
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 68 (2004) 157–204

Mixed Pfair/ERfair scheduling of asynchronous
periodic tasks$

James H. Anderson� and Anand Srinivasan

Department of Computer Science, University of North Carolina, 256 Sitterson Hill CB #3175, Chapel Hill,

NC 27599-3175, USA

Received 10 October 2001; revised 21 August 2003

Abstract

Pfair scheduling was proposed by Baruah, Cohen, Plaxton, and Varvel as a non-work-conserving way of
optimally and efficiently scheduling periodic tasks on a multiprocessor. In this paper, we introduce a work-
conserving variant of Pfair scheduling called ‘‘early-release’’ fair (ERfair) scheduling. We also present a new

scheduling algorithm called PD2 and show that it is optimal for scheduling any mix of early-release and
non-early-release asynchronous, periodic tasks. In contrast, almost all prior work on Pfair scheduling has

been limited to synchronous systems. PD2 is an optimization of an earlier deadline-based algorithm of

Baruah, Gehrke, and Plaxton called PD; PD2 uses a simpler tie-breaking scheme than PD to disambiguate

equal deadlines. We present a series of counterexamples that suggest that, in general, the PD2 tie-breaking
mechanism cannot be simplified. In contrast to this, we show that no tie-breaking information is needed on
two-processor systems.
r 2003 Elsevier Inc. All rights reserved.

Keywords: Asynchronous periodic tasks; ERfair; Fairness; Multiprocessors; Optimality; Pfair; Real time; Scheduling

1. Introduction

Pfair scheduling was proposed by Baruah, Cohen, Plaxton, and Varvel as a way of optimally
and efficiently scheduling periodic tasks on a multiprocessor [7]. Pfair scheduling differs from
more conventional real-time scheduling disciplines in that tasks are explicitly required to make

ARTICLE IN PRESS

$Work supported by NSF Grants CCR 9732916, CCR 9972211, CCR 9988327, and ITR 0082866. Some of the

results in this paper were presented in preliminary form at the 12th and 13th Euromicro Conferences on Real-time

Systems [1,3].
�Corresponding author.

E-mail address: anderson@cs.unc.edu (J.H. Anderson).

0022-0000/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcss.2003.08.002

progress at steady rates. In most real-time scheduling disciplines, the notion of a rate is implicit.
For example, in the periodic task model, each task T executes at a rate given by T :e=T :p; where
T :e is the execution cost of each job (i.e., invocation) of T ; and T :p is the period (and also the
relative deadline) of T : every T :p time units T releases a new job with execution cost T :e and that
job must complete execution before T ’s next job release. Although there is a notion of a rate here,
it is actually a bit inexact: a job of T may be allocated T :e time units at the beginning of its period,
or at the end of its period, or its computation may be spread out more evenly. Under Pfair
scheduling, this implicit notion of a rate is strengthened to require each task to be executed at a
rate that is uniform across all jobs.
Pfair scheduling algorithms ensure uniform execution rates by breaking tasks into quantum-

length ‘‘subtasks.’’ Each subtask must execute within a ‘‘window’’ of time slots, the end of which
is its deadline. These windows divide each period of a task into potentially overlapping
subintervals of approximately equal length. Different subtasks of a task may execute on different
processors (i.e., migration is allowed). By breaking tasks into smaller executable units, Pfair
scheduling algorithms circumvent many of the bin-packing-like problems that lie at the heart of
intractability results involving multiple-resource real-time scheduling problems. Intuitively, it is
easier to evenly distribute small, uniform items among the available bins than larger, non-uniform
items.
Under Pfair scheduling, if some subtask of a task T executes ‘‘early’’ within its window, then T

is ineligible for execution until the beginning of its next window. This means that Pfair scheduling
algorithms are necessarily not work conserving when used to schedule periodic tasks. A
scheduling algorithm is work conserving if no processor ever idles unnecessarily. More precisely, if
there are M processors, and k uncompleted jobs at time t; then minðk;MÞ processors should be
busy at time t: Work-conserving algorithms are of interest because their use often results in lower
job response times, especially in lightly-loaded systems. (This is because non-work-conserving
algorithms may choose to leave processors idle resulting in later finishing times.) In addition, non-
work-conserving algorithms often entail higher runtime overheads because of extra bookkeeping
required to keep track of when a job is and is not eligible.
In two separate papers [6,7], Baruah et al. presented two optimal Pfair scheduling algorithms,

called PF and PD. In both algorithms, subtasks are prioritized by their deadlines. The two
algorithms differ in the way in which ties are broken when two subtasks have the same deadline.
In PF, ties are broken by comparing future subtask deadlines, which is somewhat expensive. In
PD, ties are broken in constant time by inspecting four tie-break parameters. In both [6,7], only
synchronous, periodic task systems are considered—in a synchronous task system, all tasks are
constrained to release their initial jobs at time 0.

Contributions of this paper. In this paper, we extend the work of Baruah et al. in several ways.

* First, we introduce a work-conserving variant of Pfair scheduling called ‘‘early-release’’ fair
(ERfair) scheduling. Under ERfair scheduling, if two subtasks are part of the same job, then
the second subtask becomes eligible for execution as soon as the first completes. In other words,
a subtask may be released ‘‘early,’’ i.e., before the beginning of its Pfair window.

* Second, we introduce a new scheduling algorithm derived from PD called PD2 and show that it

is optimal for scheduling any mix of early-release and non-early-release periodic tasks. PD2 is
obtained from PD by eliminating two of PD’s tie-break parameters.

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204158

* Third, we present a series of counterexamples that strongly suggest that the PD2 tie-breaking

mechanism cannot be further simplified. In particular, we show that if either of the two PD2 tie-
breaks is eliminated, then there exists a feasible task set that is not correctly scheduled. We
further show that several other ‘‘obvious’’ tie-breaking schemes do not work.

* Fourth, we show that for the important special case of a two-processor system, no tie-breaking
information is required.

* Fifth, all of our results apply to asynchronous task systems. In contrast, almost all prior work
on Pfair scheduling has focused only on synchronous systems [4,6,7,9]. One exception is a
recent paper by Moir and Ramamurthy in which a static-priority Pfair scheduling algorithm for
asynchronous task systems is given [10]. Such static-priority algorithms are not optimal. In
other recent work, we proposed a task model called the intra-sporadic model that generalizes
the asynchronous model [2]. However, the algorithms given by us for that model are applicable
only to two-processor systems. (In the time since the research in this paper was conducted, we
have extended work on Pfair scheduling in several ways. In particular, we have obtained
bounds on the amount by which a deadline is missed if no tie-breaking information is used [12].

We have also shown that PD2 can be used to optimally schedule intra-sporadic tasks on
multiprocessors [11]. The swapping proof technique used in this paper reveals many
fundamental properties of Pfair- and ERfair-scheduled systems that were essential in showing

the optimality of PD2 for intra-sporadic tasks.)

A final, more subtle, contribution of this paper is our proof of correctness for PD2: In [7], PD is
proved correct by means of a simulation argument that shows that PD ‘‘closely’’ tracks the
behavior of PF. This proof is quite ‘‘brittle’’ and is difficult to extend beyond the synchronous,

periodic model [5]. In contrast, we prove that PD2 is correct by means of an inductive ‘‘swapping’’

argument in which an arbitrary schedule is converted into one in accordance with the PD2 priority
definition by systematically interchanging pairs of subtasks. Thus, we have succeeded in showing
that swapping arguments, which have proven quite useful in work on more ‘‘conventional’’ real-
time scheduling disciplines, can be used to effectively reason about PD and related algorithms as
well.

Some example schedules. Before continuing, we consider some example schedules that illustrate
the scheduling schemes considered in this paper. In the Pfair scheduling literature, the ratio of a
task T ’s execution cost and period, T :e=T :p; is referred to as its weight. A task’s weight determines
the length and alignment of its Pfair windows. Fig. 1 shows some schedules involving three sets of
tasks executing on two processors: a set A of one task of weight 5/16, a set B of three tasks of
weight 4/16, and a set C of 15 tasks of weight 1/16. Inset (a) shows the schedule for these tasks up
to time slot 15 in a Pfair-scheduled system. At time 0, the scheduler selects for execution the first
subtask of the set-A task and the first subtask of one of the set-B tasks. At time 1, the first
subtasks of the remaining two set-B tasks are scheduled. The rest of the schedule is similarly
produced. Note that successive windows of a task are either disjoint or overlap by one slot. As
explained later, this is a general property of Pfair-scheduled systems. Inset (b) shows the schedule
for the same task set under ERfair scheduling. In this case, each subtask is eligible as soon as its
predecessor completes. Notice that all set-A and set-B jobs have finished by time slot 8, which is
much sooner than in the Pfair schedule. Inset (c) shows a schedule in which only the set-A task is

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 159

an early-release task. Note that this task’s response time is lower here than in either of the
previous two examples. (These example schedules are used only to illustrate the basic ideas behind
Pfair and ERfair scheduling; details as to how to obtain subtask windows and select subtasks for

execution under PD2 are given in later sections.)

ARTICLE IN PRESS

1

1

1

1

1

2 1

2 1

1 2

1 2

A(1x 5/16):

B(3x4/16):

(a)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 12 2 2 222C(15x1/16):

1

2

1

A(1x 5/16):

B2(3x4/16):

B1(3x4/16):

2

2

2

1

1

1

1

1

1

1

(b)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 222C(15x1/16): 1 2 2 2

1

1

(c)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 11 2 1 2 2221C(15x1/16):

2

1

1

1

1

2 1

2 1

21
A(1x 5/16):

B(3x4/16):

Fig. 1. A schedule for a synchronous, periodic task set under (a) Pfair scheduling, (b) ERfair scheduling, and (c) mixed

Pfair and ERfair scheduling. With one exception (noted below), tasks of a given weight are shown together. Each

column corresponds to a time slot. For each subtask, there is an interval of time slots during which it is eligible (denoted

by dashes); this interval includes its Pfair window (denoted by bold dashes). An integer value n in slot t means that n of

the tasks in the corresponding set have a subtask scheduled at t: In inset (b), set B has been split into B1 and B2; the set-

B1 task happens to always be scheduled earlier than the set-B2 tasks, so its subsequent subtasks become eligible earlier.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204160

The rest of this paper is organized as follows. In Section 2, we define Pfair and ERfair

scheduling. Then, in Section 3, we present the PD2 algorithm. In Section 4, we present the

counterexamples mentioned above. In Section 5, we prove that PD2 correctly schedules any
feasible asynchronous, periodic task system consisting of a mix of early-release and non-early-

release tasks. In Section 6, we show that both PD2 tie breaks can be eliminated in two-processor
systems. Concluding remarks appear in Section 7. A number of properties pertaining to Pfair
windows are proved in Appendix A and the feasibility condition for asynchronous task systems is
proved in Appendix B.

2. Pfair and ERfair scheduling

Consider a collection of synchronous, periodic real-time tasks to be executed on a system of
multiple processors. (For the moment, we are only considering synchronous, periodic tasks.
Asynchronous tasks will be considered at the end of this section.) We assume that processor time
in such a system is allocated in discrete time units, or quanta; the time interval ½t; t þ 1Þ; where t is
a nonnegative integer, is called slot t: (Hence, time t refers to the beginning of slot t:) Associated
with each task T is a period T :p and an execution cost T :e: Every T :p time units, a new invocation
of T with a cost of T :e time units is released into the system; we call such an invocation a job of T :
Each job of a task must complete execution before the next job of that task begins. Thus, T :e time
units must be allocated to T in each interval ½ðk � 1Þ � T :p; k � T :pÞ; where kX1: T may be
allocated time on different processors in such an interval, as long as it is not allocated time on
different processors at the same time.
The sequence of allocation decisions over time defines a ‘‘schedule.’’ Formally, a schedule S is a

mapping S : t�N/f0; 1g; where t is a set of periodic tasks and N is the set of nonnegative
integers. If SðT ; tÞ ¼ 1; then we say that task T is scheduled at slot t. St denotes the set of tasks
scheduled in slot t: The statements TASt and SðT ; tÞ ¼ 1 are equivalent.

Lag constraints. The ratio T :e=T :p is called the weight of task T ; denoted wtðTÞ: We assume
each task’s weight is strictly less than one—a task with weight one would require a dedicated
processor, and thus is quite easily scheduled. A task with weight less than 1/2 is called a light task,
while a task with weight at least 1/2 is called a heavy task.
A task’s weight defines the rate at which it is to be scheduled. Because processor time is

allocated in quanta, we cannot guarantee that a task T will execute for exactly ðT :e=T :pÞt time
during each interval of length t: Instead, in a Pfair-scheduled system, processor time is allocated to
each task T in a manner that ensures that its rate of execution never deviates too much from that
given by its weight T :e=T :p: More precisely, correctness is defined by focusing on the lag between
the amount of time allocated to each task and the amount of time that would be allocated to that
task in an ideal system with a quantum approaching zero. Formally, the lag of task T at time t;
denoted lagðT ; tÞ; is defined as follows:

lagðT ; tÞ ¼ ðT :e=T :pÞt �
Xt�1

u¼0

SðT ; uÞ: ð1Þ

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 161

(In this paper, we consider only lag values in a specific schedule S obtained by the PD2 algorithm.
Hence, we leave the schedule implicit and use lagðT ; tÞ instead of lagðT ; t;SÞ:) A schedule is Pfair
if and only if

ð8T ; t :: � 1olagðT ; tÞo1Þ: ð2Þ
Informally, the allocation error for each task is always less than one quantum. Our notion of
early-release scheduling is obtained by simply dropping the �1 lag constraint. Formally, a
schedule is early-release fair (ERfair) if and only if

ð8T ; t :: lagðT ; tÞo1Þ: ð3Þ
In a mixed Pfair/ERfair-scheduled task system, each task’s lag is subject to either (2) or (3); such a
task is called a non-early-release task in the former case, and an early-release task in the latter.
Note that any Pfair schedule is ERfair, but not necessarily vice versa.
It is straightforward to show that in any ERfair schedule (and hence any Pfair or mixed Pfair/

ERfair schedule), all job deadlines are met. In particular, in an ERfair schedule, lagðT ; tÞ ¼ 0 for
t ¼ 0;T :p; 2T :p; 3T :p;y : This is because, for these values of t; ðT :e=T :pÞt is an integer, and
therefore by (1), lagðT ; tÞ is an integer as well. By (3), if lagðT ; tÞ is an integer, then it must be 0 or
some negative integer. However, it cannot be a negative integer because this would imply that
more processor time has been allocated to T than has been requested by jobs of T up to time t:
Hence, lagðT ; tÞ is 0 for these values of t:

Feasibility. A synchronous, periodic task set t has a Pfair schedule on M processors if and
only ifX

TAt

T :e

T :p
pM: ð4Þ

This result was proved by Baruah et al. [6] by means of a network flow construction. (We use a
similar proof technique in Appendix B to obtain a corresponding feasibility condition for
asynchronous periodic task systems.) Because every Pfair schedule is also an ERfair schedule, (4)
is a feasibility condition for ERfair-scheduled systems as well. For similar reasons, it is also a
feasibility condition for mixed Pfair/ERfair-scheduled task systems.

Windows. The Pfair lag bounds given in (2) have the effect of breaking each task T into an
infinite sequence of unit-time subtasks. We denote the ith subtask of task T as Ti; where iX1:
Subtask Tiþ1 is called the successor of Ti and Ti�1 is called the predecessor of Ti (defined for i41).
As in [6], we associate with each subtask Ti a pseudo-release rTi and a pseudo-deadline dðTiÞ: If Ti

is synchronous and periodic, then as shown in Appendix A, rðTiÞ and dðTiÞ are as follows.

rðTiÞ ¼
i � 1

wtðTÞ

� �
ð5Þ

dðTiÞ ¼
i

wtðTÞ

� �
: ð6Þ

(In our earlier work [1–3] pseudo-deadlines were defined to refer to slots; here, they refer to time.
Hence, the formula for dðTiÞ given here is slightly different.)

rðTiÞ is the first slot into which Ti potentially could be scheduled, and dðTiÞ � 1 is the last such
slot. For brevity, we often refer to pseudo-deadlines and pseudo-releases as simply deadlines and

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204162

releases, respectively. The interval ½rðTiÞ; dðTiÞÞ is called the window of subtask Ti and is denoted
by wðTiÞ: The length of window wðTiÞ; denoted jwðTiÞj; is defined as dðTiÞ � rðTiÞ: A window of
length n is called an n-window.
As an example, consider a task T with weight wtðTÞ ¼ 8=11: Each job of this task consists of

eight windows, one for each of its unit-time subtasks. Using Eqs. (5) and (6), it is possible to show
that the windows within each job of T are as depicted in Fig. 2.
Dropping the �1 lag constraint, as done in (3), is equivalent to allowing subtasks to execute

before their Pfair windows. In a Pfair-scheduled system, a subtask Ti is eligible at time t if tAwðTiÞ
and if Ti�1 has been scheduled prior to t but Ti has not. In an ERfair-scheduled system, if Ti�1 and
Ti are part of the same job, then Ti becomes eligible for execution immediately after Ti�1 executes,
which may be before Ti’s Pfair window. (Obviously, no subtask can become eligible before the
beginning of the job that contains it. Thus, the first subtask of a job cannot be released early.) This
difference is illustrated in Fig. 3. We will continue to use the term ‘‘release’’ to refer the first slot of
a subtask’s Pfair window, even though a subtask that is early-released can actually execute prior
to this slot.

Asynchronous Pfair task systems. In the usual definition of an asynchronous periodic task
system, each task may release its first job at any time. For Pfair- or ERfair-scheduled systems, this
is equivalent to allowing the first subtask of each task T ; namely T1; to be released any time at or
after time zero. Our notion of an asynchronous task system generalizes this: we allow a task T to

ARTICLE IN PRESS

2T
3T

1T 9T
10T

11T

13T
14T6T

8T

7T

5T
T4

15T
16T

T12

Windows of the

subtasks of T
first sixteen

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 2. The Pfair windows of the first two jobs (or 16 subtasks) of a task T with weight 8/11 in a Pfair-scheduled system.

During each job of T ; each of the eight units of computation must be allocated processor time during its window, or else

a lag-bound violation will result.

5 8

5T
6T

T4

3T

2T

1T

7T
8T

Subtasks T - T are

their windows.
scheduled before

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 3. The Pfair windows of the first jobs of a task T with weight 8/11 are shown. The schedule shown is ERfair, but

not Pfair.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 163

begin execution with any of its subtasks, perhaps one other than T1; and this subtask may be
released any time at or after time zero. As we shall see, this added generality facilitates our

correctness proof for PD2: It is straightforward to modify the flow construction used in the
feasibility proof of (4) to apply to asynchronous task systems as defined here. (Refer to Appendix
B.) Thus, (4) is a feasibility condition for such systems. (In fact, the network flow construction
produces a Pfair schedule, i.e., each task is scheduled within its window.) In addition, it is possible
to define the release and deadline of each subtask using simple formulae that are similar to those
given in (5) and (6) for synchronous task systems. In particular, suppose task T releases its first
subtask at time r and let Ti ðiX1Þ be this subtask. Then, the release and deadline of any subtask

Tj ð jXiÞ are given by the following formulae, where DðTÞ ¼ r � i�1
wtðTÞ

j k
:

rðTjÞ ¼
j � 1

wtðTÞ

� �
þ DðTÞ; ð7Þ

dðTjÞ ¼
j

wtðTÞ

� �
þ DðTÞ: ð8Þ

Thus, the windows of T are shifted by an offset given by DðTÞ; which determines the release time
of its first subtask. Note that if T is an asynchronous periodic task according to the usual
definition, then the first subtask released by T is T1 and DðTÞ reduces to r:

3. The PD2 algorithm

For synchronous, periodic task systems, the most efficient Pfair scheduling algorithm
previously proposed is an algorithm called PD [7]. PD prioritizes subtasks by pseudo-deadline
(hence its name). It is related to an earlier algorithm called PF [6] in which ties among subtasks
with the same deadline are broken by comparing vectors of future pseudo-deadlines. Although PF
was originally presented only in the context of synchronous, periodic systems, its correctness
proof is also applicable to asynchronous systems. Unfortunately, the runtime costs associated
with PF are prohibitive, so it is not a practical algorithm.

In this paper, we propose a new algorithm called the PD2 algorithm, which is an improvement

over the PD algorithm. In both PD and PD2; the pseudo-deadline vectors of PF are replaced by a
constant number of tie-break parameters. Four tie-break parameters are used in PD, while in

PD2; only two tie-breaks are used. We now define the two PD2 tie-break parameters. The

rationale behind each tie-break is explained later when considering the PD2 priority definition.
First tie-break: The successor bit. By (7) and (8), rðTiþ1Þ is either dðTiÞ or dðTiÞ � 1; i.e.,

successive windows are either disjoint or overlap by one slot. We define a bit bðTiÞ that
distinguishes between these two possibilities.

bðTiÞ ¼
1 if rðTiþ1Þ ¼ dðTiÞ � 1;

0 if rðTiþ1Þ ¼ dðTiÞ:

�
ð9Þ

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204164

For example, in Fig. 2, bðTiÞ ¼ 1 for 1pip7 and bðT8Þ ¼ 0: If T :e divides i; then ði � T :pÞ=T :e is

an integer, i.e., i
wtðTÞ

l m
¼ i

wtðTÞ

j k
: Thus, by (7)–(9), we have the following property.

(B) If Ti is the last subtask of a job, then bðTiÞ is zero.

Second tie break: The group deadline. Consider a sequence Ti;y;Tj of subtasks of a heavy task

T such that jwðTkÞj ¼ 24bðTkÞ ¼ 1 for all iokpj and either jwðTjþ1Þj ¼ 3 or wðTjþ1Þ ¼
24bðTjþ1Þ ¼ 0 (e.g., T1; T2 or T3; T4; T5 or T6; T7 in Fig. 2). If any of Ti;y;Tj is scheduled in

the last slot of its window, then each subsequent subtask in this sequence must be scheduled in its
last slot. In effect, Ti;y;Tj must be considered as a single schedulable entity subject to a ‘‘group’’

deadline. Formally, we define dðTjÞ þ 1 to be the group deadline for the group of subtasks

Ti;y;Tj: Intuitively, if we imagine a job of T in which each subtask is scheduled in the first slot of

its window, then the slots that remain empty exactly correspond to the group deadlines of T : For
example, in Fig. 2, T has group deadlines at slots 4, 8, 11, 15, 19, and 22.
We let DðTiÞ denote the group deadline of subtask Ti: Formally, if T is heavy, then

DðTiÞ ¼ ðmin u :: uXdðTiÞ and u is a group deadline of TÞ:

For example, in Fig. 2, DðT1Þ ¼ 4 and DðT6Þ ¼ 11: The above definition of D is valid only for
heavy tasks. If T is light, then DðTiÞ ¼ 0:

The PD2 priority definition. We can now state the PD2 priority definition. Under PD2; subtask
Ti’s priority is at least that of subtask Uj; denoted Ti%Uj; if one of the following rules is satisfied.

(i) dðTiÞodðUjÞ:
(ii) dðTiÞ ¼ dðUjÞ and bðTiÞ4bðUjÞ:
(iii) dðTiÞ ¼ dðUjÞ; bðTiÞ ¼ bðUjÞ ¼ 1; and DðTiÞXDðUjÞ: &

Any ties not resolved by these three rules can be broken arbitrarily. Thus, according to the above
priority definition, Ti has higher priority than Uj if it has an earlier pseudo-deadline. If Ti and Uj

have equal pseudo-deadlines, but bðTiÞ ¼ 1 and bðUjÞ ¼ 0; then the tie is broken in favor of Ti:
This is because scheduling a subtask with a b-bit of one earlier places fewer constraints on the
future schedule. (In particular, if Ti were scheduled very late, i.e., in the last slot of its window,
then this would reduce the number of slots available to Tiþ1 by one.) If Ti and Uj have equal

pseudo-deadlines and b-bits of one, then their group deadlines are inspected to break the tie. If
one is heavy and the other light, then the tie is broken in favor of the heavy task. If both are heavy
and their group deadlines differ, then the tie is broken in favor of the one with the later group
deadline. Note that the subtask with the later group deadline can force a longer cascade of
scheduling decisions in the future. Thus, choosing to schedule such a subtask early places fewer
constraints on the future schedule. If both are heavy and their group deadlines are equal, then the
tie can be broken arbitrarily. (Recall that DðTiÞ ¼ 0 if T is light. Thus, in a light-only task system,

PD2 uses only the first two rules to determine subtask priorities.)
The priority definition used in PD is similar to ours, except that two additional tie-break

parameters are used. The first of these is a task’s weight. The second is a bit associated with each

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 165

group deadline that is similar to the b-bit we associate with pseudo-deadlines. Our results show
that these two additional tie-break parameters are not necessary.

All of the components within the PD2 priority definition can be calculated in an asynchronous
system using simple formulae. In particular, for any subtask Ti; dðTiÞ is given by (8), and bðTiÞ by
(9). Also, as shown in [7], DðTiÞ can be calculated by using (8) to determine the deadlines of a task
of weight 1� wtðTÞ: (The deadlines of such a task coincide with the group deadlines of a task of
weight wtðTÞ:) If a task T is subject to the Pfair lag constraint (2), then each subtask Ti becomes
eligible for execution at time rðTiÞ; unless its predecessor is scheduled there, in which case it
becomes eligible at time rðTiÞ þ 1: If T is instead subject to the ERfair lag constraint (3), then Ti

becomes eligible at time rðTiÞ if it is the first subtask of its job, and immediately after the execution
of Ti�1 otherwise.

Given the priority definition above, the PD2 algorithm is simple to explain (in fact, the PD2

algorithm is nearly identical to the algorithm given for PD in [7], except that a different
priority definition is used). A priority-sorted ‘‘ready queue’’ is used to store eligible subtasks. In
addition, there are a number of priority-ordered ‘‘release queues’’ associated with future
time slots. At the beginning of each time slot, the M highest-priority subtasks in the ready queue
(if that many subtasks are eligible) are selected for execution, where M is the number of
processors in the system. If Ti is one of the selected subtasks, then Tiþ1 is inserted into the
release queue associated with time t; where t is the time at which Tiþ1 becomes eligible. At the
beginning of each time slot, the release queue for that slot is merged with the ready queue. An
additional search structure is used in order to efficiently access the release queues (see [7]
for details). Note that if T is an early-release task and Ti and Tiþ1 are part of the same job, then
the algorithm can be optimized to insert Tiþ1 directly into the ready queue (which will then be
used in the next time slot) instead of the release queue for the next slot (where Tiþ1 becomes
eligible).

4. Minimality of the PD2 priority definition

Before proving the optimality of PD2; we consider other scheduling algorithms that determine
subtask priorities using fewer or more-efficient tie-breaking rules.

According to the PD2 priority definition, each task T is effectively prioritized at time t by the
triple ðdðTiÞ; bðTiÞ;DðTiÞÞ; where Ti is the subtask of T eligible at time t: In this section, we
present a collection of counterexamples that show that this priority definition cannot be
substantially simplified.
In each proof in this section, an example task system is considered that fully utilizes a system of

M processors for some M: Each such task system consists of a set A of tasks of one weight and a
set B of tasks of another weight. We show that if this task system is scheduled with the newly-
proposed priority definition, then a time slot is reached at which fewer than M tasks are
scheduled. Since the task system fully utilizes the M processors, this implies that a deadline is
missed at some future time. In the proof of Theorem 1, we explain the resulting schedule in
detail. The subsequent proofs in this section are sketched more briefly. We begin by considering
the b-bit.

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204166

Theorem 1. If the PD2 priority definition is changed by eliminating b (i.e., Rule (ii)), then there exists
a feasible task system that is not correctly scheduled.

Proof. Consider a task system consisting of a set A of eight light tasks with weight 1/3 and a set B

of three light tasks with weight 4/9. Because total utilization is four, Expression (4) implies that
the system is feasible on four processors. Consider the schedule shown in Fig. 4(a).
As seen in Fig. 4(a), each job of a task with weight 1/3 consists of one three-slot window. Each

job of a task with weight 4/9 consists of four three-slot windows, with consecutive windows
overlapping by one slot. The first subtask of each task has a pseudo-deadline at slot 2. Because b
has been eliminated, this tie can be broken arbitrarily. We break it in favor of the subtasks of the
tasks in set A: Therefore the eight tasks in set A are scheduled in slots 0 and 1: In slot 2, the three
tasks from set B are the only tasks with subtasks that are eligible for execution. Hence, only three
subtasks can be scheduled in slot 2, causing a deadline miss later at time 9. &

The definition of DðTiÞ ensures that if T is light and U is heavy and if dðTiÞ ¼ dðUjÞ4bðTiÞ ¼
bðUjÞ ¼ 1; then Uj has higher priority. The following theorem shows that it is necessary to tie-

break such a situation in favor of the heavy task.

Theorem 2. Suppose the definition of D is changed as follows: if T is light, then DðTiÞ is a randomly-
selected value. Then, there exists a feasible task system that is not correctly scheduled.

ARTICLE IN PRESS

0 1 2 3 4 5 6 7 8 9 10 110 1 2 3 4 5 6 7 8 9

2

2

2

21 4 1

3

B (3 x 4/9)
3

2

21

1

2

2

2

1 1

1 1

2

3

44

41A (8 x 1/3)

B (2 x 19/22)

32

2 3

2 2 1

1 4

2 2 1

A (5 x 5/11)

(b)(a)

Fig. 4. The notation used here (and in Figs. 5, 6, and 8) is the same as in Fig. 1. (a) Theorem 1. A deadline is missed at

time 9 by a task of weight 1/3. (We do not illustrate deadline misses in the subsequent figures, and show the schedule

only until a slot is reached in which fewer than M tasks are scheduled.) (b) Theorem 2.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 167

Proof. Consider a task system consisting of a set A of five light tasks with weight 5/11 and a set B
of two heavy tasks with weight 19/22. Because total utilization is four, this task system is feasible
on four processors. Consider the schedule shown in Fig. 4(b), which is possible given the proposed
priority definition. In particular, at times 1, 3, and 7, the set-A tasks are favored over the set-B
tasks. This causes only three subtasks to be eligible for execution in slot 10. &

The previous counterexamples give rise to the possibility that DðTiÞ is actually only needed to
tie-break heavy tasks over light tasks. The next theorem shows that this is not the case.

Theorem 3. Suppose the definition of D is changed as follows: if T is heavy, then DðTiÞ is one. (If T
is light, then DðTiÞ is zero as before.) Then, there exists a feasible task system that is not correctly
scheduled.

Proof. Consider a task system, to be scheduled on four processors, consisting of a set A of three
heavy tasks with weight 5/7 and a set B of two heavy tasks with weight 13/14. The proposed
priority definition allows the schedule shown in Fig. 5. Note that only three subtasks are eligible in
slot 3. &

Given the previous counterexample, one may wonder if the definition of D can be weakened so that
ties among heavy tasks are statically resolved. The following theorem shows that this is unlikely.

Theorem 4. If D is changed so that ties among heavy tasks are statically broken by weight, then
there exists a feasible task system that is not correctly scheduled.

ARTICLE IN PRESS

0 1 2 3 4 5 6 7

3

2 1

3

A (3 x 5/7)

1 1

2

2

B (2 x 13/14)

Fig. 5. Theorems 3 and 6.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204168

Proof. Consider a task system, to be scheduled on 12 processors, consisting of a set A of three
heavy tasks with weight 8/9 and a set B of ten heavy tasks with weight 14/15. First, suppose that D is
defined to statically tie-break the set-A tasks over the set-B tasks. Then, the schedule shown in Fig.
6(a) is possible. In this schedule, only 11 subtasks are eligible at time slot 8. Second, suppose that D
is defined to statically tie-break the set-B tasks over the set-A tasks. In this case, the schedule shown
in Fig. 6(b) is possible. In this schedule, only 11 subtasks are eligible at time slot 14. &

From the previous theorem, it follows that D almost certainly must be defined to dynamically
tie-break heavy tasks. (Note, for example, that Theorem 4 leaves open the possibility of statically
defining D so that some set-A tasks are favored over set-B tasks, but other set-A tasks are not
favored over set-B tasks.) One obvious approach to try that is less dynamic than ours is to define
DðTiÞ based on the deadline of the current job of T : The next two theorems show that using job
deadlines does not work; in the first of these theorems, later job deadlines are given higher
priority, and in the second, nearer job deadlines are given higher priority.

Theorem 5. Suppose the definition of D is changed as follows: if T is heavy, then DðTiÞ is the

deadline of the current job of T : Then, there exists a feasible task system that is not correctly
scheduled.

ARTICLE IN PRESS

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3

3

3

7

7

2 1

3

6 4

5 5

4 6

4 6

4 6

4 6

3 7

2 8

3

3

2 1

1 2

3

3

3

3

2 1

1 2

3

3

3
A (3 x 8/9)

9

8

7

6

5

4

1

2

3

4

5

6

3

3

3

3

3

3

A (3 x 8/9)

10

10

10

9 1

8 2

7 3

B (10 x 14/15)

B (10 x 14/15)

(b)(a)

Fig. 6. Theorem 4.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 169

Proof. Consider a task system, to be scheduled on 17 processors, consisting of a set A of nine
heavy tasks with weight 7/9 and a set B of 12 heavy tasks with weight 5/6. The proposed priority
definition allows the schedule shown in Fig. 7. (Note that the newly-proposed definition
of D favors set-A tasks over set-B tasks.) In this schedule, only 16 subtasks are eligible at
time slot 4. &

Theorem 6. Suppose the definition of D is changed as follows: if T is heavy, then DðTiÞ is 1=t; where

t is the deadline of the current job of T : Then, there exists a feasible task system that is not correctly
scheduled.

Proof. This can be proved by using the task system and schedule shown in Fig. 5, which was used
previously in the proof of Theorem 3. (Note that the newly-proposed definition of D favors set-A
tasks.) &

As we will show later in Section 6, neither b nor D is needed on two processors. We now
show that at least one tie-breaking rule is needed in any system with three or more
processors. (Note that Theorems 1, 2, 3 and 6 apply on systems with four or more
processors.)

Theorem 7. If our priority definition is changed by eliminating both b and D; then there exists a task

system that is feasible on three processors that is not correctly scheduled.

Proof. Consider a task system, to be scheduled on three processors, consisting of a set A
of three heavy tasks with weight 1/2 and a set B of two heavy tasks with weight 3/4. The
proposed priority definition allows the schedule shown in Fig. 8(a). In this schedule, only
two subtasks are eligible at time slot 1. (Note that either b or D would correctly tie-break
these tasks.) &

ARTICLE IN PRESS

0 1 2 3 4 5 6

9

9

9

5 4

A (9 x 7/9)

12

4 8

12

8 4

B (12 x 5/6)

Fig. 7. Theorem 5.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204170

One ‘‘obvious’’ potential priority definition that comes to mind is to use the rational value i
wtðTÞ

as the deadline of subtask Ti; which is tantamount to omitting the ceiling brackets in the deadline
formula (6). As it turns out, this new definition works for light-only task systems, but does not
work if heavy tasks are present.
The optimality of this priority definition for light-only task systems follows from the optimality

of PD2: Recall that PD2 only uses Rules (i) and (ii) for light tasks, i.e., it prioritizes light

tasks using the pair ðdðTiÞ; bðTiÞ: If i
wtðTÞp

j
wtðUÞ; then

i
wtðTÞ

l m
p j

wtðUÞ

l m
; i.e., dðTiÞpdðUjÞ: Further,

if i
wtðUÞ is an integer, then bðTiÞ ¼ 0; in this case either j

wtðUÞ4
i

wtðUÞ; in which case dðUjÞ4dðTiÞ
or j

wtðUÞ ¼ i
wtðUÞ; in which case bðUjÞ ¼ 0: Thus, all the scheduling decisions are in accordance

with PD2:

It might appear that the expression i
wtðTÞ reduces a task’s priority to a single number. However,

to avoid rounding errors, this rational number must be stored as two integers. PD2 actually

improves upon this by using an integer for dðTiÞ and a bit for bðTiÞ: (In fact, the PD2 priority
definition for light tasks can be reduced to a single integer d 0ðTiÞ that equals 2 � dðTiÞ � bðTiÞ:
Under this new priority definition, Ti’s priority is at least Uj’s if d 0ðTiÞpd 0ðUjÞ: It is

straightforward to show that this algorithm makes the same scheduling decisions as PD2 because
the b-bit is either zero or one.)
We now show that the using rational deadlines can sometimes lead to missed deadlines in

systems with heavy tasks.

Theorem 8. If the priority definition is changed so that Ti’s priority is at least Uj’s if i
wtðTÞp

j
wtðUÞ; and

any ties are broken arbitrarily, then there exists a feasible task system such that it is not correctly
scheduled.

ARTICLE IN PRESS

0 1 2 3 4 5 6 7 8 90 1 2 3 4

2

B (2 x 3/4)

A (3 x 1/2)

3

10

10

6

4 6

4

4
B (10 x 9/10)

8 7

1 14

8 7

A (15 x 3/5)

(b)(a)

Fig. 8. (a) Theorem 7; (b) Theorem 8.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 171

Proof. Consider a task system consisting of a set A of 15 tasks with weight 3/5 and a set B of ten
tasks with weight 9/10. Total utilization is 18, so we should be able to schedule this task system on
18 processors. Consider the schedule shown in Fig. 8(b), which is possible given the proposed

priority definition. In particular, at time 2, the priority of any task in A is given by 2
3=5 ¼ 10

3
; while

the priority of a task in B is given by 3
9=10 ¼ 10

3
: Hence, tasks in set A may be favored, as shown in

Fig. 8(b). This causes only 17 subtasks to be eligible for execution in slot 4. &

5. Optimality proof of PD2

In this section, we show that PD2 is optimal for scheduling the class of task systems considered
in this paper. We begin in Section 5.1 by stating several properties that are used extensively in the
proof. The optimality proof itself is then given in Section 5.2.

Note that by (5) and (6), the Pfair windows of two tasks T and U for which T :e
T :p ¼ U :e

U :p are

identical. This implies that, under Pfair scheduling, they will be scheduled in precisely the same
way. Thus, for notational simplicity, it is reasonable to assume that T :e and T :p are relatively
prime for each task T ; i.e., gcdðT :e;T :pÞ ¼ 1; where gcdða; bÞ is the greatest common divisor
(GCD) of a and b: We do make this assumption in our proof. Unfortunately, this creates a slight
problem, because under ERfair scheduling, two tasks with equal weights but different periods
may be scheduled differently. In particular, they may differ with regard to which subtasks may be
released early because their job releases occur at different times. However, the above assumption
is still valid because our proof applies even if subtasks are early-released across jobs. (In fact, our
proof applies even if the scheduler dynamically decides whether to early release subtasks or not, or
bounds early releases by a threshold—e.g., a subtask may be allowed to release early, but only up
to two time slots before its Pfair window.)

5.1. Properties about subtask windows

We now state several properties about subtask windows and group deadlines. These properties
are proved in Appendix A. Each property pertains to just a single task. For brevity, we let T

denote this task, and abbreviate T :e and T :p as e and p; respectively.

Lemma 9. The following properties hold for any task T :

(a) rðTiþ1Þ is either dðTiÞ or dðTiÞ � 1; which implies that rðTiþ1ÞXdðTiÞ � 1:
(b) The sequence of windows within any two jobs are identical, i.e., jwðTkeþiÞj ¼ jwðTiÞj; where

1pipe and kX0:
(c) The windows are symmetric within each job, i.e., jwðTkeþiÞj ¼ jwðTkeþeþ1�iÞj; where 1pipe; and

kX0:
(d) The length of each window is either p

e

� �
or p

e

� �
þ 1:

(e) jwðTiÞj ¼ p
e

� �
if ði � 1Þ is a multiple of e:

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204172

Property (P2) below refers to a ‘‘minimal’’ window of a task. Note that by part (d) of Lemma 9,
the windows of any task are of at most two different lengths. We refer to a window of task T with

length T :p
T :e

� �
as a minimal window of T :

(P1) If bðTiÞ ¼ 0; then jwðTiÞj ¼ jwðTiþ1Þj:
(P2) If bðTiÞ ¼ 0; then wðTiÞ is a minimal window of T :
(P3) For all i and j; jwðTjÞjpjwðTiÞj þ 1:
(P4) For all i and j; jwðTjÞjXjwðTiÞj � 1:
(P5) If T is light, then all of its windows are of length at least three.
(P6) T has a 2-window if and only if it is heavy.
(P7) If T is heavy, then all its windows are of length two or three.
(P8) If T is heavy and bðTiÞ ¼ 0; then jwðTiÞj ¼ 2:
(P9) If t and t0 are successive group deadlines of a heavy task T ; then t0 � t is either 1

1�wtðTÞ

l m
or

1
1�wtðTÞ

l m
� 1:

(P10) Let T be a heavy task. Let t and t0 be consecutive group deadlines of T ; where t is the last
group deadline within some job of T (for the first job of T ; take t to be 0). Then t0 � t is at
least the difference between any pair of consecutive group deadlines of T :

5.2. Optimality proof

We now show that PD2 produces a ‘‘valid’’ schedule for any feasible asynchronous task system.
A schedule is valid at time slot t if (i) for each subtask Ti scheduled in slot t; t lies within the interval
during which Ti is eligible (which implies that Ti meets its deadline), (ii) no two subtasks of the same
task are scheduled at t; and (iii) the number of tasks scheduled at t is at most the number of
processors. A schedule is valid if it is valid at every time slot. We begin by assuming, to the contrary,

that PD2 fails to correctly schedule some task system. Then, there exists a time td as follows.

Definition 10. td is the earliest time at which some feasible asynchronous task system misses a

deadline under PD2:

In other words, PD2 does not miss any deadline before time td for any feasible asynchronous
task system. Let t be a feasible asynchronous task system with the following properties.

(T1) t misses a deadline under PD2 at td :
(T2) Among all feasible task systems that miss a deadline under PD2 at td ; no task system releases

a larger number of subtasks in ½0; tdÞ than t:

In the remainder of this section, we assume that t is as defined here. The existence of such a t
follows from our assumption that PD2 is not optimal. We now show that PD2 produces a valid
schedule for t over ½0; td �; thus contradicting our starting assumption.
In the proofs that follow, we consider slots in which one or more processors are idle. In a

schedule S; if k processors are idle at time slot t; then we say that there are k holes in slot t in S:

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 173

The following lemma gives an important property of the task set t: (Note that the proof of this
lemma relies on (T2) and the fact that we have generalized the notion of an asynchronous system
to allow a task to begin execution with any of its subtasks.)

Lemma 11. If task TAt releases its first subtask at time t40; and if this first subtask is Ti; i41;
then either bðTi�1Þ ¼ 0 and jwðTi�1Þj4t or bðTi�1Þ ¼ 1 and jwðTi�1Þj4t þ 1:

Proof. We only consider the case when bðTi�1Þ ¼ 0 holds; in this case, we show that jwðTi�1Þj4t

holds. (The proof for the case when bðTi�1Þ ¼ 1 holds is similar.) Suppose, to the contrary, that
jwðTi�1Þjpt: Consider the task system t0 obtained by adding the subtask Ti�1 with a release at
time t � jwðTi�1ÞjX0: (We assume that the relative priorities of two subtasks in t do not change in
t0:) Then, t0 satisfies the following properties.

* It has one more subtask than t:
* It misses a deadline at td :

To see the latter, note that upon adding Ti�1 to t; if Ti�1 does not miss its deadline, then it will
either be scheduled in a slot where there is a hole, or it will cause a lower-priority subtask to be
scheduled at a later slot. Inductively, this lower-priority subtask either misses a deadline or
is scheduled correctly, in which case it may cause other subtasks to get scheduled later.
Thus, no subtask will ‘‘shift’’ to an earlier slot. Repeating this argument, it is easy to see that
adding Ti�1 cannot cause the missed deadline at td to be met. Thus, t0 misses a deadline at td

or earlier. This contradicts either (T2) or the minimality of td (refer to Definition 10). Therefore,
jwðTi�1Þj4t: &

To avoid distracting boundary cases, we henceforth assume that the first subtask for each task
T is some Ti; where i41: This can be assumed without loss of generality, because if T starts with
T1; then we can instead require it to start with Txþ1; where x ¼ T :e; by part (b) of Lemma 9, the
resulting release times and deadlines of the subtasks of T will be identical, implying that the

schedule produced by PD2 is identical as well.
Our proof proceeds by showing the existence of certain schedules for task set t: To facilitate our

description of these schedules, we find it convenient to totally order all subtasks in t: Let ! be an

irreflexive total order that is consistent with the% relation in the PD2 priority definition, i.e.,! is
obtained by arbitrarily breaking any ties left by %:

Definition 12. A schedule S is defined to be k-compliant if and only if

(i) S is valid,
(ii) the first k subtasks according to ! are scheduled in accordance with PD2; and
(iii) the remaining subtasks are scheduled within their Pfair windows (i.e., they are not

early-released).

We now present two lemmas. The second of these, Lemma 14, allows us to inductively prove
that t does not miss a deadline at td as originally assumed. Lemma 13 deals with a situation
arising in one of the cases in Lemma 14. According to Lemma 13, if subtasks Ti; Uj; and Ujþ1 are

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204174

scheduled as shown in Fig. 9(a), then by swapping some subtasks, it is possible to obtain a
schedule in which Uj is not scheduled in slot t:

Lemma 13. Let S be a valid schedule for t such that for light tasks T and U and tot0; Uj is

scheduled in slot t; Ti is eligible at t; and Ujþ1 and Ti are both scheduled in slot t0: Further, rðUjÞ ¼ t;
dðUjÞ ¼ t0 þ 1; rðUjþ1Þ ¼ t0; dðTiÞ ¼ t0 þ 1; and wðUjÞ is a minimal window of U : If all subtasks

scheduled at or after t in S are scheduled within their Pfair windows, then there exists a valid schedule

S0 also satisfying this property such that UeS0
t; Su ¼ S0

u for 0puot; and St � fUgCS0
t:

Proof. Our goal is to construct S0 by swapping Uj with a later subtask. Unfortunately, Ti and Uj

cannot be swapped directly because this would result in a schedule in which two subtasks of U are
scheduled in the same slot. Instead, we identify another subtask Vk that can be used as an
intermediate between Uj and Ti for swapping. Because T and U are both light, by (P5), all

windows of each span at least three slots. Because rðUjÞ ¼ t and dðUjÞ ¼ t0 þ 1; this implies that

t0Xt þ 2 and T and U are not scheduled in slot t0 � 1:
If there is a hole in slot t0 � 1; then the swapping shown in Fig. 9(b) gives the required schedule.
We henceforth assume that there is no hole in slot t0 � 1: In this case, because U is scheduled at

t0 but not at t0 � 1; there exists a task V that is scheduled at t0 � 1 but not at t0: Let Vk be the
subtask of V scheduled at t0 � 1: If dðVkÞ4t0; then the swapping shown in Fig. 9(c) gives the
desired schedule. In the rest of this proof, we assume the following.

dðVkÞ ¼ t0: ð10Þ

ARTICLE IN PRESS

Uj Uj+1

Ti

Uj Uj+1

Ti

kV

Uj Uj+1

Ti

no
V

kV

Uj Uj+1

Ti

no
V k+1Vk-1VkV

Uj Uj+1

Ti

no
V

no
V

t ...

window
minimal

t't+1 t'+1 t ...

window
minimal

t+1 t' t'+1t'-1

hole

(a) (b)

t ...t+1 t' t'+1t'-1

window
minimal

(c)

t ...t+1 t' t'+1t'-1 ...

minimal
window

(e)

t ...t+1 t' t'+1t'-1

window
minimal

(d)

]i

]

]j

]k

]i

]j

]i

[j[j

[j

[k [k

[j

]k]k+1

]j+1]j

]i

]k

]j

]i

[jj

Fig. 9. We use the following notation in this and subsequent figures. ‘‘[’’ and ‘‘]’’ indicate the release and deadline of a

subtask; subscripts indicate which subtask. Each task is shown on a separate line. An arrow from subtask Ti to subtask

Uj indicates that Ti is now scheduled in place of Uj : An arrow over ‘‘[’’ (or ‘‘]’’) indicates that the actual position of ‘‘[’’

(or ‘‘]’’) can be anywhere in the direction of the arrow. Time is divided into unit-time slots that are numbered.

(Although all slots are actually of the same length, due to formatting concerns, they do not necessarily appear as such in

our figures.) If Ti is released at slot t; then ‘‘[’’ is aligned with the left side of slot t: If Ti has a deadline at time t þ 1; then
‘‘]’’ is aligned with the right side of slot t: In insets (c)–(e), no subtask of V is scheduled in slot t0: (a) Conditions of
Lemma 13. (b) There is a hole in slot t0 � 1: (c) dðVkÞ4t0: (d) dðVkÞ ¼ t0 and rðVkÞpt: (e) dðVkÞ ¼ t0 and rðVkÞXt:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 175

If rðVkÞot or if rðVkÞ ¼ t4VeSt; then the swapping shown in Fig. 9(d) produces the desired
schedule. The remaining possibility to consider is

ðrðVkÞ4tÞ3ðrðVkÞ ¼ t4VAStÞ: ð11Þ
In this case, we show that the swapping in Fig. 9(e) is valid. (This inset actually depicts the case
rðVkÞ ¼ t4VASt:) From (10) and the statement of the lemma, we have dðVkÞ ¼ dðUjÞ � 1: Also,

from (11), and the statement of the lemma, we have rðVkÞXrðUjÞ: Therefore,
jwðVkÞjojwðUjÞj: ð12Þ

Because wðUjÞ is a minimal window of U ; jwðUjþ1ÞjXjwðUjÞj: By definition, jwðUjþ1Þj ¼
dðUjþ1Þ � rðUjþ1Þ; which implies that dðUjþ1Þ ¼ jwðUjþ1Þj þ t0: Therefore,

dðUjþ1ÞXt0 þ jwðUjÞj: ð13Þ
Now, by (10) and by part (a) of Lemma 9, rðVkþ1Þ is either t0 � 1 or t0:We now show that in either
case, dðVkþ1Þpt0 þ jwðVkÞj: If rðVkþ1Þ ¼ t0 (in which case bðVkÞ ¼ 0), then by (P1), jwðVkþ1Þj ¼
jwðVkÞj: By definition, jwðVkþ1Þj ¼ dðVkþ1Þ � rðVkþ1Þ: Therefore, dðVkþ1Þ ¼ t0 þ jwðVkÞj:
On the other hand, if rðVkþ1Þ ¼ t0 � 1; then jwðVkþ1ÞjpjwðVkÞj þ 1 (by (P3)). Because

jwðVkþ1Þj ¼ dðVkþ1Þ � rðVkþ1Þ; it follows that dðVkþ1Þpt0 þ jwðVkÞj:
Thus, in both cases, we have dðVkþ1Þpt0 þ jwðVkÞj: By (12) and (13), this implies that

dðUjþ1Þ4dðVkþ1Þ: Therefore, by part (a) of Lemma 9, rðUjþ2ÞXdðVkþ1Þ: This implies that no

subtask of U is scheduled in the interval ½t0 þ 1; dðVkþ1ÞÞ: Thus, the swapping shown in Fig. 9(e) is
valid, and produces the required schedule. &

We now prove that a k-compliant schedule exists by induction on k: Note that a 0-compliant
schedule is just a Pfair schedule (with no early releases), and the existence of such a schedule is
guaranteed for any feasible task system. Also, if n subtasks are released in ½0; tdÞ; then an n-

compliant schedule is a valid schedule that is fully in accordance with PD2 over ½0; td �: The
following lemma gives the inductive step of the proof.

Lemma 14. If S is a valid k-compliant schedule for t; then there exists a valid schedule S0 for t that is
ðk þ 1Þ-compliant.

Proof. Let Ti be the ðk þ 1Þst subtask according to !: If Ti is scheduled in S in accordance with

PD2; then take S0 to be S: Otherwise, there exists a time slot t such that Ti is eligible at t but
scheduled later, and either (i) there is a hole in t; or (ii) some subtask ordered after Ti by ! is
scheduled at t: In the former case, we can easily rectify the situation by scheduling Ti at t: Hence,
in the rest of the proof, we assume that (ii) holds.
Let t be the earliest such time slot, and let Uj be the lowest-priority subtask scheduled at t: Thus,

Ti!Uj: Let t0 be the slot where Ti is scheduled, as depicted in Fig. 10(a). Note that t may or may

not lie within Ti’s Pfair window; this depends on whether Ti is an early-release subtask. However,
because S is k-compliant, t lies within Uj’s Pfair window and t0 lies within Ti’s Pfair window. In

the rest of the proof, we show that S0 can be obtained from S by swapping Ti and Uj and perhaps

some other subtasks. In all cases, the subtasks that are swapped include Ti and subtasks ranked
after Ti by !: Since S is k-compliant, all such subtasks are scheduled within their Pfair windows.

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204176

Because S is a valid schedule and Ti!Uj; by the PD2 priority definition, we have

tot0odðTiÞpdðUjÞ: ð14Þ

We first show that Ujþ1 cannot be scheduled before slot t0: Because Ti!Uj; we have Ti!Ujþ1;
and hence Ujþ1 is not early-released. Now, because dðUjÞ4t0 (by (14)), by part (a) of Lemma 9,

rðUjþ1ÞXt0: Thus, Ujþ1 cannot be scheduled before t0: Further, it can be scheduled at t0 if and only

if rðUjþ1Þ ¼ t0:
If no subtask of U is scheduled in the interval ½t þ 1; t0 þ 1Þ; then Ti and Uj can be directly

swapped to get the required schedule. In the rest of the proof, we assume that Ujþ1 is scheduled in

slot t0 (i.e., in the interval ½t0; t0 þ 1Þ). As shown above, in this case rðUjþ1Þ ¼ t0: Therefore, by part

(a) of Lemma 9, dðUjÞ is either t0 or t0 þ 1: By (14), it follows that dðUjÞ ¼ t0 þ 1 and hence,

dðTiÞ ¼ t0 þ 1: Because dðUjÞ ¼ rðUjþ1Þ þ 1; we have bðUjÞ ¼ 1: This implies that bðTiÞ ¼ 1; since
Ti!Uj: Thus, we have the following.

Ujþ1ASt04dðTiÞ ¼ dðUjÞ ¼ t0 þ 14rðTiþ1Þ ¼ rðUjþ1Þ ¼ t0: ð15Þ

These conditions are depicted in Fig. 10(b). We now consider four cases depending on the weights
of T and U :

Case 1: T is light and U is heavy. By the PD2 priority definition and the definition of a group
deadline, T cannot have higher priority than U at time t:

Case 2: T is heavy and U is light. In this case, we show that the swapping in Fig. 11 is valid.
(The argument hinges on the fact that U ’s windows are at least as long as T ’s—see Fig. 11.) By
(P7), all windows of T are of length either two or three. Further, by (P8), jwðTkÞj ¼ 2 if bðTkÞ ¼ 0;
and by (B) (refer to Section 3), bðTkÞ ¼ 0 if Tk is the last subtask of a job. Because bðTiÞ ¼ 1; it
follows that there exists an rX1 such that

jwðTiþrÞj ¼ 24ð8k : 0okor :: jwðTiþkÞj ¼ 34bðTiþkÞ ¼ 1Þ:

(Note that r could be one, i.e., wðTiþ1Þ could be a 2-window.) Because U is light, by (P5),
jwðUkÞjX3 for all k: This implies that dðTiþrÞodðUjþrÞ: Let q denote the smallest value of k that

satisfies dðTiþkÞodðUjþkÞ: (Note that qpr:) Then, dðTiþqÞodðUjþqÞ; and for all kA½1; q � 1�;

dðTiþkÞ ¼ dðUjþkÞ4jwðTiþkÞj ¼ jwðUjþkÞj ¼ 34bðTiþkÞ ¼ 1:

ARTICLE IN PRESS

(a) (b)

2]
j

i
]

Uj

T i

t t+1 ... t' t'+1

Uj

Ti i
]

]
j

Uj+1

same

t t+1 ... t' t'+1

as PD
decisions

Fig. 10. (a) Conditions of Lemma 14. (b) The ‘‘difficult’’ case to consider.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 177

Because dðTiþqÞodðUjþqÞ; by part (a) of Lemma 9, we have dðTiþqÞprðUjþqþ1Þ: Thus, Tiþq is

scheduled before Ujþqþ1: Let p be the smallest value for k such that Tiþk is scheduled prior to

Ujþkþ1: (Again, note that ppq). To summarize:

* ð8k : 0okop :: dðTiþkÞ ¼ dðUjþkÞ4jwðTiþkÞj ¼ 34jwðUjþkÞj ¼ 34bðTiþkÞ ¼
1Þ4dðTiþpÞpdðUjþpÞ;

* Tiþp is scheduled before Ujþpþ1; and
* for each k in the range 0okop; Tiþk is not scheduled before Ujþkþ1:

It is straightforward to see that the relevant subtasks are scheduled as shown in Fig. 11 and the
depicted swapping is valid.

Case 3: Both T and U are light. (This case and Case 4 are somewhat lengthy.) Again, the
situation under consideration is as depicted in Fig. 10(b). Because U is light, by (P5),
jwðUjþ1ÞjX3: Because rðUjþ1Þ ¼ t0 (by (15)), this implies that dðUjþ1Þ4t0 þ 2: Therefore, by part

(a) of Lemma 9, rðUjþ2ÞXt0 þ 2 and hence, U is not scheduled in slot t0 þ 1: If there is a hole in

slot t0 þ 1; then the swapping shown in Fig. 12(a) gives the required schedule. Otherwise, if Tiþ1 is
scheduled in slot t0 þ 1; then the swapping shown in Fig. 12(b) gives the required schedule. In the
rest of Case 3, we assume that there is no hole in slot t0 þ 1 and Tiþ1 is not scheduled there. We
now show that one of the swappings shown in Figs. 13 and 14 is valid.
Because U is scheduled in slot t0 but not in slot t0 þ 1; and because there are no holes in slot

t0 þ 1; there exists a task V that is scheduled in slot t0 þ 1 but not in slot t0: Let Vk be the subtask
of V scheduled in slot t0 þ 1: Because S is a valid schedule, dðVkÞXt0 þ 2: Therefore, by (15),
dðVkÞ4dðTiÞ; which implies that Ti!Vk: It follows that Vk is not early-released and hence,
rðVkÞpt0 þ 1: If rðVkÞot0 þ 1; then the swapping shown in Fig. 13(a) produces the desired
schedule. In the rest of the proof for Case 3, we assume

rðVkÞ ¼ t0 þ 1; ð16Þ

ARTICLE IN PRESS

no
T

no
T

no
U

no
U U

no

or or

]iiT

]
j

Uj+1jU j+2U

Ti+1

j+1]

i+1] Ti+2

Uj+3

]
i+2

]
j+2

i+p
]i+pT

j+p
]Uj+p]j+p_1

i+p_1]i+p_1T

u+1u_1

u

t t'+4t'... t'+1 t'+2 t'+3 u+2

u+1

......

...

...

Fig. 11. Case 2. T is heavy, U is light, and dðTiÞ ¼ dðUjÞ:

hole

jU
U
no

j]

iT

j+1U

i+1T

jU
U
no

j]

iT

j+1U

(b)

t'...t'+1t t'+2

j+2[

i]

(a)

t'...t t'+2t'+1

j+2[

i]

Fig. 12. Case 3. (a) Some processor is idle in slot t0 þ 1: (b) Tiþ1 is scheduled in slot t0 þ 1:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204178

in which case this swapping is not valid. By (15) and (16) we have the following:

rðVkÞ ¼ rðTiþ1Þ þ 1: ð17Þ
We first dispense with the case Vk�1et: In this case, by Lemma 11, either ðbðVk�1Þ ¼
04jwðVk�1Þj4t0 þ 1Þ or ðbðVk�1Þ ¼ 14jwðVk�1Þj4t0 þ 2Þ: In the former case, by (P1), jwðVkÞj ¼
jwðVk�1Þj; in the latter case, by (P4), jwðVkÞjXjwðVk�1Þj � 1: Thus, in either case, jwðVkÞj4t0 þ 1:
Further, since TiAt and dðTiÞ ¼ t0 þ 1 (by 15), jwðTiÞjpt0 þ 1 (recall that slots are numbered from
0). Therefore, jwðVkÞj4jwðTiÞj; i.e., jwðVkÞjXjwðTiÞj þ 1: By (P4), jwðTiÞj þ 1XjwðTiþ1Þj: Thus,
jwðVkÞjXjwðTiþ1Þj: Because rðVkÞ ¼ rðTiþ1Þ þ 1 (by (17)), this implies that rðVkÞ þ
jwðVkÞjXrðTiþ1Þ þ jwðTiþ1Þj þ 1: Therefore, dðVkÞ4dðTiþ1Þ; and hence no subtask of V is
scheduled in ½t0 þ 2; dðTiþ1ÞÞ: Thus, the swapping in Fig. 13(c) is valid. (This figure actually depicts
Vk�1At; but the swapping depicted is applicable nonetheless.) In the rest of the proof for Case 3,
we assume that Vk�1At:
Note that because rðVkÞ ¼ t0 þ 1 (by (16)), either dðVk�1Þ ¼ t0 þ 2 or dðVk�1Þ ¼ t0 þ

14bðVk�1Þ ¼ 0: By (15), dðTiÞ ¼ dðUjÞ ¼ t0 þ 1 and bðTiÞ ¼ bðUjÞ ¼ 1: Therefore, by the PD2

priority definition, we have the following:

Ti!Vk�1 and Uj!Vk�1: ð18Þ
If Vk�1 is scheduled in the interval ½t þ 1; t0Þ; then the swapping shown in Fig. 13(b) is valid. If
Vk�1 is not scheduled in ½t þ 1; t0Þ; then it is scheduled at or before t: Because Uj!Vk�1 (by (18)),

Vk�1 is not scheduled in slot t; as this would contradict our choice of Uj as the lowest-priority

subtask scheduled at t:
In the rest of Case 3, we assume that Vk�1 is scheduled at a time vot: Now, it must be the case

that Ti was not eligible to be scheduled at time v: To see this, note that if Ti were eligible at time v;
then it should have been scheduled there because Ti!Vk�1 (by (18)). This contradicts our starting

ARTICLE IN PRESS

[k kVno
V Vk

no
V k[

i
]iT

Vk_1

j
]j+1UjU Uj j+1U

j
]

iT
i

]

no
V [

k

Uj Uj+1]
j

iT]
i

]
i+1

T i+1

k
]no

V

i
[

k_1V[
k_1

t t+1 t'+2t'+1t'...

(a)

...... t'(>t+1)t v+1vt+1 t'+1 t'+2

(b)

...v t ...v+1 t+1 t'+1t' ...t'+2

 equal
not

(c)

Vk

Fig. 13. Case 3 (continued). (a) rðVkÞpt0: (b) rðVkÞ ¼ t0 þ 1 and Vk�1 is scheduled at v; tovot0: (c) rðVkÞ ¼ t0 þ 1 and

dðVkÞ4dðTiþ1Þ:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 179

assumption that Ti should be scheduled at t: Thus, either rðTiÞ4v or rðTiÞ ¼ v4Ti�1ASv: (Note
that one of these assertions holds even if Ti is an early-release subtask.) Because Ti!Vk�1 (by
(18)), Vk�1 is not early-released. Therefore, rðVk�1Þpv; which implies that either ðrðTiÞ4rðVk�1ÞÞ
or ðrðTiÞ ¼ v4rðVk�1Þ ¼ v4Ti�1ASvÞ: We consider these two subcases next.

Subcase 3ðAÞ: rðTiÞ4rðVk�1Þ: We show that dðVkÞ4dðTiþ1Þ; which implies that the swapping
shown in Fig. 13(c) is valid. There are two possibilities to consider, depending on the value of
bðVk�1Þ:

(1) bðVk�1Þ ¼ 0: By (9), we have dðVk�1Þ ¼ rðVkÞ ¼ t0 þ 1 (by (16)). By (15), this implies that
dðVk�1Þ ¼ dðTiÞ: Since bðVk�1Þ ¼ 0; by (P1), jwðVkÞj ¼ jwðVk�1Þj: Because rðVk�1ÞorðTiÞ
(our assumption for Subcase 3(A)) and dðVk�1Þ ¼ dðTiÞ; we have jwðVk�1ÞjXjwðTiÞj þ 1:
Therefore, jwðVkÞjXjwðTiÞj þ 1: By (P4), jwðTiÞj þ 1XjwðTiþ1Þj; which implies that
jwðVkÞjXjwðTiþ1Þj: Because rðVkÞ ¼ rðTiþ1Þ þ 1 (by (17)), this implies that rðVkÞ þ
jwðVkÞjXrðTiþ1Þ þ 1þ jwðTiþ1Þj: Therefore, dðVkÞ4dðTiþ1Þ:

(2) bðVk�1Þ ¼ 1: By the definition of bðVk�1Þ; we have dðVk�1Þ ¼ rðVkÞ þ 1: Hence, by (16),
dðVkÞ ¼ t0 þ 2: By (15), this implies that dðVk�1Þ ¼ dðTiÞ þ 1: Along with rðVk�1ÞorðTiÞ (our

ARTICLE IN PRESS

Fig. 14. Subcase 3(B) of Case 3. (a) rðVkÞ ¼ t0 þ 1; dðVkÞ ¼ dðTiþ1Þ ¼ v0 þ 1; and dðWhÞXv0 þ 1: (b) rðVkÞ ¼ t0 þ 1;
dðVkÞ ¼ dðTiþ1Þ ¼ v0 þ 1; dðWhÞ ¼ v0; rðWhÞpt0; and W is not scheduled at t0: (c) rðVkÞ ¼ t0 þ 1; dðVkÞ ¼ dðTiþ1Þ ¼
v0 þ 1; dðWhÞ ¼ v0; and rðWhÞ4t0 (d) rðVkÞ ¼ t0 þ 1; dðVkÞ ¼ dðTiþ1Þ ¼ v0 þ 1; dðWhÞ ¼ v0; rðWhÞ ¼ t0; and W is

scheduled at t0:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204180

assumption for Subcase 3(A)), this implies that

jwðVk�1ÞjXjwðTiÞj þ 2: ð19Þ
By (P4), we have jwðVkÞjXjwðVk�1Þj � 1 and jwðTiÞjXjwðTiþ1Þj � 1: Hence, by (19),
jwðVkÞj þ 1XjwðTiþ1Þj � 1þ 2; i.e., jwðVkÞjXjwðTiþ1Þj: Because rðVkÞ ¼ rðTiþ1Þ þ 1 (by
(17)), this implies that dðVkÞ4dðTiþ1Þ:

Subcase 3ðBÞ: rðTiÞ ¼ v4rðVk�1Þ ¼ v4Ti�1ASv: Reasoning as in Subcase 3(A), it follows that
dðVkÞXdðTiþ1Þ: By part (a) of Lemma 9, we have the following.

rðVkþ1Þ þ 1XdðVkÞXdðTiþ1Þ: ð20Þ

We now show that a valid swapping exists in all cases. First, note that if Tiþ1 is scheduled before
Vkþ1; then the swapping shown in Fig. 13(c) is still valid. This will be the case if rðVkþ1ÞXdðTiþ1Þ:
In the rest of the proof for Subcase 3(B), we assume that Tiþ1 is not scheduled before Vkþ1: By
(20), this can happen only if there exists a v0 that satisfies the following (see Fig. 14).

rðVkþ1Þ ¼ v04dðVkÞ ¼ v0 þ 14dðTiþ1Þ ¼ v0 þ 14Vkþ1ASv04Tiþ1ASv0 : ð21Þ

The following property is used several times in the reasoning that follows.

Claim 15. wðVkÞ is a minimal window of V :

Proof. By part (a) of Lemma 9, (16) implies that dðVk�1Þ is either t0 þ 1 or t0 þ 2: If dðVk�1Þ ¼
t0 þ 1; then bðVk�1Þ ¼ 0 and by (P2), wðVkÞ is a minimal window. On the other hand, if dðVk�1Þ ¼
t0 þ 2; then we have the following:

* Ti and Vk�1 are both released at slot v (our assumption for Subcase 3(B)),
* dðTiÞ ¼ t0 þ 1 (by (15)) and dðVk�1Þ ¼ t0 þ 2;
* rðTiþ1Þ ¼ t0 (by 15) and rðVkÞ ¼ t0 þ 1 (by (16)), and
* Tiþ1 and Vk have equal deadlines (by (21)).

Therefore, jwðTiÞj ¼ jwðVk�1Þj � 1 and jwðTiþ1Þj ¼ jwðVkÞj þ 1: By (P3), jwðTiþ1ÞjpjwðTiÞj þ 1:
Therefore, jwðVkÞj þ 1pjwðVk�1Þj; i.e., jwðVkÞjpjwðVk�1Þj � 1: By (P4), this implies that
jwðVkÞj ¼ jwðVk�1Þj � 1: By part (d) of Lemma 9, this implies that wðVkÞ is a minimal window
of V : &

To continue, if there is a hole in slot v0 � 1; then we can left-shift Tiþ1 from v0 to v0 � 1 and
apply the swapping shown in Fig. 13(c). In the rest of Subcase 3(B), we assume that there is no
hole in slot v0 � 1:
We now prove that V must be a light task. Because rðVkÞ ¼ t0 þ 1 (by (16)), dðVk�1Þ is either

t0 þ 1 or t0 þ 2; and if dðVk�1Þ ¼ t0 þ 1; then bðVk�1Þ ¼ 0: Thus, because rðTiÞ ¼ rðVk�1Þ ¼ v (our
assumption for Subcase 3(B)) and dðTiÞ ¼ t0 þ 1 (by (15)), either dðVk�1Þ ¼ dðTiÞ þ 1 or
dðVk�1Þ ¼ dðTiÞ4bðVk�1Þ ¼ 0: Therefore, either jwðVk�1Þj ¼ jwðTiÞj þ 1 or jwðVk�1Þj ¼
jwðTiÞj4bðVk�1Þ ¼ 0: Because T is light, by (P5), jwðTiÞjX3: Therefore, either jwðVk�1ÞjX4 or
jwðVk�1ÞjX34bðVk�1Þ ¼ 0: In either case, V cannot be a heavy task: if it were heavy, then by

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 181

(P7), all windows of V would be of length two or three, and by (P8), bðVk�1Þ ¼ 0 would imply that
jwðVk�1Þj ¼ 2: Thus, V is a light task.
By (P5), jwðVkÞjX3: By (16) and (21), wðVkÞ ¼ ½t0 þ 1; v0 þ 1Þ; hence, v0Xt0 þ 3: Because

VkASt0þ1 and Vkþ1ASv0 ; this implies that VeSv0�1: Thus, because there are no holes in slot v0 � 1;
there exists a task W that is scheduled in slot v0 � 1 but not in slot v0: Let Wh be the subtask of W
scheduled in slot v0 � 1: We now show that at least one of the swappings in Fig. 14 is valid.
If dðWhÞXv0 þ 1; then the swapping in Fig. 14(a) is clearly valid. We henceforth assume

dðWhÞ ¼ v0: ð22Þ

If ðrðWhÞot0Þ3ðrðWhÞ ¼ t04WeSt0 Þ; then the swapping shown in Fig. 14(b) is valid. This leaves
the following two possibilities.

(1) rðWhÞ4t0: In this case, we show that dðWhþ1ÞodðVkþ1Þ; which implies that the swapping in
Fig. 14(c) is valid. Because rðWhÞ4t0; by (16), rðWhÞXrðVkÞ: By (21) and (22), dðWhÞodðVkÞ:
Therefore, jwðWhÞjojwðVkÞj (see Fig. 14(c)). Because wðVkÞ is a minimal window of V (by
Claim 15), jwðVkÞjpjwðVkþ1Þj: Thus,

jwðWhÞjojwðVkþ1Þj: ð23Þ
Now, consider bðWhÞ:
If bðWhÞ ¼ 0; then by (22), rðWhþ1Þ ¼ v0: Thus, by (21), rðWhþ1Þ ¼ rðVkþ1Þ: In addition, by

(P1), jwðWhþ1Þj ¼ jwðWhÞj: Hence, by (23), we have jwðWhþ1ÞjojwðVkþ1Þj: Therefore,
dðWhþ1ÞodðVkþ1Þ:
If bðWhÞ ¼ 1; then by (22), rðWhþ1Þ ¼ v0 � 1; which by (21) implies that rðWhþ1ÞorðVkþ1Þ:

In addition, by (P3), jwðWhþ1ÞjpjwðWhÞj þ 1: Hence, by (23), we have jwðWhþ1ÞjpjwðVkþ1Þj:
Therefore, dðWhþ1ÞodðVkþ1Þ:

(2) rðWhÞ ¼ t04WASt0 : In this case, analysis similar to that above shows that dðWhþ1ÞpdðVkþ1Þ:
Let dðWhþ1Þ ¼ w þ 1: If dðWhþ1ÞodðVkþ1Þ or if dðWhþ1Þ ¼ dðVkþ1Þ4Vkþ2eSw; then the
swapping shown in Fig. 14(c) is valid. (The figure actually shows Wh being released after time
t0; but the swapping is still valid.) On the other hand, if dðWhþ1Þ ¼ dðVkþ1Þ and Vkþ2ASw;
then we have the following (see Fig. 14(d)).
(a) rðWhÞ ¼ t0 and rðVkÞ ¼ t0 þ 1 (by (16)),
(b) dðWhÞ ¼ v0 (by (22)) and dðVkÞ ¼ v0 þ 1 (by (21)),
(c) rðVkþ1Þ ¼ v0 (by (21)) and rðWhþ1Þ is either v0 or v0 � 1 (by part (a) of Lemma 9 because

dðWhÞ ¼ v0), and
(d) dðVkþ1Þ ¼ dðWhþ1Þ ¼ w þ 1:By (a) and (b) above, we have

jwðWhÞj ¼ jwðVkÞj: ð24Þ
We now show that jwðVkþ1ÞjpjwðVkÞj: If rðWhþ1Þ ¼ v0 � 1; then jwðVkþ1Þj ¼

jwðWhþ1Þj � 1: By (P3), jwðWhþ1Þj � 1pjwðWhÞj: Therefore, by (24), jwðVkþ1ÞjpjwðVkÞj:
On the other hand, if rðWhþ1Þ ¼ v0; then jwðVkþ1Þj ¼ jwðWhþ1Þj and bðWhÞ ¼ 0 (because
dðWhÞ ¼ v0; by (22)). Therefore, by (P1), jwðWhþ1Þj ¼ jwðWhÞj: Thus, jwðVkþ1Þj ¼ jwðWhÞj;
and by (24), jwðVkþ1Þj ¼ jwðVkÞj:
Because wðVkÞ is a minimal window of V (by Claim 15), this implies that wðVkþ1Þ is a

minimal window as well. Thus, by Lemma 13, there exists a schedule in which Vkþ1 is not
scheduled at time v0: The swapping shown in Fig. 14(d) is therefore valid.

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204182

This completes Case 3.
Case 4: Both T and U are heavy. In the proof for this case, we refer to successive group

deadlines of a task. The following notation will be used. If g is a group deadline of task X ; then
predðX ; gÞ (respectively, succðX ; gÞ) denotes the group deadline of task X that occurs immediately
before (respectively, after) g: For example, in Fig. 2, predðT ; 8Þ ¼ 4 and succðT ; 8Þ ¼ 11:
As before, we are dealing with the situation depicted in Fig. 10(b). Because Ti has higher

priority than Uj at time t according to PD2; DðUjÞpDðTiÞ: Recall that TiASt0 and dðTiÞ ¼ t0 þ 1

(refer to (15) and Fig. 10(b)), i.e., Ti is scheduled in the last slot of its window. By the definition of
a group deadline, all subsequent subtasks with deadlines at or before DðTiÞ have windows of
length two that overlap with the window of their predecessor subtask. Therefore, each such
subtask is scheduled in the last slot of its window.
Let u be the earliest time after t0 such that UeSu: Because Ujþ1 is scheduled in the first slot of its

window, there exists a time before the group deadline of Uj such that U is not scheduled at that

time. Thus, uoDðUjÞ: Because DðUjÞpDðTiÞ; this implies that uoDðTiÞ: If uoDðTiÞ � 1 or

u þ 1 ¼ DðTiÞ4TASu holds then we have the following (refer to Fig. 15).

* No subtask of U is scheduled in slot u (i.e., in ½u; u þ 1Þ).
* In all slots in ½t0; u þ 1Þ; a subtask of T is scheduled in the last slot of its window.
* In all slots in ½t0; uÞ; a subtask of U is scheduled in the first slot of its window.

This implies that the swapping in Fig. 15 is valid.
The remaining possibility is u þ 1 ¼ DðTiÞ4TeSu: In this case, because u þ 1pDðUjÞpDðTiÞ;

we have

DðTiÞ ¼ DðUjÞ4DðUjÞ ¼ u þ 14TeSu: ð25Þ
Let Ujþj0 be the subtask of U scheduled at u � 1: Then, u ¼ t0 þ j0; as shown in Fig. 16(a). By the

definition of a group deadline, each of the subtasks Tiþ1;y;Tiþj0�1 and Ujþ1;y;Ujþj0�1 has a

window of length two. (If not, Ti’s and Uj’s group deadlines will be earlier.) Therefore,

dðTiþj0�1Þ ¼ u: By part (a) of Lemma 9, this implies that rðTiþj0 Þ is either u or u � 1: If rðTiþj0 Þ ¼ u;
then bðTiþj0�1Þ ¼ 0; which implies that DðTiÞ ¼ u: This contradicts (25). Therefore, rðTiþj0 Þ ¼
u � 1: Since Tiþj0�1 is scheduled in slot u � 1 and TeSu (by (25)), it follows that dðTiþj0 Þ must be

u þ 2: (By (P7), it cannot be later.) Thus, as shown in Fig. 16(a), wðTiþj0 Þ is a 3-window starting at

slot u � 1; and Tiþj0 is scheduled in slot u þ 1; i.e., slot t0 þ j0 þ 1:

ARTICLE IN PRESS

= t+1
or t+2()

Ti Ti+1 i+j'Ti+j'T

Uj Uj+1 Uj+2
no
Uj+j'U

]
i+j'

j+j'
]

t t' t'+1

]
i

]
i+1

... t'+2 t'+j'+2t'+j'+1t'+j'
(= u)

t'+j'_1...

i+j'_1
]...

]
j

]
j+1

]
j+j'_1

...

Fig. 15. Case 4. We use the following notation in this figure and Figs. 16–21. A group deadline at time t is denoted by

an up-arrow that is aligned with time t: A left- or right-pointing arrow over an up-arrow indicates a group deadline that

may be anywhere in the direction of the arrow. DðTiÞ4DðUjÞ or u þ 1 ¼ DðTiÞ4TASu:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 183

If there is a hole in slot u; then shifting subtask Ujþj0 to slot u produces a situation in

which a swapping similar to that in Fig. 15 can be applied. We henceforth assume there is no hole
in slot u:
Our strategy now is to identify another task to use as an intermediate for swapping. Because T

and U are scheduled at u � 1 but not at u; and because there are no holes in u; there exists a task V
that is scheduled at u but not at u � 1: Let Vk be the subtask of V scheduled at u: If rðVkÞou; then
the swapping in Fig. 16(a) is valid, and if rðVkÞ ¼ u4VeSuþ1; then the swapping in Fig. 16(b) is
valid. In the rest of the proof, we assume

rðVkÞ ¼ u4VASuþ1:

We now show that V is a heavy task. Note that VASuþ1 implies that rðVkþ1Þpu þ 1: Therefore,
by part (a) of Lemma 9, dðVkÞpu þ 2: Because rðVkÞ ¼ u; by (P5) and (P7), dðVkÞXu þ 2:
Therefore, we have dðVkÞ ¼ u þ 2; which implies that jwðVkÞj ¼ 2: Therefore, by (P6), V is heavy.
Consider DðVkÞ; i.e., the group deadline of Vk: Let v be the earliest slot after u such that VeSv:

Since Vkþ1 is scheduled in the first slot of its window, we have

v þ 1pDðVkÞ: ð26Þ

(See Fig. 17.) Let Vkþi0 be the subtask of V that is scheduled in slot v � 1: If either DðTiþj0 Þ4v þ 1

or DðTiþj0 Þ ¼ v þ 14bðTiþj0þi0 Þ ¼ 0; then Tiþj0þi0 is scheduled in slot v: To see why, note that Tiþj0

is scheduled in the last slot of its window and this forces all subtasks of T until its group deadline
to be scheduled in the last of their windows. Thus, the swapping shown in Fig. 17 is valid. In the
rest of the proof, we assume that neither of these conditions holds, i.e., we assume the following:

ðDðTiþj0 Þov þ 1Þ3ðDðTiþj0 Þ ¼ v þ 14bðTiþj0þi0 Þ ¼ 1Þ: ð27Þ

ARTICLE IN PRESS

jU

Ti

Uj+1 Uj+2

Ti+1 Ti+j'no
T

no
UUj+j'

i+j'_1T

VkV
no

jU

Ti

Uj+1 Uj+2

Ti+1 Ti+j'

no
UUj+j'

i+j'_1T

V
no Vk

no
T

or t+2
= t+1)(

or t+2
= t+1)(

t ... t' t'+1 t'+2 t'+j'+2t'+j'+1t'+j'
(= u)

t'+j'_1...

]
i

]
j

]
i+1

]
j+1

i+j'
]

j+j'_1
]

]
i+j'_1

[
k

...

...

(a)

t ... t' t'+1 t'+2 t'+j'+2t'+j'+1t'+j'
(= u)

t'+j'_1...

]
i

]
j

]
i+1

]
j+1

]

j+j'_1
]

]
i+j'_1

...

...

[
k

i+j'

k
]

(b)

Fig. 16. Case 4 (continued). (a) DðTiÞ ¼ DðUjÞ and rðVkÞot0 þ j0: (b) DðTiÞ ¼ DðUjÞ; rðVkÞ ¼ t0 þ j0; and VeS0
t0þj0þ1:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204184

We claim that u is a group deadline of V : As seen in Fig. 17, Vk�1 is not scheduled in slot u � 1:
(Note that Vk�1At because its window fits in the interval ½0; u þ 1Þ:) Because rðVkÞ ¼ u; by part
(a) of Lemma 9, dðVk�1Þ is either u or u þ 1: If dðVk�1Þ ¼ u; then bðVk�1Þ ¼ 0 and hence, u is a
group deadline. If dðVk�1Þ ¼ u þ 1; then we reason as follows. Because V is a heavy task, by (P7),
jwðVk�1Þjp3; which implies that rðVk�1ÞXu � 2: Because Vk�1 is not scheduled in slots u � 1 or u;
the following must hold:

rðVk�1Þ ¼ u � 2: ð28Þ

This implies that wðVk�1Þ ¼ ½u � 2; u þ 1Þ: Therefore, u is a group deadline of V :
Having shown that u is a group deadline of V ; we now show that predðV ; uÞppredðT ; u þ 1Þ: T

has consecutive group deadlines at u þ 1 and succðT ; u þ 1Þ ¼ DðTiþj0 Þ: Therefore, by (P9), the

difference between u þ 1 and predðT ; u þ 1Þ is at most one more than DðTiþj0 Þ � ðu þ 1Þ; i.e.,
u þ 1� predðT ; u þ 1ÞpDðTiþj0 Þ � u: Therefore,

predðT ; u þ 1ÞX2u � DðTiþj0 Þ þ 1: ð29Þ

V has consecutive group deadlines at u and succðV ; uÞ ¼ DðVkÞ: Hence, by (P9), the
difference between u and predðV ; uÞ is at least one less than DðVkÞ � ðuÞ; i.e.,
u � predðV ; uÞXDðVkÞ � u � 1: Thus,

predðV ; uÞp2u � DðVkÞ þ 1: ð30Þ

By (26) and (27), DðTiþj0 ÞpDðVkÞ: Therefore, by (20) and (30), predðV ; uÞp2u � DðVkÞ þ
1p2u � DðTiþj0 Þ þ 1ppredðT ; u þ 1Þ: Thus, predðV ; uÞppredðT ; u þ 1Þ: This sequence of in-

equalities further implies that predðV ; uÞ ¼ predðT ; u þ 1Þ if and only if 2u � DðVkÞ þ 1 ¼
2u � DðTiþj0 Þ þ 1; i.e., DðTiþj0 Þ ¼ DðVkÞ: By (26) and (27), this can be true only if DðTiþj0 Þ ¼
DðVkÞ ¼ v þ 1:
In addition, as seen in Fig. 17, T cannot have a group deadline in the interval ðt0; u�: Therefore,

we have the following:

predðV ; uÞppredðT ; u þ 1Þpt0; ð31Þ

ðpredðV ; uÞ ¼ predðT ; u þ 1ÞÞ) ðDðTiþj0 Þ ¼ v þ 14DðVkÞ ¼ v þ 1Þ: ð32Þ

ARTICLE IN PRESS

no

Ti Ti+1

Vk Vk+2

Ti+j'+i'

Vk+i'Vk+1

t t' t'+1 t'+2 ... t'+j' t'+j' t'+j'+1
or t+2(= t+1

...

]]]...

]]]...

k[

i+1i i+j'_1

v...

] i+j'+i'_1

v+1

i+j'+i']

] k+i'_1

...

...

i+j'+1

k+1]

]

] k

t'+j'+2

no T

no U

)

j+1j j+j'_1

(= u)

V
no
V

j j+1 j+2 j+j'U U U U

i+j'Ti+j'_1 T Ti+j' i+j'+1] T

v_1

i+j'+i'_1

Fig. 17. Case 4 (continued). DðTiÞ ¼ DðUjÞ; rðVkÞ ¼ t0 þ j0; DðTiþj0 Þ ¼ v þ 1 and Tiþj0þi0 is scheduled in slot v:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 185

Because U is a heavy task, by (P7), jwðUjÞjp3: Because Uj is scheduled in slot t and Ti!Uj; Uj is

not early-released, i.e., rðUjÞpt: Further, because dðUjÞ ¼ t0 þ 1 (by (15)), it follows that

t þ 1ot0 þ 1pt þ 3: Hence, t0 is either t þ 2 or t þ 1: We consider these two subcases next.
Subcase 4ðAÞ: t0 ¼ t þ 2: In this case, we show that the swapping in Fig. 18 is valid. To begin,

note that t0 ¼ t þ 2 implies that TeStþ1 and UeStþ1: Let k0 ¼ k � j0 þ 1: Then, we have the
following as depicted in Fig. 18.

* rðVk�1Þ ¼ u � 2 (by (28)) and Vk�1 is scheduled in slot u � 2:
* For each l in the range k0plok � 1; wðVlÞ is a 2-window (since predðV ; uÞpt0 by (31)).
* Each of Vk0 ;y;Vk�1 is scheduled in the first slot of its window (which follows by inducting

from right to left, starting with Vk�1). In particular, Vk0 is scheduled at t0 ¼ rðVk0 Þ:
Before continuing, we note that all of the subtasks Vk0�1;y;Vk�1 belong to t: To see why, note
that their windows fit in the interval ½0; t0 þ j0Þ (see Fig. 18) and therefore, by Lemma 11, they are
in t:
Because Vk0 is released at t0 ¼ t þ 2; by part (a) of Lemma 9, dðVk0�1Þ is either t þ 2 or t þ 3:We

now prove that dðVk0�1Þat þ 2:

Claim 16. dðVk0�1Þat þ 2:

Proof. Assume, to the contrary, that dðVk0�1Þ ¼ t þ 2: Because rðVk0 Þ ¼ t þ 2 (refer to Fig. 18 and
the properties stated above), this implies that bðVk0�1Þ ¼ 0: Thus, by the definition of a group
deadline,

predðV ; uÞ ¼ t þ 2: ð33Þ
Because predðV ; uÞ corresponds to dðVk0�1Þ; and bðVk0�1Þ is 0, it follows that predðV ; uÞ is the last
group deadline within some job of V : Therefore, by (P10), the difference between u and predðV ; uÞ
is at least the difference between any pair of consecutive group deadlines of V : In particular, we
have succðV ; uÞ � upu � predðV ; uÞ: In either case, by (33), succðV ; uÞp2u � t � 2: Because
succðV ; uÞ ¼ DðVkÞ; we have

DðVkÞp2u � t � 2: ð34Þ
By (31), predðT ; u þ 1Þpt0; i.e., predðT ; u þ 1Þpt þ 2: By (29), DðTiþj0 ÞX2u � predðT ; u þ 1Þ þ 1;
which implies that DðTiþj0 ÞX2u � t � 1: By (27), v þ 1XDðTiþj0 Þ; and hence v þ 1X2u � t � 1: By
(26), we have DðVkÞXv þ 1: Thus, DðVkÞX2u � t � 1; which contradicts (34). Therefore, we
conclude that dðVk0�1Þ cannot be t þ 2: &

ARTICLE IN PRESS

Uj

Ti+1

Uj+2

i+j'+i'T

Uj+1

Ti

Vk'_1 k'V k+i'V] no V
k+i'_1

Uj+j'

Ti+j'i+j'_1T

k+1VkVk_1V

t t+1 t' t'+2 v+1vv_1...

...

...

Tno

]

]]
i+j'+i'i+j'+i'_1

Ti+j'+i'_1]i+1

t'+1
(= t+2)

] i

] j j+1

...k'+1V]]
k'_1 k'

...

...

t'+j'
(= u)

t'+j'+1

]

]]

t'+j'+2

no T

no U
j+j'_1

i+j'_1 i+j'

no
V

]
k

t'+j'_1

i+j'+1

]
k_2

]Ti+j'_2

t'+j'_2...

[
k_1

[
k

Fig. 18. Subcase 4(A) t0 ¼ t þ 2:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204186

Thus, we have the following:

dðVk0�1Þ ¼ t þ 3:

By (15), dðTiÞ ¼ t0 þ 1 ¼ t þ 3: Further, DðVk0�1Þ ¼ uoDðTiÞ (by (25)). Therefore, Ti!Vk0�1:
We now conclude the proof for this subcase by showing that Vk0�1 is scheduled in slot t þ 1;

which implies that the swapping in Fig. 18 is valid. We have established that V is heavy and
dðVk0�1Þ ¼ t þ 3: Therefore, by (P7), all windows of V are of length at most three, which implies
that rðVk0�1ÞXt: If Vk0�1 is not scheduled in slot t þ 1; then it must be scheduled at or before slot t:
(Note that Vk0 is scheduled in slot t þ 2:) Further, it is not early-released because Ti!Vk0�1

(proved in the preceding paragraph). Therefore, it must be scheduled in slot t and rðVk0�1Þ ¼ t: (In
other words, wðVk0�1Þ must be a 3-window.) As seen in Fig. 18, dðVk0�1Þ ¼ dðUjÞ; bðVk0�1Þ ¼
bðUjÞ ¼ 1; and DðVk0�1ÞoDðTiÞ ¼ DðUjÞ: Thus, Uj!Vk0�1 contradicting our choice of Uj as the

lowest-priority subtask scheduled at t: Thus, Vk0�1 cannot be scheduled in slot t; and must be
scheduled in slot t þ 1:

Subcase 4ðBÞ: t0 ¼ t þ 1: In this case, we show that one of the swappings in Figs. 19–21 is valid.
We use the following result.

Claim 17. predðV ; uÞ ¼ t þ 1:

Proof. As in Subcase 4(A), we can show the following:

* Vk�1 has a window of length two or three and is scheduled in the first slot of its window.
* Each of Vk0 ;y;Vk�2 has a window of length two and is scheduled in the first slot of its window.

(The existence of subtasks Vk0 ;y;Vk�1 in t follows from the same reasoning given earlier in
Subcase 4(A).)

ARTICLE IN PRESS

Fig. 19. Subcase 4(B). In each inset of this figure and Figs. 20 and 21, t0 ¼ t þ 1; DðTiÞ ¼ DðUjÞ; and DðVkÞ ¼ DðTiþj0 Þ:
(a) predðV ; uÞ ¼ predðT ; u þ 1Þ: (b) dðWhÞXu þ 2:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 187

This is depicted in Fig. 19(a). The above facts, along with t0 ¼ t þ 1; imply that rðVk0 Þ ¼ t þ 1: By
part (a) of Lemma 9, this implies that dðVk0�1Þ is either t þ 1 or t þ 2: If dðVk0�1Þ ¼ t þ 1; then
bðVk0�1Þ ¼ 0; and hence, predðV ; u � 1Þ ¼ t þ 1:
If dðVk0�1Þ ¼ t þ 2; then we reason as follows. Because V is heavy, by (P7), wðVk0�1Þ is of length

two or three. If jwðVk0�1Þj ¼ 3; then wðVk0�1Þ ¼ ½t � 1; t þ 2Þ and hence, predðV ; uÞ ¼ t þ 1: Thus,
it suffices to show that jwðVk0�1Þja2:
Suppose, to the contrary, that jwðVk0�1Þj ¼ 2: (Note that, in this case, Vk0�1At because its

window fits in the interval ½0; t þ 2Þ:) Because dðVk0�1Þ ¼ t þ 2; this implies that rðVk0�1Þ ¼ t:Note
that Vk0�1 cannot have been early-released because Ti!Vk0�1 (this follows from Rule (iii) of the

PD2 priority definition because DðVk0�1ÞoDðTiÞ—see Fig. 19(a)). Because Vk0 is scheduled in slot
t þ 1; Vk0�1 must be scheduled in slot t: Observe that dðVk0�1Þ ¼ t þ 2; dðUjÞ ¼ t0 þ 1 ¼ t þ 2;
bðVk0�1Þ ¼ 1; bðUjÞ ¼ 1; and DðVk0�1ÞoDðUjÞ (again, refer to Fig. 19(a)). Thus, Vk0�1 has lower

priority than Uj at t; which contradicts our choice of Uj as the lowest-priority subtask scheduled

at t: This completes the proof of Claim 17. &

Because t0 ¼ t þ 1; by (31) and Claim 17, we have

predðT ; u þ 1Þ ¼ predðV ; uÞ:

By (32), this implies that DðTiþj0 Þ ¼ DðVkÞ ¼ v þ 1 (see Fig. 19(a)).

Because TeSu and TASuþ1; and because there are no holes in u; there exists a task W that is
scheduled at u but not at u þ 1: Let Wh be the subtask of W scheduled at u: If dðWhÞ4u þ 1; then
the swapping shown in Fig. 19(b) is valid. In the rest of the proof, we assume that

dðWhÞ ¼ u þ 1:

ARTICLE IN PRESS

Fig. 20. Subcase 4(B) (continued). (a) dðWhÞ ¼ u þ 1 and WeSu�1: (b) dðWhÞ ¼ u þ 1; WASu�1; and WeSw for some

w in ½t0; uÞ:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204188

In this case, we show that one of the swappings in Figs. 20 and 21 are valid. If WeSu�1; then the
swapping shown in Fig. 20(a) is valid. In the rest of the proof, we assume

WASu�1:

In this case, we have dðWh�1ÞXu: Because dðWhÞ ¼ u þ 1; this implies that dðWh�1Þ ¼ u and
rðWhÞ ¼ u � 1: Thus, jwðWhÞj ¼ 2: Thus, by (P6), W is heavy.
We now show that W has a group deadline at time u þ 1 or u þ 2 (refer to Fig. 20(b)). Because

dðWhÞ ¼ u þ 1; by part (a) of Lemma 9, rðWhþ1Þ is either u or u þ 1: If it is u þ 1; then bðWhÞ ¼ 0;
i.e., W has a group deadline at u þ 1: If rðWhþ1Þ is u; then dðWhþ1Þ is either u þ 2 or u þ 3 (follows
by (P7) because W is heavy). Because no subtask of W is scheduled in slot u þ 1; Whþ1 has to be
scheduled in slot u þ 2 and dðWhþ1Þ ¼ u þ 3: This implies that wðWhþ1Þ is a 3-window and hence
W has a group deadline at u þ 2:
We now look at earlier subtasks of W : If there exists a w such that t0pwpu � 1 and WeSw;

then a swapping similar to that shown in Fig. 20(b) is valid and produces the desired schedule.
In the rest of the proof, we assume that for each w in the range t0pwpu; WASw: This implies
that, at each slot in the interval ½t0; u þ 1Þ; a subtask of W is scheduled in the last slot of its
window (recall that W is heavy). This is illustrated in Fig. 21. As seen in the figure, each of the
subtasks Wh�j0þ1;y;Wh must have a window of length two. This implies that the most

recent group deadline of W before the one at u þ 1 or u þ 2 occurs at or before time
t þ 1; i.e.,

ðu þ 1 is a group deadline of W) predðW ; u þ 1Þpt þ 1Þ

and

ðu þ 2 is a group deadline of W) predðW ; u þ 2Þpt þ 1Þ: ð35Þ

We now show that W ’s next group deadline after the one at u þ 1 or u þ 2 occurs at or after time
v þ 2; which implies that the swapping shown in Fig. 21 is valid.
By (26) and (30), we have predðV ; uÞp2u � v: Therefore, by Claim 17, we have the following.

vp2u � t � 1: ð36Þ
There are now two possibilities to consider, depending on whether W has a group deadline at
u þ 1 or u þ 2:

ARTICLE IN PRESS

Fig. 21. Subcase 4(B) (continued). dðWhÞ ¼ u þ 1; WASu�1; and W ’s most recent group deadline before the one at

u þ 1 or u þ 2 is at or before t þ 1:

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 189

(1) u þ 1 is a group deadline of W : In this case, bðWhÞ ¼ 0: Thus, u þ 1 is the last group deadline

within some job of W : Therefore, by (P10), the difference between u þ 1 and succðW ; u þ 1Þ
is at least the difference between any pair of consecutive group deadlines of W : In par-
ticular, succðW ; u þ 1Þ � ðu þ 1ÞXu þ 1� predðW ; u þ 1Þ: Thus, we have succðW ; u þ 1ÞX
2u þ 2� predðW ; u þ 1Þ:
By (35), predðW ; u þ 1Þpt þ 1: Therefore, succðW ; u þ 1ÞX2u � t þ 1: By (36), this implies

that succðW ; u þ 1ÞXv þ 2:
(2) u þ 2 is a group deadline of W : In this case, by (P9), the difference between succðW ; u þ 2Þ

and u þ 2 is at least one less than the difference between u þ 2 and predðW ; u þ 2Þ;
i.e., succðW ; u þ 2Þ � ðu þ 2ÞXðu þ 2Þ � predðW ; u þ 2Þ � 1: Therefore, succðW ; u þ 2ÞX
2u � predðW ; u þ 2Þ þ 3:
By (35), predðW ; u þ 2Þpt þ 1: Therefore, succðW ; u þ 2ÞX2u � t þ 2: By (36), this implies

that succðW ; u þ 2ÞXv þ 3:

This exhausts all the possibilities if T and U are both heavy, and concludes the proof of
Lemma 14. &

By applying Lemma 14 inductively as discussed above, there exists a valid schedule for t over

½0; tdÞ consistent with PD2; contrary to our original assumption. Thus, we have the following
theorem.

Theorem 18. PD2 generates a valid schedule for any feasible asynchronous task system in which each
task’s lag is bounded by either (2) or (3).

6. Two-processor systems

In this section, we prove that the earliest pseudo-deadline first (EPDF) algorithm is
optimal on two processors. As its name suggests, the EPDF algorithm prioritizes
subtask Ti over subtask Uj if it has an earlier deadline, i.e., dðTiÞpdðUjÞ: Any ties are broken

arbitrarily.
The basic proof strategy in this section is the same as in the previous section. In particular, we

let t denote a feasible task system that (by assumption) misses a deadline when scheduled on two
processors using EPDF. We let td be the earliest time at which a deadline is missed in t (a
minimality condition similar to (T2) is not needed here). As before, a 0-compliant schedule exists
for t because it is feasible. By induction, we show that an n-compliant schedule exists for t; where
n is the total number of subtasks with deadlines in ð0; td �: (There is no need here to consider
subtasks released in ½0; tdÞ with deadlines outside of this interval, because (T2) is not being used.)
This yields the desired contradiction. The notion of a compliant schedule is slightly different here

because it is based on EPDF rather than PD2: That is, in ranking subtasks, Ti is ordered before
Uj; denoted TiIUj if and only if dðTiÞpdðUjÞ (no tie-breaking information is considered). We

define the rank of subtask Ti to be its position in the total order v (which is obtained from the
partial order I).

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204190

We now state and prove several lemmas. In the first of these lemmas, an interval of time slots
½t; uÞ is considered, and a set of conditions is stated that is sufficient to conclude that some subtask
scheduled in ½t; uÞ can be shifted left or right out of this interval.

Lemma 19. Let S be a two-processor schedule for fTi j TAt4dðTiÞptdg that is valid over ½t; uÞ;
where tou � 1: Suppose that there are no holes in ½t; uÞ and that there exists a subtask Uj scheduled

before t such that dðUjÞXt þ 1: Then, there exists a subtask Ti scheduled in ½t; uÞ such that rðTiÞot

or dðTiÞ4u:

Proof. Let A be the set of all subtasks scheduled by S in ½t; uÞ: Suppose, to the contrary, that

ð8Ti : TiAA :: rðTiÞXt4dðTiÞpuÞ:
We derive a contradiction by showing that total utilization exceeds two, which contradicts the fact
that t is feasible. Let V be a task with subtasks in A: Let V :n denote the number of such subtasks
in A; and let Vk (respectively, Vl) be the first (respectively, last) subtask of V scheduled in ½t; uÞ:
Then, V :n ¼ l � k þ 1: Because Vk and Vl are in A; rðVkÞXt and dðVlÞpu: Thus,

dðVlÞ � rðVkÞpu � t: ð37Þ

By (7) and (8), we have rðVkÞ ¼ k�1
wtðVÞ

j k
þ DðVÞ and dðVlÞ ¼ l

wtðVÞ

l m
þ DðVÞ: Substituting

these expressions in (37), we get l
wtðVÞ

l m
þ DðVÞ � k�1

wtðVÞ

j k
� DðVÞpu � t: Simplifying, we

obtain

l

wtðVÞ

� �
� k � 1

wtðVÞ

� �
pu � t

) l

wtðVÞ �
k � 1

wtðVÞpu � t;
l

wtðVÞ

� �
X

l

wtðVÞ and
ðk � 1Þ
wtðVÞ

� �
p
ðk � 1Þ
wtðVÞ :

) 1

wtðVÞp
u � t

l � k þ 1
; simplifying:

Therefore, we have

wtðVÞX V :n

u � t
: ð38Þ

We now show that this inequality can be strengthened for U ; yielding

wtðUÞ4 U :n

u � t
: ð39Þ

If U :n ¼ 0; then the above expression clearly holds, so assume that U :na0: Then, by the
statement of the lemma, Ujþ1 must be the first subtask of U scheduled in ½t; uÞ: Let Uh be the last

such subtask. Then,

dðUhÞ � rðUjþ1Þpu � t: ð40Þ

Because dðUjÞXt þ 1; by part (a) of Lemma 9, we have rðUjþ1ÞXt: If rðUjþ1Þ4t; then dðUhÞ �
rðUjþ1Þou � t: By reasoning as above (refer to (37) and (38)), this implies that wtðUÞ4U :n

u�t
:

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 191

On the other hand, if rðUjþ1Þ ¼ t; then dðUjÞ ¼ t þ 1; which implies that bðUjÞ ¼ 1: By (7)

and (8), we have dðUhÞ ¼ h
wtðUÞ

l m
þ DðUÞ and rðUjþ1Þ ¼ ð jþ1Þ�1

wtðUÞ

j k
þ DðUÞ: Substituting these

expressions into (40), we obtain

h

wtðUÞ

� �
þ DðUÞ � j

wtðUÞ

� �
� DðUÞpu � t:

Because bðUjÞ ¼ 1; j
wtðUÞ

j k
o j

wtðUÞ (see (9)). Because h
wtðUÞ

l m
X

h
wtðUÞ; it follows that

h

wtðUÞ �
j

wtðUÞou � t:

Therefore, by reasoning that is similar to that prior to Expression (38), we have wtðUÞ4U :n
u�t

:

Now, if there exists a task T with no subtask in A; then T :n ¼ 0; implying that wtðTÞ4T :n
u�t

:

Therefore, from (38) and (39), we conclude thatX
VAt

wtðVÞ4
X
VAt

V :n

u � t
:

Because there are a total of ðu � tÞ slots in ½t; uÞ and two subtasks are scheduled in each slot, we
have

P
VAt V :n ¼ 2ðu � tÞ: Therefore,X

VAt

wtðVÞ42:

This contradicts the fact that the total utilization of t is at most 2 (follows from the fea-
sibility of t). Hence, there exists a subtask Ti scheduled in ½t; uÞ such that either rðTiÞot or
dðTiÞ4u: &

The above lemma actually holds for any number of processors. In contrast, Lemma 20, given
next, is valid only for two-processor systems. This lemma gives a set of conditions under which a
subtask Uj can be right-shifted to a later slot. (Recall that finding a valid way to right-shift Uj in

Fig. 10(b) was the key problem to address in Section 5.) The conditions of the lemma are
illustrated in Fig. 22(a).

ARTICLE IN PRESS

]
j+1

]
j+1

[
k

Uj+1]
j+1

U j+1U j+1

(b) (c)(a)

W
no Wk

hole

t t+1 t t+1 t t+1

Fig. 22. Lemma 20. (a) Conditions of the lemma. (b) Base case: there exists Wk scheduled after t such that rðWkÞpt:
(c) Base case: no such Wk exists.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204192

Lemma 20. Let t0 ¼ fTi j TAt4dðTiÞptdg and let S be a two-processor schedule for t0: Let tptd :
Assume the following:

* subtask Uj is scheduled at slot t; and dðUjÞ4t þ 1;
* either no other subtask is scheduled at slot t or Uj�1 is scheduled there (in which case S is not valid

at t);
* each subtask scheduled at or after t is scheduled in its Pfair window and S is valid for all v4t:

Then, there exists a schedule S0 for t0 such that

* Uj is scheduled at some slot after t;
* Sv ¼ S0

v for all vot;
* each subtask scheduled at or after t is scheduled in its Pfair window and S is valid for all vXt:

Proof. We prove the lemma by inducting over the rank of Uj: From the statement of the lemma,

we have

dðUjÞXt þ 2: ð41Þ

Base case: Uj is the lowest-ranked subtask scheduled in S: If no subtasks are scheduled after slot t

in S; then by (41), we can clearly shift Uj to slot t þ 1: In the rest of the proof for the base case, we

assume that there exist subtasks that are scheduled after slot t:
Suppose that there exists a subtask Wk scheduled after t such that rðWkÞpt: By the statement of

the lemma, Wk�1 is not scheduled in slot t: Thus, we can swap Wk with Uj to get the desired

schedule, as shown in Fig. 22(b). (Note that Ujþ1 does not exist in S because Uj is of lowest rank.

Thus, swapping Wk with Uj will not create a schedule in which two subtasks of U are scheduled in

the same slot.)
The remaining possibility is that, for each subtask Wk scheduled after t; rðWkÞ4t and

dðWkÞpdðUjÞ (the latter follows because Uj is of lowest rank). If there are no holes in any

slot in ½t þ 1; dðUjÞÞ; then we have a contradiction of Lemma 19. Therefore, there exists a slot in

½t þ 1; dðUjÞÞ such that there is a hole in that slot. This implies that we can schedule Uj in that slot

(see Fig. 22(c)). Thus, a valid schedule exists in which Uj is scheduled at a slot later than t:
Induction step: Uj is not the lowest-ranked subtask scheduled in S: Assume that the lemma holds

for all subtasks with lower rank than Uj: We consider two cases.

Case 1: For each subtask Wk scheduled after t; rðWkÞ4t: Let ½t þ 1; uÞ be the smallest interval
such that for each subtask Vh scheduled in ½t þ 1; uÞ; rðVÞXt þ 1 and dðVÞpu (see Fig. 23(a)).
Note that such a u exists, because S includes only a finite collection of subtasks. If there are no
holes in this interval, then we have a contradiction of Lemma 19. Therefore, there exists a slot u0 in
½t þ 1; uÞ at which there is a hole. Without loss of generality, let u0 be the earliest such slot in
½t þ 1; uÞ: Either u0 ¼ t þ 1 or u04t þ 1:

Subcase 1ðAÞ: u0 ¼ t þ 1: By (41), Uj can be shifted to slot u0:Unfortunately, if Ujþ1 is scheduled

at u0; then this might result in a schedule in which Uj and Ujþ1 are scheduled in the same slot.

Recall from the statement of the lemma that the schedule is allowed to be invalid at t: Thus, we
can first shift Uj to u0 and then apply the induction hypothesis to move Ujþ1 to a later slot (refer to

Fig. 23(b)). This will result in a schedule that is valid for all vXt:

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 193

Subcase 1ðBÞ: u04t þ 1: If for all subtasks Vh scheduled in ½t þ 1; u0Þ; dðVhÞpu0; then we have a
contradiction of the fact that ½t þ 1; uÞ was the smallest such interval. Therefore, there exists a
subtask Vh such that dðVhÞXu0 þ 1 (refer to Fig. 23(c)). Observe that we can move Vh to slot u0 to
get a schedule in which a slot with a hole occurs earlier. Unfortunately, this movement of Vh is not
valid if Vhþ1 is scheduled at u0:However, as before, we can apply the induction hypothesis to move
Vhþ1 to a later slot.
By the reasoning above, if Subcase 1(B) applies, then it is always possible to get a schedule in

which either Uj is shifted to a later slot, or in which the first slot in ½t þ 1; uÞ that has a hole occurs

earlier. If we repeatedly apply Subcase 1(B) without shifting Uj to a later slot, then Subcase 1(A)

will eventually apply, in which case Uj can be shifted as desired.

Case 2: There exists a subtask Wk scheduled after t such that rðWkÞpt: Without loss of
generality, assume that Wk is the earliest-scheduled subtask among all such subtasks. Let Wk be
scheduled at slot u: If there are any holes in ½t þ 1; uÞ; then Wk could be moved to the first such

ARTICLE IN PRESS

Either there is a hole or
 is scheduled here

A hole

An empty slot

]j

]
j

by
induction

]j

Uj_1

]j

by
induction

]j

]j

Vh+1]h

by
induction

...

(c)

(e)

Uj

all subtasks here have deadlines
at or before u and releases after t

(a)

j+1U

kW

earliest

jU

(d)

Uj

...

kW

(f)

(b)

t uu_1t+1 t t+1 ...

Uj Uj+1

Vh Vh+1]h

induction
by

Uj

...

Vh

Uj

... ...

W k

... ...

(=u')
uu_1

u't t

t

t+2 ...u'+1 uu_1...t+1

t+1 v v+1 t t+1

t+1 u

uu u+1 u+1

u+1

Fig. 23. Cases of Lemma 20. In each inset, dðUjÞ4t þ 1: (a) Case 1: smallest interval ½t þ 1; uÞ such that all subtasks

have deadlines and releases inside the interval. (b) Subcase 1(A): u0 ¼ t þ 1: (c) Subcase 1(B): u04t þ 1: (d) Subcase
2(A): dðUjÞXu þ 1; and Wk is the earliest subtask with rðWkÞpt: (e) Subcase 2(B): dðUjÞou þ 1: (f) Repeated

application of Subcase 2(B) to finally apply Subcase 2(A).

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204194

slot u0; and the reasoning below applies with the smaller interval ½t þ 1; u0Þ: Thus, we can assume
without loss of generality that there are no holes in ½t þ 1; uÞ:

Subcase 2ðAÞ: dðUjÞXu þ 1: Refer to Fig. 23(d). Because dðUjÞXu þ 1; we can swap Uj and Wk

directly. Unfortunately, Ujþ1 might be scheduled at slot u; in which case the resulting schedule is

not valid. However, as before (refer to Case 1), we can apply the induction hypothesis to move
Ujþ1 to a later slot. The resulting schedule will be valid for all vXt:

Subcase 2ðBÞ: dðUjÞou þ 1: In this subcase, we try to identify subtasks that can be used as an

intermediate for swapping. Because Wk is the earliest scheduled subtask after t such that
rðWkÞpt; for each subtask Vh scheduled in ½t þ 1; uÞ; we have rðVhÞXt þ 1: Hence, because there
are no holes in ½t þ 1; uÞ; by Lemma 19, there exists a subtask Vh scheduled in ½t þ 1; uÞ for which
dðVhÞXu þ 1: Let Vh be scheduled at time vAft þ 1;y; u � 1g (see Fig. 23(e)). We can swap Vh

and Wk to get a schedule in which Wk is scheduled earlier (i.e., nearer to slot t). This swapping is
valid only if Wk�1 is not scheduled at v and Vhþ1 is not scheduled at u: Because rðWkÞot þ 1pv;
dðWk�1Þpv (by part (a) of Lemma 9). Therefore, Wk�1 cannot be scheduled at slot v: On the other
hand, Vhþ1 can be scheduled at time u: However, by the induction hypothesis, Vhþ1 can be moved
to a later slot.
By repeatedly applying Subcase 2(B), we obtain either the required schedule or a schedule in

which Subcase 2(A) can be applied. This is illustrated in Fig. 23(f). &

The following lemma gives the inductive step of our proof.

Lemma 21. Let S be a k-compliant two-processor schedule for fTi j TAt4dðTiÞptdg: Then, there

exists a ðk þ 1Þ-compliant two-processor schedule S0 for fTi j TAt4dðTiÞptdg:

Proof. Let Ti be the ðk þ 1Þst subtask according to v : If Ti is scheduled in accordance
with EPDF, then take S0 to be S: Otherwise, we have the following: there exists a time slot
t such that Ti is eligible at t; some subtask ranked lower than Ti according to v is scheduled
at t; and Ti is scheduled at a slot later than t: Without loss of generality, let t be the earliest
such slot and Uj be the lowest-ranked subtask scheduled at t: Let t0 be the slot where Ti is

scheduled.
As in the proof of Theorem 18, a ðk þ 1Þ-compliant schedule can be obtained by swapping Ti

and Uj; and also as before, the difficult case to consider is as depicted in Fig. 10(b). In this case,

Lemma 20 can be applied to right-shift Ujþ1 out of slot t0: Once Ujþ1 has been shifted, Ti and Uj

can be safely swapped. &

Theorem 22. EPDF optimally schedules asynchronous, periodic tasks on systems of one or two
processors.

Proof. Establishing the optimality of EPDF for one-processor systems is straightforward, so we
consider only two-processor systems. Suppose to the contrary, that EPDF is not optimal for such
systems. Let t and td be as defined at the beginning of this section. Then, the set of subtasks
fTi j TAt4dðTiÞptdg misses a deadline at td using EPDF. Because t is feasible, there exists a
valid schedule for this set of subtasks such that each subtask is scheduled in its Pfair window.

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 195

Starting with this schedule, we can apply Lemma 21 inductively (as discussed earlier) to get a valid
schedule for fTi j TAt4dðTiÞptdg under EPDF. Contradiction. &

7. Concluding remarks

We have introduced a ‘‘work-conserving’’ variant of Pfair scheduling called ERfair scheduling,

and have presented a new algorithm called PD2; which is the most efficient Pfair/ERfair

scheduling algorithm known to date. We have shown that PD2 is optimal for scheduling any mix
of early-release and non-early-release asynchronous, periodic tasks on a multiprocessor. This is
the first work known to us on the problem of scheduling both early-release and non-early-release
tasks under a common framework. This is also the first paper to show that a variant of the PD
Pfair algorithm is optimal for scheduling asynchronous task systems on a multiprocessor. Our
counterexamples show that, in general, it is highly unlikely that an optimal Pfair or ERfair

scheduling algorithm that is more efficient than PD2 can be obtained. However, for the special case
of a two-processor system, we have shown that a simpler algorithm, namely EPDF, is optimal.

Acknowledgments

We are grateful to Sanjoy Baruah, Mark Moir, and Srikanth Ramamurthy for many helpful
discussions on the subject of this paper. We also thank the anonymous reviewers for their
suggestions.

Appendix A. Proof of properties (P1) through (P10)

In this appendix, we prove properties (P1)–(P10), all of which pertain to just a single task. As in
Section 5.1, for brevity, we let T denote this task, and abbreviate T :e and T :p as e and p;
respectively. Thus, wtðTÞ ¼ e

p
; and by (7) and (8), we have the following:

jwðTiÞj ¼
ip

e

� �
� ði � 1Þp

e

� �
: ðA:1Þ

As noted in Section 5, we assume that e and p are relatively prime, i.e., gcdðe; pÞ ¼ 1:

Lemma A.1. The following properties hold for any task T :

(a) rðTiþ1Þ is either dðTiÞ or dðTiÞ � 1; which implies that rðTiþ1ÞXdðTiÞ � 1:
(b) The sequence of windows within any two jobs are identical, i.e., jwðTkeþiÞj ¼ jwðTiÞj; where

1pipe and kX0:
(c) The windows are symmetric within each job, i.e., jwðTkeþiÞj ¼ jwðTkeþeþ1�iÞj; where 1pipe; and

kX0:
(d) The length of each window is either p

e

� �
or p

e

� �
þ 1:

(e) jwðTiÞj ¼ p
e

� �
if ði � 1Þ is a multiple of e:

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204196

Proof. Below, we prove each property separately.

Proof of (a). The required result follows because rðTiþ1Þ ¼ DðTÞ þ i
wtðTÞ

j k
(by (7)) and dðTiÞ ¼

DðTÞ þ i
wtðTÞ

l m
(by (8)).

Proof of (b). By (A.1), jwðTkeþiÞj ¼ ðkeþiÞp
e

l m
� ðkeþi�1Þp

e

j k
: Therefore, jwðTeþiÞj ¼ kp þ ip

e

� �
� kp �

ði�1Þp
e

j k
¼ jwðTiÞj:

Proof of (c). By part (b), we need to prove this only for the first job of T ; i.e., for k ¼ 0: By (A.1),

jwðTeþ1�iÞj ¼
ðe þ 1� iÞp

e

� �
� ðe � iÞp

e

� �

¼ p þ ð1� iÞp
e

� �� �
� p þ �ip

e

� �� �

¼ ð1� iÞp
e

� �
� �ip

e

� �

¼ �ði � 1Þp
e

� �
þ ip

e

� �

¼ � ði � 1Þp
e

� �
þ ip

e

� �
:

Thus, jwðTiÞj ¼ jwðTeþ1�iÞj:

Proof of (d). By (A.1), we have

jwðTiÞj ¼
ip

e

� �
� ði � 1Þp

e

� �

¼ ip

e

� �
� ip

e
� p

e

� �

¼ ip

e

� �
þ p

e
� ip

e

� �
:

It is easy to see that this last expression equals either p
e

� �
or p

e

� �
þ 1:

Proof of (e). By (A.1), jwðT1Þj ¼ p
e

� �
: By part (b), jwðTkeþ1Þj ¼ jwðT1Þj: Thus, the required result

follows. &

The next property that we prove is used to prove property (P2) below. It refers to a ‘‘minimal’’
window of a task. As noted earlier, by part (d) of Lemma 9, the windows of any task are of at

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 197

most two different lengths. We refer to a window of task T with length T :p
T :e

� �
as a minimal window

of T : The following property follows by part (e) of Lemma 9.

(P0) The first window of each job of T is a minimal window of T :

By (B), the b-bit of the last subtask of a job is zero. Therefore, the following property implies that
the last window of each job of T is a minimal window of T :

(P1) If bðTiÞ ¼ 0; then jwðTiÞj ¼ jwðTiþ1Þj:

Proof. By (9), bðTiÞ ¼ 0 implies that ip
e
is an integer. Thus, because gcdðe; pÞ ¼ 1; i is a multiple of

e: In other words, i ¼ ðk þ 1Þe for some kX0; and jwðTiÞj ¼ jwðTkeþeÞj: Therefore, by part (c) of
Lemma 9, we have jwðTiÞj ¼ jwðTkeþ1Þj: By part (b) of Lemma 9, jwðTkeþ1Þj ¼ jwðTkeþeþ1Þj:
Therefore, jwðTiÞj ¼ jwðTiþ1Þj; as required. &

(P2) If bðTiÞ ¼ 0; then wðTiÞ is a minimal window of T :

Proof. As in the proof of (P1), we can show that i is a multiple of e: Therefore, by (P0), wðTiþ1Þ is
a minimal window. The required result then follows from (P1). &

(P3) and (P4) below follow directly from part (d) of Lemma 9.

(P3) For all i and j; jwðTjÞjpjwðTiÞj þ 1:
(P4) For all i and j; jwðTjÞjXjwðTiÞj � 1:
(P5) If T is light, then all of its windows are of length at least three.

Proof. If T is light, then e
p
o1

2
: Therefore, p

e
42; and p

e

� �
X3: The required result follows because

jwðTiÞjX p
e

� �
(by part (d) of Lemma 9). &

(P6) T has a 2-window if and only if it is heavy.

Proof. By part (e) of Lemma 9, jwðT1Þj ¼ p
e

� �
: Note that p

e

� �
is 2 if and only if 1

2
pe

p
o1; which

implies that T is heavy. &

(P7) below follows directly from (P6) and part (d) of Lemma 9.

(P7) If T is heavy, then all its windows are of length two or three.

The following property shows that the last subtask of each job of a heavy task has
a 2-window.

(P8) If T is heavy and bðTiÞ ¼ 0; then jwðTiÞj ¼ 2:

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204198

Proof. By (P2), jwðTiÞj ¼ p
e

� �
: Reasoning as in the proof of (P6), it follows that jwðTiÞj ¼ 2: &

(P9) If t and t0 are successive group deadlines of a heavy task T ; then t0 � t is either 1
1�wtðTÞ

l m
or

1
1�wtðTÞ

l m
� 1:

Proof. As shown by Baruah et al. [7], the group deadlines of T correspond to subtask deadlines of

a task U such that wtðUÞ ¼ 1� wtðTÞ: Therefore, by (8), t0 � t ¼ jþ1
wtðUÞ

l m
� j

wtðUÞ

l m
for some j:

Thus, t0 � t ¼ j
wtðUÞ þ 1

wtðUÞ

l m
� j

wtðUÞ

l m
: From this, the required result follows. &

The following claim is used to property (P10) below. (Refer to Fig. 24.)

Claim 24. Let T be a heavy task with more than one group deadline per job. Let t and t0 be
consecutive group deadlines of T ; where t0 is the first group deadline within some job of T (for the

first job of T ; take t to be 0). Similarly, let u and u0 be consecutive group deadlines of T ; where u0 is
the last group deadline within some job of T : Then, t0 � t ¼ u0 � u þ 1:

Proof. Recall that the group deadlines of T correspond to subtask deadlines of a task U such that
U :e ¼ p � e and U :p ¼ p: Note that since t0 is the first group deadline within some job of T ; t is
the last group deadline within the previous job, i.e., t corresponds to the deadline of a subtask Ui

such that bðUiÞ ¼ 0: By (9), bðUiÞ ¼ 0 implies that ip
p�e

is an integer. Note that because gcdðe; pÞ ¼
1; we have gcdðp; p � eÞ ¼ 1: Therefore, i is a multiple of p � e:In other words, i ¼ jðp � eÞ for
some jX0: (This also takes care of the case when t ¼ 0:) Therefore, dðUiÞ ¼ jp; i.e., t ¼ jp:
Further, because T has more than one group deadline per job, the number of subtask deadlines

in each job of U is at least 2, i.e., U :eX2: Therefore, i þ 1 ð¼ jðp � eÞ þ 1Þ is not a multiple of

p � e: Hence, ð jðp�eÞþ1Þp
p�e

l m
¼ 1þ ð jðp�eÞþ1Þp

p�e

j k
; which implies the following:

p

p � e

� �
¼ 1þ p

p � e

� �
: ðA:2Þ

Also, we have t0 � t ¼ ð jðp�eÞþ1Þp
p�e

l m
� jp ¼ p

p�e

l m
:

Similarly, we can show that u0 ¼ kp for some k and u ¼ ðkðp�eÞ�1Þp
p�e

l m
¼ kp þ �p

p�e

l m
: Therefore,

u0 � u ¼ � �p
p�e

l m
¼ p

p�e

j k
:

Thus, ðt0 � tÞ � ðu0 � uÞ ¼ p
p�e

l m
� p

p�e

j k
; which is 1 (by (A.2)). &

(P10) Let T be a heavy task. Let t and t0 be consecutive group deadlines of T ; where t is the last
group deadline within some job of T (for the first job of T ; take t to be 0Þ: Then t0 � t is at
least the difference between any pair of consecutive group deadlines of T :

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 199

Proof. If T has just one group deadline per job, then the difference between any two consecutive
group deadlines exactly equals the period of T : On the other hand, if T has multiple group
deadlines within a job, then by Claim 24, t0 � t=u0 � u þ 1; where u0 and u are two consecutive
deadlines of T : The required result then follows by (P9), because the difference between
consecutive group deadlines can have at most two distinct values. &

Appendix B. Feasibility proof

We now prove that the following expression is a feasibility condition for an asynchronous task
system t on M processors:

X
TAt

wtðTÞpM: ðB:1Þ

Let tl be an arbitrary time slot. We show that t has a valid schedule over the time interval ½0; tlÞ
by considering flows in a certain graph Gðt; tlÞ: By examining the windows of all the subtasks
that have deadlines in the interval ð0; tl�; we construct a flow graph Gðt; tlÞ such that a
maximal flow f in Gðt; tlÞ corresponds to a valid schedule for these subtasks. As mentioned
in Section 5, we construct a valid schedule in which each subtask is scheduled in its Pfair
window.

Definition of Gðt; tlÞ: Let nsðT ; tlÞ denote the number of subtasks of T that have deadlines in the
interval ð0; tl�; and let etðT ; tlÞ denote the union of the Pfair windows of the first nsðT ; tlÞ subtasks
of T :
The vertex set V of Gðt; tlÞ is the union of six disjoint sets of vertices V0;y;V5 and the edge

set E is the union of five disjoint sets of weighted edges E0;y;E4; where Ei is a subset of

ARTICLE IN PRESS

4 3

9T

10T

11T

T12

13T

1T

7T

5T

T4

3T

2T

6T

16T

15T

14T

8T

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 24. Windows of a task T of weight 8/11 are shown. Sample values of t0; t; u; and u0 (from Claim 24) are 11,

15, 19, 22.

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204200

Vi � Viþ1 �Nþ; 0pip4: Thus, G is a six-layered graph, with all the edges connecting vertices in
adjacent layers. The vertex sets V0;y;V5 are defined as follows:

V0 ¼ source;
V1 ¼ /1;TS j TAt; corresponding to tasks,
V2 ¼ /2;T ; iS j TAt; 1pipnsðT ; tlÞ; corresponding to subtasks,
V3 ¼ /3;T ; tS j TAt; tAetðT ; tlÞ; corresponding to subtask windows,
V4 ¼ /4; tS j 0ptptl; corresponding to time,
V5 ¼ sink:

The edge sets E0;y;E4 are defined as follows:

E0 ¼ ðsource; /1;TS; nsðT ; tlÞÞ j TAt;
E1 ¼ ð/1;TS;/2;T ; iS; 1Þ j TAt; 1pipnsðT ; tlÞ;
E2 ¼ ð/2;T ; iS;/3;T ; tS; 1Þ j TAt; 1pipnsðT ; tlÞ; tAwðTiÞ;
E3 ¼ ð/3;T ; tS;/4; tS; 1Þ j TAt; tAetðT ; tlÞ;
E4 ¼ ð/4; tS; sink;MÞ j 0ptptl:

The weight of an edge in E0 corresponds to the total processing time required by a task in the
interval ½0; tlÞ: The edges in E1 are used to add the restriction that tasks are allocated in terms of
subtasks. The edges in E2; E3; and E4 are used to ensure the validity of the resulting schedule.
A flow is called integral if and only if flow across each edge is integral. We use the following

theorem about integral flows in graphs with integral edge capacities.

Theorem 25 (Ford and Fulkerson [8]). A graph in which all edge capacities are integral has a
integral maximal flow.

Feasibility proof. The existence of a schedule for an asynchronous task system t that satisfies
Expression (B.1) follows from Lemmas 26 and 27 below.

Lemma 26. If there exists an integral flow of size
P

TAt nsðT ; tlÞ in Gðt; tlÞ; then there exists a valid

schedule for t over the interval ½0; tl�:

Proof. An integral flow of size
P

TAt nsðT ; tlÞ implies that the flow out of the source isP
TAt nsðT ; tlÞ: By definition of E0; the sum of the capacities of all the outgoing edges from the

source is
P

TAt nsðT ; tlÞ: Therefore, all the edges in E0 carry a flow equal to their capacity. Hence,

an edge from the source to /1;TSAV1 carries a flow equal to nsðT ; tlÞ: Because there are nsðT ; tlÞ
outgoing edges from /1;TS; and each edge of E1 has a capacity of 1, each such edge carries a
flow of 1. Therefore, the flow into each vertex in V2 is 1.
We obtain a schedule for t by scheduling Ti in slot t if and only if there is a flow of 1 from vertex

/2;T ; iS to /3;T ; tS: From the following discussion, it follows that this schedule is valid.
(i) Since each outgoing edge from V2 has a capacity of 1, and because the flow is integral, this

implies that at most one edge, starting from any vertex in V2; has a non-zero flow. Thus, for each
subtask Ti; only one of /3;T ; tS has an incoming flow of 1. In other words, a subtask is

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 201

scheduled at most once. Because there is an edge from /2;T ; iS to /3;T ; tS only if t lies in Ti’s
Pfair window, Ti is scheduled in its window.
(ii) Note that, because successive Pfair windows of the same task may overlap by

one slot, vertex /3;T ; tS can have more than one incoming edge. However, because the
edge from /3;T ; tS to /4; tS has a capacity of 1, at most one such incoming edge can have
a flow of 1. This ensures that multiple subtasks of the same task are not scheduled in the
same slot.
(iii) Because each edge in E4 has a capacity of M; there can be at most M edges in E3 with a flow

of 1 that are incident on the same vertex in V4: In other words, at most M subtasks are scheduled
in a single slot. &

Note that the maximum flow of Gðt; tlÞ is at most
P

TAt nsðT ; tlÞ; because this is the sum of the

capacities of all edges coming from the source. We now show that a real-valued flow of such a size
exists.

Lemma 27. Gðt; tlÞ has a real-valued flow of size
P

TAt nsðT ; tlÞ:

Proof. We use the following flow assignments. These assignments are similar to those given by
Baruah et al. [6] to establish that Expression (4) is a feasibility condition for synchronous, periodic
tasks.

* Each edge ðsource;/1;TS; nsðT ; tlÞÞAE0 carries a flow of size nsðT ; tlÞ:
* Each edge ð/1;TS;/2;T ; iS; 1ÞAE1 carries a flow of 1. Because there are nsðT ; tlÞ outgoing

edges from each /1;TS; flow is conserved at all vertices in V1:
* The flow through the edges in E2 is defined as follows. Let f ðTi; tÞ define the flow from

/2;T ; iS to /3;T ; tS: Then,

f ðTi; uÞ ¼

i � 1

wtðTÞ

� �
þ 1

� �
� wtðTÞ � ði � 1Þ; u ¼ rðTiÞ;

i � i

wtðTÞ

� �
� 1

� �
� wtðTÞ; u ¼ dðTiÞ � 1;

wtðTÞ; rðTiÞ þ 1pupdðTiÞ � 2;

0; otherwise:

8>>>>>>><
>>>>>>>:

ðB:2Þ

We now show that these assignments ensure that the flow is conserved at every vertex in V2;
i.e., the flow out of each vertex /2;T ; iSAV2 is 1. By (B.2), the total flow out of /2;T ; iS

is ðdðTiÞ � rðTiÞ � 2Þ � wtðTÞ þ i�1
wtðTÞ

j k
þ 1

� �
� wtðTÞ � ði � 1Þ þ i � i

wtðTÞ

l m
� 1

� �
� wtðTÞ;

which simplifies to 1þ wtðTÞ � ðdðTiÞ � rðTiÞÞ þ wtðTÞ � i�1
wtðTÞ

j k
� i

wtðTÞ

l m� �
: By (5) and (6),

dðTiÞ � rðTiÞ ¼ i
wtðTÞ

l m
� i�1

wtðTÞ

j k
: Thus, the total flow is 1.

* Each edge ð/3;T ; tS;/4; tS; 1ÞAE3 carries a flow equal to the sum of all incoming
flows at /3;T ; tS: We now show that this flow is at most wtðTÞ (which is at most 1). We
first show that f ðTi; tÞpwtðTÞ: This follows directly from (B.2) if tefrðTiÞ; dðTi � 1Þg: If

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204202

t ¼ rðTiÞ; then f ðTiÞ is

i � 1

wtðTÞ

� �
þ 1

� �
� wtðTÞ � ði � 1Þ; by ðB:2Þ;

p
i � 1

wtðTÞ þ 1

� �
� wtðTÞ � ði � 1Þ; Ixmpx;

¼ wtðTÞ; by simplification:

If t ¼ dðTiÞ � 1; then f ðTiÞ is

i � i

wtðTÞ

� �
� 1

� �
� wtðTÞ; by ðB:2Þ;

pi � i

wtðTÞ � 1

� �
� wtðTÞ; JxnXx) �Jxnp� x;

¼ wtðTÞ; by simplification:

We now only need to consider the time slot in which two consecutive Pfair windows
overlap. That will be the case when dðTiÞ � 1 ¼ rðTiþ1Þ for some i: In this case, the total

flow will be f ðTi; dðTiÞ � 1Þ þ f ðTiþ1; rðTiþ1ÞÞ: Thus, the flow is i � i
wtðTÞ

l m
� 1

� �
� wtðTÞ

þ i
wtðTÞ

j k
þ 1

� �
� wtðTÞ � i; which simplifies to i

wtðTÞ

j k
� i

wtðTÞ

l m
þ 2

� �
� wtðTÞ: Since,

dðTiÞ � 1 ¼ rðTiþ1Þ; it follows that i
wtðTÞ

l m
� 1 ¼ i

wtðTÞ

j k
: Therefore, i

wtðTÞ

j k
� i

wtðTÞ

l m
¼ �1:

Thus, the total flow is wtðTÞ: Thus, in all cases, the sum of all incoming flows at /3;T ; tS
is at most wtðTÞ:

* Each edge ð/4; tS; sink;MÞAE4 carries a flow equal to the sum of all incoming flows at /4; tS:
Thus, the incoming flow into /4; tS from /3;T ; tS can be at most

P
TAt wtðTÞ: Be-

cause
P

TAt wtðTÞpM; the incoming flow and hence the outgoing flow at /4; tS is at

most M:

This proves that the flow along each edge is at most its capacity and that the flow is conserved at
all vertices. Hence, the flow defined above is a valid flow. &

We are now in a position to state the following lemma and theorem.

Lemma 28. An asynchronous task system t has a valid schedule on M processors in which each

subtask is scheduled in its Pfair window if and only if
P

TAt wtðTÞpM:

Proof. The necessity of the condition follows from the necessity of condition for periodic task
systems (proved by Baruah et al. [6]) since any periodic task system is also an asynchronous task
system. To prove sufficiency, we construct a valid schedule for t in ½0; tÞ for any given t: Because t
is arbitrary, it follows that t has a valid schedule. By Lemma 27, it follows that Gðt; tÞ has a real-
valued flow of size

P
TAt nsðT ; tÞ: This is a maximal flow, since the sum of the capacities of all the

outgoing edges from the source is the same. Because all edge capacities in Gðt; tÞ are integers, by

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204 203

Theorem 25, it follows that Gðt; tÞ also has a integral flow of size
P

TAt nsðT ; tÞ: Therefore, by
Lemma 26, t has a valid schedule over ½0; tÞ: By the definition of Gðt; tÞ; it follows that in this
schedule each subtask will be scheduled in its Pfair window. &

Theorem 29. An asynchronous periodic task system t has a valid schedule on M processors if and

only if
P

TAt wtðTÞpM:

Proof. Follows directly from Lemma 28. &

References

[1] J. Anderson, A. Srinivasan, Early-release fair scheduling, in: Proceedings of the 12th Euromicro Conference on

Real-Time Systems, 2000, pp. 35–43.

[2] J. Anderson, A. Srinivasan, Pfair scheduling: beyond periodic task systems, in: Proceedings of the Seventh

International Conference on Real-Time Computing Systems and Applications, 2000, pp. 297–306.

[3] J. Anderson, A. Srinivasan, Mixed Pfair/ERfair scheduling of asynchronous periodic tasks, in: Proceedings of the

13th Euromicro Conference on Real-Time Systems, 2001, pp. 76–85.

[4] S. Baruah, Fairness in periodic real-time scheduling, in: Proceedings of the 16th IEEE Real-time Systems

Symposium, 1995, pp. 200–209.

[5] S. Baruah, private communication.

[6] S. Baruah, N. Cohen, C.G. Plaxton, D. Varvel, Proportionate progress: a notion of fairness in resource allocation,

Algorithmica 15 (1996) 600–625.

[7] S. Baruah, J. Gehrke, C.G. Plaxton, Fast scheduling of periodic tasks on multiple resources, in: Proceedings of the

Ninth International Parallel Processing Symposium, 1995, pp. 280–288.

[8] L. Ford, D. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.

[9] M. Moir, S. Ramamurthy, Pfair scheduling of fixed and migrating periodic tasks on multiple resources, in:

Proceedings of the 20th IEEE Real-time Systems Symposium, 1999, pp. 294–303.

[10] S. Ramamurthy, M. Moir, Static-priority periodic scheduling of multiprocessors, in: Proceedings of the 21st IEEE

Real-Time Systems Symposium, 2000, pp. 69–78.

[11] A. Srinivasan, J. Anderson, Optimal rate-based scheduling on multiprocessors, in: Proceedings of the 34th Annual

ACM Symposium on Theory of Computing, 2002, pp. 189–198.

[12] A. Srinivasan, J. Anderson, Efficient scheduling of soft real-time applications on multiprocessors, in: Proceedings

of the 15th Euromicro Conference on Real-time Systems, 2003, pp. 51–59.

ARTICLE IN PRESS

J.H. Anderson, A. Srinivasan / Journal of Computer and System Sciences 68 (2004) 157–204204

	Mixed Pfair/ERfair scheduling of asynchronous periodic tasks
	Introduction
	Pfair and ERfair scheduling
	The PD2 algorithm
	Minimality of the PD2 priority definition
	Optimality proof of PD2
	Properties about subtask windows
	Optimality proof

	Two-processor systems
	Concluding remarks
	Acknowledgements
	Proof of properties (P1) through (P10)
	Feasibility proof
	References

