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Let g be a smooth function on Rn with values in [0, 1]. Using the isoperimetric
property of the Gaussian measure, it is proved that ,(8&1(Eg))&E,(8&1(g))�
E |{g|. Conversely, this inequality implies the isoperimetric property of the
Gaussian measure. � 1996 Academic Press, Inc.

The isoperimetric property of the Gaussian measure states ([3, 16]) that
for any Borel measurable set A/Rn of measure #n(A)=p and for all h>0,

#n(Ah)�8(8&1( p)+h). (1)

Here #n is the standard Gaussian measure in Rn, of density
d#n(x)=>n

k=1 ,(xk) dxk , x=(x1 , . . ., xn) # Rn, ,(xk)=1�- 2? exp(&x2
k�2),

8&1 is the inverse of the distribution function 8 of #1 , and Ah=[x # Rn:
|x&a|<h for some a # A] denotes the open h-neighborhood of A. (1)
becomes identity for all half-spaces A of measure p.

In these notes we suggest an equivalent analytic form for (1) involving
a relation between smooth functions and their derivatives. Relations of
such type are well-known for Lebesgue measure (see e.g. [12], Section 3);
the Sobolev unequality, for example, provides an equivalent form for the
isoperimetric property of balls in the Euclidean space. There is a number
of inequalities for the Gaussian measure like Poincare� -type or logarithmic
Sobolev-type inequalities which can be seen as different versions of so-
called ``concentration of (Gaussian) measure phenomenon.'' A question of
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interest is whether or not analytic inequalities can contain the isoperimetric
inequality (1) (or, its equivalent) as a partial case; the answer is positive.

Theorem. For any smooth function g on Rn with values in [0, 1],

.(8&1(Eg))&E.(8&1(g))�E |{g|. (2)

Conversely, (2) implies the isoperimetric property of the Gaussian measure.

As usual, {g denotes gradient of g, and mathematical expectations in (2)
are understood with respect to measure #n .

Remark 1. The function I( p)=,(8&1( p)) is called the isoperimetric
function of #n , in the sense that the minimal value of ``surface Gaussian
measure''

#+
n (A)=lim inf

= � 0

#n(A=)&#n(A)
=

,

while #n(A)=p is fixed, is equal to I( p). This property, i.e., the inequality

#+
n (A)�I( p), (3)

represents a differential analog of (1): it follows from (1) by taking lim inf
as h � 0. Conversely, integrating (3) over h gives (1). Let us note that the
inequality (2) being applied to indicator (characteristic) functions g=/A

becomes (3); it is in this sense we say that (2) contains (1).

Remark 2. The function I is concave and continuous on [0, 1], so the
left-hand side of (2) is non-negative by Jensen's inequality. Asymptotically,
as p � 0, I( p) is equivalent to the function p - 2 log(1�p), and (2) has thus
resemblance with the Gross' logarithmic inequality [7]

Eg2 log g2&Eg2 log Eg2�2E |{g| 2 (4)

which holds true for all smooth g without boundary conditions. It is shown
in Ledoux [11, pp. 98�100] how (4) can be derived from (1), although the
original proof of (4) was independent on isoperimetry. Apparently, one can
not deduce the isoperimetric inequality from (4) (as well as from the
Gaussian Poincare� inequality Eg2&(Eg)2�E |{g| 2 which is weaker than
(4)) since extremal functions in (4) are exponential (respectively, linear)
but not indicator. However, one can deduce from (4) a concentration
inequality (isoperimetric in nature) which is very close to (1). First, (4)
implies a deviation inequality

E exp(*(g&Eg))�exp(*2�2), (5)

40 s. bobkov
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valid for all Lipschitz g with Lipschitz seminorm �1 and for all real *, by
applying (4) to functions exp(*g�2) and further integrating a differential
inequality ([11, p. 101], see also [4] and [1] for a similar application of
(4)). A different proof of (5) which is of interest itself was found by Ledoux
[10]; with a worse constant in the exponent, (5) is a partial case of a more
general inequality due to Pisier [14]. Now, it follows from (5) by
Chebyshev's inequality that, for all h>0,

#n[g&Eg�h]�exp(&h2�2). (6)

Take g(x)=dist(x, A) the shortest distance from the point x to a closed set
A of #n-measure p # (0, 1). Since g�0, #n[g=0]=p and Eg2&(Eg)2�1
(the last is due to the above-mentioned Poincare� -type inequality), we easily
have Eg�cp=- (1&p)�p. At last, noting that [g&Eg<h]=Ah+ Eg, we
obtain from (6)

#n(Ah)�1&exp {&
(h&cp)2

2 = , h�cp . (7)

The same argument of getting (7) from (5) with other estimation of Eg but
similar right-hand side in (7) was used in [11, pp. 20�21]. (7) can replace
(1) in many applications where large values of h are important but for h
small it becomes useless and, even, does not imply a weaker form of (3),
for example, the inequality

#+
n (A)�cI( p) (8)

with some numerical constant c # (0, 1). Regardless isoperimetry, Ledoux
[11] proved (8) for some universal c # (0, 1) with the help of a semigroup
technique; he also pointed out there that it does not seem likely to reach
in this way the value c=1. It might be worthwile noting that (8) can also
be derived from a Talagrand's logarithmic inequality [17] on the discrete
cube�discrete analog of (8) for multidimensional Bernoulli distribution,
simply applying the central limit theorem as it was done in the proof of (4)
in [8]. However, it is still an open problem to know how to prove (8) with
c=1 analytically. Note also, that (8) in the integral form can be written
equivalently as

#n(Ah)�8(8&1( p)+ch), h�0,

hence, for h large, this inequality becomes worse than (7) in case c<1.
The inequality (8) and even (3) can be contained in some analytic

inequalities that involve the first power of the modulus of gradient and

41isoperimetric inequality
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where indicator functions are extremal. The inequality (2) gives an example
but there are other ones. Consider the inequality of the form

c &g&Eg&N�E |{g|, (9)

where g is arbitrary smooth function from the Orlicz space LN=
LN(Rn, #n(dx)) equipped with the norm

&g&N=inf[t>0 : EN(g�t)�1].

If the Young function N behaves at infinity like N(x)=|x| - log |x|, then
(9) may be viewed as L1-analog of the logarithmic inequality (4); existence
of c>0 in (9) for such N was proved in Ledoux [9]. Clearly, (9), being
applied to indicator functions, implies (8) (maybe with another constant c).
This result was sharpened by Pelliccia and Talenti [13]. They defined a
function N0 on the interval [- 2?, +�) by equality

2p(1&p) N0 \ 1
I( p)+=1, 0< p<1,

and linearly on the interval [0, - 2?] so that N0(0)=0, N0(- 2?)=2, and
found the optimal value c=1. At the same time, their proof, which was
based on Federer's coarea formula with application of the isoperimetric
inequality (3), showed (as well as a theorem by Rothaus [15] who con-
sidered more general inequalities on Rimannian manifolds) that the
inequality (9) holds true for all smooth g if and only if it is fulfilled (in
asymptotic sense) for all indicator functions g=/A . That is, (9), for sim-
plicity with c=1, is equivalent to

#+
n (A)�IN( p), p=#n(A), (10)

where IN( p)=&/A&p&N . Consequently, (10) becomes the isoperimetric
inequality (3) if and only if IN( p)=I( p), for all p # (0, 1), i.e., by definition
of the Orlicz space norm, if and only if

pN \1&p
I( p) ++(1&p) N \ p

I( p)+=1, 0< p<1. (11)

Since pN((1&p) x)+(1&p) N( px)�2p(1&p) N(x), whenever p # [0, 1],
x�0, we have IN0

�I( p). Since N0 is linear on [0, - 2?], we also have
pN0((1&p) x)+(1&p) N0( px)=2p(1&p) N0(x) for all x # [0, - 2?] with
strong inequality for x>- 2?. Therefore, IN0

( p)=I( p) if and only if
1�I( p)�- 2?. The last is possible in case p=1�2, only. Thus, at indicator
functions g=/A , Pelliccia's�Talenti's inequality

&g&Eg&N0
�E |{g|

42 s. bobkov
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coincides with the isoperimetric inequality (3) for the sets A of measure
p=1�2, and it is weaker than (3) for p{1�2. One may wonder if there exist
Young functions N which satisfy (11) so that (11) and (3) coincide (and
thus (9) involves (3)) for all p. This turns out to be true ([2]).

Remark 3. By Ehrhard ([5], p. 325), if the function g*(x)=g*(x1)
which depends on the first variable, only, is non-decreasing, and g* and g
are #n-equimeasurable, then

E |{g*|�E |{g|. (12)

It implies that the inequality (2) is needed to prove in case n=1, and for
non-decreasing g, only. In brief, the last can be done as follows. One can
write (2) as

I(Eg)&EI(g)�|
1

0
I(1&Fg(t)) dt, (13)

where Fg(t)=#1[x # R: g(x)�t] is distribution function of g with respect
to #1 . Fix m # [0, 1] and consider the family M(m) of all Borel probability
measures on [0, 1] with mean �1

0 x dF(x)=m. M(m) is a convex, compact
set equipped with the topology of weak convergence. Replacing in (13) Fg

with arbitrary Borel measure F on [0, 1], we observe that the left-hand
side and the right-hand side of (13) represent a linear functional and a con-
cave functional on M(m), respectively. Therefore, to prove (13) for all F
from M(m), it suffices to state it for extremal ``points'' of M(m), only. The
extremal measures F of M(m) are discrete and have at most two atoms:
F=p$x+(1&p) $y , for some 0�p�1, 0�y�x�1, where $x denotes the
unit mass at x. For such measures F, (13) takes the form

I( px+(1&p) y)&( pI(x)+(1&p) I( y))�I( p)(x&y),

that is fulfilled for all p, x, y as above and can be proved in an elementary
way. However, we will deduce (2) directly from (1), not using the
Ehrhard's theorem (property (12)).

Proof of Theorem. First we show that (1) implies the inequality

Egh�Rh(ER&h(g)) (14)

which holds for any Borel measurable g: Rn � [0, 1] and h>0. Here

gh(x)= sup
|e|<1

g(x+he), x # Rn, h>0,

Rh( p)=8(8&1( p)+h), 0� p�1, h # R.

43isoperimetric inequality
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Note that (1) is a partial case of (14) when g=/A is the indicator function
of the set A. The following idea is that (14) turns into (2) for small h, i.e.,
for smooth g, letting h � 0, we obtain (2). To obtain (1) from (2), one can
observe that, if h1 and h2 satisfy (14), then h1+h2 satisfies (14), so only
small h are important; we need to verify this property for indicator func-
tions. Below this plan is performed in detail according to the chain
(1) O (14) O (2) O (1).

Step 1: (1) O (14). Obviously, the function gh is lower semicontinuous,
therefore, Borel measurable. We prove that (1) implies (14) in a more
general situation. Let + be a probability measure on Rn. Given h>0, sup-
pose that, for all Borel measurable sets A/Rn,

+(Ah)�R(+(A)),

where R is a concave increasing function from [0, 1] onto itself. In par-
ticular, R(0)=0, R(1)=1. Denote S( p)=1&R(1&p). Let R&1 be the
inverse of R.

Lemma. If for all p, q # [0, 1],

R( pq)�R( p) R(q), (15)

S( pq)�S( p) S(q), (16)

then, for any Borel measurable g: Rn � [0, 1],

Egh�R(ER&1(g)). (17)

Mathematical expectations in (17) are with respect to +.

Proof of Lemma. Put A(t)=[x # Rn: g(x)>t]. Since [x # Rn: gh(x)>t]
=A(t)h, for all t real, and since 0�gh�1, we have

Egh=|
1

0
+[gh>t] dt=|

1

0
+(A(t)h) dt

�|
1

0
R(+(A(t))) dt=|

1

0
R(1&F(t)) dt,

where F(t)=1&+(A(t)) is distribution function of g with respect to +.
Hence, (17) will follow from

|
1

0
R(1&F(t)) dt�R \|

1

0
R&1(x) dF(x)+ , (18)

where F is arbitrary probability Borel measure on [0, 1]. Let
M=C[0, 1]* denote the family of all signed finite Borel measures on

44 s. bobkov
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[0, 1]. Let M=C[0, 1]* denote the family of all signed finite Borel
measures on [0, 1] equipped with the topology of weak convergence. Let
M1 /M consist of all probability distributions. M1 is considered as a com-
pact, convex subset of M, and the extremal points in M1 are just unit
masses $x , x # [0, 1]. Again, as it was suggested in Remark 3, we fix
m # [0, 1] and define M(m) as the family of all probability distributions F
on [0, 1] such that �1

0 R&1(x) dF(x)=m. We observe that the left-hand
side and the right-hand side of (18) represent a concave functional and a
constant (=R(m)) on M(m), respectively. Therefore, to prove (18) for all
F from M(m), it suffices to state it for extremal points of M(m), only. Since
M(m) is the intersection of the simplex M1 with a hyperplane in M, the
extremal points of M(m) lie on one-dimensional edges of M1 , hence, they
are of the form F=p$x+(1&p) $y , for some 0�p�1, 0�y�x�1. For
such F, since R(0)=0, R(1)=1, (18) turns into y+R( p)(x&y)�
R( pR&1(x)+(1&p) R&1( y)). Changing the variables x and y with R(x)
and R( y), respectively, we come to the inequality

R( px+(1&p) y)�R( p) R(x)+(1&R( p)) R( y) (19)

under the same assumptions on x, y and p. Given p, c # [0, 1], we observe
that the left-hand side of (19) is constant and the right-hand side of (19)
is a concave function on the segment

2( p, c)=[(x, y) : 1�x�y�0, px+(1&p) y=c].

Therefore, one needs to check (19) at the end points of 2( p, c), only. One
of these points lies on the diagonal x=y, where (19) becomes identity. The
other lies either on the line y=0, or on the line x=1. In the first case, (19)
becomes R( px)�R( p) R(x) that is fulfilled by the assumption (15) on R.
In the second case, we come to the inequality R( p+(1&p) y)�R( p)+
(1&R( p)) R( y) that may be expressed via the function S as S((1&p)(1&
y))�S(1&p)(1&y). The last holds by (16). Lemma is thus proved.

Now we explain why the above proposition may be applied to +=#n .
The family Rh , h # R, forms one-parametric group of increasing bijections
in [0, 1], i.e., Rh is superposition of Rh1

and Rh2
if h=h1+h2 , and R&h is

the inverse of Rh . Therefore, for R=Rh , we have S=R&1. Hence, (16)
follows from (15) which can be proved directly using log-concavity of ,�8.
But (15) is also a partial case of (1) when n=2, and A is the cube
(&�, 8&1( p))_(&�, 8&1(q)). Concavity of Rh , h>0, is evident. Thus,
the isoperimetric property of Gaussian measure implies (14).

Step 2: (14) O (2). We prove (2) a little in more general situation when
g is arbitrary locally Lipschitz function with values in [0, 1]. By

45isoperimetric inequality
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Rademacher's theorem (see, e.g., [6], p. 216), the function g is differen-
tiable at almost all x # Rn, and for such x, it follows that (gh(x)&g(x))�
h � |{g(x)| as h � 0.

Step 2.1: g is arbitrary Lipschitz function with values in [0, 1]. Let, for
some c, | g(x)&g( y)|�c |x&y|, for all x, y # Rn. One may assume that g
is not constant so that 0<Eg<1 (otherwise, there is nothing to prove).
Since, for all x # Rn, h>0, gh(x)&g(x)�ch, we get

lim
h � 0

E
gh(x)&g(x)

h
=E |{g|, (20)

by Lebesgue's dominated convergence theorem. Using Taylor's expansion,
we have Rh( p)=p+,(8&1( p)) h+cp(h) h2 for all p # [0, 1], h # R, where
cp(h) is bounded by the constant supx ,$(x)�2. So,

ER&h(g)=Eg&E.(8&1(g)) h+c(h) h2,

where c(h) is a bounded function. Hence,

Rh(ER&h(g))=(Eg&E.(8&1(g)) h+c(h) h2)

+.(8&1(ER&h(g))) h+O(h2). (21)

Since 0<Eg<1, the value ER&h(g) is separated from 0 and 1 for h small
enough. Therefore, ,(8&1(ER&h(g))=,(8&1(Eg))+O(h) as h � 0, and
we finally obtain from (21)

Rh(ER&h(g))=Eg+(.(8&1(Eg))&E.(8&1(g))) h+O(h2),

that is,

lim
h � 0

Rh(ER&h(g))&Eg
h

=.(8&1(Eg))&E.(8&1(g)). (22)

It remains to rewrite (14) as

E
gh(x)&g(x)

h
�

Rh(ER&h(g))&Eg
h

, h>0,

and take the limit as h � 0, h>0, using (20) and (22).

Step 2.2: g is arbitrary locally Lipschitz function. Consider a truncation
of g putting gN(x)=g(x) TN(x) where N is positive integer and

1, if |x|�N
TN(x)={N+1&|x|, if N�|x|�N+1

0, if N+1�|x|.

46 s. bobkov



F
ile

:5
80

J
28

07
09

.B
y:

B
V

.D
at

e:
18

:0
1:

96
.T

im
e:

16
:2

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

31
44

Si
gn

s:
21

75
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Then 0�gN�1, gN is Lipschitz and, furthermore, |{gN(x)|=|{g(x)| for
|x|<N, |{gN(x)|=0 for |x|>N+1. If g is differentiable at a point x with
N<|x|<N+1, then �gN(x)��xi=�g(x)��xi (N+1&|x| )&g(x) xi �|x|
(1�i�n), hence |{gN(x)| |{g(x)|+| g(x)|�|{g(x)|+1 almost everywhere.
Consequently, E |{gN |�E |{g|+#n[x # Rn: N<|x|<N+1] � E |{g| as
N � �. On the other hand, according to Step 2.1,

.(8&1(EgN))&E.(8&1(gN))�E |{gN |. (23)

Since gN converges to g pointwise, we obtain (2) from (23) taking limit as
N � �.

Step 3: (2) O (1). Clearly, using approximation argument, one may
assume that the set A in (1) is a finite union of non-empty, open balls in
Rn. In particular, 0<#n(A)<1. The family of such sets A is closed under
operations A � Ah, h>0.

Assume that (2) holds for all smooth g. Then (2) holds for all Lipschitz
g. Indeed, for any Lipschitz function g with values in [0, 1], of Lipschitzian
constant c, there exists a sequence gn of smooth functions gn with values in
[0, 1] such that |{g|�c, gn tends to g everywhere and {gn tends to {g
almost everywhere. Taking the limit in (2) for gn as n � �, we obtain (2)
for g.

Now we approximate the indicator function g=/A by Lipschitz func-
tions: for any =>0, there exists a Lipschitz function g(=) of Lipschitz con-
stant �1�= such that g(=)=1 on A, g(=)=0 on Rn"A= and 0�g(=)�1. Then
|{g(=)|=0 on A and Rn "clos(A=), and |{g(=)|�1�= everywhere. Note that,
�(A=) is of measure 0 for all =>0. Therefore, according to (2),

.(8&1(Eg(=)))&E.(8&1(g(=)))�E |{g (=)|�(#n(A=)&#n(A))�=. (24)

Since g(=) converges pointwise to g=/clos(A)=/A a.e. as = � 0, =>0, it
follows from (24) that

.(8&1(#n(A)))�#+
n (A). (25)

Now (1) easily follows from (25). Consider the family of functions
R_

h( p)=8_(8&1
_ ( p)+h) with the extra parameter _>1, where

8_(x)=8(x�_), 8&1
_ is the inverse of 8_ . Like the case _=1, the family

R_
h , h # R, forms one-parameter group of increasing bijections in [0, 1]. If

we show that, for all _>1 and h>0, R_
h(#n(A))�#n(Ah), then, letting

_ � 1, we get (1). For this purpose, fix _>1, and put

J=[h>0 : R_
t (#n(A))�#n(At) for all t # (0, h]].

The functions h � R_
h(#n(A)) and h � #n(Ah) are continuous. Hence, to

show that J=(0, +�), it suffices to see that

47isoperimetric inequality



F
ile

:5
80

J
28

07
10

.B
y:

B
V

.D
at

e:
18

:0
1:

96
.T

im
e:

16
:2

8
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

30
42

Si
gn

s:
19

21
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

(a) = # J, for all =>0 small enough;

(b) if h # J, then h+= # J, for all = small enough.

For small h, R_
h( p)=p+,=(8&1

_ ( p)) h+O(h2), where ,_=8$_ , therefore,

R_
h(#n(A))=#n(A)+._(8&1

_ (#n(A))) h+O(h2), as h � 0. (26)

On the other hand,

#n(Ah)=#n(A)+#+
n (A) h+O(h2), as h � 0. (27)

Taking into account (25) and comparing (26) and (27), we prove (a),
because 0<#n(A)<1 and, therefore, ,_(8&1

_ (#n(A)))=,(8&1(#n(A)))�_<
,(8&1(#n(A))). Let h # J. Then, R_

h(#n(A))�#n(Ah). If this inequality is
strong, then it remains true for all h+= with =>0 small enough. Let
R_

h(#n(A))=#n(Ah). Set B=Ah. According to (25), ,(8&1(#n(B)))�#+
n (B)

and, therefore, again by (26) and (27), R_
= (#n(B))<#n(B=) for all = small

enough. It remains to note that

R_
h+=(#n(A))=R_

= (R_
h(#n(A)))=R_

= (#n(Ah))=R_
= (#n(B))

�#n(B=)=#n(Ah+=),

because B==AA+=. This proves (b) and, therefore, theorem.
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