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The matrix for the bilinear form of the flag space of a matroid has (with respect
to an appropriate basis) a tensor product structure when the matroid has a modular
flat K. When determinants are taken, an identity is obtained for the rho function
(a certain product of the Mo� bius and beta functions) summed over flats with a
fixed intersection with K. When the identity is interpreted for Dowling lattices and
finite projective spaces, identities with similar combinatorial proofs are obtained for
binomial and Gaussian coefficients, respectively. � 2000 Academic Press

1. INTRODUCTION AND DEDICATION

In 1966 Gian-Carlo Rota published the now celebrated first part of his
herculean effort to find broad genera in the family of combinatorics and
identify the species for each. In that paper [R], Rota showed how the
Mo� bius function could be used to unify inversion formulae in such superfi-
cially diverse fields as number theory, enumeration (inclusion�exclusion),
finite difference calculus, graph coloring, and vector space duality. I came
from Dartmouth two years later to his MIT office to discuss this paper,
and he gave me a preliminary version of the second ``labor'' to read [CR].
I was smitten.

E poi che la sua mano a la mia puose
Con lieto volto, ond'io mi confortai,
Mi mise dentro a le segrete cose.

��``Inferno,'' canto III, 7
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For several years after Foundations I, there was a flurry of activity exploring
the so-called Mo� bius algebra, much of it by another of my nurturers, Henry
Crapo, Rota's first combinatorial disciple, at the time expatriated to Waterloo.
The proof in the following section is in the spirit of that time, using
such classical tools as Weisner's theorem and Crapo's complementation
theorem.

For the past quarter century most of the applications of the Mo� bius
function and its related invariants have been for geometric lattices (or, as
Rota preferred, combinatorial geometries) [S, GZ, BO2]. Methods have
expanded to include topology, homological algebra [Bj], and, for the
invariant explored here, bilinear and linear algebra [BV].

The invariant explored here we now denote \M (A) and call the rho
function in honor of Rota. For a flat A of a geometry (O.K., matroid) M,
\M (A) is defined as the product of Crapo's beta function ;(A) and the
absolute value of the Mo� bius function ++(M�A). The function rho first
appeared [V, p. 550, and called discrete volume] (in a non-Mo� bius form)
as the exponent of each flat weight in a linear factorization of the determi-
nant D(H) of a matrix B(H) for a real hyperplane arrangement H. It was
generalized to matroids in [BV]. Results in [BO2] or [GZ] lead to
several interpretations of \M (A). If M is the matroid of a simple graph G
with edge set S and vertex set V, then \M (A) is non-zero only when A�S
is a non-empty two-connected subset of edges induced by a vertex subset
V$, in which case \M (A) gives the number of acyclic orientations O(G ) of
G such that a fixed edge e in A is oriented from the unique source v of
O(G ) to the unique sink v$ of O(A), and all edges in the cut-set V$ | V&V$
are oriented from V$ to V&V$. For an affine (non-central) hyperplane
arrangement H, if F is a flat (hyperplane intersection) contained in a
hyperplane H, then \H(F ) counts all regions R whose intersection with H
is a bounded region of F.

Section 3 summarizes results in [BV], especially the structure of the
matrix B(M ) whose determinant D(M) gives the weighted exponential
generating function for rho. When, for a fixed modular flat K of M, a
fortuitous basis is chosen for the flag space of M which gives the bilinear
form, and modifications are made in B(M ), the resulting matrix is shown
to be a tensor product of matrices for K and for the complete principal
truncation T� K (M ). Then, when the determinant is evaluated and exponents
are compared with linear factors in D(M), we obtain our principal result:
a closed form for � \M (K") summed over all flats K" whose intersection
with K is a fixed flat K$.

On the one hand, there is a surprising singularity when K$=<: the
K${< formula would give zero (the weight of <), whereas the correct
answer is calculated in Section 2 using the Mo� bius algebra. On the other
hand, such a factorization could have been anticipated as it parallels
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similar results for the Mo� bius function and its generating function, the
characteric polynomial

/(M ) := :
flats x

+(0� , x) *corank(x).

It was first noted [S] that, for a modular flat K, /(K) divides /(M ). Then,
the quotient was given a matroid interpretation [Br1], giving the factorization

/(M)=
/(K ) } /(T� K (M ))

*&1
.

Finally [Br2, BZ, BO1], the factorization was shown to reflect a factoriza-
tion of the broken-circuit complex of M. The facets of this complex when
interpreted in the Orlik�Solomon algebra (see [Bj]) are dual to the flag
space basis which defines B(M) [BV].

In the final section, we interpret our identity for matroids in which the
sum can be interpreted with classical combinatorial invariants for Dowling
lattices (in particular the partition lattice) and finite projective geometries.
Then, the same Mo� bius identity gives an identity involving binomial coef-
ficients (in the partition case), Newton binomial coefficients (in the Dowling
case), and Gaussian coefficients (for projective geometries). Thus, we have two
q-analogs (computing an analog for Dowling lattices suggested by Joe Bonin),
and indeed the binomial and Gaussian identities are given analogous
combinatorial proofs using binary sequences and matrices, respectively.
This was another foundational idea of Rota's [GR]. In fact, the three founda-
tional topics treated here��the Mo� bius function, combinatorial geometries,
and q-analogs��constitute three chapters of the recent combinatorics textbook
[LW]. I am afraid that today automatic identity proving techniques are
used to find or verify such formulas, but the computer has still to find
Mo� bius underpinnings for them.

I am proud that the article this work is based on appeared (notwith-
standing the delay) in the journal Rota ran and that this one appears in the
journal he co-founded.

2. MO� BIUS ALGEBRA AND THE RHO FUNCTION

Of course, there is no need to define the Mo� bius function +(x, y) of [R]
for elements x and y of a geometric lattice except to say that we will use,
as is common in matroid theory, the one-variable version for a flat K of a
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combinatorial geometry G: +(K ) :=+(0� , K ), and, following [GZ], denote
its absolute value by

++(K )=|+(K)|=(&1)r(K ) +(K ). (2.0)

We further make the usual extension to a matroid M and subset A of its
groundset:

++(A)={++(A� )
0

if A is loopless, and
otherwise.

Recall that, when M is loopless, ++(M�A)=|+(A, 1� )| when A is a flat and
is 0 otherwise. Also, ++ has the (matroid) recursion for any p # A not an
isthmus or loop:

++(A)=++(A& p)+++(A�p). (2.1)

The one-variable beta function [C1] for a flat K can be defined by

;(K )=(&1)r(K ) :
K$ : K$�K

+(K$) r(K$) (2.2)

and, like +, extended to subsets A in a matroid. It also obeys the recursion (2.1)
and is zero unless K is non-empty and connected, in which case it is positive.

Definition 2.3. For a matroid M(S) and A�S define the rho function

\M (A) :=;(A) ++(M�A).

By the remarks above, \M (A)=0 unless A is a non-empty, connected
flat of M. The recursion (2.4) below for rho was shown in [BV] (and holds
for any function g(A)=;(A) f (M�A) if f obeys (2.1) and is zero on loops),

\M (A)+\M (A _ p)=\M& p(A)+\M�p(A), (2.4)

where M is loopless and p # S&A is not an isthmus of M.
Interpretations for rho are given in the Introduction. We now prove an

identity for rho using classical identities by Weisner [W] and Crapo [C2],
respectively:

:
x : x 7 u=v

+(x, w)={0
+(v, w)

if w �3 u
otherwise

(2.5)

:

x6 z=y6 z=1�

x, y : x� y,
x7 z=y 7 z=0� ,

+(0� , x) +( y, 1� )=+(0� , 1� ). (2.6)
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Recall that z is a modular flat (element) in a combinatorial geometry M
(geometric lattice L) if and only if

( y 7 z) 6 x= y 7 (z 6 x) for all x�y in L (2.7.1)

or, equivalently, if

r(x)+r(z)=r(x 6 z)+r(x 7 z) for all x # L (2.7.2)

Proposition 2.8. If z is a modular element in a geometric lattice, then

:
x : x 7 z=0�

\M (x)=corank(z) } ++(M ).

Proof. Using lattice arguments:

:
x : x 7 z=0�

\M (x)= :
x : x 7 z=0�

;(x) +(x, 1� )(&1)r(1� )&r(x)

(from (2.0), (2.3))

= :
x:x7z=0�

(&1)r(x) \ :
y : y�x

+(0� , y) r( y)+ +(x, 1� )(&1)r(1� )&r(x)

(from (2.2))

=(&1)r(1� ) :
y : y 7 z=0�

+(0� , y) r( y) \ :

x 7z=0�

x : x� y

+(x, 1� )+ . (V)

The latter parenthesized sum in (V) is over all x such that x 7 (z6 y)= y
since, for all such x, x� y, and z7 x=(z7 x) 7 (z6y)=z 7 (x7 (z6 y))
=z 7 y = 0� . Conversely, if x� y and x 7 z = 0� , then x 7 (z 6 y) =
(x 7 z) 6 y (by (2.7.1)) =0� 6 y= y. Letting u=z 6 y, v= y, and w=1� in
(2.5), we obtain for the parenthesized sum in (V):

:
x : x 7 (z 6 y)= y

+(x, 1� )={0 if
+( y, 1� )

z 6 y{1� , and
otherwise.

Hence, (V) becomes

(&1)r(1� ) :

y 6 z=1�
y : y 7 z=0�

+(0� , y) r( y) +( y, 1� ) (VV)
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Since z is modular, all complements y of z have the same rank, r(1� )&r(z),
and thus (VV) becomes

(r(1� )&r(z))(&1)r(1� ) :

y 6z=1�
y : y 7z=0�

+(0� , y) +( y, 1� )

=(r(1� )&r(z))(&1)r(1� ) +(0� , 1� ) by (2.6)

=corank(z) ++(M ). K

3. THE DETERMINENTAL IDENTITY IN THE FLAG SPACE

We give a quick summary of the definitions and properties of the matrix
B(M ) and its determinant D(M ) from [BV].

Let M be a combinatorial geometry of rank r on the ground set S=
[ p1 , ..., pn]. Let S be totally ordered by O (usually, pi Opj if i< j ).

3.1. Weights

We assign a weight to each pi : a( pi) :=ai . For any flat (more generally,
subset) K of S, define the weight of K by

a(K ) := :
pi # K

ai ,

and, for any r-tuple t=( pi1
, ..., pir

), define its weight by

a(t)=ai1
ai2

} } } air
.

3.2. Flags

For any (complete) flag F=[K0=<<} K1= pi <} K2<} } } } <} Kr=S] in
M, label each of its flats Ki by

l(Ki )=the minimum (under O) point it contains,

and call the flag standard if its r labels are distinct.
Another way to describe (standard) flags is by the set differences of

consecutive flats:

Di (F ) :=Ki&Ki&1 (1�i�r).

From now on, we represent the flag F by its difference partition of S:

D(F ) :=D1(F ) | D2(F ) | } } } | Dr (F ).
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If we label Di as above, the flag is standard if and only if the labels
decrease. There are ++(M ) standard flags of M and the r-tuples of their
labels give (in descending order) the bases of M containing no broken
circuit, called standard /-bases. Conversely, if A=( pir

, pir&1
, ..., pi1

) is a
standard /-basis ( pij

O pij+1
), then the flag

F(A) :=[<<} pir
<} p ir

6 pir&1
<} pir

6 pir&1
6 pir&2

<} } } } ]

is a standard flag whose r ordered labels give back A.

3.3. The Entries of B(M)

For two flags F and F $, define the function _F, F $(i ): [1, r] � [1, r] by

_F, F $(i ) :=min( j : D i (F ) & Dj (F $){<).

This will be a permutation if and only if F and F $ form a modular flag pair,

r(Ki)+r(K$j)=r(Ki 6 K$j)+r(K i 7 K$j ),

for all Ki # F and K$j # F $.
In the modular pair case, _F, F $ is the unique permutation _ such that

Di (F ) & D_(i )(F $){< for all i, and, further, in the non-modular case, no
such permutation _ exists.

Now define a (symmetric) matrix B whose rows and columns are indexed
by the standard flags and whose entries are given by

sgn(_F, F $) >r
i=1 a(D i (F ) & D_F, F $ (i )(F $))

B(F, F $)={ if F and F $ are a modular pair, and (3.3.1)

0 otherwise.

Thus, B(F, F $) is a (possibly empty) signed sum of all monomials of the
form ak1

ak2
} } } akr

such that [ pk1
, pk2

, ..., pkr
] is a set of distinct representatives

for both D(F) and D(F $).

Remark 3.4. The permutation _ :=_F, F $ occurs in the Bruhat decomposi-
tion for flag varieties which says that for any nonsingular matrix A, there are
lower triangular matrices L and L$ such that for a (unique) permutation
matrix P_,

A=LP_L$.

In this case, the flags are given by Ki=the subspace spanned by the first
i rows of the identity matrix, while K$j is spanned by the first j rows of A.
One can obtain the decomposition by row reducing A from right to left
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producing an upper left triangular matrix U, pivoting when necessary to
produce LA=P_$U. Then A=L&1P_L$, with _=_$_opp , where _opp :=
(1, r)(2, r&1) } } } (w r

2 x , W r
2 X).

Theorem 3.5 [BV]. If D(M ) is the determinant of B(M ), then

D(M )=`
K

(a(K ))\M (K ),

the product being over all flats (necessarily non-empty and connected ) of M.

The determinant D(M ) is independent of the ordering O and, as a
a polynomial, is homogeneous of degree r(M ) ++(M ) (the number (3.6)
of rows of B(M) times the homogeneous degree of its entries).

Example 3.7. Let M be the combinatorial geometry whose affine picture
and standard flags are indicated below.

Its standard flag differences are

D(F1)= p5 | p3 , p4 | p1 , p2 ; D(F2)=p5 | p2 | p1 , p3 , p4 ;

D(F3)= p4 | p3 , p5 | p1 , p2 ; D(F4)= p4 | p2 | p1 , p3 , p5 ,
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and we obtain the matrix B(M ) below, where the first monomial in B(F, F )
reflects the flag labels.

B(M)

F1 F2

=

F1

F2

F3

F4
_

a5a3a1+a5 a3a2+a5a4a1+a5 a4 a2

&a5a3 a2&a5a4a2

&a5a4a1&a5a4a2

a5a4 a2

&a5a3a2&a5a4a2

a5a2a1+a5a2a3+a5 a2 a4

a5a2a4

&a5a2a4

F3 F4

&a5a4a1&a5 a43a2

a5 a2 a4

a4a3 a1+a4 a3a2+a4a5a1+a4 a5a2

&a4 a3 a2&a4 a5a2

a5a4 a2

&a5 a2a4

&a4 a3 a2&a4a5a2

a4a2 a1+a4a2a3+a4a2a5
& .

Then, D(M ) = a2
1a2

2 a3a2
4 a2

5 } (a1+a2+a3) } (a3+a4+a5) } (a1+a2+a3+
a4+a5).

Example 3.8. If M is separable: M=M1 �M2 (i.e., M1=M(S$) is a
distributive flat with modular lattice complement M2=M(S&S$)), then

B(M)=B(M1)�B(M2),

and

D(M )=(D(M1))++(M2 ) } (D(M2))++(M1 ). (3.4)

4. A MODULAR IDENTITY FOR THE FLAG MATRIX AND
FOR THE MO� BIUS ALGEBRA

We now see what we can say about D(M ) and B(M ) when M has a
(non-trivial) modular flat. To that end, we first factor and then examine D(M).

Definition 4.1. For a flat K of M and all flats K$, define

DK (M)= `
K$ : K$ & K{<

(a(K$ & K ))\M (K$),
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and

D� K (M )= `
K$ : K$ & K=<

(a(K$))\M (K$).

Evidently,

deg(DK (M ))+deg(D� K (M ))=deg(D(M))=r(M ) ++(M ) by (3.6).

(4.1.1)

When K is a direct-sum factor, all K$ (necessarily connected) which give
a positive exponent in DK (M ) are contained in K, so that, in this case,
D(M)=DK (M ) D� K (M). Further, (3.8) shows that DK (M)=(D(K))++(S&K ),
and D� K (M )=D(M(S&K ))++(K ). We now explore the structure of these
polynomials when K is modular.

Proposition 4.2. 1. If K is a modular flat of M, then

deg(DK (M ))=r(K) ++(M ),

and

deg(D� K (M ))=(r(M )&r(K )) ++(M ).

2. Conversely, if K is not modular, then

deg(DK (M ))<r(K) ++(M ).

Proof. (1) The degree of D� K (M ) was computed in (2.8), and the
degree of DK (M ) follows from (4.1.1).

(2) For any flat K,

deg(DK (M ))�r(K ) ++(K ) (4.2.3)

since any monomial in B(M ) has at most r(K) factors ai with pi # K, and
each summand in the expansion of D(M ) is a product of ++(M ) such
monomials. If K is not modular, let K$ be a non-modular complementary
flat (K & K$=< and r(K$)+r(K)>r). Reorder S so that K$=[ p1 , p2 , ..., pk$].
Then the lexicographically minimum standard basis Amin for M (which is
necessarily a /-basis) intersects K$ in r(K$) points, so that in the row of
B(M ) indexed by F(Amin), every monomial contains less than r(K ) factors
ai with pi # K. Thus, there is strict inequality in (4.2.3). K

We now describe DK (M ) for a modular flat K as a power of D(K ), and
D� K (M) as a power of Dp� (M$) for an associated matroid M$ (where p� is a

631A MO� BIUS IDENTITY



point). The formulas come from a matrix tensor product similar to that for
separable matroids. Again, we assume (with the appropriate weights on
multiple points: assign a multiple point its weight as one would any flat
and treat it as a single weight) that M (necessarily loopless) has been
simplified to a combinatorial geometry. We review some results principally
from [Br1] on modular flats and their complete principal truncations.

Definition 4.3. The complete principal truncation T� K (M ) (called the
Brown truncation in [Br1]) is the matroid M�P, where, first r(K )&1 points
P are put freely on the flat K (and, after the contraction, the resulting mul-
tiple point [K] is simplified to p� ). When K is modular, T� K (M ) has as flats
which do not contain p� all flats K$ of M disjoint from K and, as flats con-
taining p� , the sets of the form (K$&K ) _ [ p� ], where, in M, K$ is a flat con-
taining K [Br1, (5.14.3)]. Hence, the factors appearing in D� K (M) are those
in D� p� (T� K). In hyperplane arrangements H, TK (H) is constructed by freely
adding a flat T� covering K and considering the arrangement in T� of its
intersections with the hyperplanes of H.

We now order S so that the k points of K precede those of S&K and give
the latter points the same order in T� K (M ) with p� adjoined preceding S&K.

Proposition 4.4. Let K=[ p1 , ..., pk] be a modular flat of the matroid
M(S) with S=[ p1 , ..., pn] and, for a polynomial p(a1 , ..., an), define its
K-degree by deg( p)|ai=1 for i>k .

1. DK (M ) D� K (M) has homogeneous K-degree equal to r(K) ++(M ).

2. D(M)&DK (M ) } D� K (M ) has K-degree less than r(K ) ++(M ).

3. If BK (M) :=B(M ) with all its monomials removed whose K-degree
is less than r(K ), then

Det(BK (M ))=DK (M ) } D� K (M).

Proof. (1) This follows from (4.2.1).

(2) The monomials in the expansion of this polynomial have at least
one factor ai from a linear term a(K$) where some pj # K$ & K, and
pi # K$&K. Replacing such ai 's with an associated aj creates a monomial
in the expansion for D(M ) with greater K-degree.

(3) The monomials in the determinantal expansion of B(M ) with
K-degree <r(K ) ++(M) have at least one factor which is a monomial
entry of B(M) with K-degree <r(K ) and conversely. K

Lemma 4.5 [BO1, (2.4)]. A is a standard /-basis of M if and only if

A=A� TAK (by concatenation),
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where AK is a standard /-basis of K, and A� T is a standard /-basis of T� K (M )
with p� (which it always contains) removed.

We are ready to prove our principal matrix result.

Theorem 4.6. Let K be a modular flat of M.

1. BK (M )=B(K )� 1
a( p� ) Bp� (T� K (M ))= 1

a( p� ) Bp� (K�T� K (M )).

2. DK (M )=(D(K))++(M)�++(K ).

3. D� K (M )=D� p� (T� K (M ))++(K ).

Proof. To obtain Bp� (T� K (M )), consider, in (3.3.1), only sets of distinct
common representatives which include p� . The permutation _ in (3.3.1)
must have _(r$)=r$, where r$=r&r(K )+1 is the rank of T� K (M ) since
p� OS&K and so occurs in DK$ for any standard flag. Let _$ # Symm(r$&1)
denote _ restricted to [1, r$&1]. Then sgn(_$)=sgn(_). When a( p� ) is
removed from all such monomials, we obtain, in

B$ :=
1

a( p� )
Bp� (T� K (M )),

the entries

B$(F :=F(A� T), F $ :=F(A� $T))=sgn _$F, F $ `
r$&1

i=1

a(D i & D$_$F, F $
(i )). (4.6.4)

By (4.5), flags of B(M) are of the form F(A� TAK). For all such flags, the
modularity of K assures us that for i�r$&1, the difference Di in (3.3.1) has
empty intersection with K since r(Fr$&1 6 K )=r=r(Fr$&1)+r(K ).

Thus, if BK (F(A� TAK), F(A� $T , A$K)) is non-zero (i.e., has a monomial with
K-degree r(K )), then _(F, F $) is of the form _$_", where _$ permutes the
first r$&1 coordinates, and _" the last r(K ) coordinates (and, of course,
sgn(_)=(sgn(_$)) } (sgn(_"))). Further, in BK (F, F $), only representatives
from K are chosen from the last r(K ) differences. We may effect this by
intersecting all Di , D$j in (3.3.1) with K (i, j�r&r(K )). Then, restricting
(3.3.1) to its last k factors and using sgn(_"), we obtain an entry from
B" :=B(K ), and

BK (F(A� TAK), F(A� $T , A$K))=B$(F(A� T , A� $T)) } B"(F(AK , F(A$K)) (4.6.5)

This proves the first equality in (4.6.1), and the other formulas follow
from the formula for the determinant of a tensor product (see (3.8) and (4.4)).

K
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Example 4.7 (3.7 continued). For the modular flat L=[ p1 , p2 , p3] in
the matroid M of (3.7), T� L(M ) is the three-point line [ p� , p4 , p5], and

BL=

F1

F2

F3

F4
_

a5a3 a1+a5 a3 a2

&a5a3 a2

0
0

&a5a3a2

a5a2 a1+a5 a2 a3

0
0

0
0

a4 a3a1+a4a3 a2

&a4 a3 a2

0
0

&a4a3 a2

a4 a2 a1+a4 a2 a3
&

=B(L)�
1

a( p� )
B(T� L(M)),

where

B(L)=
p3 | p1 , p2

p2 | p1 , p3 _
a3a1+a3 a2

&a3 a2

&a3 a2

a2a1+a2a3& ,

and

Bp� (T� L(M))=
p5 | p� , p4

p4 | p� , p5 _
a( p� ) a5

0
0

a( p� ) a4& .

Further

DL(M )=(a1a2a3(a1+a2+a3))4�2, and D� L(M)=(a4 a5)2.

The above theorem should prove useful in Mo� bius calculations. We
conclude with an identity (4.8) obtained by comparing the exponent of
a(K") on each side of (4.6.2).

For K$=<, we could manipulate (4.6.3), but prefer instead to use (2.8).
We leave it to the interested reader to devise a Mo� bius algebra proof of (4.8).

Also, note that (4.8) implies, for example, that if a separable flat K$ is
contained in a modular flat K, then, for all K" with K" 7 K=K$, K" is
separable (since ;(K$) and hence the sum would be 0).

Corollary 4.8. Let K be a modular flat of M. Then

:
K" : K" 7 K=K$

\M (K")

= :
K" : K" 7 K=K$

;(K") ++(M�K")

={
\K (K$) ++(M)

++(K )
=

;(K$) ++(K�K$) ++(M )
++(K )

corank(K ) } ++(M)

if K ${<, and

if K $=<.
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5. q-ANALOGS FROM A MO� BIUS IDENTITY

We apply the first Mo� bius identity in (4.8) to two important classes of
geometric lattices and see that the resulting q-identities have similar com-
binatorial interpretations.

5.1. Dowling Lattices

For specificity, we consider linear Dowling lattices D(r, q) with representing
matrix [ID], where the columns of D are all vectors of the form e

� i+ fe
� j

where the e
� k 's are unit vectors from I, f is a non-zero element from the field

with q+1 elements, and 1�i< j�r.
Using results from [D], we have

/(D(r, q))= `
r&1

i=0

(*&1&qi ) (5.1.1)

for the characteristic polynomial (defined in Section 1). Then,

++(D(r, q))=|/(0)|= `
r&1

i=1

(1+qi )=qr&1 \r&1+
1
q+r&1

, (5.1.2)

where (x)r&1 is the falling factorial: x(x&1) } } } (x&(r&1)+1). Further,

;(D(r, q))= } /(D)
*&1

(1)}=(r&1)! qr&1. (5.1.3)

Let K be a connected flat of D which contains e
� 1 . If it contains a vector

e
� ij (one of the form e

� i+ fe
� j or e

� j+ fe
� i ), then, by connectivity, it must

contain vectors e
� 1i1

, e
� i1 i2

, ..., e
� in&1 i which, with e

� 1 , when successive linear
operations are applied, will span e

� i and e
� j . Thus, such a connected flat is

the set of all vectors whose supports are in a prescribed subset of m rows
(including the first). This flat K is modular and isomorphic to D(m, q).

Further, D(r, q)�K is isomorphic to D(r&m, q), so that, using (5.1.2) and
(5.1.3), we obtain

\(K )=qm&1 } (m&1)! } qr&m&1 } \r&m&1+
1
q+ r&m&1

=qr&2 } (m&1)! } \r&m&1+
1
q+ r&m&1

. (5.1.4)
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Proposition 5.2. In D(1+k$+k+n, q), let K$ be the flat supported by
the first k$+1 rows of [ID], and let K be the flat supported by the first
k$+k+1 rows. Then, (4.8) becomes

qn+k+k$&1 :
n

m=0
\ n

m+ (m+k$)! \n+k&m&1+
1
q+n+k&m&1

=
qk$+k&1(k$)! (k&1+ 1

q)k&1 } qn+k+k$(n+k+k$+ 1
q)n+k+k$

qk$+k(k+k$+ 1
q)k+k$

.

Proof. A connected flat K" which intersects K in K$ contains e
� 1 , so by

the above remarks, it must be the set of vectors whose supports are
contained in the first k$ rows and m of the last n rows of [ID]. There are
( n

m) such flats K", all of rank m+k$. All other evaluations are from (5.1.2),
(5.1.4). K

In the above formula, powers of q cancel. Further,

(n+k+k$+ 1
q)n+k+k$

(k+k$+ 1
q)k+k$

=(n+k+k$+ 1
q)n ,

and

(n+k&m&1& 1
q)n+k&m&1

(k&1+ 1
q)k&1

=\n&m+k&1+
1
q+n&m

.

Using the above and rearranging the factorials in (5.2), we obtain the
equivalent formula

:
n

m=0 \
m+k$

m +\n&m+k&1+ 1
q

n&m +=\n+k$+k+ 1
q

n + , (5.2.1)

which is a standard (Newton) binomial coefficient identity. For the parti-
tion lattice, a favorite of Rota's, and a Dowling lattice for q=1, we have

:
n

m=0
\m+k$

m +\n&m+k
n&m +=\n+k$+k+1

n + . (5.2.2)

Remark 5.3. Formula (5.2.1) can be easily proved by expanding
appropriate binomial power series and comparing coefficients, while (5.2.2)
has the following combinatorial interpretation: partition all 0�1 sequences
of length n+k$+k+1 with n 0's according to the largest m such that the
initial sequence of length m+k$ has m 0's (i.e., such that m 0's precede the
(k$+1)st 1). A q-analogous argument below interprets (4.8) for projective
geometries.
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5.4. Projective Geometries

For the projective geometry PG(d, q) of dimension d over a field with q
elements, Mo� bius invariant formulas are better known:

/(PG(d, q))= `
d

i=0

(*&q i ). (5.4.1)

Calculations as in (5.1) yield

++(PG(d, q))=q( d+1
2

) (5.4.2)

(a result which appears in [R]), while

;(PG(d, q))=(q&1)(q2&1) } } } (qd&1) :=;q(d ). (5.4.3)

All flats K of dimension d $ are connected, modular, and isomorphic to
PG(d $, q), while PG�K&PG(d&d $&1, q). Hence, if K is a flat of dimen-
sion d $ we obtain

\(K )=(q&1)(q2&1) } } } (qd&1) } q( d&d $
2

). (5.4.4)

Proposition 5.5. In PG(k$+k+n, q), let K be a flat of dimension k$+k
containing a flat K$ of dimension k$. Then (4.8) becomes

:
n

m=0

qmk _ n
m&q

(q&1) } } } (qm+k$&1) q( n+k&m
2

)

=
(q&1) } } } (qk$&1) } q ( k

2
) } q( n+k+k$+1

2
)

q( k+k$+1
2

)
.

Proof. To count the flats K" of dimension k$+m which intersect K in
K$, we first contract by K$ and consider a flat K"�K$ disjoint from K�K$.
There are then (qn+k&qk)(qn+k&qk+1) } } } (qn+k&qk+m&1) possible
ordered bases for such a K"�K$, while each K"�K$ has (qm&1)(qm&q) } } }
(qm&qm&1) such bases. The quotient is qmk [ n

m]q , where [ n
m]q , a Gaussian

coefficient, equals ;q(n)�;q(m) ;q(n&m). All other evaluations are from
(5.4.2), (5.4.4). K

Remark 5.6. Manipulating powers of q and terms ;q(r), we obtain the
equivalent identity

:
n

m=0
_k$+m

m &q
(qn&1) } (qn&q) } } } } } (qn&qm&1) qm } qn(n&m&1)

=qn(n+k$). (5.6.1)
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A combinatorial interpretation which mimics, for matrices, that in (5.3) is
obtained by partitioning all qn(n+k$) matrices An_n+k$ (over Fq) according
to the largest m such that the first m+k$ columns have rank m. The
number of such A$n_m+k$ is [ m+k$

m ]q (qn&1) } (qn&q) } } } } } (qn&qm&1)
since each such matrix is uniquely factored as C } E, where E is an
m_m+k$ row�echelon matrix representing an (m&1)-dimensional flat in
PG(m+k$&1, q) while C is an n_m matrix with independent columns
(the first m independent columns of A). The next column of An_n+k$ then
depends on the columns of A$n_m+k$ , and there are qm such columns.

For completeness, we give the exact q-analog of (5.2.2) although we
know no Mo� bius generalization:

:
n

m=0
_m+k1

m &q _
n&m+k2

n&m &q
qm(k2+1)=_n+k1+k2+1

n &q
. (5.6.2)

It is obtained by partitioning all n_(n+k1+k2+1) row�echelon
matrices C according to the largest m such that the first m+k$ columns
have rank m: [ C1

O
v
�

O
�

A
C2

], where C1 is an m_(m+k1) row�echelon matrix,
the column ( v

�
O
�

) depends on the columns of [ C1
O ] (v

�
is arbitrary), C2 is an

(n&m)_(n&m+k2) row�echelon matrix, and A is an m_(n&m+k2)
matrix which has zero vectors above the n&m echelon columns of C2 but
is otherwise arbitrary.

REFERENCES

[Bj] A. Bjorner, On the homology of geometric lattices, Algebra Universalis 14 (1982),
107�182.

[BZ] A. Bjorner and G. Ziegler, Broken circuit complexes: Factorizations and generalizations,
J. Combin. Theory Ser. B. 51, No. 1 (1991), 96�126.

[Br1] T. Brylawski, Modular constructions for combinatorial geometries, Trans. Amer.
Math. Soc. 203 (1975), 1�44.

[Br2] T. Brylawski, The broken-circuit complex, Trans. Amer. Math. Soc. 234 (1977),
417�433.

[BO1] T. Brylawski and J. Oxley, The broken-circuit complex: Its structure and factorizations,
European J. Combin. 2 (1981), 107�121.

[BO2] T. Brylawski and J. Oxley, The Tutte polynomial and its applications, in ``Matroid
Theory, Vol. III,'' pp. 123�225, Cambridge Univ. Press, Cambridge, UK, 1993.

[BV] T. Brylawski and A. Varchenko, The determinant formula for a matroid bilinear
form, Adv. in Math. 129, No. 1 (1997), 1�24.

[C1] H. Crapo, A higher invariant for matroids, J. Combin. Theory 2 (1967), 406�417.
[C2] H. Crapo, The Mo� bius function of a lattice, J. Combin. Theory 1 (1966), 126�131.
[CR] H. Crapo and G.-C. Rota, ``Combinatorial Geometries,'' MIT Press, Cambridge, MA,

1970.
[D] T. Dowling, A class of geometric lattices based on finite groups, J. Combin. Theory

Ser. B 14 (1973), 61�86.

638 T. BRYLAWSKI



[GR] J. Goldman and G.-C. Rota, On the foundations of combinatorial theory. IV. Finite
vector spaces and Eulerian generating functions, Stud. Appl. Math. 49 (1970), 239�258.

[GZ] C. Greene and T. Zaslavsky, On the interpretation of Whitney numbers through
arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of
graphs, Trans. Amer. Math. Soc. 280, No. 1 (1983), 97�128.

[LW] J. H. van Lint and R. M. Wilson, ``A Course in Combinatorics,'' Cambridge Univ.
Press, Cambridge, UK, 1992.

[R] G.-C. Rota, On the foundations of combinatorial theory, I, Zeit. J. Wahrsch. 2 (1966),
340�368.

[SV] V. Schechtman and A. Varchenko, Arrangements of hyperplanes and Lie algebra
homology, Invent. Math. 106 (1991), 139�194.

[S] R. Stanley, Modular elements of geometric lattices, Algebra Universalis 1 (1971),
214�217.

[V] A. Varchenko, The Euler beta-function, the Vandermonde determinant, Legendre's
equation, and the critical values of linear functions on a configuration of hyper-
planes, I, Math. USSR Izvestia 35 (1990), 543�577.

[W] L. Weisner, Abstract theory of inversion of finite series, Trans. Amer. Math. Soc. 38,
No. 3 (1935), 474�484.

639A MO� BIUS IDENTITY


	1. INTRODUCTION AND DEDICATION 
	2. MOBIUS ALGEBRA AND THE RHO FUNCTION 
	3. THE DETERMINENTAL IDENTITY IN THE FLAG SPACE 
	4. A MODULAR IDENTITY FOR THE FLAG MATRIX AND FOR THE MOBIUS ALGEBRA 
	5. Q-ANALOGS FROM A MOBIUS IDENTITY 
	REFERENCES 

