¥ supp q.

(7.28)

Notation 7.1. (a) In the next proof we will sometimes suppress the
subscript e and also write simply q, S, A, etc., instead of qs(DxŒ, h),
Ss(DxŒ, h), As(DxŒ, h) for SPOs in OPeSk, M

bŒ (2.39).
(b) Residual operators re, c of order 0 (resp. 1) will be denoted r0

(resp. r1) and may change from line to line.

Proof of Proposition 7.3. 1. (Microlocalize) Rewrite (7.16) as

DxNUc
e −As(DxŒ, h) Uc

e=Fce

B(eVe) Uc
e=Gc.

(7.29)

Choose dŒ in (7.10) such that (7.28) holds and apply qs(DxŒ, h) ¥ OPeS0,.
bŒ to

(7.29) to get

(a) DxNqUc−AqUc=qFc+[q, A] Uc

(b) B(eV) qUc=qGc+[B(eV), q] Uc.
(7.30)
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Product theorems in the extended SPO calculus give

[q, A] Uc=r0Uc

[B(eV), q] Uc=r1Uc.
(7.31)

2. (Solve SW=qUc exactly) To find W ¥ L2(W) apply S−1s (DxŒ, h) ¥
OPS0, M0

bŒ to obtain

(1+r1) W=qUc,(7.32)

where r1 is an operator like that defined by Re in (2.33) with L2 operator
norm

|r1 | [
C(K)

c
.

The dependence of C on K is clear from the proof of Proposition 2.7.
Choose c \ 4C(K) and invert 1+r1 with a Neumann series to obtain
W ¥ L2(W).

This step allows us to avoid unacceptable error terms like DxN r1Uc in
Step 3.

3. (Diagonalize) Apply S−1 to (7.30) to get

S−1DxNSW − S−1ASW=r0Fc+r0Uc

B(eV) SW=qGc+r1Uc.
(7.33)

To avoid terms like DxN r1W we set W=S−1SW and use [S−1, DxN]=r0 to
rewrite (7.33):

DxNW− S−1ASW=r0Fc+r0Uc

B(eV) SW=qGc+r1Uc.
(7.34)

Here we have used the calculus to conclude

S−1ASW − S−1AS(S−1SW)=r0Uc

B(eV) SW − B(eV)(S−1SW)=r1Uc.
(7.35)

Recall C=BRŒ × C −

bŒ and for 0 < e [ e0

|eVe |L.(W) [ RŒ.(7.36)

Ã(z)=A(z) for z ¥ C, so we deduce from (7.36), (7.28), and product
theorems that

S−1ÃSW− S−1ASW=r0Uc.(7.37)
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Finally, (7.27), (7.37), and the calculus allow us to rewrite (7.34) in block
diagonal form

(a) DxNW− LW=r0Fc+r0Uc

(b) B(eV) SW=r0Gc+r1Uc,
(7.38)

where L=Ls(DxŒ, h) is the element of OPS1, M0
c associated to L(z).

4. (Invert boundary condition) Write W=(W+, W−), correspond-
ing to the decomposition

S(z)=[S+(z) S−(z)],

and let S ±, B ± denote the elements of OPS0, M0
bŒ defined by the symbols

S ±(z), B ±(z) ((7.24), (7.25)). Thus, (7.38b) becomes

B+W++B−W−=r0Gc+r1Uc,(7.39)

and using (7.26) and the calculus gives

W+=r0W−+r0Gc+r1Uc on bW.(7.40)

5. (|Uc
e |., 0 [

C
e ) This 1-D Sobolev estimate follows from (7.6) with

k=1 by rewriting DxNUc
e using Eq. (7.29). In fact, the usual approximation

argument gives

OUc
e(xN)P0 Q 0 as xN Q +., for each fixed e.(7.41)

We need to improve this to the uniform estimate (7.18).
6. (Estimate |W|., 0) Write W+=(WO, W+), W−=(WI, W−), corre-

sponding to the blocks of (7.20), and set

L−(z)=rLI(z)
L−(z)
s .(7.42)

First obtain energy estimates for the system with boundary conditions
‘‘at +.’’

(DxN − L−) W−=r0Fc+r0Uc=F−,(7.43)

where r0 is an (mI+m−) × m matrix operator. For each xN take the L2

inner product O ,P of both sides of (7.43) with W−(xN), and integrate from
xN to +.. Take the imaginary part of both sides and use (7.41), (7.21),
(7.22), and SPO Garding inequalities (Corollary 3.1) to obtain
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OW−(xN)P20+c |W−|20, 0(7.44)

[ |Im(F−, W−)|

[ C(K) |Fc|., 0 F
E

0
OW−(x −N)P0 dx −N+C(K) |Uc|20, 0

[ C(K, E)
|Fc|2., 0

c
+

c |W−|20, 0
2

+C(K) |Uc|20, 0.

Next consider

(a) (DxN − L+) W+=r0Fc+r0Uc=F+ on W

(b) W+=r0W−+r0Gc+r1Uc on bW.
(7.45)

Proceed as above, but now integrate from 0 to xN to obtain

OW+(xN)P20+c |W+|20, 0(7.46)

[ C(K, E)
|Fc|2., 0

c
+

c |W+|20, 0
2

+C(K) |Uc|20, 0+OW+(0)P20.

Add (7.44) and (7.46), rewrite W+(0) using (7.45b), and use (7.44) to
estimate OW−(0)P0 to conclude for c large

OW(xN)P20+c |W|20, 0(7.47)

[ C(K, E) 5|F
c|2., 0
c

+|Uc|20, 0+OGcP20+
OUc(0)P20

c2
6 .

7. (Estimate |qsU
c
e |., 0) The estimate (7.17) now follows from (7.47)

and (7.32).
8. (Estimate |Uc

e |., 0) The estimate (7.18) follows directly from (7.17),
the estimates for (1 − qs) Uc

e in (7.11), and (7.6). L

As an immediate consequence of Propositions 7.1 and 7.3 we have

Corollary 7.1. Under the hypotheses of Proposition 7.3 (in particular,
recall |Ve |C0, M0c

[ K for 0 < e [ e0), we have for 0 < e [ e0, c \ c0(K)

|Ue |., 0, c+|Ue |0, 1, c+
OUP1, c

`c
(7.48)

[ C(K, E) 51 |Fe |., 0, c
`c

+OGP0, c 2+1
|Fe |0, 1, c

c
+
OGP1, c

`c
26 .

In preparation for the main linear estimate we now recall some standard
tools with slight modifications.
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7.3. Seeley Extensions and Nonlinear Estimates

Lemma 7.2 (Seeley extensions, [CP]). For any T > 0, k ¥N, given
U(x, h) ¥ CHk

T (resp. L2Hk
T), there is an extension Ũ ¥ CHk (resp. L2Hk)

such that

(a) Ũ=U on WT

(b) |Ũ|., k [ h(k) |U|., k, T (resp. |Ũ|0, k [ h(k) |U|0, k, T).

h(k) depends just on the Ck norm of the cutoff function used to define the
extension. It is independent of T even though Ũ depends on T.

Notation 7.2. (a) For k ¥N let “k denote the collection of tangential
operators “a(xŒ, h) with |a|=k (a is a multi-index). Sometimes “k is used to
denote a particular member of this collection. Set “0f=f.

(b) For k ¥ {1, 2, 3, ...} denote by “OkPf the set of products of the
form (“a1fi1 ) · · · (“arfir ) where 1 [ r [ k, a1+ · · · ar=k, ai \ 1. Set “O0Pf=1.

Lemma 7.3 (Moser estimates). For k ¥N let a1+ · · · +ar [ k, ai ¥N.
Suppose vi ¥ Hk

T 5 L.(bWT), ui, u ¥ CHk
T 5 L.(WT), wi, w ¥ L2Hk

T 5 L.(WT),
and F( · ) is C. with F(0)=0. There exists C independent of T such that

(a) |(“a1v1) · · · (“arvr |0, T [ C C
r

i=1
|vi |k, T 1D

j ] i
|vi |g 2

(b) |(“a1w1) · · · (“arwr |0, 0, T [ C C
r

i=1
|wi |0, k, T 1D

j ] i
|wi |g 2

(c) |(“a1u1) · · · (“arur |., 0, T [ C C
r

i=1
|ui |., k, T 1D

j ] i
|ui |g 2

(d) |F(w)|0, k, T [ h(|w|g) |w|0, k, T

(e) |F(u)|., k, T [ h(|u|g) |u|., k, T

Lemma 7.4 (Commutator estimates). Assume A( · ), B( · ) ¥ C., u1,
u2 ¥ L.W1,. 5 CHk

T, w1, w2 ¥ L.W1,. 5 L2Hk+1
T , and v1 ¥ W1,. 5 Hk+1

T ,
v2 ¥ L.(bWT) 5 Hk

T. Then

(a) |[A(u1) “1, “k] u2 |., 0, T

[ h(|u1 |g) |u2 |., k, T+h(|u1 |g) |u2 |g |u1 |., k, T

(b) |[A(w1) “1, “k] w2 |0, 1, T

[ h(|w1 |g) |w2 |0, k+1, T+h(|w1 |g) |w2 |g |w1 |0, k+1, T

(c) O[B(v1), “k] v2P1, T [ h(Ov1Pg)Ov2Pk, T+h(Ov1Pg)Ov2Pg Ov1Pk+1, T.
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Proof of Lemmas 7.3 and 7.4 1. (Lemma 7.3) (a) is a classical conse-
quence of the Gagliardo–Nirenberg and Hölder inequalities. (b)–(e) are
trivial consequences of (a).

2. (Lemma 7.4) (a) The commutator is a sum of terms of the form

f(u1) “OjPu1“ lu2(7.49)

where f( · ) ¥ C. and j+l=k+1, l \ 1, j \ 1. Rewrite (7.49) with obvious
notation as

f(u1) “OjŒP(“u1) “ lŒ(“u2),(7.50)

where jŒ+lŒ=k − 1, and apply Lemma 7.3(c).
Lemma 7.3(b) (resp. (a)) and the same kind of argument yield part (b)

(resp. (c)) of Lemma 7.4. L

7.4. The Main Linear Estimate
Notation 7.3. C0, Mc, T ={V(x, h) ¥ C(xN: CM(bWT, Rm)): supp V is compact}.

Theorem 7.2. Fix T > 0, R > 0, e0 > 0, k ¥N, and RŒ [ R as in (7.23).
Suppose (DxN −A(v, DxŒ), B(v)) and the corresponding dual problem are
Kreiss well-posed for v ¥ BR. Assume bŒ ¥ Gc and suppose Ve ¥ C0, M0

c, T 5Hk
T

satisfies for 0 < e [ e0

(a) |eVe(x, h)|g [ RŒ, |e“xNVe |g [ h(|Ve |C0, 1c, T )

(b) |Ve |C0, M0c, T
[ K.

Suppose Ue satisfies

L(eVe, D e
x, h) Ue=Fe(x, h) in WT

B(eVe) Ue=G(xŒ, h) on bWT,

Ue=0 in x0 < 0,

(7.51)

where Fe and Ge vanish in x0 < 0, Fe ¥ L2Hk+1
T 5 CHk

T, G ¥ Hk+1
T , and supp

Fe … {0 [ xN [ E}. Then there exists a constant c0(K, |Ve |., k, T, |Ve |0, k+1, T)
such that for c \ c0, 0 < e [ e0

|Ue |., k, T+|Ue |0, k+1, T+
OUePk+1, T
`c

(7.52)

[ ecTC(K, E) 51 |Fe |., k, T
`c

+
|Fe |0, k+1, T

c
+
OGPk+1, T

`c
2

+1h(|Ve |g) |Ue |g 1
|Ve |., k, T
`c

+
|Ve |0, k+1, T

c
2

+h(OVePg)OUePg
OVePk+1, T
`c
26 .
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Proof. 1. (H0
T estimate) Use Seeley extensions of (Fe, G) (resp. Ve) to

extend the data (resp. coefficients) of (7.51) from WT to W. Observe that for
k ¥N, T > 0

|W|., k, T [ h(k) ecT |Wc|., k

|W|0, k, T [ h(k) ecT |Wc|0, k.
(7.53)

Modifying Fe, G, and Ve in x0 > T does not change Ue in WT, so from the
estimate (7.48), (7.53), and Lemma 7.2(b) we obtain for 0 < e [ e0,
c \ c0(K),

|Ue |., 0, T+|Ue |0, 1, T+
OUeP1, T
`c

(7.54)

[ ecTC(K, E) 51 |Fe |., 0, T
`c

+
|Fe |0, 1, T

c
+
OGP1, T

`c
26 .

Here we have used OGP0, c [ OGP1, c/c.
2. To obtain (7.52) we apply (7.54) to the system

L(eVe, D e
x, h) “

kUe=“kFe+[L, “k] Ue

B(eVe) “Ue=“kG+[B, “k] Ue,
(7.55)

noting that “k commutes exactly with the singular part of L:

5A 10, DxŒ+
bŒDh

e
2 , “k6=0.(7.56)

Thus, Lemma 7.4(a),(c) imply

(a) |[L, “k] Ue |., 0, T [ h(|Ve |g) |Ue |., k, T+h(|Ve |g) |Ue |g |Ve |., k, T

(b) O[B, “k] UeP1, T [ h(OVePg)OUePk, T+h(OVePg)OUePg OVePk+1, T.
(7.57)

The first term on the right in each of (a) and (b) can be absorbed by the left
side of (7.52) by taking c large.

|[L, “k] Ue |0, 1, T is handled the same way using Lemma 7.4(b). L

Corollary 7.2. Make the same hypotheses as in Theorem 7.2, but take
k \ [1+N+1

2 ]. There exists a constant T0(K) such that for 0 < e [ e0,
T < T0, and c=1

T
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|Ue |., k, T+|Ue |0, k+1, T+
OUePk+1, T
`c

(7.58)

[ C(K, E) 51 |Fe |., k, T
`c

+
|Fe |0, k+1, T

c
+
OGPk+1, T

`c
26 .

Proof. |Ue |g [ C |Ue |., k, T so the term involving |Ue |g on the right in
(7.52) can be absorbed by taking T0 small.

Since Ue=0 on x0 < 0 we have

OUePg [ COUePN+12 , T [ CTOUePk, T.(7.59)

Writing

OVePk+1, T
`c

=
`T OVePk+1, T
`c`T

and using (7.59), we can absorb the term involving OUePg by taking T0
small enough. L

7.5. Iteration: Hk
T Boundedness

The proof of Theorem 7.1 is based on the iteration scheme (1.5) and will
be contained in the next two propositions. Hk

T spaces were defined in
Notation 1.3.

Proposition 7.4 (Uniform Hk
T estimates). Fix d > 0, k \ [M0+

N+1
2 ],

and consider the iteration scheme (1.5) under the hypotheses of Theorem 7.1.
There is an e0 > 0 and a Tk=Tk(d) > 0 independent of e ¥ (0, e0] such that

||Un
e ||k, Tk [ d for all n and all e ¥ (0, e0].(7.60)

Proof. 1. (Preliminaries) We will suppress e and write the iterates as
Un (instead of Un

e ). Take U0=0.
Fix T0 ¥ (0, 1]. We will choose Tk [ T0. Proposition 7.1 (b),(c) imply that

for all n

supp Un |WT0 … {x0 \ 0} 5 {|x| [ h(D, T0)},(7.61)

where h depends on the propagation speed a.
For any l ¥N, T > 0 Sobolev estimates imply

|Un |C0, lc, T [ h1(l) |Un |., [l+N+12 ], T.(7.62)

2. (Choice of e0) Recall C=BRŒ × C −

bŒ (7.23). Choose

e0 [
RŒ

h1(0) d
.(7.63)
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3. (Induction step) Let T0(K) be as in Corollary 7.2. Fix n and
assume for T(k) [ min{T0, T0(h1(M0) d)}, nŒ [ n

||UnŒ ||k, T(k) [ d for 0 < e [ e0.(7.64)

The choice of e allows us to use Corollary 7.2 to estimate ||Un+1 ||k, T(k).
Note that the equation and (7.64) imply

|e“xNUn |g [ h(|Un |C0, 1c, T(k) ).

Set

||V|| −k, T — |V|., k, T+|V|0, k+1, T(7.65)

and take T=T(k), c= 1
T(k) in (7.58) to obtain

||Un+1 ||k, T(k) [ eC(h1(M0) d)`T(k) (||Fe(Un)|| −k, T(k)+OGPk+1, T(k)).(7.66)

Lemma 7.3 (d),(e) give for some h2:

||Fe(Un)|| −k, T(k) [ h2(h1(0) d) ||Un ||
−

k, T(k).(7.67)

Thus,

||Un+1 ||k, T(k) [`T(k) eC(h1(M0) d)[dh2(h1(0) d)+OGPk+1, T0].(7.68)

Reduce T(k) if necessary so the right side of (7.68) is [ d. This gives Tk. L

7.6. Contraction

Proposition 7.5. Fix d, k, Tk as in Proposition 7.4 and e0 as in (7.63).
There exist Tk ¥ (0, Tk], e1(d) [ e0, and Ue ¥Hk

Tk
such that

||Un
e − Ue ||k−1, Tk Q 0 as n Q.

uniformly for e ¥ (0, e1(d)].

Proof. As before write Un
e=Un, and set Wn=Un+1 − Un. The problem

satisfied by Wn has the form

DxNWn −A 1 eUn, DxŒ+
bŒDh

e
2Wn=F(e, Un−1, Un, eDxŒUn, DhUn) Wn−1

B(eUn) Wn=G(e, Un−1, Un) eWn−1

Wn=0 in x0 < 0,

(7.69)

where F, G are C. functions of e ¥ [0, e0] and their other arguments.
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From Lemma 7.3 we obtain

(a) |FWn−1 |., k−1, T [ h(|Un−1, Un, “1Un |g) |Wn−1 |., k−1, T

+h(|Un−1, Un, “1Un |g) |Wn−1 |g |Un−1, Un, “1Un |., k−1, T

(b) |FWn−1 |0, k, T [ h(|Un−1, Un, “1Un |g) |Wn−1 |0, k, T

+h(|Un−1, Un, “1Un |g) |Wn−1 |g |Un−1, Un, “1Un |0, k, T

(c) OGeWn−1Pk, T [ e[h(OUn−1, UnPg)OWn−1Pk, T

+h(OUn−1, UnPg)OWn−1Pg OUn−1, UnPk, T].

(7.70)

Take T [ Tk in (7.70) and use (7.60), (7.62) to obtain for some h3:

h(|Un−1, Un, “1Un |g) [ h3(d).(7.71)

Apply Corollary 7.2 to (7.69), letting c=1
T in (7.58) and using (7.62) (for

|Wn−1 |g and C(K)) and (7.70), to find for some h4(d):

||Wn ||k−1, T [`T h4(d) ||Wn−1 ||
−

k−1, T+eh4(d)`T OWn−1Pk, T.(7.72)

Finally, choose T=Tk(d) and e(d) [ e0 small enough so that

`T h4(d) [ 1
4 , eh4(d) [ 1

4 .(7.73)

This gives

||Wn ||k−1, Tk [
1
2 ||Wn−1 ||k−1, Tk for 0 < e [ e1. L(7.74)

This also completes the proof of Theorem 7.1.

8. Initial Value Problems

We revert to the notation of Section 6. In particular, xN now denotes
time. Recall

(a) OT={(x, h) ¥ RN+1×TL : xN ¥ [0, T]}
(8.1)

(b) C0, M
c, T ={V(x, h) ¥ C([0, T], CM(RN×TL, Rm)) : supp V is compact}

(c) M0=2(N+L+1)+1
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Notation 8.1. (a) For k ¥N Hk=Hk(RN×TL), the standard Sobolev
space with norm OU(xŒ, h)Pk.

(b) CTHk={V( · , xN, · ) ¥ C([0, T] : Hk)} with

|V|CTHk — sup
xN ¥ [0, T]

|V( · , xN, · )|Hk — |V|., k, T.

(c) wT={x ¥ RN+1 : xN ¥ [0, T]}.

The goal of this section is to extend a result of [JMR1, JMR2, S] for
symmetric hyperbolic quasilinear initial value problems of the form (6.2) to
the case of systems that are just symmetrizable in the weaker sense of
Definition 6.1.

Consider the singular problem

L(eUe, D e
xŒ, h) Ue(8.2)

=DxNUe −A 1 eUe, DxŒ+
bŒDh

e
2 Ue=Fe(Ue) on OT

Ue=G(xŒ, h) on xN=0

with A(v, tŒ), Fe as in (1.4).

Theorem 8.1. Fix k \ [M0+
N+L
2 ] and assume

G(xŒ, h) ¥ Hk, supp G … {|xŒ| [ D}.(8.3)

Fix R > 0, K=OGPk, and suppose

DxN −A(v, DxŒ)(8.4)

is symmetrizable for v ¥ BR (Definition 6.1). Suppose a <. is an upper
bound for the propagation speed of (8.4) when v ¥ BR. There exist e2(K),
T(K), and a unique Ue(x, h) ¥ CT(K)Hk satisfying (8.2) for 0 < e [ e2(K) on
OT(K) and such that

ve=u0+eUe 1x,
xŒbŒ

e
2(8.5)

is the unique C1 solution of (6.2) on wT(K).

The main step in the proof of Theorem 8.1 is a CTHk estimate for the
linearized problem (6.1).
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Proposition 8.1. Fix R > 0, k \ [M0+
N+L
2 ], T > 0, and e0 > 0. Let

DxN −A(v, DxŒ) be symmetrizable for v ¥ BR. Suppose Ve(x, h) ¥ CTHk has
compact support and satisfies for 0 < e [ e0

(a) |eVe |L.(OT) [ R

(b) |Ve |C0, M0c, T
[ K1, |Ve |., k, T [ K2

(c) |e“xNVe |L.(OT) [ h(|Ve |C0, 1c, T ),

and let e1(K1) [ e0 be as in Theorem 6.1. Assume Fe ¥ CTHk and G ¥ Hk.
Then the solution Ue of the singular problem 6.1 belongs to CTHk and there
exist constants C1(e, K1), C(K2) such that for xN ¥ [0, T], 0 < e [ e1(K1)

OUe(xN)Pk [ 5C1(e, K1) eC(K2) xNOGPk+C(K2) F
xN

0
eC(K2)(xN −t)OFe(xN)Pk dt6 .

(8.6)

Here

C1(e, K1)=C2+eC3(K1),(8.7)

where C2 is independent of Ve.

Proof of Proposition 8.1. Apply the estimate (6.9) to “a(xŒ, h)Ue, |a| [ k,
and note (as in [JMR1]) that since “a(xŒ, h) commutes with the singular part
A(0, DxŒ+bŒDh/e), we have

|[L(eVe, D e
x, h), “a(xŒ, h)] Ue |., 0, T [ C(K2) |Ue |., k, T.(8.8)

An application of Gronwall’s inequality yields (8.6). L

Proof of Theorem 8.1. Fix T > 0. The proof is a standard iteration
based on the scheme

L(eUn
e , D e

x, h) Un+1
e =Fe(Un

e ) on OT

Un+1
e =G(xŒ, h) on xN=0,

(8.9)

where U0
e — G. Finite propagation speed for the linearized problem (which

follows as in Proposition 7.1) implies

supp Un
e |OT … {(x, h) ¥ OT : |xŒ| [ h(D)} for all n.(8.10)

To prove uniform boundedness, fix n, let C2 be as in (8.7), and assume,
for e2(K), T(K) [ T (determined below)

|Un
e |., k, T(K) [ (C2+1)(K+1) for 0 < e [ e2(K).(8.11)
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Since k \ [M0+
N+L
2 ], (8.11) implies |Un

e |C0, M0c, T(K)
[ h(K) — K3. Let e1(K3)

be as in Proposition 8.1. Choose e2(K) [ e1(K3) such that for 0 < e [ e2(K)

(a) |eUn
e |L.(OT(K)) [ R and

(b) |eC3(|Un
e |C0, M0c, T(K)

)| [ 1 (C3 as in (8.7)).
(8.12)

Thus, estimate (8.6) applies with Ue=Un+1
e , Ve=Un

e and yields

OUn+1
e (xN)Pk [ (C2+1) eC(K) xNK+C(K) xNeC(K) xN(8.13)

[ (C2+1)(K+1),

where T(K) is chosen so the last inequality holds for xN ¥ [0, T(K)]. This
completes the induction step.

The existence of Ue ¥ CT(K)Hk such that Un
e Q Ue in CT(K)Hk−1 as n Q.,

uniformly for 0 < e [ e2(K), now follows in the usual way. This implies Ue
is the unique solution of (8.2) on OT(K). L

9. Multidimensional Shocks

In this section we return to the use of Notations 1.3 and 5.1.

9.1. The Initial Boundary Value Problem for Oscillatory Shocks

Consider the system of conservation laws

C
N

j=0
“xj fj(u)=0(9.1)

on RN+1, where the fj: RmQ Rm are C. functions. Set x=(xŒ, xN) and let
S be a noncharacteristic surface for (9.1) defined by xN=k(xŒ), where k is
C1. Suppose u is a C1 function up to S on each side of S whose restriction
u+ (respectively, u−) to xN > k(xŒ) (respectively, xN < k(xŒ)) satisfies (9.1).
Then u is a multidimensional shock if, in addition, the u ± satisfy the jump
condition

C
N−1

j=0
kxj[fj(u)] − [fN(u)]=0 on S.(9.2)

Functions u as above satisfying (9.1) on each side of S are weak solutions
of (9.1) in RN+1 if and only if (9.2) holds. Equations (9.1) and (9.2) consti-
tute a hyperbolic free boundary problem for the unknowns (u ±, k). This
problem was solved by Majda [M1, M2] with several improvements by
Metivier [Met1, Met2] under an appropriate stability hypothesis.
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Following the classical idea we reduce to a problem with fixed boundary
by making the change of variables x̃Œ=xŒ, x̃N= ± (xN − k(xŒ)), and putting
ũ ±(x̃)=u ±(x). Setting

Aj(v)=f −j(v), j=0, ..., N

AN(v, dk)=AN(v) − C
N−1

j=0
kxjAj(v)

and dropping the tildes, we obtain the equations

C
N−1

j=0
Aj(u ±) “xju

± ± AN(u ±, dk) “xNu ±=0 on xN > 0(9.3)

G(u ±, dk)= C
N−1

j=0
kxj[fj(u)] − [fN(u)]=0 on xN=0.(9.4)

Consider a planar shock solution (U ±, sx0) of (9.3) and (9.4). This
means that (U ±, s) are constants satisfying

s[U] − [fN(U)]=0.(9.5)

Our main assumptions are:

(M.A.) (a) (U ±, sx0) is uniformly stable [M1].
(b) The system (9.3) is symmetric hyperbolic and satisfies Majda’s

block structure condition for (u ±, dk) in some neighborhood O … R2m+N of
(U ±, d(sx0)) (see Remark 5.1).

Symmetric hyperbolic means there are smooth matrix-valued functions
S ±(u ±) such that S ±(u ±) Aj(u ±) is symmetric for all j and S ±(u ±) A0(u ±)
is positive definite.

We study oscillatory perturbations of (U ±, sx0). To describe these,
observe first that Eqs. (9.3) and (9.4) admit the following linearization

L ±(u ±, dk, “x) v ±=f ± in xN > 0

B ±(u ±, dk)(v ±, df)=g on xN=0,
(9.6)

where

L ±(u ±, dk, “x) v ±= C
N−1

j=0
Aj(u ±) “xjv

± ± AN(u ±, dk) “xNv ±,(9.7)

B(u ±, dk)(v ±, df)= C
N−1

j=0
fxj[fj(u)] − [AN(u, dk) v].(9.8)

Note that if we let w=(u+, u−, dk), then B(u ±, dk)=dwG(u ±, dk).
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The linearized interior operators at (U ±, sx0) take the form

L ±(“x)= C
N−1

j=0
Aj(U ±) “xj ± (AN(U ±) − s) “xN(9.9)

with corresponding symbols

p ±(tŒ, tN)=det L ±(tŒ, tN).(9.10)

For each choice of sign define the hyperbolic H± and nonglancing regions
Gc± … RN00 as in Definition 1.1 (H± … Gc± ), and choose a boundary
frequency

bŒ ¥ Gc+ 5 Gc− .(9.11)

Thus, for each choice of sign the characteristic modes (bŒ, l ±j (bŒ)),
j=1, ..., m, associated to bŒ are some combination of hyperbolic and
elliptic modes. Let

f ±j (x)=bŒxŒ+l ±j (bŒ) xN, j=1, ..., m(9.12)

be the associated real or complex characteristic phases.
The perturbed shock (u ±e , dke) is the solution to an initial boundary

value problem on RbN+1+ ={(x0, xœ, xN) : xN > 0}

(a) L ±(u ±e , dke, “x) u ±e =0 in xN > 0

(b) G(u ±e , dke)=0 on xN=0

(c) u ±e =U ±+ew ±
e (xœ, xN, h)|h=bŒxŒ

e
on x0=0

(d) ke=0 on x0=0,

(9.13)

where w ±
e (xœ, xN, h) satisfies appropriate corner and phase compatibility

conditions.
In [W2] we chose bŒ ¥H+ 5H− and perturbed the planar shock with

oscillatory plane waves whose associated characteristics reflected strictly
transversally off the shock. Here our choice of bŒ (9.11) allows the forma-
tion of an elliptic boundary layer on one or both sides of the shock as well.

9.2. The Singular Shock Problem and Choice of Initial Data

One can look for solutions to (9.13) of the form

u ±e (x)=U ±
e (x, h)|h=bŒxŒ

e

ke(xŒ)=Ye(xŒ, h)|h=bŒxŒ
e

,
(9.14)
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where (U ±
e , Ye) satisfies a singular shock problem obtained by manipula-

tions such as (1.1)–(1.4) (here N e=“xŒ+bŒ“h/e):

L ±(U ±
e , N eYe, D e

x, h) U
±
e

— DxNU
±
e −A ±(U ±

e , N eYe, D e
x, h) U

±
e =0

G(U ±
e , N eYe)=0 on xN=0

U ±
e =U ±+ew ±

e (xœ, xN, h) on x0=0

Ye=0 on x0=0.

(9.15)

Here

−A ±=[ ± AN(U ±
e , N eYe)]−1 5 C

N−1

j=0
Aj(U

±
e )1Dxj+

bjDh
e
26 .(9.16)

Fix k0 \ [M0+
N+1
2 ] and D > 0. Choose initial data w ±

e (xœ, xN, h) ¥
C.(RN×T1) supported in |xœ, xN | [ D, vanishing to high order (for con-
venience) at xN=0, extended to be zero in xN < 0, and such that the pair
(sx0, U ±+ew ±

e ) satisfies both corner compatibility conditions to order k0
and phase compatibility conditions (see [W2, Sect. 5 and Appendix A] for
details on satisfying corner and phase compatibility, including the con-
struction of initial data that do not vanish at xN=0).

Let W ±
e (x, h) ¥ C. satisfy for some T0 > 0 and e ¥ (0, 1] the singular

initial value problems on OT0 — {(x, h) ¥ RN+1×T1 : x0 ¥ [ − T0, T0]}:

L ±(U ±+eW ±
e , N e(sx0), D e

x, h)(U ±+eW ±
e )=0 on OT0

W ±
e =w ±

e (xœ, xN, h) on x0=0,
(9.17)

where, with OT0, xN={(xŒ, h): x0 ¥ [ − T0, T0]},

{(W ±
e , e“xNW ±

e ): e ¥ (0, 1]} is bounded in(9.18)

C(RxN : Hk0+1(OT0, xN )) × C(RxN : Hk0(OT0, xN )).

By finite propagation speed, which holds for (9.17) by the argument of
Proposition 7.1,

supp W ±
e |OT0 … {|x| [ h(D)}.(9.19)

Remark 9.1. (a) Corner (x0=0, xN=0) compatibility to order k0 is
designed to ensure that for W ±

e satisfying (9.17) we have

“
j
x0Ge(xŒ, h)=0 at x0=0 for 0 [ j [ k0, where(9.20)

G(U ±+eW ±
e , N e(sx0))=eGe(xŒ, h) ¥ C..(9.21)
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(b) The initial value problems (9.17) are not of the type treated in
Section 8, since h is a placeholder for a phase bŒxŒ/e that involves time
(x0); hence, phase compatibility conditions are needed here.

One way to construct w+e (xœ, xN, h) and W+
e (x, h), for example, is to

choose an incoming phase f+j in (9.12) and solve the symmetric hyperbolic
initial value problem for v+e (x)

L+(U++ev+e , d(sx0), “x) v+e =0 in OT0

v+e =n+ 1xœ, xN,
f+j
e
2 on x0=0,

(9.22)

where n+(xœ, xN, z) ¥ C. is periodic in z and satisfies corner and phase
compatibility conditions to high enough order. Geometric optics (e.g.,
[JR, G]) yields for some T0 > 0 and e ¥ (0, 1] an exact solution

v+e (x)=V+e (x, z)|z=f+j /e

on [ − T0, T0] ×RN such that

{(V+e , e“xNV+e ): e ¥ (0, 1]} is bounded in(9.23)

C(RxN : Hk0+1(OT0, xN )) × C(RxN : Hk0(OT0, xN )).

Now set

w+e (xœ, xN, h)=n+ 1xœ, xN, h+
lj(bŒ) xN

e
2 and

W+
e (x, h)=V+e 1x, h+

lj(bŒ) xN
e
2 .

(9.24)

(c) Without phase compatibility conditions the solution to (9.22)
would generally depend on additional phases not in the set (9.12), which
would therefore correspond to boundary frequencies b̃ ] bŒ.

9.3. L2 Estimates for the Forward Singular Shock Problem
Define B(J ±, N eq) by

G(J ±, N eq) − G(m ±e , N e(sx0))(9.25)

=B(J ±, N eq)(J ± − m ±e , N e(q − sx0))

= C
N−1

j=0

1F 1
0

[fj(me+s(J − me))] ds21“xj+
bj“h

e
2 (q − sx0)

−F
1

0
[AN(me+s(J − me), N e(sx0+s(q − sx0)))(J − me)] ds
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(recall (9.8)). Observe the notation suppresses the dependence of B on
(m ±e , N e(sx0)).

In order to reduce (9.15) to a forward problem on W, we choose a C.

cutoff q(x0) such that q=1 on [ − T0/2, T0/2], supp q … [ − T0, T0], and
set

W̃ ±
e =qW ±

e , m̃ ±e =U ±+eW̃ ±
e(9.26)

eF2 ±e =˛
−L ±(m̃ ±e , N e(sx0), D e

x, h)(m̃ ±e ), x0 \ 0

0, x0 < 0
(9.27)

eG2e=˛
G(m̃ ±e , N e(sx0)), x0 \ 0

0, x0 < 0.
(9.28)

Equation (9.17) and the compatibility conditions imply

(a) {(W̃ ±
e , e“xNW̃ ±

e ): e ¥ (0, 1]} is bounded in

CHk0+1× CHk0 with supp W̃ ±
e … {|x| [ h(D)}.

(b) {(F2 ±e , G2e): e ¥ (0, 1]} is bounded in CHk0+1× Hk0+1

with suppx, xŒ(F2
±
e , G2e) … {x0 \ 0} 5 {|x, xŒ| [ h(D)}.

(9.29)

Dropping the tildes we set m ±e =U ±+eW ±
e and look for a solution

(U ±
e , Ye) to (9.15) of the form

U ±
e =m ±e +eU ±

e

Ye=sx0+efe,
(9.30)

where (U ±
e , fe) satisfies the forward singular shock problem

(a) L ±(m ±e +eU ±
e , N e(sx0+efe), D e

x, h) eU ±
e

=[L ±(m ±e , N e(sx0), D e
x, h)

−L ±(m ±e +eU ±
e , N e(sx0+efe), D e

x, h)] m ±e +eF ±
e ,

(b) B(m ±e +eU ±
e , N e(sx0+efe))(eU ±

e , N e(efe))=−eGe on xN=0,

(c) U ±
e =0, fe=0 in x0 < 0.

(9.31)
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We solve (9.31) using the following iteration scheme:

L ±(m ±e +eUn, ±
e , N e(sx0+efne ), D e

x, h) Un+1, ±
e

=
1
e

[L ±(m ±e , N e(sx0), D e
x, h)

−L ±(m ±e +eUn, ±
e , N e(sx0+efne ), D e

x, h)] m ±e +F ±
e ,

B(m ±e +eUn, ±
e , N e(sx0+efne ))(Un+1, ±

e , N efn+1e )=−Ge on xN=0,

Un+1, ±
e =0, fn+1e =0 in x0 < 0.

(9.32)

Notation 9.1. Let C0, Mc — C0, M
c × C0, M

c × CM
c , where CM

c ={b(xŒ, h) ¥
CM(RN×T1 : RN) : supp b is compact}. C0, Mc, T is defined similarly for T > 0.

Theorem 9.1 (L2 estimate). Assume (M.A.) and set

(a) L ±(U ±
e , N eYe, D e

x, h) U ±
e =F ±

e (x, h) in xN > 0

(b) B(U ±
e , N eYe)(U ±

e , N ef e)=Ge(xŒ, h) on xN=0.
(9.33)

Fix K > 0, e0 > 0, and let

Ve(x, h)=(We, e−1[(Ue, N eYe) − (U, N e(sx0))]),(9.34)

where We=(W
+
e

W−e
), U=(U

+

U−), etc. There exist positive constants R, C, C(K),
c(K) such that ifVe ¥ C0, M0c and satisfies for 0 < e [ e0

(a) |eVe |g [ R

(b) |Ve |C0, M0c
[ K

(c) |e“xNVe |g [ h(|Ve |C0, 1c ),

(9.35)

then |A−1N (U ±
e , N eYe)|L.(W) [ C and for all (U ±

e , fe) ¥H1, 1
c (W) ×H1

c(bW)
(Notation 5.1), 0 < e [ e0, c \ c(K) we have

|Ue |0, 0, c+
1

`c
OUeP0, c+

1

`c
ON efeP0, c(9.36)

[ C(K) 1 |Fe |0, 0, c
c

+
OGeP0, c
`c
2 .

Here we have set |Ue |0, 0, c=|U+e |0, 0, c+|U−
e |0, 0, c, etc.

Remark 9.2. cOfeP0, c [ ON efeP0, c, so one may also include `c OfeP0, c
on the left side of (9.36).
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Proof of Theorem 9.1. The proof has much in common with that
of Theorem 5.1 and Corollary 5.2, so we will concentrate mainly on the
differences.

1. (Choose R,C) Let O ¦ (U, d(sx0))=(U+, U−, d(sx0)) be as in
(M.A.). The first requirement on R is that for (u, g) ¥ R2m+N

|(u, g) − (U, d(sx0))| [ R S (u, g) ¥ O.

Write

B(U ±
e , N eY)(U ±

e , N efe)(9.37)

=i C
N−1

j=0
bj(me, N e(sx0), Ue, N eYe) 1Dxj+

bjDh
e
2 fe

+M(me, N e(sx0), Ue, N eYe) Ue,

where the bj ¥ Rm and m × 2m matrix M (acting on Ue=(U
+
e

U−e
)) are defined in

(9.25).
Let L ± be as in (9.7) and set

B(a1, a2)(v, f)=i C
N−1

j=0
bj(a1, a2) Dxjf+M(a1, a2) v.(9.38)

Since (U ±, sx0) is uniformly stable, provided R is chosen small enough, the
constant coefficient system

(L ±(a2), B(a1, a2))(9.39)

obtained by freezing coefficients at a1=(me, N e(sx0)), a2=(Ue, N eYe) is
uniformly stable. This implies uniform invertibility of AN(U ±

e , N eYe) and
the existence of C.

2. (Eliminate fe) With Ve(x, h) as in (9.34) let t −c=(t0 − ic, tœ) and
define singular symbols

bs=b(eVe(x, h), X, c)

=i C
N−1

j=0
bj(me, N e(sx0), Ue, N eYe) 1t −c, j+

mbj

e
2 ¥S1, M0

bŒ ,

ms=m(eVe(x, h))=M(me, N e(sx0), Ue, N eYe) ¥S0, M0
bŒ ,

(9.40)

and the m × m orthogonal projector on b +
s given by

ps=p(eVe(x, h), X, c) ¥S0, M0
bŒ :

p(eVe(x, h), X, c) h=h −
(h, b(eVe, X, c))
|b(eVe, X, c)|2

b(eVe, X, c).(9.41)
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In (9.41) we use the fact that for e0, R as above, the bj are independent and
there exists a C > 0 such that

COX, cP [ |b(eVe, X, c)| [
1
C
OX, cP.(9.42)

We can now use the SPO calculus to eliminate fe by arguments parallel
to [M1, Met2].

Conjugate (9.33) by e−cx0 and rewrite (9.33b):

ibs(DxŒ, h) fce+ms(DxŒ, h) Uc
e=Gce on xN=0.(9.43)

psbs=0 so the calculus gives (with O P0=| |H0(bW))

Ops(DxŒ, h) bs(DxŒ, h) fceP0 [ C(K)OfceP0 [ C(K)
|fce |H1

c
.(9.44)

Set BM, s=BM(eVe, X, c) — psms ¥S0, M0
bŒ and deduce

OBM, s(DxŒ, h) Uc
e − ps(DxŒ, h) ms(DxŒ, h) Uc

eP0 [
C(K)

c
OUc

eP0.(9.45)

Thus, (9.43)–(9.45) imply

OBM, s(DxŒ, h) Uc
eP0 [ C(K)OGceP0+

C(K)
c

(|fce |H1+OUc
eP0).(9.46)

Next, introduce the row vector bg
s and note the scalar ps=bg

s bs ¥S2, M0
bŒ

is elliptic by (9.42). The SPO Garding inequality (Corollary 3.1) and the
calculus imply for c \ c(K)

|fce |
2
H
1 [ C(K) Re(ps(DxŒ, h) fce , fce) [ C(K)Obs(DxŒ, h) fceP

2
0(9.47)

[ C(K)(OGceP
2
0+OUc

eP
2
0).

Although the calculus does not apply directly to bs(DxŒ, h)g bs(DxŒ, h), we can
write

Obs(DxŒ, h) fce , bs(DxŒ, h) fceP=OL−1bs(DxŒ, h)g bs(DxŒ, h) L−1(Lfce), LfceP

and use Proposition 2.4 and Theorem 2.6 to see that

L−1ps(DxŒ, h) L−1− L−1bs(DxŒ, h)g bs(DxŒ, h) L−1 is residual of order 1.(9.48)
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Now

|fce |H1 ’ O(N efe)cP0

so in view of (9.46) and (9.47) to prove the estimate (9.36) it will suffice to
show for c \ c(K),

|Uc
e |0, 0+

1

`c
OUc

eP0 [ C(K) 1 |F
c
e |0, 0
c

+
OBM, s(DxŒ, h) Uc

eP0

`c
2 .(9.49)

3. (Estimate Uc
e ) With Ve(x, h) as in (9.34) let v=(v1, v2, v3) ¥ R4m+N

be a placeholder for eVe: v1 is a placeholder for eWe, v2 for Ue − U, v3 for
N e(Ye − sx0). As before set t −c=(t0 − ic, tœ) and let

Ã(v, t −c)
(9.50)

=RA
+(U++v+2 , N e(sx0)+v3, t −c) 0

0 A−(U−+v−2 , N e(sx0)+v3, t −c)
S

BM(v, tŒ, c)=p(v, tŒ, c) ms(v).

(Ã is 2m × 2m, BM is m × 2m.)
The uniform stability of (U ±, sx0) and our choice of R imply the system

(DxN −Ã(v, Dx −c ), BM(v, DxŒ, c))(9.51)

is Kreiss well-posed (see Definition 5.2 and Remark 5.1(c)) for v in
BR={v: |v| [ R}.

We are now in precisely the situation of Section 5. System (9.51) has a
Kreiss symmetrizer R(v, tŒ, c). Set Rs=R(eVe(x, h), tŒ+mbŒ/e, c). Then
the SPO Rs(DxŒ, h) is a symmetrizer for the singular problem corresponding
to (9.51). The estimate (9.36) now follows from Corollary 5.1. L

Theorem 9.2 (Linear existence and uniqueness). Assume (M.A.), fix
K > 0, e0 > 0, and supposeVe (9.34) satisfies (9.35) for R as in Theorem 9.1.
There is a constant c0(K) such that for 0 < e [ e0, c \ c0(K), F ±

e (x, h) ¥
H0, 0
c (W),Ge(xŒ, h) ¥H0

c(bW), there is a unique solution (U ±
e , fe) ¥H0, 0

c (W) ×
H1
c(bW) to the singular problem

L ±(U ±
e , N eYe, D e

x, h) U ±
e =F ±

e in xN > 0

B(U ±
e , N eYe)(U ±

e , N efe)=Ge on xN=0,
(9.52)

and (U ±
e , fe) satisfies the estimate (9.36). If F ±

e , Ge vanish in x0 < 0, the
same is true of (U ±

e , fe).
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Proof. Let L ± be as in (9.7), B(a1, a2) as in (9.38), and set
m̃e(x)=me(x, bŒxŒ/e). Corresponding to the (nonsingular) shock problem

L ±(u ±, dk, “) v ±=f ± in xN > 0

B(m̃e, d(sx0), u, dk)(v, df)=g on xN=0
(9.53)

there is a dual shock problem (see [Met2]) which satisfies the backward
uniform stability condition. The associated singular problem dual to (9.33)
thus satisfies an estimate like (9.36), so the same arguments that gave
Theorem 5.2 apply here. L

We proceed directly to the shock analogue of Corollary 7.1. Let

Ve(x, h)=(We, e−1[Ue − U, N e(Ye − sx0)])(9.54)

as before, let Ã be as in (9.50), and set

B̃(eV)(Ue, N efe) —B(U ±
e , N eYe)(U ±

e , N efe).

To emphasize the parallels with Section 7, we note B̃ is a zeroth order
operator acting on (Ue, N efe), and rewrite the system (9.52) as

L̃(eVe, D e
x, h) Ue — DxNUe −Ã(eVe, D e

xŒ, h) Ue=Fe

B̃(eVe)(Ue, N efe)=Ge.
(9.55)

Proposition 9.1 (L2H1
c − CH0

c estimate). Assume (M.A.) and bŒ ¥

Gc+ 5 Gc− . Fix k ¥N, e0 > 0, and suppose for R as in Theorem 9.1 and RŒ [ R
as in (9.64) thatVe ¥ C0, M0c , Fe, Ge satisfy for 0 < e [ e0

(a) |eVe |g [ RŒ

(b) |Ve |C0, M0c
[ K, |e“xNVe |g [ h(|Ve |C0, 1c )

(c) Fe ¥ L2H1
c 5 CH0

c , Ge ¥ H1
c , supp Fe … {0 [ xN [ E}.

(9.56)

Then there exists a constant c0(K) such that for c \ c0, 0 < e [ e0, the
solution (Ue, fe) to the singular problem (9.55) satisfies

|Ue |., 0, c+|Ue |0, 1, c+
OUe, N efeP1, c
`c

(9.57)

[ C(K, E) 51 |Fe |., 0, c
`c

+OGeP0, c 2+1
|Fe |0, 1, c

c
+
OGeP1, c
`c
26

and exhibits finite propagation speed.
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Proof. 1. (L2H1
c estimate) Conjugate (9.55) with e−cx0 to get

DxNUc
e −Ã 1 eVe(x, h), Dx −c+

bŒDh
e
2 Uc

e=Fce in xN > 0

B̃(eVe)(Uc
e , (N efe)c)=Gce on xN=0.

(9.58)

The proof of Proposition 7.1 shows there is a constant c0(K) such that
for 0 < e [ e0, c \ c0,

|Uc
e |0, 1+

OUc
e , (N efe)cP1
`c

[ h(K) 5|F
c
e |0, 1
c

+
OGceP1
`c
6 .(9.59)

For example, in place of (7.8) we have for |a| [ 1

O[B̃(eVe), “a(xŒ, h)](Uc
e , (N efe)c)P0, c [ h(|Ve |C0, 1c )

OUc
e , (N efe)cP1

c
.(9.60)

2. (Propagation speed) The argument in Proposition 7.1 shows the
propagation speed for (9.58) is bounded above by the (finite) propagation
speed of the corresponding nonsingular problem.

3. (CH0
c estimate, I) Apply ps(DxŒ, h) to the boundary equation in the

form (9.43) and use the SPO calculus to obtain the reduced system for Uc
e

(DxN −Ã) Uc
e=Fce

BM, s(DxŒ, h) Uc
e=He, c on xN=0,

(9.61)

where He, c=r0G
c
e+r1U

c
e+r0f

c
e (as before rj is residual of order j). We

microlocalize and diagonalize (9.61) just as we did for (7.29).
As in Lemma 7.1 let v=(v1, v2, v3) ¥ R4m+N be a placeholder for

eVe(x, h), and define

S={z=(v, X, c) ¥ BR ×RN× [0,.) : (X, c) ] 0}.(9.62)

Since we will use + (resp. −) to label outgoing (resp. incoming) hyperbolic
and elliptic modes, it is desirable now to rewrite the 2m × 2m matrix Ã as

Ã(z)=rÃ
R 0

0 ÃL
s .(9.63)

For each choice of R, L define OR, L(bŒ), PR, L(bŒ), IR, L(bŒ), NR, L(bŒ),
lR, Li (z), rR, Li (z) as before. For z in a conic neighborhood C of {(0, bŒ, 0),
(0, −bŒ, 0)},

C=BRŒ × C −

bŒ … S(9.64)
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we have

S−1(z) Ã(z) S(z)=L(z),(9.65)

where S(z), L(z) are 2m × 2m block diagonal matrices with m × m blocks
SR, L, LR, L, respectively. For each choice of R, L we have the analogues of
(7.20), (7.21), and (7.22).

As in Remark 7.1(a) write

SR(z)=[SR,+(z) SR, −(z)],(9.66)

where SR,+ (resp. SR, −) is the matrix whose columns are rRi (z),
i ¥ OR(bŒ) 2PR(bŒ) (resp. i ¥IR(bŒ) 2NR(bŒ)), and similarly write

SL(z)=[SL,+(z) SL, −(z)].

Let mR,+ (resp. mL,+) be the number of columns of SR,+ (resp. SL,+).
Uniform stability implies

mR,++mL,+=m − 1.(9.67)

BM(z)=p(z) m(z) and m(z) (9.40) (9.41) are m × 2m matrices we can
write as

BM=[BRM BLM], m=[mR mL],(9.68)

where BR, LM =pmR, L. Uniform stability implies the m × (m − 1) matrix

B+M(z)=[BRMSR,+ BLMSL,+](9.69)

has rank m − 1 for z ¥ C. More precisely, there is a smooth, bounded
(m − 1) × m left inverse (B+M)−1 such that

(B+M)−1 (z) BM(z)=Im−1 for z ¥ C.(9.70)

Now extend Ã(z)|C, BM(z)|C, S(z), L(z) to elements of S1, S0, S0, S1,
respectively (Notation 1.7), so that (9.65), (9.70), and the analogues of
(7.20)–(7.22) hold for all z ¥ S.

4. (CH0
c estimate, II) With C=BRŒ × C −

bŒ as in (9.64) choose dŒ > 0 in
(7.10) small enough so that

(Z1, Z2, c)=1tŒ, mbŒ

e
, c2 ¥ supp q S (X, c) ¥ C −

bŒ for X=Z1+Z2.

(9.71)
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Now proceed as in the proof of Proposition 7.3 using Notation 7.1.
Solve SW=qUc, set W=S−1SW, and use the calculus to rewrite (9.61)

(a) DxNW− LW=r0Fc+r0Uc

(b) BM, s(DxŒ, h) SW=r0He, c+r1Uc=r0Gc+r1Uc+r0fc.
(9.72)

Write W=(WR+, WR−, WL+, WL−) corresponding to the decomposi-
tion of SR, L (9.66). For B+M(z) as in (9.69), (9.72b) becomes

B+M R
WR+

WL+
S=r0 R

WR−

WL−
S+r0Gc+r1Uc+r0fc on xN=0.(9.73)

(9.70) and the calculus now give

RW
R+

WL+
S=r0 R

WR−

WL−
S+r0Gc+r1Uc+r0fc.(9.74)

Instead of (7.47) the arguments of Section 7 yield

OW(xN)P20+c |W|20, 0(9.75)

[ C(K, E) 5|F
c|2., 0
c

+|Uc|20, 0+OGcP20+
OUc(0)P20

c
+OfcP206 ,

which implies the shock analogue of (7.17):

|qsU
c
e |., 0 [ C(K, E) 5|F

c
e |., 0
`c

+OGceP0+|Uc
e |0, 0+

OUc
eP0

c
+OfceP06 .(9.76)

The proof of (7.11) gives

|(1 − qs) Uc
e |., 0 [ h(|Ve |C0, 0c ) |Uc

e |0, 1+|Fce |0, 0.(9.77)

Together with (9.76) and (9.59), this implies the estimate of (9.57) for
|Uc
e |., 0. L

Notation 9.2. (a) For k ¥N let Dk
T={(Z(x, h), g(xŒ, h)) ¥Hk

T × Hk
T :

(Z, g) is valued in R4m×RN}, and set

|(Z, g)|DkT — |O(Z, g)P|k, T=||Z||k, T+`T OgPk+1, T.

(b) For V=(Z, g) ¥Dk
T we will sometimes write |V|0, k+1, T or

|V|., k, T. The meanings of |V|., k, T and |Z|0, k+1, T are clear, but
|g(xŒ, h)|0, k+1, T is not. For T ¥ (0, 1], the solution (Ue, fe) to (9.55) satisfies

supp Ue |WT … {0 [ xN [ h(E)}(9.78)
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by finite propagation speed. Choose r(xN) ¥ C.

c (Rb+), r — 1 on [0, h(E)]
and define

|g|0, k+1, T — |r(xN) g(xŒ, h)|0, k+1, T [ C(E)OgPk+1, T.(9.79)

Theorem 9.3 (Main linear estimate). Assume (M.A.) and bŒ ¥

Gc+ 5 Gc− . Fix k ¥N, e > 0, T ¥ (0, 1], and suppose for R as in Theorem 9.1
and RŒ [ R as in (9.64) (C=BRŒ × C −

bŒ) thatVe, Fe, Ge satisfy for 0 < e [ e0

(a) |eVe |g [ RŒ, |e“xNVe |g [ h(|Ve |C0, 1c, T )

(b) |Ve |C0, M0c, T
[ K, Ve ¥Dk

T

(c) Fe ¥ L2Hk+1
T 5 CHk

T, Ge ¥ Hk+1
T , supp Fe … {0 [ xN [ E}.

(d) Fe, Ge vanish in x0 < 0.

(9.80)

Then there exists a constant c0(K) such that for c \ c0, 0 < e [ e0, the unique
solution (Ue, fe) to (9.55) vanishing in x0 < 0 satisfies

|Ue |., k, T+|Ue |0, k+1, T+
OUe, cfe, N efePk+1, T

`c
+`c ON efePk, T(9.81)

[ ecTC(K, E) 51 |Fe |., k, T
`c

+
|Fe |0, k+1, T

c
+
OGePk+1, T
`c
2

+1h(|Ve |g) |Ue |g 1
|Ve |., k, T
`c

+
|Ve |0, k+1, T

c
2

+h(OVePg)OUe, N efePg
OVePk+1, T

`c
26 .

Proof. Write Ve=(Z(x, h), g(xŒ, h)) and note that g(xŒ, h) may be
replaced by r(xN) g in the first equation of (9.55), where r(xN) was chosen
in Notation 9.2(b). An argument identical to the proof of Theorem 7.2 now
gives (9.81), where

|Ve |., k, T=|Z|., k, T+OgPk, T

|Ve |0, k+1, T=|(Z, r(xN) g)|0, k+1, T [ |Z|0, k+1, T+C(E)OgPk+1, T.
(9.82)

The term`c ON efePk, T may be included in (9.81) since in (9.57)
ON efeP1, c

`c
\`c ON efeP0, c. L

Corollary 9.1. Make the same hypotheses as in Theorem 9.3, but take
k \ [2+N+1

2 ]. There exists a constant T0(K) such that for 0 < e [ e0,
T [T0, and c=1

T
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|Ue |., k, T+|Ue |0, k+1, T+
OUe, cfe, N efePk+1, T

`c
+`c ON efePk, T(9.83)

[ C(K, E) 1 |Fe |., k, T
`c

+
|Fe |0, k+1, T

c
+
OGePk+1, T
`c
2 .

Proof. We have

|Ue |g [ C |Ue |., [1+N+12 ], T [ CT |Ue |., k, T(9.84)

since k \ [2+N+1
2 ]. Using (9.82) we obtain

|Ve |., k, T
`c

+
|Ve |0, k+1, T

c
(9.85)

[
|Z|., k, T
`c

+
`T OgPK, T

`T`c
+

|Z|0, k+1, T
c

+
C(E)`T OgPk+1, T

`T c
.

Since

|OVeP|k, T=|Z|., k, T+|Z|0, k+1, T+`T (OZPk+1, T+OgPk+1, T),

(9.84) and (9.85) imply we can absorb the term involving |U e|g in (9.81) by
taking T0 small enough.

Since

OUe, N efePg [ CTOUe, N efePk, T and

OVePk+1, T

`c
=
`T (OZPk+1, T+OgPk+1, T)

`T`c
,

(9.86)

we can also absorb the term involving OUe, N efePg by taking T0 small
enough. L

9.4. Main Results

Theorem 9.4 (Oscillatory multidimensional shocks). Assume (M.A.).
Fix k \ [M0+

N+1
2 ], set k0=k+1, and let W ±

e be as chosen in Section 9.2
(see (9.29)). Consider the singular initial boundary value problem (9.15) for
(U ±

e , Ye), where w ±
e (xœ, xN, h)=W ±

e (0, xœ, xN, h) and bŒ ¥ Gc+ 5 Gc− , and
the associated (nonsingular) problem (9.13) for (u ±e (x), ke(xŒ)). There exist
an e1(k) > 0, a Tk > 0 independent of e ¥ (0, e1(k)], and a unique
(U ±

e , Ye) ¥ CHk
Tk

× Hk+1
Tk
satisfying (9.15) and such that

u ±e (x)=U ±
e
1x,

bŒxŒ
e
2 , ke(xŒ)=Ye 1xŒ,

bŒxŒ
e
2
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is the unique C1 solution of (9.13) on wTk
. More detailed information on the

regularity of (U ±
e , Ye) is given in Proposition 9.3.

The proof of Theorem 9.4 is contained in the next two propositions.
Suppressing some epsilons and writing iterates (Un, ±

e , fne ) as (Un, fn), we
set

Vn=(W, W+Un, N efn), VW=(W, W, 0),(9.87)

and rewrite the forward problem for (Un+1, fn+1) (9.32) in the notation
(9.55):

L̃(eVn, D e
x, h) Un+1=DxNUn+1 −Ã(eVn, D e

xŒ, h) Un+1

=[Ã(eVn, D e
xŒ, h) −Ã(eVW, D e

xŒ, h)] We+Fe

—He+Fe in xN > 0

B̃(eVn)(Un+1, N efn+1)=−Ge on xN=0

Un+1=0, fn+1=0 in x0 < 0

U0 — 0, f0 — 0.

(9.88)

Here {(We, e“xNWe): e ¥ (0, 1]} is bounded in CHk0+1× CHk0 with supp
We … {|x| [ h(D)}, and {(Fe, Ge): e ¥ (0, 1]} is bounded in CHk0+1× Hk0+1

with suppx, xŒ(Fe, Ge) … {x0 \ 0} 5 {|x, xŒ| [ h(D)}.

Definition 9.1. For T > 0 let

Ak
T=3(V(x, h), z(xŒ, h)): (V, z) is valued in R2m×R and

| ||V, z|| |k, T — ||V||k, T+`T 7 z
T

, N ez8
k+1, T

+
ON ezPk, T

`T
<.4.

We have

| ||Un, fn || |k, T(9.89)

=|Un |., k, T+|Un |0, k+1, T+`T 7Un,
fn

T
, N efn8

k+1, T
+
ON efnPk, T

`T
.

Proposition 9.2 (Iteration: Uniform Ak
T estimates). Fix k \ [M0+

N+1
2 ],

k0=k+1, d > 0 and consider the iteration scheme (9.88) under the hypo-
theses of Theorem 9.4. There is an e0 > 0 and a Tk=Tk(d) > 0 independent of
e ¥ (0, e0] such that

| ||Un, fn || |k, Tk [ d for all n and all e ¥ (0, e0].(9.90)
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Proof. 1. (Preliminaries) We will choose Tk [ 1. By finite propagation
speed

suppx, xŒ(Un, fn) … {x0 \ 0} 5 {|x, xŒ| [ h(D)}.(9.91)

For any l ¥N, T > 0 Sobolev estimates imply

|Vn |C0, lc, T [ h1(l)(|W, Un |., [l+N+12 ], T+ON efnP[l+N+12 ], T).(9.92)

We also have for T ¥ (0, 1], e ¥ (0, 1], and some CW > 0

|OVnP|k, T=||(W, W+Un)||k, T+`T ON efnPk+1, T

[ CW+|Un |., k, T+|Un |0, k+1, T+`T OUn, N efnPk+1, T

[ CW+|||Un, fn || |k, T,

(9.93)

|Vn |., k, T [ CW+|Un |., k, T+ON efnPk, T,(9.94)

|Vn |0, k+1, T [ CW+|Un |0, k+1, T+h(D)ON efnPk+1, T(9.95)

(see (9.82)).
2. (Choice of e0) Assuming (9.90) we have on WTk

|eVn |g [ eh1(0)(CW+d).

With RŒ [ R as in Theorem 9.3 choose

e0 [ min 31,
RŒ

h1(0)(CW+d)
4 .(9.96)

3. (Induction step) Let T0(K) be as in Corollary 9.1. Fix n and
assume for CW as in (9.93)–(9.94), nŒ [ n, and

T(k) [ min{1, T0(h1(M0)(CW+d))}(9.97)

that

| ||UnŒ, fnŒ || |k, T(k) [ d for 0 < e [ e0.(9.98)

Equations (9.96)–(9.98) allow us to use Corollary 9.1 to estimate
| ||Un+1, fn+1 || |k, T(k).

For Fe, Ge as in (9.88) there exist constants CF(k), CG(k) such that for
T [ 1, e ¥ (0, 1]

|Fe |., k, T+|Fe |0, k+1, T [ CF

OGePk+1, T [ CG.
(9.99)
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He may be written with obvious notation

He= C
N−1

j=0
(Ãj(eVn) −Ãj(eVW)) 1DxŒ+

bŒDh
e
2We(9.100)

= C
N−1

j=0
Cj(eVn, eVW)(0, Un, N efn)(eDxŒWe+bŒDhWe).

To estimate |He |0, k+1, T, let kŒ [ k+1 and observe that “kŒHe is a sum of
terms of the form (in Notation 7.2)

f(e, eVn, eVW) “OjP(Vn, VW) “ l(0, Un, N efn) “m(DxŒW, DhW),(9.101)

where f ¥ C. and j+l+m=kŒ. Now for T [ T(k) (9.92), (9.95), and the
induction assumption imply

|(Vn, VW)|g [ CW+h1(0) d, |(Vn, VW)|0, k+1, T [ CW+h(D)
d

`T

(9.102)

|Un, N efn |g [ CW, |Un, N efn |0, k+1, T [ h(D)
d

`T
(recall (9.79))

|DxŒW, DhW|g [ CW, |DxŒW, DhW|0, k+1, T [ |W|0, k0+1, T [ h(D) CW.

Applying the Moser estimate of Lemma 7.3(b) gives for T [ T(k) as in
(9.97)

|He |0, k+1, T [
h2(CW, d, D)

`T
.(9.103)

In just the same way one finds

|He |., k, T [ h3(CW, d).(9.104)

Finally, take T=T(k), c= 1
T(k) in (9.83) and use (9.99), (9.103), (9.104) to

obtain

| ||Un+1, fn+1 || |k, T(k)

(9.105)

[ eh(CW, d)[(h3(CW, d)+CF)`T(k)+1h2(CW, d, D)

`T(k)
+CF
2 T(k)

+CG `T(k)].

Reduce T(k) if necessary to make the right side of (9.105) [ d. This gives
Tk. L
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Proposition 9.3 (Contraction). Fix d, k \ [M0+
N+1
2 ], Tk [ 1, e0 as in

Proposition 9.2. There exist Tk ¥ (0, Tk], e1(k, d) [ e0, and (Ue, fe) ¥Ak
T

such that

| ||(Un
e , fne ) − (Ue, fe)|| |k−1, Tk Q 0 as n Q.

uniformly for e ¥ (0, e1].

Proof. Let (Dn, dn)=(Un+1 − Un, fn+1 − fn) and consider the problem
satisfied by (Dn, dn):

L̃(eVn, D e
x, h) Dn=(Ã(eVn, D e

xŒ, h) −Ã(eVn−1, D e
xŒ, h))(Un+We)

—Fn in xN > 0

B̃(eVn)(Dn, N edn)=(B̃(eVn−1) − B̃(eVn))(Un, N efn)

— Gn on xN=0

(Dn, dn)=0 in x0 < 0.

(9.106)

To apply Corollary 9.1 we need to estimate

|Fn |., k−1, T, |Fn |0, k, T, and OGnPk, T.

For kŒ [ k, “kŒFn and “kŒGn are sums of terms of the form

(a) f1(e, eVn, eVn−1) “OjP(Vn, Vn−1)

×“ l(0, Dn−1, N edn−1) “m(DxŒ(Un+We), Dh(Un+We))

(b) f2(e, eVn, eVn−1) “OjP(Vn, Vn−1)

×“ l(0, Dn−1, N edn−1) “m(Un, N efn),

(9.107)

respectively, where f1, f2 ¥ C. and j+l+m=kŒ.
As in (9.102) note that for T [ Tk

|Dn−1, N edn−1 |g [ h1(0) | ||Dn−1, dn−1 || |k−1, T

|Dn−1, N edn−1 |0, k, T [ h(D)
| ||Dn−1, dn−1 || |k−1, T

`T

|Dn−1, N edn−1 |., k−1, T [ | ||Dn−1, dn−1 || |k−1, T

ODn−1, N edn−1Pk, T [ h(D)
| ||Dn−1, dn−1 || |k−1, T

`T
.

(9.108)
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From (9.102), (9.108), and Lemma 7.3 we deduce

|Fn |., k−1, T [ h4(CW, d) | ||Dn−1, dn−1 || |k−1, T

Fn |0, k, T [ h5(CW, d, D)
| ||Dn−1, dn−1 || |k−1, T

`T

OGnPk, T [ eh6(CW, d)
| ||Dn−1, dn−1 || |k−1, T

`T
.

(9.109)

Apply Corollary 9.1 to (9.106), letting c=1
T in (9.83), to obtain for h4, h5,

h6 as in (9.109)

| ||Dn, dn || |k−1, T [ eh(CW, d)(h4 `T+h5 `T+h6e) | ||Dn−1, dn−1 || |k−1, T.
(9.110)

For Tk [ Tk and e1(d) [ e0 small enough, (9.110) implies

| ||Dn, dn || |k−1, Tk [
1
2 | ||Dn−1, dn−1 || |k−1, Tk . L

This also completes the proof of Theorem 9.4.
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