Available at

. . JOURNAL or
: www.ElsevierComputerScience.com COMPUTER
: 3 POWERED BY SCIENCE dDIRECT' AND SYSTEM
" 5 @ SCIENCES

LSEVIER Journal of Computer and System Sciences 68 (2004) 157204
http://www.el sevier.com/locate/jcss

Mixed Pfair/ERfair scheduling of asynchronous
periodic tasks™

James H. Anderson™ and Anand Srinivasan

Department of Computer Science, University of North Carolina, 256 Sitterson Hill CB #3175, Chapel Hill,
NC 27599-3175, USA

Received 10 October 2001; revised 21 August 2003

Abstract

Pfair scheduling was proposed by Baruah, Cohen, Plaxton, and Varvel as a non-work-conserving way of
optimally and efficiently scheduling periodic tasks on a multiprocessor. In this paper, we introduce a work-
conserving variant of Pfair scheduling called “‘early-release’ fair (ERfair) scheduling. We also present a new
scheduling algorithm called PD? and show that it is optimal for scheduling any mix of early-release and
non-early-release asynchronous, periodic tasks. In contrast, almost all prior work on Pfair scheduling has
been limited to synchronous systems. PD? is an optimization of an earlier deadline-based algorithm of
Baruah, Gehrke, and Plaxton called PD; PD? uses a simpler tie-breaking scheme than PD to disambiguate
equal deadlines. We present a series of counterexamples that suggest that, in general, the PD? tie-breaking
mechanism cannot be simplified. In contrast to this, we show that no tie-breaking information is needed on

two-processor systems.
© 2003 Elsevier Inc. All rights reserved.

Keywords: Asynchronous periodic tasks; ERfair; Fairness; Multiprocessors; Optimality; Pfair; Real time; Scheduling

1. Introduction

Pfair scheduling was proposed by Baruah, Cohen, Plaxton, and Varvel as a way of optimally
and efficiently scheduling periodic tasks on a multiprocessor [7]. Pfair scheduling differs from
more conventional real-time scheduling disciplines in that tasks are explicitly required to make

“Work supported by NSF Grants CCR 9732916, CCR 9972211, CCR 9988327, and ITR 0082866. Some of the
results in this paper were presented in preliminary form at the 12th and 13th Euromicro Conferences on Real-time
Systems [1,3].

*Corresponding author.

E-mail address: anderson@cs.unc.edu (J.H. Anderson).

0022-0000/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2003.08.002

158 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

progress at steady rates. In most real-time scheduling disciplines, the notion of a rate is implicit.
For example, in the periodic task model, each task 7" executes at a rate given by T.e/T.p, where
T.e is the execution cost of each job (i.e., invocation) of T, and T.p is the period (and also the
relative deadline) of 7': every T'.p time units 7 releases a new job with execution cost 7T'.e and that
job must complete execution before 7’s next job release. Although there is a notion of a rate here,
it is actually a bit inexact: a job of T"may be allocated T'.e time units at the beginning of its period,
or at the end of its period, or its computation may be spread out more evenly. Under Pfair
scheduling, this implicit notion of a rate is strengthened to require each task to be executed at a
rate that is uniform across all jobs.

Pfair scheduling algorithms ensure uniform execution rates by breaking tasks into quantum-
length ““subtasks.” Each subtask must execute within a “window’ of time slots, the end of which
is its deadline. These windows divide each period of a task into potentially overlapping
subintervals of approximately equal length. Different subtasks of a task may execute on different
processors (i.e., migration is allowed). By breaking tasks into smaller executable units, Pfair
scheduling algorithms circumvent many of the bin-packing-like problems that lie at the heart of
intractability results involving multiple-resource real-time scheduling problems. Intuitively, it is
easier to evenly distribute small, uniform items among the available bins than larger, non-uniform
items.

Under Pfair scheduling, if some subtask of a task 7" executes “early” within its window, then T
is ineligible for execution until the beginning of its next window. This means that Pfair scheduling
algorithms are necessarily not work conserving when used to schedule periodic tasks. A
scheduling algorithm is work conserving if no processor ever idles unnecessarily. More precisely, if
there are M processors, and k uncompleted jobs at time ¢, then min(k, M) processors should be
busy at time . Work-conserving algorithms are of interest because their use often results in lower
job response times, especially in lightly-loaded systems. (This is because non-work-conserving
algorithms may choose to leave processors idle resulting in later finishing times.) In addition, non-
work-conserving algorithms often entail higher runtime overheads because of extra bookkeeping
required to keep track of when a job is and is not eligible.

In two separate papers [6,7], Baruah et al. presented two optimal Pfair scheduling algorithms,
called PF and PD. In both algorithms, subtasks are prioritized by their deadlines. The two
algorithms differ in the way in which ties are broken when two subtasks have the same deadline.
In PF, ties are broken by comparing future subtask deadlines, which is somewhat expensive. In
PD, ties are broken in constant time by inspecting four tie-break parameters. In both [6,7], only
synchronous, periodic task systems are considered—in a synchronous task system, all tasks are
constrained to release their initial jobs at time 0.

Contributions of this paper. In this paper, we extend the work of Baruah et al. in several ways.

e First, we introduce a work-conserving variant of Pfair scheduling called “early-release” fair
(ERfair) scheduling. Under ERfair scheduling, if two subtasks are part of the same job, then
the second subtask becomes eligible for execution as soon as the first completes. In other words,
a subtask may be released “‘early,” i.e., before the beginning of its Pfair window.

e Second, we introduce a new scheduling algorithm derived from PD called PD? and show that it
is optimal for scheduling any mix of early-release and non-early-release periodic tasks. PD? is
obtained from PD by eliminating two of PD’s tie-break parameters.

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 159

e Third, we present a series of counterexamples that strongly suggest that the PD? tie-breaking
mechanism cannot be further simplified. In particular, we show that if either of the two PD? tie-
breaks is eliminated, then there exists a feasible task set that is not correctly scheduled. We
further show that several other “obvious” tie-breaking schemes do not work.

e Fourth, we show that for the important special case of a two-processor system, no tie-breaking
information is required.

e Fifth, all of our results apply to asynchronous task systems. In contrast, almost all prior work
on Pfair scheduling has focused only on synchronous systems [4,6,7,9]. One exception is a
recent paper by Moir and Ramamurthy in which a static-priority Pfair scheduling algorithm for
asynchronous task systems is given [10]. Such static-priority algorithms are not optimal. In
other recent work, we proposed a task model called the intra-sporadic model that generalizes
the asynchronous model [2]. However, the algorithms given by us for that model are applicable
only to two-processor systems. (In the time since the research in this paper was conducted, we
have extended work on Pfair scheduling in several ways. In particular, we have obtained
bounds on the amount by which a deadline is missed if no tie-breaking information is used [12].
We have also shown that PD? can be used to optimally schedule intra-sporadic tasks on
multiprocessors [11]. The swapping proof technique used in this paper reveals many
fundamental properties of Pfair- and ERfair-scheduled systems that were essential in showing
the optimality of PD? for intra-sporadic tasks.)

A final, more subtle, contribution of this paper is our proof of correctness for PD?. In [7], PD is
proved correct by means of a simulation argument that shows that PD “closely” tracks the
behavior of PF. This proof is quite “brittle” and is difficult to extend beyond the synchronous,
periodic model [5]. In contrast, we prove that PD? is correct by means of an inductive “swapping”
argument in which an arbitrary schedule is converted into one in accordance with the PD? priority
definition by systematically interchanging pairs of subtasks. Thus, we have succeeded in showing
that swapping arguments, which have proven quite useful in work on more “‘conventional’ real-
time scheduling disciplines, can be used to effectively reason about PD and related algorithms as
well.

Some example schedules. Before continuing, we consider some example schedules that illustrate
the scheduling schemes considered in this paper. In the Pfair scheduling literature, the ratio of a
task 7’s execution cost and period, T.e/ T .p, is referred to as its weight. A task’s weight determines
the length and alignment of its Pfair windows. Fig. 1 shows some schedules involving three sets of
tasks executing on two processors: a set A of one task of weight 5/16, a set B of three tasks of
weight 4/16, and a set C of 15 tasks of weight 1/16. Inset (a) shows the schedule for these tasks up
to time slot 15 in a Pfair-scheduled system. At time 0, the scheduler selects for execution the first
subtask of the set-A task and the first subtask of one of the set-B tasks. At time 1, the first
subtasks of the remaining two set-B tasks are scheduled. The rest of the schedule is similarly
produced. Note that successive windows of a task are either disjoint or overlap by one slot. As
explained later, this is a general property of Pfair-scheduled systems. Inset (b) shows the schedule
for the same task set under ERfair scheduling. In this case, each subtask is eligible as soon as its
predecessor completes. Notice that all set-A and set-B jobs have finished by time slot 8, which is
much sooner than in the Pfair schedule. Inset (c) shows a schedule in which only the set-A task is

160 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

I~

i
-
Lo
A(1x 5/16): 1
e 1z _ _
2L __
2L _
BA@I): 1 2 _ _
casxuey: — — 2L _ L 12 _ _22_ _ 22

T 1T T T T T T 1
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Axse: 1 _ T T

B1(3x4/16): 1

B2A(X4/16): _ 2

CA5XULE): — o o m m — — = X 22 2 2 2 2 2

1 1 1T T T T 1
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A(IX5/16): 1 _

B(3x4/16): 1 2

Fig. 1. A schedule for a synchronous, periodic task set under (a) Pfair scheduling, (b) ERfair scheduling, and (c) mixed
Pfair and ERfair scheduling. With one exception (noted below), tasks of a given weight are shown together. Each
column corresponds to a time slot. For each subtask, there is an interval of time slots during which it is eligible (denoted
by dashes); this interval includes its Pfair window (denoted by bold dashes). An integer value # in slot z means that n of
the tasks in the corresponding set have a subtask scheduled at z. In inset (b), set B has been split into B1 and B2; the set-
B1 task happens to always be scheduled earlier than the set-B2 tasks, so its subsequent subtasks become eligible earlier.

an early-release task. Note that this task’s response time is lower here than in either of the
previous two examples. (These example schedules are used only to illustrate the basic ideas behind
Pfair and ERfair scheduling; details as to how to obtain subtask windows and select subtasks for

execution under PD? are given in later sections.)

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 161

The rest of this paper is organized as follows. In Section 2, we define Pfair and ERfair
scheduling. Then, in Section 3, we present the PD? algorithm. In Section 4, we present the
counterexamples mentioned above. In Section 5, we prove that PD? correctly schedules any
feasible asynchronous, periodic task system consisting of a mix of early-release and non-early-
release tasks. In Section 6, we show that both PD? tie breaks can be eliminated in two-processor
systems. Concluding remarks appear in Section 7. A number of properties pertaining to Pfair
windows are proved in Appendix A and the feasibility condition for asynchronous task systems is
proved in Appendix B.

2. Pfair and ERfair scheduling

Consider a collection of synchronous, periodic real-time tasks to be executed on a system of
multiple processors. (For the moment, we are only considering synchronous, periodic tasks.
Asynchronous tasks will be considered at the end of this section.) We assume that processor time
in such a system is allocated in discrete time units, or quanta; the time interval [¢,7 4 1), where 7 is
a nonnegative integer, is called slot t. (Hence, time ¢ refers to the beginning of slot z.) Associated
with each task T is a period T.p and an execution cost T .e. Every T.p time units, a new invocation
of T with a cost of T'.e time units is released into the system; we call such an invocation a job of T.
Each job of a task must complete execution before the next job of that task begins. Thus, T.e time
units must be allocated to T in each interval [(k —1)-T.p,k- T.p), where k>1. T may be
allocated time on different processors in such an interval, as long as it is not allocated time on
different processors at the same time.

The sequence of allocation decisions over time defines a “‘schedule.” Formally, a schedule S is a
mapping S:1 x A"+ {0, 1}, where 7 is a set of periodic tasks and /" is the set of nonnegative
integers. If S(7',¢) = 1, then we say that task T is scheduled at slot t. S; denotes the set of tasks
scheduled in slot 7. The statements 7€ S, and S(7T,¢) = 1 are equivalent.

Lag constraints. The ratio T.e/T.p is called the weight of task T, denoted wt(T). We assume
each task’s weight is strictly less than one—a task with weight one would require a dedicated
processor, and thus is quite easily scheduled. A task with weight less than 1/2 is called a light task,
while a task with weight at least 1/2 is called a heavy task.

A task’s weight defines the rate at which it is to be scheduled. Because processor time is
allocated in quanta, we cannot guarantee that a task 7" will execute for exactly (T.e/T.p)t time
during each interval of length ¢. Instead, in a Pfair-scheduled system, processor time is allocated to
each task 7" in a manner that ensures that its rate of execution never deviates too much from that
given by its weight 7.e/T.p. More precisely, correctness is defined by focusing on the /ag between
the amount of time allocated to each task and the amount of time that would be allocated to that
task in an ideal system with a quantum approaching zero. Formally, the lag of task T at time t,
denoted lag(T,1), is defined as follows:

t—1

lag(T,1) = (T.e/T.p)t =Y S(T,u). (1)
u=0

162 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

(In this paper, we consider only Jag values in a specific schedule S obtained by the PD? algorithm.
Hence, we leave the schedule implicit and use lag(T, t) instead of lag(T, ¢, S).) A schedule is Pfair
if and only if

VT, t == —1<lag(T,1)<1). (2)

Informally, the allocation error for each task is always less than one quantum. Our notion of
early-release scheduling is obtained by simply dropping the —1 lag constraint. Formally, a
schedule is early-release fair (ERfair) if and only if

(YT, 1 : lag(T, 1) <1). (3)

In a mixed Pfair/ERfair-scheduled task system, each task’s lag is subject to either (2) or (3); such a
task is called a non-early-release task in the former case, and an early-release task in the latter.
Note that any Pfair schedule is ERfair, but not necessarily vice versa.

It is straightforward to show that in any ERfair schedule (and hence any Pfair or mixed Pfair/
ERfair schedule), all job deadlines are met. In particular, in an ERfair schedule, lag(T,t) = 0 for
t=0,Tp2T.p,3T p, This is because, for these values of ¢, (T.e/T.p)t is an integer, and
therefore by (1), lag(T, t) is an integer as well. By (3), if lag(T, t) is an integer, then it must be 0 or
some negative integer. However, it cannot be a negative integer because this would imply that
more processor time has been allocated to T than has been requested by jobs of T up to time ¢.
Hence, lag(T, 1) is 0 for these values of .

Feasibility. A synchronous, periodic task set T has a Pfair schedule on M processors if and
only if

> %gM : (4)
Tet P
This result was proved by Baruah et al. [6] by means of a network flow construction. (We use a
similar proof technique in Appendix B to obtain a corresponding feasibility condition for
asynchronous periodic task systems.) Because every Pfair schedule is also an ERfair schedule, (4)
is a feasibility condition for ERfair-scheduled systems as well. For similar reasons, it is also a
feasibility condition for mixed Pfair/ERfair-scheduled task systems.

Windows. The Pfair lag bounds given in (2) have the effect of breaking each task 7" into an
infinite sequence of unit-time subtasks. We denote the ith subtask of task 7 as T;, where i>1.
Subtask T;, is called the successor of T; and T;_; is called the predecessor of T; (defined for i>1).
As in [6], we associate with each subtask 7} a pseudo-release rT; and a pseudo-deadline d(T;). If T;
is synchronous and periodic, then as shown in Appendix A, r(7;) and d(T;) are as follows.

o=t

d(T;) = [ﬁw . (6)

(In our earlier work [1-3] pseudo-deadlines were defined to refer to slots; here, they refer to time.
Hence, the formula for d(7;) given here is slightly different.)

r(T;) is the first slot into which 7; potentially could be scheduled, and d(7;) — 1 is the last such
slot. For brevity, we often refer to pseudo-deadlines and pseudo-releases as simply deadlines and

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 163

Windows of the T —_— Tia —_—
first sixteen Ts b—— T3 b—————
subtasks of T T, —_— Tio [T

Fig. 2. The Pfair windows of the first two jobs (or 16 subtasks) of a task 7 with weight 8/11 in a Pfair-scheduled system.
During each job of T', each of the eight units of computation must be allocated processor time during its window, or else
a lag-bound violation will result.

Tg
T7 | |
Subtasks T5- T g are Ts ' |
scheduled before Ts | |
their windows. T, :|—|
T, 1
T2 |
Ty |

[E—

T T T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 3. The Pfair windows of the first jobs of a task 7 with weight 8/11 are shown. The schedule shown is ERfair, but
not Pfair.

releases, respectively. The interval [r(7}),d(T;)) is called the window of subtask T; and is denoted
by w(T;). The length of window w(T;), denoted |w(T;)|, is defined as d(7;) — r(7T;). A window of
length # is called an n-window.

As an example, consider a task 7" with weight w#(7") = 8/11. Each job of this task consists of
eight windows, one for each of its unit-time subtasks. Using Egs. (5) and (6), it is possible to show
that the windows within each job of T are as depicted in Fig. 2.

Dropping the —1 lag constraint, as done in (3), is equivalent to allowing subtasks to execute
before their Pfair windows. In a Pfair-scheduled system, a subtask 7; is eligible at time ¢ if e w(T;)
and if T;_; has been scheduled prior to ¢ but T; has not. In an ERfair-scheduled system, if 7;_; and
T; are part of the same job, then 7; becomes eligible for execution immediately after 7;_; executes,
which may be before 7;’s Pfair window. (Obviously, no subtask can become eligible before the
beginning of the job that contains it. Thus, the first subtask of a job cannot be released early.) This
difference is illustrated in Fig. 3. We will continue to use the term “‘release” to refer the first slot of
a subtask’s Pfair window, even though a subtask that is early-released can actually execute prior
to this slot.

Asynchronous Pfair task systems. In the usual definition of an asynchronous periodic task
system, each task may release its first job at any time. For Pfair- or ERfair-scheduled systems, this
is equivalent to allowing the first subtask of each task 7', namely 77, to be released any time at or
after time zero. Our notion of an asynchronous task system generalizes this: we allow a task 7 to

164 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

begin execution with any of its subtasks, perhaps one other than 77, and this subtask may be
released any time at or after time zero. As we shall see, this added generality facilitates our
correctness proof for PD?. It is straightforward to modify the flow construction used in the
feasibility proof of (4) to apply to asynchronous task systems as defined here. (Refer to Appendix
B.) Thus, (4) is a feasibility condition for such systems. (In fact, the network flow construction
produces a Pfair schedule, i.e., each task is scheduled within its window.) In addition, it is possible
to define the release and deadline of each subtask using simple formulae that are similar to those
given in (5) and (6) for synchronous task systems. In particular, suppose task 7 releases its first
subtask at time r and let 7; (i>1) be this subtask. Then, the release and deadline of any subtask

T; (j>1i) are given by the following formulae, where A(T) =r — [il J

wi(T)
L |im]
() = | 2] + 4)
A1) = |t | + 2)

Thus, the windows of T are shifted by an offset given by A(T), which determines the release time
of its first subtask. Note that if 7 is an asynchronous periodic task according to the usual
definition, then the first subtask released by T is 7 and 4(7T') reduces to r.

3. The PD? algorithm

For synchronous, periodic task systems, the most efficient Pfair scheduling algorithm
previously proposed is an algorithm called PD [7]. PD prioritizes subtasks by pseudo-deadline
(hence its name). It is related to an earlier algorithm called PF [6] in which ties among subtasks
with the same deadline are broken by comparing vectors of future pseudo-deadlines. Although PF
was originally presented only in the context of synchronous, periodic systems, its correctness
proof is also applicable to asynchronous systems. Unfortunately, the runtime costs associated
with PF are prohibitive, so it is not a practical algorithm.

In this paper, we propose a new algorithm called the PD? algorithm, which is an improvement
over the PD algorithm. In both PD and PD?, the pseudo-deadline vectors of PF are replaced by a
constant number of tie-break parameters. Four tie-break parameters are used in PD, while in
PD?, only two tie-breaks are used. We now define the two PD? tie-break parameters. The
rationale behind each tie-break is explained later when considering the PD? priority definition.

First tie-break: The successor bit. By (7) and (8), r(T;;;) is either d(T;) or d(T;) — 1, i.e.,
successive windows are either disjoint or overlap by one slot. We define a bit »(7;) that
distinguishes between these two possibilities.

b(T;) = { 1 if r(Tia) =d(T;) - 1,

0 if #(Tpy) = d(T)).)

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 165

For example, in Fig. 2, b(T;) = 1 for 1 <i<7 and b(Ts) = 0. If T.e divides i, then (i- T'.p)/T.e is

an integer, i.e., [ﬁ1 = LWJ Thus, by (7)-(9), we have the following property.

(B) If T; is the last subtask of a job, then b(T;) is zero.

Second tie break: The group deadline. Consider a sequence Tj, ..., T; of subtasks of a heavy task
T such that |w(Ty)| =2Ab(Tix) =1 for all i<k<j and either |w(Tj11)|=3 or w(Tj;) =
2Ab(Ti11) =0 (e.g., T\, Tror T3, Ty, Ts or Tg, T7 in Fig. 2). If any of Tj, ..., T; is scheduled in
the last slot of its window, then each subsequent subtask in this sequence must be scheduled in its
last slot. In effect, T}, ..., T; must be considered as a single schedulable entity subject to a “group”
deadline. Formally, we define d(7j) +1 to be the group deadline for the group of subtasks
T;, ..., T;. Intuitively, if we imagine a job of 7" in which each subtask is scheduled in the first slot of
its window, then the slots that remain empty exactly correspond to the group deadlines of 7. For
example, in Fig. 2, T has group deadlines at slots 4, 8, 11, 15, 19, and 22.

We let D(T;) denote the group deadline of subtask 7;. Formally, if 7 is heavy, then

D(T;) = (min u :: u=>d(T;) and u is a group deadline of 7).

For example, in Fig. 2, D(7T) = 4 and D(Tx) = 11. The above definition of D is valid only for
heavy tasks. If T is light, then D(7;) = 0.

The PD? priority definition. We can now state the PD? priority definition. Under PD?, subtask
T7’s priority is at least that of subtask U}, denoted T;< Uj, if one of the following rules is satisfied.

(i) d(T)<d(U)).
(ii) d(T;) = d(Uj) and b(T})>b(U)).
(iii) d(T3) = d(Uy), b(T7) = b(U;) = 1, and D(T;)>D(U)). O

Any ties not resolved by these three rules can be broken arbitrarily. Thus, according to the above
priority definition, 7; has higher priority than Uj if it has an earlier pseudo-deadline. If 7; and U,
have equal pseudo-deadlines, but b(7;) = 1 and b(U;) = 0, then the tie is broken in favor of T;.
This is because scheduling a subtask with a b-bit of one earlier places fewer constraints on the
future schedule. (In particular, if 7; were scheduled very late, i.e., in the last slot of its window,
then this would reduce the number of slots available to 7 by one.) If T; and U; have equal
pseudo-deadlines and b-bits of one, then their group deadlines are inspected to break the tie. If
one is heavy and the other light, then the tie is broken in favor of the heavy task. If both are heavy
and their group deadlines differ, then the tie is broken in favor of the one with the later group
deadline. Note that the subtask with the later group deadline can force a longer cascade of
scheduling decisions in the future. Thus, choosing to schedule such a subtask early places fewer
constraints on the future schedule. If both are heavy and their group deadlines are equal, then the
tie can be broken arbitrarily. (Recall that D(T;) = 0 if T is light. Thus, in a light-only task system,
PD? uses only the first two rules to determine subtask priorities.)

The priority definition used in PD is similar to ours, except that two additional tie-break
parameters are used. The first of these is a task’s weight. The second is a bit associated with each

166 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

group deadline that is similar to the b-bit we associate with pseudo-deadlines. Our results show
that these two additional tie-break parameters are not necessary.

All of the components within the PD? priority definition can be calculated in an asynchronous
system using simple formulae. In particular, for any subtask 7}, d(7T;) is given by (8), and b(T;) by
(9). Also, as shown in [7], D(T;) can be calculated by using (8) to determine the deadlines of a task
of weight 1 — wt¢(T). (The deadlines of such a task coincide with the group deadlines of a task of
weight wt(T).) If a task T is subject to the Pfair lag constraint (2), then each subtask 7; becomes
eligible for execution at time r(7}), unless its predecessor is scheduled there, in which case it
becomes eligible at time r(7;) + 1. If 7T is instead subject to the ERfair lag constraint (3), then T;
becomes eligible at time r(7;) if it is the first subtask of its job, and immediately after the execution
of T;_; otherwise.

Given the priority definition above, the PD? algorithm is simple to explain (in fact, the PD?
algorithm is nearly identical to the algorithm given for PD in [7], except that a different
priority definition is used). A priority-sorted “ready queue’ is used to store eligible subtasks. In
addition, there are a number of priority-ordered ‘‘release queues” associated with future
time slots. At the beginning of each time slot, the M highest-priority subtasks in the ready queue
(if that many subtasks are eligible) are selected for execution, where M is the number of
processors in the system. If 7; is one of the selected subtasks, then 77, is inserted into the
release queue associated with time ¢, where ¢ is the time at which 7;,; becomes eligible. At the
beginning of each time slot, the release queue for that slot is merged with the ready queue. An
additional search structure is used in order to efficiently access the release queues (see [7]
for details). Note that if T is an early-release task and 7; and 7;,, are part of the same job, then
the algorithm can be optimized to insert 7;,; directly into the ready queue (which will then be
used in the next time slot) instead of the release queue for the next slot (where 7;,; becomes
eligible).

4. Minimality of the PD? priority definition

Before proving the optimality of PD?, we consider other scheduling algorithms that determine
subtask priorities using fewer or more-efficient tie-breaking rules.

According to the PD? priority definition, each task T is effectively prioritized at time ¢ by the
triple (d(7;),b(T;), D(T;)), where T; is the subtask of T eligible at time 7. In this section, we
present a collection of counterexamples that show that this priority definition cannot be
substantially simplified.

In each proof in this section, an example task system is considered that fully utilizes a system of
M processors for some M. Each such task system consists of a set 4 of tasks of one weight and a
set B of tasks of another weight. We show that if this task system is scheduled with the newly-
proposed priority definition, then a time slot is reached at which fewer than M tasks are
scheduled. Since the task system fully utilizes the M processors, this implies that a deadline is
missed at some future time. In the proof of Theorem 1, we explain the resulting schedule in
detail. The subsequent proofs in this section are sketched more briefly. We begin by considering
the b-bit.

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 167

Theorem 1. If the PD? priority definition is changed by eliminating b (i.e., Rule (ii)), then there exists
a feasible task system that is not correctly scheduled.

Proof. Consider a task system consisting of a set 4 of eight light tasks with weight 1/3 and a set B
of three light tasks with weight 4/9. Because total utilization is four, Expression (4) implies that
the system is feasible on four processors. Consider the schedule shown in Fig. 4(a).

As seen in Fig. 4(a), each job of a task with weight 1/3 consists of one three-slot window. Each
job of a task with weight 4/9 consists of four three-slot windows, with consecutive windows
overlapping by one slot. The first subtask of each task has a pseudo-deadline at slot 2. Because b
has been eliminated, this tie can be broken arbitrarily. We break it in favor of the subtasks of the
tasks in set 4. Therefore the eight tasks in set A are scheduled in slots 0 and 1. In slot 2, the three
tasks from set B are the only tasks with subtasks that are eligible for execution. Hence, only three
subtasks can be scheduled in slot 2, causing a deadline miss later at time 9. [

The definition of D(7;) ensures that if 7 is light and U is heavy and if d(7T;) = d(U;) Ab(T;) =
b(U;) =1, then U; has higher priority. The following theorem shows that it is necessary to tie-
break such a situation in favor of the heavy task.

Theorem 2. Suppose the definition of D is changed as follows: if T is light, then D(T;) is a randomly-
selected value. Then, there exists a feasible task system that is not correctly scheduled.

2 2 1
1 4
A (5x5/11) s 2 1
2 3
2 3
2
2
1 2 4 1 2
A (8x 1/3) 1 4 3 2
4 4 2
1 2 B (2x 19/22) 2
1 2 1 1
B (3x 4/9) - 0 -
3 1 1
3 2
I T T T T T T T T 1 I T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 10 11
@ (b)

Fig. 4. The notation used here (and in Figs. 5, 6, and 8) is the same as in Fig. 1. (a) Theorem 1. A deadline is missed at
time 9 by a task of weight 1/3. (We do not illustrate deadline misses in the subsequent figures, and show the schedule
only until a slot is reached in which fewer than M tasks are scheduled.) (b) Theorem 2.

168 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

A (3x5/7)

N
=

B (2x 13/14)

Fig. 5. Theorems 3 and 6.

Proof. Consider a task system consisting of a set A of five light tasks with weight 5/11 and a set B
of two heavy tasks with weight 19/22. Because total utilization is four, this task system is feasible
on four processors. Consider the schedule shown in Fig. 4(b), which is possible given the proposed
priority definition. In particular, at times 1, 3, and 7, the set-A4 tasks are favored over the set-B
tasks. This causes only three subtasks to be eligible for execution in slot 10. [

The previous counterexamples give rise to the possibility that D(7;) is actually only needed to
tie-break heavy tasks over light tasks. The next theorem shows that this is not the case.

Theorem 3. Suppose the definition of D is changed as follows: if T is heavy, then D(T;) is one. (If T
is light, then D(T;) is zero as before.) Then, there exists a feasible task system that is not correctly
scheduled.

Proof. Consider a task system, to be scheduled on four processors, consisting of a set A of three
heavy tasks with weight 5/7 and a set B of two heavy tasks with weight 13/14. The proposed
priority definition allows the schedule shown in Fig. 5. Note that only three subtasks are eligible in
slot 3. [

Given the previous counterexample, one may wonder if the definition of D can be weakened so that
ties among heavy tasks are statically resolved. The following theorem shows that this is unlikely.

Theorem 4. If D is changed so that ties among heavy tasks are statically broken by weight, then
there exists a feasible task system that is not correctly scheduled.

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 169

3
=
=
A (3x8/9) N 5
= =
2 1 3 3
12 12
3 2 1 2 1

A (3x8/9) 3

3
R B (10 x 14/15)

B (10 x 14/15)

Fig. 6. Theorem 4.

Proof. Consider a task system, to be scheduled on 12 processors, consisting of a set A of three
heavy tasks with weight 8/9 and a set B of ten heavy tasks with weight 14/15. First, suppose that D is
defined to statically tie-break the set-A4 tasks over the set-B tasks. Then, the schedule shown in Fig.
6(a) is possible. In this schedule, only 11 subtasks are eligible at time slot 8. Second, suppose that D
is defined to statically tie-break the set-B tasks over the set-A4 tasks. In this case, the schedule shown
in Fig. 6(b) is possible. In this schedule, only 11 subtasks are eligible at time slot 14. [

From the previous theorem, it follows that D almost certainly must be defined to dynamically
tie-break heavy tasks. (Note, for example, that Theorem 4 leaves open the possibility of statically
defining D so that some set-A4 tasks are favored over set-B tasks, but other set-4 tasks are not
favored over set-B tasks.) One obvious approach to try that is less dynamic than ours is to define
D(T;) based on the deadline of the current job of T. The next two theorems show that using job
deadlines does not work; in the first of these theorems, later job deadlines are given higher
priority, and in the second, nearer job deadlines are given higher priority.

Theorem 5. Suppose the definition of D is changed as follows: if T is heavy, then D(T;) is the

deadline of the current job of T. Then, there exists a feasible task system that is not correctly
scheduled.

170 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204
5 4

A (9X7/9)

B (12 x 5/6) 2

Fig. 7. Theorem 5.

Proof. Consider a task system, to be scheduled on 17 processors, consisting of a set 4 of nine
heavy tasks with weight 7/9 and a set B of 12 heavy tasks with weight 5/6. The proposed priority
definition allows the schedule shown in Fig. 7. (Note that the newly-proposed definition
of D favors set-A tasks over set-B tasks.) In this schedule, only 16 subtasks are eligible at
time slot 4. [

Theorem 6. Suppose the definition of D is changed as follows: if T is heavy, then D(T;) is 1/t, where

t is the deadline of the current job of T. Then, there exists a feasible task system that is not correctly
scheduled.

Proof. This can be proved by using the task system and schedule shown in Fig. 5, which was used
previously in the proof of Theorem 3. (Note that the newly-proposed definition of D favors set-4
tasks.) O

As we will show later in Section 6, neither b nor D is needed on two processors. We now
show that at least one tie-breaking rule is needed in any system with three or more
processors. (Note that Theorems 1, 2, 3 and 6 apply on systems with four or more
processors.)

Theorem 7. If our priority definition is changed by eliminating both b and D, then there exists a task
system that is feasible on three processors that is not correctly scheduled.

Proof. Consider a task system, to be scheduled on three processors, consisting of a set A4
of three heavy tasks with weight 1/2 and a set B of two heavy tasks with weight 3/4. The
proposed priority definition allows the schedule shown in Fig. 8(a). In this schedule, only
two subtasks are eligible at time slot 1. (Note that either b or D would correctly tie-break
these tasks.) [

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 171

8 7
A(5x3s 1 14
8 7
A (3x1/2)
— 4
3 -
— 4 6
4 6
— B (10 x 9/10) —
B (2x 3/4) . 10
2 10
[T T T T T T T T 1
0 1 2 3 4 0 1 2 3 4 5 6 7 8 9

Fig. 8. (a) Theorem 7; (b) Theorem 8.

One “obvious” potential priority definition that comes to mind is to use the rational value WI(T)

as the deadline of subtask 7}, which is tantamount to omitting the ceiling brackets in the deadline
formula (6). As it turns out, this new definition works for light-only task systems, but does not
work if heavy tasks are present.

The optimality of this priority definition for light-only task systems follows from the optimality

of PD?. Recall that PD? only uses Rules (i) and (ii) for light tasks, i.e., it prioritizes light
tasks using the pair (d(7T7;),b(T;). Ifw(7S M(7, then {‘”ET)W < L”(UJ ie., d(T;)<d(U;). Further,

if W is an integer, then b(7;) = 0; in this case either Z(U) (o> in which case d(U;)>d(T;)

or

WI{—U) = wt("U), in which case b(U;) = 0. Thus, all the scheduling decisions are in accordance

with PD?.

It might appear that the expression reduces a task’s priority to a single number. However,

wt(
to avoid rounding errors, this rational number must be stored as two integers. PD? actually
improves upon this by using an integer for d(7;) and a bit for b(7;). (In fact, the PD? priority
definition for light tasks can be reduced to a single integer d’(7;) that equals 2 - d(T;) — b(T;).
Under this new priority definition, 7}’s priority is at least U;’s if d'(T;)<d'(U;). It is
straightforward to show that this algorithm makes the same scheduling decisions as PD2 because
the b-bit is either zero or one.)

We now show that the using rational deadlines can sometimes lead to missed deadlines in
systems with heavy tasks.

Theorem 8. If the priority definition is changed so that T;’s priority is at least U;’s if —i= M(T <3 t(U), and

any ties are broken arbitrarily, then there exists a feasible task system such that it is not correctly
scheduled.

172 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

Proof. Consider a task system consisting of a set 4 of 15 tasks with weight 3/5 and a set B of ten
tasks with weight 9/10. Total utilization is 18, so we should be able to schedule this task system on
18 processors. Consider the schedule shown in Fig. 8(b), which is possible given the proposed
priority definition. In particular, at time 2, the priority of any task in 4 is given by %—55 = %, while
the priority of a task in B is given by Tzlo = 13—0. Hence, tasks in set A may be favored, as shown in
Fig. 8(b). This causes only 17 subtasks to be eligible for execution in slot 4. [

5. Optimality proof of PD?

In this section, we show that PD? is optimal for scheduling the class of task systems considered
in this paper. We begin in Section 5.1 by stating several properties that are used extensively in the
proof. The optimality proof itself is then given in Section 5.2.

Note that by (5) and (6), the Pfair windows of two tasks 7" and U for which ;—; = g—; are

identical. This implies that, under Pfair scheduling, they will be scheduled in precisely the same
way. Thus, for notational simplicity, it is reasonable to assume that T.e and T.p are relatively
prime for each task T, i.e., gcd(T.e, T.p) = 1, where gcd(a,b) is the greatest common divisor
(GCD) of a and b. We do make this assumption in our proof. Unfortunately, this creates a slight
problem, because under ERfair scheduling, two tasks with equal weights but different periods
may be scheduled differently. In particular, they may differ with regard to which subtasks may be
released early because their job releases occur at different times. However, the above assumption
is still valid because our proof applies even if subtasks are early-released across jobs. (In fact, our
proof applies even if the scheduler dynamically decides whether to early release subtasks or not, or
bounds early releases by a threshold—e.g., a subtask may be allowed to release early, but only up
to two time slots before its Pfair window.)

5.1. Properties about subtask windows

We now state several properties about subtask windows and group deadlines. These properties
are proved in Appendix A. Each property pertains to just a single task. For brevity, we let T
denote this task, and abbreviate T.e and T'.p as e and p, respectively.

Lemma 9. The following properties hold for any task T.

(@) r(Tyy1) is either d(T;) or d(T;) — 1, which implies that r(T;1)>d(T;) — 1.

(b) The sequence of windows within any two jobs are identical, i.e., |W(Tiei)| = |W(T7)|, where
1<i<e and k>0.

(¢c) The windows are symmetric within each job, i.e., |W(Tie+i)| = [W(Tketer1-i)|, where 1 <i<e, and
k=0.

(d) The length of each window is either [£] or [E] + 1.

() |w(T;)| =[] if (i — 1) is a multiple of e.

e

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 173

Property (P2) below refers to a “minimal’” window of a task. Note that by part (d) of Lemma 9,
the windows of any task are of at most two different lengths. We refer to a window of task 7 with

length [T2] as a minimal window of T.

(P1) If b(T;) =0, then |w(T;)| = |w(Tis1)].

(P2) If b(T;) =0, then w(T;) is a minimal window of 7.

(P3) For all i and j, |w(T})|<|w(T})| + 1.

(P4) For all i and j, |w(T;)|=|w(T:)| — 1.

(P5) If T is light, then all of its windows are of length at least three.
(P6) T has a 2-window if and only if it is heavy.

(P7) If T is heavy, then all its windows are of length two or three.
(P8) If T is heavy and b(T;) = 0, then |w(T;)| = 2.

(P9) 1f t and ¢ are successive group deadlines of a heavy task 7', then ¢ — ¢ is either {#I(TJ or

1 _|_1
’Vlfwt(T)-‘ :
(P10) Let T be a heavy task. Let ¢ and 7 be consecutive group deadlines of 7', where ¢ is the last

group deadline within some job of T (for the first job of T, take 7 to be 0). Then ¢ — ¢ is at
least the difference between any pair of consecutive group deadlines of 7.

5.2. Optimality proof

We now show that PD? produces a ““valid”” schedule for any feasible asynchronous task system.
A schedule is valid at time slot t if (i) for each subtask T; scheduled in slot ¢, ¢ lies within the interval
during which T7; is eligible (which implies that 7; meets its deadline), (i) no two subtasks of the same
task are scheduled at 7, and (iii) the number of tasks scheduled at 7 is at most the number of
processors. A schedule is valid if it is valid at every time slot. We begin by assuming, to the contrary,

that PD? fails to correctly schedule some task system. Then, there exists a time #; as follows.

Definition 10. z; is the earliest time at which some feasible asynchronous task system misses a
deadline under PD?.

In other words, PD? does not miss any deadline before time 7, for any feasible asynchronous
task system. Let 7 be a feasible asynchronous task system with the following properties.

(T1) ¢ misses a deadline under PD? at 7.

(T2) Among all feasible task systems that miss a deadline under PD? at ¢, no task system releases
a larger number of subtasks in [0,7,) than 7.

In the remainder of this section, we assume that 7 is as defined here. The existence of such a 7
follows from our assumption that PD? is not optimal. We now show that PD? produces a valid
schedule for t over [0, #,4], thus contradicting our starting assumption.

In the proofs that follow, we consider slots in which one or more processors are idle. In a
schedule S, if k processors are idle at time slot ¢, then we say that there are k holes in slot ¢ in S.

174 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

The following lemma gives an important property of the task set 7. (Note that the proof of this
lemma relies on (T2) and the fact that we have generalized the notion of an asynchronous system
to allow a task to begin execution with any of its subtasks.)

Lemma 11. If task T et releases its first subtask at time t>0, and if this first subtask is T;, i>1,
then either b(T;—1) = 0 and |w(T;—1)|>t or b(T;—1) =1 and |w(T;—1)|>1t+ 1.

Proof. We only consider the case when b(7;_;) = 0 holds; in this case, we show that |w(T;_;)| >t
holds. (The proof for the case when h(7;—;) = 1 holds is similar.) Suppose, to the contrary, that
|w(T;—1)|<t. Consider the task system 7' obtained by adding the subtask 7, ; with a release at
time ¢ — |w(T;—1)|=0. (We assume that the relative priorities of two subtasks in 7 do not change in
7’.) Then, 7’ satisfies the following properties.

e [t has one more subtask than t.
e It misses a deadline at 7.

To see the latter, note that upon adding 7;_; to 7, if T;_; does not miss its deadline, then it will
either be scheduled in a slot where there is a hole, or it will cause a lower-priority subtask to be
scheduled at a later slot. Inductively, this lower-priority subtask either misses a deadline or
is scheduled correctly, in which case it may cause other subtasks to get scheduled Iater.
Thus, no subtask will ““shift” to an earlier slot. Repeating this argument, it is easy to see that
adding T;_; cannot cause the missed deadline at z; to be met. Thus, v’ misses a deadline at ¢,
or earlier. This contradicts either (T2) or the minimality of 7; (refer to Definition 10). Therefore,
w(Ti—y)|>t. O

To avoid distracting boundary cases, we henceforth assume that the first subtask for each task
T is some T;, where i>1. This can be assumed without loss of generality, because if T starts with
T}, then we can instead require it to start with 7', , where x = T.¢; by part (b) of Lemma 9, the
resulting release times and deadlines of the subtasks of 7" will be identical, implying that the
schedule produced by PD? is identical as well.

Our proof proceeds by showing the existence of certain schedules for task set 7. To facilitate our
description of these schedules, we find it convenient to totally order all subtasks in 7. Let < be an
irreflexive total order that is consistent with the < relation in the PD? priority definition, i.e., < is
obtained by arbitrarily breaking any ties left by <.

Definition 12. A schedule S is defined to be k-compliant if and only if
(1) S is valid,
(i) the first k subtasks according to < are scheduled in accordance with PD?, and
(iii) the remaining subtasks are scheduled within their Pfair windows (i.e., they are not
early-released).

We now present two lemmas. The second of these, Lemma 14, allows us to inductively prove
that t does not miss a deadline at #; as originally assumed. Lemma 13 deals with a situation
arising in one of the cases in Lemma 14. According to Lemma 13, if subtasks 7}, U;, and Ujy are

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 175

ol ..t el tot .. ottt t ol .. ot ot el
T /\Ti ! /Ti I
i I i
Ly el U i Uj/mm Ui] Ly window /’jﬂL
hole \ —_—
ne
Vi ¥ I

@ (b) (©

t t+1 TP o § t t+1 t t+1 e -1 t t+1
L } ' L ' L } L | }

/ —_—
J[U minimal U]l J[Yi B Y1]l]”1

j window
[Vil W Vies Vil

(d))

Fig. 9. We use the following notation in this and subsequent figures. “[” and ““]” indicate the release and deadline of a
subtask; subscripts indicate which subtask. Each task is shown on a separate line. An arrow from subtask 7} to subtask
U; indicates that T; is now scheduled in place of U;. An arrow over “[”” (or “]”) indicates that the actual position of “[”
(or “]”) can be anywhere in the direction of the arrow. Time is divided into unit-time slots that are numbered.
(Although all slots are actually of the same length, due to formatting concerns, they do not necessarily appear as such in
our figures.) If T; is released at slot ¢, then “[” is aligned with the left side of slot ¢. If 7} has a deadline at time ¢ + 1, then
“1” is aligned with the right side of slot z. In insets (c)—(e), no subtask of V' is scheduled in slot 7. (a) Conditions of
Lemma 13. (b) There is a hole in slot ¥ — 1. (¢) d(Vi)>{. (d) d(Vk) = ¢ and r(Vy)<t. (e) d(Vi) = ¢ and r(Vj)=t.

Tl

Vk+1]k+1

scheduled as shown in Fig. 9(a), then by swapping some subtasks, it is possible to obtain a
schedule in which U; is not scheduled in slot .

Lemma 13. Let S be a valid schedule for t such that for light tasks T and U and t<t, U; is
scheduled in slot t, T; is eligible at t, and Uj,\ and T; are both scheduled in slot t'. Further, r(U;) = t,
d(Up) =t +1,r(Us) =t,dT:) =t +1, and w(U,) is a minimal window of U. If all subtasks
scheduled at or after t in S are scheduled within their Pfair windows, then there exists a valid schedule
S" also satisfying this property such that U¢S), S, =S, for 0<u<t, and S, — {U}cS].

Proof. Our goal is to construct S’ by swapping U; with a later subtask. Unfortunately, 7; and U,
cannot be swapped directly because this would result in a schedule in which two subtasks of U are
scheduled in the same slot. Instead, we identify another subtask V) that can be used as an
intermediate between U; and T; for swapping. Because 7" and U are both light, by (P5), all
windows of each span at least three slots. Because r(U;) = ¢ and d(U;) = ¢ + 1, this implies that
!>t+2and T and U are not scheduled in slot ¢ — 1.

If there is a hole in slot 7 — 1, then the swapping shown in Fig. 9(b) gives the required schedule.

We henceforth assume that there is no hole in slot # — 1. In this case, because U is scheduled at
¢ but not at ¢ — 1, there exists a task V' that is scheduled at # — 1 but not at #. Let V; be the
subtask of V scheduled at ¢ — 1. If d(V}) >/, then the swapping shown in Fig. 9(c) gives the
desired schedule. In the rest of this proof, we assume the following.

d(Vi) =1. (10)

176 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

If r(Vy)<t or if r(Vi) =tA V¢S, then the swapping shown in Fig. 9(d) produces the desired
schedule. The remaining possibility to consider is

(r(Vi)>t)v(r(Vi) =taVeS)). (11)

In this case, we show that the swapping in Fig. 9(e) is valid. (This inset actually depicts the case
r(Vi) =tAVeS,) From (10) and the statement of the lemma, we have d(V}) = d(U;) — 1. Also,
from (11), and the statement of the lemma, we have r(V})>r(U;). Therefore,

WVl <w(Uj)l- (12)

Because w(U;) is a minimal window of U, |w(Uj1)|=|w(U;)|. By definition, |w(Uj1)| =
d(Uj1) — r(Ujy1), which implies that d(Uj;1) = |w(Ujy1)| + ¢ Therefore,

d(Up) =1+ [w(U))|. (13)

Now, by (10) and by part (a) of Lemma 9, (V) is either ¢ — 1 or #. We now show that in either
case, d(Vi1) <t + |w(Vi)|. If r(Vis1) = ¢ (in which case b(Vj) = 0), then by (P1), (w(Viy1)| =
|w(V%)|. By definition, |w(Vii1)| = d(Vis1) — r(Vis1). Therefore, d(Viir) =1 + |w(Vi)|.

On the other hand, if r(Viy)=1¢ —1, then |w(Vi)|<|w(Vi)|+1 (by (P3)). Because
W(Vii1)| = d(Vieg1) — r(Vieyr), it follows that d(Vi) <t + |w(Vi)

Thus, in both cases, we have d(Vii1)<? + |w(Vk)|. By (12) and (13), this implies that
d(U;11) >d(Viy1). Therefore, by part (a) of Lemma 9, r(Uj;2)>d(Vi41). This implies that no
subtask of U is scheduled in the interval [/ + 1,d(V41)). Thus, the swapping shown in Fig. 9(e) is
valid, and produces the required schedule. [J

We now prove that a k-compliant schedule exists by induction on k. Note that a 0-compliant
schedule is just a Pfair schedule (with no early releases), and the existence of such a schedule is
guaranteed for any feasible task system. Also, if n subtasks are released in [0,), then an n-
compliant schedule is a valid schedule that is fully in accordance with PD? over [0,#,]. The
following lemma gives the inductive step of the proof.

Lemma 14. If'S is a valid k-compliant schedule for T, then there exists a valid schedule S’ for t that is
(k + 1)-compliant.

Proof. Let 7; be the (k + 1)st subtask according to <. If 7; is scheduled in S in accordance with
PD?, then take S’ to be S. Otherwise, there exists a time slot ¢ such that 77 is eligible at ¢ but
scheduled later, and either (i) there is a hole in ¢, or (ii) some subtask ordered after 7; by < is
scheduled at z. In the former case, we can easily rectify the situation by scheduling 7; at . Hence,
in the rest of the proof, we assume that (ii) holds.

Let ¢ be the earliest such time slot, and let U; be the lowest-priority subtask scheduled at ¢. Thus,
T;< U;. Let t' be the slot where T; is scheduled, as depicted in Fig. 10(a). Note that f may or may
not lie within 7;’s Pfair window; this depends on whether 7 is an early-release subtask. However,
because S is k-compliant, ¢ lies within U;’s Pfair window and ¢ lies within 7;’s Pfair window. In
the rest of the proof, we show that S’ can be obtained from S by swapping 7; and U; and perhaps
some other subtasks. In all cases, the subtasks that are swapped include 7; and subtasks ranked
after T; by <. Since S is k-compliant, all such subtasks are scheduled within their Pfair windows.

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 177

t t+1 t t+1 t t+1 t t+1
< ~
same Ti]\ Ti]I
decisigns —
=P] Y Uyt]
@ (b)

Fig. 10. (a) Conditions of Lemma 14. (b) The “difficult” case to consider.

Because S is a valid schedule and 7;< U;, by the PD? priority definition, we have
1<t <d(T))<d(Uj). (14)

We first show that U;y; cannot be scheduled before slot 7. Because 7;< U;, we have T;< Uy,
and hence U;,; is not early-released. Now, because d(U;) > (by (14)), by part (a) of Lemma 9,
r(Upy1) =1 Thus, Uy cannot be scheduled before . Further, it can be scheduled at # if and only
if r(Up) =1

If no subtask of U is scheduled in the interval [t + 1,7 4 1), then T; and U; can be directly
swapped to get the required schedule. In the rest of the proof, we assume that U, is scheduled in
slot ¢’ (i.e., in the interval [¢, ¢ + 1)). As shown above, in this case r(Uj;1) = ¢'. Therefore, by part
(a) of Lemma 9, d(Uj) is either ¢ or ¢ + 1. By (14), it follows that d(U;) = ¢ + 1 and hence,
d(T;) =t + 1. Because d(U;) = r(Ujy1) + 1, we have b(U;) = 1. This implies that b(7;) = 1, since
T;< U;. Thus, we have the following.

Ui €Sy Ad(T;) = d(Uj) = + 1 ar(Tisr) = r(Up) = 1. (15)

These conditions are depicted in Fig. 10(b). We now consider four cases depending on the weights
of T and U.

Case 1: T is light and U is heavy. By the PD? priority definition and the definition of a group
deadline, T cannot have higher priority than U at time ¢.

Case 2: T is heavy and U is light. In this case, we show that the swapping in Fig. 11 is valid.
(The argument hinges on the fact that U’s windows are at least as long as 7’s—see Fig. 11.) By
(P7), all windows of T are of length either two or three. Further, by (P8), |w(T%)| = 2if b(T}) =0,
and by (B) (refer to Section 3), b(T}) = 0 if T} is the last subtask of a job. Because »(7T;) = 1, it
follows that there exists an r>1 such that

W(Tir)| =2AVk : 0<k<r = |W(Tix)| =3Ab(Tii) = 1).
(Note that r could be one, i.e., w(T;;1) could be a 2-window.) Because U is light, by (P5),
|w(Uy)| =3 for all k. This implies that d(7};,) <d(U,,). Let ¢ denote the smallest value of k that
satisfies d(Tx) <d(Ujyx). (Note that g<r.) Then, d(7Ti14) <d(Uj;4), and for all ke[l,q — 1],

d(Tivk) = d(Upi) AMwW(Tisi)| = W(Ujsi)| = 3AD(Tisk) = 1.

178 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

u+l

uor or

t . t t+l t+2 t+3 t+4 e w1 e utl 2
| ! | ! ! I ! I ! ' I ;
no no
Ti]\ T Ti+1]|+1 T Ti+2]|+2 Ti+p_1]Hp—l Ti+p]Hp
no
Uj Uj+1]J U Uj+2]1+1 U Uj+3]1+2 Uj+p]mu U]ﬁp

Fig. 11. Case 2. T is heavy, U is light, and d(T;) = d(U}).

t t'+1- e t' t+1 t'+2 t t+1 s t' t'+1- t'+2
T Tl T
Uj Uj +1]j BO j+2[Uj Uj+1]j DO j+2[
@ hole (b)

Fig. 12. Case 3. (a) Some processor is idle in slot # + 1. (b) T;;; is scheduled in slot # + 1.

Because d(Tiy) <d(Ujiy), by part (a) of Lemma 9, we have d(T;4) <r(Uji4+1). Thus, Tipy is
scheduled before Uj,,41. Let p be the smallest value for k such that T is scheduled prior to
Ujii+1- (Again, note that p<g). To summarize:

® (Vk:0<k<p :: d(Tiwx) = d(Upi) Aw(Tiii)| = 3A w(Ujsr)| = 3AD(Tisk) =
D Ad(Tip) <d(Ujsyp),

® T, is scheduled before U, ,1, and

e for each k in the range 0 <k <p, T is not scheduled before Uj, 4.

It is straightforward to see that the relevant subtasks are scheduled as shown in Fig. 11 and the
depicted swapping is valid.

Case 3: Both T and U are light. (This case and Case 4 are somewhat lengthy.) Again, the
situation under consideration is as depicted in Fig. 10(b). Because U is light, by (P5),
|w(Ujs1)|=3. Because r(Ujy1) = ¢’ (by (15)), this implies that d(U;,) >t + 2. Therefore, by part
(a) of Lemma 9, r(Ujy») =1 + 2 and hence, U is not scheduled in slot ¢ + 1. If there is a hole in
slot ¢ + 1, then the swapping shown in Fig. 12(a) gives the required schedule. Otherwise, if T} is
scheduled in slot 7 + 1, then the swapping shown in Fig. 12(b) gives the required schedule. In the
rest of Case 3, we assume that there is no hole in slot # + 1 and T} is not scheduled there. We
now show that one of the swappings shown in Figs. 13 and 14 is valid.

Because U is scheduled in slot ¢ but not in slot # + 1, and because there are no holes in slot
' + 1, there exists a task V7 that is scheduled in slot # + 1 but not in slot #. Let V} be the subtask
of V' scheduled in slot # + 1. Because S is a valid schedule, d(Vj)>¢ + 2. Therefore, by (15),
d(Vix)>d(T;), which implies that 7;< V. It follows that V. is not early-released and hence,
r(Vi)<t' + 1. If r(Vi)<? + 1, then the swapping shown in Fig. 13(a) produces the desired
schedule. In the rest of the proof for Case 3, we assume

r(Vi) =1 +1, (16)

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 179

t t+1 t t'+1 t'+2 t 1 v v+l Ottt t'+2
/ TI i / TI]I
Y, Ui] Y, /’ujﬂ]I
no \ no
LV v Vi P v
€) (b)

I\
2o Yi Uit]
v \
no

H[Vk—l {1/0 k[Vk \Y]k

©

Fig. 13. Case 3 (continued). (a) (Vi) <. (b) r(Vi) = ¢ + 1 and Vj_; is scheduled at v, t<v<?. (¢) r(Vy) =1 + 1 and
d(Vie)>d(Tis1).

in which case this swapping is not valid. By (15) and (16) we have the following:
r(Vi) =r(Tiz1) + 1. (17)

We first dispense with the case Vj_;é¢t. In this case, by Lemma 11, either (b(Vi_i) =
OAW(Vi—1)|>t 4+ 1) or (b(Vi-1) = L A|lw(Vik—1)|>7 + 2). In the former case, by (P1), [w(Vi)| =
|w(Vi—-1)|; in the latter case, by (P4), |w(Vi)|=|w(Vk-1)| — 1. Thus, in either case, |w(Vy)|>7¢ + 1.
Further, since T;etand d(T;) =1 + 1 (by 15), |w(T;)| <t + 1 (recall that slots are numbered from
0). Therefore, |w(Vy)|>|w(T7)|, i.e., [W(Vi)|=|w(T;)| + 1. By (P4), |w(T;)| + 1=|w(T}:41)|. Thus,
(w(Vi)|=|w(Tis1)|. Because r(Vi)=r(Ti1)+1 (by (17)), this implies that r(Vj)+
(W(Vi)|=r(Tiv1) + |w(Tis1)| + 1. Therefore, d(Vy)>d(T;1), and hence no subtask of V is
scheduled in [+ 2,d(T;11)). Thus, the swapping in Fig. 13(c) is valid. (This figure actually depicts
Vi—1 €71, but the swapping depicted is applicable nonetheless.) In the rest of the proof for Case 3,
we assume that Vj_;er.

Note that because r(Vi)=1¢+1 (by (16)), either d(Vi_i1)=¢+2 or d(Vi_1) =1+
1Ab(Vi-1) = 0. By (15), d(T;) =d(U;) = ¢ + 1 and b(T;) = b(U;) = 1. Therefore, by the PD?
priority definition, we have the following:

T;<Vi_1 and U,< Vi—1. (18)

If Vi, is scheduled in the interval [+ 1,), then the swapping shown in Fig. 13(b) is valid. If
Vi—1 is not scheduled in [t 4 1,7'), then it is scheduled at or before 7. Because U; < Vi_; (by (18)),
Vi1 1s not scheduled in slot ¢, as this would contradict our choice of U; as the lowest-priority
subtask scheduled at .

In the rest of Case 3, we assume that Vj_; is scheduled at a time v<t¢. Now, it must be the case
that 7; was not eligible to be scheduled at time v. To see this, note that if 7; were eligible at time v,
then it should have been scheduled there because 7;< Vi (by (18)). This contradicts our starting

180 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

[o B O B R T A N L L L A
/Ti‘],/ Ti+1],,,| / T;], Ti+1]|+|
Uj LE'H]J UJ ~
Wl v Vi1 ke k\ Vier k
\ — < no no
Who W0k ol w Wil w
(@) (b)
t t+1 t 41 42 e V-l vVl
/Ti V Tiri ki
Ui Uj+1]J
%0 L[Vi Vit]k Q;O]k+1
—_—
h[Wh]h r‘;\,“ Whii lnm
(©)
t t+l t t+1 42 P vVl w w+1
Ui U_i+1]1
?,O k[Vi Vk+l]k {Pllll‘}:l)\z"vl Visa]k+1
h[wh’] Wh]h r\n}\/o Wh+1]h+l
Lemma 3 applies
(@)

Fig. 14. Subcase 3(B) of Case 3. (a) r(Vi) =1+ 1,d(Vy) =d(Tir1) =V + 1, and d(W),) =" + 1. (b) r(Vy) =1 + 1,
dVi)=d(Ti) =V + 1, d(W,) =0, r(Wy)<?, and W is not scheduled at 7. (c) (Vi) =t +1,d(Vy) =d(Ti11) =
U+ 1, dWy) =V, and r(Wy)>1¢) r(Vi) =0+ 1, d(Vi) =d(Tiy1) =V + 1, d(Wy) =0, r(Wy) =1, and W is
scheduled at 7.

assumption that 7; should be scheduled at . Thus, either (7;)>v or r(T;) = vA T;—;1 €S,. (Note
that one of these assertions holds even if 7; is an early-release subtask.) Because 7; < Vy_; (by
(18)), Vi—1 is not early-released. Therefore, r(Vj_;)<v, which implies that either (r(7;)>r(Vi_1))
or (r(T;) =var(Vi-1) =vAaT;—1€S,). We consider these two subcases next.

Subcase 3(A): r(T;)>r(Vi—1). We show that d(V)>d(T;;1), which implies that the swapping
shown in Fig. 13(c) is valid. There are two possibilities to consider, depending on the value of
b(Vi-1).

(1) b(Vk—1) =0. By (9), we have d(Vi_1) =r(Vi) =1 + 1 (by (16)). By (15), this implies that
d(Vi-y1) =d(T;). Since b(Vi_1) =0, by (P1), |w(Vi)| = |w(Vk-1)|. Because r(Vi_)<r(T;)
(our assumption for Subcase 3(A)) and d(Vi_1) = d(T;), we have |w(Vi_1)|=|w(T;)| + 1.
Therefore, |w(Vi)|=|w(T;)|+ 1. By (P4), |w(T:)|+1=|w(T;1)|, which implies that
(w(Vi)|=|w(Tis1)|. Because r(Vi)=r(Ti1)+1 (by (17)), this implies that r(V%)+
Ww(Vi)|=r(Tix1) + 1 + |w(Tix1)|. Therefore, d(Vi)>d(Ti1).

(2) b(Vk—1) = 1. By the definition of b(Vi_;), we have d(Vi_1) =r(Vk)+ 1. Hence, by (16),
d(Vy) =t + 2. By (15), this implies that d(Vy_;) = d(T;) + 1. Along with r(Vy_;) <r(T;) (our

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 181

assumption for Subcase 3(A)), this implies that
w(Vie-1)| = w(T)| + 2. (19)
By (P4), we have |w(Vi)|=|w(Vi-1)|—1 and |w(T;)|=|w(Ti11)| — 1. Hence, by (19),

w(Vi)| + 1= |w(Tis1)| — 142, ie., [w(Vi)|=|w(Tit1)|. Because r(Vi)=r(Ti1)+1 (by
(17)), this implies that d(Vy)>d(Ti1).

Subcase 3(B): r(T;) = var(Vk—1) = vaT;—1 €S,. Reasoning as in Subcase 3(A), it follows that
d(Vi)=d(T:y1). By part (a) of Lemma 9, we have the following.

r(Viet) + 12d(V) 2 d(Ti). (20)

We now show that a valid swapping exists in all cases. First, note that if 7}, is scheduled before
Vi1, then the swapping shown in Fig. 13(c) is still valid. This will be the case if #(Vi) =d (T4 1).
In the rest of the proof for Subcase 3(B), we assume that 7;, is not scheduled before V.. By
(20), this can happen only if there exists a ¢/ that satisfies the following (see Fig. 14).

(Vi) =0UAd(Vi) =0 + LAd(Ti1) =V + LA Vi1 €Sy AT €Sy (21)
The following property is used several times in the reasoning that follows.
Claim 15. w(V}) is a minimal window of V.
Proof. By part (a) of Lemma 9, (16) implies that d(V}_;) is either #/ + 1 or ¢ + 2. If d(Vy_))

¢ + 1, then b(Vy_1) = 0 and by (P2), w(V%) is a minimal window. On the other hand, if d(Vj_;)
' + 2, then we have the following:

T; and Vj_; are both released at slot v (our assumption for Subcase 3(B)),
d(T;)=1¢+1(by (15) and d(Vi_1) =1 + 2,

r(Tiy) =1 (by 15) and r(Vy) =1 + 1 (by (16)), and

T;+1 and ¥V} have equal deadlines (by (21)).

Therefore, |w(T;)| = |w(Vi-1)| — 1 and [w(Tiy1)| = [w(Vi)| + 1. By (P3), |w(Tip1)|<|w(T3)| + 1.
Therefore, |[w(Vi)| + 1<|w(Vi1)], ie., |[w(Vi)|<|w(Vik=1)]—1. By (P4), this implies that
(w(Vi)| = [w(Vik-1)| — 1. By part (d) of Lemma 9, this implies that w(V%) is a minimal window
of . [

To continue, if there is a hole in slot v/ — 1, then we can left-shift 7}, from v to v/ — 1 and
apply the swapping shown in Fig. 13(c). In the rest of Subcase 3(B), we assume that there is no
hole in slot v/ — 1.

We now prove that 7 must be a light task. Because r(Vy) =1 + 1 (by (16)), d(Vk_1) is either
!+ lort +2 and if d(Vi_1) = ¢ + 1, then b(Vi_;) = 0. Thus, because r(7;) = r(Vi_1) = v (our
assumption for Subcase 3(B)) and d(7;) =7 +1 (by (15)), either d(Vi_1)=d(T;)+ 1 or
d(Vi—1) =d(T;) Ab(Vk_1) = 0. Therefore, either |w(Vi_1)|=|w(T})|+1 or |w(Vi1)| =
(w(T:)|Ab(Vi—1) = 0. Because T is light, by (P5), |w(7;)|>3. Therefore, either |w(Vi_1)|>4 or
(W(Vi-1)|=3Ab(Vik-1) = 0. In either case, V' cannot be a heavy task: if it were heavy, then by

182 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

(P7), all windows of " would be of length two or three, and by (P8), b(V%_;) = 0 would imply that
|[W(Vk-1)| = 2. Thus, V is a light task.

By (PS), |w(Vi)|=3. By (16) and (21), w(Vi) =[{'+ 1,0/ + 1); hence, v'>¢ + 3. Because
VieSyi1 and Vi1 €Sy, this implies that V' ¢ S,_1. Thus, because there are no holes in slot v/ — 1,
there exists a task W that is scheduled in slot v/ — 1 but not in slot ¢/. Let W}, be the subtask of W
scheduled in slot v/ — 1. We now show that at least one of the swappings in Fig. 14 is valid.

If d(W),) =0 + 1, then the swapping in Fig. 14(a) is clearly valid. We henceforth assume

d(wy) =1. (22)

If (r(Wy)<t)v (r(Wy) =t AW¢Sy), then the swapping shown in Fig. 14(b) is valid. This leaves
the following two possibilities.

(1) r(Wp;,)>1". In this case, we show that d(W)) <d(Vks1), which implies that the swapping in
Fig. 14(c) is valid. Because r(W},) >, by (16), r(W}) =r(Vy). By (21) and (22), d(W},) <d(V%).
Therefore, |w(W;)|<|w(Vk)| (see Fig. 14(c)). Because w(V%) is a minimal window of V' (by
Claim 15), |w(Vi)|<|w(Vi+1)|- Thus,

Wl <IwVier)l- (23)

Now, consider b(W},).

If b(W),) = 0, then by (22), r(Wj41) = v'. Thus, by (21), ¥(Wj41) = r(Vi+1). In addition, by
(P1), |w(Wys1)| = |w(W))|. Hence, by (23), we have |w(Wj1)|<|w(Vis1)|- Therefore,
d(Wii1) <d(Vit).

If b(W),) = 1, then by (22), r(W)41) = v/ — 1, which by (21) implies that r(Wj1) <r(Vi1)-
In addition, by (P3), |w(Wj1)|<|w(W})| + 1. Hence, by (23), we have [w(Wji1)| < |w(Vit1)].
Therefore, d(Wy1) <d(Vii1).

(2) r(Wy) =t AW eS,. In this case, analysis similar to that above shows that d(Wj,1) <d(Vi1)-
Let d(W;hq) =w+ 1. If d(m1+1)<d(Vk+1) or if d(I/Vthl) = d(Vk+1)A Viio ¢S, then the
swapping shown in Fig. 14(c) is valid. (The figure actually shows W), being released after time
¢, but the swapping is still valid.) On the other hand, if d(W11) = d(Viy1) and Viin €S,
then we have the following (see Fig. 14(d)).

(@) r(Wy) =1 and r(Vy) = ¢ + 1 (by (16)),
(b) d(W3) = ' (by (22)) and d(V) = ¢/ + 1 (by (21)),
(©) r(Viy1) =0 (by (21)) and r(W)4,) is either v’ or v — 1 (by part (a) of Lemma 9 because
d(Wy) =), and
(d) d(Viy1) = d(Wiy1) = w+ 1.By (a) and (b) above, we have
w(Wh)| = [w(Vi)l- (24)

We now show that |w(Vii)|<|w(Vi)|. If r(Wpe) =0 —1, then |w(Viy)|l =
(w(Whi1)| — 1. By (P3), |w(Wiy1)| — L<|w(W,)|. Therefore, by (24), [w(Vi) <|w(Vi)|.
On the other hand, if r(W,.) =/, then |w(Vii1)| = [W(Wpi1)| and b(W),) = 0 (because
d(Wy) = v, by (22)). Therefore, by (P1), [W(Wj11)| = [w(Wy)|. Thus, |w(Viir)| = [w(Wy)|,
and by (24), [w(Vii1)| = [w(Vi)l-

Because w(V%) is a minimal window of V' (by Claim 15), this implies that w(Vj;) is a
minimal window as well. Thus, by Lemma 13, there exists a schedule in which V. is not
scheduled at time v'. The swapping shown in Fig. 14(d) is therefore valid.

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 183

=t+1

or t+2 (=u)
t . t t+1 t+2 Lot ' tH+1 442
Ti]‘ Ti+1].+1 Ti+]‘].+J;1 Ti+j‘].+J-
no
U U U Uj+j.]j+j'—1 U i

j j+1 j+2 din

Fig. 15. Case 4. We use the following notation in this figure and Figs. 16-21. A group deadline at time 7 is denoted by
an up-arrow that is aligned with time ¢. A left- or right-pointing arrow over an up-arrow indicates a group deadline that
may be anywhere in the direction of the arrow. D(T;)>D(U;) or u+1=D(T;)ATE€S,.

This completes Case 3.

Case 4: Both T and U are heavy. In the proof for this case, we refer to successive group
deadlines of a task. The following notation will be used. If g is a group deadline of task X, then
pred(X, g) (respectively, succ(X, g)) denotes the group deadline of task X that occurs immediately
before (respectively, after) g. For example, in Fig. 2, pred(T,8) = 4 and succ(T,8) = 11.

As before, we are dealing with the situation depicted in Fig. 10(b). Because 7; has higher
priority than U; at time ¢ according to PD?, D(U;)<D(T;). Recall that T;e Sy and d(T;) =1 + 1
(refer to (15) and Fig. 10(b)), i.e., T; is scheduled in the last slot of its window. By the definition of
a group deadline, all subsequent subtasks with deadlines at or before D(7;) have windows of
length two that overlap with the window of their predecessor subtask. Therefore, each such
subtask is scheduled in the last slot of its window.

Let u be the earliest time after #' such that U ¢ S,. Because Uj, is scheduled in the first slot of its
window, there exists a time before the group deadline of U; such that U is not scheduled at that
time. Thus, u<D(U;). Because D(U;)<D(T;), this implies that u<D(T;). If u<D(T;) —1 or
u+ 1= D(T;)ATeS, holds then we have the following (refer to Fig. 15).

e No subtask of U is scheduled in slot u (i.e., in [u,u + 1)).
e In all slots in [/, u+ 1), a subtask of 7 is scheduled in the last slot of its window.
e In all slots in [/, u), a subtask of U is scheduled in the first slot of its window.

This implies that the swapping in Fig. 15 is valid.
The remaining possibility is u + 1 = D(T;) A T ¢.S,. In this case, because u + 1 <D(U;) <D(T;),
we have

D(T;) = D(U)AD(U;) = u+ 1 ATES,. (25)
Let U;,; be the subtask of U scheduled at u — 1. Then, u = ¢ + ', as shown in Fig. 16(a). By the
definition of a group deadline, each of the subtasks Ti .y, ..., Ti1y—1 and Uiy, ..., Uyp—1 has a

window of length two. (If not, 7;’s and U;’s group deadlines will be earlier.) Therefore,
d(Tiyy—1) = u. By part (a) of Lemma 9, this implies that r(7;.;) is either u or u — 1. If r(Tiyy) = u,
then (7 ;—1) =0, which implies that D(7T;) = u. This contradicts (25). Therefore, r(7;;) =
u — 1. Since Tj;—; is scheduled in slot u — 1 and T'¢ S, (by (25)), it follows that d(7;,;) must be
u+ 2. (By (P7), it cannot be later.) Thus, as shown in Fig. 16(a), w(7T;.;) is a 3-window starting at
slot u— 1, and T;; is scheduled in slot u + 1, i.e., slot # + ;' + 1.

184 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

=t+l

or t+2 (=u)
t - t t+1 t+2 . t+'-1 t4' t+'+1 t+'+2
Uj UJ'+1]1 UJ'+2]J+1 -— Uj*i']J*l'*l BO é
k[{1/0 Vk
(€)
(: t+1
or t+2 (=u)
t t t'+1 t+2 . t+'1 t4' t4'+1 t'+'+2
/ Ti}_]/i’TH—iﬁf /Ti+j::L:|\+r4/'rFor Ti+j']W
Y Ua b Yl U L & \u
\ —
(]/O k[Vk]k

(b)
Fig. 16. Case 4 (continued). (a) D(T;) = D(U;) and r(Vi) <t 4. (b) D(T;) = D(U;), ¥(Vik) =1+, and V¢S,

r+j+1

If there is a hole in slot u, then shifting subtask U;,; to slot u produces a situation in
which a swapping similar to that in Fig. 15 can be applied. We henceforth assume there is no hole
in slot u.

Our strategy now is to identify another task to use as an intermediate for swapping. Because T
and U are scheduled at u# — 1 but not at u, and because there are no holes in u, there exists a task V
that is scheduled at u but not at u — 1. Let V} be the subtask of " scheduled at u. If (V)) <u, then
the swapping in Fig. 16(a) is valid, and if r(V}) = un V' ¢ S,.1, then the swapping in Fig. 16(b) is
valid. In the rest of the proof, we assume

r(Vi) =unVeS, 1.

We now show that V' is a heavy task. Note that V€S, implies that (Vi) <u + 1. Therefore,
by part (a) of Lemma 9, d(V})<u+ 2. Because r(Vy) = u, by (P5) and (P7), d(Vi)=>u+ 2.
Therefore, we have d(V) = u + 2, which implies that |w(V%)| = 2. Therefore, by (P6), V' is heavy.

Consider D(V7%), i.e., the group deadline of Vj. Let v be the earliest slot after u such that V' ¢.S,,.
Since V. is scheduled in the first slot of its window, we have

v+ 1<D(Vy). (26)

(See Fig. 17.) Let Vj.» be the subtask of V" that is scheduled in slot v — 1. If either D(7;y;)>v + 1
or D(Tij) = v+ 1 Ab(Tiyj4i) = 0, then Ty y, s is scheduled in slot v. To see why, note that T,
is scheduled in the last slot of its window and this forces all subtasks of 7" until its group deadline
to be scheduled in the last of their windows. Thus, the swapping shown in Fig. 17 is valid. In the
rest of the proof, we assume that neither of these conditions holds, i.e., we assume the following:

(D(Tiyy) <v+ D)V (D(Tiyy) = v+ 1Ab(Tiyjie) = 1) (27)

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 185

=t+1
Or t+2 =u

t+1 t'+2 t'4' l+] t+] +1 t+J +2 P VA § \% v+1
| | |+1]\1 |+]_1|11 4 T|+]]|]TI+J+l]\11". |+]+| l]ljll |+J+|]‘Jl
/ / / —
UJ+1] UJ+2]J a0 UJ+J 41 j/ / / /
V k[Vk Vk+]]k Vis2]k a Vicsi]k|_1 V —>

Fig. 17. Case 4 (continued). D(T;) = D(U;), r(Vi) =t +j, D(Ti+y) = v+ 1 and Tip4 is scheduled in slot v.

We claim that u is a group deadline of V. As seen in Fig. 17, V}._; is not scheduled in slot u — 1.
(Note that Vj_; €1 because its window fits in the interval [0,u + 1).) Because r(V%) = u, by part
(a) of Lemma 9, d(Vy_;) is either u or u+ 1. If d(Vi_1) = u, then b(Vj_;) = 0 and hence, u is a
group deadline. If d(Vj_1) = u + 1, then we reason as follows. Because V' is a heavy task, by (P7),
[w(Vi—1)| <3, which implies that r(V_;) >u — 2. Because Vj_ is not scheduled in slots u — 1 or u,
the following must hold:

r(Vie1) =u—2. (28)

This implies that w(Vji_1) = [u — 2,u + 1). Therefore, u is a group deadline of V.

Having shown that u is a group deadline of V', we now show that pred(V,u) <pred(T,u+1). T
has consecutive group deadlines at u+ 1 and succ(T,u+ 1) = D(T;;). Therefore, by (P9), the
difference between u+ 1 and pred(T,u+ 1) is at most one more than D(T; ;) — (u+1), ie.,
u+1—pred(T,u+1)<D(T;;) — u. Therefore,

pred(T,u+1)=2u— D(T;y) + 1. (29)

V' has consecutive group deadlines at u and succ(V,u) = D(Vy). Hence, by (P9), the
difference between u and pred(V,u) is at least one less than D(Vi)— (u), ie.,
u—pred(V,u)=D(Vy) —u— 1. Thus,

pred(V,u)<2u — D(Vj) + 1. (30)

By (26) and (27), D(Tiy) <D(V%). Therefore, by (20) and (30), pred(V,u)<2u — D(Vy) +
1<2u — D(Tiyj) + 1<pred(T,u+1). Thus, pred(V,u)<pred(T,u+ 1). This sequence of in-
equalities further implies that pred(V,u) = pred(T,u+1) if and only if 2u— D(Vi)+1 =
2u—D(Tiyjy) + 1, ie.,, D(Tiyy) = D(Vi). By (26) and (27), this can be true only if D(Tiy;) =
D(Vk) =v+ 1.

In addition, as seen in Fig. 17, T cannot have a group deadline in the interval (¢, u]. Therefore,
we have the following:

pred(V,u)<pred(T,u+1)<?, (31)

(pred(V,u) = pred(T,u+1)) = (D(Ti1j) =v+1AD(Vi) =v+1). (32)

186 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

Et2) . . (GION .
t t+1 t' t'+1 t+2 e UH2 0 4D t+" tH+1 t++2 . v-1 \ v+l
noT) noT
‘4/ Ti I Tivalin Ti+j'4]‘+J-+1T|+J'71].+J;1 4 TI+J']|+|‘ Ti+j'+i'_1]|+|‘+v4 4Ti+j'+|].+,'+v
nouU
oL afvaly) - S S
noV
e Ver Vel el MGl Pl Ve Viad, Vigit L T

Fig. 18. Subcase 4(A) ¢ =t +2.

Because U is a heavy task, by (P7), [w(U;)|<3. Because U, is scheduled in slot ¢ and 7;< U;, U is
not early-released, i.e., r(U;)<t. Further, because d(U;) =¢+1 (by (15)), it follows that
t+ 1<t +1<r+ 3. Hence, ¢ is either 1 +2 or ¢t + 1. We consider these two subcases next.

Subcase 4(A): ' =t + 2. In this case, we show that the swapping in Fig. 18 is valid. To begin,
note that # = ¢+ 2 implies that T¢S,,; and U¢S,,;. Let ¥ =k —j + 1. Then, we have the
following as depicted in Fig. 18.

® r(Vi—1) =u—2 (by (28)) and Vj_; is scheduled in slot u — 2.

e For each / in the range k' </<k — 1, w(V7) is a 2-window (since pred(V,u)<t by (31)).

e Each of Vy, ..., Vi is scheduled in the first slot of its window (which follows by inducting
from right to left, starting with Vj_;). In particular, V is scheduled at ¢ = r(Vy).

Before continuing, we note that all of the subtasks Vi1, ..., Vx_; belong to 7. To see why, note
that their windows fit in the interval [0,7 4 ;') (see Fig. 18) and therefore, by Lemma 11, they are
in 1.

Because Vy is released at ¢/ = 7 4 2, by part (a) of Lemma 9, d(Vj,_;) is either + 2 or £ + 3. We
now prove that d(Vy_;)#1t+ 2.

Claim 16. d(Vj_)#t+ 2.

Proof. Assume, to the contrary, that d(Vy_;) = t + 2. Because r(Vy) = t + 2 (refer to Fig. 18 and
the properties stated above), this implies that b(Vy_;) = 0. Thus, by the definition of a group
deadline,

pred(V,u) =t + 2. (33)

Because pred(V ,u) corresponds to d(Vjs_1), and b(Vis_1) is 0, it follows that pred(V',u) is the last
group deadline within some job of V. Therefore, by (P10), the difference between u and pred (V' u)
is at least the difference between any pair of consecutive group deadlines of V. In particular, we
have succ(V,u) —u<u — pred(V,u). In either case, by (33), succ(V,u)<2u —t— 2. Because
succ(V,u) = D(Vy), we have

D(Vi)<2u—1t—-2. (34)

By (31), pred(T,u+ 1)<t ie., pred(T,u+ 1)<t +2. By (29), D(Tiyj)>2u — pred(T,u+ 1) + 1,
which implies that D(7;,)>2u —t — 1. By (27), v+ 1>D(T};;), and hence v + 1 >2u — t — 1. By
(26), we have D(Vi)=v+ 1. Thus, D(Vi)>2u —t — 1, which contradicts (34). Therefore, we
conclude that d(Vj_;) cannot be 1+ 2. [

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 187

(=t+1) (=u)

t t' t'+1 t'42 t'+'-1 l+_] t+_|+l I+_] '+2 t+H'+3 ... v-1 v v+l
I I I noT I I I noT I
1}0 * T]i Tit]i+l Ti+j' |]+J 1 * Ti+j’]H—j‘ i+j'+1]i+J‘+l T1+J+| 1]+_]+ -1 *T1+J+|] i+ +H'
no U
Uj Uj+l]j Uj+2]1+1 LB+_]],+. 1 *
noV
e[Ve Vewle o Yol % Ve le Vel o Vit T g
()
(=t+1) (=u)
t t' t'+1 t+2 L'+le 1‘+j' l'+j'+l 1‘+j'+2 1‘+j'+3 eeov—l v v+l
' ' noT I i ' T '
L W A N Tl A Ty 1 | [P Y
T / 1/ 1+‘11/+I' i1 digj-1 i+ diy 1+J+] i++1 i H'=1 diagei-1 4 i i
o U
LE I*{i-*—l]j q+2]j+l - m 1 *
no V
\ Vk Vier e Yz T o Vit T g
W no]I

(b)

Fig. 19. Subcase 4(B). In each inset of this figure and Figs. 20 and 21, ¥ = ¢t + 1, D(T;) = D(U;), and D(Vi) = D(T;j).
(@) pred(V,u) = pred(T,u+1). (b) d(W),)=u+ 2.

Thus, we have the following:
d(Vk/,1) =t+3.

By (15), d(T;) = ¢ + 1 = t + 3. Further, D(Vi_1) = u<D(T;) (by (25)). Therefore, T;< Vir_;

We now conclude the proof for this subcase by showing that V. _; is scheduled in slot # + 1,
which implies that the swapping in Fig. 18 is valid. We have established that V' is heavy and
d(Vi—1) = t + 3. Therefore, by (P7), all windows of V" are of length at most three, which implies
that r(Vp—1) =t If Vio_; is not scheduled in slot 7 + 1, then it must be scheduled at or before slot z.
(Note that ¥V} is scheduled in slot 7+ 2.) Further, it is not early-released because 7;< Vi
(proved in the preceding paragraph). Therefore, it must be scheduled in slot # and r(Vy—;) = ¢. (In
other words, w(V}.—1) must be a 3-window.) As seen in Fig. 18, d(Vi—1) =d(U;), b(Vi_1) =
b(U;) =1, and D(V_1)<D(T;) = D(U;). Thus, U;< Vi.—; contradicting our choice of U; as the
lowest-priority subtask scheduled at ¢. Thus, V_; cannot be scheduled in slot ¢, and must be
scheduled in slot ¢+ 1.

Subcase 4(B): ¢ = t + 1. In this case, we show that one of the swappings in Figs. 19-21 is valid.
We use the following result.

Claim 17. pred(V,u) =t + 1.

Proof. As in Subcase 4(A), we can show the following:

® V1 has a window of length two or three and is scheduled in the first slot of its window.

e Eachof V., ..., Vi_» has a window of length two and is scheduled in the first slot of its window.
(The existence of subtasks V., ..., V;_; in 7 follows from the same reasoning given earlier in
Subcase 4(A).)

188 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

(=t+1) (=)

t t t'+1 42 t4j'-1 4 D U2 t4H+3 . v-l v v+l v+2
T
no T 1, Tq1 T, 1, Ty LTy Ly o Topisig | ol oo T
T i it il i+'=1 g1 i+ it i i+ =1 it i i
‘*/f — / / noU* *
LB Uj+]]}\ L_Ti+2]j+1 J+J]JJ 1 *
noV
4 Q/O il Vi kel I Va2 | Vit Tt 4
-—
h[{';3 Wh]h &?
(a)
(=t+1) (=u)
t t t+1 42 t'+3 t4'-1 4 '+ 442 tH+3 . v-l v v+1 V42
noT noT
o) Ti,]/' i leTi L Tijot Lo f Ty T Tigget L ™ Tt Jiguin 4Ti+j'+i‘]i+r+r
noU
L!i/tﬁﬂ]] J+2]J IL5+3] =1
noV
* \ ‘N/k Virl e Ys2 T Vit Lieimt *
nWo Wthhh WthhlthhQ):/)
boor A
b)

Fig. 20. Subcase 4(B) (continued). (a) d(W;) =u+ 1and W¢S,_1. (b) d(W);) =u+ 1, WeS,_1,and W ¢S, for some
win ¢, u).

This is depicted in Fig. 19(a). The above facts, along with ¢ = 7 4 1, imply that r(Vy) =t + 1. By
part (a) of Lemma 9, this implies that d(Vj._;) is either 1+ 1 or 1+ 2. If d(Vi—;) =t + 1, then
b(Vie—1) =0, and hence, pred(V,u—1)=1t+1.

Ifd(Vi—1) = t + 2, then we reason as follows. Because V' is heavy, by (P7), w(Vi_1) is of length
two or three. If |w(Vi—1)| = 3, then w(Vi_1) = [t — 1,¢ + 2) and hence, pred(V,u) =t + 1. Thus,
it suffices to show that |w(Vi_1)|#2.

Suppose, to the contrary, that |w(Vi—;)| = 2. (Note that, in this case, Vj_; €1 because its
window fits in the interval [0,z + 2).) Because d(Vj/_) = t + 2, this implies that (V) = . Note
that Vj_; cannot have been early-released because 7;< Vs _; (this follows from Rule (iii) of the
PD? priority definition because D(Vj_;) < D(T;)—see Fig. 19(a)). Because V- is scheduled in slot
t+1, Vio—; must be scheduled in slot z. Observe that d(Vi_) =t+2, d(U;)) =1t +1=1+2,
b(Vi—1) =1, b(U;) =1, and D(Vi_1) <D(U;) (again, refer to Fig. 19(a)). Thus, Vj_; has lower
priority than Uj; at ¢, which contradicts our choice of U; as the lowest-priority subtask scheduled
at ¢. This completes the proof of Claim 17. [J

Because ¥ =+ 1, by (31) and Claim 17, we have
pred(T,u+ 1) = pred(V,u).

By (32), this implies that D(T;,;) = D(Vi) = v+ 1 (see Fig. 19(a)).

Because T ¢S, and T €S,.1, and because there are no holes in u, there exists a task W that is
scheduled at u but not at u + 1. Let ¥}, be the subtask of W scheduled at u. If d(W))>u + 1, then
the swapping shown in Fig. 19(b) is valid. In the rest of the proof, we assume that

d(Wh) =u-+1.

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 189

(=t+1) (=)
t t' t+1 42 t+'—-1 '+’ 4+ 442 t+'+3 .. v-l v v+l V42
- + t i — f + t —t +
T * Tl T L Ti+j'—1]i+j>1 Ti+j']x+j'Ti+j’+1]i+J‘+l < Tt]1+j'+i‘—1 T]l+j‘+1'
/ / / / o U *
Lﬁ LE+l Jj Uj+2 JJ+| Lﬁ+j' Jj+j‘—] 4
1o noV
* \Y% il Y% Wk I Vk+2 Ter = Viriw T *
<_4 Whi]"]h 1Wh—j'+l 1, j+1 Wit 1 Wa 1y nwo Wit Tho Wit J e Wheit] e T

bor b

Fig. 21. Subcase 4(B) (continued). d(W;,) =u-+ 1, WeS,_i, and W’s most recent group deadline before the one at
u+1oru+2is at or before ¢+ 1.

In this case, we show that one of the swappings in Figs. 20 and 21 are valid. If W ¢S, 1, then the
swapping shown in Fig. 20(a) is valid. In the rest of the proof, we assume

WGSu,l.

In this case, we have d(W)_;)>u. Because d(W)) = u+ 1, this implies that d(W)_;) = u and
r(Wy) = u— 1. Thus, |w(W})| = 2. Thus, by (P6), W is heavy.

We now show that W has a group deadline at time « + 1 or u + 2 (refer to Fig. 20(b)). Because
d(Wy) = u+ 1, by part (a) of Lemma 9, r(W},) is either u or u + 1. If it is u + 1, then b(W},) = 0,
i.e., W has a group deadline at u + 1. If r(W),1) is u, then d(W}) is either u + 2 or u + 3 (follows
by (P7) because W is heavy). Because no subtask of W is scheduled in slot « 4+ 1, W}, has to be
scheduled in slot # 4+ 2 and d(W),1) = u + 3. This implies that w(W};) is a 3-window and hence
W has a group deadline at u + 2.

We now look at earlier subtasks of W. If there exists a w such that ¥ <w<wu—1 and W¢S,,
then a swapping similar to that shown in Fig. 20(b) is valid and produces the desired schedule.
In the rest of the proof, we assume that for each w in the range ¢ <w<u, WeS,. This implies
that, at each slot in the interval [/, u+ 1), a subtask of W is scheduled in the last slot of its
window (recall that W is heavy). This is illustrated in Fig. 21. As seen in the figure, each of the
subtasks Wj_y41, ..., W), must have a window of length two. This implies that the most
recent group deadline of W before the one at u+ 1 or u+2 occurs at or before time
t+1,1e.,

(u+1 is a group deadline of W = pred(W,u+1)<t+1)

and
(u+2 is a group deadline of W = pred(W,u+2)<t+1). (35)

We now show that W’s next group deadline after the one at # + 1 or u + 2 occurs at or after time
v+ 2, which implies that the swapping shown in Fig. 21 is valid.
By (26) and (30), we have pred(V,u)<2u — v. Therefore, by Claim 17, we have the following.

v<2u—1t—1. (36)

There are now two possibilities to consider, depending on whether W has a group deadline at
u+1oru-+?2.

190 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

(1) u+ 1is a group deadline of W. In this case, b(W}) = 0. Thus, u + 1 is the last group deadline
within some job of W. Therefore, by (P10), the difference between u + 1 and succ(W,u+ 1)
is at least the difference between any pair of consecutive group deadlines of W. In par-
ticular, succ(W,u+1) — (u+ 1)=u+1—pred(W,u+ 1). Thus, we have succ(W,u+1)>
2u+2 —pred(W,u+1).

By (35), pred(W,u+ 1)<t + 1. Therefore, succ(W,u+ 1) >2u — t + 1. By (36), this implies
that succ(W,u+1)>v+ 2.

(2) u+ 2 is a group deadline of W. In this case, by (P9), the difference between succ(W,u+ 2)
and u+2 is at least one less than the difference between u+2 and pred(W,u+2),
ie., succ(W,u+2)— (u+2)=(u+2)—pred(W,u+2)— 1. Therefore, succ(W,u+2)>
2u— pred(W,u+2) + 3.

By (35), pred(W,u + 2)<t+ 1. Therefore, succ(W,u+ 2)>2u — t + 2. By (36), this implies
that succ(W,u+2)>v+3.

This exhausts all the possibilities if 77 and U are both heavy, and concludes the proof of
Lemma 14. O

By applying Lemma 14 inductively as discussed above, there exists a valid schedule for t over
[0,27) consistent with PD?, contrary to our original assumption. Thus, we have the following
theorem.

Theorem 18. PD? generates a valid schedule for any feasible asynchronous task system in which each
task’s lag is bounded by either (2) or (3).

6. Two-processor systems

In this section, we prove that the earliest pseudo-deadline first (EPDF) algorithm is
optimal on two processors. As its name suggests, the EPDF algorithm prioritizes
subtask 7; over subtask U; if it has an earlier deadline, i.e., d(7;) <d(U;). Any ties are broken
arbitrarily.

The basic proof strategy in this section is the same as in the previous section. In particular, we
let T denote a feasible task system that (by assumption) misses a deadline when scheduled on two
processors using EPDF. We let #; be the earliest time at which a deadline is missed in 7 (a
minimality condition similar to (T2) is not needed here). As before, a 0-compliant schedule exists
for 7 because it is feasible. By induction, we show that an n-compliant schedule exists for 7, where
n is the total number of subtasks with deadlines in (0, #,4]. (There is no need here to consider
subtasks released in [0, ;) with deadlines outside of this interval, because (T2) is not being used.)
This yields the desired contradiction. The notion of a compliant schedule is slightly different here
because it is based on EPDF rather than PD?. That is, in ranking subtasks, 7 is ordered before
U;, denoted T; < U; if and only if d(7;)<d(U;) (no tie-breaking information is considered). We
define the rank of subtask 7; to be its position in the total order <I (which is obtained from the
partial order <).

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 191

We now state and prove several lemmas. In the first of these lemmas, an interval of time slots
[t,u) is considered, and a set of conditions is stated that is sufficient to conclude that some subtask
scheduled in [¢,u) can be shifted left or right out of this interval.

Lemma 19. Let S be a two-processor schedule for {T;| Tetad(T;)<t;} that is valid over [t,u),
where t <u — 1. Suppose that there are no holes in [t,u) and that there exists a subtask U; scheduled
before t such that d(U;) >t + 1. Then, there exists a subtask T; scheduled in [t,u) such that r(T;) <t
or d(T;)>u.

Proof. Let 4 be the set of all subtasks scheduled by S in [¢,u). Suppose, to the contrary, that
(VTI : Tl‘GA o I”(T,') Zt/\d(T,)Su)

We derive a contradiction by showing that total utilization exceeds two, which contradicts the fact

that 7 is feasible. Let V' be a task with subtasks in 4. Let V.n denote the number of such subtasks

in A4, and let V} (respectively, V7) be the first (respectively, last) subtask of V" scheduled in [z, u).
Then, V.n=1—k + 1. Because Vj and V; are in A, r(Vy) >t and d(V;) <u. Thus,

d(V]) —r(Vk)<u—t. (37)

By (7) and (8), we have r(Vj) = UI(;I})J +A(V) and d(V)) = LWIVJ + A(V). Substituting
these expressions in (37), we get {WW +A(V) — L%J — A(V)<u—t. Simplifying, we

obtain

M V)W) wa_vl)J sut

N / —k_1<u—t [/ —‘>
wi(V) wt(V) T wt(V) | T we(V)

N 1 L u—t
wt(V) I —k+1

Therefore, we have

k—1)| (k—1)
and {wt(V)J S ()

simplifying.

V.n
V)= . 38
wi(V) = — (38)
We now show that this inequality can be strengthened for U, yielding
U.n
(U . 39
wi(U)>-— (39)

If U.n=0, then the above expression clearly holds, so assume that U.n#0. Then, by the
statement of the lemma, U;;; must be the first subtask of U scheduled in [¢,u). Let U, be the last
such subtask. Then,

d(Uy) = r(Upey) <u —t. (40)

Because d(U;) >t + 1, by part (a) of Lemma 9, we have r(Uj;1)>t. If r(Ujyy)>t, then d(Uy) —
r(Uj+1) <u — t. By reasoning as above (refer to (37) and (38)), this implies that wt(U) > Y2

u—t*

192 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

t t+1 t t+1 t t+1
]] e]] e]] e
T T — T T L T T o
Uj+1 A],-+1 U j+1]j+l U j+1 hole]j+1
[n(:\x W
kL W k

@ (b) ©

Fig. 22. Lemma 20. (a) Conditions of the lemma. (b) Base case: there exists W} scheduled after ¢ such that r(W;) <t
(c) Base case: no such W exists.

On the other hand, if r(U;y1) = ¢, then d(U;) =t + 1, which implies that b(U;) = 1. By (7)
and (8), we have d(U),) = L[()1 +A4(U) and r(Ujp) = L%J + A(U). Substituting these
expressions into (40), we obtain

[ﬁw +A(U) - LWJ —A(U)<u—t.

Because b(U;) =1, Lwt'(j U)J wt(U (see (9)). Because L”?UJ > o it follows that
i .
wt(U) wt(U)
Therefore, by reasoning that is similar to that prior to Expression (38), we have wt(U) >~
< Tn

Now, if there exists a task 7" with no subtask in A4, then 7'.n = 0, implying that wt(T') >--".
Therefore, from (38) and (39), we conclude that

V.n
dow)>y

Ver Vet

u—t.

> Un

Because there are a total of (u — 7) slots in [£,u) and two subtasks are scheduled in each slot, we
have } . V.n=2(u—t). Therefore,

> wi(V)>2.

Vet
This contradicts the fact that the total utilization of 7 is at most 2 (follows from the fea-

sibility of 7). Hence, there exists a subtask 7; scheduled in [z,u) such that either r(7;) <t or
d(T;))>u. O

The above lemma actually holds for any number of processors. In contrast, Lemma 20, given
next, is valid only for two-processor systems. This lemma gives a set of conditions under which a
subtask U; can be right-shifted to a later slot. (Recall that finding a valid way to right-shift U; in
Fig. 10(b) was the key problem to address in Section 5.) The conditions of the lemma are
illustrated in Fig. 22(a).

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 193

Lemma 20. Let v/ = {T; | Tetad(T:)<ty} and let S be a two-processor schedule for v'. Let t<t,.
Assume the following:

e subtask U; is scheduled at slot t, and d(U;) >t + 1;

® cither no other subtask is scheduled at slot t or U;_; is scheduled there (in which case S is not valid
at t);

® cach subtask scheduled at or after t is scheduled in its Pfair window and S is valid for all v>t.

Then, there exists a schedule S’ for v such that

o U is scheduled at some slot after t,
e S, =S8 forall v<t;
® cach subtask scheduled at or after t is scheduled in its Pfair window and S is valid for all v=t.

Proof. We prove the lemma by inducting over the rank of U;. From the statement of the lemma,
we have

d(U)=t+2. (41)

Base case: U is the lowest-ranked subtask scheduled in S. If no subtasks are scheduled after slot ¢
in S, then by (41), we can clearly shift U; to slot ¢ 4 1. In the rest of the proof for the base case, we
assume that there exist subtasks that are scheduled after slot z.

Suppose that there exists a subtask W} scheduled after 7 such that r(W}) <t. By the statement of
the lemma, Wj_; is not scheduled in slot z. Thus, we can swap W with U; to get the desired
schedule, as shown in Fig. 22(b). (Note that U;,; does not exist in S because U; is of lowest rank.
Thus, swapping W) with U; will not create a schedule in which two subtasks of U are scheduled in
the same slot.)

The remaining possibility is that, for each subtask W scheduled after ¢, r(Wy)>t and
d(Wy)<d(U;) (the latter follows because U; is of lowest rank). If there are no holes in any
slot in [t + 1,d(Uj)), then we have a contradiction of Lemma 19. Therefore, there exists a slot in
[t +1,d(U;)) such that there is a hole in that slot. This implies that we can schedule U; in that slot
(see Fig. 22(c)). Thus, a valid schedule exists in which Uj is scheduled at a slot later than 7.

Induction step: U; is not the lowest-ranked subtask scheduled in S. Assume that the lemma holds
for all subtasks with lower rank than U;. We consider two cases.

Case 1: For each subtask Wy scheduled after t, r(Wy)>t. Let [t + 1,u) be the smallest interval
such that for each subtask V}, scheduled in [z + 1,u), r(V)>¢+ 1 and d(V)<u (see Fig. 23(a)).
Note that such a u exists, because S includes only a finite collection of subtasks. If there are no
holes in this interval, then we have a contradiction of Lemma 19. Therefore, there exists a slot «' in
[+ 1,u) at which there is a hole. Without loss of generality, let ' be the earliest such slot in
[t+1,u). Either o/ =t+ 1 oru' >t+1.

Subcase 1(A): u' =t + 1. By (41), U; can be shifted to slot «'. Unfortunately, if Uj is scheduled
at /', then this might result in a schedule in which U; and Uj;; are scheduled in the same slot.
Recall from the statement of the lemma that the schedule is allowed to be invalid at ¢. Thus, we
can first shift U; to ' and then apply the induction hypothesis to move U}, to a later slot (refer to
Fig. 23(b)). This will result in a schedule that is valid for all v>1.

194 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

(=u)
t t+1 ul u t t+1 u-l u
I } +— I } } } }
A hole
VNS /
by
i i induction
T all subtasks here have deadlines N /\
at or before u and releases after t U]
Either thereisahole or Yj 1
U,_; isscheduled here
(a@ (b)
t t+1 u u+l.. uwl wu t t+1 t+2 .. u utl
I } } } +— I } } } }
An empty slot
..... i W,
SN / earliest by
........ induction
Q by /_\
Uj]J induction
VR N Ui Ui+l]1
Vi Vil
(©) (d)
t t+1 v ov+l u u+l t t+1 u u+l
I } } } } } I } } } +—
k W o
k
by /
Uj], induction Uj]J
Vh Viial,

G Q)

Fig. 23. Cases of Lemma 20. In each inset, d(U;)>t+ 1. (a) Case 1: smallest interval [¢ + 1,u) such that all subtasks
have deadlines and releases inside the interval. (b) Subcase 1(A): &' = ¢+ 1. (c) Subcase 1(B): ' >¢+ 1. (d) Subcase
2(A): d(Uj)zu+1, and Wy is the earliest subtask with r(Wy)<t. (¢) Subcase 2(B): d(U;)<u+ 1. (f) Repeated
application of Subcase 2(B) to finally apply Subcase 2(A).

Subcase 1(B): u' >t + 1. If for all subtasks V}, scheduled in [t 4 1,4'), d(V},) <u/, then we have a
contradiction of the fact that [r + 1,u) was the smallest such interval. Therefore, there exists a
subtask V7, such that d(V},) >’ + 1 (refer to Fig. 23(c)). Observe that we can move V}, to slot ¢ to
get a schedule in which a slot with a hole occurs earlier. Unfortunately, this movement of V7, is not
valid if V7, is scheduled at «/. However, as before, we can apply the induction hypothesis to move
V541 to a later slot.

By the reasoning above, if Subcase 1(B) applies, then it is always possible to get a schedule in
which either U is shifted to a later slot, or in which the first slot in [z 4 1, «) that has a hole occurs
earlier. If we repeatedly apply Subcase 1(B) without shifting U; to a later slot, then Subcase 1(A)
will eventually apply, in which case U; can be shifted as desired.

Case 2: There exists a subtask Wj scheduled after t such that r(Wj)<t. Without loss of
generality, assume that W is the earliest-scheduled subtask among all such subtasks. Let W be
scheduled at slot u. If there are any holes in [+ 1,u), then W} could be moved to the first such

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 195

slot o/, and the reasoning below applies with the smaller interval [z + 1,#). Thus, we can assume
without loss of generality that there are no holes in [+ 1,u).

Subcase 2(A): d(U;) >u + 1. Refer to Fig. 23(d). Because d(U;) >u + 1, we can swap U; and Wy
directly. Unfortunately, U;; might be scheduled at slot «, in which case the resulting schedule is
not valid. However, as before (refer to Case 1), we can apply the induction hypothesis to move
Uj;1 to a later slot. The resulting schedule will be valid for all v>1.

Subcase 2(B): d(U;) <u + 1. In this subcase, we try to identify subtasks that can be used as an
intermediate for swapping. Because W} is the earliest scheduled subtask after ¢ such that
r(Wy) <t, for each subtask V, scheduled in [z + 1,u), we have r(V}) >t + 1. Hence, because there
are no holes in [z + 1,u), by Lemma 19, there exists a subtask V7, scheduled in [t + 1, u) for which
d(Vy)=u+ 1. Let Vj, be scheduled at time ve{z+ 1, ...,u — 1} (see Fig. 23(e)). We can swap V,
and W} to get a schedule in which W is scheduled earlier (i.e., nearer to slot ¢). This swapping is
valid only if Wj_; is not scheduled at v and V), is not scheduled at u. Because r(W) <t + 1 <uv,
d(Wi_1)<v (by part (a) of Lemma 9). Therefore, Wj._; cannot be scheduled at slot v. On the other
hand, V},, can be scheduled at time u. However, by the induction hypothesis, V., can be moved
to a later slot.

By repeatedly applying Subcase 2(B), we obtain either the required schedule or a schedule in
which Subcase 2(A) can be applied. This is illustrated in Fig. 23(f). O

The following lemma gives the inductive step of our proof.

Lemma 21. Let S be a k-compliant two-processor schedule for {T;| Tetnd(T;)<t;}. Then, there
exists a (k + 1)-compliant two-processor schedule S’ for {T; | T etnd(T;)<t4}.

Proof. Let 7; be the (k+ 1)st subtask according to <. If 7; is scheduled in accordance
with EPDF, then take S’ to be S. Otherwise, we have the following: there exists a time slot
t such that 7; is eligible at 7, some subtask ranked lower than T; according to <l is scheduled
at ¢, and T; is scheduled at a slot later than z. Without loss of generality, let ¢ be the earliest
such slot and U; be the lowest-ranked subtask scheduled at 7. Let ¢ be the slot where T; is
scheduled.

As in the proof of Theorem 18, a (k + 1)-compliant schedule can be obtained by swapping 7;
and U, and also as before, the difficult case to consider is as depicted in Fig. 10(b). In this case,
Lemma 20 can be applied to right-shift U, out of slot #. Once U, has been shifted, 7; and U;
can be safely swapped. [l

Theorem 22. EPDF optimally schedules asynchronous, periodic tasks on systems of one or two
processors.

Proof. Establishing the optimality of EPDF for one-processor systems is straightforward, so we
consider only two-processor systems. Suppose to the contrary, that EPDF is not optimal for such
systems. Let 7 and #; be as defined at the beginning of this section. Then, the set of subtasks
{T;| TetArd(T;)<t;} misses a deadline at ¢; using EPDF. Because 7 is feasible, there exists a
valid schedule for this set of subtasks such that each subtask is scheduled in its Pfair window.

196 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

Starting with this schedule, we can apply Lemma 21 inductively (as discussed earlier) to get a valid
schedule for {7; | TetAd(T;)<tz} under EPDF. Contradiction. [

7. Concluding remarks

We have introduced a “work-conserving” variant of Pfair scheduling called ERfair scheduling,
and have presented a new algorithm called PD?, which is the most efficient Pfair/ERfair
scheduling algorithm known to date. We have shown that PD? is optimal for scheduling any mix
of early-release and non-early-release asynchronous, periodic tasks on a multiprocessor. This is
the first work known to us on the problem of scheduling both early-release and non-early-release
tasks under a common framework. This is also the first paper to show that a variant of the PD
Pfair algorithm is optimal for scheduling asynchronous task systems on a multiprocessor. Our
counterexamples show that, in general, it is highly unlikely that an optimal Pfair or ERfair
scheduling algorithm that is more efficient than PD? can be obtained. However, for the special case
of a two-processor system, we have shown that a simpler algorithm, namely EPDF, is optimal.

Acknowledgments

We are grateful to Sanjoy Baruah, Mark Moir, and Srikanth Ramamurthy for many helpful
discussions on the subject of this paper. We also thank the anonymous reviewers for their
suggestions.

Appendix A. Proof of properties (P1) through (P10)

In this appendix, we prove properties (P1)—(P10), all of which pertain to just a single task. As in
Section 5.1, for brevity, we let 7 denote this task, and abbreviate T.e and T.p as e and p,
respectively. Thus, wt(T) = 1%, and by (7) and (8), we have the following:

w(T)] = H - {ﬂj (A1)

e e

As noted in Section 5, we assume that e and p are relatively prime, i.e., gcd(e,p) = 1.

Lemma A.1. The following properties hold for any task T.

(@) r(Tyy1) is either d(T;) or d(T;) — 1, which implies that r(T;1)>d(T;) — 1.

(b) The sequence of windows within any two jobs are identical, i.e., |W(Tiei)| = |W(T7)|, where
1<i<e and k>0.

(¢c) The windows are symmetric within each job, i.e., |W(Tie+i)| = [W(Tketer1-i)|, where 1 <i<e, and
k=0.

(d) The length of each window is either [£] or [E] + 1.

() |w(T;)| =[] if (i — 1) is a multiple of e.

e

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 197

Proof. Below, we prove each property separately.

Proof of (a). The required result follows because r(7;y1) = A(T) + wa(iT)J (by (7)) and d(T;) =
AT) + [tz | oy O

Proof of (b). By (A.1), |[w(Tkeri)| = Pkem”-‘ — {(kH’;l)pJ. Therefore, |w(Tess)| = kp + [2] — kp —

2] = (T
Proof of (c). By part (b), we need to prove this only for the first job of T, i.e., for k = 0. By (A.1),

W(Ter1-i)] = [(e i le_ i)ﬂ a {(6 P i)pJ

(o [- (o)

Il
|
—
=
|
_
SN—
=
_
+
1
SRS
—_—

Thus, W(T;)| = [W(Tet1-i)]-

Proof of (d). By (A.1), we have

[ip] |- Dp
T = | =] —
(ol = 2] - |52
_[ip) _ | _p
e le e
S
_|r] . zz_z]
e e e

It is easy to see that this last expression equals either [£] or [£] + 1.

Proof of (¢). By (A.1), |w(T})| = [£]. By part (b), [w(Tke+1)| = [w(T1)|. Thus, the required result
follows. [

The next property that we prove is used to prove property (P2) below. It refers to a ““‘minimal”
window of a task. As noted earlier, by part (d) of Lemma 9, the windows of any task are of at

198 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

most two different lengths. We refer to a window of task 7" with length ﬁ—ﬂ as a minimal window
of T. The following property follows by part (e) of Lemma 9.

(P0) The first window of each job of T is a minimal window of T.

By (B), the b-bit of the last subtask of a job is zero. Therefore, the following property implies that
the last window of each job of 7 is a minimal window of 7.

(P1) If b(T;) = 0, then |w(T})| = [w(Tis1)].

Proof. By (9), b(T;) = 0 implies that ’f’f is an integer. Thus, because gcd(e,p) = 1, i is a multiple of
e. In other words, i = (k + 1)e for some k>0, and |w(7;)| = |W(Tke+e)|- Therefore, by part (c) of
Lemma 9, we have |w(T;)| = |[W(Tket1)|- By part (b) of Lemma 9, |W(Tkes1)| = |W(Tketer1)]-
Therefore, |w(T;)| = |w(Ti41)|, as required. [

(P2) If b(T;) = 0, then w(7;) is a minimal window of T.

Proof. As in the proof of (P1), we can show that i is a multiple of e. Therefore, by (P0), w(T}y) is
a minimal window. The required result then follows from (P1). O

(P3) and (P4) below follow directly from part (d) of Lemma 9.

(P3) For all i and j, [w(T;)|<|w(T3)| + 1.
(P4) For all i and j, |w(T;)| = |w(T;)| — 1.
(P5) If T is light, then all of its windows are of length at least three.

Proof. If T is light, then §<% Therefore, 2>2, and [£] >3. The required result follows because
lw(T;)| = [£] (by part (d) of Lemma 9). [

(P6) T has a 2-window if and only if it is heavy.

Proof. By part (¢) of Lemma 9, |w(T})| = [£]. Note that [2] is 2 if and only if 1<

e

;—;<1, which
implies that T is heavy. [

(P7) below follows directly from (P6) and part (d) of Lemma 9.

(P7) If T is heavy, then all its windows are of length two or three.

The following property shows that the last subtask of each job of a heavy task has
a 2-window.

(P8) If T is heavy and b(T;) = 0, then |w(T;)| = 2.

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 199

Proof. By (P2), |w(T})| = [£]. Reasoning as in the proof of (P6), it follows that |w(T;)| =2. O

(P9) If ¢ and ¢ are successive group deadlines of a heavy task T, then ¢ — 1 is either {+1 or

1—wi(T)
1
’VIHVI(T)-‘ -1

Proof. Asshown by Baruah et al. [7], the group deadlines of T correspond to subtask deadlines of

a task U such that wt(U) =1 — wt(T). Therefore, by (8), ' —t = {%} — L’(Uﬂ for some j.

Thus, 7 — t = L”{U) + wt(]U)-‘ - va{U)-" From this, the required result follows. [

The following claim is used to property (P10) below. (Refer to Fig. 24.)

Claim 24. Let T be a heavy task with more than one group deadline per job. Let t and t' be
consecutive group deadlines of T, where t' is the first group deadline within some job of T (for the
first job of T, take t to be 0). Similarly, let u and u' be consecutive group deadlines of T, where u' is
the last group deadline within some job of T. Then, ' —t =u' —u+ 1.

Proof. Recall that the group deadlines of 7" correspond to subtask deadlines of a task U such that
U.e = p—eand U.p = p. Note that since ¢ is the first group deadline within some job of T, ¢ is
the last group deadline within the previous job, i.e., ¢ corresponds to the deadline of a subtask U;
such that b(U;) = 0. By (9), b(U;) = 0 implies that p’TpL is an integer. Note that because ged(e, p) =
1, we have ged(p,p — e) = 1. Therefore, i is a multiple of p — e.In other words, i = j(p — ¢e) for
some j>0. (This also takes care of the case when ¢ = 0.) Therefore, d(U;) = jp, i.e., t = jp.
Further, because T has more than one group deadline per job, the number of subtask deadlines
in each job of U is at least 2, i.e., U.e=2. Therefore, i+ 1 (=j(p —e) + 1) is not a multiple of

p — e. Hence, Pj (p;f)H)p w =1+ LMJ which implies the following:

e

b

Also, we have ¢/ —t = P](p H)q —jp= {L1

p—e p—e
Similarly, we can show that ' = kp for some k and u = {MW =kp+ { W Therefore,

p*e
U e 2 R
wou= L’—J B LH’J'

Thus, (z/-z)—(u/—u):{L]—L J which is 1 (by (A.2)). [

p—e p—e]’

(P10) Let T be a heavy task. Let ¢ and 7 be consecutive group deadlines of 7', where ¢ is the last
group deadline within some job of T (for the first job of T, take ¢ to be 0). Then ¢ — ¢ is at
least the difference between any pair of consecutive group deadlines of 7.

200 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

——t — —

Fig. 24. Windows of a task T of weight 8/11 are shown. Sample values of ¢, ¢, u, and « (from Claim 24) are 11,
15, 19, 22.

Proof. If T has just one group deadline per job, then the difference between any two consecutive
group deadlines exactly equals the period of 7. On the other hand, if 7 has multiple group
deadlines within a job, then by Claim 24, /' — t=u' — u + 1, where ' and u are two consecutive
deadlines of 7. The required result then follows by (P9), because the difference between
consecutive group deadlines can have at most two distinct values. [

Appendix B. Feasibility proof

We now prove that the following expression is a feasibility condition for an asynchronous task
system T on M processors:

> wi(T)<M. (B.1)

Tet

Let #; be an arbitrary time slot. We show that t has a valid schedule over the time interval [0, ;)
by considering flows in a certain graph G(z, ;). By examining the windows of all the subtasks
that have deadlines in the interval (0,#], we construct a flow graph G(z,#;) such that a
maximal flow /" in G(z,1#;) corresponds to a valid schedule for these subtasks. As mentioned
in Section 5, we construct a valid schedule in which each subtask is scheduled in its Pfair
window.

Definition of G(,1;). Let ns(T, t;) denote the number of subtasks of 7" that have deadlines in the
interval (0,], and let e#(T, ¢;) denote the union of the Pfair windows of the first ns(7, ¢;) subtasks
of T.

The vertex set V' of G(t,1) is the union of six disjoint sets of vertices V5, ..., Vs and the edge
set E is the union of five disjoint sets of weighted edges Ey, ..., E4, where E; is a subset of

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 201

Vi x Vigg x N7, 0<i<4. Thus, G is a six-layered graph, with all the edges connecting vertices in
adjacent layers. The vertex sets Vy, ..., Vs are defined as follows:

Vy = source,

Vi =<1,T) | Ter, corresponding to tasks,

Vo, =<2,T,iy|Ter, 1<i<ns(T,1;), corresponding to subtasks,

V3 =<(3,T,ty|Ter, teet(T,1;), corresponding to subtask windows,
Vy = {4,t) | 0<t<1, corresponding to time,

V5 = sink.

The edge sets Ey, ..., E4 are defined as follows:

Ey = (source, <{1,T),ns(T,t;))|Ter,

E =({1,TY,<2,T,iy,)| Ter, 1<i<ns(T, 1)),
E,=({2,T,i», {3, T,t),1)| Ter, 1<i<ns(T,t;), tew(T;),
Ey= ({3, T,t),<4,t),1)|Ter, teet(T,1;),

Ey = ({4,ty,sink, M) | 0<1<1.

The weight of an edge in Ej corresponds to the total processing time required by a task in the
interval [0,7;). The edges in E| are used to add the restriction that tasks are allocated in terms of
subtasks. The edges in E,, F3, and E4 are used to ensure the validity of the resulting schedule.

A flow is called integral if and only if flow across each edge is integral. We use the following
theorem about integral flows in graphs with integral edge capacities.

Theorem 25 (Ford and Fulkerson [8]). A graph in which all edge capacities are integral has a
integral maximal flow.

Feasibility proof. The existence of a schedule for an asynchronous task system t that satisfies
Expression (B.1) follows from Lemmas 26 and 27 below.

Lemma 26. If there exists an integral flow of size " ,_.ns(T,t;) in G(t,1;), then there exists a valid
schedule for t over the interval |0, t;].

Proof. An integral flow of size) ,_ ns(T,#) implies that the flow out of the source is
> re.18(T,1;). By definition of Ey, the sum of the capacities of all the outgoing edges from the
source is > .. ns(T, ;). Therefore, all the edges in Ej carry a flow equal to their capacity. Hence,
an edge from the source to {1, 7') € V| carries a flow equal to ns(7, ¢;). Because there are ns(T, t;)
outgoing edges from (1,7), and each edge of E; has a capacity of 1, each such edge carries a
flow of 1. Therefore, the flow into each vertex in V> is 1.

We obtain a schedule for 7 by scheduling 7 in slot z if and only if there is a flow of 1 from vertex
(2,T,iy to {(3,T,t). From the following discussion, it follows that this schedule is valid.

(1) Since each outgoing edge from ¥, has a capacity of 1, and because the flow is integral, this
implies that at most one edge, starting from any vertex in V>, has a non-zero flow. Thus, for each
subtask 7;, only one of {(3,7,¢)> has an incoming flow of 1. In other words, a subtask is

202 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

scheduled at most once. Because there is an edge from (2, 7T,i) to {(3,T,t) only if ¢ lies in T;’s
Pfair window, T; is scheduled in its window.

(i) Note that, because successive Pfair windows of the same task may overlap by
one slot, vertex (3,7,¢t> can have more than one incoming edge. However, because the
edge from (3,T,t> to <{4,t> has a capacity of 1, at most one such incoming edge can have
a flow of 1. This ensures that multiple subtasks of the same task are not scheduled in the
same slot.

(iii) Because each edge in £, has a capacity of M, there can be at most M edges in E3 with a flow
of 1 that are incident on the same vertex in V4. In other words, at most M subtasks are scheduled
in a single slot. [

Note that the maximum flow of G(z, ;) is at most) _,_. ns(T, ¢;), because this is the sum of the
capacities of all edges coming from the source. We now show that a real-valued flow of such a size
exists.

Lemma 27. G(t,t;) has a real-valued flow of size Y ;.. ns(T, t;).

Proof. We use the following flow assignments. These assignments are similar to those given by
Baruah et al. [6] to establish that Expression (4) is a feasibility condition for synchronous, periodic
tasks.

e Each edge (source, {1, T),ns(T, 1)) € E, carries a flow of size ns(T, t;).

e Each edge ({1,T7),<2,T,iy,1)eE carries a flow of 1. Because there are ns(7, ;) outgoing
edges from each {1, T), flow is conserved at all vertices in V.

e The flow through the edges in E, is defined as follows. Let f(7T;,¢) define the flow from
(2,T,iy to {(3,T,t). Then,

Qvlvtle)J —l—l) xwt(T)—(i—1), u=r(Ty),

f(Tiu) =< i— (LVI(I.T)—‘ - 1) x wt(T), u=d(T;) — 1, (B.2)
wit(T), r(Ty) + 1<u<d(T;) — 2,
0, otherwise.

We now show that these assignments ensure that the flow is conserved at every vertex in V>,
i.e., the flow out of each vertex (2,T,i) eV, is 1. By (B.2), the total flow out of <2, T,i)

is (d(T}) — r(T}) —2) x wi(T) + (M)J n 1) x wi(T) — (i — 1) + ([T)] - 1) s wi(T),
which simplifies to 1 + we(T) x (d(T) — r(T)) + wt(T) x (MTJ - [w, D By (5) and (6),
d(T;) — r(T;) = [W-‘ L‘”()J Thus, the total flow is 1.

e Each edge ((3,T,t),{4,t),1)eE; carries a flow equal to the sum of all incoming
flows at (3, 7T,t)>. We now show that this flow is at most w#(7") (which is at most 1). We
first show that f(7;,¢)<wt(T). This follows directly from (B.2) if ¢¢{r(7;),d(T; —1)}. If

J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204 203

t =r(T;), then f(T;) is

(] 1) 2w - w2

< (Ml}l?;) + 1) xwi(T)—(i—1), |x]<x,

= wit(T), by simplification.
Ift=d(T;) — 1, then f(T;) is

thﬂ - 1) xwit(T), by (B.2),
<w[_1> xwi(T), [x]=x = —[x]<—ux,
(T)

by simplification.

= wt

We now only need to consider the time slot in which two consecutive Pfair windows
overlap. That will be the case when d(7;) — 1 = r(T;;1) for some i. In this case, the total

flow will be f(T3,d(T;) — 1) + f(Tiey,r(Tir)). Thus, the flow is i — ({m] - 1) x wt(T)
+QﬁJ + 1) x wt(T) — i, which simplifies to QWJ - L”(T-‘ +2) x wt(T). Since,

d(T;) — 1 =r(T:yy), it follows that {W—‘ —1= LWJ Therefore, LWJ - {m—‘ =—1.
Thus, the total flow is w#(T). Thus, in all cases, the sum of all incoming flows at {(3,7,¢)
is at most wt(T).

e Each edge ({4,t),sink, M) e E4 carries a flow equal to the sum of all incoming flows at {4,¢).
Thus, the incoming flow into {4,t) from (3,7,t) can be at most » ,_ wit(T). Be-
cause » ;.. wt(T)<M, the incoming flow and hence the outgoing flow at (4,¢) is at
most M.

This proves that the flow along each edge is at most its capacity and that the flow is conserved at
all vertices. Hence, the flow defined above is a valid flow. O

We are now in a position to state the following lemma and theorem.

Lemma 28. An asynchronous task system t has a valid schedule on M processors in which each
subtask is scheduled in its Pfair window if and only if y . wt(T)< M.

Proof. The necessity of the condition follows from the necessity of condition for periodic task
systems (proved by Baruah et al. [6]) since any periodic task system is also an asynchronous task
system. To prove sufficiency, we construct a valid schedule for 7 in [0, 7) for any given ¢. Because ¢
is arbitrary, it follows that 7 has a valid schedule. By Lemma 27, it follows that G(z, ¢) has a real-
valued flow of size > ;.. ns(T, t). This is a maximal flow, since the sum of the capacities of all the
outgoing edges from the source is the same. Because all edge capacities in G(t,?) are integers, by

204 J.H. Anderson, A. Srinivasan | Journal of Computer and System Sciences 68 (2004) 157-204

Theorem 25, it follows that G(t,¢) also has a integral flow of size) ,_, ns(T,t). Therefore, by
Lemma 26, 7 has a valid schedule over [0, 7). By the definition of G(t,1), it follows that in this
schedule each subtask will be scheduled in its Pfair window. [

Theorem 29. An asynchronous periodic task system t has a valid schedule on M processors if and
only if Y po . wt(T)<M.

Proof. Follows directly from Lemma 28. [

References

[1] J. Anderson, A. Srinivasan, Early-release fair scheduling, in: Proceedings of the 12th Euromicro Conference on
Real-Time Systems, 2000, pp. 35-43.
[2] J. Anderson, A. Srinivasan, Pfair scheduling: beyond periodic task systems, in: Proceedings of the Seventh
International Conference on Real-Time Computing Systems and Applications, 2000, pp. 297-306.
[3] J. Anderson, A. Srinivasan, Mixed Pfair/ERfair scheduling of asynchronous periodic tasks, in: Proceedings of the
13th Euromicro Conference on Real-Time Systems, 2001, pp. 76-85.
[4] S. Baruah, Fairness in periodic real-time scheduling, in: Proceedings of the 16th IEEE Real-time Systems
Symposium, 1995, pp. 200-209.
[5] S. Baruah, private communication.
[6] S. Baruah, N. Cohen, C.G. Plaxton, D. Varvel, Proportionate progress: a notion of fairness in resource allocation,
Algorithmica 15 (1996) 600—625.
[71 S. Baruah, J. Gehrke, C.G. Plaxton, Fast scheduling of periodic tasks on multiple resources, in: Proceedings of the
Ninth International Parallel Processing Symposium, 1995, pp. 280-288.
[8] L. Ford, D. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
[91 M. Moir, S. Ramamurthy, Pfair scheduling of fixed and migrating periodic tasks on multiple resources, in:
Proceedings of the 20th IEEE Real-time Systems Symposium, 1999, pp. 294-303.
[10] S. Ramamurthy, M. Moir, Static-priority periodic scheduling of multiprocessors, in: Proceedings of the 21st IEEE
Real-Time Systems Symposium, 2000, pp. 69-78.
[11] A. Srinivasan, J. Anderson, Optimal rate-based scheduling on multiprocessors, in: Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, 2002, pp. 189-198.
[12] A. Srinivasan, J. Anderson, Efficient scheduling of soft real-time applications on multiprocessors, in: Proceedings
of the 15th Euromicro Conference on Real-time Systems, 2003, pp. 51-59.

	Mixed Pfair/ERfair scheduling of asynchronous periodic tasks
	Introduction
	Pfair and ERfair scheduling
	The PD2 algorithm
	Minimality of the PD2 priority definition
	Optimality proof of PD2
	Properties about subtask windows
	Optimality proof

	Two-processor systems
	Concluding remarks
	Acknowledgements
	Proof of properties (P1) through (P10)
	Feasibility proof
	References

