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a b s t r a c t

Comparative Effectiveness Research (CER) is designed to provide research evidence on the effectiveness
and risks of different therapeutic options on the basis of data compiled from subpopulations of patients
with similar medical conditions. Electronic Health Record (EHR) system contain large volumes of patient
data that could be used for CER, but the data contained in EHR system are typically accessible only in for-
mats that are not conducive to rapid synthesis and interpretation of therapeutic outcomes. In the time-
pressured clinical setting, clinicians faced with large amounts of patient data in formats that are not read-
ily interpretable often feel ‘information overload’. Decision support tools that enable rapid access at the
point of care to aggregate data on the most effective therapeutic outcomes derived from CER would
greatly aid the clinical decision-making process and individualize patient care.

In this manuscript, we highlight the role that visual analytics can play in CER-based clinical decision
support. We developed a ‘VisualDecisionLinc’ (VDL) tool prototype that uses visual analytics to provide
summarized CER-derived data views to facilitate rapid interpretation of large amounts of data. We high-
light the flexibility that visual analytics offers to gain an overview of therapeutic options and outcomes
and if needed, to instantly customize the evidence to the needs of the patient or clinician. The VDL tool
uses visual analytics to help the clinician evaluate and understand the effectiveness and risk of different
therapeutic options for different subpopulations of patients.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Evidence-based medicine, or evidence-based practice, refers to
the incorporation of sound research evidence, clinical experience,
and patient values into the decision-making process of the clini-
cian, in terms of therapeutic choices and overall patient care [1].
Comparative Effectiveness Research (CER) is designed to improve
the clinical decision-making process by providing research evi-
dence on the effectiveness and risk–benefit profile of different
therapeutic options for specific patient subpopulations [2]. CER of-
ten involves the use of existing patient data to identify subpopula-
tions of patients who share similar clinical characteristics and to
determine which therapeutic outcomes produce improvements
in medical status with minimal side-effects [3]. CER aims to im-
prove and simplify the clinical decision-making process by reduc-
ing the number of available treatment options to those that have
proven to be most effective with little risk. Clinicians and health
policy experts agree that decision support tools that aid clinical
ll rights reserved.
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decision-making hold enormous potential to improve overall pa-
tient care [4,5].

The application of CER-based, Clinical Decision Support (CDS)
tools at the point of care should lead to improvements in health
care quality and reductions in medical costs. Electronic Health Re-
cord (EHR) system provides access to large volumes of patient data
that can be used for CER, but the data are typically accessible only
in formats that are not conducive to rapid synthesis and interpre-
tation of therapeutic outcomes. Clinicians often face information
overload when presented with large amounts of patient data in
the time-pressured clinical setting, which limits the use of CER-
based decision support at the point of care. In addition, the infor-
mation-processing abilities of humans are limited when dealing
with large amounts of data in real time [6]. Further, in the clinical
setting, the clinician has a limited amount of time to spend on each
patient and cannot spend that time filtering through large amounts
of data to evaluate the effectiveness of different treatment options.

Computers can augment the information-processing abilities of
humans. Computational approaches can be designed to rapidly
process large datasets, identify the underlying characteristics of
the data, and present the results in a user-friendly format. External
aids of this type can enhance human decision-making. For
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clinicians faced with large amounts of patient data at the point of
care, external aids can improve the decision-making process if they
can rapidly summarize large datasets to provide an overview of the
data, instantly update the data to determine the effects of different
parameters or to incorporate new data, and aptly present the re-
sults in a format that is easy to interpret [7]. Visual Analytics
(VA) offers an integrated computational approach that combines
visualization, human factors, and data analysis. VA can be applied
as an external aid to filter, analyze, and visualize data [8,9].

The aim of this paper is to discuss the use of VA for CER-based
CDS using patient data from an EHR system. We developed a pro-
totype external tool, termed ‘VisualDecisionLinc’ (VDL), to identify
subpopulations of patients who share a similar medical profile and
to succinctly present results from large datasets using visual cues
to guide the clinician in their decision-making process. We show
how a VA approach can be used for CER at the point of care and
how it can be customized to the needs of the patient or the clini-
cian. We demonstrate how our VA-based approach permits the
use of EHR data as a supplemental CDS tool to improve decision-
making at the point of care.

This manuscript is organized as follows: Section 2 provides an
overview of related work using visual approaches for clinical deci-
sion support; Section 3 provides a brief overview of EHR system
(MindLinc) and the psychiatric dataset that was used to develop
and test VDL; Section 4 provides an overview of the VDL user inter-
face (UI), and the application of VDL for CDS, Section 5 provides de-
tails about the limitations of the current work, and Section 6
concludes with a discussion of the current results and future work.
2. Related work using visual approaches

Current CDS systems use EHR data, but often constrain displays
of the data to tabular views or text formats. Large datasets dis-
played in tabular or text format fail to rapidly communicate under-
lying characteristics of the data and in turn, limit data
interpretation. Other visualization approaches display critical tem-
poral events for a particular patient [10,11] or temporal trends
across patients [12]. The temporal visualization efforts have been
used primarily for data exploration and retrieval; these tools have
not been refined for use in CDS at the point of care. Thus, a need
exists for new visual approaches to process large volumes of pa-
tient data for CER and to present the results in a form that can
be used for CDS at the point of care.

The ideal point of care CDS tool should be flexible and able to
accept input from the clinician, including clinician-approved
changes to the data, and it should provide clinicians with quick
feedback on any changes in the displayed information [13–15].
Furthermore, the ideal point of care CDS tool should be able to
quickly retrieve and synthesize large amounts of patient data and
outcomes for use at the point of care.

We developed a prototype VA-based tool – VDL, that we believe
overcomes the problems associated with previous visualization ap-
proaches and achieves the characteristics of an ideal point of care
CDS tool, as described above. Before discussing the methodological
details involved in the development of VDL, we highlight in the
next section, the EHR system and psychiatric dataset that we used
to develop and test VDL.
3. MindLinc EHR system and dataset details

The MindLinc EHR system is the largest de-identified psychiatry
outcome data warehouse in the United States, and it is a clinically
representative sample of data collected in psychiatric practice
[16]. MindLinc data warehouse represents 110,000 patients or
2,400,000 clinical encounters collected over a 10 year span. The
MindLinc data are drawn from various types of mental health facil-
ities—academic medical centers (25%), community mental health
centers (50%) and other practices (25%), from geographically differ-
ent areas of the country (North, East, South and West). Patient data
from each psychiatric practice site is periodically pooled (�every
6 months) into a de-identified, HIPAA compliant data warehouse.
The MindLinc EHR system stores data on patient demographics,
current and past medications, side-effects, comorbidities, and
other related clinical data, including psychiatric diagnoses and
therapeutic outcomes. The data used for the development of VDL
was extracted from the MindLinc EHR system.

We limited our focus to psychiatric patients with Major Depres-
sive Disorder (MDD) as their primary diagnosis. Within MindLinc,
patient records are tagged with codes from the Diagnostic and Sta-
tistical Manual of Mental Disorder (commonly referred to as DSM
codes). We use this DSM codes to identify patients with a primary
diagnosis of MDD, and extract them for use in the development of
VDL. From the available MindLinc data, the resulting MDD dataset
had 33,536 patient encounters from 3016 unique patients. The fi-
nal, compiled MDD dataset included data on prescribed medica-
tions, comorbid conditions, demographics (race, gender, and age),
visit type (inpatient, outpatient, or emergency), and treatment
outcomes.

Within MindLinc, the patient treatment outcome is recorded in
the form of a Clinical Global Impression (CGI) score. The CGI score
was developed and validated for use by the National Institute of
Mental Health [17] and is used in virtually all FDA-regulated and
most CNS trials. The CGI provides a brief, stand-alone score of
the clinician’s assessment of the patient’s global functioning prior
to and after initiating a treatment. The CGI score range is from 1
through 7, with 1 indicating ‘no illness/maximum improvement’
and 7 indicating ‘severe illness/maximum worsening’. Typically,
good medications outcome are indicated with CGI score less than
two (CGI 6 2). The CGI score is applied to two dimensions: CGI-
improvement (CGI-I) and CGI-severity (CGI-S). While stability is
the goal, our goal is more to aid the doctor with transitions, e.g.,
if the doctor believes a patient’s medication should be switched
then what should it be switched to. In that case, CGI-I offers insight
into patient’s response to the new treatment. Therefore, we fo-
cused on the CGI-I scale (referred to as ‘CGI’ henceforth) for VDL.
4. VisualDecisionLinc: Overview and details

4.1. MDD comparative population dataset derived from EHR data

A patient data-driven approach was used to define the MDD
comparative population. With this approach, the medical profile
of the patient was used as ‘seed’ data to identify comparable pa-
tients with similar medical profiles. A similar medical profile was
defined initially as ‘patients with the same primary diagnosis’.
The similar medical profile can be defined using multiple data
fields, including patient demographics, comorbidities, medication
switching, and others. These definitions of patient similarity can
be applied dynamically at the UI level (Section 4.2). In the current
study, because MDD patients often switch medications, patients
with a primary diagnosis of MDD and their last prescribed medica-
tion were treated as ‘seed’ data identifiers to identify the MDD
comparative patient population. This initial dataset is real world
de-identified data; hence we have to deal with aspects which in-
clude patients with wide gaps between visits, as well as patients
with wide gaps in prescription refills/renewals. To filter out the
data variations (time gaps, and inconsistent refill visits), we only
include patient visits where: (a) the same medication was pre-
scribed for at least 120 days; (b) same medication for at least
120 days, an upper bound on the time; and (c) to exclude patients



Fig. 1. Data view for patient demographics (label 1), summarized medication response (label 2), and comorbidities (label 3). A pseudo patient MRN 15057 is used for
demonstration.
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with wide gaps between visits, we only include patients with at
least three visits of same medication during the 120-day time per-
iod. These criteria ensured that we include only those patients who
are consistent in taking medications and schedule visits for refill.
We use these criteria to filter initial dataset (3036 MDD patients)
and identify patients who closely match the presenting patient
profile. Thus, a large dataset is analyzed before we narrow down
to a refined set of comparative patients who were prescribed the
same medication.

The filtered dataset for the MDD comparative population is
large and complex due to inclusion of multiple data variables such
as demographics, comorbidities, medication, and treatment out-
comes. The next challenge is to present the large dataset in a
meaningful format that would enable the clinician to easily inter-
pret the presented data. In addition, we wanted to provide an on-
demand mechanism to further filter the data to allow the data view
to be customized by the clinician at the point of care. The subse-
quent sub-sections below cover different data views that present
the data characteristics, and on-demand filter mechanism.
4.2. Data views to display comparative population evidence from EHR
data

4.2.1. Data view of patient demographics
Each patient within the EHR system had a unique medical re-

cord number (MRN) assigned to them. We used the MRN to iden-
tify patients and display demographic information. Fig. 1, label 1 is
the patient demographics data view that shows patient’s MRN, age,
gender, and race.
1 For interpretation of color in Figs. 1–4, the reader is referred to the web version of
this article.
4.2.2. Data view of summarized medication response
The prescribed medication and the associated CGI scores were

used to build a data view on the MDD comparative population.
At the computational level, a bin was created for every medication.
From the MDD dataset (in Section 4.1), patients were added to bins
of their prescribed medication, and at the same time were tagged
based on their treatment outcome response (good response as
CGI score 62). Post binning process, additional computational ap-
proach was used to quantify the collective comparative MDD pa-
tient response into ‘% Patient Improved’ score. This percentage
score reflects a ratio of the number of patients who showed
improvement (CGI score 62) to the total number of patients on a
given medication. Label 2 in Fig. 1 shows the data view of the com-
parative medication response for patients in the MDD dataset. The
data view shows ‘% Patient Improved’ score (on the left) and the
absolute number of patients used to calculate the percentage (on
the right). Visual encoded dots were added next to the medication
names to distinguish between medications that reflect% patient
improved score P10 (green1 dot) and less (red dot). Yellow shad-
ing was used to highlight the selected medication (in the middle).
The CGI variance bound of the improved population is indicated by
the confidence interval displayed for each medication (on the far
right). At the UI level, single medication selection is allowed and
the selected medication name is highlighted with a yellow back-
ground for visual feedback. A medication selection triggers updates
to other data views (Sections 4.2.3 and 4.2.5) of the comparative
population of patients on that medication.
4.2.3. Data view of comorbidities
A comorbid condition was defined as ‘the presence of one or

more disorders in addition to the primary diagnosed disorder’.
Within the MindLinc data, every patient visit is tagged with the
comorbid condition data at the DSM code level. We use this DSM
code data to identify comorbid conditions for patients that are part
of the comparative population. Label 3 in Fig. 1 shows the data
view of comorbid conditions among patients on ‘Bupropion’. At
the UI level, we quantify the comorbid conditions shared by the
comparative population. Visual encoding was applied to distin-
guish between the comorbidities of: the patient (larger font in
red), the comparative population (in black), and not present
comorbidities (in gray). By default for the selected medication,
we show the entire comparative population irrespective of the
presence or absence of comorbidities. The letters ‘Y’ and ‘N’ to
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the left of each comorbidity can be used as filter to indicate the
inclusion or removal of patients that are in the comparative pa-
tients data. At the UI level, clicking the letter (Y or N) toggles its
state. A small square around the selected letter was used to indi-
cate the selected state of the comorbid condition. The selection
of a comorbidity results in an instant update to other data views
(Sections 4.2.2 and 4.2.5). Multiple selections of comorbid condi-
tions are allowed at the UI level. This ad hoc ability to filter data
and instant updates to the data view is useful for decision support
at the point of care.
4.2.4. Data view of contextual patient treatment outcome
The label 1 in Fig. 2 shows the actual patient treatment outcome

(CGI score) over time. At the UI level, years of treatment (2002–
2007 in Fig. 2) are indicated by vertical axes (in gray) with patient
CGI scores represented by a horizontal line (in orange). Summary
of different visit types is available in the view (right bottom). Or-
ange dots reflect outpatient visits, and an option is available show
other visit types in the view. Prescribed medications and their time
span is shown using horizontal bars, right below the CGI temporal
view. Blue and red lines reflect the median response trend to the
Fig. 2. Temporal overview of patient (pseudo MRN 15057) treatment outcome (in or
comparative population (in blue, label 2), along with patient’s past 120 day response (in r

Fig. 3. For the same patient, the comparative patient based median CGI response is show
selected medication (details in next section). At the UI level, an
available zoom feature was available to magnify a temporal por-
tion of the data view.
4.2.5. Data view of median-based historical response to medication
The comparative population identified for the selected medica-

tion (Section 4.2.2) is used to build this data view. Historic CGI re-
sponse of each patient in the comparative population with visits in
proximity to 30, 60, 90, and 120 day time points were aggregated,
and a median value was computed for each of the time points.
Median value reflects the historic outcome response at each time
point. At the UI level, the median historic response trend line (in
blue) and the 95% confidence interval plot are shown at different
time points (30, 60, 90, 120 days), see label 2 in both Figs. 2 and
3. Any change in the comparative population of the selected med-
ication triggers automatic updates to this view.
4.3. VisualDecisionLinc: A dashboard-style coordinated display UI

The VDL UI shown in Fig. 4 represents a dashboard-style inter-
face with a collection of different data views (Section 4.2). These
ange, label 1), and median based historical trend in medication outcome from a
ed, label 2) to the selected medication, if it was prescribed to the patient in the past.

n in blue for two different medications: bupropion (top) and venlafaxine (bottom).



Fig. 4. VDL dashboard-style UI with all different data views combined in a single UI.
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data views are linked together to form a coordinated display setup
– filter updates to one view triggers relevant updates to data in
other views. Coordinated display setup helps the user understand
the relation between different data elements. Ad hoc filtering capa-
bility with instant updates to the data views allows for the evalu-
ation of treatment options to better aid the decision-making
process.

5. Limitations of the work

As part of our VDL design, we present real-time and non-peer
reviewed comparative results drawn from EHR data. From an epi-
demiology perspective, we acknowledge EHR data related issues
that need to be addressed, especially on – data inconsistencies,
missing data, and biased data. Hence, as part of the VDL UI, we of-
fer the clinicians an option to customize the data view to draw
their own conclusions, but avoid drawing any direct conclusions.
This is one of the reasons why we have avoided using modeled
or machine-learning based results in our displays – instead we
show summarizations of the data that can be readily consumed
by the clinician. We accounted for the data inconsistencies, and fil-
tered out the missing data elements from inclusion in the compar-
ative patient population set by using data dictionaries. But
comprehensive investigation of the inconsistencies in EHR data
and mechanisms to account for missing data does demand more
research. Particular bias in the presented data can be normalized
to a certain extent by aggregating data from multiple locations.
When presenting EHR data, we do realize that some data issues
do indeed exist and need more thorough investigation.

The presented work focus is directed at VA use in the VDL UI to
offer the clinicians an opportunity to better understand the EHR
data, which is the source of their evidence. Inclusion of UI level
indicators (like confidence intervals) offers insight into the under-
lying characteristics of the presented data. Temporal view provides
general awareness of the trend in a patient’s treatment outcome
profile. The UI also offers an insight into the overlap between
comorbid conditions of the patient and the comparative popula-
tion. The scope of the presented work is to demonstrate the use
of VA based UI to facilitate the clinician’s understanding of the
EHR data in the context of the presenting patient, and help evalu-
ate viable treatment options based on a comparative population.

6. Discussion and future work

This paper highlights the role that VA can play in CDS. We used
VA to bridge the complementary skill sets of humans and comput-
ers (as an external aid) to rapidly derive useful information from a
large dataset. The external aid was used to augment the informa-
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tion-processing abilities of the user to better guide the decision-
making process. The VDL UI uses VA to facilitate the clinician’s
understanding of the data available in EHR system, and to help
the clinician evaluate treatment options for a given patient. The
VDL data views present aggregated observational data for clini-
cians to explore which treatment option is most likely to result
in clinical improvements for patients with different medical condi-
tions and comorbidities. Built-in interactions between the VDL
data views and embedded data filters enable the customization
of views to better suit the needs of the patient and the clinician.
VDL offers a data-centric approach for leveraging the use of VA
in CDS by displaying the relative effectiveness of different treat-
ments options, showing the interactions between different data
elements in a large dataset, reducing information overload, data
integration at the point of care, and facilitating rapid clinical deci-
sion-making.

Also, the VDL presents an opportunity to take a similar ap-
proach where data are temporal in nature and associated with dif-
ferent events at different time points. Data views can be adapted to
show different data types and their characteristics. The different
views can be associated with each other to form a linked visualiza-
tion. Underlying algorithms can be changed to build aggregate bins
and perform trend analysis.

We plan to expand our work from one drug view to a combina-
tion medication view to account for the complex ways multiple
medications are prescribed. Clearly, further research is needed to
effectively view medication combinations. Also, where prescrip-
tion overlap exists, techniques need to be explored to incorporate
the presenting patient’s past prescription history in the visualiza-
tion of the median trend. Now that a prototype exists, it presents
an opportunity to use a working foundation to use to identify the
requirements of an EHR system to make it compatible for real-time
CER use with reliable and valid data available. We plan to perform
a formal evaluation of the clinical utility of our developed VDL CDS
tool. Additionally, further efforts will include studies on how we
can expand our VA approach and leverage other types of patient
data (sequencing, metabolomics, etc.) as supplemental resources
for CDS.
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