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A general result which produces product evaluations of determinants of certain 
raising operators for s](2) representations is obtained. The most combinatorially 
interesting cases occur for self-dual raising operators of Peck posets. Applications 
include the following: A nice product expression is found for the determinant of the 
Lefschetz duality linear transformation on the cohomology of a Grassmannian. 
Known product expressions for the cardinahties of two sets of plane partitions are 
re-derived. The appearance of rising factorials for the hooks in one of these product 
expressions is “explained” by the appearance of rising factorials in s](2) deter- 
minants. A higher dimensional generalization in a certain sense of MacMahon’s 
famous product enumeration result for Ferrers diagrams contained in a box is 
stated in the context of nonintersecting lattice paths. G 1990 Academic Press, Inc. 

1. INSTRUCTION 

Recently there has been much interest in the enumeration of certain sets 
of plane partitions. There are many such sets of objects for which elegant 
and mysterious product enumeration formulas have been proved or conjec- 
tured. Often the enumeration process proceeds in two stages. First, com- 
binatorial or recursive arguments are used to show that a determinant 
enumerates the set of objects in question. The entries of these determinants 
tend to be simple expressions involving binomial coefficients. Second, the 
determinant is evaluated to produce the desired product formula. Some- 
times the second stage is very difficult. 

Here we develop a method of obtaining product evaluations of deter- 
minants arising from certain raising operators of sl(2) representations. The 
more combinatorially interesting cases occur for self-dual raising operators 
of Peck posets. We will explicitly state the result of applying the method to 
the poset which is a product of chains, and to the distributive lattice 
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L(n, m). Each of these two cases evaluates a generalization of a determi- 
nant which enumerates plane partitions. 

Let G,,,,, denote the Grassmann manifold of n-dimensional subspaces 
of an (m + n)-dimensional vector space. This can be realized as a complex 
projective variety of dimension nm under the Plucker embedding. The 
elements of L(n, m) index the Schubert varieties in G,,,,,+,,, which in turn 
provide a basis for the cohomology of G,7,,r+m. The k th Lefschetz transfor- 
mation is a linear transformation from HZk(G,,,,+,,,) to H2”“‘p2k(G,~,,+,,) 
which is obtained by intersecting with a generic hyperplane section nm - 2k 
times. Corollary 2 gives a product expression for the determinant of this 
linear transformation with respect to the natural Schubert cocycle basis for 
the cohomology. 

There is a famous product enumeration formula due to MacMahon for 
the number of 3-dimensional Ferrers diagrams fitting in a rectangular 
parallelepiped. This formula actually makes sense and works in dimensions 
1, 2, and 3. The analogous enumeration problem in dimension 4 does not 
seem to have a nice product answer. However, there is a viewpoint of 
Gessel by which the 3-dimensional Ferrer diagrams can be interpreted as 
non-intersecting tuples of lattice paths in the plane. These tuples are 
enumerated by the determinant of Corollary 1 when n = 2. We will indicate 
how the general determinant identity of this corollary can be interpreted as 
a higher-dimensional analog in a certain sense of MacMahon’s identity. 

The product enumeration formulas for the number of plane partitions of 
rectangular shape and for the number of standard Young tableaux of rec- 
tangular shape have hook products in the denominator which are expressible 
with rising factorials. In fact, rising factorials are very common in the 
subject of product enumerations of plane partitions. Rising factorials arise 
naturally in the context of representations of sl(2). The connection between 
these two phenomenon will become apparent below for rectangular shapes. 

In a paper [Pr3] contemporaneous with this one we use closely related 
sl(2) methods to confirm an old Sperner conjecture of Stanley’s concerning 
the lattice of bounded column strict plane partitions of fixed shape. 

2. DEFINITIONS AND BACKGROUND 

A partition 1 is a sequence of integers A, b & > . . . b 1, b 0. The shape 
(or Ferrers diagram) 2 is a left-justified diagram with lli boxes in the ith 
row. Let L(n, m) denote the distributive lattice of all shapes contained in 
an n x m box, ordered by containment. I.e., L(n, m) consists of weakly 
decreasing n-tuples (ii, . . . . 2,) such that 0 6 2, <m, with order given by 
component-wise comparison. A plane partition T of shape contained 
in 2 with parts bounded by n is an array of non-negative integers T, en 
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satisfying T, > T,.!+, and T, > T,+,,j. A column strict plane partition T 
of shape I with parts bounded by n is an array of positive integers T, 6 n 
satisfying Tii 3 Ti, j+ , and T,i > T, + ,, i. 

A ranked poser P of length R is a partially ordered set-P together with 
a partition P = lJpEO Pi into R + 1 non-empty ranks Pi, 0 6 i< R, such that 
elements in Pi cover only elements in P, _ I. A ranked poset P is strongly 
Sperner if for every k > 1 no union of k antichains contains more elements 
than the union of the k largest ranks of P does. A ranked poset is rank 
symmetric if IP, 1 = 1 P,- ;I for 0 < i < R/2. It is rank unimodal if IP, I < 
IP,I~...d(P,/dlP,+,Id...6lP,/forsomeO~kdR.ItisPeckifit 
is rank symmetric, rank unimodal, and strongly Sperner. 

If aEP, and bEPk+,,, then a saturated chain in P from a to b is a 
sequence of elements a = c0 < c, < c2 < . . < c,, = b. A rank symmetric 
unimodal poset P is said to have Property T if there exist IP, 1 disjoint 
saturated chains in P from elements in Pk to elements in P,- k. 

Associate to any ranked poset P = lJ PC0 Pi a graded complex vector 
space P = @ p= ,, iii, where P, is the complex vector space freely generated 
by vectors ii corresponding to elements of Pi. A linear operator X on P is 
a lowering operator if XFi C P, _ 1. It is a raising operator if XF, G Bi, 1. 
A raising operator defined by 

Xii=1 @(a, b)6 

is an order raising operator if @(a, b) # 0 implies b covers a. The unitary 
raising operator is the raising operator with @(a, b) = 1 whenever b covers 
a. Define a particular linear operator H on P by 

HE= (2i- R)d 

when aE Pi. 
The Lie algebra sl(2) = sl(2, C) consists of all 2 x 2 trace zero complex 

matrices with Lie algebra multiplication given by [u, V] = uu - uu. The 
basis usually taken for sl(2) is [Hum, p. 311 

x=(; ;j, y=(; ;j. h=(!, -0. 

The relations [x, y] = h, [h, x] =2x, and [h, y] = -2y completely 
describe the algebra structure of sl(2). A representation of sl(2) on a com- 
plex vector space Y is a choice of three linear operators X, Y, and H 
on V such that XY- YX= H, HX-XH = 2X, and HY- YH= -2Y. 
A ranked poset P carries a representation of sl(2) if there exist a lowering 
operator Y and an order raising operator X on P such that XY - YX = H. 
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EQUIVALENCE LEMMA [Gri], [St I], [Prl 1. The following are equivalent 
for a ranked poset P: 

(i) P is Peck. 

(ii) P is rank symmetric, rank unimodal, and has Property T. 

(iii) P carries a representation of sl(2). 

Let SL(2) (or SL(2) * ) be the subgroup of GL(2) = GL(2, C) consisting 
of elements which have determinant 1 (or + 1). Any representation of sl(2) 
(or SL(2)) determines a representation of SL(2) (or sl(2)) since SL(2) is 
simply connected. To further specify a representation of SL(2) *, one need 
only describe an action o of u’ = (y A) such that OX= YCJ. 

An anti-involution c of a poset P is an order reversing bijection of the 
elements of P such that g2 = e, the identity bijection. Let the same symbol 
cr also denote the obvious linear operator induced on P. A ranked poset P 
carries a self-dual representation of sl(2) if, in addition to its carrying a 
representation of s1(2), there is an anti-involution o of P such that 
aX= Ya. If CT is also allowed to possibly be a bijection from the poset basis 
vectors for P, to minus the poset basis vectors for P, -kr then one has a 
signed self-dual representation of s](2). (Here there is one choice of sign 
allowed for each pair of sister levels.) 

The irreducible representations of SL(2)’ are “strings” or “chains” as 
described in the Lemma of Section 5. Take a direct sum of irreducible 
representations all of which have even dimension, or all of which have odd 
dimension. Then certain changes of basis will produce Peck posets (with 
order defined by the support of the image of X) which carry representa- 
tions of sl(2) in a (signed) self-dual fashion. Hence there are an unlimited 
supply of Peck posets to which Theorem 1 can be applied. 

3. MAIN RESULTS 

Theorem 1 really concerns concrete (i.e., with respect to specified bases) 
representations of SL(2) * in which the image of CT’ is a bijection (up to 
overall sign) of bases elements between weight spaces of weights I and -1. 
Although the partial order structure does not come into play, posets do 
provide a nice setting psychologically. 

Let di = (P, 1 - (Pi-, ( be the first difference of the rank sizes of P. 
Suppose that P has length R, and that k < :R. Restrict the linear operator 
XR-2k on P to P, to obtain a linear transformation L, from H, to H,-,. 
We will call this the kth Lefschetz transformation of P. This linear transfor- 
mation could be regarded as a linear operator if e were used to identify Pk 
with P&k, Instead we will refer to the square matrix Mk for Lk with 
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respect to the bases of poset elements for P, and P,- k. Define rising 
factorial (x ), := x(x + 1) . . . (x + n - 1). Consult Section 5 for proofs. This 
is the main result of the paper: 

THEOREM 1. Let P be a ranked poset of length R. Fix k < 4R and set 
D = R - 2k. Suppose that P carries a representation ofSL(2) *, and that the 
determinant of o with respect to the poset bases for P, and P,-, is + 1. 
Then the absolute value of the determinant of the Lefschetz matrix is 

IDet(M,)I = fi (h + 1)6gk-*, 
h=O 

A finer result is: Suppose that P carries a representation of sl(2) in a 
(possibly signed) self-dual fashion. Then there are 6, _ t* eigenvalues of M, 
equal to (h + 1 )o in absolute value. 

Now fix n 2 1 and m,, m2, . . . . m, 2 1. Consider the poset .Y(n; m) which 
is defined to be the product of n chains (total orders) of lengths mj + 1. The 
kth rank of P consists of the set C(n, m, k) of compositions tl= 
(a, 9 M2, ..., a,) of k (i.e., k = c(~ + . . . + cx,) such that 0 d cli d mi. If /3 is also 
an n-tuple, then define 

cl!=ct,!a,!...cr,! 

(:)=(:g(!:)-.(!::) 

In Corollaries 1 and 2 the signs of the determinants are found with more 
detailed versions of the proof of Theorem 1. Fix some ordering of the 
elements of C(n, m, k) and use this order to order both the rows (which are 
indexed by a’s) and the columns (which are indexed by /I = m - Q’S) of M,. 
Set S, = 1 P, j + /PI 1 + . . . + 1 P, /, and let k’ be the largest odd integer < k. 

COROLLARY 1. Consider P= .Y(n; m), which has length R = m, + ... 
+ m,. Fix k < 1 R and set D = R - 2k. Then applying the proof of Theorem 1 
to a certain self-dual sl(2) representation on P produces an identity which 
can be slightly rewritten as an evaluation of a determinant of n multinomial 
coefficients: 

Here CI and p run over C(n, m, k) and C(n, m, R-k), respectively. The 
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matrix is symmetric. This identity can be further rewritten as an evaluation 
qf a determinant qf products of n binomial coefficients: 

Note that the (a, /I)-matrix entry in the first form is simply the number 
of saturated chains in P from LY to /I. Trace identities nearly analogous to 
the determinant identities in Corollaries 1 and 2 can be formed by referring 
to the original self-dual raising operator matrices M, given in the proofs. 
The eigenvalues of the matrices M, are as described in Theorem 1. 

We have also found a naive triangularization proof of Corollary 1 using 
induction on n. This proof was longer than the proof of Theorem 1 and was 
also expressed in terms of strings. A naive proof of Corollary 2 below 
would probably be much more difficult to construct. 

Next consider the poset P = L(n, m). Its elements are partitions rather 
than compositions. The length of P is nm. A saturated chain in L(n, m) 
from p E P, to 1 E Pnrnpk is a standard Young tableau of skew shape A/p 
with D =nm- 2k squares: Start with the empty shape for p. After each 
chain step fill in the added square to the shape with the number of the step, 
where the steps are numbered from 1 to D. Let ,fj.,, be the number of such 
standard skew Young tableaux. The following determinant formula for ,fAj,, 
is well known (e.g., [G-V]): 

D! 
1 

(4 -P, +j-iV IGr,,s,r 

For any PE Pk, define ,U’E Pn,npk to be (m-pHr . . . . m-PI). For each 
k < mn/2, fix some ordering of Pk. Also use this ordering to order the parti- 
tions i in Pmnpk via the correspondence 3. = pc. 

The elements of the kth rank of L(n, m) index Schubert cocycles which 
are basis elements of HZk( G,,, + m, C). Intersecting a Schubert variety with 
a generic hyperplane section corresponds exactly to acting with the unitary 
order operator X in P [Stl]. Start with the Schubert variety p and inter- 
sect with a generic hyperplane section D times. Then the multiplicity of 1 
in the result is fi,,, i.e., the number of saturated chains from p to 1 in P. 
These multiplicities are the matrix entries in the first determinant evalua- 
tion of the following result. The cohomology groups H2’ and H2(“m pk) are 
often paired together in geometry. 

COROLLARY 2. Consider P = L(n, m), which has length nm. Fix k < $nm 
and set D = nm - 2k. Then applying the proqf of Theorem 1 to a certain 
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signed self-dual sl(2) representation on P produces a compound determinant 
evaluation which can he slightly rewritten as follows: 

i/,/pl=(D! / ' (li -pj +j-i)! 11 

=(-1)“” nJP++P)! k 
n,(/?+p)! JJ Ch+ l)V h 0 

Here the outer indices p and A. run over all Ferrers diagrams fitting in an 
n x m box with k and nm - k squares respective1.v. The inner indices i and j 
run from 1 to n. The n-tuple p is (n - 1, n - 2, . . . . 0). With respect to the 
Schubert cocvcle basis, this is the determinant of the kth Lefschetz transfor- 
mation on the cohomology of the Grassmannian G,,.,+,,. (In this view 8,, = 
/12,, - Bzhp2, the first difference of the even Betti numbers.) The outer 
matrices are s.vmmetric. This identitjl can also be rewritten as 

4. APPLICATIONS 

Three-dimensional Ferrets diagrams fitting inside an r x p x q box are 
equivalent to ordinary plane partitions bounded by q which are contained 
in a rectangular shape with r rows and p columns or to column strict plane 
partitions of exactly this rectangular shape which are bounded by q + r. 
Suppose that we want to count these. The column strict plane partitions 
can be re-interpreted as r-tuples of non-intersecting lattice paths in N2 from 
the sources (r - 1, 0), (r - 2, 1 ), . . . . (0, r - 1) to the respective terminals 
(P+r-l,q), (p+r-Tq+l),..., (p, q + r - 1): The jth entry in the ith 
row of the plane partition is just q + r minus the y-coordinate of the jth 
horizontal step in the ith path. Embed the Hasse diagram for the Peck 
poset P=9(2;p+r-l,q+r-l)in N2. Set R=p+q+2r-2.Thelattice 
paths become saturated chains from elements of P,_ r to elements of 
PR-r+l, By Gessel’s Theorem 2.7.1 of [St41 (or Theorem 14 of [G-V]), 
the number of non-intersecting r-tuples of paths is given by a determinant 
whose (i, j)th entry is the number of paths from the ith source to thejth 
terminal. So this determinant is the determinant appearing in the first iden- 
tityofCorollary1 whenn=2,m,+l=p+r,m,+l=q+r,andk=r-1. 
(Also we must reverse the order of the columns; this gets rid of the sign on 
the right hand side.) Easy cancellation in the right hand side given by 
the corollary leads to the well known hook-content product enumeration 
formula [St21 for column strict plane partitions. 
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APPLICATION la. The number of 3-dimensional Ferrers diagrams fitting 
in an rxpxq box is 

As noted in Macdonald’s book [Mac, Example 1.5131, MacMahon’s 
product formula above for the number of 3-dimensional Ferrers diagrams 
fitting in an r x p x q box can be rewritten as a product running over the 
rpq boxettes contained in the large box. We will refer to this as the n’ = 3 
case; the analogous formulas hold true for it’ = 1 and n’ = 2. But there does 
not seem to be any sort of product enumeration formula in the n’ = 4 case. 
If the goal is to obtain a nice product enumeration formula, then here we 
will show that the determinant identity of Corollary 1 arising from P(n, m) 
forms the basis for a generalization of MacMahon’s result. 

Left hand side-what is being counted?: We will be counting certain sets 
of non-intersecting lattice paths in N” in a certain fashion. The n = 2 case 
is the smallest non-trivial case in this context; as seen in Application la it 
coincides with the n’= 3 case of MacMahon. The n’= 1 and n’= 2 cases of 
the Ferrers diagram viewpoint can actually be thought of as special cases 
of the n’ = 3 case by taking one or two box side lengths to be 1. For general 
n and k > 0 and any pi > 0 consider P = Y(n; p, + k, . . . . pn + k). Embed the 
Hasse diagram for P in N”. The rank P, is an integral (n - 1)-simplex with 
k + 1 points on an edge; it has p := (‘+ i ~ ’ ) elements. Fix orderings of Pk 
and P,_ k as before. Consider non-intersecting p-tuples of lattice paths 
from all of the sources a in P, to all of the terminals /I in PR-k, paired up 
in any fashion. List the paths in the order given by their sources. Call such 
a p-tuple of lattice paths even if the terminals are an even permutation of 
the original order on terminals; otherwise call the p-tuple odd. Define the 
net cardinality of the set of all such non-intersecting p-tuples of lattice paths 
to be equal to the number of even p-tuples minus the number of odd 
p-tuples. By the reflection argument of Theorem 2.7.1 of [St4], it is 
obvious that the net cardinality is given by the determinant whose (a, /I)- 
entry is the number of lattice paths from tl to j? for M: E Pk and /I E P,-,. 
When n = 2, list both the sources and the terminals in reverse lexicographic 
order-for the terminals this is the reverse of the complementary order 
specified above. It is easy to see that this is the only ordering of the 
terminals for which non-intersecting p-tuples occur. So no cancellation of 
non-intersecting paths occurs, and the net cardinality is up to sign the total 
number of non-intersecting p-tuples of lattice paths. 

Right hand side-what is the “correct” form? The product over the 
boxettes form of the formula for 3-dimensional Ferrers diagrams has an 
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enormous amount of trivial cancellation. The hook content form given in 
Application la for n = 2 has no such obvious cancellation. This form does 
not readily generalize to higher n as stated; as with binomial coefficients 
versus multinomial coefficients some cancellation unique to n = 2 has been 
performed. Instead write the right hand side when n = 2 as 

Note that each lattice path has a total of p + q steps. The product here runs 
over the elements of P,, and there are p + q factors apiece in the numerator 
and the denominator for each index of the product. Hence the product has 
the form which often occurs in the subject: Altogether the number of 
factors top or bottom is equal to the number of subobjects in one of the 
objects being counted. Here a subobject is one edge in one of the lattice 
paths, and an object is a (k+ I)-tuple of paths. In order to come up with 
such a form in the general n case, use the implication (iii) + (ii) of the 
equivalence lemma. Hence there are 1 Pk 1 disjoint saturated chains starting 
in rank Pk and ending in rank P,-,. (Or use the fact that P has a sym- 
metric chain decomposition.) So to any c1 E Pk we can assign a /3 E P, _ k 
such that ad /I. Fix such an assignment. Here is the “generalization” of 
MacMahon’s box theorem: 

APPLICATION 1 b. Fix n b 1, k > 0, and pi > 0 for i = 1 to n. Set mj = 
pi+k. Also set R=p,+p,+ . . . +p,+nk and D=R-2k. Then the net 
cardinality of all ( “+tP ’ )-tuples of non-intersecting lattice paths in P(n; m) 
from the (n - 1)-simplex C(n, m, k) to the (n - 1)-simplex C(n, m, R-k) is 

Here the ith product runs from cr,=O to cci=k--cr, - ... --LX-~. The pi 
are the coordinates of the element p assigned to c1 as fixed above. And k’ 
is the largest odd integer <k. When n = 3, the net cardinality is always 
positive. When n = 2, the net cardinality is positive when k E 0 or 3 
(mod 4) and negative when kr 1 or 2 (mod 4). 

Again altogether the total number of factors top or bottom is equal to 
the total number of edges appearing in any p-tuple of non-intersecting 
lattice paths. The factors appearing in the denominator are just the coef- 
ficients of the sl(2) representation corresponding to the edges in the lattice 
path matching tl to B. When n = 2 the original hook-content product had 
only factors corresponding to edges parallel to one of the two axes. Then 
these surviving sl(2) coefficients in the denominator were the hook lengths. 
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Disjoint II’,/-tuples of saturated chains from P, to PRdk have previously 
played an important role in the theory of Peck posets. The central objects 
in [St31 are unitary Peck posets, which are ranked posets that are Peck by 
virtue of possessing a unitary raising operator X. As above, the determi- 
nant for the kth Lefschetz transformation of a unitary Peck poset with 
respect to the poset bases is equal to the net cardinality of the set of ( Pk I- 
tuples of disjoint saturated chains matching Pk to P,.,. (Now one must 
also specify at the outset some ordering of PRek.) Corollaries 1 and 2 
obtained product expressions for the net cardinality by converting the 
determinant for a self-dual X to the determinant for the unitary X. 

The degree of the Grassmannian in the Plucker embedding is equal to 
the multiplicity of ,I = (m, m, . . . . m) in the result of intersecting p = 
(0, 0, . . . . 0) with a hyperplane section nm times. This is the number of 
standard Young tableaux on an II x m rectangular shape, which is the sole 
entry in the 1 x 1 outer determinant occurring in the k = 0 case of 
Corollary 2. Hence the right hand side automatically evaluates the inner 
n x n determinant. Trivial cancellations give the familiar hook length 
product formula. Again it can be seen that the rising factorial hook lengths 
come directly from sl(2) rising factorials. 

APPLICATION 2a. The degree of the Grassmannian G,,,+,, i.e., the 
number of standard Young tableaux in an n x m rectangle, is 

(nm)! 

E=, (i),,,’ 

Next we count bounded plane partitions contained in a staircase shape. 
Embed the Hasse diagram for P = L( 2, 2r + p - 1) in N 2. Consider r-tuples 
of disjoint lattice paths from the sources (2r - 1, 0), (2r - 2, 1). . . . . (r, r - 1) 
to the respective terminals (2r+p- 1, p), (2r+p-2, p+ l), . . . . 
(r + p, r + p - 1). Using the same viewpoint as in Application la, these 
r-tuples translate into column strict plane partitions of r x p rectangular 
shape, but now with added restrictions. After subtracting from 2r + p, the 
jth entry of the last row cannot be less than r + p + 1 -j. This is a lower 
bound on all of the entries in the jth column. Convert to ordinary plane 
partitions by subtracting r - i + 1 from the ith row. We now have plane 
partitions bounded by r + p contained in an r x p rectangle with column 
lower bounds r + p - j. Complement these in 3 dimensions in the con- 
taining r x p x (r + p) box. Rotate the 3-dimensional Ferrers diagrams and 
re-project to obtain ordinary plane partitions bounded by r which are con- 
tained in the staircase shape (p, p - 1, . . . . 1). Choose k = 2r - 1. Then the 
determinant appearing in the first statement of Corollary 2 is the determi- 
nant needed to count the non-intersecting r-tuples of lattice paths described 
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above. In the right hand side cancel (p + p)! for the ith source into (1% + p)! 
for the ith terminal to obtain rising factorials in the denominator. Then the 
right hand side is now of the form advocated in Application lb; this is the 
product expression on the left below. In [Pr2] we noted that~these plane 
partitions correspond to the weights of certain symplectic group represen- 
tations. There we gave an enumeration formula with (“l’) factors which 
corresponded to roughly half of the positive roots of the Lie group Sp(2p). 
(This set of plane partitions has also been counted using more elementary 
techniques in [Kra] and [G-V].) King has given a hook-content type for- 
mula [Pr2] for the dimensions of symplectic group representations; the 
product expression on the right below is what one obtains in this case. The 
conversion from the left hand side to the right hand side involves simple 
changes in the products and cancellations. 

APPLICATION 2b. A hook-content type formula for the number of 
ordinary plane partitions bounded by r which are contained in 
(p, p- 1, . . . . 1) is 

;fj, (r+i+l(;i;y-i+l) ;.iT, (i+1),(p~.~r+2-i),-I 
P P P 

5. PROOFS OF DETERMINANT EVALUATIONS 

LEMMA. Suppose that SL(2)’ acts irreducibly on a (d+ 1)-dimensional 
vector space. Then there are basis vectors vi for 0 d i< d such that 
xu~=(i+i)u,+,, Yui=(d-i+I)u,+l, and Hv, = (2i-d)v,. And either 
ovi = vdpi for all i or else flvi = -vdpi for all i. 

Proof. The sl(2) statement is Lemma 7.2 of [Hum]. Now aYu,= 
Xov, = 0 implies that (TV,, = aOvd. And aXv, = Yav, together with induction 
on i implies ~~~~ =tlOvdp,. Note that cr* is the identity and so ai= 1. 1 

Proof of Theorem 1. The vector space p carries a representation of 
sl(2). Express this space as a direct sum of sl(2) irreducibles. For 
O<h6 [R/2] there are 6, irreducible representations of dimension 
R - 2h + 1. Let V(h) be the direct sum of these. Set Vi(h) = V(h) n Pi. It is 
well known that V,(h) = Kernel( Y ( pJ and that V,_ Jh) = Kernel(XI PRmI). 
Hence OX= Yo implies that V(h) is stable under 6. It is easy to re-decom- 
pose V(h) into SL(2)* irreducible representations. Apply the lemma to 
each of these irreducible representations to get a new basis for all of P. Fix 
k and set D = R - 2k. From the lemma, we can see that within one string 
the eigenvalue for the 1 x 1 matrix for XpI ,,, is (i+ 1 )p. So a new basis 
vector in ijk is an eigenvalue for aX” with eigenvector k (k-h + 1 )D, if 
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its string started in P,,. For each h < k, there are b,, basis strings passing 
from P, to is,_, which started in P,. So in the new basis, the matrix E, 
for crXD is diagonal with bh entries equal to (k - h + 1 )D in absolute value. 
Let Sk be the matrix for o with respect to the poset bases for p, and P, ~ li, 
and let B, be the change of basis (from string to poset) matrix for p,. Then 
B; ’ SkMliBk = Ek. Now if Det Sk = f 1 the first statement of the theorem 
follows. If the representation on P was signed self-dual, then Sk = f Ik 
(identity matrix). In this case the eigenvalues of Mk are clearly as 
claimed. 1 

Proof of Corollary 1. Let v be the defining representation of GL(2) or 
sl(2) on column vectors of length 2. Then the m th symmetric power S”v 
of this representation is m + 1 dimensional and can be realized in a self- 
dual fashion as in the lemma. Take n such representations of dimensions 
m, + 1, and form their tensor product. Label the basis elements with 
elements of P(n; m). The induced action of 0’ is aa = p, where j3 = m -a. 
With respect to this 0, the induced tensor action of sl(2) is self-dual. Embed 
the Hasse diagram for P in N” with the minimal element at the origin. 
View the coefficients of X as being assigned to lattice path edges in N”. An 
edge from a to fi, where j, = txi + 1, has the coefficient pi assigned to it. 
Any lattice path from M E Pk to p E P, .mk has the same collection of edge 
labels as any other, viz. the product over i of fii!/crj!. There are (“,I’,“) lat- 
tice paths from a to p; multiply by fl!/cr! to obtain the (tl, P)th determinant 
entry of M,. Ignore the sign for now and apply Theorem 1. The first iden- 
tity stated in the corollary is gotten by dividing each column by p! and 
multiplying each row by a!. To get the second form, divide each row of the 
original form by (R - 2k)! and note that the number of rows is 1 Pk 1 = 
6, + .‘. +a,. 

To get the sign, note that the GL(2) character with respect to the group 
element (; z) is 

n u 
n*,+ 1 

l-l 

-V 
m,+ I CWI 

= c ij,(Uv)h [uR-2h+UR-2h -Iv+ . . . +&2h]. 
i=l U-V h=O 

This describes the decomposition of P into irreducible GL(2) and hence 
irreducible SL(2) * representations. Each is one of the possibilities 
described in the lemma. The two possibilities in the lemma can only arise 
as the restrictions respectively of GL(2) representations Deteve”Sdv and 
DetoddSdv. But the character of Det is UV. Hence when h d k is odd the 
entry in E, for this string is negative. Here the matrix Sk = I. Therefore the 
sign of the determinant is (- 1)“‘+“3+ “. f6k’= (- 1)‘“‘. 1 

Proof of Corollary 2. Consider the representation A” [Sm+n-‘v] of 
GL(2). Realize S m + n-- iv with the lemma. The basis vectors of the exterior 



PRODUCT EVALUATIONSOFDETERMINANTS 247 

product are indexed with strictly decreasing n-tuples with entries between 
0 and m + n - 1. Subtract n - i from the ith component to obtain a corre- 
spondence with the basis for ii. The induced action of r~’ is 012 = (- l)(y) 1’. 
With respect to this c, the induced action of sl(2) is signed self-dual on P. 
Any lattice path in L(n, m) from p to J will collect the same product of 
coefficients, viz., the product over i of (ni + n - i)!/(p, + n - i)!. The number 
of such paths is fn,,, and so the (,u, ,I)th determinant entry is 
fj.,~(n + p)!/(p + p)!. Apply Theorem 1 and manipulate as before to obtain 
the two identities. The determinant in the first form has the correct entries 
for the unitary order raising operator on L(n, m) and hence gives the deter- 
minant of the Lefschetz operator for the Grassmannian. 

The representation A” [S” + “- ’ v] can be viewed as a subspace of 
O”[S m+n-l~]. Hence the GL(2) character of a string starting in P,, has 

(‘;) + h factors of Det. The overall factor of ( - 1 )(;) for the action of (T with 
respect to the poset rank bases cancels the other (z) factors of - 1, and so 
the signs work out the same as in Corollary 1. 1 

Note added in proof More recently, Stanley has obtained some results related to 
Theorem 1 in the latter part of Section 2 of [StS]. 
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