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We continue a program to develop layer potential techniques for PDE on
Lipschitz domains in Riemannian manifolds. Building on L p and Hardy space
estimates established in previous papers, here we establish Sobolev and Besov space
estimates on solutions to the Dirichlet and Neumann problems for the Laplace
operator plus a potential, on a Lipschitz domain in a Riemannian manifold with a
metric tensor smooth of class C1+#, for some #>0. We treat the inhomogeneous
problem and extend it to the setting of manifolds results obtained for the constant-
coefficient Laplace operator on a Lipschitz domain in Euclidean space, with the
Dirichlet boundary condition, by D. Jerison and C. Kenig. � 2000 Academic Press

1. INTRODUCTION

There has been a substantial amount of work in the area of elliptic, con-
stant coefficient PDEs in Lipschitz domains via layer potential methods. In
particular, the classical Dirichlet and Neumann boundary value problems
for the flat-space Laplacian �2

1+ } } } +�2
n with boundary data in L p spaces

for optimal ranges of p have been solved. There are also sharp results for
the inhomogeneous Dirichlet and Neumann problems. See [Ve, DK, JK2,
FMM, Za] and the references therein for more on this subject. Similar
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issues are studied in [AP] for the flat-space bi-Laplacian in Euclidean
Lipschitz domains.

In [MT, MMT] the authors initiated a program to extend the
applicability of the layer potential theory from the setting of the flat-space
Laplacian on Lipschitz domains in Euclidean space to the setting of
variable coefficients, and more generally to the context of Lipschitz
domains in Riemannian manifolds. The paper [MT] dealt with the scalar
Laplace�Beltrami operator, and [MMT] treated natural boundary problems
for the Hodge Laplacian acting on differential forms.

Quite recently, more progress in this direction has been made in [MT2],
where a sharp L p theory for scalar layer potentials associated with the
Laplace�Beltrami operator in Lipschitz domains has been developed. Let
us now recall the general setting and describe some of the main results
from [MT] and [MT2].

Consider a smooth, connected, compact Riemannian manifold M, of real
dimension dim M=n�3, equipped with a Riemannian metric tensor
g=�j, k gjk dx j �dxk whose coefficients are Lipschitz continuous. The
Laplace�Beltrami operator on M is then given in local coordinates by

2u :=div(grad u)= g&1�2 � j (g jkg1�2 �k u), (1.1)

where we use the summation convention, take (g jk) to be the matrix
inverse to (gjk), and set g :=det(g jk). For V # L�(M ) we introduce the
second order, elliptic differential operator

L :=2&V. (1.2)

Assume V�0 and, also, V>0 on a set of positive measure in M. This
implies that

L: L p
1(M ) � L p

&1(M ) (1.3)

is an isomorphism for each p # (1, �), where L p
s (M ) denotes the class of

L p-Sobolev spaces on M. See [MT].
Throughout this paper, we let 0/M be a connected open set that is a

Lipschitz domain; i.e., �0 is locally representable as the graph of a
Lipschitz function. We will always assume that V>0 on a set of positive
measure in each connected component of M"0� . Consider the Dirichlet
boundary problem

Lu=0 in 0, u |�0= f, (1.4)

and the Neumann boundary problem

Lu=0 in 0, �&u |�0= g, (1.5)
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where & denotes the outward unit normal to �0, and �&=���& is the nor-
mal derivative on �0. When the boundary data are from L p(�0) (for
appropriate p) then, in (1.4)�(1.5), the boundary traces are taken in the
nontangential limit sense and natural estimates (involving the nontangen-
tial maximal function) are sought. More specifically, if [#(x)]x # �0 is a
family of nontangential approach regions (cf. [MT] for more details) and
u is defined in 0 then u*, the nontangential maximal function of u, is
defined at boundary points by

u*(x) :=sup[ |u( y)| : y # #(x)], x # �0. (1.6)

Then the natural accompanying estimates for (1.4) and (1.5) are,
respectively,

&u*&Lp(�0)�C & f &Lp(�0) (1.7)

and

&({u)*&Lp(�0)�C &g&Lp(�0) . (1.8)

In the case when 0 is a Lipschitz domain in the Euclidean space and
L=�2

1+ } } } +�2
n is the flat-space Laplacian, these problems were first

treated in [Da, JK] by means of harmonic measure estimates. Shortly
thereafter, building on [FJR] where the case of C1 domains was treated,
a new approach using layer potential techniques was developed in [Ve,
DK]. In these latter papers, a key ingredient was the L2 boundedness of
Cauchy type integrals on Lipschitz surfaces due to [CMM] (following the
pioneering work of [C]).

In [MT] we have extended such operator norm estimates on Cauchy
integrals to a variable coefficient setting, allowing for an analysis of poten-
tial type operators in the manifold setting described above. To be more
specific, denote by E(x, y) the integral kernel of L&1, so

L&1u(x)=|
M

E(x, y) u( y) d Vol( y), x # M, (1.9)

where d Vol is the volume element on M determined by its Riemannian
metric. Then, for functions f : �0 � R, define the single layer potential

Sf (x) :=|
�0

E(x, y) f ( y) d_( y), x � �0, (1.10)
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and define the double layer potential by

Df (x) :=|
�0

�E
�&y

(x, y) f ( y) d_( y), x � �0. (1.11)

Here d_ denotes the canonical surface measure on �0 induced by the
Riemannian metric on M. The following results on the behavior of these
potentials, which extend previously known results for the flat Euclidean
case, were demonstrated in [MT].

Define 0+ :=0 and 0& :=M"0� ; note that 0\ are Lipschitz domains.
Given f # L p(�0), 1<p<�, we have, for a.e. x # �0,

Sf |�0\
(x)=Sf (x) :=|

�0
E(x, y) f ( y) d_( y), (1.12)

Df |�0\
(x)=(\1

2I+K ) f (x), (1.13)

where, for a.e. x # �0,

Kf (x) :=P.V. |
�0

�E
�&y

(x, y) f ( y) d_( y). (1.14)

Here P.V. ��0 indicates that the integral is taken in the principal value
sense. Specifically, we fix a smooth background metric which, in turn,
induces a distance function on M. In particular, we can talk about balls
and P.V. ��0 is defined in the usual sense, of removing such small geodesic
balls and passing to the limit. Moreover, for a.e. x # �0,

�&Sf |�0\
(x)=(� 1

2I+K*) f (x), (1.15)

where K* is the formal transpose of K.
The operators

K, K*: L p(�0) � L p(�0), 1<p<�, (1.16)

and

S: L p(�0) � L p
1(�0), 1<p<�, (1.17)

are bounded.
Turning to the issue of invertibility, extending results produced in the

Euclidean, constant coefficient case by [Ve, DK] we showed in [MT,
MT2] that there exists ===(0)>0 so that the operators

\ 1
2I+K: L p(�0) � L p(�0), 2&=<p<�,

(1.18)
\ 1

2I+K*: L p(�0) � L p(�0), 1<p<2+=,
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are Fredholm, of index zero. In particular, (recall that we are assuming
V>0 on a set of positive measure in each connected component of M"0� )
the operators

1
2I+K: L p(�0) � L p(�0), 2&=<p<�,

(1.19)
1
2I+K*: L p(�0) � L p(�0), 1<p<2+=,

and

S: L p(�0) � L p
1(�0), 1<p<2+=,

(1.20)
1
2I+K: L p

1(�0) � L p
1(�0), 1<p<2+=,

are invertible. Also, if V>0 on a set of positive measure in 0, then

& 1
2I+K: L p(�0) � L p(�0), 2&=<p<�,

& 1
2I+K*: L p(�0) � L p(�0), 1<p<2+=, (1.21)

& 1
2I+K: L p

1(�0) � L p
1(�0), 1<p<2+=,

are isomorphisms, while, if V=0 on 0� , then

& 1
2I+K: L p(�0)�C � L p(�0)�C, 2&=<p<�,

& 1
2 I+K*: L p

0(�0) � L p
0(�0), 1<p<2+=, (1.22)

& 1
2I+K: L p

1(�0)�C � L p
1(�0)�C, 1<p<2+=,

are isomorphisms, where C is the set of constant functions on �0 and
L p

0(�0) consists of elements of L p(�0) integrating to zero.
Given these results, solutions to the Dirichlet, Regularity and Neumann

problems for the operator L in Lipschitz subdomains of M can be
produced for L p boundary data, for appropriate (sharp ranges of) p and
optimal nontangential function estimates; cf. [MT2]. The paper [MT2]
also contains invertibility results in the local Hardy space h1(�0), its dual
bmo(�0), and spaces of Ho� lder continuous functions C:(�0), for
small :>0. Parenthetically, let us point out that real interpolation and
(1.21)�(1.22) also allow one to solve the Dirichlet and the Neumann
problems with boundary data in Lorentz spaces Lp, q(�0) for appropriate
ranges of indices.

One of our primary goals in this paper is to continue this line of work
and to prove invertibility results for the boundary layer potentials in the
right sides of (1.12)�(1.14) in the class of Besov spaces B p

s (�0) for the
optimal range of the parameters p and s. We mention a sample result. Let
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0/M be an arbitrary Lipschitz domain. There exists = # (0, 1] so that if
p # [1, �] and s # (0, 1) satisfy one of the three conditions

2
1+=

<p<
2

1&=
and 0<s<1;

1�p<
2

1+=
and

2
p

&1&=<s<1; (1.23)

2
1&=

<p�� and 0<s<
2
p

+=,

then, with q # [1, �] denoting the conjugate exponent of p, the operators

1
2I+K: B p

s (�0) � B p
s (�0), S: Bq

&s(�0) � Bq
1&s(�0), (1.24)

are invertible. For a complete statement see Section 11. This extends work
in [FMM] where the same issue has been studied in the flat-space setting.
Our approach parallels that in [FMM] but the setting of Lipschitz
domains in Riemannian manifolds introduces significant additional dif-
ficulties, which require new techniques and ideas to overcome. On the
analytical side, one major concern is understanding the behavior of the
fundamental solution E(x, y) near the diagonal in M_M in the context of
a metric tensor whose coefficients have a rather limited amount of
smoothness; here we build on results in [MT, MMT, MT2].

Even though our main results are for scalar functions, we are
occasionally lead to consider differential forms of higher degrees. Given
this, we develop mapping properties of layer potentials in this context. See
Section 6�8. To obtain such invertibility results, in the present paper we
shall assume more regularity on the metric tensor g than the Lipschitz
condition mentioned above. We say more about this below.

Having these invertibility results, we then proceed to solve the Poisson
problem for the Laplace�Beltrami operator with Dirichlet and Neumann
boundary conditions for data in Sobolev�Besov spaces. Concretely, consider

Lu= f # L p
s+1�p&2(0),

{Tr u= g # B p
s (�0), (1.25)

u # L p
s+1�p(0),

and

Lu= f # Lq
1�q&s&1, 0(0),

{� f
& u= g # Bq

&s(�0), (1.26)

u # Lq
1&s+1�q(0).
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The technical definition of � f
& u is given in Section 12. Here we would like

to point out that � f
& u can be thought of as a ``renormalization'' of the

normal gradient of u on �0, in a fashion that depends decisively on f.
Assume that p # (1, �) and s # (0, 1) satisfy one of the three conditions
listed in (1.23) and that q is the conjugate exponent of p. Then (1.25) and
(1.26) are solvable with naturally accompanying estimates. Certain limiting
cases of (1.25)�(1.26) are also considered; see Sections 9�10.

Our main results regarding the solvability of (1.25)�(1.26) extend
previous work in [JK2, FMM, Za] where similar problems for the flat-
space Laplacian have been considered. As in [FMM] we employ the
method of layer potentials. In addition to establishing invertibility results,
like (1.24), we also need to understand the mapping properties of the
operators (1.10)�(1.11), sending functions from Sobolev�Besov spaces on
�0 into functions in appropriate Sobolev�Besov spaces in 0. We do this in
Sections 6�8.

We outline the structure of the rest of this paper. In Section 2, following
[MT, MMT], we include a discussion of the nature of the main singularity
of the fundamental solution E(x, y). In Section 3 we establish some useful
interior estimates for null-solutions of the operator L. In Sections 4�5 we
collect basic definitions and several important properties of Sobolev and
Besov spaces, as well as atomic Hardy spaces. Mapping properties for
Newtonian potentials are presented in Section 6. In Sections 7�8 we then
establish a number of useful results for single and double layer potential
operators on Sobolev�Besov spaces.

Two endpoint results for the Poisson problem for L (with Neumann and
Dirichlet boundary conditions, respectively) are studied in Sections 9�10.
Then, in Section 11, invertibility results for boundary layer potentials,
including (1.24), are presented. Subsequently, these are used in Sec-
tions 12�13 to solve the general Poisson problem for L, respectively with
Neumann and Dirichlet boundary conditions, for data in Sobolev�Besov
spaces. Applications to complex powers of the Laplace�Beltrami operator
(with either homogeneous Dirichlet or homogeneous Neumann boundary
conditions) in an arbitrary Lipschitz domain are presented in Section 14.
These extend results on the flat, Euclidean case given in [JK2, JK3, MM].

As mentioned above, some of our arguments require more regularity of
the metric tensor than the Lipschitz condition. For example, most of our
scalar results are obtained under the assumption that

gjk # C1+#, some #>0. (1.27)

Some of our arguments, as in [MMT], need

gjk # L r
2 , some r>n, (1.28)
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and we shall occasionally require that

gjk # Lr
2 , some r�2n. (1.29)

We would like to stress that, for all our main results, the assumption (1.27)
suffices. Nonetheless, we will explicitly state which of these hypotheses we
need in each segment of the analysis.

In closing, let us point out that, for the results that we have in mind,
such as the well posedness of (1.25)�(1.26), some smoothness of the metric
tensor is required. More specifically, the condition gjk # L� (\ j, k) is,
generally speaking, not enough in order to guarantee, e.g., the well-posed-
ness of the L p-Poisson problem (1.25) (with s :=1&1�p) for p in some a
priori given open interval containing 2 (even when the underlying domain
is smooth). This can be seen from an adaptation of an example given in
Section 5 of [Me]; we omit the details here. The interested reader is also
referred to Propositions 1.7�1.10 in [Ta2, Chap. 3] for some related
results.

2. ESTIMATES ON THE FUNDAMENTAL SOLUTION

Retain the hypotheses made in Section 1 on M. As for the metric tensor

g=:
j, k

gjk dxj �dxk , (2.1)

unless otherwise stated, in this section we will assume that the coefficients
(gjk) satisfy (1.28), i.e.,

g # Lr
2(M, Hom(TM�TM, R)), for some r>n=dim M, (2.2)

where TM is the tangent bundle of M.
As mentioned in the introduction, we will primarily study the Laplace

operator on scalar functions, but some constructions involving the Hodge
Laplacian on differential forms will arise, and in this section we work in the
context of forms.

Let 4lTM, l # [0, 1, ..., n], stand for the l-th exterior power of the
cotangent bundle T*M. Its sections consist of l-differential forms. If
(x1 , ..., xn) are local coordinates in an arbitrary coordinate patch U on M
and u # 4lTM then u | U=� |I | =l uI dxI, where the sum is performed over
ordered l-tuples I=(i1 , ..., il), 1�i1<i2< } } } <il�n and, for each such I,
dxI :=dxi1

7 } } } 7 dx il
. Here, of course, the wedge stands for the usual

exterior product of forms, while |I | denotes the cardinality of I.
The Hermitian structure in the fibers on TM extends naturally to T*M

by setting (dxj , dxk) x :=g jk (x). The latter further induces a Hermitian
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structure on 4lTM by selecting [|I] |I | =l to be an orthonormal frame in
4lTM provided [|j]1� j�n is an orthonormal frame in T*M (locally).
Note that

(dxI, dxJ) x=det((gij (x)) i # I, j # J). (2.3)

Recall that the exterior derivative operator d is given locally by

d= :
n

j=1

�
�x j

dxj 7 (2.4)

and denote by $ its formal adjoint with respect to the metric induced by
(2.3). The latter acts on a differential form u # 4lTM, locally written as
u |U=� |I |=l uI dxI, by $u=� |I |=l&1 ($u)I dxI where, for each I,

($u)I :=& :
|J |=l

:
j, k

g jk=J
jI

�uJ

�xk
+ :

|K |=l&1

:
j, k, r, s

=rK
jI g jk1 s

rkusK in U.

(2.5)

Here, for 1� j, k, s�n,

1s
jk := 1

2 :
t

gst \�gtj

�xk
+

�gtk

�x j
&

�g jk

�xt + (2.6)

are the Christoffel symbols. Also, for any two ordered arrays J, K, the
generalized Kronecker symbol =J

K is given by

=J
K :={det(($j, k) j # J, k # K),

0,
if |J |=|K |,
otherwise,

(2.7)

where, as usual, $j, k :=1 if j=k, and zero if j{k.
Denote by 2l := &d$&$d the Hodge�Laplacian on l-forms, l #

[0, 1, ..., n] and fix some positive, not identically zero function V # C �(M ).
Recall from [MMT] that under these conditions, the operator L :=
2l&V, acting on suitable spaces of l-forms has an inverse, (2l&V)&1,
whose Schwartz kernel, El(x, y), is a symmetric double form of bidegree
(l, l).

In local coordinates, in which the metric tensor is given by (2.1), we can
set

el
0(x& y, y) := Cn \:

j, k

g jk ( y)(x j& y j)(xk& yk)+
&(n&2)�2

1l(x, y) (2.8)
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for appropriate C=Cn , where 1l is the double form of bidegree (l, l)
given by

1l(x, y) :={ :
|I |=l

:
|J |=l

det((g ij ( y)) i # I, j # J) dxI�dyJ, if l�1,

1, if l=0.

(2.9)

Note that el
0(z, y) is smooth and homogeneous of degree &(n&2) in

z # Rn"0 and C2+# in y, for some #>0. Then define the remainder el
1(x, y)

so that

El(x, y) - g( y)=el
0(x& y, y)+el

1(x, y). (2.10)

In the theorem below we collect useful estimates for el
1(x, y) and its

derivatives. These estimates follow from Propositions 2.5 and 2.8 of
[MMT].

Theorem 2.1. For each l # [0, 1, ..., n] and each = # (0, 1), the remainder
el

1(x, y) satisfies

|{ j
x {k

y el
1(x, y)|�C= |x& y|&(n&3+ j+k+=), (2.11)

for each j, k # [0, 1].
Furthermore, for l=0 the same conclusion is valid under the (weaker)

hypothesis (1.27) on the metric tensor.

In the sequel, we shall also need information about the ``commutators''
between d, $ on the one hand and the forms El(x, y) on the other hand.
This is made precise in the proposition below, which is taken from
Section 6 of [MMT].

Proposition 2.2. There exists a double form Rl(x, y) of bidegree
(l, l+1) so that

Rl # C 1+#
loc ((M_M"diag) _ [(x, y): x � supp dV]), some #>0,

|{ j
x {k

y Rl(x, y)|�C |x& y| &(n&4+ j+k), 0� j, k�1,

(2.12)
and so that

$x(El+1(x, y))=dy(El(x, y))+Rl(x, y). (2.13)

Furthermore,

dx(El(x, y))=$y(El+1(x, y))&Rl( y, x). (2.14)
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We shall occasionally also use Rl to denote the boundary integral
operator with kernel Rl(x, y), that is,

Rl f (x) :=|
�0

(Rl(x, y), f ( y)) d_( y), f # L p(�0, 4l+1TM ). (2.15)

Also, set R t
l for the analogous operator with kernel Rl( y, x).

Next, let 0 be a Lipschitz domain in M and denote by Sl the single layer
potential operator on �0 with kernel El(x, y), i.e.,

Sl f (x) :=|
�0

(El(x, y), f ( y)) d_( y), x # M"�0, (2.16)

where f # L p(�0, 4lTM ). Note that at the level of scalar functions, i.e.,
when l=0, this agrees with (1.12). Also, (2l&V) Sl f =0 in M"�0.
Finally, set Sl f :=Sl f |�0 for l=0, 1, ..., n.

3. INTERIOR ESTIMATES

In this section we derive interior estimates (L p-style) for elliptic systems
of PDEs. General standard references are [ADN, DN]. Here we obtain
quite sharp estimates for operators whose coefficients have the limited
regularity described by (3.2) below.

To proceed, let L be a second order, elliptic differential operator in a
compact Riemannian manifold M, locally given by

Lu=:
j, k

�j A jk (x) �k u+:
j

B j (x) �j u&V(x) u. (3.1)

Above, A jk :=(a:;
jk ):, ; , B j :=(b:;

j ):, ; and V :=(v:;):, ; are matrix-valued
functions with entries satisfying

a:;
jk # Lip, b:;

j # Lr
1 , v:; # Lr, for some r>n, (3.2)

We note that the Laplace�Beltrami operator on scalar functions satisfies
(3.2) when the metric tensor is Lipschitz. Also, the Hodge Laplacian 2l on
l-forms, for 1�l�n&1, satisfies (3.2) if the metric tensor satisfies (1.28).

Our first proposition is a local regularity result that sharpens part of
Proposition 3.3 in [MT].

Proposition 3.1. Let O be an open subset of M, and assume r�(r&1)<
p�q<r. Then

u # L p
loc(O), Lu # Lq

loc(O) O u # Lq
2, loc(O), (3.3)
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and natural estimates hold. If one strengthens the hypotheses in (3.2) to

a:;
jk # C1+#, b:;

j # C1+#, #>0, v:; # L�, (3.4)

then (3.3) holds for any q # (1, �) with the hypothesis u # L p
loc(O) weakened

to u # L1
loc(O).

Proof. We first treat (3.3) when the hypothesis on u is strengthened to
u # L p

{, loc(O) for all {<1. For notational simplicity, we use L p
s in place of

L p
s, loc(O), etc. Recall that S m

\, $ stands for Ho� rmander's classes of symbols.
Since we find it necessary to work with symbols which only exhibit a
limited amount of regularity in the spatial variable (while still C� in the
Fourier variable) we define

p(x, !) # Lip S m
\, $ � |D;

! p(x, !)|�C;(!) m&\ |;|, and

&D;
! p( } , !)&Lip(Rn)�C;(!) m&\ |;|+$. (3.5)

We also denote by OPLip S m
\, $ the corresponding class of pseudodifferen-

tial operators p(x, D) with symbols p(x, !) # Lip S m
\, $ , and by O3 PLip S m

\, $

the class of operators q(D, x) with symbols q(!, y)= p( y, !) when p(x, !) #
Lip S m

\, $ .
Turning to the problem at hand, we use a symbol decomposition on the

first-order differential operator Aj :=�k A jk (x) �k , of a sort introduced by
[KN, Bo] (cf. also the exposition in [Ta]). Picking $ # (0, 1), write

Aj=A*
j +Ab

j , where A*
j # OP S 1

1, $ and Ab
j # OPLip S 1&$

1, $ .

(3.6)

Then set L* :=� �jA*
j # OP S 2

1, $ , elliptic, and denote by E* # OP S &2
1, $

a parametrix of L*. Make all pseudodifferential operators properly sup-
ported. We have, on O,

u=E *f &:
j

E* �j Ab
j u&:

j

E*B j �ju+E *Vu, mod C�, (3.7)

where f :=Lu. Note that the hypotheses imply E*f # Lq
2 .

Next we shall need mapping properties for pseudodifferential operators
whose symbols have a limited amount of smoothness in the spatial
variables. Concretely, the result that is relevant for us here reads as follows.
If 1<p<� and $ # (0, 1) then

p(x, !) # Lip S m
1, $ O p(x, D): L p

s+m � L p
s , &(1&$)<s�1. (3.8)
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When s<1, this is a special case of results in [Bou] (cf. also Proposition
2.1.E in [Ta]). The case when s=1 requires a separate analysis, which we
now give.

To prove (3.8) with s=1 it suffices to take m=&1. We need to show
that

p(x, !) # Lip S &1
1, $ , u # L p O Dj ( p(x, D) u) # L p. (3.9)

If D j falls on u, the estimate is clear from standard results. If Dj falls on the
coefficients of p(x, D), we need only note that

p(x, !) # L�S &a
1, $ , a>0 O p(x, D): L p � L p, 1�p��, (3.10)

which follows from elementary integral kernel estimates. This finishes the
justification of (3.8).

Going further, based on the discussion above we have

\v # L p
{ , 0<{�2&$ O Ab

j v # L p
{&1+$

O E*�j Ab
j v # L p

{+$ . (3.11)

In order to continue, we need a multiplication result to the effect that

Lr
1 } L p

{&1
/�L p*

{&1 (3.12)

whenever

max[0, n(1�p+1�r&1)]<{�1, n<r<�, and 1<p*<p<�.

(3.13)

This is a special case of [RS, Theorem 1, p. 171]. Hence, from (3.2) and
(3.12), it follows that

u # L p
{ , \{<1 O E*B j �ju # L p

{+1 , \{<1. (3.14)

Indeed, we only need to check that { # (0, 1) can be chosen so that
{>n(1�p+1�r&1), i.e., that 1�n>1�p+1�r&1. Nonetheless, the largest
right side in this last inequality occurs when pz1 and rzn, and that is 1�n.
A direct inspection shows that the limiting case of (3.14) corresponding to
{=1 is also true.

Going further, u # L p
{ and V # Lr imply that Vu # Lq with 1�q :=1�p+

1�r&{�n and, hence, E *Vu # Lq
2

/�L p
{+$ , as long as $ # (0, 1) and

r>max [ p, n]. Thus, at this stage we see that the right side of (3.7)
belongs to L p

{+$ and so does u. This is an improvement of regularity for u
and the argument can be iterated a finite number of times, to produce the
conclusion in (3.3) in the case under discussion.
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To treat the case {=0, i.e., when u # L p, we apply symbol smoothing to
the first order differential operator � j �j A jk, which this time we denote
Ak=Ak (D, x) # O3 PLip S 1

cl . Symbol smoothing produces

Ak=A*
k +Ab

k , A* # O3 P S 1
1, $=OP S 1

1, $ , Ab
k # O3 PLip S 1&$

1, $ .

(3.15)

Note that O3 PLip S m
1, $ consists of adjoints of elements of OPLip S m

1, $ , so
instead of (3.8) we have

p(!, y) # Lip S m
1, $ O p(D, x): L p

s � L p
s&m , &1�s<1&$. (3.16)

This time, let E* # OP S &2
1, $ denote a parametrix for � A*

k �k . Then, if
u # L p and Lu= f # Lq we have

u=E *f &:
k

E *Ab
k �k u&:

j

E*B j �ju+E*Vu, mod C �. (3.17)

Now

u # L p O Ab
k �ku # L p

&2+$ O E*Ab
k �ku # L p

$ . (3.18)

To treat terms like E*B j�ju, note that �j u # L p
&1 and B j # Lr

1 for each j.
Now, the inclusion

L p
&1 } Lr

1
/�L p

&1 (3.19)

is true for r�(r&1)<p<�, as long as r>n. Thus, E*B j�ju # L p
1 . Also,

Vu # L p* where 1�p* :=1�r+1�p, by Ho� lder's inequality so that E*Vu #
L p*

2
/�L p

1 , by Sobolev's embedding theorem.
We see that the right side of (3.17) then belongs to L p

$ , if $ # (0, 1), so
u # L p

$ for $<1. This reduces our problem to the case already treated, so
(3.3) is established.

The rest of the proposition, with stronger hypotheses on the coefficients
of L and weaker hypotheses on u, has a similar proof. In fact, to get
started, it suffices to assume u # L1+=

&$, loc , for some (small) =, $>0. K

We now produce some weighted estimates, which will be very useful for
subsequent analysis.

Proposition 3.2. Let 0 be a Lipschitz domain in M and take s # [0, 1],
r�(r&1)<p<r. For u # L p

2, loc(0) satisfying Lu=0 in 0 we have, under the
hypothesis (3.2),
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|
0

dist(x, �0)(1&s) p |{2u(x)| p d Vol(x)

�C |
0

dist(x, �0)&sp |{u(x)| p d Vol(x)+C |
0

|u| p d Vol. (3.20)

Proof. Denote by Qr (x) the cube in Rn centered at x and whose side
length is r. We claim that for each arbitrary, fixed x0 # 0 and 0<\<
16
9 n&1�2 dist(x0 , �0) there holds

|
Q\(x0)

|{2u| p d Vol�C\&p |
Q9\�8(x0)

|{u| p d Vol+C |
Q9\�8(x0)

|Vu| p d Vol.

(3.21)

Passing from (3.21) to (3.20) is done by multiplying both sides with an
appropriate power of \ and summing over cubes in a Whitney decomposi-
tion of 0. Specifically, let [Qi] i # I be an open covering of 0 with cubes
Qi �0 so that 9

8Qi �0, dist(Q i , �0)r\i :=diam Qi and the collection
[ 9

8 Qi] i # I has the finite intersection property; cf. [St]. Then, applying (3.21)
to each Qi , multiplying both sides by \ (1&s) p

i and summing up the resulting
inequalities yields a version of (3.20) with the only difference that, in the
current scenario, the last integral is &Vu& p

Lp(0) .
To further transform this we use Ho� lder's inequality and a Sobolev-type

estimate to write

\|0
|Vu| p d Vol+

1�p

�C \|0
|u| p* d Vol+

1�p*

�C \|0
|{u| p d Vol+

1�p

+\|0
|u| p d Vol+

1�p

, (3.22)

where 1�p* :=1�p&1�r. Note that for the second estimate to hold we need
1�p�p*�� and 1�p&1�p*<1�n (cf., e.g., [GT, Lemmas 7.12 and
7.16]). These are true since we are assuming p # (1, r) and r>n. Now,
based on the above discussion, (3.22) can be used to conclude (3.20).

To prove (3.21), use x0 as the center of a coordinate system and, as in
[MT, MMT], introduce the dilation operators v\(x) :=v(\x), x # Q9�8 :=
Q9�8(x0). Thus, if Lu=0, then u\ satisfies the equation

�j A jk
\ �ku\+\B j

\ �ju\= f\ , (3.23)
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where

A jk
\ (x) :=(a:;

jk (\x)):, ; ,

B j
\(x) :=(b:;

j (\x)):, ; , (3.24)

V\(x) :=(v:;(\x)):, ; ,

and

f\ :=\2V\u\ . (3.25)

Furthermore, Eq. (3.23) holds on Q9�8 , for \ in some interval (0, \0], on
which the collection A jk

\ is uniformly Lipschitz and \B j
\ is bounded in Lr

1 ,
since r>n.

The regularity result in Proposition 3.1 then gives, as long as
p # (r�(r&1), r),

|
Q1

|{2u\ | p d Vol�Cp |
Q9�8

[| f\ | p+|u\ | p] d Vol, (3.26)

for any solution to (3.23) on Q9�8 . Now if u\ solves (3.23), so does u\&a
for any constant (vector) a, so (3.26) holds with u\ replaced by u\&a, for
any a. Take a to be the average of u\ on Q9�8 and use Poincare� 's inequality

|
Q9�8

|u\&a| p d Vol�Cp |
Q9�8

|{u\ | p d Vol, (3.27)

to get

|
Q1

|{2u\ | p d Vol�Cp |
Q9�8

| f\ | p d Vol+Cp |
Q9�8

|{u\ | p d Vol, (3.28)

for any solution u\ to (3.23) on Q9�8 . Now, if Lu=0, then u\ satisfies (3.23)
with f\ given by (3.25), so we have

|
Q1

|{2u\ | p d Vol�Cp |
Q9�8

|{u\ | p d Vol+Cp \2p |
Q9�8

|V\u\ | p d Vol.

(3.29)

In turn, this estimate is equivalent to (3.21) and the proof of (3.20) is
finished. K
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Proposition 3.3. If we strengthen (3.2) to

a:;
jk # Lip, b:;

j # Lr
1 , v:; # Lr, for some r�2n, (3.30)

then the conclusion in Proposition 3.2 holds for 1�p<r.

In passing, let us point out that (3.30) is automatically fulfilled by the
Hodge�Laplacian 2l , 1�l�n, if the metric tensor satisfies (1.29), and by
2&V on scalars given (1.27).

Proof. Let 1�p�r�(r&1) and let q # (r�(r&1), r) be arbitrary. In this
case, we know by Proposition 3.1 that u # Lq

loc(0), Lu # Lq
loc(0) O u #

Lq
2, loc(0). Ho� lder's inequality plus a quantitative form of this implication

give

\|Q1

|{2u\ | p d Vol+
1�p

�C \|Q9�8

[| f\ | q+|u\ |q] d Vol+
1�q

, (3.31)

for any solution to (3.23). Again we can replace u\ by u\&a. This time use

\|Q9�8

|u\&a| q d Vol+
1�q

�C \|Q9�8

|{u\ |q* d Vol+
1�q*

, (3.32)

provided

1�q*�q�� and
1

q*
&

1
q

<
1
n

(3.33)

(see, e.g., [GT, Lemmas 7.12 and 7.16]), to get that, for any solution to
(3.23),

\|Q1

|{2u\ | p d Vol+
1�p

�C \|Q9�8

|{u\ |q* d Vol+
1�q*

+C \|Q9�8

| f\ |q d Vol+
1�q

.

(3.34)

Thus, if (3.25) holds, we have

\|Q1

|{2u\ | p d Vol+
1�p

�C \|Q9�8

|{u\ |q* d Vol+
1�q*

+C\2 \|Q9�8

|V\u\ |q d Vol+
1�q

. (3.35)
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Now use

\|Q9�8

|V\u\ |q d Vol+
1�q

�C\&n�r \|Q9�8

|u\ |q~ d Vol+
1�q~

�C\&n�r \|Q9�8

|{u\ | p+|u\ | p d Vol+
1�p

,

(3.36)

where 1�q~ :=1�q&1�r and the last inequality is Sobolev's. For this to hold,
we need

1�p�q~ �� and
1
p

&
1
q~

<
1
n

. (3.37)

Granted (3.37) and the possibility of choosing q so that

p=q* (3.38)

we get

|
Q1

|{2u\ | p d Vol�C |
Q9�8

|{u\ | p d Vol+C\(2&n�r) p |
Q9�8

|u\ | p d Vol,

(3.39)

and, further,

|
Q\

|{2u| p d Vol�C\&p |
Q9\�8

|{u| p d Vol+C\&np�r |
Q9\�8

|u| p d Vol.

(3.40)

As before, this latter inequality leads to

|
0

dist( } , �0) (1&s) p |{2u| p d Vol

�C |
0

dist( } , �0)&sp |{u| p d Vol

+C |
0

dist( } , �0) (1&s&n�r) p |u| p d Vol (3.41)

and, further, to (3.20), via the elementary estimate

|
0

dist ( } , �0)&:p |F | p d Vol�C |
0

|F | p d Vol+C |
0

|{F | p d Vol, (3.42)
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which is valid for 1�p<� and :<1�p. For this program to work it
suffices to have

n
r
<

1
p

. (3.43)

The conclusion is that (3.20) holds for 1�p�r�(r&1) if, given such a p,
one can choose q # (r�(r&1), r) so that (3.33), (3.37), (3.38), and (3.43) are
satisfied. Some elementary algebra shows that this is indeed the case
provided r�2n. K

For later reference we record below two more related estimates.

Proposition 3.4. Assume p # (r�(r&1), r) and let u # L p
loc(0) satisfy

Lu=0 in 0. Here L is as in (3.1) and its coefficients are as in (3.2). Then,
for any ball B\(x) with x # 0, 0<\< 1

2 dist(x, �0), there holds

\ &{u&L�(B\(x))�C \ 1
\n |

B2\(x)
|u(z)&u(x)| p d Vol(z)+

1�p

+C\2&n�r |u(x)|. (3.44)

In particular, for p as above, for any : # R we have

|
0

dist(x, �0):+ p |{u(x)| p d Vol(x)�C |
0

dist(x, �0): |u(x)| p d Vol(x).

(3.45)

These results also hold for 1�p<� if the coefficients of L satisfy (3.4).

Proof. Note that under the current smoothness assumptions for the
coefficients of L, in each coordinate patch O, Proposition 3.1 gives

u # L p
loc(O), Lu # Lq

loc(O) O u # C 1+=
loc (O) some =>0, if q>

n
2

.

(3.46)

A natural estimate accompanies (3.46) also. As before, we apply (3.46) to
the equation

�j A jk
\ �k (u\&a)+\B j

\ �j (u\&a)+\2V\(u\&a)= f\ , (3.47)

where, this time, f\ :=a\2V\ and a # R. Note that [\2V\ ; \ # (0, \0]] is
bounded in Lr and that & f\&Lq(O)�Ca\2&n�r. Choosing a :=u(x) yields
(3.44) after a rescaling.
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Finally, (3.45) is a simple consequence of (3.44), and the last part
of the statement follows similarly with the help of (the last part in)
Proposition 3.1. K

4. SOBOLEV AND BESOV SPACES ON LIPSCHITZ DOMAINS

The theory of Besov spaces and Sobolev spaces on Lipschitz domains in
Euclidean space has been thoroughly treated in [JK2]. Other references
for various aspects of the theory include [BL, Pe, BS, Tr, Gr]. We recall
some of these results here, to fix notation, and we indicate extensions to the
manifold setting.

We recall that, if 0 is a Lipschitz domain in Rn, then, for 1�p, q<�
and 0<s<1, one definition of the Besov space B p, q

s (�0) is the collection
of all measurable functions f on �0 such that

& f &B s
p, q(�0) :=& f &Lp(�0)

+\|�0 \|�0

| f (x)& f ( y)| p

|x& y| (n&1+sq) p�q d_( y)+
q�p

d_(x)+
1�q

<�.

(4.1)

In the special situation when p=q, it is customary to simplify the notation
a bit and write B p

s (�0) in place of B p, p
s (�0).

The case when p=� for the ``diagonal'' scale corresponds to the non-
homogeneous version of the space of Ho� lder continuous functions on �0.
More precisely, B�

s (�0), 0<s<1, is defined as the Banach space of
measurable functions on f so that

& f &Bs
�(�0) :=& f &L�(�0)+ sup

x{y
x, y # �0

| f (x)& f ( y)|
|x& y| s <�. (4.2)

Also, recall that B p
&s(�0) :=(Bq

s (�0))* for each 0<s<1, 1<p�� and
q=(1& 1

p)&1. Let Lip (�0) denote the collection of all Lipschitz functions
on �0.

Next, we consider the case when 0 is a Lipschitz domain in the compact
Riemannian manifold M. It is then natural to say that f belongs to
B p, q

s (�0) for some 1�p, q�� and 0<s<1 if (and only if) for any
smooth chart (O, 8) and any smooth cut-off function % # C �

comp(O), ( f%) b
8 # B p, q

s (8(O & �0)). The following elementary lemma allows for transfer-
ring many results about Besov spaces originally proved in the classical
Euclidean setting to the case of boundaries of Lipschitz domains in
Riemannian manifolds.
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Lemma 4.1. Let (Oi , 8i) i # I be a finite set of local bi-Lipschitz charts so
that �0��i # I Oi and 8i (�0 & Oi)=Rn&1. Also, consider (/i) i # I a partition
of unity subordinate to (Oi) i # I . Finally, for a measurable function f on �0
denote by Fi the extension by zero outside its support of ( f/i) b 8i , for each
i # I.

Then, for 1�p, q�� and 0<s<1, the following two statements are
equivalent:

(1) f # B p, q
s (�0);

(2) Fi # B p, q
s (Rn&1) for each i # I.

Moreover, if these conditions hold, then

& f &Bs
p, q(�0) r :

i # I

&Fi&Bs
p, q(Rn&1) . (4.3)

To illustrate the point made before the statement of this result we note
that from well known interpolation results in Rn the following can be
proved. First, recall that [ } , } ]% and ( } , } )%, p denote, respectively, the
brackets for the complex and real interpolation method (cf., e.g., [Ca, BL,
BS]).

Proposition 4.2. For 0<%<1, 1�p0 , p1 , q0 , q1�� and 0<s0 ,
s1<1, there holds

[B p0 , q0
s0

(�0), B p1 , q1
s1

(�0)]%=B p, q
s (�0), (4.4)

where 1�p :=(1&%)�p0+%�p1 , 1�q :=(1&%)�q0+%�q1 and s :=(1&%) s0+
%s1 .

A similar result is valid for &1<s0 , s1<0, and for the real method of
interpolation.

Another result of interest for us is an atomic characterization of the
Besov space B1

s(�0). First, we shall need a definition. For 0<s<1, a B1
s(�0)-

atom is a function a # Lip(�0) with support contained in Br (x0) & �0 for
some x0 # �0, r # (0, diam 0], and satisfying the normalization conditions

&a&L�(�0)�rs&n+1, &{tan a&L�(�0)�rs&n. (4.5)

Here {tan stands for the tangential gradient operator on �0 and,
throughout the paper, distances on M are considered with respect to some
fixed, smooth background Riemannian metric g0 . The atomic theory of
[FJ] lifted to �0 gives the following.
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Proposition 4.3. Let 0<s<1 and f # B1
s (�0). Then there exist a

sequence of B1
s (�0)-atoms [aj] j and a sequence of scalars [*j]j # l 1 such

that

f = :
j�0

*j aj , (4.6)

with convergence in B1
s (�0), and

& f &Bs
1(�0) rinf { :

j�0

|*j | : f= :
j�0

*j aj , aj B1
s(�0)-atom, (*j) j # l 1= . (4.7)

In the sequel, we shall also need to work with the Besov spaces B1
&s(�0),

s # (0, 1). Inspired by the corresponding atomic characterization from
[FJ], set

B1
&s(�0) :=C+{ f = :

j�0

*j a j : aj B1
&s(�0)-atom, (*j) j # l 1= , (4.8)

where the series converges in the sense of distributions, and C is the space
of constant functions on �0. In this context, a B1

&s(�0)-atom, 0<s<1, is
a function a # L�(�0) with support contained in Br (x0) & �0 for some
x0 # �0, 0<r<diam 0, and satisfying

|
�0

a d_=0, &a&L�(�0)�r&s&n+1. (4.9)

Furthermore, for f # B1
&s(�0), 0<s<1,

& f &B1
&s(�0) :=inf {&g&L�+ :

j�0

|* j | : f= g+ :
j�0

*jaj= , (4.10)

where g # C, a j 's and (*j) j are as in (4.8). Parenthetically, observe that
{tan : B1

s (�0) � B1
s&1(�0) is a bounded operator; this is trivially checked

using the above atomic decompositions.
Next, we include a brief discussion of the Besov and Sobolev classes in

the interior of a Lipschitz domain 0/M. First, for 1�p, q��, s>0, the
Besov space B p, q

s (M ) is defined by localizing and transporting via local
charts its Euclidean counterpart, i.e., B p, q

s (Rn) (for the latter see, e.g., [Pe],
[BL, BS, Tr, JW]). Going further, B p, q

s (0) consists of restrictions to 0 of
functions from B p, q

s (M). This is equipped with the natural norm, i.e.,
defined by taking the infimum of the & }&Bs

p, q(M ) -norms of all possible
extensions to M. The spaces B p, p

s (0) will be abbreviated as B p
s (0).
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Using Stein's extension operator and then invoking well known real
interpolation results (cf., e.g., [BL]), it follows that for any Lipschitz
domain 0/M,

(B p0 , q0
s0

(0), B p1 , q1
s1

(0))%, p=B p, q
s (0) (4.11)

if 1�p=(1&%)�p0+%�p1 , 1�q=(1&%)�q0+%�q1 , s=(1&%) s0+%s1 , 0<%
<1, 1�p0 , p1 , q0 , q1��, s0 {s1 , s0 , s1>0.

A similar discussion applies to the Sobolev (or potential) spaces L p
s (0),

this time starting with the potential spaces L p
s (M ) (lifted to M from Rn via

an analogue of Lemma 4.1; for the latter context see, e.g., [St, BL]). For
s # R we define the space L p

s, 0(0) to consist of distributions in L p
s (M )

supported in 0� (with the norm inherited from L p
s (M )). It is known that

C�
comp(0) is dense in L p

s, 0(0) for all values of s and p.
Recall (cf. [JW]) that the trace operator

Tr: L p
s (0) � B p

s&1�p(�0) (4.12)

is well defined, bounded and onto if 1<p<� and 1
p<s<1+ 1

p . This also
has a bounded right inverse whose operator norm is controlled exclusively
in terms of p, s and the Lipschitz character of 0. Similar results are valid
for Tr: B p, q

s (0) � B p
s&1�p(�0). In this latter case we may allow 1�p��;

cf. [BL].
Next, if 1<p<� and 1

p<s<1+ 1
p , the space L p

s, 0(0) is the kernel of the
trace operator Tr acting on L p

s (0). This follows from the Euclidean result
[JK2, Proposition 3.3]. In fact, for the same range of indices, L p

s, 0(0) is
the closure of C �

comp(0) in the L p
s (0) norm.

For positive s, L p
&s(0) is defined as the space of linear functionals on test

functions in 0 equipped with the norm

& f &Lp
&s(0) :=sup[ |( f, g) | : g # C �

comp(0), &g~ &Ls
q(M)�1], (4.13)

where tilde denotes the extension by zero outside 0 and 1
p+ 1

q=1. For all
values of p and s, C�(0) is dense in L p

s (0). Also, for any s # R,

Lq
&s, 0(0)=(L p

s (0))* and L p
&s(0)=(Lq

s, 0(0))*. (4.14)

For later reference, let us point out that

L p
s&1+1�p(0)=(Lq

&s+1�q(0))*, Lq
&s+1�q(0)=(L p

s&1+1�p(0))*, (4.15)

for 0<s<1 and 1<p, q<� with 1
p+ 1

q=1. These follow from (4.14) and
the fact that L p

:, 0(0)=L p
:(0) for 0�:< 1

p , 1<p<� (the latter can be
easily deduced from [JK2, Proposition 3.5]).
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We shall also need the fact that the exterior derivative operator

d: L p
s (0, 4lTM ) � L p

s&1(0, 4l+1TM ) (4.16)

is well defined and bounded for 0�l�n, 1<p<� and s�0. See, e.g.,
[FMM] for a discussion. A similar result holds for $, the formal adjoint
of d, provided the metric tensor on M is sufficiently smooth. Here,
L p

s (0, 4lTM ) stands for the space of l-forms on 0 with coefficients in
L p

s (0).
As for L p

s (�0), 1<p<�, &1�s�1, define this to be L p(�0) when
s=0 and [ f # L p(�0); {tan f # L p(�0)] when s=1. The case when 0<s
<1 can be handled by defining L p

s (�0) by complex interpolation:

L p
s (�0) :=[L p(�0), L p

1(�0)]s . (4.17)

Finally, when &1�s<0, set

L p
s (�0) :=(Lq

&s(�0))*,
1
q

+
1
p

=1.

Going further, it is well known that L p
s (0), L p

s, 0(0), L p
&s(0), L p

&s, 0(0),
L p

s (�0), and L p
&s(�0) are complex interpolation scales for 1<p<� and

nonnegative s (in the case of the last two scales we also require that s�1).
Also, the Besov and Sobolev spaces on the domain are related via real
interpolation. For instance, we have the formula

(L p(0), L p
k (0))s, q=B p, q

sk (0) (4.18)

when 0<s<1, 1<p<�, and k is a nonnegative integer. It is also known
that for s>0,

1<p�2 O B p, p
s (0)/�L p

s (0)/�B p, 2
s (0),

(4.19)
2�p<� O B p, 2

s (0)/�L p
s (0)/�B p, p

s (0).

Also, the same inclusions hold with 0 replaced by �0.
A more detailed discussion and further properties of these spaces, as well

as proofs for some of the statements in this paragraph for Euclidean
domains can be found in [BL, BS, JK2]. We consider next yet other
characterizations of membership in the classes of Sobolev and Besov
spaces, together with some of their consequences.
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Proposition 4.4. Let 0 be a Lipschitz domain in M and fix 1�p��,
k # [0, 1], and a function u in 0 so that { ju # L p

loc(0) for 0� j�k+1.
Then, for 0<s<1,

dist( } , �0)1&s |{k+1u|+ |{ku|+|u| # L p(0) O u # B p
k+s(0). (4.20)

Suppose next that 1<p<� and 0�s�1; in the case p>2 assume further
that s{1�p. Then

dist( } , �0)1&s |{k+1u|+ |{ku|+|u| # L p(0) O u # L p
k+s(0). (4.21)

Finally, if 0<s< 1
p<1, then

u # B p
k+s(0) O dist( } , �0)&s |{ku|+|u| # L p(0). (4.22)

Moreover, naturally accompanying estimates are valid in each case.

Proof. The implications (4.20)�(4.21) are proved in [JK2]. This was
done in the Euclidean setting but it can easily be adapted to manifolds.
Also, the implication (4.22) follows by observing that u # B p

k+s(0) entails
{ku # B p

s (0) and then invoking [Gr, Theorems 1.4.2.4 and 1.4.4.4]. K

We conclude this section with a discussion of membership in the classes
of Sobolev and Besov spaces for null-solutions of elliptic PDEs. First, we
need a few lemmas.

Lemma 4.5. Let L be as in (3.1) and assume that its coefficients satisfy
(3.2). Assume u # B p

s (0), for some p # (r�(r&1), r), s # (0, 1), and Lu=0 in
0. Then

dist( } , �0)1&s |{u| # L p(0). (4.23)

The same conclusion holds if p=�. Also, if the coefficients of L satisfy (3.4)
then (4.23) is actually true for 1�p��.

Proof. Note that it suffices to estimate dist(x, �0)1&s |{u(x)| for x near
�0. If 0<\<dist(x, �0) then, working in local coordinates, Proposition
3.4 gives

dist (x, �0) |{u(x)|�C \\sp |
B\(x)

|u(z)&u(x)| p

|z&x|n+sp dz+
1�p

+C dist(x, �0)2&n�r |u(x)| (4.24)
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so that

(dist(x, �0)1&s |{u(x)| ) p�C |
B\(x)

|u(z)&u(x)| p

|z&x| n+sp dz+C |u(x)| p. (4.25)

Since u # B p
s (0), this readily yields a local version of (4.23), near �0. Away

from �0, the desired conclusion follows from (3.45).
Next, if p=�, then (4.23) is a simple consequence of (3.44). The last

part of the statement of the lemma can be proved in a similar fashion. K

Lemma 4.6. Let L be as in (1.2), with Lipschitz metric tensor, and
assume that u # L p

s (0), with 1<p<� and 0�s�1, satisfies Lu=0 in 0.
Then

dist( } , �0)1&s |{u| # L p(0). (4.26)

Proof. First note that (4.26) is obvious when s=1 and that (the last
part in) Proposition 3.4 furnishes (4.26) when s=0. In particular, the
assignment u [ {u is continuous from H & L p(0) and H & L p

1(0) into the
weighted Lebesgue space L p(0, dist( } , �0) p d Vol) and L p(0), respectively,
where we set

H=[u # L p
loc(0) : Lu=0], (4.27)

a space that is independent of p # (1, �), by (the last part in) Proposition
3.1. Interpolating with change of measure (cf. [SW]) gives that the map

{: [H & L p(0), H & L p
1(0)]s � L p(0, dist ( } , �0) (1&s) p d Vol) (4.28)

is continuous for 0�s�1. At this stage, the desired result is a consequence
of the fact that

[H & L p(0), H & L p
1(0)]s=H & L p

s (0), 0�s�1. (4.29)

This concludes the proof of the lemma, modulo that of (4.29) which is
treated separately below. K

The result (4.29) is proven by an argument similar to one used in the
proof of Theorem 4.2 in [JK2], for L=20 , the flat-space Laplacian. We
present the argument here, in order to make clear what properties we need
on the metric tensor.

Lemma 4.7. Whenever the metric tensor is Lipschitz, the result (4.29) is
true for all p # (1, �).
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Proof. To begin with, note that the claim about (1.3) extends, via (the
last part in) Proposition 3.1, to include the fact that

L: L p
2(M ) � L p(M ) is an isomorphism \p # (1, �). (4.30)

Next, for j=0, 1, let E: L p
j (0) � L p

j (M ) denote Stein's extension operator,
and let R: L p

j (M ) � L p
j (0) denote restriction. Then set

D=LE: L p
j (0) � L p

j&2(M), G=RL&1: L p
j&2(M ) � L p

j (0). (4.31)

To justify the mapping property stated for G, note that (4.30) implies
L&1: L p(M ) � L p

2(M ), so by duality L&1: L p
&2(M ) � L p(M ), 1<p<�.

One sees that GD=I on L p
j (0), while Q :=DG satisfies Q2=Q and

f # L p
j&2(M ) O Qf =f on 0, i.e.,

I&Q: L p
j&2(M) � L p

j&2, 0(M"0� ), j=1, 2. (4.32)

Also, given u # L p
j (0) we have u # H if and only if Du # L p

j&2, 0(M"0� ) for
j=1, 2. With this set-up, [LM, Theorem 14.3] applies to give (4.29). K

We now present a result which for the flat-space Laplacian was
established in [JK2, Sect. 4].

Proposition 4.8. Let L be as in (1.2), with Lipschitz metric tensor, and
consider a function u so that Lu=0 in 0. Then, if 1<p<� and 0<s<1,

u # L p
s (0) O u # B p

s (0). (4.33)

Conversely, retain the same hypotheses and, in the case p>2, assume further
that s{1�p. Then

u # B p
s (0) O u # L p

s (0). (4.34)

Proof. This is a direct consequence of Lemmas 4.5�4.6 and Proposition
4.4. K

In order to state our last result in this section, recall that the nontangen-
tial maximal operator acts on a section u defined in the Lipschitz domain
0, by

u*(x) :=sup[ |u( y)| : y # #(x)], x # �0. (4.35)

Here, #(x)/0 is a suitable nontangential approach region with ``vertex'' at
x # �0.

Our aim is to relate L2-estimates on the nontangential maximal function
to membership in the Sobolev space L2

1�2 for null-solutions of L. We have
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Proposition 4.9. Consider L as in (3.1), a second order strongly elliptic,
formally self-adjoint operator so that

a:;
jk # C 1+#, #>0, b:;

j # Lr
1 , v:; # Lr, r>n. (4.36)

Then, for each u so that Lu=0 in 0, there holds

u # L2
1�2(0) � u* # L2(�0). (4.37)

Also, naturally accompanying estimates are valid.

Proof. We start with the right-to-left implication in (4.37). As a conse-
quence of the well-posedness of the Dirichlet problem for L&* (where the
real parameter * is assumed to be large) and the mapping properties of the
layer potential operators involved in the integral representation of the
solution, the estimate

|
0

dist(x, �0) |{u(x)|2 d Vol(x)�C |
�0

|u*|2 d_, (4.38)

uniformly in u satisfying Lu=0 in 0, has been established in [MMT]. See,
e.g., (3.55) and Corollary 3.2 in that paper. In concert with (4.19), this
readily yields the right-to-left implication in (4.37).

As for the opposite implication, since the problem has local character,
there is no loss of generality in assuming that 0 is small, e.g., contained in
some coordinate patch. Moreover, so we claim, it suffices to consider the
case when u, satisfying Lu=0 in 0, also belongs to C0(0� ) & L2

1(0) and, for
each =>0, prove the estimate

|
�0

|u|2 d_�C= |
0

(dist(x, �0) |{u(x)|2+|u(x)| 2) d Vol(x)+= |
�0

|u*|2 d_.

(4.39)

Hereafter we shall work in local coordinates and the constant C= is
supposed to depend exclusively on the Lipschitz nature of 0, = and L.

To justify the claim, let us show how (4.39) can be used to finish the
proof of the left-to-right implication in (4.37). Indeed, granted (4.36),
Lemma 4.5 and a simple limiting argument which utilizes an approximating
sequence 0jZ0 with bounded Lipschitz character lead to

sup
j

&u&L2(�0j )�C= &u&L2
1�2(0)+= &u*&L2(�0) . (4.40)
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In order to continue, we invoke an estimate from [MMT], to the effect
that

&u&L2(�0) r&u*&L2(�0) , (4.41)

uniformly for null-solutions u # C0(0� ) of L, with constants depending only
on the Lipschitz nature of 0 and L. This is a consequence of [MMT,
Theorem 3.1] (cf. especially the estimate (3.5) there) and has been
established under the requirement that the operator L satisfies the
non-singularity hypothesis:

\D(�M ) Lipschitz domain, u # L2
1, 0(D), Lu=0 O u=0 in D.

(4.42)

Let us assume for now that this is the case and explain how the proof of
the proposition can be finished.

With 0j in place of 0, (4.41) readily gives that, in our current setting,
&u*&L2(�0)rsup j &u&L2(�0j ) . Utilizing this back in (4.40) and choosing =
small enough, establishes the estimate &u*&L2(�0)�C(�0) &u&L2

1�2(0) , as
desired.

Finally, (4.39) can be established as [DKPV, Sect. 2]. The approach
devised in the aforementioned paper is sufficiently flexible, as it rests on the
following ingredients: (i) the assumptions of symmetry and strong
ellipticity for L, (ii) interior estimates for L, (iii) the existence of an
adapted distance function (see [DKPV, p. 1432�1433] for details), and (iv)
integrations by parts, Schwarz's inequality and the standard Carleson
estimate. All these are available in our case (cf. Section 3 for (ii)) and the
argument in [DKPV] can be adapted to our situation to yield (4.39). We
leave the details to the interested reader.

At this point we return to (4.42) and indicate how one can dispose of
this extra assumption. The first step is to observe that if L is negative-
definite on M then (4.42) is automatically verified. Indeed, if D/M is a
Lipschitz domain and u # L2

1, 0(D) is such that Lu=0 in D then, with tilde
denoting extension by zero outside D, we see that u~ # L2

1(M) satisfies
supp Lu~ ��D. In particular, (Lu~ , u~ ) =0 due to support considerations.
Since we are assuming L<0 on M, this forces u~ =0, as desired.

In the second step we shall show how L can be altered off 0 so that it
becomes negative-definite on M. In the process, we can (and will) assume
that 0 is very small (relative to L, in a sense made more precise below).
To this end, fix some constant A # (0, �) so that, in the current setting,
L&A is negative-definite on L2(M). Also, pick B>A and set Bj=Bj (x)=
B(1&/0j

) where, for some fixed p # 0, 0j=[x # M : dist(x, p)<1�j ].
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Here is the claim which finishes the proof of the proposition.

L&Bj is negative-definite on M for large j. (4.43)

Since this is a consequence of 0<(&L+Bj+A)&1<A&1 (all operators
considered on L2(M )) and standard functional analysis, it suffices to prove
that

(L&B j&A)&1 � (L&B&A)&1, in L2-operator norm,

as j � �. (4.44)

To see this, given f # L2(M ) set uj=(L&Bj&A)&1 f and u=
(L&B&A)&1 f. We have &uj&L2�& f &L2 . Also, the fact that

(L&A) uj=Bjuj+ f (4.45)

is bounded in L2(M ) entails &uj&L
1
2�C0 & f &L2 . Now (L&A)(u&uj)=

Bu&Bj uj=B(u&uj)+(B&Bj) uj which implies (L&A&B)(u&uj)=
(B&Bj) uj and, further,

&u&uj&L2�B&1 &(B&Bj) uj&L2 . (4.46)

Note that, generally speaking,

&(B&Bj) v&L2�$jB &v&L
1
2 , (4.47)

with $j � 0 as j � �. Hence

&u&uj&L2�B&1 &(B&Bj) uj&L2�C0$j & f &L2 , (4.48)

and (4.44) is proven. K

5. THE BANACH ENVELOPE OF ATOMIC HARDY SPACES

Fix an arbitrary Lipschitz domain 0 in M and for each p # ((n&1)�n, 1)
set s :=(n&1)( 1

p&1). Note that 0�s<1. A function a # L�(�0) is called
an H p(�0)-atom if ��0 a d_=0 and, for some boundary point x0 # �0 and
some 0<r<diam 0,

supp a��0 & Br (x0), &a&L�(�0)�r&(n&1)�p. (5.1)

Recall that C is the space of constant functions on �0. For
(n&1)�n<p<1 (and p=1, respectively) we recall that the atomic Hardy
space H p(�0) is defined as the vector subspace of (B�

s (�0)�C)* (and
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L1(�0), respectively) consisting of all linear functionals f that can be
represented as

f = :
j�0

*j aj , (*j) j # l p, aj 's are H p(�0)-atoms, (5.2)

in the sense of convergence in (B�
s (�0))* (and L1(�0), respectively). We

equip H p(�0) with the (quasi-) norm

& f &Hp(�0) :=inf {\ :
j�0

|*j | p+
1�p

: f= :
j�0

*j aj as in (5.2)= . (5.3)

We shall also need the localized version of H p(�0), i.e., h p(�0)�
(B�

s (�0))* defined by

hp(�0) :=H p(�0)+C=H p(�0)+Lq(�0), \q>1. (5.4)

As is well known,

(h p(�0))*={B�
s (�0),

bmo(�0),
if p<1,
if p=1.

(5.5)

See, e.g., [CW] for a more detailed account. It is also well known that

[h p(�0)](n&1)�n<p�1 _ [L p(�0)]1<p<� is an interpolation scale

for the complex method. (5.6)

See the discussion in [KM].
Next we discuss the ``minimal enlargement'' of h p(�0) to a Banach space,

its so-called Banach envelope. To define this properly, we digress momen-
tarily for the purpose of explaining a somewhat more general functional
analytic setting. A good reference is [KPR].

Let V be a locally bounded topological vector space, whose dual
separates points, and fix U a bounded neighborhood of the origin. Then,
with co A standing for the convex hull of a set A�V, the functional given
by

&x&V� :=inf[#>0; #&1x # co(U )] (5.7)

defines a (continuous) norm on V (any other such norm corresponding to
a different choice of U is in fact equivalent to (5.7)). Then, V� , the Banach
envelope of V, is the completion of V in the norm (5.7). Thus, V� is a well
defined Banach space, uniquely defined up to an isomorphism. Also, the
inclusion V/�V� is continuous and has a dense image. Furthermore, V
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and V� have the same dual; see [KPR]. Another useful observation is con-
tained in the next lemma (whose proof is an exercise).

Lemma 5.1. Let V1 , V2 be two topological vector spaces as above and
consider a bounded linear operator T: V1 � V2 . Then T extends to a bounded
linear operator T� : V� 1 � V� 2 with

sup
x

&T� (x)&V� 2
�&x&V� 1

inf[=>0 : T(U1)/=U2], (5.8)

where Uj /Vj is the bounded neighborhood with respect to which the norm
& }&V� j

has been defined, j=1, 2.
If, moreover, T is an isomorphism then so is T� .

Our main result in this section relates h� p(�0) to the atomic Besov spaces
B1

&s(�0), defined by (4.8)�(4.10). It is an improvement of [FMM,
Theorem 5.4].

Proposition 5.2. Let 0 be a bounded Lipschitz domain in M and fix
some index n&1

n <p<1. Then h� p(�0), the Banach envelope of h p(�0),
coincides with B1

&s(�0), where s=(n&1)( 1
p&1).

Proof. The crucial observation is that h� p(�0), as a subspace of
(B�

s (�0))*, is given by

C+{ f = :
j�1

*j aj in (B�
s (�0))*: (*j) j # l1, a j 's are H p(�0)-atoms= (5.9)

endowed with the norm

f [ inf {&g&L�(�0)+: |*j | : f= g+: *j a j , g # C, *j 's, aj 's as in (5.9)= .

(5.10)

For Euclidean domains this has been proved in [FMM] and the proof
given there readily adapts to our current setting. Now the desired conclu-
sion follows by noting that each H p(�0)-atom is in fact a B1

&s(�0)-atom,
granted that s=(n&1)( 1

p&1). K

We mention that Proposition 5.2 plus previously noted duality results
yield (B1

&s(�0))*=B�
s (�0), a special case of duality results that are

contained in [Tr, Theorem 2.11.2].

32 MITREA AND TAYLOR



6. NEWTONIAN POTENTIALS ON SOBOLEV AND
BESOV SPACES

Let the manifold M, the Lipschitz domain 0 and the potential V be as
in Section 1. The goal is to study the mapping properties on scales of
Sobolev�Besov spaces for the associated Newtonian potential operator

6l f (x) :=|
0

(El(x, y), f ( y)) d Vol( y), x # 0. (6.1)

In (6.1), f is a differential form of degree l # [0, 1, ..., n] in 0, and El(x, y)
is the Schwartz kernel of

(2l&V )&1 : L2
&1(M, 4lTM ) � L2

1(M, 4lTM ), (6.2)

as in Section 2. In other words, 6l=R(2l&V )&1 E, where E denotes
extension by 0 off 0 and R denotes restriction to 0.

Proposition 6.1. Assume the metric tensor satisfies (1.28). For each
l # [1, ..., n],

6l : (Lq
s+1(0, 4lTM ))* � L p

1&s(0, 4lTM ), \s # [&1, 1],

r�(r&1)<p, q<r, 1�p+1�q=1 (6.3)

and

6l : (Bq
s+1(0, 4lTM ))* � B p

1&s(0, 4lTM ), \s # (&1, 1),
(6.4)

r�(r&1)<p, q<r, 1�p+1�q=1,

are well defined, bounded operators.
For l=0 and under the (weaker) assumption that the metric tensor is

Lipschitz, (6.3)�(6.4) are valid for the full range 1<p, q<�.

Proof. Given our assumption on the metric, if s=&1 then (6.3) holds
for 1<p<r; see [MMT, Theorem 2.9]. The full range &1�s�1 is then
easily seen from this, duality and interpolation (note that 6l is formally
self-adjoint).

The assertion on Besov spaces is a corollary of the preceding result and
repeated applications of the method of real interpolation (together with the
corresponding duality and reiteration theorems).

Finally, the last part in the proposition follows much as before; this time,
however, we invoke (4.30). K
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7. SINGLE LAYER POTENTIALS ON SOBOLEV AND
BESOV SPACES

In this section we continue to retain the same hypotheses made in
Section 1 for M, 0 and V. Recall the fundamental solution El(x, y) for the
operator 2l&V and the single layer potential operator

Sl : (Lip(�0, 4lTM ))* � C 1+#
loc (0, 4lTM ), some #>0, (7.1)

defined by

Sl f (x) :=(El(x, } ) |�0 , f ) , x # 0, (7.2)

for each f # (Lip(�0, 4lTM ))*. Hereafter, ( } , } ) stands for the natural
duality pairing between a topological vector space and its dual (in the case
at hand, between Lip(�0, 4lTM ) and (Lip(�0, 4lTM ))*).

Our main result in this section summarizes the mapping properties of the
operator (7.1) on scales of Sobolev�Besov spaces.

Theorem 7.1. Assume the metric tensor satisfies (1.29) Then, for
1�p��, 0<s<1 and 1�l�n, the operator

Sl : B p
&s(�0, 4lTM ) � B p

1+1�p&s(0, 4lTM ) (7.3)

is well-defined and bounded. In fact, if 1<p<�, then

Sl : B p
&s(�0, 4lTM ) � L p

1+1�p&s(0, 4lTM ) (7.4)

is also a bounded linear mapping, so that \s # (0, 1), \p # (1, �),

&Sl f &B p
1+1p&s(0, 4lTM )+&Sl f &Lp

1+1p&s(0, 4lTM)

�C(0, s, p) & f &Bp
&s(�0, 4lTM) , (7.5)

uniformly for f # B p
&s(�0, 4lTM ).

In particular, if Tr stands for the trace map on �0, the operator
Sl :=Tr Sl has the property

Sl : B p
&s(�0, 4lTM ) � B p

1&s(�0, 4lTM ),

for 1�p��, 0<s<1, and 1�l�n.
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Finally, if l=0, the same results are valid for Sl under the assumption
that the metric tensor satisfies (1.27).

Handling Sl on Besov spaces utilizes size estimates for the integral kernel
(and its derivatives). A general statement to this effect is formalized and
proved in the Lemmas 7.2�7.3 below. Since these lemmas have some inter-
est of their own, we state (and prove) them in a slightly more general
version than what is needed here.

Lemma 7.2. Let 0 be a Lipschitz domain in M and consider a positive
integer N. For k(x, y) defined on M_M"diagonal and satisfying

|{ i
x { j

y k(x, y)|�} dist(x, y)&(n&2+i+ j ), \i=0, 1, ..., N, \j=0, 1,

(7.6)

for some }>0 independent of x, y, introduce

Kf (x) :=(k(x, } ) | �0 , f ) , x # 0. (7.7)

Then, for 0<s<1, this operator satisfies the estimates

&dist( } , �0)s&1+i |{1+iKf |&L1(0)+&{ iKf &L1(0)+&Kf &L1(0)

�C(0, }, s) & f &(Bs
�(�0))* , \i=0, 1, ..., N&1, (7.8)

uniformly in f # (B�
s (�0))*.

Proof. Let us estimate the leading term in the left side of (7.8); the
argument for the remaining terms is simpler. The point is to establish the
estimate

"|0
dist(x, �0)s&1+i {1+i

x k(x, } ) g(x) d Vol(x)"Bs
�(�0)

�C(0, }, s) &g&L�(0) , (7.9)

uniformly for g # L�
comp(0). To this end, for a fixed, arbitrary g # L�

comp(0),
we shall focus on establishing

} |0
g(x) dist(x, �0)s&1+i ({1+i

x k(x, p)&{1+i
x k(x, q)) d Vol(x) }

�C dist( p, q)s, (7.10)

uniformly for p, q # �0. Now, fix two arbitrary boundary points p, q # �0
and, for a large constant C, bound the integral above by
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|
dist(x, p)<C dist( p, q)

| g(x)| dist(x, �0)s&1+i |{1+i
x k(x, p)| d Vol(x)

+|
dist(x, p)<C dist( p, q)

| g(x)| dist(x, �0)s&1+i |{1+i
x k(x, q)| d Vol(x)

+|
dist(x, p)>C dist( p, q)

| g(x)| dist(x, �0)s&1+i

_|{1+i
x k(x, p)&{1+i

x k(x, q)| d Vol(x)

=: I+II+III. (7.11)

To deal with I, in the light of (7.6), by localizing and pulling back to Rn
+ ,

it suffices to consider

|
|x$& p$|+|t+.(x$)&.( p$)|<C| p$&q$|

ts&1+i

( |x$& p$|+|t+.(x$)&.( p$)| )n&1+i dt dx$,

(7.12)

where .: Rn&1 � R is a Lipschitz function and x=(x$, t+.(x$)),
p=( p$, .( p$)), q=(q$, .(q$)). Accordingly, we seek a bound of order
| p$&q$| s. To this effect, we note that the integral (7.12) is majorized by

C |
|x$& p$|+t<C | p$&q$|

ts&1+i

( |x$& p$|+t)n&1+i dt dx$

�C \|
�

0

ts&1+i

(1+t)n&1+i dt+\||x$|<C| p$&q$|

1
|x$|n&1&s dx$+

�Cn, s | p$&q$| s, (7.13)

and the last bound has the right order. Similar arguments also apply to II
in (7.11) since dist(x, q)<dist(x, p)+dist( p, q)<C dist( p, q). Thus, we are
left with estimating III. For this, an application of the mean-value theorem
together with (7.6) and a change of variables allow us to write

III�C |
|x$& p$|+|t+.(x$)&.( p$)|>C | p$&q$|

_
ts&1+i | p$&q$|

( |x$& p$|+|t+.(x$)&.( p$)| )n+i dx$ dt

�C |
|x$& p$|+t>C | p$&q$|

ts&1+i | p$&q$|
( |x$& p$|+t)n+i dx$ dt. (7.14)
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Making x$ [ x" :=(x$& p$)�| p$&q$| and t [ t$ :=t�| p$&q$| in the last
integral above readily leads to a bound of order | p$&q$| s, i.e., the proper
size. This finishes the proof of (7.8). K

Lemma 7.3. Retain the same hypotheses as in Lemma 7.2 and recall the
operator K introduced in (7.7). Then, for 0<s<1, this operator satisfies the
estimates

&dist( } , �0)s+i |{1+iKf |&L�(0)+&{iKf &L�(0)+&Kf &L�(0)

�C(0, }, s) & f &B�
&s(�0) , \i=0, 1, ..., N&1, (7.15)

uniformly in f # B�
&s(�0) :=(B1

s (�0))*.

Proof. Consider the leading term in the left side of (7.15); all the others
can be handled similarly. Here the idea is to prove that

&{1+i
x k(x, } )&Bs

1(�0)�C(0, s) dist(x, �0)&s&i, \ i=0, 1, ..., N&1,

(7.16)

uniformly in x # 0. Clearly, this suffices in order to conclude (7.15). The
remainder of the proof, modeled upon [FMM], consists of a verification
of (7.16).

The problem localizes and, hence, it suffices to prove the estimate

|
�0

|
�0

|{1+i
x k(x, p)&{1+i

x k(x, q)|
| p&q|n&1+s d_( p) d_(q)�C dist(x, �0)&s&i,

(7.17)

uniformly for x # 0, in the case when 0 is the domain above the graph of
a Lipschitz function .: Rn&1 � R.

Now, for a fix, sufficiently large C>0, split the inner integral according
to whether |x& p|<C | p&q| or |x& p|>C | p&q|. Thus, it suffices to
treat ��0 |I | d_, ��0 |II | d_, and ��0 |III | d_, where

I :=|
|x& p| <C | p&q|

|{1+i
x k(x, p)|

| p&q|n&1+s d_( p),

II :=|
|x& p|<C | p&q|

|{1+i
x k(x, q)|

| p&q|n&1+s d_( p), (7.18)

III :=|
|x& p| >C | p&q|

|{1+i
x k(x, p)&{1+i

x k(x, q)|
| p&q| n&1+s d_( p).
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To this end, note first that a change of variables based on the representa-
tions x=(x$, .(x$)+t), p=( p$, .( p$)), and q=(q$, .(q$)) gives

|I |�C |
|x$& p$|+|t+.(x$)&.( p$)|<C | p$&q$|

_
| p$&q$|&n+1&s

( |t+.(x$)&.( p$)|+|x$& p$| )n&1+i dp$

�C |
|x$& p$|+t<C | p$&q$|

dp$
| p$&q$|n&1+s (t+|x$& p$| )n&1+i .

(7.19)

Substituting x$& p$=th in the last integral above and then integrating
against �Rn&1 dq$ yields

|
�0

|I | d_�C
1
t i |

Rn&1 \||h|+1�C |x$&th&q$|�t

_
dh

( |h|+1)n&1+i |x$&th&q$|n&1+s+ dq$. (7.20)

Substituting again, this time first x$&q$=tw and then w&h=r|, r>0,
| # S n&2, we may further bound the last integral in (7.20) by

C
1

ts+i |
Rn&1 |

|h|+1�C |w&h|

dh dw
( |h|+1)n&1+i |w&h|n&1+s

=
C

ts+i |
1

( |h|+1)n&1 \|
�

|h| +1

dr
rs+1+ dh

=Cn, s, i t&s&i, (7.21)

which is a bound of the right order for ��0 |I | d_. The same arguments
work to bound ��0 |II | d_, by observing that |x& p|<C| p&q| O
|x&q|<C$| p&q| and using Fubini's theorem.

As for ��0 |III | d_, we note first that since |x&z|�C |x& p| uniformly
for z # [ p, q],

|
�0

|III | d_�C |
�0

|
|x& p| >C | p&q|

1
| p&q|n&2+s |x& p|n+i d_( p) d_(q).

(7.22)
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As before, pulling back everything to Rn&1, it is enough to bound

|
Rn&1 |

|x$& p$|+t>C | p$&q$|

1
| p$&q$|n&2+s ( |x$& p$|+t)n+i dp$ dq$. (7.23)

Substituting x$& p$=th and then x$&q$=tw gives

1
ti+1 |

Rn&1 \||h|+1>C | p$&q$|�t

1
( |h|+1)n+i |q$&x$+ht| n&2+s dh+ dq$

=
1

ts+i |
Rn&1

1
( |h|+1)n+i \||h| +1>C |w&h|

dw
|w&h|n&2+s+ dh

=Cn, s, i t&s&i, (7.24)

as desired. This finishes the proof of (7.16) and, with it, the proof of the
lemma. K

We are now ready to present the

Proof of Theorm 7.1. Consider first the single layer potential (7.1) on
the scale of Besov spaces and recall the decomposition (2.10). This and
(2.11) show that the kernel of Sl satisfies the estimates (7.6) and, hence,
Lemmas 7.2�7.3 apply. From Lemma 7.2 (with N=1) we get, dropping the
dependence of the various norms on the exterior power bundle,

&dist( } , �0)s&1 |{Sl f |&L1(0)+&Sl f &L1(0)�C(0, s) & f &(Bs
�(�0))* , (7.25)

uniformly in f # (B�
s (�0))*. Since (2l&V ) Sl f =0 in 0, it follows from

(7.25) and Proposition 3.3 that

&dist( } , �0)s |{2Sl f |&L1(0)+&{Sl f &L1(0)+&Sl f &L1(0)

�C(0, s) & f &(Bs
�(�0))* , (7.26)

uniformly in f # (B�
s (�0))*. Up to this point, the hypothesis (1.28) on the

metric sufficed. However, it is here that the hypothesis (1.29) on the metric
tensor is needed for the first time. To be more precise, (1.29) is needed
when l>0; for the case l=0, (1.27) suffices.

Let us digress momentarily and point out that we could have arrived at
(7.26) solely based on Lemma 7.2 in which we take N=2. However, this
approach requires the pointwise control of (mixed) derivatives of order
three for the kernel El(x, y); cf. (7.6). Under the present approach, this
would require a version of (2.11) with (mixed) derivatives of order three
placed on the residual part el

1(x, y) which, in turn, would require a metric
tensor of class Lr

3 , r>n, (for the techniques of [MT, MMT] to apply
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unaltered). This is why we choose to establish (7.25) by using Lemma 7.2
with N=1 and then, further, invoke the interior estimates of Section 3 in
order to obtain (7.26). In this latter scenario, the hypothesis (1.29) suffices.

Returning to the mainstream discussion, note that (7.26) in concert with
Proposition 4.4 give that the operator

Sl : (B�
s (�0))* � B1

2&s(0), s # (0, 1), (7.27)

is well-defined and bounded. Observe that, by Proposition 5.2, this is a
stronger result than the one corresponding to p=1, 0<s<1 in Theorem
7.1.

Going further, Lemma 7.3 (with N=1) applied to the single layer
operator gives

&dist( } , �0)s |{Sl f |&L�(0)+&Sl f &L�(0)�C(0, s) & f &B�
&s(�0) ,

(7.28)

uniformly in f # B�
&s(�0). Now the conclusion in the first part of Theorem

7.1 follows from (7.26) and (7.28) by virtue of Proposition 4.4 and
interpolation.

Turning our attention to the second part, i.e., when the range of Sl is
taken on the scale of Sobolev spaces, note that (7.25), (7.28) and Stein's
interpolation theorem for analytic families of operators give that for
1�p��, 0<s<1,

&dist( } , �0)s&1�p |{Sl f |&Lp(0)+&Sl f &Lp(0)�C(0, p, s)& f &B p
&s(�0) ,

(7.29)

uniformly in f # B p
&s(�0). Now, this already leads to the desired conclusion

when s&1�p�0, thanks to (4.21) in Proposition 4.4. In the case when
s&1�p<0, we first invoke Proposition 3.3 (here the hypothesis (1.29) is
used again when l>0; when l=0, (1.27) suffices) and, proceeding as
before, we arrive at the same conclusion if 1<p<r, s # (0, 1�p).

Finally, interpolation between this range and the one treated earlier,
covers the full unit square, i.e., s # (0, 1), 1�p # (0, 1). This finishes the proof
of the Theorem 7.1. K

Parenthetically, let us point out that (7.3)�(7.4) and real interpolation
also give that for 1<p, q<�,

&Sl f &Bp, q
1+1�p&s(0, 4lTM )�C(0, s, p, q) & f &B&s

p, q(�0, 4lTM ) ,
(7.30)

&Sl f &B p, q
1&s(�0, 4lTM )�C(0, s, p, q) & f &B

&s
p, q(�0, 4lTM ) ,

uniformly for f # B p, q
&s (�0, 4lTM ), \s # (0, 1).
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Our next result deals with the case when the domain of Sl is in the scale
of Sobolev spaces. To state it, recall that for any two real numbers a, b we
set a 6 b :=max[a, b].

Theorem 7.4. Assume that the metric tensor satisfies (1.28). Then for
1<p<�, 0�s�1, and 1�l�n, the operator

Sl : L p
&s(�0, 4lTM ) � B p, p 6 2

1&s+1�p(0, 4lTM ) (7.31)

is well defined and bounded. When l=0, this holds under hypothesis (1.27).

Proof. Note that it suffices to treat only the cases when s=0 and s=1
since the rest follows by complex interpolation (cf. [BL]). In fact, we shall
only consider the situation when s=0, the rest being similar.

Recall the residual kernel el
1(x, y) from Section 2 and denote by B, B�

the integral operators

Bf (x) :=|
�0

({xel
1(x, y), f ( y)) d_( y), x # 0,

(7.32)

B� f (x) :=|
�0

({yel
1(x, y), f ( y)) d_( y), x # 0.

Then, if the metric tensor satisfies (1.28), or (1.27) in case l=0,

B: L p(�0) � B p, p
s (0), 0<s<1, 1<p<r, (7.33)

and

B� : L p(�0) � L p
1(0), 1<p<�, (7.34)

are bounded operators. This follows from Lemmas 2.11�2.12 in [MMT].
In particular,

B, B� : L p(�0) � B p, p
1�p (0), \p # (1, �), (7.35)

are also bounded. For B, this is contained in (7.33) if 1<p<r whereas, for
n<p<�, it is a consequence of the fact that B in (7.35) factors as

L p(�0)/�Ln(�0) �
B Bn, n

1&=(0)/�B p, p
1�p (0), \=>0 small. (7.36)

The corresponding statement for B� (in (7.35)) is clear from (7.34).
To continue, denote by C+S m

cl the class of classical symbols q(!, x) of
order m which are C + in x, for some + # [0, �], while still smooth in
! # Rn"0. The problem at hand localizes and, granted the fact that the
operators (7.35) are bounded, when 0 is an Euclidean Lipschitz domain it
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suffices to show the following. If q(!, x) # C+S &2
cl , +�1, has a principal

symbol that is even in !, then the Schwartz kernels of �j q(D, x), q(D, x) �j

# O3 P C0S &1
cl are all kernels of operators mapping L p(�0) boundedly into

B p, p 62
1�p (0) for each 1<p<�.
Take for instance the case of the Schwartz kernel k(x& y, y) of

{xq(D, x) # O3 PC0S &1
cl , for some q(!, x) # C+S &2

cl , +�1, whose principal
symbol is even in ! and denote by K the corresponding integral operator,
i.e.,

Kf (x) :=|
�0

k(x& y, y) f ( y) d_( y), x # 0. (7.37)

By performing a decomposition in spherical harmonics (cf. [MT] for
details in similar circumstances), there is no loss of generality in assuming
that +=�.

Next, fix f # L p(�0) and set u :=Kf in 0. Analogously to [JK2],
[Ve2], we use the fact that &u&B p, q

1�p(0) is controlled by a finite sum of
expressions of the type

\|
r

0
tq&q�p \|Sr

|
r

t
|{u(x$, .(x$)+s)| p dx$ ds+

q�p dt
t +

1�q

+\|
r

0
tq&q�p \|Sr

|
r

t
|u(x$, .(x$)+s)| p dx$ ds+

q�p dt
t +

1�q

=: I+II. (7.38)

Here .: Rn&1 � R is a Lipschitz function used to describe �0 locally and
Sr ��0 is a surface ball of fixed radius r>0.

Our aim is to bound I and II by & f &Lp(�0) in the case when 1<p<�
and q :=p 6 2. The first observation is that II in (7.38) can easily be
controlled using

&u*&Lp(�0)=&(Kf )*&Lp(�0)�C & f &Lp(�0) , (7.39)

where the last estimate is proved in [MT] (recall that ( } )* has been intro-
duced in Section 1). As for I, following [JK2] we invoke Hardy's
inequality (cf., e.g., [St, Appendix A]) in the case 1<p�2 plus
Minkowski's inequality in order to write

|I |�C \|
r

0 \|Sr

|s {u(x$, .(x$)+s)| p dx$+
q�p ds

s +
1�q

�C \|Sr
\|

r

0
|s {u(x$, .(x$)+s)|q ds

s +
p�q

dx$+
1�p

. (7.40)
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Note that we can arrive at same majorand for I as above in the case
2�p<� simply by using Fubini's theorem since, in this case, p=q.

At this point observe that matters are reduced to proving the L p-bounded-
ness, 1<p<�, of the Lq((0, r), ds�s)-valued operator T given by the
assignment:

L p(Sr) % f [ s {Kf (x$, .(x$)+s) # L p(Sr , Lq((0, r), ds�s)). (7.41)

It is preferable to deal first with the Hilbert space setting, i.e., when q=2,
since in this case the vector-valued Caldero� n�Zygmund theory works.
Concretely, setting

k� s(x$, y$) :=s {1k((x$& y$, .(x$)&.( y$)+s), ( y$, .( y$)), x$, y$ # Rn&1,

(7.42)

the estimates

|{ i+1
1 { j

2 k(x, y)|�C |x& y|&(n&i& j ), i, j�0, (7.43)

readily imply that

\|
r

0
|{ i

x$ { j
y$ k� s(x$, y$)|2 ds

s +
1�2

�C |x$& y$|&(n&1+i+ j ), 0�i+ j�1.

(7.44)

In turn, these express the fact that the kernel of T in (7.41) is standard. The
boundedness of the operator T when p=2 follows from

&Tf &L2(Sr , L2((0, r), ds�s))�C \|Sr
|

r

0
s |{u(x$, .(x$)+s)|2 ds dx$+

1�2

�C \|0
dist(x, �0) |{u(x)| 2 dx+

1�2

�C & f &L2(�0) . (7.45)

The crucial step in (7.45) is the last inequality and this has been proved in
[MMT, Theorem 1.1]. This finishes the proof of the L p-boundedness of T
when q=2 and takes care of the 1<p�2 part in the statement of the
theorem.
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Next, consider the case when p�2. When f has small support, contained
in an open subset of �0 where �0 is given as the graph of . : [x$ #
Rn&1 : |x$|<r] � R and x0=(x$0 , .(x$0)) # �0 is an arbitrary boundary
point, then

s |{u(x$0 , .(x$0)+s)|

�|
| y$|<r

s |{k((x$0 , .(x$0)+s), ( y$, .( y$))| } | f ( y$, .( y$))| dy$

�CMf (x0), (7.46)

uniformly in s, where M denotes the Hardy�Littlewood maximal operator
on �0. The last inequality in (7.46) is a consequence of the fact that the
expression

s |{k((x$, .(x$)+s), ( y$, .( y$))| (7.47)

behaves like the Poisson kernel for the upper-half space; see, e.g.,
[St, Theorem 2, pp. 62�63]. Thus,

sup
s # (0, r)

s |{u(x$0 , .(x$0)+s)|�CMf (x0). (7.48)

Using this and the fact that M is bounded on L p(�0), 1<p<�, it follows
that

\|Sr

( sup
s # (0, r)

|s {u(x$, .(x$)+s)| ) p dx$+
1�p

�C & f &Lp(�0) , (7.49)

i.e., that T in (7.41) is bounded when q=�.
The case when p=q>2 now follows by interpolating the end-point

results corresponding to q=2 and q=�. (Note that here we use the fact
that B p, q1

s
/�B p, q2

s for 1�q1<q2��.) This completes the proof of
Theorem 7.4. K

The last result of this section deals with the mapping properties of layer
potential operators associated with general elliptic, second order differential
operators on Lipschitz domains. As such, it further augments the results in
[MMT, Sect. 2] where some partial results in this direction where first
proved.

Theorem 7.5. Let E, F � M be two (smooth) vector bundles over the
(smooth) compact, boundaryless manifold M, of real dimension n. It is
assumed that the metric structures on E, F, and M have coefficients in L2

r

for some r>n.
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Let

Lu=:
j, k

�j A jk (x) �k u+:
j

B j (x) �j u&V(x) u, (7.50)

where A jk=(a:;
jk ), B j=(b:;

j ), and V=(d :;) are matrix-valued functions, be
an elliptic, second-order differential operator mapping C2 sections of E into
measurable sections of F. It is assumed that, when written in local
coordinates, the coefficients of L and L* satisfy

a:;
jk # L2

r , b:;
j # L1

r , d :; # Lr, for some r>n. (7.51)

Moreover, suppose that L is invertible as a map from H1, 2(M, E) onto
H&1, 2(M, F) and denote by E the Schwartz kernel of L&1.

Let 0 be an arbitrary Lipschitz domain in M. For a first order differential
operator P # Diff1(F, F) with continuous coefficients, consider the integral
operator D with kernel (Idx �Py) E(x, y), i.e.,

Df (x) :=|
�0

( (Idx �Py) E(x, y), f ( y)) d_( y), x # 0. (7.52)

Then, for each 1<p<�,

D: L p(�0, F) � B p, p*
1�p (0, E) (7.53)

is a bounded operator.
Consider next the integral operator S which is constructed as before but,

this time, in connection with the kernel E(x, y). Then, for each 1<p<� and
0�s�1,

S: L p
&s(�0, F) � B p, p*

&s+1+1�p(0, E) (7.54)

is a bounded operator. Moreover, if 1�p�� and 0<s<1, then

S: B p
&s(�0, F) � B p

&s+1+1�p(0, E) (7.55)

is a bounded operator also. Finally, the same conclusion applies to

S: B p
&s(�0, F) � L p

&s+1+1�p(0, E) (7.56)

provided 1<p<� and 0<s<1.

Proof. This follows much as Theorem 7.4 and Theorem 7.1, via a
decomposition in spherical harmonics; cf. [MT] for details in similar cir-
cumstances. K
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8. DOUBLE LAYER POTENTIALS ON SOBOLEV AND
BESOV SPACES

We shall work with our usual set of hypotheses on M, 0 and V made
in Section 1. The aim is to describes the action of the operators (1.11) and
(1.15) on scales of Sobolev�Besov spaces. We begin with the case when the
domain of the operators is the scale of Besov spaces.

Theorem 8.1. Assume that the metric tensor satisfies (1.27). Then, for
1�p�� and 0<s<1, the operator

D: B p
s (�0) � B p

s+1�p(0) (8.1)

is well defined and bounded. In fact, if 1<p<� and 0<s<1, then

D: B p
s (�0) � L p

s+1�p(0) (8.2)

is also bounded. Furthermore,

K: B p
s (�0) � B p

s (�0) (8.3)

is well defined and bounded for 1�p�� and 0<s<1.

This is based on a series of lemmas, which we now formulate and prove.
We debut with the following Ho� lder result which, on the Besov scale,
corresponds to p=�.

Lemma 8.2. Assume that the metric tensor on M satisfies (1.27). Then,
for 0<s<1, D is a bounded linear map from B�

s (�0) into B�
s (0).

Proof. This has been proved in [MT2, Sect. 7] as a consequence of the
estimate

sup
x # 0

(dist(x, �0)1&s |{Df (x)| )�C(0, s) & f &Bs
�(�0) , (8.4)

uniformly for f # B�
s (�0), if 0<s<1. Cf. [MT2, (7.24)]. K

We next turn attention to the case p=1 on the Besov scale. The main
result in this regard is the lemma below.

Lemma 8.3. Assume that the metric tensor satisfies (1.27). Then the
operator D maps B1

s (�0) linearly and boundedly into B1
s+1(0) for each

0<s<1.
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Proof. Since Df is a null-solution for L in 0, by Proposition 3.3 and
Proposition 4.4, it suffices to show that

|
0

dist(x, �0)&s |{Df (x)| d Vol(x)�C & f &Bs
1(�0) , (8.5)

uniformly for f # B1
s (�0). Fix an arbitrary f # B1

s (�0), 0<s<1. Note that,
in the left side of (8.5), the contribution away from the boundary is easily
estimated, e.g., by the interior estimates in Section 3. Thus, we may replace
0 by C & 0, where C is a small collar neighborhood of �0 in M. Further-
more, via a partition of unity, there is no loss of generality in assuming that
f has small support, contained in a coordinate patch.

To continue, let us assume for a moment that V=0 on 0� . In this case,
since {D annihilates constants, we can replace f in (8.5) by f &f (?(x))
where ?: C & 0 � �0 is some Lipschitz continuous map so that
dist(x, �0)rdist(x, ?(x)), uniformly for x # C & 0. Next, since the metric
satisfies (1.27), the decomposition (2.10) in concert with Theorem 2.1 give
that the kernel k(x, y) of {D satisfies

|k(x, y)|�C dist(x, y)&n, \x # 0� , \y # �0. (8.6)

Thus, we need to estimate

|
C & 0

|
�0

dist(x, �0)&s dist(x, y)&n | f ( y)& f (?(x))| d_( y) d Vol(x).

(8.7)

Note that max[dist(x, �0), dist( y, ?(x))]�C dist(x, y). Also, set t :=
dist(x, �0) and x~ :=?(x). Then, the integral in (8.7) is bounded by I+II
where

I :=|
�

0
|

�0
|

y # �0
dist( y, x~ )�Ct

t&s dist( y, x~ )&n | f ( y)& f (x~ )| d_( y) d_(x~ ) dt

(8.8)

and

II :=|
�

0
|

�0
|

y # �0
dist( y, x~ )�Ct

t&s&1 dist( y, x~ )&n+1 | f ( y)& f (x~ )| d_( y) d_(x~ ) dt,

(8.9)

where C>0 is a fixed, sufficiently large constant. To continue, pull-back
everything to Rn&1 and denote by (|g)(x) :=&g(x+} )& g( } )&L1(Rn&1) the
L1-modulus of continuity of an arbitrary function g: Rn&1 � R. Then,
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changing the order of integration and integrating first with respect to t, we
obtain

|I |�C |
�

0

1
ts |

|z|>Ct

(|f )(z)
|z| n dz dt

�C |
Rn&1

(|f )(z)
|z|n&1+s dz�C & f &Bs

1(Rn&1) , (8.10)

which has the right order. In a similar manner,

|II |�C |
�

0

1
t1+s |

|z| <Ct

(|f )(z)
|z|n&1 dz dt

�C |
Rn&1

(|f )(z)
|z|n&1+s dz�C & f &Bs

1(Rn&1) . (8.11)

This concludes the proof of the lemma in the case when V=0 on 0� .
To treat the general case, let D0 be the double layer potential corre-

sponding to the choice of a potential V0 which vanishes in 0� . By the
previous discussion, it suffices to prove that

&dist( } , �0)&s |{(D&D0) f |&L1(0)�Cs & f &L1(�0) , (8.12)

for each s # (0, 1), uniformly for f # L1(�0). Now, by (2.10) and Theorem 2.1,
the integral operator in the left side of (8.12) has a kernel k(x, y) satisfying,
for each =>0,

|k(x, y)|�C= dist(x, �0)&s dist(x, y)&(n&1+=), \x # 0� , \y # �0.

(8.13)

This and elementary estimates then readily yield (8.12). K

Let us pause for a moment and discuss an alternative approach to the
Lemma 8.3. While this works for differential forms of higher degree, the
metric tensor would have to satisfy (1.29) in place of (1.27). Nonetheless,
this result (or rather its proof ) will be useful for us in the sequel.

To get started, let us consider a generalization of (1.11) at the level of
differential forms of arbitrary degrees. Specifically, for each l # [0, 1, ..., n],
we introduce the double layer potential of a l-form f in, say,
L2(�0, 4lTM ) by setting

Dl f (x) :=|
�0

( (&( y) 6 dy&&( y) 7 $y) El(x, y), f ( y)) d_( y),

x # 0, (8.14)
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where 7 , 6 are the usual exterior and interior, respectively, products of
forms. Its (nontangential) boundary trace is

Dl f |�0=( 1
2 I+Kl) f, a.e. on �0, (8.15)

where

Kl f (x) :=P.V. |
�0

( (&( y) 6 dy&&( y) 7 $y) El(x, y), f ( y)) d_( y),

x # �0. (8.16)

See [MMT, Sect. 6] for more on these. Note that when l=0, the
operators (8.14), (8.16) reduce precisely to (1.11) and (1.15), respectively.

Lemma 8.4. Assume that the metric tensor satisfies (1.29). Then, for
0<s<1 and l # [0, 1, ..., n], the operators

dDl : B1
s(�0, 4lTM ) � B1

s (0, 4l+1TM ) (8.17)

and

$Dl : B1
s(�0, 4lTM ) � B1

s (0, 4l&1TM ) (8.18)

are well defined and bounded.

Proof. We deal only with (8.17) since the case of (8.18) follows from
this via an application of the Hodge star isomorphism.

A basic ingredient in the proof is an identity to the effect that

dDl f (x)=|
�0

(dxdyEl(x, y), &( y) 7 f ( y)) d_( y)

+|
�0

(dxRl&1( y, x), &( y) 6 f ( y)) d_( y)

= d$Sl+1(& 7 f )(x)&Rl(& 7 f )(x)+dR t
l&1(& 6 f )(x)

= &$dSl+1(& 7 f )(x)&Rl(& 7 f )(x)&VSl+1(& 7 f )(x)

+dR t
l&1(& 6 f )(x)

= $Sl+2(& 7 df )(x)&$R t
l+1(& 7 f )(x)&Rl(& 7 f )(x)

&VSl+1(& 7 f )(x)+dR t
l&1(& 6 f )(x). (8.19)

Recall that Sl is the single layer potential on l-forms, i.e., the boundary
integral operator with kernel El(x, y); cf. Section 2. Also, for the last
equality see [MMT, Sect. 6].
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Now, if f is an l-form with components B1
s (�0)-atoms, then (com-

ponentwise) & 7 df # h p(�0) with p # ((n&1)�n, 1), s # (0, 1) related by
1&s=(n&1)( 1

p&1), and && 7 df &h
p(�0)�C with C independent of f. This

follows from (4.5). In particular,

&& 7 df &(B�
1&s(�0))*�C. (8.20)

Now the desired conclusion about $Sl+2(& 7 df ) follows from Proposition
4.3, (8.20), and Theorem 7.1 (it is at this point that the hypothesis (1.29)
is used).

The remaining terms after the last equality sign in (8.19) are residual and
can be handled more directly. In fact, it suffices to assume (1.28), which we
shall do. To this end, it helps to note that B1

s(�0)/�Lq(s)(�0) for
1�q(s) :=1&s�(n&1). Take, for instance, the case of $R t

l+1(& 7 f ); it
suffices to show that

Rt
l+1 : Lq(s)(�0, 4l+1TM ) � B1

1+s(0, 4lTM ), 0<s<1, (8.21)

is bounded. Indeed, as we shall see momentarily, we even have

Rt
l+1 : L p(�0, 4lTM ) � L p

2(0, 4l+1TM ), \p # (1, r). (8.22)

To justify (8.22), let us introduce

R� l+1g(x) :=|
0

(Rl+1(x, y), g( y)) d Vol( y), x # 0, (8.23)

and observe that when the metric tensor satisfies (1.28),

R� l+1 : Lq$
&2, 0(0)=(Lq

2(0))* � Lq$
2 (0),

(8.24)
r�(r&1)<q, q$<r, 1�q+1�q$=1,

is bounded. This follows by invoking an observation made in [MMT,
Sect. 6] to the effect that R� l+1=(2l&V)&1 (dV 6 )(2l+1&V )&1 and by
appealing to the mapping properties of the Newtonian potentials
established in Section 6 of the present paper. The point is that (8.22) is a
consequence of (8.24) and duality, upon noticing that

|
0

(R t
l+1 f, g) d Vol=|

�0
(Tr (R� l+1 g), f ) d_ (8.25)

for any reasonable forms f, on �0, and g, on 0. Specifically, since

Tr: Lq$
2 (0) � L p(�0), \p # (1, �), \q$>

n
2

, (8.26)
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is bounded, (8.25) entails

} |0
(R t

l+1 f, g) d Vol }�C &g&(L
2
q(0, 4l+1TM))* & f &Lp(�0, 4lTM ) , (8.27)

for 1<p<� as long as q$>n�2. This last condition can be arranged given
the validity range for (8.24) and the fact that we are assuming r>n. For
such a q$, (8.27) proves the membership of R t

l+1 f to Lq
2(0, 4l+1TM )

whenever f # L p(�0, 4lTM ) with 1<p<�, plus natural estimates. Thus,
(8.22) holds for p close to 1.

In fact, a similar reasoning as above but with (8.26) replaced by

Tr: Lq$
2 (0) � Lq$(�0), \q$, (8.28)

shows that (8.22) holds for any p # (r�(r&1), r). Then the full range
1<p<r in (8.22) follows by interpolation.

Hence, the proof of (8.22) is finished and this, in turn, completes the
proof of (8.21). As the remaining terms in the right side of the last equality
in (8.19) are treated similarly, the proof of the lemma is finished. K

We are now ready for the

Proof of Theorem 8.1. Let us first deal with the operator (8.1). The case
p=�, 0<s<1 is contained in Lemma 8.2 whereas Lemma 8.3 covers the
case p=1, 0<s<1. The full range then follows by interpolation.

Turning now attention to the operator (8.2), recall from the proof of
Lemma 8.3 that

&dist( } , �0)&s |{Df |&L1(0)+&Df &L1(0)�C(0, s) & f &Bs
1(�0) (8.29)

holds uniformly for f # B1
s (�0). Then, (8.29) in concert with the Ho� lder

estimate (8.4) and Stein's interpolation theorem for analytic families of
operators yield the estimate

&dist( } , �0)1&s&1�p |{Df |&Lp(0)+&Df &Lp(0)�C(0, p, s) & f &Bs
p(�0) , (8.30)

uniformly for f # B p
s (�0) for each 1�p��, 0<s<1.

To continue, we distinguish two cases. First, if 1&s&1�p�0 then (8.30)
and Proposition 4.4 yield that Df # L p

s+1�p(0) plus natural estimates.
Second, if 1&s&1�p<0 we proceed similarly and arrive at the same
conclusion as before. The only difference is that we involve Proposition 3.3
(cf. the comment following its statement) before invoking Proposition 4.4.
This completes the proof of the claim regarding the operator (8.2).
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Finally, the last point in the statement of the theorem is a consequence
of (8.1) and the trace formula (1.13). K

In the remainder of this section we analyze the action of the double layer
potential on the scale of Sobolev spaces.

Theorem 8.5. Assume that the metric tensor satisfies (1.28). Then, for
1<p<� and 0�s�1, the operator

D: L p
s (�0) � B p, p 6 2

s+1�p (0) (8.31)

is bounded.

Proof. For (8.31) with s=0, arguments similar to the ones used in the
proof of Theorem 7.4 apply. Matters can again be reduced to the same pat-
tern in the case s=1, thanks to the identity (8.19). Note that, in this later
situation, we need estimates like

Rt
l+1 : L p(�0, 4lTM ) � B p, p

1+1�p(0, 4l+1TM ), \p # (1, �). (8.32)

In turn, the estimate (8.32) follows easily from (8.22) and embedding
results (since we are assuming r>n). Now the claim about (8.31) is
obtained by interpolation. K

For our next theorem, the following observation is useful. To state it,
recall the nontangential maximal operator ( } )* from Section 1.

Proposition 8.6. If the metric tensor satisfies (1.28) and 1<p<�, then

f # L p
1(�0) O ({Df )* # L p(�0), (8.33)

plus a natural estimate.

Proof. This follows from (8.19), with l=0, plus estimates on the single
layer potential Sl established in [MMT, Sect. 2]. K

Our next result contains an improvement of (8.31) and (7.31) with l=0
in the range 2�p<�.

Theorem 8.7. Assume that the metric tensor satisfies (1.28). Then, for
2�p<� and 0�s�1, the operators

D: L p
s (�0) � L p

s+1�p(0) (8.34)
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and

S: L p
&s(�0) � L p

1&s+1�p(0) (8.35)

are well defined and bounded.

Proof. remark When 0<s<1 and 2�p<�, (8.34) also follows from
(4.19) and (8.2). Similarly, for the same ranges of indices, (8.35) is a conse-
quence of (4.19) and (7.4). Note that, in this scenario, the hypothesis (1.27)
on the metric tensor suffices. Thus, the main novel points addressed by
Theorem 8.7 are s=0 and s=1.

Proof of Theorem 8.7. Our proof builds on an idea from [JK2].
Assume first that s=0. In this case, granted (1.20), proving (8.34) is the
same as proving such a result with D replaced by T :=D b ( 1

2I+K )&1, in
the range 2�p<�. Based on [MMT], we have that

T: L2(�0) � L2
1�2(0) (8.36)

is bounded. Also, since T is the solution operator for the Dirichlet problem
(1.4), the maximum principle gives that

T: L�(�0) � L�(0) (8.37)

is bounded. Now, the inclusion

[L�(0), L2
1�2(0)]%

/�L p
1�p(0), 0<%<1, p :=2�%, (8.38)

together with (8.36), (8.37), and interpolation allows one to conclude that

D: L p(�0) � L p
1�p(0), 2�p<�, (8.39)

is bounded. Observe that by interpolating (8.39) with D: L2
1(�0) � L2

3�2(0)
which, in turn, follows from (8.31), we arrive at the conclusion that

D: L p
s (�0) � L p

s+1�p(0), 2�p�2�s, 0<s�1, (8.40)

is bounded.
Consider next f # L p

1(�0), 2�p<�, and set u :=Df. Our aim is to
prove that u # L p

1+1�p(0) plus estimates. Introducing v :=Xu, where
X # T*M is an arbitrary vector field with smooth coefficients, it suffices to
show that

v # L p
1�p(0) plus a natural estimate. (8.41)

By Proposition 8.6 we have v* # L p(�0). If we next set w :=v&60(v) in 0.
it follows that Lw=0 in 0 and w* # L p(�0), at least if p is large. Indeed,
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by Section 6, 60(v) # L p
2(0)/�C0(0� ) if p is large. Thus, from the integral

representation for the solution of the L p-Dirichlet problem with p�2
(established in [MT2]) and (8.39) we may conclude that w # L p

1�p(0) if p
is large. Since 60(v) # L p

2(0), (8.41) follows. This proves (8.34) for s=1
and p large. Now, interpolating what we have just proved with (8.40) gives
(8.34) for the full range of indices specified in the statement of the theorem.

The argument for (8.35) is similar. The starting point is to consider the
solution operator T :=S b S &1 plus the fact that S &1: L p

1(�0) � L p(�0) is
an isomorphism for 2�p<� ([MT2]). Proceeding as before yields (8.35)
for s=1. Finally, (8.35) with s=0 is handled as before by taking this time
u :=Sf, f # L p(�0), 2�p<�. This finishes the proof of the theorem. K

In closing, let us point out that (1.19) and Theorem 8.7 (or rather its
proof) give that the solution u of the boundary problem (1.4) and (1.7)
satisfies

&u&Lp
1�p(0)�C(0, p) & f &Lp(�0) if 2�p<�. (8.42)

On the other hand, by Theorem 8.5 and (1.20),

&u&B
1+1�p
p, p 6 2(0)�C(0, p) & f &L

1
p(�0) if 1<p�2. (8.43)

As for the solution u of the boundary problem (1.5) and (1.8), Theorem 7.4,
in concert with (1.21)�(1.22), yields that

&{u&Lp
1�p(0)�C(0, p) &g&Lp(�0) if 1<p�2. (8.44)

9. AN ENDPOINT NEUMANN PROBLEM

Retaining the hypotheses of Section 1 on M, V and the metric, including
(1.27), here we study a limiting case of the Neumann problem. Specifically,
for a Lipschitz domain 0/M, we shall be concerned with the case when
the boundary data belong to B1

&s(�0) for s # (0, s0), where s0 # (0, 1)
depends on the domain. First we need a couple of technical results.

Lemma 9.1. Let � # B�
s (�0) for some s # (0, 1). Then there exists

�� # C0(0� ), locally Lipschitz in 0, so that �� | �0=� and dist( } , �0)1&s

{�� # L�(0).

Proof. The problem localizes and, via a bi-Lipschitz change of variables
can be transported to the Euclidean upper-half space. There, the Poisson
extension does the job; see, e.g., [St]. K
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Lemma 9.2. There exists s0=s0(0)>0 so that whenever 0<s<s0 ,

&dist(x, �0)s&1 |{u|&L1(0)�C(0, s) &u&B1
2&s(0) (9.1)

uniformly for u # B1
2&s(0) with Lu=0 in 0.

The proof of this lemma is postponed until the next section; cf. (10.7).
Assume that 0<s<s0 , where s0 is as in Lemma 9.2. We will be con-

cerned with the Neumann boundary problem with boundary data in
B1

&s(�0), i.e.,

Lu=0 in 0,

{�u
�&

= f # B1
&s(�0), (9.2)

u # B1
2&s(0).

The boundary condition in (9.2) is interpreted as the equivalent of

|
0

({u, {�� ) d Vol=( f, �) , \� # B�
s (�0), (9.3)

where tilde is the extension operator introduced in Lemma 9.1, and ( } , } )
in the right side stands for the natural pairing between B1

&s(�0)�
(B�

s (�0))* and B�
s (�0). It is to be noted that, by Lemmas 9.1�9.2, the

integral in the left side of (9.3) is absolutely convergent.
An observation made first (in the flat Euclidean setting) in [FMM] and

which also applies to the present context is that the space of natural
boundary data in (9.2) is indeed B1

&s(�0) and not the larger space
(B�

s (�0))*. This is supported by the observation that even though
&1

2I+K* is, as we shall see momentarily, an isomorphism of the larger
space (B�

s (�0))* for small s, and even though S maps the latter space
boundedly into B�

2&s(0), the natural jump formula

�&Sf =(&1
2I+K*) f (9.4)

necessarily fails for general f # (B�
s (�0))*. This is because, as will be shown

in Theorem 10.1, the normal derivative of Sf # B1
2&s(0) always belongs to

a smaller subspace of (B�
s (�0))*, namely B1

&s(�0).
Our main result in this section is the theorem below, which extends

[FMM, Theorem 7.2]. Recall that C stands for the collection of all
constant functions on �0.

Theorem 9.3. There exists s0 # (0, 1) depending only on 0 so that, if
0<s<s0 and f # B1

&s(�0) (with the extra condition ( f, C) =0 imposed if
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V=0 in 0) then there exists a unique (modulo constants, if V=0 in 0)
solution u to the Neumann problem (9.2). Moreover, u satisfies the estimate

&u&B1
2&s(0)+&dist( } , �0)s&1 |{u|&L1(0)+&u&L1(0)�C(0, s) & f &B1

&s(�0) .

(9.5)

In particular, when V>0 on a set of positive measure in 0,

&Tr u&B1
1&s(�0)�C(0, s) & f &B1

&s(�0) . (9.6)

When V=0 in 0, then Tr u in (9.6) should be considered modulo constants.

Note that this result implies that, under the same hypotheses, the
Neumann-to-Dirichlet operator for L is bounded from B1

&s(�0) into
B1

1&s(�0).
In proving Theorem 9.3, the following result is very useful.

Lemma 9.4. There exists s0 # (0, 1) such that, when V>0 on a set of
positive measure in 0,

& 1
2I+K*: B1

&s(�0) � B1
&s(�0) (9.7)

is an isomorphism for 0<s<s0 .
When V=0 in 0, then the same conclusion holds if we restrict to the

subspace of B1
&s(�0) consisting of functionals that annihilate C.

Proof. Granted that V>0 on a set of positive measure in 0, it has been
shown in [MT2, Theorems 7.6�7.7] that there exists =>0 so that
&1

2I+K* is an isomorphism of h p(�0) for 1&=<p�1. Our result then
follows from this, Lemma 5.1 and Proposition 5.2. The case when V=0 in
0 follows by a minor variation of this argument. K

We are now ready to present the

Proof of Theorem 9.3. We give the proof when V>0 on a set of
positive measure in 0; the easy modifications needed when V=0 in 0 are
left to the reader.

Let s0 be as in Lemma 9.4, and s # (0, s0). Then Lemma 9.4 gives that
g :=(&1

2I+K*)&1f exists in B1
&s(�0) and &g&B1

&s(�0)�C & f &B1
&s(�0) . If we

now set u :=Sg, it follows that Lu=0 in 0 and, by invoking Theorem 7.1
and (7.25), u # B1

2&s(0) and (9.5) holds. To see that u actually solves (9.2)
we shall prove that u satisfies (9.3). Indeed, this is a consequence of the
general identity

|
0

({Sh, {�� ) d Vol=( (&1
2I+K*) h, �) , \ � # B�

s (�0), (9.8)
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which we claim is valid for arbitrary h # B1
&s(�0) (recall that the tilde

operator is as in Lemma 9.1). In turn, this is easily checked on B1
&s(�0)-

atoms and, hence, extends by density to the whole B1
&s(�0) thanks to

(7.25). This completes the proof of the existence part.
Turning to uniqueness, assume that u # C 1

loc(0) solves the homogeneous
version of (9.2) so that, in particular,

|
0

({u, {�� ) d Vol=0, \� # B�
s (�0). (9.9)

Let 0j Z0 be a sequence of C� subdomains approximating 0 and, for
some fixed point x0 # 0, consider the Neumann function Nj for L in 0j

with pole at x0 , i.e.,

Nj (x) :=E(x0 , x)&Sj ((&1
2I+K j*)&1 (�&j

E(x0 , } ) | �0j
) for x # 0j .

(9.10)

Also, hereafter, Sj , K j*, etc., will denote operators similar to S, K*, etc.,
but constructed in connection with �0j rather than �0. Take a smooth
function 0�,�1 which vanishes identically near x0 and is identically 1
near �0. Green's formula and an integration by parts then give

u(x0)=|
�0j

Nj
�u
�&j

d_j=|
�0j

,Nj
�u
�&j

d_j

=|
0j

({(,Nj), {u) d Vol. (9.11)

The key step is to prove that, as j � �,

|
0j

({(,Nj), {u) d Vol � |
0

({(,N ), {u) d Vol=0, (9.12)

where N is the Neumann function for L in 0 with pole at x0 . Then, passing
to the limit in (9.11) will give u#0 in 0 as desired.

Turning our attention to (9.12), first we shall prove that the second
integral vanishes. Indeed, it has been proved in [MT2] that Nj #
C:(0� j"[x0]) and N # C:(0� "[x0]) for some :=:(0)>0 independent of j.
Consequently,

dist( } , �0j)
1&: |{N j |, dist( } , �0)1&: |{N |�C

away from x0 , uniformly in j, (9.13)
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by the Ho� lder theory in [MT2]. In particular,

dist( } , �0j)
1&: |{(,N j)|, dist( } , �0)1&: |{(,N )|�C

in 0j , uniformly in j. (9.14)

With this in hand, the second integral in (9.12) vanishes on account of (9.9)
if 0<s<: which we will assume for the remaining part of the proof.

At this point we are left with proving the convergence in (9.12) which we
tackle next. For j�k we write

|
0j

({(,Nj), {u) d Vol=|
0j"0k

({(,Nj), {u) d Vol

+|
0k

({(,N j)&{(,N ), {u) d Vol

+|
0k

({(,N ), {u) d Vol

=: Ij, k+IIj, k+IIIk . (9.15)

Now, by (9.9), (9.14), and Lebesgue's dominated convergence theorem,
limk � � IIIk=0. Further,

|Ij, k |�( sup
x # 0j "0k

dist(x, �0j)
1&s |{(,Nj)(x)| )

_|
0j "0k

dist( } , �0j _ �0k)s&1 |{u| d Vol. (9.16)

The first factor in the right side of (9.16) is bounded uniformly in j, k, by
(9.14) and our assumption on s. Also, by Lemma 9.2, the second factor in
(9.16) is �C &u&B1

2&s(0j "0k) , i.e., small if j, k are large enough.
To conclude the proof, we only need to show that, for a fixed k, |IIj, k |

is small if j is large enough. Thus, if we set fj :=(&1
2I+K j*)&1

(�&j
E(x0 , } ) |�0j

) and f :=(&1
2I+K*)&1 (�&E(x0 , } ) |�0j

), it suffices to prove
that

{(,Sj f j) |0k
� {(,Sf ) |0k

in L2(0k) as j � �. (9.17)

This, in turn, follows from Lebesgue's dominated convergence theorem.
Somewhat more specifically, if 4j : �0 � �0j is a natural bi-Lipschitz
homeomorphism, it can be proved that fj b 4j � f in L2(�0). This gives
pointwise convergence. The domination is trivially given by |{(,Sj fj)|�C
on 0k uniformly in j. The proof of uniqueness is therefore complete.
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Note that (9.5) and (9.6) follow from Lemma 7.2, Lemma 9.4 and the
integral representation of the solution. K

10. AN ENDPOINT DIRICHLET PROBLEM

We continue to assume our standard hypotheses on M, 0, V, and the
metric tensor, including (1.27). The aim of this section is to study the
Dirichlet problem with boundary data in the Besov space B1

1&s(�0).
Besides establishing the well posedness of this problem for small s, our
approach also shows that the solution has a normal derivative in B1

&s(�0).
Moreover, this is accompanied by a natural estimate. Specifically, we have
the following extension of Theorem 5.8 of [JK2] and Theorem 7.1 of
[FMM].

Theorem 10.1. There exists s0=s0(0)>0 so that for 0<s<s0 and
f # B1

1&s(�0), the Dirichlet problem

Lu=0 in 0,

{Tr u= f on �0, (10.1)

u # B1
2&s(0),

has a unique solution. The solution satisfies

&dist( } , �0)s&1 |{u|&L1(0)+&u&L1(0) r&u&B1
2&s(0) r& f &B1

1&s(�0) (10.2)

for constants that depend only on 0 and s. Furthermore, �&u # B1
&s(�0).

More specifically, there exists g # B1
&s(�0) such that u is also a solution

of the Neumann problem (9.2) with boundary datum g. In addition, there
holds

"�u
�&"B1

&s(�0)

�C(0, s) & f &B1
1&s(�0) . (10.3)

As a corollary of this and Theorem 9.3 (cf. also the remark following its
statement), we see that under the hypotheses of the above theorem the
Dirichlet-to-Neumann operator for L is actually an isomorphism of
B1

1&s(�0) onto B1
1&s(�0) if V>0 on a set of positive measure in 0 (in fact

a similar result also holds when V#0 in 0� ).

Proof of Theorem 10.1. We start with the existence part. As in [FMM],
we develop an approach which will eventually give us information about
the normal derivative of the solution.
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Choose s0 as in Theorem 9.3 and fix an arbitrary s # (0, s0). First, we
shall prove a technical result to the effect that there exists C=C(0)>0
such that, if p # ((n&1)�n, 1) is so that s=(n&1)( 1

p&1), then

&S&1a&h
p(�0)�C, \aB1

1&s(�0)-atom. (10.4)

In the above, B1
1&s(�0)-atoms are regarded as elements in L2

1(�0) so that
S&1a belongs to L2(�0)/h p(�0). In order to prove (10.4), the key step is
to establish the estimate

& f &h
p(�0)�C &{tanSf &h

p(�0)+C &Sf &L1(�0) , (10.5)

for 1&=<p�1; here C=C(0)>0 is independent of f # h p(�0). Indeed,
choosing f :=S&1a in (10.5) yields (10.4) at once in view of (4.5). Note that
s small guarantees that | p&1|<=.

As for (10.5), we note that, for p=1, this follows from [MT2, Theorem
6.3] with Proposition 3.2 of [MT2] via the usual jump-relations. Also,
{tan S is a bounded mapping of the complex interpolation scale consisting
of h p(�0) for (n&1)�n<p�1 and L p(�0) for 1<p<� into itself
(cf. [MT2, Proposition B.6]). Consequently, by [KM], an estimate like
(10.5) is stable under small perturbations of the parameter p near 1. This
proves (10.5) and, hence, concludes the proof of (10.4).

Returning to the main line of reasoning, fix an arbitrary f # B1
1&s(�0). By

Proposition 4.3, there exists a sequence of scalars (*j) j # l1 and a sequence
(aj) j of B1

1&s(�0)-atoms such that

f = :
j�0

*jaj and :
j�0

|*j |�2 & f &B1
1&s(�0) . (10.6)

If we now set uj :=S(S&1a j) in 0 then, so we claim, u :=� j�0 *j uj in 0
solves (10.1). To justify this observe that Lu=0 and

&u&B1
2&s(0)+&dist( } , �0)s&1 |{u|&L1(0)+&u&L1(0)

�C :
j�0

|*j |�C & f &B1
1&s(�0)=C &Tr u&B1

1&s(�0)

�C &u&B1
2&s(0) , (10.7)

by Theorem 7.1, (7.25), and (10.4). Let us point out that the estimate (10.7)
takes care of Lemma 9.2, stated without proof in the previous section.
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It is also implicit in the calculation above that �m
j=0 * j uj � u in B1

2&s(0)
as m � � so that, by the continuity of the trace operator,

Tr u= :
j�0

*j Tr uj= :
j�0

*j aj= f, (10.8)

in B1
1&s(�0), which concludes the proof of the existence part.

Turning to uniqueness, let us assume that u solves the homogeneous
version of (10.1). Adapting an idea from [JK2] consider 0j Z0 an
approximating sequence of smooth subdomains of 0 and, since
u # B1

2&s, 0(0), take uj # C �
comp(0j) approximating u in the norm of

B1
2&s(0). Thus, with Trj standing for the trace operator on �0j ,

&Trj u&B1
1&s(�0j )=&Trj (u&u j)&B1

1&s(�0j )�C &u&uj&B1
2&s(0) � 0,

(10.9)

as j � �. Let us next assume for a moment that 0 is a smooth domain
and denote by Gj (x, y) is the Green function for L in 0j . Then
&{yGj (x, } )&Lp(�0j )�C(x, p)<+� uniformly in j, for each p>1. This,
(10.9) and the integral representation formula

u(x)=|
�0j

�&j, y
Gj (x, y)(Tr j u)( y) d_j ( y), x # 0 j , (10.10)

allow us to conclude, upon letting j � �, that u(x)=0. Thus, since x was
arbitrary, u vanishes in 0 and this concludes the proof of the uniqueness
part when 0 is smooth.

Returning now to the general case of an arbitrary Lipschitz domain, by
what we have proved so far (i.e., existence and estimates in Lipschitz
domains plus uniqueness in smooth domains) we deduce that, in each 0j ,
the estimate

&u&B1
2&s(0j )�C &Trj u&B1

1&s(�0j ) (10.11)

holds with a constant independent of j. Now the desired conclusion follows
from (10.11) by passing to the limit in j and invoking (10.9).

In order to show that u constructed above solves a Neumann problem
(in the sense of Section 9) with an appropriate boundary datum in
B1

&s(�0)=h� p(�0) it suffices to check that

�uj

�&
# h p(�0) and " �uj

�& "h
p(�0)

�C, uniformly in j. (10.12)
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However, this easily follows from the integral representation of each uj , the
results in Section 6 and the boundedness of K* on h p(�0) (cf. [MT2,
Proposition B.6]). Finally, (10.3) also follows in light of (10.12) and
(10.6). K

11. INVERTIBILITY OF BOUNDARY INTEGRAL OPERATORS
ON BESOV SPACES

Again, we assume the standard hypotheses on M, 0, V and the metric
tensor, including (1.27). To state the main result of this section, recall that
C stands for the collection of all constant functions on �0 and set

B� p
&s(�0) :=[ f # B p

&s(�0) : ( f, /) =0, \/ # C], (11.1)

for 1�p��, 0<s<1.

Theorem 11.1. There exists = # (0, 1] with the following significance. Let
1�p�� and 0<s<1 be so that one of the conditions (I)�(III) below are
satisfied:

(I)
2

1+=
<p<

2
1&=

and 0<s<1;

(II) 1�p<
2

1+=
and

2
p

&1&=<s<1; (11.2)

(III)
2

1&=
<p�� and 0<s<

2
p

+=.

Also, let q # [1, �] denote the conjugate exponent of p. Then the operators
listed below are invertible:

(1) 1
2 I+K: B p

s (�0) � B p
s (�0);

(2) 1
2 I+K*: Bq

&s(�0) � Bq
&s(�0);

(3) S: Bq
&s(�0) � Bq

1&s(�0).

If V=0 in 0, then

(4) \ 1
2I+K: B p

s (�0)�C � B p
s (�0)�C;

(5) \ 1
2I+K*: B� q

&s(�0) � B� q
&s(�0);

(6) S: B� q
&s(�0) � Bq

1&s(�0)�C,
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are also invertible. Finally, when V>0 on a set of positive measure in 0, then

(7) &1
2 I+K: B p

s (�0) � B p
s (�0);

(8) &1
2 I+K*: Bq

&s(�0) � Bq
&s(�0),

are invertible.
These results are sharp in the class of Lipschitz domains. However, if

�0 # C1 then we may take 1�p�� and 0<s<1.

For each 0�=�1 consider the region R= /R2 which is the interior
of the hexagon OABCDE, where O=(0, 0), A=(=, 0), B=(1, 1&=

2 ),
C=(1, 1), D=(1&=, 1), E=(0, 1+=

2 ). Then the ``invertibility'' region
described in (11.2) simply says that (s, 1�p) belongs to R= or, possibly, to
the (open) segments OA, CD. Note that the region encompassed by the
parallelogram with vertices at (0, 0), (1, 1

2), (1, 1), and (0, 1
2) is common for

all Lipschitz domains, and that R= can be thought of as an enhancement
of it. Also, for ==1, R= simply becomes the standard (open) unit square in
the plane. The sense in which this result is optimal is that for each =>0
and for each point (s, 1

p) # (0, 1)_(0, 1)"R= , there exists a Lipschitz domain
0 such that (1)�(8) in Theorem 11.1 fail.

The proof of Theorem 11.1 uses interpolation and several special cases of
interest are singled out below.

Proposition 11.2. There exists s0=s0(0)>0 such that for 0<s<s0 the
operators

S: B1
&s(�0) � B1

1&s(�0), (11.3)

S: B�
s&1(�0) � B�

s (�0), (11.4)

1
2I+K: B1

1&s(�0) � B1
1&s(�0), (11.5)

are isomorphisms.

Proof. Note that, by the results in Sections 7 and 8, they are well-
defined and bounded. Consider some f # B1

1&s(�0) which has an atomic
decomposition of the form f =� *i ai , where (*i) i # l1 and the a i 's are
B1

1&s(�0)-atoms. By (10.4), we can find hi # h p(�0) so that &hi &h
p(�0)�C

and Shi=ai . Then � *i hi converges in h� p(�0) to an element g which S
should send into f. By Proposition 5.2, f # B1

&s(�0). Thus, S in (11.3) is
onto.

To see that S is also one-to-one, take some f # B1
&s(�0)=h� p(�0) so that

Sf =0. It follows from the uniqueness for the Dirichlet problem in 0\ with
data in B1

1&s(�0) that Sf must vanish identically both in 0+ :=0 and in
0& :=Rn"0� . See Section 10. Now, since f is the jump of �&Sf across �0,
we infer that f =0. This proves that the operator in (11.3) is invertible.
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The invertibility of the operator (11.4) follows by duality from what we
have just proved. Finally, the isomorphism (11.3) and the fact that
SK*=KS (itself a simple consequence of Green's integral representation
formula; cf. [MT, (7.41)]) imply that the operator (11.5) is also an
isomorphism, given that

1
2I+K*: B1

&s(�0) � B1
&s(�0) (11.6)

is an isomorphism. The proof of this is similar to, but simpler than, the
proof of (9.7). K

Let us digress for a moment and point out that a proof of Proposition
11.2 can also be given based on the atomic theory from [MT2] plus a
recent functional analytic result from [MM2]. In order to be more specific,
we need some notation.

Call f an atom for H p
1(�0), for (n&1)�n<p�1, if it is supported in a

surface ball of radius r # (0, diam 0] and &{tan f &L2(�0)�r(n&1)(1�2&1�p).
Then H p

1(�0) is defined as the l p-span of such atoms (and is equipped with
the natural quasi-norm). Also, for (n&1)�n<p�1, introduce the local
version h p

1(�0) :=Lq
1(�0)+H p

1(�0), some q>1. Then there exists ===(0)
>0 so that

S: h p(�0) � h p
1(�0), 1

2I+K: h p
1(�0) � h p

1(�0) (11.7)

are isomorphisms for 1&=<p�1. Indeed, when p=1 this follows as in
[DK], granted the results of [MT2]. It then further extends to a small
interval about p=1 by general stability results for complex interpolation
scales of quasi-Banach spaces from [KM].

The second ingredient we need is a result from [MM2] to the effect that

F :
p, q(Rn&1)@ =B1, 1

:+(n&1)(1&1�p)(Rn&1),
(11.8)

\p # (0, 1), q # (0, �), : # R.

Here F p, q
: (Rn) is the class of Triebel�Lizorkin spaces in Rn (cf., e.g., [Tr]),

and hat denotes the Banach envelope (cf. Section 5). Our interest in the
Triebel�Lizorkin scale F p, q

: stems from the identifications H p=F p, 2
0 and

H p
1 =F p, 2

1 valid for 0<p�1 (cf. the discussion in [MM2]). When
(n&1)�n<p<1 and 0�:�1, the same results remain true with Rn&1

replaced by the boundary of a (n-dimensional) Lipschitz domain 0. Thus,
applying the ``hat'' to (11.7) (in effect, invoking Lemma 5.1) yields (11.3)
and (11.5) at once.

We now return to the task of presenting the
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Proof of Theorem 11.1. For simplicity, assume that V>0 on a set of
positive measure in 0; the remaining cases require only minor alterations
and are left to the reader.

We deal first with the operator 1
2I+K. The segments (E, O) and (B, C)

corresponding to invertibility on L p(�0) for 0<1�p<(1+=)�2, and on
L p

1(�0) for (1&=)�2<1�p<1, respectively, have been treated in [MT2].
Also, the segment (O, A), corresponding to invertibility on B�

s (�0) for s
small, has been taken care of in [MT2], while invertibility on the segment
(C, D) is covered by Proposition 11.2. Notice that the interior of the
convex hull of these segments is precisely the region R= . Now, the desired
result follows by repeated applications of the real and complex methods of
interpolation together with a routine check that the inverses Ts, p of 1

2I+K
coincide on the intersections of the various spaces just considered, so that
both 1

2I+K and Ts, p can simultaneously be interpolated.
By duality, we obtain results for 1

2I+K* on the corresponding dual scales.
Similar interpolation arguments apply to yield the statements made about
&1

2I+K and &1
2I+K* from what has been established before. Further-

more, a similar reasoning applies to the operator S, given Proposition 11.2
and the results in [MT2, Sect. 7] on S, namely

S: L p(�0)[L p
1(�0), 1<p<2+=, (11.9)

plus, by duality,

S: Lq
&1(�0)[Lq(�0), 2&=<q<�. (11.10)

The only novel point here is to check that B1
&s(�0) interpolates ``well'' with

the scale [B p
&s(�0)], p # (1, �), s # (0, 1). That is, we need

[B1
&s0

(�0), B p
&s1

(�0)]%=B p%
&s%

(�0), % # (0, 1), (11.11)

for s% :=(1&%) s0+%s1 and 1�p% :=(1&%)&%�p, whenever 0<s0 , s1<1,
1<p<�. Note that the space in the left side is reflexive, as the inter-
mediate space between two Banach spaces one of which is reflexive. Thus,
by the duality theorem for the complex interpolation method [BL],

[B1
&s0

(�0), B p
&s1

(�0)]%=([B�
s0

(�0), Bq
s1

(�0)]%)*=(Bq�%
s%

(�0))*,

(11.12)

where 1�p+1�q=1. From this, the desired conclusion follows.
The fact that these results are sharp in the class of Lipschitz domains is

discussed in [FMM]. Finally, that �0 # C1 allows us to take 1�p��
and 0<s<1 follows from the results in [MT, MMT, MT2] via the same
interpolation patterns. K
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Remark. We mention that the result (1) in Theorem 11.1, on the inver-
tibility of 1

2I+K, was established in (7.16) of [MT2] for (s, 1�p) in the
smaller region P= , the interior of the parallelogram with vertices OBCE.
There, the metric tensor was assumed to be Lipschitz. In view of [MT3,
Theorem 7.1] this result holds even when the metric tensor is Ho� lder
continuous. Similarly the other results in Theorem 11.1 hold for (s, 1�p) #
P= , when the metric tensor is Ho� lder continuous.

12. THE GENERAL POISSON PROBLEM WITH NEUMANN
BOUNDARY CONDITIONS

Again, retain the standard hypotheses on M, 0, V and the metric tensor,
including (1.27). The first order of business is to properly formulate the
Poisson problem for the operator L with Neumann boundary conditions in
the Lipschitz domain 0/M. We commence by defining the normal com-
ponent of any 1-form F with components in Lq

&s+1�q(0) for 0<s<1 and
1<p, q<�, 1

p+ 1
q=1.

Concretely, for an (arbitrary) extension f # (L p
s+1�p(0))*=Lq

&s&1�p, 0(0)
of the distribution $F # (C�

comp(0))$ (as usual, ($F, ,)=(F, d,) , for each
, # C �

comp(0)), we denote by &f } F the (scalar) normal component of F,
with respect to the extension f. This is defined as the linear functional in
Bq

&s(�0)=(B p
s (�0))* given by

(&f } F, ,) :=( f, ,� ) +(F, d,� ) , \, # B p
s (�0), (12.1)

where ,� # L p
s+1�p(0) is an extension (in the trace sense) of ,. The second

pairing in the right side of (12.1) is understood in the sense of (4.15) and
is well defined since d,� # L p

s+1�p&1(0). In turn, this membership is a conse-
quence of our assumptions and (4.16).

It is not difficult to check that the definition is correct and that

&&f } F&Bq
&s(�0)�C &F&Lq

&s+1�q(0)+C & f &(L p
s+1�p(0))* . (12.2)

Note that for any function u # Lq
1&s+1�q(0) and any extension f of

Lu=$ du&Vu, considered first as a distribution in 0 to an element in
Lq

&1&s+1�q, 0(0), the ``normal derivative'' � f
& u can be defined (with respect

to the extension f ), in the sense of (12.1), as &f +Vu } du.
For further reference we also note the integral formulas

u=60 f +D(Tr u)&S(� f
& u), (12.3)
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valid for arbitrary u # Lq
1&s+1�q(0) with Lu extendible to f # (L p

s+1�p(0))*.
Here, 1<p<�, 0<s<1 and 60 is just the Newtonian potential on
scalar-valued functions. Also,

(� f
& 60( f ), ,)=( f, D,) , \, # B p

s (�0), (12.4)

is valid for any f # (L p
s+1�p(0))* for 1<p<�, 0<s<1. They can be easily

justified starting from (12.1), using a limiting argument and invoking the
mapping properties of 60 , S, D established in Sections 6�8.

The main focus of this section is the boundary problem

Lu= f # Lq
1�q&s&1, 0(0),

{� f
& u= g # Bq

&s(�0), (12.5)

u # Lq
1&s+1�q(0).

When V=0 in 0, this is subject to the (necessary) compatibility condition

( f, 1)=( g, 1). (12.6)

In this regard, our main result is the following.

Theorem 12.1. Assume that the metric tensor satisfies (1.27). There
exists ===(0)>0 having the following property.

Suppose that p # (1, �) and s # (0, 1) are such that one of the conditions
(I)�(III) in (11.2) is satisfied. Also, let q be the conjugate exponent of p.
Then, if V>0 on a subset of positive measure in 0, the Poisson problem with
Neumann boundary condition (12.5) has a unique solution. In fact,

u=60( f )+S(&1
2I+K*)&1 (g&� f

& 60( f )) (12.7)

and there exists a positive constant C which depends only on 0, p, s, such
that

&u&Lq
1&s+1�q(0)�C & f &Lq

1�q&s&1, 0
(0)+C &g&Bq

&s(�0) . (12.8)

A similar set of results is valid when V=0 in 0. In this case, the com-
patibility condition (12.6) is assumed and the solution is unique modulo
additive constants (also, (12.8) must be modified accordingly).

Finally, if �0 # C1 then we may take ==1. That is to say, the conclusions
hold for all p # (1, �), s # (0, 1).

Remark. It should be noted that similar results are valid for the scales
of Besov spaces, i.e., when f # (B p

s+1�p(0))*. In this case the solution u
belongs to Bq

1&s+1�q(0) and the second pairing in the right side of (12.1)
remains meaningful because of [Gr, Theorem 1.4.4.6 and Corollary 1.4.4.5].
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Proof of Theorem 12.1. Assume first that V does not vanish in 0; the
other case is handled similarly. In view of Proposition 6.1 and (12.4),
subtracting 60( f ) reduces the problem to solving (12.5) with f =0 and
g~ :=g&� f

& 60( f ) # Bq
&s(�0). For this latter problem, a solution is given by

S[(&1
2I+K*)&1g~ ]; cf. Theorem 7.1 and Theorem 11.1. This finishes the

proof of the existence part. Note that (12.8) follows from the integral
representation formula (12.7) of the solution and mapping properties of
layer potentials.

It remains to establish uniqueness. To this end, if u # Lq
1&s+1�q(0) solves

the homogeneous version of (12.5), then taking the boundary trace in
(12.3) readily gives that (&1

2I+K)(Tr u)=0. The important thing is that
the region R= is invariant to the transformation (s, 1

p) [ (1&s, 1& 1
p) and

that Tr u # Bq
1&s(�0). Thus, on account of Theorem 11.1, Tr u#0. Utilizing

this back in (12.6) yields u#0 in 0, as desired.
The argument for C 1 domains is similar and, hence, omitted. K

An important particular case, corresponding to s=&1
p , is singled out

below.

Corollary 12.2. There exists ===(0)>0 so that, if 3
2&=<p<3+=,

then for any f # L p
&1, 0(0) and any g # B p

&1p(�0), satisfying the compatibility
condition (12.6) if V=0 in 0, the Neumann problem

Lu= f in 0,

{� f
& u= g on �0, (12.9)

u # L p
1(0),

has a unique (modulo additive constants, if V=0 in 0) solution u. Moreover,
{u satisfies the estimate

&{u&Lp(0)�C(0, p)(& f &Lp
&1, 0

(0)+&g&B p
&1�p(�0)). (12.10)

If �0 # C1, this holds for all p # (1, �).

Proof. One only needs to observe that ( 1
p , 1& 1

p) # R= for p in a
neighborhood of the interval [ 3

2 , 3]. K

In view of the counterexamples in [FMM], the results in this section are
sharp in the class of Lipschitz domains.

Proof. remark Since � f
& u is defined for a class of functions u for which

the notion of the trace of �&u is utterly ill defined, it is appropriate to
explain that � f

& u is not an extension of the operation of taking the trace of
�&u; perhaps it is useful to regard it as a ``renormalization'' of this trace, in
a fashion that depends strongly on the choice of f. Recall that, for
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u # Lq
1&s+1�q(0), Lu is naturally defined as a linear functional on the space

L p
s+1�p, 0(0), which for s # (0, 1) coincides with the closure of C �

0 (0) in
L p

s+1�p(0). The choice of f is the choice of an extension of this linear
functional to an element of (L p

s+1�q(0))*=Lq
1�q&s&1, 0(0).

As an example, consider u # L2
1(0) and suppose that actually u # L2

2(0),
so �&u # L2

1�2(0) is well defined. In this case, Lu # L2(0) has a ``natural''
extension f0 # L2

&1, 0(0). Any other extension f1 # L2
&1, 0(0) differs from f0

by an element of L2
&1(M) supported on �0. We have

� f0
& u=�&u, (12.11)

but if f1= f0+| and |{0 is supported on �0, then � f1
& u is not equal to

�&u; we leave its computation as an exercise.

13. THE GENERAL POISSON PROBLEM WITH DIRICHLET
BOUNDARY CONDITIONS

We once again retain the usual set of hypotheses on M, 0, V and the
metric tensor, including (1.27). In this section we shall deal with the
Poisson problem for L with Dirichlet boundary conditions and data in
Sobolev�Besov spaces. As such, this extends previous work for constant
coefficient operators in [JK2, FMM]. Sharpness of the range of (s, p) for
which the following theorem holds was established, for the class of
Lipschitz domains in Euclidean space, in [JK2].

Theorem 13.1. Assume that the metric tensor satisfies (1.27). Then there
exists ===(0)>0 with the following property. If p # (1, �) and s # (0, 1) are
such that one of the conditions (I)�(III) in (11.2) are satisfied, then for any
f # L p

s+1�p&2(0) and any g # B p
s (�0) the Dirichlet problem

Lu= f in 0,

{Tr u= g on �0, (13.1)

u # L p
s+1�p(0),

has a unique solution. Also, there exists C>0 depending only on 0, p, s, such
that the solution satisfies the estimate

&u&Lp
s+1�p(0)�C & f &Lp

1�p+s&2
(0)+C &g&Bs

p(�0) . (13.2)

69POTENTIAL THEORY ON LIPSCHITZ DOMAINS



Moreover, if 6 denotes the Newtonian potential for L on M, we can write

u=6( f� ) |0+D(( 1
2 I+K )&1 (g&Tr 6( f� )))

=6( f� ) |0+S(S &1(g&Tr 6( f� ))) in 0, (13.3)

where f� is an extension of f to an element in L p
s+1�p&2(M ).

In particular, if f # L p
1�p+s&2, 0(0), then the solution has a normal

derivative in B p
s&1(�0) (in the sense discussed in Section 12) and

&� f
& u&B p

s&1
(�0)�C(& f &Lp

1�p+s&2, 0
(0)+&g&Bs

p(�0)). (13.4)

Similar results are valid on the scale of Besov spaces, i.e., when
f # B p

1�p+s&2(0). In this case, the solution u belongs to B p
s+1�p(0).

Finally, if �0 # C1 then we can actually take ==1, i.e., the conclusions
hold for all p # (1, �), s # (0, 1).

Proof. Fix an arbitrary f # L p
1�p+s&2(0)=(Lq

1+1�q&s, 0(0))*. Since
Lq

1+1q&s, 0(0) can be identified (via extension by zero outside the support
and restriction to 0) with [� # Lq

1+1q&s(M ) : supp ��0� ], we may invoke
the Hahn�Banach extension theorem to produce f� # L p

1�p+s&2(M ) so that
f� |0= f and the norm of f� is controlled by that of f. Now, clearly, (13.3)
solves (13.1). Note that (13.2) and (13.4) also follow from (13.3) and the
mapping properties of the operators involved. Uniqueness can be estab-
lished by mimicking the argument already utilized in the proof of
Theorem 12.1.

Finally, invoking [MT, MMT] and proceeding as before, it is clear that
we may take ==1 if �0 # C1. K

Corollary 13.2. There exists ===(0)>0 so that if 3
2&=<p<3+=

then for any f # L p
&1(0) and any g # B p

1&1�p(�0) the Dirichlet problem

Lu= f in 0,

{Tr u= g on �0, (13.5)

u # L p
1(0),

has a unique solution. This satisfies

&u&L1
p(0)�C & f &Lp

&1
(0)+C &g&B p

1&1�p(�0) (13.6)

and, if f # L p
&1, 0(0),

&� f
& u&B p

&1�p(�0)�C(& f &Lp
&1, 0

(0)+&g&B p
1&1p(�0)). (13.7)

Similar results are valid on the scale of Besov spaces. Finally, if �0 # C1 then
we can actually take 1< p<�.

70 MITREA AND TAYLOR



In the last part of this section, we elaborate on the connection between
Poisson problems and Helmholtz decompositions (for the latter topic see
also [FMM, MT2]). The observation we wish to make is contained in the
proposition below.

Proposition 13.3. Let 0 be an arbitrary (connected ) Lipschitz
subdomain of M and fix 1<p, q<� with 1�p+1�q=1. Then the following
are equivalent:

(i) The L p-Helmholtz decomposition

L p(0, 41TM )=dL p
1(0)�[| # L p(0, 41TM ); $|=0, & 6 |=0]

(13.8)

holds (where the direct sum is topological ).

(ii) The L p
1 -Poisson problem for the Laplace�Beltrami operator with

homogeneous Neumann boundary conditions

2u= f # L p
&1, 0(0), ( f, 1) =0,

{� f
& u=0 on �0, (13.9)

u # L p
1(0)�R,

is well posed.

(iii) The Lq-Helmholtz decomposition (analogous to (13.8)) holds.

(iv) The Lq
1 -Poisson problem for the Laplace�Beltrami operator with

homogeneous Neumann boundary conditions (analogous to (13.9)) holds.

In particular, the range of p's for which the L p-Helmholtz decomposition
(13.8) as well as the L p

1 -Poisson problem (13.9) are valid is always an interval
which is invariant under taking conjugate exponents.

Proof. We proceed to show (ii) assuming that (i) is valid. To this end,
let q denote the conjugate exponent of p and let f # L p

&1, 0(0) be such that
( f, 1)=0, otherwise arbitrary; thus, f # (Lq

1(0)�R)*. Note that, by
Poincare� 's inequality, d maps Lq

1(0)�R isomorphically onto a closed
subspace of Lq(0, 41TM ). From the Riesz and Hahn�Banach theorems we
may then conclude that there exists w # L p(0, 41TM ) so that

( f, v) =|
0

(w, dv) d Vol, \v # Lq
1(0). (13.10)
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Next, decompose w=du+|, according to (1). Then, based on (13.10), it
is easy to check that the just constructed function u solves (13.9). Unique-
ness and estimates for (13.9) follow from the corresponding uniqueness and
estimates for (13.10).

Conversely, assume now that (ii) is well posed; our goal is to show that
(i) holds. Indeed, if w # L p(0, 41TM ) is arbitrary and fixed then
v [ �0 (w, dv) d Vol defines a linear functional on Lq

1(0)�R. Denoting by
f # (Lq

1(0)�R)* this functional it follows that (13.10) holds. Let now
u # L p

1(0) solve the Poisson problem (13.9) for this datum f and set | :=
w&du # L p(0, 41TM ). Then it follows that �0 (|, dv) d Vol=0 for each
v # Lq

1(0). In turn, this readily implies that, first, $|=0 in 0 and, second,
that &6 |=0 on �0. Thus, w=du+| is the desired decomposition.
Everything else is as before.

Going further, let

T: (L2
1(0))*=L2

&1, 0(0) � L2
1(0) (13.11)

be the (well defined, linear and bounded) solution operator for the problem
(13.10) with p=2, i.e., T( f )=u. Since, by Green's formula, T is self-adjoint
it follows that T extends as a bounded mapping of L p

&1, 0(0) into L p
1(0) if

and only if T extends to a bounded mapping of Lq
&1, 0(0) into Lq

1(0), for
1�p+1�q=1. This proves that (ii) and (iv) are equivalent.

The fact that (iv) is, in turn, equivalent to (iii) is already contained in
(i) � (ii). Finally, the last part in the statement of the proposition follows
from what we have proved so far and interpolation. K

In closing, let us point out that a similar result is valid for the Helmholtz
decomposition

L p(0, 41TM )=dL p
1, 0(0)�[| # L p(0, 41TM ); $|=0] (13.12)

and the Poisson problem for the Laplace�Beltrami operator with
homogeneous Dirichlet boundary conditions

{2u= f # L p
&1(0),

u # L p
1, 0(0).

(13.13)

We omit the details.
Of course, counterexamples to the well posedness of the Poisson

problems (13.9) and (13.13) translate in the failure of the Helmholtz
decompositions (13.8) and (13.12), respectively.
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14. COMPLEX POWERS OF THE LAPLACE�BELTRAMI
OPERATOR

If 20=�n
j=1 �2��x2

j stands for the usual space-flat Laplacian in Rn then
{(&20)&1�2 corresponds, modulo a normalization constant, precisely to
(Rj)

n
j=1 , the system of Riesz transforms in Rn. In particular, from the

classical Caldero� n�Zygmund theory, the (vector Riesz transform) operator

{(&20)&1�2 : L p(Rn) � L p(Rn) (14.1)

is bounded for any 1<p<�. See [St1].
In this section, our aim is to study the analogous problem when Rn is

replaced by 0, a connected Lipschitz domain in a Riemannian manifold M.
In this context, we shall work with the associated Laplace�Beltrami
operator 2, although similar results hold for the Schro� dinger operator
L :=2&V. The hypotheses that we make on M and 0 are those of
Section 1.

It is natural to impose boundary conditions and we shall consider 2D

and 2N , the Laplace�Beltrami operators equipped, respectively, with
homogeneous Dirichlet and Neumann conditions in 0. Thus, the natural
question is whether

(&2D)&1�2 : L p(0) � L p
1, 0(0) (14.2)

and

(&2N)&1�2 : { f # L p(0) : |
0

f =0=� L p
1(0) (14.3)

are bounded operators. For arbitrary domains, it has been recently shown
in [CD, DMc] that this is indeed the case for any 1<p�2. At the other
extreme, if 0 has a smooth boundary, then well known techniques based
on pseudo-differential operators and Caldero� n�Zygmund theory allow one
to take 1<p<�. For Lipschitz domains in the flat Euclidean space, the
optimal range of p's turns out to be (1, 3+=); see the discussion in [JK2,
JK3, MM]. Here we present a variable coefficient extension of such results.

In fact, we shall deal with more general complex powers of

A :=(&2D)1�2 and B :=(&2N)1�2. (14.4)

In order to state our main results, let us introduce the region R/R2 given by

R :=[(r, t) : max[r�3, r&1]�t<1, 0�r<2]. (14.5)
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Theorem 14.1. Assume that the metric tensor satisfies (1.27). There
exists a neighborhood R� of R in [(r, t) : 0�r<2, 0<t<1], depending on
0, such that for any (r, 1�q) # R� and $ # R, the operators

A&r+i$ : Lq(0)[Lq
r, 0(0), (14.6)

B&r+i$ : Lq(0)@[Lq
r (0)�R (14.7)

are isomorphisms on the indicated spaces.

Here, for a space X of functions in 0, X� :=[ f # X : �0 f =0] and X�R is
the space X modulo constants.

Proof. The proof rests on three basic ingredients: the estimates for
(&2D)&1, (&2N)&1 from Sections 12�13, Stein's complex interpolation
theorem (cf. [SW]) and L p-bounds for purely imaginary powers of the
operators (&2D)1�2, (&2N)1�2 (cf. [St2]). It parallels arguments in [JK2,
Sect. 7], supplemented by arguments in [MM], where this program is
carried out in detail in the flat Euclidean setting. To give some of the
flavor, we sketch the opening arguments for (14.6). Basic Hilbert space
theory gives

A: L2
1, 0(0)[L2(0), A: L2(0)[L2

&1(0). (14.8)

We then have

As+i#: L2(0)[L2
&s(0), 0�s�1,

(14.9)
A&3�2+$+i#: L2(0)[L2

3�&$, 0(0), 0<$� 1
2 ,

the first by Stein interpolation, the next by applying A&2 and using the
p=2 case of Theorem 13.1. A very general result of Stein gives

Ai#: L p(0)[L p(0), 1<p<�, (14.10)

with an exponential bound. Then another application of Stein interpolation
gives

A&1+i#: L p(0)[L p
1, 0(0), 3

2<p<3. (14.11)

The argument proceeds with further interpolation arguments and applica-
tions of Theorem 13.1. In particular, (14.11) is extended to

A&1+i#: L p(0)[L p
1, 0(0), 1<p<3+=. (14.12)

We refer to [JK2, MM] for further details. K
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The next corollary follows from Theorem 14.1 much as in [JK2, JK3,
MM], so we shall state it here without further proof. For the flat-space
Euclidean Laplacian, similar results have also been obtained (via a dif-
ferent approach which in the case of (14.15)�(14.16) yields smaller intervals
of p's) in [AT].

Corollary 14.2. Assume that the metric tensor satisfies (1.27). There
exists ===(0)>0 so that

A&1: Lq(0)[Lq
1, 0(0) (14.13)

and

B&1: Lq(0)@[Lq
1(0)�R (14.14)

are isomorphisms for 1<q<3+=. In particular,

|
0

|{f |q d Vol�Cq |
0

|- &2D f | q d Vol, \ f # Lq
1, 0(0), q # (1, 3+=),

(14.15)

and

|
0

|{g| q d Vol�Cq |
0

|- &2N g|q d Vol, \ g # Lq
1(0), q # (1, 3+=).

(14.16)

Furthermore, the operators

A: Lq
1, 0(0) � Lq(0) (14.17)

and

B: Lq
1(0) � Lq(0) (14.18)

are bounded for 1<q<�. That is, there exists C=C(0, q)>0 so that

|
0

|- &2D f | q d Vol�Cq |
0

|{f | q d Vol, \f # Lq
1, 0(0), q # (1, �),

(14.19)
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and

|
0

|- &2N g| q d Vol�Cq |
0

|{g| q d Vol, \ g # Lq
1(0), q # (1, �).

(14.20)

Finally, this result is sharp in the class of Lipschitz domains. If, however,
�0 # C1, then (14.15)�(14.16) are also valid for 1<q<�.

The last corollary contains a variable coefficient extension of a result of
B. Dahlberg [Da2] concerning estimates for Green potentials in Lipschitz
domains. In addition, we also treat the case of the Neumann potential.

Corollary 14.3. Assume that the metric tensor satisfies (1.27), and
consider G(x, y) and N(x, y), the Green and Neumann functions of the
Laplace�Beltrami operator in an arbitrary Lipschitz domain 0/M. Also,
denote by G and N the operators sending f, respectively, to �0 G( } , y) f ( y)
d Vol( y) and �0 N( } , y) f ( y) d Vol( y).

Then, for some ===(0)>0,

\|0
|{Gf (x)|q d Vol(x)+

1�q

�C \|0
| f (x)| p d Vol(x)+

1�p

, f # L p(0),

(14.21)

and

\|0
|{Ng(x)| q d Vol(x)+

1�q

�C \|0
| g(x)| p d Vol(x)+

1�p

, g # L p(0)@,

(14.22)

provided 1<p<q<3+= and 1
q= 1

p& 1
n . This result is sharp in the class of

Lipschitz domains.

Proof. To prove (14.21), we note that G=(&2D)&1=A&2, and

A&1: L p(0) � L p
1, 0(0)/�Lq(0), A&1: Lq(0) � Lq

1(0), (14.23)

under the given hypotheses on p and q, by Theorem 14.1, indeed by
(14.12). The proof of (14.22) is similar. K

Remark. It is perhaps worth explaining why (14.21) is not an
immediate corollary of Theorem 13.1. That is, given f # L p(0), write
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u=2&1
D f as u=v+w, where v # L p

2(M)/Lq
1(M ) solves 2v= f on a

neighborhood of 0� (with f extended by 0 off 0� ) and w solves

2w=0 on 0, w |�0=h=&v |�0 .

We have h # Bq
1&1�q(�0), and hence Theorem 13.1 applies, but only for

3
2&=<q<3+=. This argument fails to treat the case 1<q� 3

2&=.
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