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DEDICATED TO PROFESSOR WILLlAM TUTTE ON THE OCCASION OF 

HIS SIXTIETH BIRTHDAY 

An intersection theory developed by the author for matroids embedded in 
uniform geometries is applied to the case when the ambient geometry is the lattice 
of partitions of a finite set so that the matroid is a graph. General embedding 
theorems when applied to graphs give new interpretations to such invariants as the 
dichromate of Tutte. A polynomial in n + I variables, the polychromate, is defined 
for graphs with II vertices. This invariant is shown to be strictly stronger than the 
dichromate, it is edge-reconstructible and can be calculated for proper graphs from 
the polychromate of the complementary graph. By using Tutte’s construction for 
codichromatic graphs (J. Combinaforial Theory 16 (1974) 168-I 74). 
copolychromatic (and therefore codichromatic) graphs of arbitrarily high connec- 
tivity are constructed thereby solving a problem posed in Tutte’s paper. 

1. INTRODUCTION 

In a previous paper [2], we put the theory of intersection numbers of 
subsets in a finite projective space (a topic of great interest in finite 
geometry) into the framework of matroid theory and showed, for example, 
the usefulness of the cardinality-corank matrix (and polynomial) for 
calculating these numbers. The context in which these results were proved 
was sufficiently general that intersection theorems for matroids embedded 
into structures other than projective spaces could also be stated. Applications 
of this general theory, however, were focused primarily on linear represen- 
tations. In the present paper we concentrate on applications to graphical 
matroids. 

In the following section we apply the general theory of [2] to the case 
when the ambient lattice for a matroid embedding is the lattice of partitions 

* This research was supported in part by the National Science Foundation under Grant 
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of a finite set, i.e., when the matroid is a graph. Although these embedding 
theorems all have more general, matroid-theoretic proofs, all results in 
Section 2 are stated in the language of graph theory and the reader need have 
no knowledge of matroids. 

The combinatorial properties of the partition lattices are sufficiently 
similar to those of projective geometries to allow us to give “z-analogs” of 
many “q-representation” theorems. For example, in Section 3 we develop a 
formula for a two-variable chromatic polynomial (derived differently in [S]) 
by analogy with a similar two-variable codeweight polynomial derived 
in 121. 

Two major properties of projective geometries not enjoyed by partition 
lattices are modularity and the fact that flats of equal rank have equal 
cardinality. Lack of modularity does not seem to be important, especially as 
partition lattices are “supersolvable”-a property which gives them 
combinatorial traits (like a complete factoring of their characteristic 
polynomial over the integers) similar to those of modular lattices. The other 
property (homogeneity) seems more essential. For projective spaces it allows 
one to compute intersection numbers for complements. To do this for graphs 
we need a more refined invariant than the matrix of intersection numbers: the 
“polychromatic matrix,” M,. This matrix (or corresponding polynomial, 
x(G), the “polychromate”) is shown to be calculable for G from the 
corresponding matrix of the complement G’, as well as from the sum of the 
matrices of the deck of edge deletions,’ {G - e : e E G}. Properties of M, are 
proved in Section 4 and illustrated in Section 5. We show that certain pairs 
of Tutte’s “rotor graphs” constructed in [ 51 are polychromatically (as well 
as dichromatically) equivalent, and we modify them (for example. by joining 
new vertices to every vertex in each graph of the pair) to get new non-2- 
isomorphic codichromatic graphs with arbitrarily high connectivity (solving 
a problem posed by Tutte in [ 51). Research problems are then given. 

Finally, happy birthday to Professor William Tutte, whose study of 
chromatic-type invariants for graphs continues to suggest much of this 
author’s research. 

2. DEFINITIONS AND GENERAL INTERSECTION THEOREMS 

The results of this section are proved for general matroids in [2]. The 
interpretation for graphs follows from standard matroid theory [3, 7,9]. 

Throughout, a graph G is finite and can have loops or multiple edges. 
When it has neither it is denoted simple. We denote by V or V(G) the 
vertices of G and by E or E(G) its edges. Usually, / V(G)] = n and 

’ In a recent paper [IO] the author gives an explicit formula for M, from the deck of 
vertex-deleted subgraphs of G. Thus. all remarks above apply to vertex-reconstruction as well 
as edge-reconstruction. 
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IE(G)I = K. We use the embedding map f E(G) -+ E(K,) LJ 0. Here K, is a 
complete graph whose n vertices are identified with V(G), f(e) = 0 if e is a 
loop. Otherwise, if e joins vertices i and j in G, then f maps e to the edge 
joining i and j in K,. 

A subgraph G(E’) of G is a graph which consists of the vertices V(G) and 
the edges E’ G E(G) with the induced incidences. Any subgraph G(E’) gives 
a vertex partition n = fl,,( V), where two distinct vertices are in the same 
block of the partition if they are in the same connected component of G(E’). 
The partition L’ is said to be of type z(n) = l”‘2”’ . .. nun if there are a, 
blocks of size i (so that 2 ia, = n). The weight of a subset E’ or of its 
partition type 7c(n,,) is defined to be the number of blocks of its partition: 
w(E’) = w(lr(n,,)) = 2 a,. Thus, 1 < w(E’) < n, w(E’) = 1 if and only if E’ 
contains a spanning tree, and w(E’) = n if and only if E’ consists entirely of 
loops. 

The (cycle) matroid structure on the set E induced from G is given by the 
rank function r: 2E -P N and thus by the corank function c: 2E + N, where 
c(E’) + 1 = w(F) = n - r(E’). (Note that the rank function r* of the cocycle 
matroid induced from G is given by r*(E’) = [E’I - c(E -I?‘).) If L7 is a 
partition of V, the partition-induced subgraph n(G) consists of all the edges 
of G which join two vertices in the same block of n. Thus, if 17(G) = G(E), 
then r;r,, refines 17. Note that flncc, is equal to n for all vertex partitions ZZ 
if and only iffis onto E(K,) (i.e., G contains an n-clique). 

The number of partition-induced subgraphs of K, of weight c (i.e., the 
number of set-partitions of an n-element set with c blocks) is the Stirling 
number of the second kind, W’(n, c). The Stirling matrix of the second kind, 
Wi, is the lower triangular matrix which tabulates the Stirling numbers 
W’(i, j) (1 < i, j < n). The Stirling number of the first kind, W’(i, j), is the 
coefficient of ii’ in the polynomial n(L - l)(L - 2) fee (1 - i + 1). If we define 
the Stirling matrix of the first kind, WA, as above, and if I,, is the n x n 
identity matrix, then 

wt,. w;=r,. (2.1) 

We also have the matrix identity 

T+ . T- =IK+,, (2.2) 

where T-(i, j) = (-l)i’j T+(i, j) = (-l)‘+’ ({) for all 0 < i, j < K = IE(G)l. 
The cardinality-corank polynomial S&G; y, z) equals CEjCE ylE’I~w(E’) 

or Cij Syy’r’, where S;’ is the number of subgraphs of G with i edges and 
weight j. These coefficients SF are tabulated in the cardinality-corank 
matrix P,, whose rows are indexed by the integers [0, K] and whose 
columns are indexed by [ 1, n]. We then have the polynomial equation 

S,,(G; Y, z) = ZY”-!I-(@ (Y + z)/Y, Y + 1) (2.3) 
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with corresponding matrix equation 

P, = ‘(T+ . F, . IT+)‘, (2.4) 

where f(G; x, y), the Tutte polynomial of G, is called the dichromate in [ 5, 61 
and is denoted by t(G; X. 4’) in 12, 31 (and x(G) in [5,6]). The Tutte matrix 
of G, F,, has as its (i, j)-entry the coefficient of y’z’ in the polynomial 
f(G; y, z). Further, ‘Q is the matrix transpose of Q, and ‘Q’ is the matrix ‘Q 
with its i th column preceded by n - i zeros. 

The intersection matrix of G, Zc, has its rows indexed by [O, K] and its 
columns by [ 1, H]. I,(& j) is the number of (partition-induced) subgraphs of 
G with i edges which come from a vertex partition of weight j. Then, the 
major theorem of 121, when applied to graphs. gives the formulas 

T- . P,. W;=I fi’ (2.5) 

Ti. I,. W:,=P,. (2.6) 

The polynomial S,,(G) (and thus the matrices P, and I,) is easily 
computed for certain graph-theoretic operations. For example, if G* is dual 
to the connected planar graph G, then formulas in [ 21 yield the identities 

(2.7) 

Pc*(i,j)=P,(K-i,i+j+n-K- 1). (2.8) 

If G, and Gz are graphs, we denote by G, LJ G, their union, and by 
G, A G, their wedge (G, ii, G, with a vertex of G, identified with a vertex of 
G2). Then, 

ST&G, iti G2 ; ?: z) = S,,(G, ; ~‘3 z) . S&G, ; Y, z), (2.9) 

S&G, A G> ; y, z) = (l/z) S&G, ; .I’, z) . S,c(Gl; ?‘q z). (2.10) 

(Note that duals and wedges are not unique up to graphical isomorphism but 
are unique up to matroid isomorphism and therefore the above formulas are 
valid for any dual or wedge.) 

Other theorems of [ 21 concern reembeddings. For example, when a new 
isolated vertex is added to G, giving the new graph G’, then 

P,, = [OP,], where (5 is a column of (K + 1) zeros (2.11) 
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andI,,=I,,Q,whereforall l<i<nand l<j<n+l, 

QK A = 1 if j=i+l 

2 if j=i (2.12) 

=o otherwise. 

If V= (Vi, Uz,..., un}, let each loop of G be associated with the zero vector 
of (F,)“- *, and each edge e = /oi, vi} be associated with the vector Y,(k) = 
S(i, k) - S(j, k) f or all k E [ 1, n - 11. If S is the set of vectors associated 
with E(G) and there are I,(i, j) subspaces of (F,)“-’ of codimension i - 1 
(i.e., rank n - i) which containj vectors in S (with multiplicity), then 

I, = I, . w,: . wi,,, 

where 

- _ . . . _ W~,,<i, j) i- 1 ~~i-1 l)(&* 1) cqi-j+l 1) = L 
j-l 

I 
4= (d-1 - 1)(6’-‘- 1) ... (q - 1) 

for all l<i,j<n. (2.13) 

The other major operation in [2] applicable to graphs is the complement 
in K, of a simple graph (one without loops or multiple edges). In the 
language of [2], the above invariants such as S,, are not directly 
computable for complements because the lattice of partitions is not 
homogeneous. This problem will be handled in Section 4. 

3. CALCULATIONS AND THE CHROMATIC POLYNOMIAL 

We now give some examples of the intersection matrix and the 
cardinality-corank matrix for several classes of graphs. 

EXAMPLES 3.1. 1. If G, and G, are 2-isomorphic [ 8 ] and have the 
same number of vertices, then P,, = PG2 so that I,, = I,,. 

2. If T is any tree with n vertices, then for 0 < i < n - 1, 1 < j < n, 

P,.(i, j) = ’ - ’ 
( ) i 

S(i, n - j), 

w2cn - I - i, j - I ) (where W’(0, i) = W*(i, 0) = a(& 0)). 
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3. If C is the circuit with n vertices. then 

PJ i, j) = i 1 ; 4 i, n-j) for O<i<n-l,l<j<n 

=41, j) for i=n, l,<j,<n, 

Z,(i, A = S(i, n), O<i<n,j= 1, 

W2(k j), O<i<nn,2<j<n. 

4. If K, is the complete graph on n vertices, then its 
cardinality-corank polynomial is given by 

I 
sK(Kn;?‘,z)= \‘ a,,(I,)qa2,(&7’~~~ lll.....(I” . * . . a,! (n!)“n 

where the first sum is over all ai > 0 such that C iu, = n, and where the 
falling factorial (z)~ is equal to z(z - 1) .+. (z - m + 1). 

ProoJ 1. This is a consequence of the fact that P, is a matroid 
invariant and that 2-isomorphic graphs have isomorphic matroid structures. 

2, 3. For any graph G in either class, P, is easily computed and we 
use (2.5) to compute I,. Alternately, one can compute I, for a rooted tree 
of height 1 and use Example 3.1.1. 

and the calculation for S,, is then the polynomial restatement of matrix 
equation (2.6). 

We now apply intersection theory to generalize to two variables the 
chromatic polynomial of a graph. The resulting two-variable chromatic 
polynomial was defined in [5], where an identity equivalent to Theorem 3.2.2 
was derived. This theorem should perhaps be compared to its q-analog, 
Theorem 7.4 of [2]. 

THEOREM 3.2. Let CA(i) be the number of ways to color the vertices of 
the graph G with (ar most) 1 colors so that exactly i edges of G join two 
vertices of the same color. 
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1. Fl =Z,u,, where CA(j)=(l)j=A(A- l).*. (13-j-t 1) for 
l<j<n. 

2. S,,(G; y - 1,n) = xi c,(i)y’. 

Proof: 1. Any coloring gives a vertex partition whose blocks are the 
subsets of vertices assigned the same color. A given partition n with j 
blocks comes from (n)j colorings and for each of these colorings, the edges 
joining two vertices of the same color are the edges in the n-induced 
subgraph. Thus, cl(i) = Cj I,(& j) un(j). 

2. This is the polynomial interpretation of the matrix equation 
T-*P,-u -c A - Ar where CA(i) = R’. But F1 = Wi . ts, since the ith row of 
both sides count the total number of ways to color Ki with 1 colors. Thus we 
may apply (2.5) so that Part 2 of Theorem 3.2 reduces to part 1. 

4. THE POLYCHROMATE 

DEFINITION 4.1. Let G be a graph with it vertices and K edges. The 
polychromatic matrix M, has its rows indexed by [0, K], its columns indexed 
by the p(n) integer partitions of n, and M,(i, n) equals the number of vertex 
partitions of type 7r whose partition-induced subgraph contains i edges. 

The polychromate x(G; y, zr, z2 ,..., z,,) is equal to xi., M&i, n) y’r”, 
where if n = 1”‘2”z . . . non then z” = zy’zy* . . . zzn. The polychromate is, of 
course, a multivariable generalization of the intersection polynomial (and 
thus of S,,(G)): 

PROPOSITION 4.2. MG .D=Z,, where D is a p(n) x n matrix with 
D(Tc, i) = 8(w(z), i). Furthermore, 

RAG; Y, z, z,..., z) = s Z,(i, j) y’z’. 
i,j 

PROPOSITION 4.3. Zf G is a simple graph and G’ is its complement, then 

M,,(i, l”‘2”’ . . . nun) = M, ((T (:)a,)-i,In’2”‘...nan)), 

and 

x(G’; Y, 11 ,.a-, z,J = x(G; I/y, z, , y@z,, $)z, ,..a, ye)z,). 

The following proposition gives two linear identities for the columns of 
MG given the coefficient of F in x(G; 1, z, ,..., z,J and a/ay x(G; 1, z1 ,..., zJ, 
respectively. 
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PROPOSITION 4.4. Let G be a graph with n vertices. L loops, and K - L 
other edges. 

1. \‘ ,&f,(j, 1”12”? . . . nun) = n! 

T n (k!)Ok ak! * 

2. \‘ &f,(j, 1”‘2”’ . . . non) 
7 

(K-L)(n-2)!(2~1~a,+3~2~a,+~~~+n(n-l)a,)+(L)n! 
n (k!yk a,! 

Proof: 1. Both sides count the number of vertex partitions of type 
1”’ . . . nan. 

2. Both sides count the total number of pairs (e, II), where II is of 
type 71= 1 ‘I a.. n’n, and the edge e is in the n-induced subgraph. The left- 
hand side sums first over all partitions ZZ of type 7~. The right-hand side sums 
first over all edges: if e is a loop it is in every partition-induced subgraph and 
so is multiplied by ~(71) = n!/jJ (k!)Oka k ! . If e is an edge, the probability 
over the uniform sample space of all partition-induced subgraphs of type rr 
that e is in a given such subgraph is 

a2(:)+al(:)+.-.+a,()I) 

n 

( ) 2 

so we may multiply this latter quantity by n(n) and Proposition 4.4.2 
follows. 

DEFINITION 4.5. A k-rotor R [6] is a graph whose automorphism group 
contains a k-cycle (c, Ozj,..., Okplv) called the border B, but does not contain 
the reflection (v)(8v, ok-Iv) . . . (B’v, ok-‘v) . . . A k-rotor graph G is a graph 
composed of a k-rotor and a frame or back-graph, the latter consisting of 
vertices and edges connected to the rotor at the border vertices. An L-frame 
consists of the edges (v. &I), {Ov, x), and (x, 0*x}. 

We now form a new graph G’ which consists of the vertices of G, the 
edges of R, and a frame edge (u’, IV’ } for every edge (u, w ) in the frame of G, 
where u’ = u if u is not on the border; and otherwise, if u = Biv, then 
U’ = Bk--iv. Similarly for w’. G’ may be thought of as taking the rotor R out 
of its frame in G, reflecting it and then reattaching it. 

A pair of rotor graphs is called special if they are non-2-isomorphic (and 
therefore non-isomorphic) and if they are related as G and G’ above. An 
example of a pair of special three-rotor graphs with an L-frame follows. The 
rotor itself is the set of light edges in either graph and the border is the three- 
cycle (v, Bv, et”). 
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THEOREM 4.6. 1f G and G’ are a special pair of three-rotor graphs with 
an L-frame, then M, = AI,,. 

Proof: We adapt Tutte’s arguments in [6 1. Let n be a partition of V(G). 
Then 17. when restricted to the border, induces II,, one of the live partitions 
of the border vertices {v, 0~. $*v}. Depending on n,, we define the bijection 
f,,: V(G)+ V(G’) which induces a partition 17’ on V(G’) such that 
$Z7) = ~(17’) and IZZ(G)l = IZZ’(G’)l. The reader should check that the 
collection of functions defined below is bijective on partitions of V(G) to 
partitions of V(G’). For all n, f”(x) = X. 

Case 1. ZZ~ = (r!)(&. B’v) or (u)(~u)(~‘v): Let f”(u) = u for all ZJ E R. 
This is an isomorphism from G -e to G’ -e’ so that jn(G - e)l = 
Iff’(G’ - e’)l = i. But e & ZZ(G) and e’ @ n(G’) so that /R(G)/ = IP( = i. 

Case 2. IZ, = (v, Bv, 0’~): Let fn(u) = U. As in case 1, jZZ(G - e)l = 
(n’(G’ - e’)I = i. But e E 17(G) and e’ E n’(G’), so that n(G) = 
Z7’(G’) = i + 1. 

Case 3. Z7R = (v. Bv)(B*c): Let f,(u) = 0’~. This is an isomorphism 
from G -s to G’ -x, so that (ZZ(G - (f, g\)/ = (ZI’(G’ - (f’, g’))( = i. Then 
IZi’(G)l = In’(G’)I = i + 1 if x is in a n-block with either Bv or 02c (for 
example, if x is in a n-block with Bv, then f E Z7(G) and x is in a I;l’-block 
with c and Q2v, so f’ E ZZ’(G’)). If x is not in either block, then In(G)1 = 
IIF( = i. 

Case 4. ZZ, = (v, B2u)(Bv). Let fn(u) = Bu and apply the same 
arguments as in case 3. 

We can now extend Tutte’s construction of live-connected dichromatically 
inequivalent graphs [ 51 to pairs with higher connectivity. 

COROLLARY 4.7. There exist non-isomorphic (and non-2-isomorphic) 
polychromatically equivalent (and thus dichromatically equivalent) graphs of 
arbitrarily high connectivity. 

Proof Take the pair of rotor graphs above, add isolated vertices to the 
frame, and then take their respective graph complements. 

S82b/30/2-‘4 
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We remark that L-type frames can be constructed for other k-rotors. For 
example. we may frame a fourrotor in the edges (L’. O*zl}, (t’, &} producing 
copolychromatic graphs. However, as Example 5.2 below shows. unlike the 
dichromatic case, not all frames produce polychromatically equivalent 
graphs. 

The following theorem shows that the polychromatic matrix is an edge- 
reconstructible invariant’ [ 1 1. Thus our previous results show that not only 
is the chromatic polynomial of G edge reconstructible from its deck of edge 
deletions, but also the chromatic polynomial of the complement of G is 
reconstructible. This observation might prove helpful as a theorem in [ 1 1 
states, using results from [4 1, that for any simple graph G, G or G” is edge- 
reconstructible. In the following theorem. G-e denotes the subgraph 
G(E ~ {et). and (H) denotes the polychromate (H; ~1. s, ,.... x,,). 

THEOREM 4.8. The poljlchromatic polynomial ma)’ be computed for the 
polynomials of its single-edge’ deletions. In particular, I~G is a graph with K 
edges, then. 

1. LHG, MC;-,, = NM,, where N is a K x K + 1 matrix ItYth 

N(i, j) = K - i for j=i 

=i+ 1 for j=i+ 1 

=o otherwise 

for O<i<K-1, O<j<K. 

2. x:etE,Gl x(G ~ e) = K . x(G) + ( 1 - Y) ~/&>x(G). 
3. If G is connected, the?? column n = n’ of M, is given by M,(i. Fl’) = 

S(i, h’). When this column is deleted from M, giving the matrix Mi<, we get 

bvhereforO<i<K.O<j<K-1, 

N’(i, j)=O, j < i, 

i< j. 

ProoJ 1. Fix a partition ZZ of V(G). If the partition-induced subgraph 
U(G) contains i edges, then there are i subgraphs of the “deck” 
{G - e:e E E(G)} for which IZ(G -e) has cardinality i- 1, and K-i 17. 
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induced subgraphs which have cardinality i. Thus, for any integer partition 
j-r. summing over all n of type rr, we get 

“ M 
i’ E(.(G ) 

(,m,(i, n) = (K ~ i) . M&i. n) + (i + 1) . M,(i + 1. n), 

2. This is the polynomial restatement of the above recursion. 

3. The formula for column rt = 11’ is obvious. If G is connected. then 
MJK, rr) = 0 for all rr # H’ so that the matrix equation of Theorem 4.8.3 is 
valid for row K (since row K of N’ is the zero vector). If MG is the matrix 
M:; with row K removed, and f? is N with column K deleted. then -- 
Theorem 4.8.1 becomes NM:; = 1 MG _ p (again since row K of M:; is the 
zero vector). But N is invertible, and one can easily check that its inverse is 
given by #’ (N’ with row K removed) so that ~~ = N’ . (C Mb.,) and 
Theorem 4.8.3 is valid for rows i = 0 to K - 1. 

5. EXAMPLES AND COMPUTATIONS 

EXAMPLE 5.1 (The Gray Graphs). We illustrate some of the previous 
results for two graphs attributed in [6] to M. C. Gray. These graphs are 
dichromatically but not polychromatically equivalent. Let 

Then. one calculates PGi directly or uses formula (2.4) and the calculation of 
F, in 161 to get 

PG, = PG2 = 

0 

2 
3 
4 

P= 5 
6 

8 
9 

10 

12 3456 
- 

0 0 0 0 01 
0 0 0 0 10 0 
0 0 0 44 1 0 
0 0 108 12 0 0 
0 151 58 1 0 0 

98 142 12 0 0 0 
151 58 1 0 0 0 
108 12 0 0 0 0 
44 1 0 0 00 

0 0 0 00 
LIY 0 0 0 00 
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One notes that the dual of G,, GT, is isomorphic to Gz so that by using 
Eq. (2.8), we obtain P(i, j) = P(10 - i, i + j - 5). Further, (2.5) becomes 

T . P,;, . W,: = i,; 

0 0 2 8 
0 0 IO 24 
0 2 28 24 
0 4 24 8 
0 7 19 I 

6 0 
1 0 
0 0 
0 0 
0 0 
0 0 

where 
1 0 0 0 0 
1 I 0 0 0 

wFz ’ = ; 3 
7 6 

; ; 

1 I5 25 10 1 
1 31 90 65 I5 

1 0 0 
-1 1 0 

2 -3 I 
-6 I1 6 
24 -50 35 

-120 274 -225 

A further computation yields 

6’ 5’1’ 4’2’ 3’3’ 4’1’ 3’2’ ’ 2’ 

0 

2 
3 
4 

!Ll,, = 5 
6 

8 
9 

10 

-00 0 0 0 1 
00000 7 
0 0 0 2 I 19 
0 0 3 1 4 19 
0 0 4 3 5 12 
014 3 4 2 
013 11 0 
03 100 0 

io I 0 0 0 0 
iO0 0 0 0 0 

10 0 0 0 0 

0 
0 
0 
0 z 
0 
1 

0 
0 
0 
I 

IO 
85 

6 1 
8 0 
1 0 
0 0 
0 0 
0 0, 
0 0 
0 0 
0 0 
0 0 
0 0 

I I 7 6 I 
3 3 20 8 0 
8 10 14 I 0 
14 4 00 
21000 
00 0 00 
00 0 00 
00 0 00 
00 0 00 
0 0 0 0 0 
00 0 00 
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One is encouraged to use this matrix to check Eq. (4.2) and those in parts 1 
and 2 of Proposition 4.4. We also remark that some rows and columns of 
M,, are not unimodal. 

The columns 6l, 5’1’, 4ll*, 2114, and l6 of M,, are identical with those of 
M,,. However, the other columns are different: - 

4’2’ 3’3’ 3’2’1’ 23 3r13 2*1* 

MG: = 

b 0 0 2 0 s 
0 0 9 1 7 17 
1 1 19 8 7 17 
1 3 17 3 5 3 
4 3 13 1 1 0 
6 1 2 0 0 0 
2 2 0 0 0 0 
1 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 00 0 
0 0 0 00 0 

EXAMPLE 5.2 (Noncopolychromatic Rotor Graphs). 

One readily checks that M&13, 6r4’3l) = 1 (for the partition pictured), while 
M,,(13, 6’4’3’) = 2 (for the partition pictured and one in which the three 
circled vertices are joined to the three-block). 

6. RESEARCH PROBLEMS 

Problem 6.1. Does there exist a definable set of graph-theoretic 
operations, P. so that for any pair of polychromatically equivalent graphs 
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G, and G,, G, can be transformed into G, by a succession of operations 
from P? (For example, fl will include certain rotor reflections and 
complementation. The idea behind using polychromatic instead of 
dichromatic equivalence is suggested by the fact that it might eliminate such 
accidentally (?) dichromatically equivalent graphs as the Gray graphs.) 

Problem 6.2. What classes of graphs are reconstructible or recognizable 
(in the language of [I]) from their polychromates? (These classes would 
then, of course, be (edge)’ reconstructible or recognizable, respectively, since 
the polychromatic matrix is reconstructible.) 

Problem 6.3. Is G edge-reconstructible’ when either G or G” is a Tutte 
rotor graph? (If this question could be answered affirmatively. and if f 
above were shown to consist solely of rotor reflections and complementation. 
the edge-reconstruction problem would be solved!) 

Problem 6.4. For what graphs and graph-theoretic operations is the 
polychromate quickly computable ? It is easily computable for complete 
graphs, and although we do not give the formula (it is a bit messy and 
involves summing over partial matchings in complete bipartite graphs), one 
can compute x(G, LJ G,) from x(G,) and x(G,). This result, with our formula 
in Section 4 for complements, will yield x(G) for any complete p-partite 
graph. 

Problem 6.5. Are the rows and columns of the intersection matrix for a 
graph (or indeed any matroid embedding) unimodal (or logarithmically 
concave)? 

REFERENCES 

1. J. A. BONDY AND R. L. HEMMINGER. “Graph reconstruction-A survey,” Research Report 
CORR 76-49, Dept. of Comb. and Opt., University of Waterloo, Waterloo, Ontario. 
Canada, 1976. 

2. T. BRYLAWSKI, Intersection theory for embeddings of matroids into combinatorial 
geometries, Studies Appl. Math. 61 (1979), 2 1 l-244.. 

3. T. BRYLAWSKI AND D. KELLY, Matroids and combinatorial geometries, M.A.A. Studies in 
Combinatorics (G.-C. Rota, Ed.), Math. Ass. of America, 1977. 

4. L. LOVASZ, A note on the line reconstruction problem, J. Combinatorial Theory Ser. B 13 

(1972), 309-3 10. 
5. W. TUTTE. On dichromatic polynomials, J. Combinatorial Theory 2 (1967), 301-320. 

6. W. TUTTE, Codichromatic graphs, J. Combinatorial Theory 16 (1974). 168-174. 

7. D. J. A. WELSH, “Matroid Theory,” Academic Press, London, 1976. 
8. H. WHITNEY, 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245-254. 
9. T. BRYLAWSKI AND D. KELLY. “Matroids and Comdinatorial Geometries-’ UNC Lecture 

Note Series, Mathematics Department, University of North Carolina, Chapel Hill, N. C.. 
1980. 

10. T. BRYLAWSKI. Hyperplane reconstruction of the Tutte polynomial of a geometric lattice. 
Ann. Discrete Math., in press. 


