
Journal of Computer and System Sciences 63, 80�126 (2001)

The Combinatorics of Cache Misses during
Matrix Multiplication1

Philip J. Hanlon

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

Dean Chung

Amazon.com, Inc., Seattle, Washington

Siddhartha Chatterjee and Daniela Genius

Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599

Alvin R. Lebeck

Department of Computer Science, Duke University, Durham, North Carolina 27706

and

Erin Parker

Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27514

Received March 17, 2000; revised September 1, 2000

In this paper we construct an analytic model of cache misses during matrix
multiplication. The analysis in this paper applies to square matrices of size 2m

where the array layout function is given in terms of a function 3 that inter-
leaves the bits in the binary expansions of the row and column indices. We
first analyze the number of cache misses for direct-mapped caches and then
indicate how to extend this analysis to A-way associative caches. The work
in this paper accomplishes two things. First, we construct fast algorithms to
estimate the number of cache misses. Second, we develop a theoretical under-
standing of cache misses that will allow us, in subsequent work, to approach the
problem of minimizing cache misses by appropriately choosing the bit inter-
leaving function that goes into the array layout function. � 2001 Academic Press

doi:10.1006�jcss.2001.1756, available online at http:��www.idealibrary.com on

800022-0000�01 �35.00
Copyright � 2001 by Academic Press
All rights of reproduction in any form reserved.

1 This work was supported in part by DARPA Grant DABT63-98-1-0001, NSF Grants EIA-97-26370
and CDA-95-12356, NSF Career Award MIP-97-02547, The University of North Carolina at Chapel
Hill, Duke University, and an equipment donation through Intel Corporation's Technology for Educa-
tion 2000 Program. The views and conclusions contained herein are those of the authors and should not
be interpreted as representing the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

1. INTRODUCTION

As the gap between processor cycle time and main memory access time continues
to widen, effective use of the memory hierarchy becomes ever more critical to over-
all program performance. Caches can help alleviate the CPU-memory gap by
satisfying most memory references at close to processor speed (1 to 3 cycles).
Unfortunately, programs that do not exhibit good memory reference locality can-
not exploit the potential benefits of caches.

For scientific computations that repeatedly access large data sets, good locality
of reference is essential at the algorithm level for high performance. Such locality
can either be temporal, in which a single data item is reused repeatedly, or spatial,
in which a group of data items ``adjacent'' in space are used in temporal proximity.
High-performance dense linear algebra codes rely on good spatial and temporal
locality of reference for their performance. In this paper, we focus on an analysis of
matrix multiplication, the workhorse of modern linear algebraic algorithms.

Our previous studies demonstrated an intimate relationship between the layout
of the arrays in memory and the performance of the routine [1, 2]. This early work
experimentally showed the benefits of using array layout functions based on inter-
leaving the bits in the binary expansions of the row and column indices of arrays.
This paper complements our earlier empirical studies by providing an analytical
framework for analyzing the cache behavior of matrix multiplication in the presence
of such array layout functions. Future work will use this framework in an optimiza-
tion context, to determine array layouts that minimize the number of cache misses.
The techniques applied in the analysis presented in this paper are specific to the
matrix multiplication example, and may not generalize easily to other programs.

The remainder of this section provides the background of the cache analysis
problem. Section 1.1 provides a brief overview of cache memory basics. Section 1.2
describes our analysis framework��both the similarities to earlier work and the
critical differences that require us to use completely different techniques. Section 1.3
discusses array layout functions based on bit interleaving. Section 1.4 reiterates the
goals of our analysis and provides a roadmap of the remainder of the paper.

1.1. Basics of Cache Memory

We assume a simplified memory hierarchy that processes one memory access at
a time, with no distinction between memory reads and writes.

The structure of a single level of a memory hierarchy��called a cache��is
generally characterized by three parameters: Associativity, Block size, and Capacity.
Capacity and block size are in units of the minimum memory access size (usually
one byte). A cache can hold a maximum of C bytes. However, due to physical con-
straints, the cache is divided into cache frames of size B that contain B contiguous
bytes of memory��called a memory block. The associativity A specifies the number
of different frames in which a memory block can reside; such a set of A cache
frames is also called a cache set. If a block can reside in any frame (i.e., A= C

B), the
cache is said to be fully associative; if A=1, the cache is direct-mapped; otherwise,
the cache is A-way set associative.

81COMBINATORICS OF CACHE MISSES

For a given memory access, the hardware inspects the cache to determine if the
corresponding memory element is resident in the cache. This is accomplished by
using an indexing function to locate the appropriate cache set that may contain the
memory block. If the memory block is resident, a cache hit is said to occur, and the
cache satisfies the access after its access latency. If the memory block is not resident,
a cache miss is said to occur. In this case, the memory block is fetched from a lower
level of the memory hierarchy. If all A frames in the cache set contain valid data, then
one of them must be freed to accommodate the current memory block. This is a
nontrivial decision for any cache organization other than direct-mapped. The (fast
on-line) algorithm used to determine the block to evict from the cache set is called
the replacement policy of the cache. A commonly used replacement policy is Least
Recently Used (LRU), in which the memory block that was last accessed furthest in
the past is chosen for replacement. We will analyze this replacement policy in
Section 5.

From an architectural standpoint, cache misses fall into one of three classes [7].
Note that each class of miss can occur in any cache that is not fully associative.

v A compulsory miss is one that is caused by referencing a previously
unreferenced memory block. Eliminating a compulsory miss requires prefetching
the data, either by an explicit prefetch operation or by placing more data items in
a single memory block.

v A reference that is not a compulsory miss but misses in a fully associative
cache with LRU replacement is classified as a capacity miss. Capacity misses are
caused by referencing more memory blocks than can fit in the cache. Restructuring
the program to re-use blocks while they are in cache can reduce capacity misses.

v A reference that hits in a fully associative cache but misses in an A-way set-
associative cache is classified as a conflict miss (or interference miss). A conflict miss
to block X indicates that block X has been referenced in the recent past, since it is
contained in the fully associative cache, but at least A other memory blocks that
map to the same cache set have been accessed since the last reference to block X.
Eliminating conflict misses requires transforming the program to change either the
memory allocation and�or layout of the two arrays (so that contemporaneous
accesses do not compete for the same sets) or the manner in which the arrays are
accessed. At the program source level, interference misses can be further subdivided
based on whether the interfering blocks come from different parts of a single array,
or from different arrays. The miss is called a self-interference miss in the former case
and a cross-interference miss in the latter case [8].

1.2. An Analysis Framework

Our general model for counting cache misses follows the framework used in
previous work [5], with one significant difference. We first explain the common
framework, then highlight the key difference in our version of the problem that
necessitates entirely new solution techniques.

Consider the following loop nest for matrix multiplication (the so-called ikj
variant), which will be the specific computation whose cache behavior we analyze
in the remainder of this paper.

82 HANLON ET AL.

for (i=0; i<n; i++)
for (k=0; k<n; k++)

for (j=0; j<n; j++)
C[i][j]=C[i][j]+A[i][k]*B[k][j];

An array A has an associated layout function LA , which is a 1-1 map from
[0, n&1]_[0, n&1] to the memory address space Z+

0 . Applying this map to an
element of an array produces the byte address of that array element.

We assume a two-level memory hierarchy (i.e., a cache backed by a conceptually
infinite main memory), with a direct-mapped cache with block size of B bytes and
total capacity of C bytes (and therefore p=C�B sets). The quantities B and C are
always powers of two for technological reasons, so we will assume that p=2\. We
also assume that main memory is large enough to hold all the data referenced by
the program. The function B converts a memory byte address into a memory block
address (with B(a)=wa�Bx). The function S converts a memory block address to
the cache set to which it maps (thus, S(b)=b mod p).

In the remainder of the paper we will work in units of array elements rather than
bytes. Given that 32 bytes is a popular block size for first-level caches in many
modern machines, and that double-precision numbers are represented with eight
bytes, we will assume in this paper that memory blocks and cache blocks hold four
array elements.

The goal of cache analysis is to efficiently estimate the number of capacity and
conflict misses of a given code fragment, given the numerical value of the loop
bounds, a cache configuration, and the layout functions of the arrays. For example,
in the matrix multiplication example, to formulate the conditions under which the
reference Ai, k misses at iteration point (u, v, w) because it was replaced by reference
Bk, j , let (u$, v$, w$)=Last(u, v, w) be the most recent iteration point that accessed
bA=B(LA (u, w)), the block being accessed by the reference Ai, k at iteration point
(u, v, w). Let (x, y, z) be an iteration point between (u$, v$, w$) and (u, v, w) in
lexicographic order at which the memory block bB=B(LB(z, y)) accessed by
reference Bk, j displaced block bA from cache. This condition is satisfied iff

S(B(LA (u, w)))=S(B(LB(z, y))). (1)

Equation (1) captures both capacity and conflict misses but does not distinguish
between the two. (Discriminating between these miss classes would require the
additional ability to ascertain the hit�miss status of the reference in a fully
associative cache.) It does not capture compulsory misses, as such misses
correspond to iterations w for which Last is not defined. We use the term replace-
ment misses to encompass capacity and conflict misses. We omit compulsory misses
from the scope of this paper for two reasons: they are unavoidable misses that
cannot be reduced by optimization techniques, and they need to be formulated
completely differently.

It is clear that a simple strategy to count misses is through simulation of the
code. This is exactly what cache simulators do. The main drawback of simulation
is its slowness: it takes time proportional to the actual execution of the code,

83COMBINATORICS OF CACHE MISSES

usually with a significant multiplicative factor (10�100 is typical). In our matrix
multiplication example, this time is 3(n3). Our interest is in much faster algorithms
that work by exploiting the combinatorial structure of misses rather than by
simulation, and whose existence is suggested by the regularity of the array access
patterns and the limited number of cache sets to which they map. We will in fact
demonstrate algorithms that accurately compute the number of cache misses for the
matrix multiplication example in O(max(log n, log(C�B))) time.

Previous work [5] at this point introduces two additional constraints to make
the problem tractable. First, it assumes that the layout functions are row or
column-major, which is affine in the array coordinates. We will subsequently use
the term canonical layout to refer to these two layout functions. Second, it assumes
that Last can be obtained through reuse vectors, which occurs when the array index
expressions are uniformly generated in addition to being affine in the LCVs. These
two conditions keep everything within the polyhedral model [3], which has been
well-studied and for which counting algorithms are well-known [9]. It is at this
point that our work diverges from previous work.

Prior empirical evidence [1, 2, 4] suggests that alternative array layout functions
such as Morton order [2] provide better cache behavior than canonical layout
functions for many dense linear algebra codes. Such layout functions are described
in terms of interleavings of the bits in the binary expansions of the array coor-
dinates rather than as affine functions of the numerical values of these quantities.
This single change puts our version of the problem beyond the scope of the solution
techniques for the polyhedral model. We will therefore need to investigate different
techniques for counting the number of solutions to equations such as Eq. (1).

1.3. Array Layouts Based on Bit Interleaving

In developing this model of alternative array layouts, we assume that n=2m, so
that the bit representation of an array index will have m bits, with the least signifi-
cant bit (LSB) numbered 0 and the most significant bit (MSB) numbered m&1.
We identify the binary sequence sm&1 } } } s0 with the nonnegative integer s=
�m&1

i=0 si2
i. We denote by Bm the set of all binary sequences of length m, and extend

the above identification to identify Bm with interval [0, 2m&1].
We will describe a family of nonlinear layout functions parameterized by a single

parameter _, as follows. An (m, m)-interleaving, _, is a 2m-bit binary sequence con-
taining m 0s and m 1s.2 It describes the order in which bits from the two array
coordinates are interleaved to linearize the array in memory. Given _, define its
characteristic sequence /_ to be the sequence with entries fi and si defined by replac-
ing the (i+1)st 0 from the right in _ by fi and the (i+1)st 1 from the right in _
by si . (The letters f and s are chosen for mnemonic reasons: they are the initial
letters of the words ``first'' and ``second.'')

Example 1. Let m=4 and let _=10110010. Then /_=s3 f3s2s1 f2 f1 s0 f0 . Next,
let m=3 and let _=010011. In this case, /_= f2s2 f1 f0 s1s0 .

84 HANLON ET AL.

2 We could generalize this notation to (m, n)-interleavings for m{n. We choose not to do so as we
do not need such generality for this paper.

Given an (m, m)-interleaving _, define a map

3 : Bm_Bm � B2m

in the following way. If a=am&1 } } } a1a0 # Bm and b=bm&1 } } } b1b0 # Bm , then
3(a, b) is the sequence obtained by replacing each fi in /_ by ai and each si in /_

by bi . We extend this notation to consider 3 as a map from [0, 2m&1]_
[0, 2m&1] � [0, 22m&1] by identifying nonnegative integers and their binary
expansions. We call 3 the mixing function indexed by _. Note that 3(0, 0)=0 for
any _.

Example 2. Let m=4 and let _=01101001 so that /_= f3s3s2 f2 s1 f1 f0s0 .
Then

3(12, 5)=3(1100, 0101)=10110001=128+32+16+1=177.

Next, let _=10110010 so that /_=s3 f3s2s1 f2 f1 s0 f0 . In this case,

3(9, 6)=3(1001, 0110)=01110001=64+32+16+1=113.

Many popular layout functions fall into this class. For example, row-major

layout corresponds to the signature _=0 } } } 0

n

1 } } } 1

n

; column-major layout

corresponds to the signature _=1 } } } 1

n

0 } } } 0

n

; pure Morton layout corresponds to

the signature _=01 } } } 01

n

; a combination of Morton layout with 2k_2k tiles

arranged in row-major order corresponds to the signature _=01 } } } 01

2(n&k)

0 } } } 0

k

1 } } } 1

k

;
and so on.

We are now ready to discuss the matter of the layout functions of the three
arrays in our matrix multiplication example. Given an arbitrary array element
indexed (r, c), the quantity 3(r, c) gives the position of the element (r, c) relative
to the starting position of the array in memory. We use the generic notation + to
denote this starting address. Specifically, we assume the following forms of layout
functions for A, B, and C:

LA (r, c)=+1+3(r, c)

LB(r, c)=+2+3(r, c)

LC(r, c)=+3+3(r, c).

1.4. Goals and Structure of the Paper

Our overall goal, to be studied in a subsequent paper, is to find the layout func-
tions of the form shown above that minimize cache misses. In this paper, we create

85COMBINATORICS OF CACHE MISSES

an analytic model of cache misses using layout functions of this form, and we use this
model to estimate the number of cache misses in the matrix multiplication example.
These results will form the basis for the analysis in future work. Our model in this
paper is based on three important assumptions that limit the scope of the analysis.
First, we assume that the matrices being multiplied are square and have nonover-
lapping memory images. Second, we assume that a memory block holds four matrix
elements. Third, for most of the paper, we assume a direct-mapped cache.

The counting of cache misses for the matrix multiplication example is, in the end,
a giant case analysis of all possible patterns of interference among the various
arrays. Fortunately, this analysis ultimately reduces to solving two enumeration
problems, which are then adapted and augmented in diverse ways, and finally com-
bined using inclusion�exclusion. We first discuss the two enumeration problems and
their solutions in an abstract setting in Section 2. We then adapt these algorithms
to the cache model in Section 3 and to the problem of counting cache misses in
Section 4. We extend our analysis to set-associative caches in Section 5 and conclude
in Section 6.

2. TWO ENUMERATION PROBLEMS

In this section, we study a pair of counting problems which together form the
foundation for our enumeration of cache misses. We will not attempt to determine
closed-form expressions for these numbers��almost certainly the answers to these
questions cannot be put in elegant closed forms. Instead, our goal will be to
describe efficient algorithms to determine the number of solutions.

We will let n=2m and p=2\ be as in the last section. For any positive integer
q we will let Bq denote the number of binary sequences e=eq&1 } } } e1e0 of length
q. When convenient, we will treat e as a nonnegative integer in the range 0 to 2q&1
using the usual notion of binary representation.

In this section, we develop methods to count solutions (a, b, c) to certain kinds
of equations modulo 2\. Our analysis proceeds by examining constraints on the i th
bits on both sides of the equation for 0�i�2m&1. Since we are counting solu-
tions modulo 2\, we can disregard any conditions on bits \, \+1, ..., 2m&1 in the
case that 2m>\. Therefore, any bits of a, b, c which are unconstrained by our
analysis of the first \ bits in our equation can be chosen arbitrarily, each contribut-
ing a factor of 2 to the number of solutions.

By this reasoning, it is straightforward to extend these methods from the case
2m�\ to the case 2m>\. Therefore, to simplify the exposition, we assume that
2m�\ for the remainder of this section.

2.1. Algorithm AB(d)

Given an (m, m)-interleaving _, an integer d with a \-bit binary expansion, and
an initial carry k0 # [0, 1], we want to determine AB(d), the number of triples
(a, b, c) # B3

m such that

3(a, b)=3(b, c)+d+k0 mod 2\ (2)

86 HANLON ET AL.

under the condition that 2m�\. A correct but inefficient algorithm would
enumerate all possible triples (a, b, c) and check satisfiability of Eq. (2) for each
triple. Such an algorithm would have time complexity of O(8m+\). The basic techni-
que that we will use to derive an efficient algorithm of time complexity O(max(m, \))
is to reason about individual bits of the terms on either side of the equation in
terms of whether they propagate or generate carry bits. We will denote by ki the
carry input at bit position i (or, equivalently, the carry output at position i&1).
Note that k0 , the carry input at the least significant bit, is supplied.

The first observation is that we can simplify the problem based on the values of
bits d\&1 through d2m .

Definition 2.1 (Consistency of d). Let _ be an (m, m)-interleaving and let
d=d\&1 } } } d0 # B\ . Let r=[u, ..., v] be a subsequence of P=[0, ..., \&1]. We say
that d is =-consistent on r if dj== for all j # r. We say that d is inconsistent on r if
it is neither 0-consistent not 1-consistent on r.

Lemma 2.1. Equation (2) has no solutions if d is inconsistent on [2m, ..., \&1].
For = # [0, 1], if d is =-consistent on [2m, ..., \&1], then Eq. (2) has solutions iff
k2m=k\==.

Proof. By case analysis on bits d\&1 through d2m .

This reduces the original problem to that of counting the number of solutions to
a reduced system E of 2m bit-equations, and separating the solutions of E based on
the value of k2m that they produce. Let n= be the number of solutions of E that
produce k2m==, for = # [0, 1]. Then we have the following expression for AB(d):

n0 , if d\&1= } } } =d2m=0

AB(d)={n1 if d\&1= } } } =d2m=1 (3)

0, otherwise.

We will now give an algorithm to determine the pair (n0 , n1).
Let us label the 2m components of E with the numbers 0 through 2m&1, with

t being the label of the equation corresponding to bit position t. Bit equation t has
one of two forms,

bi =ci+dt (4)

ai =bi+dt , (5)

where 0�i<m. For any fixed i, there is exactly one equation of form (4) and one
equation of form (5) (of course, with different values of t). Of these, call the equa-
tion with larger value of t the major i-equation, an the equation with smaller value
of t the minor i-equation.

The + in the above equations is to be interpreted as binary addition, with
hidden carry bits. To make this explicit, we rewrite the component equations in a

87COMBINATORICS OF CACHE MISSES

more elaborate form, using the operations exclusive-or (denoted �) and majority
(denoted maj). For Eq. (4) we get

bi =ci�dt�kt (6)

kt+1=maj(ci , dt , k t) (7)

while for Eq. (5) we get

ai =bi �dt�kt (8)

kt+1=maj(b i , dt , kt). (9)

Our interest is not so much in specific values of the bits ai , bi , and ci , but rather
on the terminal carry k2m that any particular assignment of bits produces. As b is
the only variable that occurs on both sides of component equations, a particular
choice of b uniquely determines values of a and c. We will therefore use the bits of
b to collect solution triples that generate a common terminal carry. Looking at the
behavior of component equation t for a specific choice of bi , we observe that it has
three possible modes.

1. kt+1=kt . We call this mode Propagate, or P for short.

2. kt+1=0, independent of kt . We call this mode 0-Generate, or G0 for short.

3. kt+1=1, independent of kt . We call this mode 1-Generate, or G1 for short.

The following lemma relates these modes to the choice of value bi .

Lemma 2.2. Equation (4) behaves in mode P if we set bi=dt and in mode Gdt
if

bi=d� t . Equation (5) behaves in mode Gdt
if we set bi=dt and in mode P if b i=d� t .

Proof. Simple case analysis based on possible values of bi and of kt . K

The key idea in the algorithm is to capitalize on the G0 and G1 modes. Consider
bm&1 , the most significant bit of b. The major (m&1)-equation occurs at position
2m&1, and the minor (m&1)-equation occurs at some position s with s<2m&1.
Depending on the form of equation 2m&1 and the value of d2m&1 , one of the two
choices for bm&1 will lead to a G= -mode (with = # [0, 1]). This means that no
matter what values we assign to bits bm&2 through b0 , they will all contribute to
n= . We can therefore increment n= by 2m&1. The other choice of bm&1 will lead to
P-mode for the major equation (and some mode for the minor equation as deter-
mined by Lemma 2.2). In this case, we need to explore further the assignment of
values to lower order bits of b to separate those assignments that contribute to n0

from those that contribute to n1 . To do this, we will symbolically reduce the major
and minor (m&1)-equations to their modes for this choice of bm&1 , and proceed
to the equations involving bm&2 .

The reason behind the reduction of component equations to behavior modes
becomes clear if we consider the situation when we are considering how the assign-
ment of values to bi , with 0�i<m&1, affects the counts n0 and n1 . The fact that
we are reasoning about bi means:

88 HANLON ET AL.

v that we have already considered the bits bm&1 through b i+1 ;

v that we have identified the unique assignment of values of these bits that
leads to P-modes for the major (m&1)-equation through the major (i+1)-equa-
tion;

v that we have reduced all of these major and minor equations to their
appropriate behavior modes for these assignments of values to bits bm&1 through
bi+1 .

If component equation t is the major i-equation, then this means that component
equations 2m&1 through t+1 have been reduced. (Some of the component equa-
tions t&1 through 0 may also have been reduced; this does not concern us yet,
because carries move from lower order to higher order bits.) In any case, one of the
two choices of bi will lead to a G= mode for component equation t. However, we
cannot at this point simply increment n= by 2i&1, since the generated carry kt+1

may be altered as it travels through the reduced component equations t+1 through
m&1. What we need to do is to determine the value k2m=$ that emerges at the
other end of this process, and increment n$ by 2i&1. The representation of com-
ponent equations as modes facilitates the determination of k2m .

One final observation about the algebraic structure of modes allows us to
calculate the terminal carry k2m in a constant number of operations. It is easily seen
that the mode set [P, G0 , G1] is a monoid under composition, with P as the
identity element. Composition is defined by the following table.

P G0 G1

P P G0 G1

G0 G0 G0 G0

G1 G1 G1 G1

In trying to interpret this ``composition table,'' remember that carries move from
right to left. Thus, G1 P means that an input carry first passes through a P-mode
and then through a G1 -mode. This is equivalent to a G1 -mode. Similarly, G1G0

produces a G1 -mode, because an input carry first passes through a G0 -mode,
producing a carry value of 0, which then passes through a G1 -mode, producing an
output carry of 1. Given this monoid structure, instead of maintaining individual
modes for reduced component equations i+1 through 2m&1 and laboriously
propagating kt+1 through them to obtain k2m , we can keep a compact description
of the combined effect of these modes and obtain k2m from kt+1 in a single step.
Furthermore, we can incrementally update this description as we move to lower-
numbered component equations.

We are now ready to present the complete algorithm to determine (n0 , n1).

1 n0 � 0

2 n1 � 0

3 mode � P

4 i � m&1

89COMBINATORICS OF CACHE MISSES

5 for t=2m&1 downto 0 do

6 if component equation t has been reduced to mode M then

7 mode � compose(mode, M) �* Use composition table *�

8 else �* This is the major i-equation *�

9 v � value of bi that makes this equation behave in mode G= , from
Lemma 2.2

10 $ � apply(mode, =)

11 n$ � n$+2i

12 Locate the minor i-equation and reduce it to the mode resulting from
setting bi=v�

13 i � i&1

14 endif

15 enddo

16 $ � apply(mode, k0)

17 n$ � n$+1

Theorem 2.1. The above program correctly computes n0 and n1 and runs in O(m)
steps.

Proof. Immediate from Lemmas 2.1 and 2.2. K

Example 3. Let _=001110, let d2m&1 } } } d0=011000 and let k0=1. In this
case, the equations are

E0 : a0=b0+0

E1 : b0=c0+0

E2 : b1=c1+0

E3 : b2=c2+1

E4 : a1=b1+1

E5 : a2=b2+0.

The system of equations and (n0 , n1) evolve in the following way as we go through
the steps of the algorithm.

t=5: Now i=2. Set v=0 because b2=0 makes E5 behave in mode G0 . Then
$=0 because mode=P and ==0 (i.e., a carry of 0 propagates through the reduced
component equations). Update n0=0+4. E3 is the minor 2-equation and gets
reduced to P-mode. This leaves

E0 : a0=b0+0

E1 : b0=c0+0

E2 : b1=c1+0

90 HANLON ET AL.

E3 : b2=c2+1 P-mode

E4 : a1=b1+1

E5 : a2=b2+0 P-mode.

t=4: Now i=1. Set v=1 and $=1. Update n1=0+2. E2 is the minor 1-equa-
tion and gets reduced to P-mode. This leaves

E0 : a0=b0+0

E1 : b0=c0+0

E2 : b1=c1+0 P-mode

E3 : b2=c2+1 P-mode

E4 : a1=b1+1 P-mode

E5 : a2=b2+0 P-mode

t=3: mode=P because the previous value of mode, P, composed with the mode
of E3 , P, is P.

t=2: mode=P.
t=1: Now i=0. Set v=1 and $=0. Update n0=4+1. E0 is the minor 0-equa-

tion and gets reduced to G0 -mode. This leaves

E0 : a0=b0+0 G0 -mode

E1 : b0= c0+0 P-mode

E2 : b1= c1+0 P-mode

E3 : b2= c2+1 P-mode

E4 : a1=b1+1 P-mode

E5 : a2=b2+0 P-mode.

t=0: mode=G0 . Set $=0 and update n0=5+1.
The final values for (n0 , n1) are (6, 2), which agrees with the answer obtained by

explicit generation of all solutions. So, if d\&1= } } } =d2m=0 then AB(d)=6,
whereas if d\&1= } } } =d2m=1 then AB(d)=2.

2.2. Algorithm AC(d)

We now investigate the following problem: Given an (m, m)-interleaving _, a
nonnegative integer d with a \-bit binary expansion, determine AC(d), the number
of triples (a, b, c) # B3

m such that

3(a, b)=3(a, c)+d mod 2\ (10)

91COMBINATORICS OF CACHE MISSES

under the condition that 2m�\. This problem is superficially similar to Eq. (2),
with one small but critical difference: the variable that occurs on both sides of
Eq. (10) occurs in the 0-positions of _ on both sides of the equation, whereas the
variable that occurs on both sides of Eq. (2) occurs in the 0-position of _ on one
side of the equation and the 1-position of _ on the other side of the equation. This
difference makes the combinatorics of Eq. (10) radically different from the
combinatorics of Eq. (2), leading in the end to a conceptually simpler algorithm to
compute AC(d).

If we write out Eq. (10) in terms of component bit-equations as we did for
Eq. (2), we see that component equation t (for 0�t<2m) has one of two forms:
ai=ai+dt if _t=0, and b i=c i+dt if _t=1. The decoupling of the bits of a from
the bits of b and c indicates that the a-component of any solution of Eq. (10) can
be chosen independent of the b- and c-components. The decoupling also suggests
that we need to look at the distribution of 0s and 1s in _. Based on these observa-
tions, we start with a few definitions.

Definition 2.2 (Runs of _). Let _ be an (m, m)-interleaving, and let P be the
sequence [0, ..., \&1]. For = # [0, 1], an =-run of _ is a maximal-length contiguous
subsequence [u, ..., v] of P such that _u= } } } =_v==, where _2m through _\&1 are
declared to be 0. Order =-runs in increasing order of u, and denote the i th =-run of
_ by R(=)

i .

For technical reasons that will soon become evident, we will always want the
``lowest'' run to be a 0-run. This is a problem only when _0=1. In this case, we will
create a special empty 0-run R (0)

1 and label the nonempty 0-runs from R (0)
2 onward.

Thus, R (1)
i is sandwiched between R (0)

i and R (0)
i+1 . Note also that the 0-runs con-

strain possible choices of a, while the 1-runs constrain possible choices of b and c.
We obtain strong conditions on the (non)existence of solutions of Eq. (10) by

considering the restrictions of d to the 0-runs of _. The intuition behind the follow-
ing lemma and its proof are small variations of Lemma 2.1.

Lemma 2.3. Equation (10) has no solutions if d is inconsistent on any 0-run of _.
For = # [0, 1], if d is =-consistent on R (0)

i =[u, ..., v], then Eq. (10) has solutions iff
ku=kv+1==. If R(0)

1 is empty, then every d is declared to be 0-consistent on it.

Lemma 2.3 has two important consequences. First, it provides an early termina-
tion test for the algorithm. Second, if d is indeed consistent on all 0-runs of _, then
it simplifies the counting of the number of choices of a in the following way. Note
that each of the component equations is of the form ai=ai+dt . Since the same ele-
ment of a appears on both sides of the equation, there is in fact no constraint
on a! Thus, for every possible choice of b and c that we discover by examining the
1-runs (which we will do shortly), any of the 2m choices of a will work.

Consider R (1)
i =[u, ..., v], the i th 1-run of _. Recall that this run is sandwiched

between runs R (0)
i and R (0)

i+1 . Let d be zu-consistent on R(0)
u . Let t=|R (1)

1 |+ } } } +
|R (1)

i&1 |. Then the component equations in R (1)
i are

bt = ct �du �ku

ku+1 = maj(ct , du , ku)

92 HANLON ET AL.

bt+1 = ct+1 �du+1�ku+1

ku+2 = maj(ct+1 , du+1 , ku+1)

} } }

bt+v&u = ct+v&u�dv�kv

kv+1 = maj(ct+v&u , dv , kv).

By Lemma 2.3, we know that ku=zi and kv+1=zi+1 . Thus we are constrained
by being given the values of both the initial and terminal carries of the 1-run, and
must determine how many choices of bit values for b and c honor these constraints.
It turns out that the easiest way to count the possibilities is to reason about the bit
patterns as nonnegative integers. To this end, define $i=zu+�v

j=u dj2
j&u. That is,

$i is the integer corresponding to the bit pattern dv } } } du , with the initial carry value
absorbed into it. Also, let 2i=2v&u+1&$i . We then get the following result by case
analysis on the value of kv+1 .

Theorem 2.2. Let _ be an (m, m)-interleaving and let d # B\ be consistent on all
0-runs of _. Then the number of solutions to Eq. (10) is 2m } >l

i=1 Fi , where l is the
number of 1-runs of _ and

Fi={2i ,
$ i ,

if d is 0-consistent on R (0)
i+1

if d is 1-consistent on R (0)
i+1 .

Proof. By equating the coefficients of the distinct powers of 2 on the two sides
of (10) we arrive at a set of restrictions on the sequences a, b, c. Lemma 2.3
describes restrictions that result from equating coefficients of powers 2{ where { is
in a 0-run of _. The elements of a appear in these equations, with the same element
of a appearing on both sides. This gives no restrictions on a and so there are 2m=n
choices for a. This accounts for the factor of 2m that appears in the formula. The
remaining factors will count the number of choices we have for b and c.

Consider restrictions on b and c that result from equating coefficients of powers
2{ for { in a particular 1-run R (1)

i . Define ;i and #i by ; i=� t+v&u
j=t bj 2

j&t and
#i=�t+v&u

j=t cj2
j&t.

Case 1. Suppose zi+1=0. Then the component equations on R (1)
i are equiv-

alent to

;i&#i=$i (11)

where we have equality of integers in Eq. (11). So, the number of choices we have
for bj , cl satisfying the component equation on R (1)

i is equal to the number of
integers ;i , #i with 0�; i<2v&u+1, 0�#i<2v&u+1 that satisfy Eq. (11). For each
;i with $i�;i<2v&u+1 there is exactly one choice of #i such that ;i , #i satisfy

93COMBINATORICS OF CACHE MISSES

Eq. (11). For 0�;i<$i there are no choices of #i such that ; i , # i satisfy Eq. (11).
So the number of solutions to Eq. (11) is

2v&u+1&$i=2i ,

which is the i th factor in the product in the statement of the theorem.

Case 2. Suppose zi+1=1. Then the component equations on R (1)
i are equiv-

alent to

;i+2v&u+1=$i+#i ,

which can be rewritten as

#i&;i=2v&u+1&$ i . (12)

By the same reasoning as above, the number of solutions to Eq. (12) is $i , which
is the i th factor in the product in the statement of the theorem. K

Example 4. Let m=5, \=12, _=0110110001, and d=111100101111. We will
use Algorithm AC to compute AC(d).

In Step 1 we compute the runs and the consistency values zi

R (0)
1 = [], z1=0

R (1)
1 = [0]

R (0)
2 = [1, 2, 3], z2=1

R (1)
2 = [4, 5]

R (0)
3 = [6], z3=0

R (1)
3 = [7, 8]

R (0)
4 = [9, 10, 11], z4=1.

In Step 2 we compute the factors Fi and use them to determine AC(d)

i $i 2i F i

1 1 1 1

2 3 1 1

3 2 2 2

So AC(d)=32 } 1 } 1 } 2=64.

2.3. Counting Joint Solutions

The last problem we will consider in this section is to count those triples
a, b, c # Bm which satisfy the two equations

3(a, b)=3(b, c)+d (13)

94 HANLON ET AL.

and

3(a, b)=3(a, c)+e (14)

simultaneously. It is instructive to consider an example.

Example 5. Let m=5, \=11, _=0110001011, d=00010101111, and e=
00110001101. Recalling the characteristic sequence notation from Section 1.3, /_=
f4s4 s3 f3 f2 f1s2 f0s1s0 . Then the simultaneous equations that must be satisfied are

3(a, b)=3(b, c)+d 3(a, b)=3(a, c)+e

b0=c0+1 b0=c0+1 s0

b1=c1+1+k0 b1=c1+0+l0 s1

a0=b0+1+k1 a0=a0+1+l1 f0

b2=c2+1+k2 b2=c2+1+l2 s2

a1=b1+0+k3 a1=a1+0+l3 f1

a2=b2+1+k4 a2=a2+0+l4 f2

a3=b3+0+k5 a3=a3+0+l5 f3

b3=c3+1+k6 b3=c3+1+l6 s3

b4=c4+0+k7 b4=c4+1+l7 s4

a4=b4+0+k8 a4=a4+0+l8 f4

0=0+k9 0=0+l9

In the above set of equations, kt is the carry from the tth to (t+1)st equation
in 3(a, b)=3(b, c)+d whereas lt is the carry from the tth to the (t+1)st equation
in 3(a, b)=3(a, c)+e. We will refer to these two sets of equations as the d-system
and the e-system. Also, we will let B denote the number of fi -equations in the
system above. Note that B=m if 2m�\.

As we will see, it is seldom the case that there are any simultaneous solutions
to Eqs. (13) and (14). The next result states that even if there are simultaneous
solutions, there are not very many.

Theorem 2.3. The number of simultaneous solutions to Eqs. (13) and (14) is less
than or equal to 2&B times the number of solutions to Eq. (14).

Proof. Suppose there is a simultaneous solution to Eqs. (13) and (14). Then the
si -equations determine the values of b0 , b1 , ..., bB&1 . To this simultaneous solution
of Eqs. (13) and (14) we can correspond 2B solutions to Eq. (14), which have
the same bi and ci but where the choices of a0 , a1 , ..., aB&1 range over all
possibilities. K

95COMBINATORICS OF CACHE MISSES

One might ask whether there are instances in which the number of simultaneous
solutions to Eqs. (13) and (14) is exactly 2&B times the number of solutions to
Eq. (14). The next result tells us that this the case when d=e.

Definition 2.3. Let S denote the set of solutions to Eq. (14). We say two solu-
tions (a(1), b(1), c(1)) and (a(2), b(2), c(2)) # S are equivalent if b(1)=b(2) and c(1)=c(2).

It is straightforward to see that every equivalence class has size n and that
equivalence classes are indexed by pairs b, c # Bm .

Theorem 2.4. If d=e, then there is exactly one solution to Eq. (13) in every
equivalence class of solutions to Eq. (14).

Proof. Consider the equivalence class indexed by the pair b, c. It is clear that
there is at most one solution (a, b, c) to Eq. (13) in that equivalence class because
ai is determined by equation f i . It remains to show that there is at least one
solution.

Consider the process of solving for the ai and the carries kt in equations of type
(13) starting with b, c which gives (along with any a) a solution to Eq. (14). The
thing we need to check is that the carries kt we get in the equations of type (13)
are identical to the carries lt we get in equations of type (14). We see this by
induction on t.

Assume that kt&1=lt&1 . There are two cases to consider. First assume equation
t is labeled si so that in system (13) the tth equation is bi=ci+dt+kt&1 and in
system (14) the tth equation is bi=ci+dt+lt&1 . In this situation it is clear that kt

will be equal to lt . Next, assume that equation t is labeled f i . In this case the tth
equation in system (13) is ai=bi+dt+kt&1 , whereas the tth equation in system
(14) is ai=ai+dt+lt&1 . By Lemma 2.3 we have lt=lt&1=dt . By our induction
hypothesis, kt&1=lt&1=dt . Because kt&1=dt we have kt=dt so kt=lt , which
completes the induction step and finishes the proof. K

Corollary 2.5. Let notation be as in Theorem 2.3. Then:

1. The number of triples (a, b, c) which are simultaneous solutions to
3(a, b)=3(b, c)+d and 3(a, b)=3(a, c)+d is > Fi .

2. The number of simultaneous solutions can be computed in O(\) steps.

The above results show that there are not very many simultaneous solutions of
Eqs. (13) and (14). The next results indicate that in most instances there are no
simultaneous solutions.

Suppose there exist simultaneous solutions to Eqs. (13) and (14). From our
previous analysis, we know a number of things.

(a) e must be consistent on 0-runs of _.

(b) In Eq. (14) the carry into any 0-run and carry out of that 0-run must
both match the value of e on that run.

As a first test to whether there exist simultaneous solutions to Eqs. (13) and (14),
conditions (a) and (b) can be checked in O(\) steps. We are now going to focus
on 1-runs.

96 HANLON ET AL.

Suppose that equations u, u+1, ..., u+ j&1 constitute a 1-run and that these
equations are labeled si , s i+1 , ..., si+ j&1 . Let ;, #, $, = be the numbers with binary
expansions given

;=bi+ j&1 } } } b i+1b i

#=ci+ j&1 } } } ci+1ci

$=du+ j&1 } } } du+1 du

==eu+ j&1 } } } eu+1eu .

By comparing equations si , ..., si+ j&1 in Eqs. (13) and (14) we see that

;=#+$+ku&1=#+=+lu&1 . (15)

Also, lu&1 is specified to be the consistent value of e on preceding 0-run and # must
be chosen so that #+=+lu&1 is less than 2 j iff the value on e on the subsequent
0-run is 0. From Eq. (15), the following result follows immediately.

Theorem 2.6. Let $ and = be the numbers whose binary expansions are given by
the binary digits of d and e on a 1-run of _ as above. If there are simultaneous
solutions to Eqs. (13) and (14) then $ and = must differ by no more than 1.

More precisely, we must have one of the following four cases:

1. $==+lu&1 . Note. In this case we also must have ku&1=0.

2. $==+lu&1&1. Note. In this case we also must have ku&1=1.

3. $=0, ==2 j&1, lu&1=1. Note. In this case, we also must have that
ku&1=0 and that e is consistently 1 on the next 0-run.

4. $=2 j&1, ==lu&1=0. Note. In this case, we also must have that ku&1=1
and that e is consistently 0 on the next 0-run.

Theorem 2.6 gives another O(\) test which can determine that there are no
simultaneous solutions to Eqs. (13) and (14). Note that if we assume d and e are
chosen randomly, then Theorem 2.6 together with condition (a) show that the
probability that there exist simultaneous solutions to Eqs. (13) and (14) is no more
than 2&(B+U&R), where B is the number of fi -equations, U is the number of
si -equations and R is the number of runs of _. Note that B+U=min[2m, \].
Alternatively, if we have some freedom to choose d, e and _, then the conditions
given in (a) and Theorem 2.6 can be used to insure that there are no simultaneous
solutions to Eqs. (13) and (14). We will return to this important point in our later
paper on minimizing the number of cache misses.

It seems unlikely to us that there exists an algorithm which is polynomial in m
or linear in \ which determines the exact number of simultaneous solutions to
Eqs. (13) and (14). Just to conclude, we examine the case given in Example 5 just
to point out some of the complexities of this problem.

97COMBINATORICS OF CACHE MISSES

Turning to the set of equations given in Example 5, we first examine whether the
conditions set out in (a) and (b) hold. It can be seen that e is consistent on 0-runs
with value 1 on f0 , value 0 on f1 , f2 , f3 and value 1 on f4 . Condition (b) thus
implies that l1=l2=1, l3=l4=l5=l6=0 and l8=l9=0.

To now consider the constraints given by Theorem 2.6, we must look at 1-runs.
For the 1-run s0 , s1 , we have $===3 and l&1=0. So we are in Case 1. This
implies that k&1=0 and that l1=1. This gives a constraint on #=c0c1 i.e.,
#+=�4. This constraint on #, which comes from consideration of the e equations,
which implies that k1=1.

Moving now to the 1-run s2 , we have that $=1, ==0 and l2=1. So we are again
in Case 1 which implies that k2=0. But now we have an inconsistency: it is
impossible to have k1=1 and k2=0. So there are no simultaneous solutions to
Eqs. (13) and (14) in the case given in Example 5.

This particular example gives a flavor for the complex interplay that can take
place between the constraints imposed by the d equations and those imposed by the
e equations. At this time, we do not know a fast algorithm to determine the number
of simultaneous solutions exactly.

3. INCORPORATING CACHE BLOCK SIZE

In the last section, we devised fast algorithms to compute the number of solutions
to systems of equations of the form

3(a, b)=3(b, c)+d mod 2\

and

3(a, b)=3(a, c)+d mod 2\.

In practice, we will need to extend these algorithms to enumerate solutions to a
slightly different pair of equations. Usually 2* memory locations fit into a cache
block, represented by the denominator in the following equations.

Thus, the equation has to be taken mod 2\&*. In practice, * often equals 2 or 4.
We show the case *=2 to provide the case distinction in full detail; the extension
for * # N+

0 is straightforward, but requires consideration of more cases for *>2.3

\3(a, b)+:
4 �=\3(b, c)+;

4 � mod 2\&2 (16)

and

\3(a, b)+:
4 �=\3(a, c)+;

4 � mod 2\&2, (17)

where :, ; # B\ .

98 HANLON ET AL.

3 In general, we need to determine the distribution of output carry values at bit *&1. This can be
accomplished in a preprocessing step that takes O(*2) operations.

In this section we sketch methods, based on the ideas and algorithms developed
in Section 2, to compute the number of solutions to Eqs. (16) and (17). We will
take the two equations in turn, starting with Eq. (17) because much of what we find
there can later be reused for the treatment of Eq. (16).

3.1. Computing the Number of Solutions to Eq. (17)

To begin, we will write out the digits in the binary expansions of 3(a, b)+: and
3(a, c)+;. Equating these expressions gives a system of equations E

�
=E0 , E1 , ...,

E\&1 , where Eq. (17) imposes the requirement that equations E2 , E3 , ..., E\&1 must
be satisfied mod 2. In order to satisfy Eq. (17), E0 or E1 need not hold mod 2.
Consider E0 and E1 . They look like one of the following

a0+:0=a0+;0

a1+:1+k1=a1+;1+l1 (18)

or

a0+:0=a0+;0

b0+:1+k1=c0+;1+l1 (19)

or

b0+:0=c0+;0

a0+:1+k1=a0+;1+l1 (20)

or

b0+:0=c0+;0

b1+:1+k1=c1+;1+l1 , (21)

where k1 is the carry from the left side of E0 , and l1 is the carry from the right side
of E0 . Case (18) occurs when _1_0=00, (19) when _1 _0=10, (20) when _1_0=01,
and (21) when _1_0=11. The key observation is that the variables which appear
in these equations do not appear in any of the later equations E2 , E3 , ..., E\&1 ,
because only a i can occur more than once for each i and both instances of ai are
in equation Ez , where z is the bit position to which _ maps ai .

Our algorithm for enumerating the solutions to Eq. (17) begins with a loop over
all possible choices of values for the variables that occur in E0 and E1 . So, this
outer loop runs through 4, 8, 8, or 16 possibilities depending on whether we are in
case (18), (19), (20), or (21) respectively.

Once values for these variables have been chosen, we compute the carries k2 and
l2 that are added to the left and right sides of E2 . Let

:$=k2+ :
\&1

i=2

:i2
i&2

99COMBINATORICS OF CACHE MISSES

and

;$=l2+ :
\&1

i=2

; i2
i&2.

Then the number of solutions to Eq. (17) with the chosen values for the variables
in E0 and E1 is equal to the number of solutions to

3 $(a$, b$)+:$=3 $(a$, c$)+;$ mod 2\&2, (22)

where a$, b$, c$ each come from Bm&2 , Bm&1 or Bm depending on whether
_1 _0=00, 10, 01 or 11. Here 3 $ is the mixing function based on the interleaving
_$ obtained from _ by deleting _0 and _1 . Let

d={;$&:$
2\&2+;$&:$

if ;$�:$
if ;$<:$

Then the number of solutions to equation (22) is equal to the number of solutions
to

3 $(a$, b$)=3 $(a$, c$)+d,

which can be computed using the AC algorithm in O(m+\) steps.
With this generalization we call the algorithm the extended AC Algorithm.

3.2. Computing the Number of Solutions to Eq. (16)

As in Section 3.1 we will begin by writing out expressions for the digits in the
binary expansions of 3(a, b)+: and 3(b, c)+;. This gives a system of equations
E0 , E1 , ..., E\&1 , where the requirement of Eq. (16) is that E2 , ..., E\&1 must be
satisfied mod 2 (E0 and E1 need not hold mod 2).

Again, we will look at E0 , E1 and find that they have one of four possible forms

a0+:0=b0+;0

a1+:1+k1=b1+;1+l1 (23)

or

a0+:0=b0+;0

b0+:1+k1=c0+;1+l1 (24)

or

b0+:0=c0+;0

a0+:1+k1=b0+;1+l1 (25)

100 HANLON ET AL.

or

b0+:0=c0+;0

b1+:1+k1=c1+;1+l1 , (26)

where k1 is the carry from the left side of E0 , and l1 is the carry from the right side
of E0 . Case (23) occurs when _1_0=00, (24) when _1 _0=10, (25) when _1_0=01,
and (26) when _1_0=11. Note that in (24) and (25) the variables which occur in
equations E0 and E1 do not occur in E2 , E3 , ..., E\&1 , because only bi can occur
more than once for each i and both instances of b0 occur in E0 and E1 . Therefore,
we can use the same method we used in Section 3.1 to devise fast algorithms to
compute the number of solutions.

Cases (23) and (26) are slightly different because b0 and b1 may occur later in
E2 , E3 , ..., E\&1 . In Case (23), our algorithm has an outside loop over the four
possible choices of values for a0 and a1 . For each choice of these values, we
compute the carry k2 which is added to the left-hand side of E2 . We let

:$=4k2+ :
\&1

i=2

: i2
i

and we apply the AB Algorithm to count the number of solutions to

3(a, b)=3(b, c)+d

where

d={;&:$
2\+;&:$

if ;�:$
if ;<:$.

This number is equal to the number of solutions to Eq. (16) in which a0 and a1

have the specified values.
We handle case (26) in a way quite similar to (23). We loop over the four

possible choices of values for c0 and c1 . For each of these values, we compute the
carry l2 which is added to the right-hand side of E2 and let

;$=4l2+ :
\&1

i=2

; i2
i

and we apply the AB Algorithm to count the number of solutions to

3(a, b)=3(b, c)+d,

where

d={;$&:
2\+;$&:

if ;$�:
if ;$<:.

101COMBINATORICS OF CACHE MISSES

This number is equal to the number of solutions to Eq. (16) in which c0 and c1 have
the specified values.

With this generalization we call the algorithm the extended AB Algorithm.

4. CALCULATING THE NUMBER OF CACHE MISSES

In this section, we return to the problem of counting cache misses for the matrix
multiplication example. Recall that we are analyzing the data layout function
defined in terms of an (m, m)-interleaving _=_2m&1 } } } _1_0 , where Ai, k maps to
+1+3(i, k), Bk, j maps to +2+3(k, j), and Ci, j maps to +3+3(i, j). We use the
following suggestive notation to classify misses.

v A miss is the number of cache misses when accessing an element of A. The
quantities B miss and C miss are defined analogously.

v A�B miss is the number of cache misses which occur when an element of A
is accessed which was in cache but was removed because an element of B took
its place. The quantities A�A miss, A�C miss, B�A miss, B�B miss, B�C miss,
C�A miss, C�B miss, and C�C miss are defined analogously. Misses of these kinds
correspond to the number of solutions of the problems discussed in Sections 2.1
and 2.2.

v A�BC miss is the number of cache misses which occur when an element of
A is accessed which was previously in cache and such that both an element of B
and an element of C have taken its place in cache since it was most recently there.
Other misses of this nature are defined analogously. These correspond to the joint
solutions of the AB and AC problems, as discussed in Section 2.3. Recall that we
proved there that the number of such joint solutions is very small.

Considering the inclusion�exclusion property of set intersections, the task is to
enumerate the following types of misses:

A miss=A�A miss+A�B miss+A�C miss&A�AB miss

&A�BC miss&A�AC miss+A�ABC miss

B miss=B�A miss+B�B miss+B�C miss&B�AB miss

&B�BC miss&B�AC miss+B�ABC miss

C miss=C�A miss+C�B miss+C�C miss&C�AB miss

&C�BC miss&C�AC miss+C�ABC miss

Figure 1 shows this for A miss.
However in the special case of matrix multiplication, some misses need not be

considered; in particular there are no A�A, A�AB, A�AC, or A�ABC misses
because unique elements A i, k are accessed in the two outermost loops only. A
method to derive the types of misses that are required in the more general case of
programs other than matrix multiplication is subject of future work.

102 HANLON ET AL.

FIG. 1. A miss: inclusion�exclusion property.

Note that we are not including every type of miss in our analysis, but are includ-
ing a case that represents each of the key ideas involved in counting the number of
cache misses.

Throughout this section, we will continue to assume that 2m�\ to simplify the
exposition. In the case that 2m>\, the following changes must be made to the
analysis in this section. Each time an iteration point (i, k, j) is counted as a
miss, then only initial segments of the binary expansions of i, k, and j are deter-
mined.

There are no constraints on how these initial segments are extended to give com-
plete binary expansions of i, k, and j. So each miss enumerated in this section must
be multiplied by 2D, where D is the total number of undetermined binary digits in
i, k and j (the number D depends on which kind of miss is being enumerated and
so must be determined on a case by case basis).

4.1. Computing A miss

In this subsection we show how to efficiently compute A miss. An array element
Ai, k will be accessed at the n iteration points (i, k, w), where 0�w�n&1. Suppose
that we have a cache miss when Ai, k is accessed at the iteration point (i, k, j). As
the same element of A is accessed throughout the innermost loop, there are no A�A
misses. Since we are using the lexicographic ordering ioko j, the iteration point
(i, k, j) is immediately preceded by the iteration point (i, k, j&1) at which
the array element Ai, k is accessed. Thus at the iteration point (i, k, j&1) there
must be a memory access of an element of B or C which occupies the same cache
set as Ai, k .

Although possibly negligible, there could also be a small number of contributions
to A miss along the boundary of the innermost loop. The array element Ai, k&1 is
accessed during the (i, k&1, n&1) iteration step and the array element Ai, k is
accessed during the following iteration step, (i, k, 0). Suppose Ai, k&1 and Ai, k

occupy the same cache word, then a cache miss occurs if there is a memory access
of an element of B or C that maps to the same cache set as Ai, k&1 at (i, k&1,
n&1). It will be the case that the array element Ai, k existed in the cache, but was
removed by an access to Bk&1, n&1 or Ci, n&1 at iteration step (i, k&1, n&1).

We can now examine A�B miss and A�C miss separately.

103COMBINATORICS OF CACHE MISSES

4.1.1. Computing A�B miss

During the (i, k, j) iteration step we form the product Ai, k } Bk, j and add it to
Ci, j . When we do so, we access these three pieces of information in the order Ai, k

followed by Bk, j followed by Ci, j . So, in order for this cache miss to contribute to
A�B miss, it must be the case that the array element Ai, k was removed from cache
at the previous iteration step when the array element Bk, j&1 was accessed, i.e., Ai, k

and Bk, j&1 occupy the same word in cache. This is equivalent to

\+1+3(i, k)
4 �=\+2+3(k, j&1)

4 � mod 2\&2, (27)

where this equation is taken mod p
4=2\&2. So A�B miss is equal to the number of

solutions (i, k, j) to Eq. (27) with 0�i�n&1, 0�k�n&1 and 1� j�n&1. The
number of solutions to Eq. (27) is computed by the Extended AB Algorithm.

To count A�B misses along the boundary of the innermost loop, we determine
if Ai, k&1 and Ai, k occupy the same cache word

\+1+3(i, k&1)
4 �=\+1+3(i, k)

4 � (28)

and if so, we check if an access to the array element Bk&1, n&1 causes a cache miss

\+1+3(i, k&1)
4 �=\+2+3(k&1, n&1)

4 � mod 2\&2

incrementing the A�B miss count if both equations are satisfied.

4.1.2. Computing A�C miss

By the same reasoning as above, the number of cache misses that contribute to
A�C miss is the number of solutions to

\+1+3(i, k)
4 �=\+3+3(i, j&1)

4 � mod 2\&2, (29)

where this equation is taken modulo p
4=2\&2 and i, j, k are constrained to lie in

the intervals 0�i�n&1, 0�k�n&1 and 1� j�n&1. The number of solutions
to Eq. (29) is computed by the Extended AC Algorithm.

To count the contributions to A�C miss along the boundary of the innermost
loop, we check if Ai, k&1 and Ai, k occupy the same cache word exactly as in
Eq. (28), and if so we determine if an access to the array element Ci, n&1 causes a
cache miss

\+1+3(i, k&1)
4 �=\+3+3(i, n&1)

4 � mod 2\&2

incrementing the A�C miss count if both equations are satisfied.

104 HANLON ET AL.

4.1.3. Computing A�BC miss

We will count zero A�BC misses. The conditions in Section 2.3 can be checked
in O(\) steps to determine whether this count is accurate. As proved in Section 2.3,
even if there are instances of such misses, their number is small�less than 2&T of the
total number of misses, where T is the number of ones in the set [_2 , _3 , ..., _\&1].
In fact, on the basis of this result, we are setting all terms requiring the simultaneous
solving of equations (e.g., B�AB miss, B�BC miss, B�AC miss, B�ABC miss,
C�AB miss, C�BC miss, C�AC miss, C�ABC miss) to zero.

4.2. Computing C miss

The quantity C miss counts the number of iteration points (i, k, j) with k>0
such that the matrix element C[i, k, j] is not in cache thereby causing a miss. As
a first step, we will determine L[i, k, j] which denotes the most recent iteration
step, prior to (i, k, j) at which C[i, k, j] was in cache. Note that L[i, k, j] is the
most recent iteration step when an element of C was accessed that occupies the
same cache word as C[i, k, j]. If we write L[i, k, j]=(i $, k$, j $) this is equivalent
to

\+3+3(i, j)
4 �=\+3+3(i $, j $)

4 � . (30)

4.2.1. Computing C�A miss

The solution to Eq. (30) depends on the form of 3 and so at this point the
analysis must break into cases. There are four cases to consider depending on
whether _1_0=00, 01, 10 or 11. We will write out details in two of the cases which
represent the technical problems that come up in the other two cases. The details
of the remaining two cases are left to the reader.

Case 1. _1_0=00.
In this case, the four elements of C which occupy the same cache word as

C[i, k, j]=Ci, j are usually Ci, j&u , Ci, j&u+1 , Cij&u+2 , C i, j&u+3 , where +3+
3(i, j)#u mod 4. The modifier ``usually'' refers to the observation that not all of
these elements of C might exist in the extreme cases where j<u or j&u+3�n. But
as long as u>0 and j>0, Ci, j&1 is in the same cache word as Ci, j . In this case,
C[i, k, j] is brought into cache at the preceding iteration step (i, k, j&1) and so
L(i, k, j)=(i, k, j&1).

If j=0 or u=0 then L(i, k, j)=(i, k&1, j&u+3) unless j&u+3�n. In that
case (u=0 and j&u+3�n), L(i, k, j)=(i, k&1, n&1). To summarize: if u#
+3+3(i, j) mod 4, then

(i, k, j&1) if j>0 and u>0

L(i, k, j)={(i, k&1, j&u+3) if j=0 or [u=0 and j&u+3<n]

(i, k&1, n&1) if u=0 and j&u+3�n.

105COMBINATORICS OF CACHE MISSES

Now C�A miss is the number of pairs of iteration points (i, k, j), (x, z, y) such
that

L(i, k, j)<(x, z, y)�(i, k, j) (31)

and

\+1+3(x, z)
4 �=\+3+3(i, j)

4 � mod 2\&2. (32)

To clarify the connection between C�A miss, Eq. (31), and Eq. (32) note that
Eq. (32) states that A[x, z, y] and C[i, k, j] occupy the same cache word and
Eq. (31) states that iteration step (x, z, y) occurs sometime between the iteration
step (i, k, j) and then previous iteration step when C[i, k, j] was brought into
cache.

We now break our analysis into two cases depending on the exact form of
L[i, k, j]. If L[i, k, j]=(i, k, j&1) then we must have (x, z, y)=(i, k, j). Also, if
u=0 and j+3�n so that L[i, k, j]=(i, k&1, n&1) then Eq. (31) becomes
(i, k&1, n&1)<(x, z, y)�(i, k, j). This cannot be satisfied with z=k&1 because
we would then need n&1< y. So we must have z=k and y= j. This is a second
instance in which (x, z, y) must be equal to (i, k, j). In this case Eq. (32) states

\+1+3(i, k)
4 �=\+3+3(i, j)

4 � mod 2\&2.

Solutions to this equation are enumerated by the Extended AC Algorithm.
If j=0 or u=0 and j&u+3�n&1 then Eq. (31) states that (i, k&1, j&u+3)

<(x, z, y)�(i, k, j). We deduce that x=i and that z is equal to either k&1 or k.
Also, in this case we cannot satisfy the inequality j&u+3< y� j so we must have
z=k&1. Thus the contribution to C�A miss made in this case is number of solu-
tions to Eq. (32) which is

\+1+3(i, k&1)
4 �=\+3+3(i, j)

4 � mod 2\&2.

This is equivalent to enumerating solutions to

\+1+3(i, k$)
4 �=\+3+3(i, j)

4 � mod 2\&2,

where 0 � i � n&1, 0 � k$ � n&2, 0 � j � n&1. Solutions to this equation are
enumerated by the Extended AC algorithm.

This completes Case 1 in our analysis of C�A miss.

106 HANLON ET AL.

Case 2. _1_0=10.
The fundamental difference between the analysis in this case and the analysis in

Case 1 is the relationship between cache words and the arrays A, B, C. In par-
ticular, the elements of C that occupy the same cache word as Ci, j are

Ci&v, j&u , Ci&v+1, j&u , Ci&v, j&u+1 , Ci&v+1, j&u+1 , (33)

where

+3+3(i, j)#v mod 2

and

+3+3(i, j)&v
2

#u mod 2.

The analysis now parallels the analysis in Case 1 but with changes in some details
to reflect the cache word structure given in Eq. (33).

If j>0 and u>0 the L[i, k, j]=(i, k, j&1) and we proceed as in Case 1. If u=0
and j=n&1 then L[i, k, j]=(i, k&1, n&1)=(i, k&1, j). In both these cases, if a
cache miss is caused by the access of Ax, z removing C i, j at iteration step (x, z, y),
where L[i, k, j]<(x, z, y)�(i, k, j), then we must have (x, z, y)=(i, k, j). These
instances are enumerated as in Case 1 by the Extended AC algorithm .

If j=0 or if u=0 and j<n&1 then L(i, k, j)=(i, k&1, j&a+1). In this case,
(x, z, y) must equal (i, k&1, j&u+1) and we enumerate these instances as in
Case 1. This completes the computation of C�A miss in Case 2.

The computation of C�A miss in the remaining two cases is similar.
Note that C�C miss can be handled in a manner similar to C�A miss . There is

the same consideration of the most recent iteration step at which an element of C
was addessed that occupies the same cache word as C[i, k, j], and the analysis
breaks into the same four cases depending on _1_0 . The key difference is that in
this case, an access to Cx, y interferes with an access to Ci, j , where x, y are as in
Eq. (31).

4 .2 .2 . Computing C�B miss

To compute C�B miss , we need to compute the number of pairs of triples
(i, k, j), (x, z, y) which satisfy Eq. (31) such that C[i, k, j]=Ci, j and B[x, z, y]
=Bz, y occupy the same cache block. This latter condition is equivalent to

\+3+3(i, j)
4 �=\+2+3(z, y)

4 � mod 2\&2. (34)

107COMBINATORICS OF CACHE MISSES

As in the previous subsection, if

\+3+3(i, j&1)
4 �=\+3+3(i, j)

4 � ,

then Eq. (31) implies that (x, z, y)=(i, k, j). In that case, Eq. (34) is equivalent to

\+3+3(i, j)
4 �=\+2+3(k, j)

4 � mod 2\&2. (35)

Let _̂ be the interleaving obtained from _ by interchanging 0's and 1's and let 3�
denote the mixing function determined by _̂. Note that for any pair of nonnegative
integers v, w:

3(v, w)=3� (w, v).

Thus, we can rewrite Eq. (35) by

\+3+3� (j, i)
4 �=\+2+3� (j, k)

4 � mod 2\&2. (36)

The Extended AC Algorithm counts solutions to Eq. (36) which gives us a fast
algorithm to count contributions to C�B miss that arise in the instances where
(x, z, y)=(i, k, j).

The remaining contributions to C�B miss come from solutions to Eq. (34) in the
cases where either j=0 or

\+3+3(i, j&1)
4 �{\+3+3(i, j)

4 � .

The analyses of these two cases are somewhat different and so we do them
separately.

Consider the case where

\+3+3(i, j&1)
4 �{\+3+3(i, j)

4 � .

This can occur in one of three different ways. If _0=1 then this condition is equiv-
alent to +3+3(i, j)#0 mod 4. If _1 _0=10 then this condition is equivalent to
+3+3(i, j)#0, 1 mod 4. Finally, if _1 _0=00 then this condition always holds.

In this case, we have L(i, k, j)=(i, k&1, j+1) and so Eq. (31) becomes

(i, k&1, j+1)<(x, z, y)�(i, k, j).

At first glance, the enumeration of solutions to Eq. (34) appears to be problematic.
Although we can deduce that z is either k&1 or k, we have very little control on j.

108 HANLON ET AL.

So Eq. (34) contains four variables that are essentially independent. After some
simplification of the problem, we will see that this is in fact an advantage and
makes the enumeration of solutions particularly easy.

To count solutions to Eq. (34) we first loop over all possible values for the first
two digits in the binary expansions of 3(i, j) and 3(z, y). This will involve specify-
ing the first two digits of i, or the first digit of i and the first digit of j, or the first
two digits of j depending on the values of _1_0 . Let i $, j $ be the remaining,
unspecified digits of i and j. Define z$ and y$ similarly. Also, define 3 $ to be the
mixing function associated with _$= } } } _3_2 .

Having specified the first two digits of 3(i, j) and 3(z, y) we next perform the
following steps:

1. Check whether

\+3+3(i, j&1)
4 �=\+3+3(i, j)

4 � .

If so, go to the next step in the loop (here loop refers to the outermost loop whose
steps are indexed by the choices for possible first two digits of 3(i, j) and 3(z, y)).
Otherwise, continue to step 2).

2. Let +$3 be w +3
4 x+=1 where =1 is the binary carry from the first to the second

binary digits in +3+3(i, j).

3. Let +$2 be w +2
4 x+{1 where {1 is the binary carry from the first to the second

binary digits in +2+3(z, y).

The number of solutions to Eq. (34) given the specified digits in 3(i, j) and 3(z, y)
is equal to the number of solutions to

+$3+3 $(i $, j $)=+$2+3 $(z$, y$) mod 2\&2. (37)

Define d by

d={
+$3&+$2
p
4

++$3&<u$2

if +$3�+$2

if +$3<+$2 .

Then the number of solutions to Eq. (37) is equal to the number of solutions to
Eq. (38):

d+3 $(i $, j $)=3 $(z$, y$) mod 2\&2. (38)

Enumerating solutions to Eq. (38) is straightforward. Let d $ consist of the first
2m&2 binary digits of d. First, examine the remaining binary digits, dl for
2m&2�l�\&3. Unless these remaining binary digits are identical, there are
no solutions to Eq. (38). If they are identical and equal to = , then the number of
solutions to Eq. (38) is equal to the number of solutions to

d $+3 $(i $, j $)=3 $(z$, y$) mod 22m&2 (39)

109COMBINATORICS OF CACHE MISSES

for which the terminal carry on the left hand side of Eq. (39) is = . The key observa-
tion is that the number of solutions to Eq. (39) is equal to the number of pairs
(i $, j $) which result in terminal carry =��once such a pair has been specified there
is a unique choice of z$, y$ which satisfy Eq. (39).

In our design of the AC Algorithm (Section 2), we exactly determined the number
of pairs i $, j $ which give terminal carry = on the left-hand side of Eq. (39). This
number is:

{22m&2&d $
d $

if ==0
if ==1.

This finishes our enumeration of solutions to Eq. (34) in the case that

\+3+3(i, j&1)
4 �{\+3+3(i, j)

4 � .

To evaluate the complexity of this enumeration algorithm: there is an outer loop
through the 16 possible choices for the first two binary digits of 3(i, j) and 3(z, y).
Within that loop, we need to determine d and check whether the binary digits of
d are consistent between 2m&2 and \&3. That takes O(\) operations. Then we
need to compute d $ which can be done in O(m) operations. Thus the total com-
plexity in this case is O(\).

To complete the calculation of C�B miss we need to consider the case where
j=0. By the same series of reductions we used in the previous case, this reduces to
enumerating solutions to

d $+3 $(i $, 0)=3 $(z$, y$) mod 22m&2. (40)

As before, Eq. (40) has no solutions unless the binary digits dl , l=\&3, ..., 2m&1,
2m&2 are identical. If they are identical, let = # [0, 1] represent their common
value. In that case, the number of solutions to Eq. (40) is equal to the number of
i $ for which d $+3 $(i $, 0) has terminal carry = .

To efficiently compute this number, first scan the left hand sides of the equations
in Eq. (40) from bottom to top. Consider those left-hand sides which have the form
d $l+0+kl&1 (where 0 comes from the j $=0 component in 3 $(i $, 0), i.e., _l+2=1).
If d $l=1 then erase that equation as you know that whatever carry comes in, the
same carry will go out. If d $l=0 then stop your scan. You know that kl will have
to be 0. So we can start constructing solutions from the next equation on without
regard to any earlier binary digits of i $. To this end, let { be the number of i $a which
occur in equation in Eq. (40) that comes before your stopping point. Let d" be the
digits of d $ that remain on the left-hand side of Eq. (40) above the lth digit (we use
the word remain because we have erased some equations at earlier-steps in the
scan). Let i" be the corresponding digits of i $ and let + be the number of digits of
d". Then the number of solutions to Eq. (40) is 2{ times the number of i" such that

{d"+i"<2+

d"+i"�2+

if ==0
if ==1.

110 HANLON ET AL.

This number is computed as before which completes the j=0 case and therefore
completes our computation of C�B miss .

Note that the algorithm described here to handle the case j=0 has complexity
O(\). Also note that for each choice of initial two digits in 3(i, j), the solutions to
Eq. (34) where j=0 are either contained in, or else disjoint from, the solutions
where

\+3+3(i, j&1)
4 �{\+3+3(i, j)

4 � .

It is trivial to determine whether there is inclusion by examination of the initial two
digits chosen which takes care of any overcounting that results from iteration steps
(i, k, j) that are enumerated in both of these cases.

4.3. Computing B miss

In this subsection we finish the analysis of misses by computing B miss . The
quantity B miss counts the number of iteration points (i, k, j) at which the matrix
element Bk, j is not in cache, having been there previously.

If Bk, j is in the same cache block as Bk, j&1 , (Note. This case will arise if _0=1
and +2+3(k, j)�1, 2, 3 mod 4, or if _1 _0=10 and +2+3(k, j)#2, 3 mod 4.) any
collisions that forced Bk, j out of cache must have occured at iteration step
(i, k, j&1) if the collision occurs with an element of C or at step (i, k, j) if the colli-
sion occurs with an element of A. Using arguments that are similar to those in
previous cases, we see that these instances are enumerated by the Extended
AB Algorithm and the Extended AC Algorithm . So we only need to examine the
cases where Bk, j and Bk, j&1 occupy different cache words. This analysis depends on
the form of _ and so we need to consider different cases.

4.3.1. Computing B�A miss

We want to add one to B�A miss if there is an iteration step (x, z, y) with

(i, k&1, j+1)<(x, z, y)�(i, k, j)

for which the matrix entry Ax, z occupies the same cache word as Bk, j . Note that
x=i and that z=k&1 or z=k. We are free to choose y as long as we choose
y> j+1 when z=k and y� j when z=k.

Case 1. Bk, j is in the same cache word as Bk&1, j but not in the same cache
word as Bk, j&1 . (Note: This case will arise if _1_0=10 and +2+3(k, j)#1 mod 4
or if _1 _0=00 and +2+3(k, j)#1, 2, 3 mod 4).

In this case, Bk, j is brought into cache at iteration step (i, k, j&1). The enumera-
tion of misses in this case is similar to previous cases.

111COMBINATORICS OF CACHE MISSES

Enumerating (i, k, j) which satisfy these conditions is equivalent to counting
(i, k, j) which are solutions to:

\+2+3(k, j)
4 �=\+1+3(i, k)

4 � mod 2\&2 (41)

(we can then choose any y� j) OR which are solutions to

\+2+3(k, j)
4 �=\+1+3(i, k&1)

4 � mod 2\&2 (42)

with j<n&1 (we can then choose any y> j+1). In doing so, we must be careful
to count those (i, k, j) which satisfy both sets of equations only once. Fortunately,
because we are in Case 2, we know that

\+2+3(k, j)
4 �=\+2+3(k&1, j)

4 � .

So we can replace Eq. (42) with an identical equation which has k&1 in place of
k on the left hand side. When this is done, Eq. (42) is identical to Eq. (41) with the
variable k$=k&1 in place of k. So, to count (i, k, j) which are solutions to at least
one of Eq. (41) or Eq. (42), we can just count solutions to Eq. (41). The number of
solutions to Eq. (41) can be computed as in previous cases.

Case 2. Bk, j is in a different cache block from both Bk&1, j and Bk&1, j . (Note:
This arises exactly when +2+3(k, j)#0 mod 4).

In this case, the most recent previous access of Bk, j was at iteration step

(i&1, k+3, j) if _1_0=00

(i&1, k+1, j+3) if _1_0=01 or 10

(i&1, k, j+3) if _1_0=11.

We will consider just one of these possibilities��the others are handled in similar
ways. Assume that _1 _0=10.

The iteration step (i, k, j) contributes to B�A miss if there is an iteration step
(x, z, y) with

(i&1, k+1, j+1)<(x, z, y)�(i, k, j)

satisfying

\+3+3(k, j)
4 �=\+1+3(x, z)

4 � mod 2\&2

This is similar to the exceptional case for C�B miss , where +3+3(i, j)#0 mod 4.
We enumerate solutions in a similar way.

112 HANLON ET AL.

Note that B�B miss and B�C miss are computed in ways quite similar to B�A
miss , dividing the analysis in the same Case 1 and Case 2. For B�B miss , we are
counting triples (i, k, j) such that the array element Bk, j was in cache but was
removed because array element Bz, y took its place in cache. For B�C miss , we are
counting triples (i, k, j) such that Bk, j was displaced from cache by Cx, y .

This completes the enumeration of cache misses.

5. A-WAY ASSOCIATIVE CACHE

In this section, we indicate the changes needed to generalize our enumeration
of cache misses from direct mapped cache to the case of an A-way associative
cache (Fig. 2). In this case, memory location M is mapped to the cache set
4=w M

4 x mod pA , where pA= p
A is the number of cache sets. 4 contains A cache

blocks (each consisting of four memory locations, as explained in Section 3) that
are filled according to either the first-in, first-out (FIFO) protocol, the least recently
used (LRU) protocol or random fill [6]. LRU gives the best performance but is
usually the most difficult to describe. We will show the analysis given the LRU
protocol.

Assuming the LRU protocol, a cache block is evicted on a cache miss when its
last access lies furthest back in time, i.e., in our framework, we must enumerate
instances where a matrix element X is accessed and brought into the cache set 4,
and where at least A times, since the previous access of X, different matrix elements
are accessed that are not in cache and which are mapped to the same cache set 4.
We will use the term collisions for such instances and call these instances collisions
with X. For more specificity, we will characterize collisions according to what kinds
of array elements are involved. So, we will talk about C�A collisions meaning
instances when an array element from A is brought into the same cache set as an
element of C between consecutive accesses of that element of C. The relationship
between collisions and cache misses is straightforward��when we access a matrix
element X, we will have a cache miss if there have been greater than A collisions
with X since the previous access. Thus, misses constitute a subset of collisions.

In the following, we will show the analysis for C collisions . According to our
strategy, we will enumerate iteration steps (i, k, j) according to the number of colli-
sions of type C�A , C�B , C�C , C�AB , C�AC , C�BC , and C�ABC that have
occurred between the access of Ci, j at iterations step (i, k&1, j+{) and (i, k, j).

The considerations that go into enumeration of collisions will be very similar the
considerations that went into the enumeration of cache misses in the direct mapped
case, but the general enumeration framework will be somewhat more challenging.

FIG. 2. (a) cache word (b) cache block, size 4 (c) cache set, A=3.

113COMBINATORICS OF CACHE MISSES

Instead of dividing the analysis according to which matrix is being accessed, we will
divide the analysis according to the number of iteration steps since the most recent
access of the matrix element under consideration.

Consider the situation where we access a matrix element X at iteration step
(i, k, j). At this point, we will not yet specify which of the arrays A, B or C that
X comes from.

Case 6.1. The matrix element X was last accessed at iteration step (i, k, j&1).
In this case, the access of X at iteration step (i, k, j) can only cause a cache miss

for L=1, 2. This case can be handled using arguments from the previous section.
Note that this case includes all A misses and a subset of the C misses .

Case 6.2. The most recent access of X (prior to iteration step (i, k, j)) was at
iteration step (i, k&1, j+{) for some {.

At this point, it is necessary to consider which of the arrays X comes from.
Consider the problem of determining whether there is a cache miss with an

A-way associative cache when C i, j is accessed at iteration step (i, k, j). For the next
few paragraphs, it is important to keep in mind that i, k, j are fixed. We are going
to try to find conditions on i, k, j under which there will be at least A collisions
with Ci, j between iteration steps (i, k&1, j+{) and (i, k, j).

For C�A collisions , let : be the number of distinct Ax, z which occupy the same
cache set as Ci, j and which are accessed between steps (i, k&1, j+{) and (i, k, j).
By that latter condition, we must have x=i and z # [k&1, k]. So, :=0, 1, 2
depending on whether neither, one of, or both of u=k&1 and u=k give solutions
to

\+3+3(i, j)
4 �=\+1+3(i, u)

4 � mod 2\. (43)

For C�B collisions , let ; be the number of distinct Bz, y which occupy the same
cache set as Ci, j and which are accessed between steps (i, k&1, j+{) and (i, k, j).
By that latter condition, we must have x=i and z # [k&1, k]. To occupy the same
cache set as Ci, j we must have

\+3+3(i, j)
4 �=\+2+3(z, y)

4 � mod 2\. (44)

Finally for C�C collisions , let # be the number of distinct Cx, y which occupy the
same cache set as Ci, j and which are accessed between steps (i, k&1, j+{) and
(i, k, j). By the latter condition, we must have x=i. To occupy the same cache set
as Ci, j we must have

\+3+3(i, j)
4 �=\+3+3(x, y)

4 � mod 2\. (45)

114 HANLON ET AL.

Since x=i, Eq. (44) is equivalent to

\+3+3(i, j)
4 �=\+3+3(i, y)

4 � mod 2\. (46)

Before diving into details, it is worth discussing the broad outlines of the
enumeration method that we follow. Our immediate goal is to enumerate C misses
with an A-way associative cache. More precisely, we want to count iteration steps
(i, k, j) where the most recent prior access of Ci, j was at iteration step (i, k&1,
j+{) and where there have been at least A distinct matrix elements X inserted into
the same cache set as Ci, j between iteration steps (i, k&1, j+{) and (i, k, j).

The solutions to Eq. (43) characterize those X=Ai, u which collide with Ci, j , the
solutions to Eq. (44) characterize those Bz, y which collide with Ci, j and the solu-
tions to Eq. (46) characterize those Ci, y which collide with Ci, j , all collisions occur-
ing between iteration steps (i, k&1, j+{) and (i, k, j).

For any fixed (i, k, j) there can be at most two C�A collisions because solutions
to Eq. (43) determine (i, k, j). The collisions will occur when Ai, u is inserted into
the same cache set as Ci, j . Since u must be either k or k&1, there can be at most
two such collisions. There are two collisions if (i, k&1, j) and (i, k, j) are
simultaneously solutions to Eq. (43) and so we will have to enumerate such instances.

The treatment of C�B collisions is more complicated. The number of collisions for
a fixed (i, k, j) is the number of solutions to Eq. (44) with z=k and y� j plus the
number of solutions to Eq. (44) with z=(k&1) and y> j. If 2m�\ then z and y
are completely determined by Eq. (44) and so the total number of C�B collisions for
a fixed (i, k, j) will be at most two. However, if 2m>\ then you must consider the
number of ways you can extend mod 2\ solutions i, j, z, y of Eq. (44). You have
unrestricted choice of extensions for i, z thus creating 22 } E0 distinct choices for i, k.
For each choice of extension of j you must count to extensions of y so that y� j
if z=k or y> j if z=(k&1). The number of such extensions of y will dictate the
number of C�B collisions for this particular (i, k, j). A crucial consideration is
whether (i, k, j) and (i, k&1, j) are simultaneously solutions to Eq. (44). If so, any
extension of y will create a C�B collision without any consideration of how y com-
pares to j. So, we will need an algorithm to determine the number of iteration steps
(i, k, j) for which there are simultaneous solutions to Eq. (44) with z=k and
z=k&1.

Considerations of extensions also come into play when counting C�C misses . In
this case, k is arbitrary so whatever enumeration of collisions we do for a fixed i,
j will hold for all iteration steps of the form (i, k, j). Again, Eq. (46) determines y
(in terms of i, j) mod 2\. We can then extend i, j, y without restriction in digits \
to 2m&1. Different extensions of i, j give different iteration steps (i, k, j) (again, k
is free to take on any value). However, different extensions of y give multiple
C�C collisions at the iteration step (i, k, j).

This gives a framework for the enumeration. The method will utilize the technol-
ogy we have already developed, with a couple of simple extensions, to enumerate
solutions to Eq. (43), (44), and (46). If 2m�\ then this analysis follows closely the
analysis of cache misses in the direct mapped case done in Section 4.

115COMBINATORICS OF CACHE MISSES

So we will focus on the case where 2m>\ where there are considerations not
previously encountered. In this case, we must consider extensions of solutions to
binary digits \ and beyond. These extensions sometimes expand the number of
iteration points (i, k, j) and sometimes expand the number of collisions per itera-
tion point.

When this analysis is complete, we will have counted C�A , C�B and C�C colli-
sions separately. We must then indicate how to count iteration points where there
are simultaneous C�A , C�B and C�C collisions . We begin with two technical
lemmas that will be key to our analysis.

Lemma 5.1. There is an algorithm, ALGORITHM D1 , that counts the number of
triples (i, z, j) such that

\+3+3(i, j)
4 �=\+1+3(i, z)

4 �=\+1+3(i, z+1)
4 � mod 2\. (47)

Moreover, this algorithm has the same complexity as the AC ALGORITHM.

The algorithm proceeds loops over possible first two digits of 3(i, j) and 3(i, z).
For each such choice, the algorithm computes if there is a contribution to the total
count and proceeds to the next step in the loop. The complete proof is shown in
Appendix A.1.

There is a second situation, similar in nature, in which we will need to count
instances where two solutions differ by just one in one of the variables.

Lemma 5.2. There is an algorithm, ALGORITHM D2 , which counts the number
of triples (i, k, j) # B3

m such that there are simultaneous solutions v, x # Bm to

\+3+3(i, j)
4 �=\+2+3(k, v)

4 �=\+2+3(k&1, x)
4 � . (48)

In addition, this algorithm will determine the number of solutions to Eq. (48) which
satisfy v� j<x. The complexity of this algorithm is O(\).

The complete proof is somewhat lengthy. It can be found in Appendix A.2.
We are now ready to enumerate cache misses with an A-way associative cache

using the strategy outlined above. We introduce two more pieces of notation to ease
discussion. First, let E0 and E1 be the number of _i with i�\ which are equal to
0 and 1, respectively. Let E=E0+E1 . Note that E=max[2m&\, 0]. Second,
when referring to a variable that occurs in one of the equations Eq. (43)�Eq. (46)
we will use r� to denote the digits in the variable r that occur in the equation taken
mod 2\ and (p, q, r)2\ to denote that all variables in the tuple should be taken
mod 2\; i.e., triple (p, q, r)2\ contains p� , q� , and r� . Note that r� =r if E=0. Let us first
enumerate C�A collisions .

5.1. Enumeration of C�A collisions

Step 1. Using the methods from Sections 2�4, determine NS, the number of
triples (i, j, u)2\ which satisfy Eq. (43). Using ALGORITHM D1 from Lemma 5.1,

116 HANLON ET AL.

determine ND, the number of triples (i, j, u)2\ such that (i, j, u)2\ and (i, j, u&1)2\

simultaneously satisfy Eq. (43).

Step 2. There are (NS&ND) } 2E0+2E1 iteration steps (i, k, j) at which there has
been a single C�A collision since the previous access of Ci, j . There are ND } 2E0+2E1

iteration points (i, k, j) at which there have been two C�A collisions since the
previous access of Ci, j .

5.2. Enumeration of C�B collisions

This is the far more interesting case because elements of both B and C (C[i, j]
and B[k, j]) are less ``well behaved'' than those A[i, k] of array A. Thus, subse-
quently we show the approach in full length.

Step 1. Using the methods from Sections 2�4, determine NS, the number of
triples T=(i, j, z)2\ having the property that there is a y� such that (i, j, z, y)2\ satisfies
Eq. (44). To each such triple T we attach a multiplicity m[T], this being the
number of y� . Equation (44) almost completely determines y� ; however, this multiplicity
may arise if there is more than one choice of initial digits for y� , which give the same
carry in +2+3(z, y) from digits 0, 1 to digit 2. Using ALGORITHM D2 from
Lemma 5.2, determine ND, the number of triples (i, j, k)2\ such that there are
simultaneous solutions (i, j, k, u)2\ and (i, j, k&1, x)2\ to Eq. (44). Also, using
ALGORITHM D2, determine ND1, the number of triples (i, j, k)2\ such that there
are simultaneous solutions (i, j, k, u)2\ and (i, j, k&1, x)2\ to Eq. (44) with
x� � j<u� . Again, we will attach a multiplicity to each of these solutions.

Step 2. The next step differs significantly depending on whether E>0 or E=0,
i.e, whether 2m�\ or 2m>\. We divide into those two cases, of which the latter
is the more interesting.

Case 1: E=0

In this case, our enumeration is straightforward. There are ND1 iteration points
(i, k, j) in which there are two collisions of the forms #1=(i, k, j, u) and
#2=(i, k&1, j, x). Each of #1 and #2 must be counted according to its multiplicity.
There are NS&2 } ND1 iteration points where there has been a unique collision
(which must be counted with multiplicity).

Case 2: E>0

In this case, the enumeration is more challenging. Consider a solution T=
(i, z, j)2\ counted in the number NS. It is enumerated because there exists a y� such
that (i, j, z, y)2\ is a solution to Eq. (44). Let T2\=(i, z&1, j)2\ . Assume first that
T2\ is not also a solution to Eq. (44). Let (i, k, j) be any triple of numbers that
extend T. Any extension of y� will count a collision that occurs when Bk, j is accessed
at iteration step (i, k, y) so long as y� j. Let ,(j)=w j

2\x and let ,(y)=w y
2\x . If

,(y)<,(j), then y< j. If ,(y)>,(j) then y> j. If ,(y)=,(j), then y� j iff y� �}� .
So, ,(j) is an estimate for the number of collisions that is correct to within one.

117COMBINATORICS OF CACHE MISSES

On the other hand, the extension of y is arbitrary. So, for every solution
T=(i, z, j)2\ to Eq. (44) counted by NS which is not counted by ND, and for every
choice of , # [0, 1, ..., 2E1&1] there are 22 } E0 iteration steps (i, k, j) for which the
number of C�B collisions is , times the multiplicity of the triples, and this estimate
is correct to within the multiplicity.

Assume now that T2\ is also a solution to Eq. (44). Such pairs (T, T2\) are
enumerated by ALGORITHM D2: their contribution to the analysis above must be
subtracted out as a first step. In this case, every one of the 2(2E0+E1) extensions
(i, k, j) of T=(i, z, j)2\ is an iteration step at which there have been m[T] } 2E1

collisions between the access of Ci, j at iteration step (i, k&1, j+{) and current
access.

The reasoning is as follows. Let (i, z, j, u)2\ and (i, z&1, j, x)2\ be the
simultaneous solutions to Eq. (48). There are 2(2E0+E1) extensions of (i, z, j)2\ to a
triple (i, k, j). Let , # BE1

. If ,�,(j) then we assign , to be an extension of u� to
a u� j so that there is a collision when Bk, u is accessed at iteration step (i, k, u).
If ,>,(j) then we assign , to be an extension of sx� to an x> j so that there is a
collision when Bk&1, x is accessed at iteration step (i, k&1, x).

5.3. Enumeration of C�C collisions

Let NS be the number of solutions to Eq. (46) which we can compute using the
methods in Sections 2�4. For every choice of solution (i, j, y)2\ to Eq. (46) there are
2E0+E1 ways to extend @� , }� to i, j # Bm . For each such pair of extensions there are
2m ways to choose a k to complete the determination of the iteration step (i, k, j).
Then every one of the 2E1 possible extensions of y� to y # Bm indexes a collision
between Ci, y and Ci, j that occurs between the access of Ci, j at iteration step
(i, k&1, j+{) and the access at iteration step (i, k, j). If y< j then the collision
occurs at the iteration step (i, k, y), whereas if y> j then the collision occurs at
iteration step (i, k&1, y). There is one exception to this analysis. Clearly y� =}� is a
solution to Eq. (46) if and only if the choice of initial digits for y� and }� are identical.
So, it is straightforward to compute R, the number of solutions to Eq. (46) in which
y� =}� . The significance of these R solutions, is that if y� =}� , then y= j is a possible
extension of y� in which case, the collision we count above is not genuine.

To summarize, there are NS } 2E0+E1+m iteration points where there have been
C�C collisions . Of these, in R } 2E0+E1+m cases there have been 2E1&1 collisions
and in (NS&R) } 2E0+E1+m there have been 2E1 collisions.

The following chart summarizes the analysis of C�A , C�B , and C�C collisions
above.

Type Number of iteration points Number of collisions

C&A NSequation (43) } 2E0+2 } E1 1 or 2

C&B1 (NSequations (44)&2 } NSequation (48)) } 22 } E0 } (*,<2E&1) , z=k
2E1&, z=k&1

C&B2 NSequation (48) } 22 } E0+E1 2E1

C&C NS } 2E0+E1+m 2E1 or (2E1&1)

118 HANLON ET AL.

It remains to enumerate iteration points that fall into more than one of those
categories. To understand the need for this, assume for example that 2E1<A<
22 } E1. Then no iteration point would exhibit more than A collisions of a single type
C�A , C�B , or C�C . However, if there exists and iteration point that is simultaneously
of type C�B2 and C�C , then there would be at least 22 } E1>A collisions between
the access of Ci, j at (i, k&1, j+{) and the access at (i, k, j). So there would be a
C miss at (i, k, j) with an A-way associative cache.

The way we proceed is largely similar to what we have already shown in
Section 4 for the direct mapped case. The lengthy analysis shown in Appendix A.3
yields a method to enumerate iteration points by number of C collisions . Using this
method, we can determine ,(C, t), the number of iteration points (i, k, j) for which
there have been exactly t collisions with Ci, j between the prior access of Ci, j and
the access at (i, k, j). Assuming an A-way associative cache with a LRU protocol
the number of C misses is �t�A ,(C, t).

At this point we have indicated how to enumerate A misses and C misses in the
case of an A-way associative cache. It remains to enumerate B misses . Since the
technical difficulties we encounter, as well as the ideas we use to overcome these dif-
ficulties, are similar to those seen in the enumeration of C misses we leave details
to the reader.

The extension to first in first out (FIFO) replacement is straightforward. Here,
the requirement that the accessed matrix elements are different is dropped in the
definition of a collision.

6. CONCLUSIONS

This paper introduced a class of array layouts, interleavings, and efficient algo-
rithms to exactly assess the number of cache misses caused by such layouts when
used in the context of matrix multiplication. The layouts are described by bit-level
address manipulations, and cache misses are counted by reasoning about the solu-
tions to simple bit-level equations. Most importantly, we achieve a reduction in
complexity from O(2m+\) to O(max(m, \)) with respect to the naive algorithm by
exploiting properties of carry propagation. Although there are various subcases in
the analysis of cache misses, each case can be ultimately reduced to one of two
combinatorial enumeration problems.

A particular strength of our techniques is that it explicitly handles cross inter-
ference between arrays, which is generally considered to be difficult to handle. Also,
our model allows an elegant extension to a set-associative cache with LRU replace-
ment strategy.

Our current work has several limitations. First, we have thus far provided an
analysis only of matrix multiplication, and for 2m_2m matrices at that. It seems
likely that the ideas can be generalized to handle other computations, but this
remains to be demonstrated. Second, a number of special cases arise in dealing with
the least significant bits of _ that are truncated when converting a memory address
to a block address. Our restriction to a cache block size of four elements required
us to handle only two bits of _, but the problem could be more acute for larger

119COMBINATORICS OF CACHE MISSES

block sizes (e.g., in analyzing TLB behavior). Finally, our use of inclusion�exclu-
sion poses the imminent danger of combinatorical explosion when the interaction
of many arrays has to be calculated. However, as mentioned in Section 2.3, this case
can be adequately approximated as many of these intersections are empty or sparse.

Our immediate future work will tackle the optimization problem of determining
layout functions that minimize the number of cache misses for matrix multiplica-
tion. There are also related problems��such as counting compulsory misses, dif-
ferentiating capacity and conflict misses, and identifying cache contents at the end
of executing a loop nest��for which efficient algorithms remain to be found.

APPENDIX A

Proofs and Details for Section 5

A.1. Proof of Lemma 5.1

Proof. First, the algorithm will loop over the possible first two digits of 3(i, j).
As before in Section 3, we will let +$3+3 $(i $, j $) denote the part of +3+3(i, j) in
digits 2 to (\&1) where the carry from digits 0, 1 are incorporated into +$3 .

Similarly, loop over the possible first two digits of 3(i, z) (some of which might
have already been fixed because i is common to 3(i, j) and 3(i, z). When
3(i, z+1) is computed from 3(i, z) there will be some carry = # B2 from the part
of z+1 that occurs in the first two digits of 3(i, z+1) to the part of z+1 that
occurs in the digits 2&(\&1) of 3(i, z+1). Note that = is determined by the first
two digits of 3(i, z) that we are looping over. Lastly, let #1 and #2 be the carry from
digit one to digit two in +1+3(i, z) and +1+3(i, z+1) respectively. We use the
prime notation from Section 4 to denote digits 2&(\&1). Combining all this we
have

+$3+3 $(i $, j $)=+$1+3 $(i $, z$)+#1=+$1+3 $(i $, z$+=)+#2 . (49)

The equalities in the equation above are modulo 2\&2 but still it is clear that the
only possible ways in which they can be realized are if

1. #1=#2===0

or

2. #1===1, #2=0 and _2=1.

So the algorithm proceeds in the following way. It loops over possible first two
digits of 3(i, j) and 3(i, z). For each such choice, the algorithm computes #1 , #2

and = . If neither 1 nor 2 above is satisfied, then there is no contribution to the total
count and the algorithm proceeds to the next step in the loop. If either 1 and 2
above is satisfied, then the algorithm computes the number of solutions to

+$3+3 $(i $, j $)=+$1+3 $(i $, z$) (50)

using the AC ALGORITHM and adds that number to the total.

120 HANLON ET AL.

A.2. Proof of Lemma 5.2

Proof. We will need some terminology and notation to explain this algorithm.
Let I be the number of 0's in the set [_0 , _1]. The initial digits of either k or k&1
will refer to the first I, i.e., those that appear in the first two digits of 3(k, v) and
3(k&1, x). Let & be the minimal index greater than 1 with _&=0. So we have
_2=_3= } } } =_&&1=1.

The first step in this algorithm is to loop over choices for the initial digits of k&1
(which will also determine the initial digits of k. Let { } 2I be the carry when 1 is
added to the initial digits of k&1. Note that { is carried to the &th binary digit
when 3(k, v) is computed from 3(k&1, v).

The next step is to loop over possible carries =0 , =1 and =2 from the zero and
first binary digits to the second binary digit in +3+3(i, j), +2+3(k, v) and
+2+3(k&1, x), respectively. We compute the number N0 N1N2 , where N0 is the
number of choices for the zero and first binary digits of +3+3(i, j), which will
result in a carry of =0 , where N1 is the number of choices of initial digits of v and
x, respectively, which will result in carries of =1 and =2 , respectively (given the
choices we have already made for initial digits in k&1 and k).

With this notation and the prime notation we can express Eq. (48) as

+$3+3 $(i $, j $)+=0=+$2+3 $(k$, v$)+=1=+$2+3 $((k&1)$, x$)+=2 . (51)

So,

3 $((k&1)$, v$)+=1+{ } 2&&2=3 $((k&1)$, x$)+=2 . (52)

Rewriting Eq. (52) we obtain,

(=1&=2)+{ } 2&&2=3 $((k&1)$, x$)&3 $((k&1)$, v$). (53)

Let v̂ and x̂ denote v$ and x$ taken mod 2&&2. We note that the right-hand side of
Eq. (53) is equal to

x̂&v̂+GLOB,

where GLOB is a multiple of 2&&1. Since the left-hand side of Eq. (53) is strictly less
than 2&&1, we deduce that GLOB=0 and so

=1+=2+{ } 2&&2=x̂&v̂. (54)

Case 1. {=0.
In this case, Eq. (54) becomes

=1+v̂==2+x̂. (55)

Also, =1+v̂==2+x̂ is completely determined by the equality equation (51). So
there is exactly one choice of v̂ and x̂ in this case for every i, j. So in this case there

121COMBINATORICS OF CACHE MISSES

are min[2\&2, 22m&2] choices for i, j. For each such choice there is exactly one
choice of k. For this triple (i, k, j) there are N0 } N1 } N2 choices of Bw, z that collide
with Ci, j between its access at iteration steps (i, k&1, j+{) and (i, k, j).

It remains to determine the number of these collisions satisfying v� j<x. The
reader will note that

=1+v$==2+x$

so there are no such j unless =1=1, =2=0 and in this case any j with v� j<x must
satisfy

v$= j $<x$=v$+1. (56)

The first thing to check is whether the choices of initial digits for j, x, v would mean
that j $, x$, v$ which satisfy Eq. (56) would give j, x, v with v� j<x. If not, then
there are no such j. If so, we enumerate j $, x$, v$ by enumerating solutions to

+$3+3 $(i $, j $)=+$2+3 $(k$, j $)

using the methods developed in Section 2.

Case 2. {=1.
In this case, Eq. (54) is equivalent to

v̂+=1=x̂+=2+2&. (57)

Recalling that v̂, x̂ # B& , we see that Eq. (57) can have a solution only if x̂=0,
=2=0, =1=1 and v̂=2&&1. In order for these choices of x̂, v̂, =1 and =2 to satisfy
Eq. (51) we must have that +$3+ j $+=0 agrees with +$2 in digits 0&(&&3). This
implies that digits 0&(+&3) in j $ are determined by +3 , =0 and +2 . So there are
min[2\&&, 22m&&] choices for such i, j. Each determines a unique k and N0 } N1 } N2

pairs w, z such that Bw, z collides with Ci, j between the access of Ci, j at iteration
steps (i, k&1, j+{) and (i, k, j).

Finally, we need to determine the number of these solutions which satisfy
v� j<x. However, in this case, v>x and so there are no such j.

This completes the proof of Lemma 5.2 and the construction of ALGO-
RITHM D2.

A.3. Enumeration of Iteration Points that Exhibit Simultaneous Collisions

We show the case of the enumeration of iteration points that exhibit
simultaneous C�A and C�B collisions and thus seek to enumerate iteration points
(i, k, j) such that there have been both C�A and C�B collisions between
(i, k&1, j+{) and (i, k, j). We begin by enumeration simultaneous solutions to
Eqs. (43) and (44) but with the added factor that either u=z, u+1=z or u=z+1.
We split our analysis into those three cases.

122 HANLON ET AL.

We will consider only the case where u=z here��the other cases can be handled
via similar methods. In the case u=z, a simultaneous solution to Eq. (43) and
Eq. (44) must satisfy

\+3+3(i, j)2\

4 �=\+1+3(i, z)2\

4 �=\+2+3(z, y)2\

4 � . (58)

We enumerate solutions to Eq. (58) by first counting solutions }� , z� to the left-most
equality using the AB-Algorithm, but keeping-the choice of @� open for the moment.
For each such solution }� , z� , there is one and only one choice of @� and y� that satisfies
the second equality.

If E=0, then i, j, z, and y are determined at this point. Also, k is determined, as
k=z if y� j and k=z+1 if y> j. For this iteration point (i, k, j), the number of
collisions will be 2, 3 or 4. The normal case will be 2 but 3 or 4 may result if there
are two C�A collisions or two C�B collisions (or both). We will discuss these cases
below.

If E>0 then we must extend @� , }� , z� and y� to get i, j, z and y. The consideration
on extensions is identical to those above. In particular, k will be either z or z+1
depending on how the extension of y compares to the extension on j. In cases where
z� and z+1 are not both solutions to Eq. (44) then the number of collisions will
be 1+,(j) or 2+,(j) for k=z depending on whether there are multiple C�A
collisions (which is discussed below). The number of collisions will be 1+2E1&,(j)
or 2+2E1&,(j) for k=z+1 depending on whether there are multiple C�A collisions.
However, if z� and z+1 are both solutions to Eq. (44) then the number of collisions
will be either 1+2E1 or 2+2E1 depending on whether there are multiple C�A
collisions.

So we will need to enumerate simultaneous solutions to Eqs. (47) and (44),
Eqs. (43) and (48), and Eqs. (47) and (48). These enumeration problems can be
solved using the tools we have already developed and applied to counting solutions
to Eqs. (43) and (44). So, we will omit many of the details in our account of how
to proceed.

To enumerate simultaneous solutions to Eqs. (47) and (44), we begin by
counting solutions to

\+3+3(i, j)2\

4 �=\+1+3(i, z)2\

4 �=\+1+3(i, z+12\)
4 �=\+2+3(z, y)2\

4 � . (59)

To count solutions to this equation, use Lemma 5.1 to enumerate solutions }� , z� to
the first two equalities leaving @� undecided. With }� , z� fixed there are unique choices
for @� and y� which satisfy the third equality.

Each choice of }� , z� , @� , and y� which satisfy Eq. (59) must now be extended. First,
note that there are 2E0+2 } E1 ways to extend each solution }� , z� , @� . Observe that the
extension of z must be k&1 because of the form of Eq. (59). For each such exten-
sion, there are 2+Y collisions of types C�A and C�B at iteration point (i, k, j),

123COMBINATORICS OF CACHE MISSES

where Y is the number of extensions of y� . Since z=k&1, the Y is the number of
extensions of y� is 2E1&,(j), where ,(j) is the extension of j.

As noted in the previous paragraph, the form of Eq. (59) imply that z=k&1. So
we must also solve a second set of equations which differ from Eq. (59) only in that
the last z� is replaced by z+1. The enumeration of solutions to this set of equations
follows the lines above with the only major difference being that there are ,(j)
extensions possible for y� . This impacts the number of collisions that have occurred
at iteration step (i, k, j).

To enumerate simultaneous solutions to Eqs. (43) and (48), we must count
solutions to the system of equations

\+3+3(i, j)2\

4 �=\+1+3(i, z)2\

4 �=\+1+3(z, y)2\

4 �=\+2+3(z+1, x)2\

4 � . (60)

To enumeration of solutions to Eq. (60), we use the AB Algorithm to count solu-
tions to the second equality. The reasoning that went into the proof of Lemma 5.2
give (in each of two cases), the relationship between y� and x� . The one complication
that arises is in the case (from Lemma 5.2) where {=1. In this case, the first & digits
of y$ are determined and so the first & digits of z� $ will also be determined. This gives
a partial determination of z� which must be factored into the AB Algorithm as was
done in Section=3.

Each solution of Eq. (60) must be extended. The number of extensions is
straightforward to count in this case, since there are 2E1 extensions of the pair y� , x� .

To complete this analysis, we must enumerate simultaneous solutions to
Eqs. (47) and (48). We begin by enumerating solutions to

\+3+ +3(i, j)2\

4 �=\+1+3(i, z)2\

4 �=\+1+3(i, z+1)2\

4 �
=\+1+3(z, y)2\

4 �=\+2+3(z+1, x)2\

4 � . (61)

To characterize solutions to Eq. (61), begin with the first two equalities. Following
the reasoning in the proof of Lemma 5.1, we can eliminate some choices for initial
digits of }� , z� , @� , x� , and y� . For those that are not eliminated, solutions of Eq. (61) are
equivalent to solutions of Eq. (60) and so we can use the methods developed above
to enumerate those solutions. As in other cases, once solutions to Eq. (61) are
enumerated, they must be extended to give simultaneous solutions to Eqs. (47) and
(48). These extensions will then give the number of iteration points. At each there
will be 2+2E1 collisions between the access of Ci, j at that iteration step and the
most recent previous access.

This completes the enumeration of iteration steps where there have been both
C�A and C�B collisions. The next step is to enumerate iteration points where there
have been both C�A and C�C collisions, iteration points where there have been
both C�B and C�C collisions, and iteration points where there have been all three

124 HANLON ET AL.

of C�A, C�B, and C�C collisions. To shorten this exposition, we will only indicate
where the modifications of the previous analyses come in.

To enumerate cases where there have been both C�A and C�C collisions is
straightforward. Enumerate solutions }� , u� of to Eq. (43) including the number for
which both }� , u� and }� , u&1 are solutions. For each of these, there is at most one
y� such that }� , y� satisfy Eq. (46). There will exist an y� unless the carries from the
initial two digits of the two sides of Eq. (46) are different. In this case you may have
to eliminate one possible solutions to Eq. (43). This determination can be made by
an O(\) examination of +1 and +3 . Once }� , u� and y� have been determined, we can
choose i arbitrarily and we can arbitrarily extend }� , u� and y� to j, u and y. Different
extensions of i, j and u lead to different iteration points. However, for fixed i, j and
u, different extensions of y� correspond to multiple collisions.

To enumerate cases where there have been both C�B and C�C collisions is
likewise straightforward. First enumerate solutions to Eq. (46). For every solution
@� , }� , v� , there is a uniquely determined solution to z� , y� up to multiplicity m[T] that
might arise from differing initial digits in 3(z, y). As before, we must determine
whether different choices of initial digits might lead to both z� and z+1 being solu-
tions. This is straightforward. Each solution @� , }� , v� , z� , y� just enumerated must be
extended. The issues related to extensions are identical to the issues that arose in
the enumeration of C�B collisions. We leave details to the reader.

Finally, we need to enumerate cases where there have been C�A, C�B, and C�C
collisions. We first enumerate iteration points where there have been C�A and C�C
collisions as above. For every such solution, we can uniquely solve for z� , y� , uniquely
up to choice of initial digits. As usual, consideration must be given to whether there
u� and u&1 are both solutions to Eq. (43) and to whether z� and z+1 are both solu-
tions to Eq. (44). There are no novel issues that arise around extensions and so
again we leave details to the reader.

REFERENCES

1. S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi, Nonlinear array layouts
for hierarchical memory systems, in ``Proceedings of the 1999 ACM International Conference on
Supercomputing,'' pp. 444�453, Rhodes, Greece, June 1999.

2. S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi, Recursive array layouts and fast
parallel matrix multiplication, in ``Proceedings of the Eleventh Annual ACM Symposium on Parallel
Algorithms and Architectures,'' pp. 222�231, Saint-Malo, France, June 1999.

3. P. Feautrier, Dataflow analysis of array and scalar references, Internat. J. Parallel Programming
20(1) (1991), 23�54.

4. J. D. Frens and D. S. Wise, Auto-blocking matrix-multiplication or tracking BLAS3 performance with
source code, in ``Proceedings of the Sixth ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming,'' pp. 206�216, Las Vegas, NV, June 1997.

5. S. Ghosh, M. Martonosi, and S. Malik, Cache miss equations: A compiler framework for analyzing
and tuning memory behavior, ACM Trans. Prog. Lang. Systems 21(4) (1999), 703�746.

6. J. L. Hennessy and D. A. Patterson, ``Computer Architecture: A Quantitative Approach,'' 2nd ed.,
Morgan Kaufmann, San Mateo, CA, 1996.

7. M. D. Hill and A. J. Smith, Evaluating associativity in CPU caches, IEEE Trans. Comput. C 38(12)
(1989), 1612�1630.

125COMBINATORICS OF CACHE MISSES

8. M. S. Lam, E. E. Rothberg, and M. E. Wolf, the cache performance and optimizations of blocked
algorithms, in ``Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems,'' pp. 63�74, Apr. 1991.

9. W. Pugh, The Omega test: A fast practical integer programming algorithm for dependence analysis,
Comm. Assoc. Comput. Mach. (Aug. 1992), 102�114.

126 HANLON ET AL.

	1. INTRODUCTION
	2. TWO ENUMERATION PROBLEMS
	3. INCORPORATING CACHE BLOCK SIZE
	4. CALCULATING THE NUMBER OF CACHE MISSES
	FIG. 1

	5. ...-WAY ASSOCIATIVE CACHE
	FIG. 2

	6. CONCLUSIONS
	APPENDIX A
	REFERENCES

