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Certain posets associated to a restricted version of the numbers game of Mozes
are shown to be distributive lattices. The posets of join irreducibles of these
distributive lattices are characterized by a collection of local structural properties,
which form the definition of d-complete poset. In representation theoretic lan-
guage, the top ‘‘minuscule portions’’ of weight diagrams for integrable representa-
tions of simply laced Kac]Moody algebras are shown to be distributive lattices.
These lattices form a certain family of intervals of weak Bruhat orders. These
Bruhat lattices are useful in studying reduced decompositions of l-minuscule
elements of Weyl groups and their associated Schubert varieties. The d-complete
posets have recently been proven to possess both the hook length and the jeu de
taquin properties. Q 1999 Academic Press

1. INTRODUCTION

Except for some motivating comments, the only background needed to
read this paper is familiarity with basic poset concepts. There are combina-
torial motivations for this material which are independent of Lie theory. In
fact, the ‘‘numbers game’’ viewpoint of this paper may be explained to lay
people. Readers who are unfamiliar with Weyl groups should skip the next
six paragraphs and resume reading with the description of the numbers
game.

In the context of the highest weight theory of finite-dimensional repre-
sentations for simple Lie algebras, the simplest representations are the
minuscule representations. A finite-dimensional representation is minus-
cule if all of its weights lie in the Weyl group orbit of the highest weight.
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Although there are no minuscule representations for Kac]Moody alge-
bras, the weight diagrams of many integrable Kac]Moody representations
begin with small ‘‘minuscule portions.’’

This paper combinatorially characterizes the minuscule portions of the
weight diagrams for dominant integral highest weight representations of
simply laced Kac]Moody algebras. The ‘‘d-complete posets’’ which arise in
this characterization have applications to representations, to reduced de-
compositions of Weyl group elements, and to two seemingly unrelated
combinatorial issues.

Let l be a dominant integral weight for a simply laced Kac]Moody
algebra, and let W be its Weyl group. Dale Peterson defines w g W to be
l-minuscule if there exists some decomposition s . . . s of w such thati ik 1
Ž . Ž .s s . . . s l s s . . . s l y a for 1 F j F k, where a is the simplei i i i i i ij jy1 1 jy1 1 j

root associated to s . The portion of the weight diagram for the represen-i
tation with highest weight l from l to wl will be seen to have properties
similar to those enjoyed by the entire weight diagram for a minuscule
representation of a simple Lie algebra. Let L denote the poset of weightsw
between l and wl with respect to the reverse of the usual ordering by
positive simple roots. It turns out that L is the same poset as the intervalw
w xe, w in the Bruhat and weak Bruhat orders on the set of cosets WrW ,l

where W is the stabilizer of l.l

Our first theorem, Theorem A, states that L is a distributive lattice. Inw
Žthis paper, we will call such lattices ‘‘wave lattices.’’ In the title of the

w xcompanion paper 7 to this paper, these lattices were called ‘‘l-minuscule
.Bruhat lattices.’’ Any finite distributive lattice L may be more succinctly

described by its subposet P of join irreducible elements. If a poset P can
arise as the poset of join irreducibles for a wave lattice L, then we will call
it a ‘‘wave poset.’’ The main result of this paper is a complete characteriza-
tion of wave lattices in terms of the corresponding wave posets. The
characterization of wave posets is given in terms of certain local structural
properties. A poset P is said to be ‘‘d-complete’’ if it possesses this

Ž .collection of local structural properties Section 3 . So the main result of
this paper, Theorem B, may be stated as: A poset is a wave poset if and
only if it is a d-complete poset. A concept closely related to the notion of
d-complete poset is that of ‘‘colored d-complete poset.’’ The weight
generation process also produces a coloring of the elements of the wave
poset P. Proposition 8.6 implies that the notions of d-complete and of
colored d-complete are equivalent.

The notion of d-complete poset first arose as follows. Let gg be a simply
laced Kac]Moody algebra. Let l be a dominant integral weight, let w be
l-minuscule, and let P be the colored wave poset associated to w as

w xabove. In 10 , we produced a combinatorial analog of Lakshmibai’s basis
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w x5 for the Demazure modules of the positive Borel subalgebra of gg with
Ž .lowest weights m wl for m G 1. This construction was stated indepen-

dently of conventional Lie theory in the context of arbitrary colored
posets. It was shown that a family of modules associated to a colored poset
P possessed bases like those of Lakshmibai and Seshadri if and only if P

w xwas colored d-complete. The present paper completes the program of 10
w xin the following sense: Theorem B guarantees that the methods of 10 can

be applied to all of the Demazure modules described above. A corollary to
w xthe methods of 10 is a combinatorial proof of the Demazure character

formula for this small family of Demazure modules.
Any l-minuscule Weyl group element w has the ‘‘fully commutative’’

w xproperty introduced by Stembridge 13 . The waverBruhat lattices Lw
indexed by such l-minuscule w describe the Schubert subcell structure of
certain Schubert varieties X . These Schubert varieties are the simplestw
Schubert varieties in a certain sense, that is, they are the analogs in a
certain sense of the Schubert varieties of a Grassmannian. Further Weyl
group, representation theory, and geometric comments appear in Section
10.

w xThe numbers game of Mozes 6 can be explained to any lay person. Let
G be a finite simple graph: no loops or multiple edges are allowed. Here is
the restricted version of this one-player game which will be considered in
this paper. The game begins at an initial state which consists of an
assignment of integer labels to the nodes of G. One move consists of the
following: Choose a node d which currently has a q1 label. Change that
label to y1 and add q1 to the labels of each of the nodes adjacent to d.
We say that we have ‘‘fired’’ the node d. From this new state, one is again
allowed to perform any such move. We organize the various tallies of
‘‘node firings’’ which can arise from a sequence of moves away from the
fixed initial state into a partially ordered set. The general version of our
first result states that any principal order ideal of this poset is a distribu-
tive lattice. For our main result, we require that all of the initial labels be
nonnegative. The distributive lattices which arise in that case are just the
wave distributive lattices mentioned three paragraphs above. That para-
graph describes the main result of this paper, Theorem B, and should be
read by all readers at this point.

The posets which are produced by Theorem B, the d-complete posets,
form a class of posets which are of interest for combinatorial reasons.

Ž .Shapes Ferrers diagrams and shifted shapes are diagrams upon which
tableaux and plane partitions are formed. Such diagrams may be viewed as
posets. Tableaux and plane partitions on shapes and on shifted shapes
have attracted much attention over the last 25 years or so. Is there a more
general class of posets in which some of the nice properties enjoyed by
shapes and shifted shapes continue to hold? The class of d-complete
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posets is a good generalization with respect to two such properties.
w xIn 7 , we give an explicit Dynkin diagram classification of all possible

d-complete posets. There it is shown that any connected d-complete poset
has a globally tree-like structure such that each of the local ‘‘slant
irreducible’’ components falls into one of 15 possible classes. Each slant
irreducible component is indexed by a Dynkin diagram which is embedded
in the bottom of its order diagram. For 14 of 15 classes, the Dynkin
diagrams are of ‘‘general type E.’’ This classification may be regarded as a
classification of simply laced l-minuscule Weyl group elements or of the

Ž‘‘simplest’’ Schubert varieties. As is explained in Section 3, the definition
of the d-complete poset used in the present paper is the order dual of the

w x .definition used in Pr1 and in the other papers of this series.
The first two of the 15 classes of irreducible d-complete posets are the

w xclasses of shapes and of shifted shapes. Rooted trees are shown in 7 to
form a family of d-complete posets which are trivial in a certain sense.
These posets are defined in Section 3 below, as are the members of a
fourth family of d-complete posets, the ‘‘double-tailed diamonds.’’ These
four families of d-complete posets were the only infinite families of posets

w xknown to have the ‘‘hook length’’ property 11 : A poset P is said to be
‘‘hook length’’ if its associated P-partition generating function factors in a
certain nice fashion analogous to identities discovered by Euler and
Stanley. The first three of these families were the only infinite families of
posets known to have the ‘‘jeu de taquin’’ property: A poset P is said to be
‘‘jeu de taquin’’ if the result of playing Schutzenberger’s sliding game is¨
independent of the order in which the ‘‘empty labels’’ are slid out. In 1994,
we conjectured that any d-complete poset possesses both the hook length
and jeu de taquin properties. After this paper was refereed, Dale Peterson
and we proved the hook length conjecture by combining facts from
algebraic geometry and representation theory with the wave viewpoint of
this paper. A corollary to this result is a generalization of the hook product
formula for the number of standard Young tableaux on an ordinary shape
to a product formula for the number of order extensions of any d-complete
poset. Given the relationships described in Section 10, this corollary can be
viewed as a conversion of Dale Peterson’s hook formula for the number of
reduced decompositions of a l-minuscule element into a combinatorial
form analogous to the original Frame]Robinson]Thrall form. More re-
cently, we have proved the jeu de taquin conjecture as well, by modifying
and then extending Kimmo Eriksson’s proof of the jeu de taquin property
for shapes to the other 14 classes of irreducible d-complete posets.

There are three or four differences between the numbers game process
w xof Mozes and our process. Relative to 6 , we are multiplying all labels by

y1 in order to agree with the traditional Lie theoretic approach employed
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w xin 8 . Mozes allowed real numbers instead of integers. More importantly,
relative to our sign convention, Mozes required that only one label for the
initial state be positive. For our main result, we require that all initial
labels be nonnegative. Most importantly, Mozes’s process allows one move
for each node with a positive label x: This label is replaced by yx, and x
is added to the labels of each of the neighboring nodes. We require
x s q1 to make a move based at that node. The general numbers game

w xhas also been studied in 1]3 .
If one forms a square matrix from the set of vectors corresponding to

our moves at the various nodes, one obtains the ‘‘discretized Laplacian’’
operator for the graph G. Visualize a portion of G which is simply a chain.
Suppose that one node ¨ has q1 assigned to it and that the other nodes
have been assigned 0. View this situation as a guitar string which has been
pulled up at ¨ but not yet released. The states locally attainable from this
initial situation can be visualized as snapshots of pulses propagating away
from ¨ as waves after the string is released. This square matrix is the
generalized Cartan matrix for the simply laced Kac]Moody algebra whose
Dynkin diagram is G. Executing a move based at the ith node corresponds
to subtracting the positive simple root a . Further details relating aspectsi

of the numbers game to aspects of representation theory are given in
Section 10.

w x Ž .In 8 , we used the as yet unnamed numbers game to determine which
of the Bruhat orders on parabolic quotients W J of finite Weyl groups were
distributive lattices. The answer was that the weight diagrams of the
minuscule representations constituted almost all such ‘‘Bruhat lattices.’’
We defined a poset P to be minuscule if it was the poset of join
irreducibles for the weight diagram of a minuscule representation. Ideals
of these posets are the simple Lie algebra antecedents for the ‘‘wave
posets’’ studied in this paper in the context of simply laced Kac]Moody

w x w xalgebras. The minuscule posets were pictured in Figure 2 of 9 . In 7 , we
show that a d-complete poset is minuscule if and only if it is order

w xself-dual. In 8 , with Stanley, we showed that every minuscule poset is
w x‘‘Gaussian’’ 12, p. 288 .

The two main results of this paper are stated at the end of Section 2,
after our restricted version of the numbers game and the poset of tallies
are defined. Section 3 presents the definition of d-complete poset. In
Section 4, we obtain the distributive lattice result in the general context
where some of the initial labels may be negative. Section 5 constructs the
posets of join irreducibles for those distributive lattices. Beginning with
Section 6, we assume that all of the initial labels are nonnegative. Sections
6 and 7 prove that wave posets are d-complete. Sections 8 and 9 prove that
any d-complete poset can arise as a wave poset.
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2. A RESTRICTED NUMBERS GAME

Readers who are familiar with Lie representations or Weyl groups
should read Section 10 in tandem with this section. Let G be a simple
graph with node set N. Let L [ Z N. Elements of L are wa¨e states. For

Ž .each d g N, let a g L be defined by a [ aa with aa s q2,d d bg Nb d
aa s y1 when c is adjacent to d, and aa s 0 otherwise. For each d g N,c b
the operator SS is partially defined on L by SS m s m y a if m sd d d
Ž . Ž .mm with mm s q1. If mm / 1, then SS m is undefined . If mm sbg N db d d d

Ž .q1, applying SS to m fires node d. Let l s ll be a given fixedd bg Nb
element of L; it is the initial state. Our restricted numbers game begins
with this initial state: The various play sequences of the game consist of
applying the operators SS to l and its successors, provided that thed
actions are defined at each step. For example, Fig. 1 presents a graph G
Ž .which is the Dynkin diagram E . Figure 2 shows some states generated6
by beginning to play the restricted numbers game starting with a particular
l. In the labels appearing in this figure, the entries are arranged to
correspond with the geometry of G as it is depicted in Fig. 1. The symbols
‘‘1’’, ‘‘0’’, and ‘‘y’’ indicate component values of states of q1, 0, and y1,
respectively. The initial state l is at the bottom of Fig. 2; it has a q1 at
the leftmost node of G and 0’s elsewhere. The result of firing the q1 is
shown above l. Thirteen later states produced with various choices of
firings are shown higher up in Fig. 2.

For some choices of G and l, it is possible for this game to ‘‘loop’’
Ž1. w xindefinitely. For example, if G is the affine Dynkin diagram E 4, p. 546

Ž .with its central node numbered 0, let l s 0, 1, 0, y1, 0; 0, 0 . Then
SS X SS SS Y SS Y SS X SS X SS SS Y SS SS SS SS l s l y j , where j s 1a q 2a q1 0 1 2 2 1 0 1 1 0 2 1 2 1
3a q 2a X q 1a X q 2a Y q 1a Y . But note that j s 0 in L. Hence0 1 2 1 2

ŽX Y Y X X YSS SS SS SS SS SS SS SS SS SS SS SS l s l. This example was inspired by1 0 1 2 2 1 0 1 1 0 2 1
w x w x .Figure 7 of 13 and considerations from 7 .

We would like to introduce a partial ordering on the set of wave states
produced by the numbers game beginning with the initial state l such that
the earliest states generated occur at the lowest elements of the poset. The
example just presented indicates that this is impossible in general. It turns
out that it is possible when all of the initial labels are nonnegative.

FIGURE 1
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FIGURE 2

However, we can show this only after a considerable amount of work. The
additional objects introduced next, ‘‘tallies,’’ can immediately be organized
into a poset. Although we will continue to refer to wave states, the tallies
will become the primary objects for stating and deriving our results.

Continue to work in the context of a fixed simple graph G with a given
fixed initial state l g L. Now we track the number of times that each
node is fired. Let J [ N N. Elements of J are called tallies. Denote the

Ž .initial tally 0, 0, . . . , 0 g J by u . The wa¨e state function C: J ª L is
Ž . Ž .defined by C p s l y Ý pp a , if p s pp g J. Note thatbg N b bg Nb b

Ž .C u s l, the initial state. An operator s will act on J in parallel withd
the action of SS on L to record the firings of the node d. Let « g J bed d

Ž .defined by « [ ee with ee s q1 and ee s 0 elsewhere. For eachd bg Nb d b
d g N, the operator s is partially defined on J by s p s p q « ifd d d
Ž . Ž . Ž .C p s mm with mm s q1. If mm / 1, then s t is undefined. Letbg N db d d



MINUSCULE ELEMENTS OF WEYL GROUPS 279

Ž . Ž .p g J be such that C p s m s mm with mm s q1. Then SS m isbg N db d
Ž . Ž .defined; let n [ SS m. Note that C s p s C p q « s n : By adding q1d d d

to the dth component of p , the operator s is tallying the firing of the dthd
node in passing from m to n .

� 4We recursively build up a subset V of J beginning with V [ u . If
p g V and s p s r for some d g N, then adjoin r to V. Figure 3 showsd
14 tallies generated by working up from u in V for the example shown in
Fig. 2. It is best to think of Fig. 3 as the primary object; now Fig. 2 merely

Ž .depicts the wave states C p corresponding to the tallies p . From now on,
Ž . Ž .we assume that for the given G, l , the possibly infinite set V of all

possible tallies has been generated. Suppose that p , r g V, with p s
Ž . Ž .pp and r s rr . We define a partial order on V by p F r ifbg N bg Nb b
pp F rr for every b g N. Let z g V. Define L to be the subposet of Vzb b
consisting of all p g V such that p F z . The topmost tally shown in Fig. 3

FIGURE 3
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is one possible choice for a z g V in this example; the rest of Fig. 3 gives
the order diagram for the poset L .z

ŽA lattice L is distributï e if, for every x, y, z g L, the identities x n y
. Ž . Ž . Ž . Ž . Ž .k z s x n y k x n z and x k y n z s x k y n x k z hold. Let

P be a poset. A subset I : P is an ideal if it is closed below: y g I,
Ž .x F y « x g I. Given P, the poset J P is the poset of ideals of P ordered

by containment. It is always a distributive lattice. Let L be a distributive
lattice. An element x g L is join irreducible if it covers exactly one other
element. The poset shown in Fig. 3 is a distributive lattice. The symbol ‘‘a’’
has been placed above each of its join irreducible elements. Given a

Ž .distributive lattice L, let j L denote its poset of join irreducibles. The
Ž .poset j L for the lattice L appearing in Fig. 3 is displayed separately in

w xFig. 4. The fundamental theorem of finite distributive lattices 12, p. 106
states that if P is finite poset and L is a finite distributive lattice, then
Ž Ž .. Ž Ž ..j J p ( P and J j L ( L. So a finite distributive lattice L is com-

pletely determined by its poset of join irreducibles P.
Assuming the definition of ‘‘d-complete poset’’ which is given in the next

section, we can now state our main results.

THEOREM A. Let G be a simple graph with node set N and let l g Z N.
Let V be the associated poset of tallies. Then, for any z g V, the poset L isz

a distributï e lattice.

FIGURE 4
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THEOREM B. Let G be a simple graph with node set N and let l g N N.
Ž .Let V be the associated poset of tallies. A poset P may arise as j L for somez

such G and l and some z g V if and only if it is d-complete.

Although we will not use the following reduction, we mention it for the
sake of exposition. There is no point in allowing initial labels which are q2
or larger, since those nodes of G would just be ignored by the restricted
numbers game. So for Theorem B, every initial label can be assumed to be
0 or q1. Firing one of the initial q1’s will enable adjacent nodes to be
fired, provided that their initial labels were 0. Any new q1 which arises
during a firing sequence can have its heritage traced back to a particular
original q1. If a wave propagating outwardly from one original q1
collides with a wave propagating outwardly from another original q1, a
q2 label will be created and that node will henceforth be inactive. Fix
some z g V. If we want to study only L , it can be seen that we may asz

well replace G at the outset with a disjoint union of rooted trees in which
each root has the initial label q1 and all other nodes have initial label 0.
ŽEach node which appears at least once in z can be unambiguously
assigned to one of the original q1 nodes according to the heritage of the
first wave to reach it. The ‘‘unambiguous’’ claim can be verified by
considering the set of unfired nodes in z ; this will be independent of the

.chain chosen to reach z from u . Since everything in this paper is
well-behaved under disjoint union, one might as well restrict attention to

Ž .the G, l cases in which G is a rooted tree and l has only a q1 at the
root of G.

w xThe paper 7 takes up where Theorem B leaves off by classifying all
d-complete posets. As a consequence of that classification, it can be seen
that there is an upper bound on the length of any firing sequence for a
given finite G and initial l g N N. This is in contrast to the example above
which had l g Z N. We do not know of any overlap between the finiteness
result just stated and the various terminating numbers games results of
w x1]3, 6 .

3. DEFINITIONS OF d-COMPLETE AND COLORED
d-COMPLETE POSETS

Ž .In this paper, all posets i.e., partially ordered sets are assumed to be
finite. Let P be a poset. The order-dual poset PU is defined on the same
set as P, but with order defined by x F y in PU if x G y in P. The
definitions presented in this section are the order duals of the analogous
definitions presented in the other papers of this series. In those other
papers, a connected d-complete poset has a unique maximal element. This
agrees with the majority of historical precedents: weight diagrams of



ROBERT A. PROCTOR282

representations, and ordinary and shifted tableaux for the hook length and
jeu de taquin properties. In this paper only, connected d-complete posets
will have unique minimal elements. We could not bear to define the order
on the tallies in V by r F p if rr G pp for every b g N. Staying with theb b
maximal convention would have required considering the ‘‘meet irre-
ducibles’’ of L rather than the traditional ‘‘join irreducibles.’’ Finally, thez

convention used in this paper means that the lattices L will be intervalsz

in weak Bruhat orders, rather than their order duals, since the convention
for Bruhat orders is to start with the identity as the unique minimal
element.

Let P be a poset. If x is covered by y in P, then we write x ª y. A
chain is a subset of P of the form x ª x ª ??? ª x . If w, z g P, then0 1 n

w x � 4 Ž x w x � 4the inter̈ al w, z [ x g P: w F x F z . Also, w, z [ w, z y w . And
w . Ž .w, z and w, z are analogously defined. Given x g P, the principal ideal
Ž . � 4x is defined to be y g P: y F x . Given x , . . . , x g P, the ideal1 m
Ž .x , . . . , x generated by these elements is defined to be the union of the1 m

Ž .ideals x for 1 F i F m. From the context at hand, it will be cleari
Ž .whether x, y refers to a doubly open interval or to an ideal generated by

two elements.
� 4A subset w, x, y, z of P is a diamond if z covers x and y, and each of

Ž .x and y cover w. The poset d 1 is the four-element poset consisting of3
� 4 Ž .one diamond w, x, y, z . The poset d 1 is the six-element poset formed4

Ž .by adjoining one element above the maximal element of d 1 and one3
Ž .element below the minimal element of d 1 . Generalizing, for k G 3, the3

Ž .double-tailed diamond poset d 1 has 2k y 2 elements, of which two arek

incomparable elements in a middle rank and k y 2 apiece form chains
Ž w x Ž .above and below the two incomparable elements. In 9 , the poset d 1k

Ž .was defined to be the poset of join irreducibles of the Bruhat lattice D 1k
.for the v representation of the simple Lie algebra of type D .1 k

w x � 4An interval w, z in P is a d -inter̈ al if it is a diamond w, x, y, z for3
w x Ž .some x and y, or in other words, if w, z ( d 1 . More generally, for3

w xk G 3, we say that an interval w, z is a d -inter̈ al if it is isomorphic tok
Ž . y w xd 1 . A d -inter̈ al x, y; z consists of three elements x, y, and z suchk 3

w xthat z covers both x and y. For k G 4, we say that an interval x, z is a
y Ž . � 4d -inter̈ al if it is isomorphic to d 1 y b , where b is the minimalk k

Ž .element of d 1 .k
w x ySuppose that x, y; z is a d -interval in a poset P. If there is no w g P3

� 4 w x ysuch that w, x, y, z is a d -interval, then x, y; z is an incomplete d -in-3 3
X w x yterval. If there exists z / z such that x, y; z9 is also a d -interval, then3

w x w X xwe say that x, y; z and x, y; z o¨erlap. A poset P is d -complete if it3
contains no incomplete dy-intervals, if the minimal element of each3
d -interval is not covered by any elements outside of that interval, and if it3
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contains no overlapping dy-intervals. We have just required:3

Ž .D1 Anytime two elements x and y are covered by a third element
z, there must exist a fourth element w which is covered by each of x and
y;

Ž . � 4D2 If w, x, y, z is a diamond in P, then w is covered by only x
and y in P; and

Ž . XD3 No two elements z and z can cover each of two other
elements x and y.

w x yLet k G 4. Suppose x, z is a d -interval in which y is the uniquek
w xelement covered by z. If there is no w g P covered by x such that w, z is

w x y Xa d -interval, then x, z is an incomplete d -interval. If there exists z / zk k
w X x y w xcovering y such that x, z is also a d -interval, then we say that x, zk

w X xand x, z o¨erlap. For any k G 4, a poset P is d -complete if:k

Ž . yD4 There are no incomplete d -intervals;k

Ž . w xD5 If w, z is a d -interval, then w is covered by only one elementk

in P; and

Ž . yD6 There are no overlapping d -intervals.k

A poset P is d-complete if it is d -complete for every k G 3.k
Ž .A colored poset P, k consists of a poset together with a coloring map k

to a set of colors N. It is properly colored if no two incomparable elements
are colored the same and no element is colored the same as an element it
covers. It is simply colored if, in addition: whenever an interval is a chain,
the colors of the elements in that interval are distinct. For any k G 3, a

Ž .colored poset P, k is colored d -complete if it is simply colored andk
Ž . Ž .d -complete in such a way that k w s k z in every invocation of D1 ork

D4. It is colored d-complete if it is colored d -complete for every k G 3.k

The colored definitions could be simplified by dropping conditions D3 and
Ž .D6: Proposition 8.1 states that D1 or D4 together with simple coloring

Ž . Ž .implies D3 or D6 . Trivially, any d-complete colored poset P, k becomes
a d-complete poset when the coloring function k is ignored. Proposition
8.6 states that any d-complete poset can be colored so that it becomes
colored d-complete, and that there is essentially only one coloring which
will work.

A rooted tree is a connected poset with a unique minimal element in
which every other element covers at most one element. Rooted trees are
obviously d-complete.



ROBERT A. PROCTOR284

4. PROOF OF THEOREM A

Let G be a fixed simple graph with node set N and let l be a fixed
element of L s Z N. Let V be the corresponding poset of tallies defined in
Section 2.

Ž . Ž .For elements m g L and p g V, we will write m s mm and p s ppb b
Ž . Ž .instead of m s mm and p s pp . Let d g N. If p g V isbg N bg Nb b

Ž . Ž . Ž . Ž .p s pp with C p s m s mm , we will define CC p to be the dthdb b
Ž . Ž .coefficient of C p , namely; CC p [ mm . Within proofs, we will writed d

a . . . a instead of s . . . s .q 1 a aq 1

LEMMA 4.1. Let p , r g V. If p F r, then there exist c , . . . , c g N such1 r
that r s s . . . s p .c cr 1

Proof. Let p s a . . . a u and r s b . . . b u . Let t be maximal suchp 1 q 1
that a s b , . . . , a s b . If t s p, we are done. Suppose that t - p. Note1 1 t t

Ž .that CC a . . . a u s q1. Since p F r, there must be some i ) t q 1a t 1tq 1

such that b s a . Letting h be the minimal such i, we have b / ai tq1 j tq1
Ž .for h ) j G t q 1. Viewing the b’s as a’s, it is obvious that b b . . . b u ish t 1

defined. We claim that s s b b . . . b b b . . . b u is defined. Sincehy1 hy2 tq1 h t 1
� 4 Ž .b f b , . . . , b , the decrease of CC b . . . b u caused by firing bh tq1 hy1 b t 1 hh

cannot adversely affect the original program of firing b , . . . , b aftertq1 hy1
reaching b . . . b l. It is conceivable that one of b , . . . , b , say b , ist 1 tq1 hy1 j
adjacent to b and that firing b earlier could increase the value ofh h

Ž .CC b . . . b u to q2 for some h y 1 G j G t q 1, and thereby interfereb jy1 1j

Ž . Ž .with that original program. But CC b . . . b u s CC a . . . a u s q1. Ifb t 1 a t 1h tq1

Ž .b is adjacent to b , then firing j would increase CC b . . . b u to q2j h b j 1h

before b in its original position was reached. Then b . . . b u wouldh q 1
not be defined. Hence b is not adjacent to any of b , . . . , b , and soh tq1 hy1
s is defined. Clearly s s b b b . . . b b . . . b u , and so r s b . . .h hy1 hy2 tq1 t 1 q
b b . . . b b b . . . b u with b s a , . . . , b s a , b s a . By in-hq1 hy1 tq1 h t 1 1 1 t t h tq1
duction on t, we can eventually reach r with a sequence of operators
which passes through p .

LEMMA 4.2. Let p , r g V. Then r co¨ers p in V if and only if there
exists some d g N such that r s s p .d

Proof. One direction is immediate from the definition of F on V and
the other is immediate from Lemma 4.1.

Now we are ready to prove Theorem A. We continue to work in the
context of our fixed G, N, l, etc. Extend the partial order on V to all of

Ž . Ž .J. If p g J is p s pp , then we define the height of p by ht p [b
Ý pp .bg N b
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Ž .Proof of Theorem A. Let z s z be a fixed tally in V. Then L is theb z

w x Ž . Ž .interval u , z in V. Let p s pp and r s rr denote two elements ofb b
Ž . Ž .L . For each b g N, let gg [ min pp , rr and hh [ max pp , rr . Definez b b b b b b

two elements of J as follows: the weight meet w of p and r is defined by
Ž . Ž .w [ gg and the weight join c of p and r is defined by c [ hh . Inb b

order to show that L is a lattice, we need only show that w and c arez

always elements of V. In fact, distributivity will also be known at that
point: The operations of componentwise max and componentwise min
always satisfy the distributive axions.

Note that c F z . We inductively prove the following statements for
k G 0:

Ž . Ž .i If ht w s k, then w g V.
Ž . Ž .ii If ht w s k, then c g V.

Ž .Suppose k s 0. Then w s u g V. The proof of ii for k s 0 is obtained
by taking k s 0 in the second paragraph below.

Ž . Ž .Now suppose k ) 0. Here we show w g V by assuming that i and ii
have been shown for smaller values kX - k. Let t be maximal in L suchz

that t F w. If t s w, we are done. Suppose t - w. Since t F p and t F r,
Lemma 4.1 implies that there exist a , . . . , a such that a . . . a t s p and1 p p 1
b , . . . , b such that b . . . b t s r. Let i be minimal such that t q « F w.1 q q 1 ai

ŽLet j be minimal such that b s a . such a j must exist, since « F w y tj i ai

. Ž .F r y t . Maximality of t implies both that i / 1 and that CC t / q1.ai
Ž .Note that CC b . . . b t s q1, which implies that the actions ofa jy1 1i

Ž .b , . . . , b add at least 1 to CC t when passing from t to b . . . b t . By1 jy1 a jy1 1i

� 4the minimality of i and the definition of w, the intersection a , . . . , a1 iy1
� 4l b , . . . , b is empty. Hence the meet of a . . . a t and b . . . b t1 jy1 iy1 1 jy1 1

Ž .is t . And ht t - k. Apply the induction assumption to conclude that the
join g of a . . . a t and b . . . b t is in V. The proof of the existence ofiy1 1 jy1 1

Ž .the join indicates that g s b . . . b a . . . a t . Note that CC a . . . a tjy1 1 iy1 1 a iy1 1i

s q1. Since a does not occur in b , . . . , b , by the statement abovej 1 jy1
Ž .concerning the actions of b , . . . , b we deduce that CC g G q2. But1 jy1 ai

g F c F z , and so Lemma 4.1 implies that there exist d , . . . , d such that1 r
z s d . . . d g . Now t F w F z implies that at least one « is added whenr 1 ai

passing from t to z . Note that none of the operators in the sequence
b . . . b a . . . a is equal to a . Hence at least one of d , . . . , d must bejy1 1 iy1 1 i 1 r

Ž .equal to a . But CC g G q2 implies that none of d , . . . , d can equal a .i a 1 r ii

This contradiction implies that t s w.
Ž . Ž .Now we show the k th instance of ii using the k th instance of i ; that

is, that w g V implies c g V. Since w F p and w F r, by Lemma 4.1 we
know that there exist a , . . . , a such that p s a . . . a w and b , . . . , b1 p p 1 1 q
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Ž . Ž .such that r s b . . . b w. So CC w s q1. We claim that b a . . . a w isq 1 b 1 p 11

� 4defined. Since w was the meet of p and r, we know that b f a , . . . , a .1 1 p
Ž .So CC p is not decreased by firing any of a , . . . , a . It could be increasedb 1 p1

to q2 by firing one of these, if one was adjacent to b . Since p F z ,1
Lemma 4.1 implies that z can be reached from p . Note that p q « F z .b1

Hence b must be fired at some point in passing from p to z . Therefore1
Ž .CC w cannot be increased to q2 by firing a , . . . , a in succession. Sob 1 p1

Ž .b a . . . a w is defined. Note that the meet of b a . . . a w and r is1 p 1 1 p 1
w q « , which is just b w g V. Set w Ž1. [ b w and p Ž1. [ b a . . . a w.b 1 1 1 p 11

Note that w Ž1. F p Ž1. F z and w Ž1. F r. Therefore, the reasoning above
Žq.can be repeated until we have attained p s c , implying that c g V.

5. THE POSETS P OF JOIN IRREDUCIBLES OF Lz z

Here we continue to work in the environment of Section 4 described by
G, N, l g L s Z N, V, z , and L . We now identify the join irreduciblez

elements of the distributive lattice L and derive some basic facts concern-z

ing the subposet P of L consisting of those elements.z z

Ž . Ž .Let d g N. Suppose that p s pp g J is such that CC p s y1 anddb
Ž .pp ) 0. Then define r p [ p y « . If CC p / y1 or if pp s 0, thend d dd d

Ž . Ž .leave r p undefined. Note that if C p s m, then C r p s m q a .d d d
Ž .Hence CC r p s q1. Also note that if s t is defined, then r s t s t ,d d d d d

and if r p is defined, then s r p s p .d d d

LEMMA 5.1. If p g V and r p is defined, then r p g V. So p co¨ers td d
in V if and only if there exists some d g N such that r p s t .d

Ž . Ž .Proof. Let p s b . . . b u s pp . Since r p is defined, we have CC pk 1 d db
s y1 and p ) 0. Let j be the largest i such that b s d. Considerd i

Ž . Ž .b . . . b b . . . b u . We have CC b . . . b u s y1. Since CC p s y1k jq1 jy1 1 d j 1 d
and no b s d for i G j q 1, none of b , . . . , b can be adjacent to d.i jq1 k
Hence firing d at stage j cannot affect the firability of b , . . . , b . Hencejq1 k
b . . . b b . . . b u is defined. It is clearly equal to r p , and so r p g V.k jq1 jy1 1 d d
The second statement now follows from Lemma 4.2.

Ž . Ž .Given d g N and m G 0, define h d, m to be the meet of all p s ppb
Ž .in L such that pp s m. The empty meet in L is u . Clearly h d, 0 s uz zd

Ž . Ž .for any d g N. We say that h d, m is nontrivial if h d, m / u .

LEMMA 5.2. An element of L is join irreducible if and only if it is az

Ž . Ž .nontrï ial h d, m for some d g N and some m G 1. If h d, m is nontrï ial,
Ž .then r h d, m is the unique element in L which it co¨ers.d z
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Ž . Ž .Proof. Let d g N and m G 1 be such that h d, m \ p s pp isb
Ž .nontrivial. Since p / u , it must cover something in L . If p s s t s ttz c b

Ž .for some c / d, then tt s pp s m, contradicting the definition of h d, m .d d
So we must have p s s t for some t g V. Hence t s r p is the uniqued d

Ž .element in L covered by h d, m .z

Ž .Suppose p s pp g L covers only one element. Let d be the uniquezb
Ž .node such that p s s r for some r g V. Let m s pp and set t [ h d, md d

Ž .s tt . So tt s m. Clearly t F p . Suppose that t - p . Then p s s . . . s ta ab d q 1

for some a , . . . , a . None of the a ’s can be d, since pp s tt s m. And1 q i d d

r p s s . . . s t is defined, a contradiction since a / d. Hence p s ta i i qq qy1 1

Ž .s h d, m .

Let P be an arbitrary finite poset and consider the distributive lattice
Ž .L [ J P . Each covering relation in L describes augmenting an ideal

� 4I : P by an element x g P such that I j x : P is also an ideal.
ŽColoring the elements of P induces a coloring of the edges of L. As

Brylawski notes, a poset P is properly colored if and only if no two
Ž .incident covering edges in the order diagram of J P have the same

. Ž .induced color. Let L be a distributive lattice and set P [ j L . The
Ž .standard isomorphism map w from J P to L takes each principal ideal

Ž .y to the join irreducible element y g L.
Returning to the context established at the beginning of this section, we

now define P to be the poset of join irreducibles of L . So P is the posetz z z

formed by putting the induced order from L on the set of elements p ofz

Ž .L of the form h d, m / u for some d g N and some m G 1. In Sectionsz

Ž . Ž5]8, the symbol h d, m will almost always denote an element of P . Butz

Ž .it must be a nontrivial h d, m when viewed as an element of L in orderz

.to be an element of P .z

ŽWe now want to transfer properties of elements of L and theirz

. Žcovering relations to the corresponding ideals of P and maximal contain-
.ments thereof . We will now begin to often refer to elements of N as

colors. If r covers p in L , then r s s p for some color d. Assign thez d
color d g N to this covering relation in L . Also define a coloring functionz

Ž .k : P ª N as follows: If x g P is h d, m for some m G 1, then definez z

Ž .k x [ d g N.

PROPOSITION 5.3. The coloring of the edges of L induced by the isomor-z

Ž .phism L ( J P from the coloring of P agrees with the coloring of the edgesz z z

of L defined by the operators s .z b

Ž .Proof. Let p be a join irreducible element of L and let x s h d, mz

Ž .be the corresponding element of P . Let I be the ideal x and let H bez

Ž . � 4 Ž . w xthe ideal x y x . Let t s tt [ w H be the element of L corre-zb
w x wŽ .x Ž . w xsponding to H. Note that w I s w x s p \ pp . Since w I coversb
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w xw H , Lemma 5.2 implies that t s r p . Hence p s s t . Either way, thed d
w x w xedge in L from w H to w I is colored by d.z

More generally, the ideals of P which can be augmented by x to inducez

Ž .a coloring of an edge in J P ( L by d are precisely the ideals Jz z

Ž .containing H but not containing x. For such an ideal J, let r s rr [b
w xw J . In L we have r G t and r h p . Hence rr G tt for all b g N. Andz b b

pp s tt when b / d with pp s m and tt s m y 1. We can conclude thatb b d d
rr s m y 1. Now augmenting J by x corresponds under w to taking thed
join of r with p , which corresponds to increasing rr by 1. Lettingd
s [ r k p in L , we have by Lemma 4.1 that s s s r. So the operatorz d
coloring of this edge in L is d, which agrees with the coloring induced byz

adjoining x. Since every edge of L is produced by some such augmenta-z

tion, we are done.

w x Ž .Given an ideal I : P , define the color count F I to be uu , where uuz b b
is the number of elements x g I of color b. Any I can be built up from B
one colored element at a time, and any such building up will correspond to

Ž . Ž . w xa chain in J P from B consisting of colored edges. Let p s pp [ w Iz b
g L . By Proposition 5.3, for each d g N, the number pp of operators sz dd

Ž . w xneeded to reach p in V is equal to uu . In other words, uu ' F I sd b
w x Ž .w I ' pp . So given P , the lattice L : V can be reconstructed byz zb

forming the color counts of all ideals in P and then ordering by compo-z

nentwise comparison. Summarizing this section, we have the following.

Ž . w xPROPOSITION 5.4. Let z s zz . Let I : P be an ideal and let p s F Izb
Ž . w xs pp s w I g L . Then p is co¨ered by an element s p in L if and onlyz d zb

if there exists a minimal element x in P y I of color d if and only ifz

Ž w x. w � 4xCC w I s q1 and pp - zz . Then w I j x s s p . And p co¨ers and dd d
element r p in L if and only if there exists a maximal element x in I of colord z

Ž w x. w � 4xd if and only if CC w I s y1 and pp ) 0. Then w I y x s r p .d dd

If P is a poset, then an order extension of P is an order preserving
� < <4bijection j : P ª 1 - 2 - ??? - P . The preceding result implies that to

Žeach order extension j of P there corresponds one chain or firingz

.sequence in L from u to z . If, following Section 10, one prefers to thinkz

of z as a simply laced l-minuscule element w of W, then the order
extensons of the colored wave poset P correspond to the reduced decom-z

positions of w. This gives us the following.

COROLLARY 5.5. Let W be a simply laced general Weyl group and let l be
a dominant integral weight. Let w be l-minuscule. Then the number of
reduced decompositions of w is equal to the number of extensions of the
associated wa¨e poset P to a total order.z
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6. FIRST PROPERTIES OF WAVE POSETS

Let G be a simple graph with node set N. From now on, we will assume
that l is a fixed element of N N : L s Z N, that is, that all of the initial
integer labels are nonnegative. Let V, z , L , and P be as before. Anyz z

distributive lattice which arises as a L for some G and some nonnegativez
N Ž .l g N will be called a wa¨e lattice. Any poset which arises as a P s j Lz z

for some nonnegative l g N N will be called a wa¨e poset. In this section,
we establish several facts concerning the local coloring structure of wave
posets.

Ž .LEMMA 6.1. Let d g N and m ) 1 be such that h d, m is nontrï ial.
Ž . Ž .Then h d, m y 1 - h d, m in P . Therefore, all elements of a gï en color inz

P are comparable.z

Ž . Ž .Proof. Let p s h d, m y 1 and r s h d, m in L . Let t [ r r \z d
Ž .tt as in Lemma 5.2. Then tt s m y 1, and so t enters into the meetb d
defining p . Hence p F t - r in L , and so p - r in P .z z

N Ž .When l g N , we have CC p G y1 for every p g V and every b g N.b
Ž .If we know that . . . s . . . p is defined, then CC p - q2, implying thatd d

Ž . � 4CC p g y1, 0, q1 . Any y1 can have arisen only from a firing of a q1.d
Ž . Ž .So if p s pp , then CC p s y1 implies pp ) 0. Revisiting Propositiondb d

5.4 with l g N N, we see that the requirement pp ) 0 can be droppedd
Ž .since it is now implied by CC p s y1. Hence, an important observationd

Ž .is that the join irreducible elements p of L are those for which CC p sz b
y1 for exactly one b g N.

Ž .LEMMA 6.2. Let p g V. Then C p cannot ha¨e y1’s at adjacent
nodes of G.

Ž .Proof. Suppose there are y1’s in C p at adjacent nodes c and d.
Ž .Suppose that p s a . . . a u , with a s c being without loss of generalityn 1 q

Ž .the leftmost occurrence of c or d. Then y1 s CC a . . . a u sd n 1
Ž . Ž .CC a . . . a u s CC a . . . a u q 1. But this is impossible, sinced q 1 d qy1 1

NŽ .CC a . . . a u G y1 when l g N .d qy1 1

Ž . Ž .LEMMA 6.3. Let x, y g P . If k x is next to k y in G, then either x - yz

or y - x in P .z

Proof. If x and y are incomparable, they would be maximal elements
Ž .of the ideal x, y . Then by Proposition 5.4, there would be y1s at both

Ž . Ž . Ž wŽ .x.k x and k y in C w x, y , contradicting Lemma 6.2.

Ž .PROPOSITION 6.4. Let x be co¨ered by y in P , with c [ k x andz

Ž . wŽ .x wŽ .xd [ k y . Let p [ w x and r [ w y be the corresponding elements of
L . There exists a unique chain in L from p up to r. If this chain arises fromz z

r s s . . . s p , then b , . . . , b form a path in G consisting of distinctb b n 11 n
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successï ely adjacent nodes. Here b s d is adjacent to c, and c / d. None of1
the other b ’s are equal to c or adjacent to c.i

Proof. Since p - r in L , we have r s a . . . a p for some a , . . . , az q 1 1 q
Ž .g N. This corresponds in P to successively adjoining elements to x toz

Ž .produce y . Since x is covered by y, all but the last of these elements
Ž .which is y itself must be incomparable to x. By Lemma 6.1, we see that
a / c for i - q. By Lemma 6.3, we see that a is not adjacent to c fori i
i - q. Since r is joint irreducible, we have a s d. Let b be the rightmostq 1
a which is adjacent to c: There must be at least one such a , or else therei i

Ž .would be two or more y1s in C a . . . a p . If there was a q1 at b inq 1 1
Ž .C p , then stop. Otherwise, let b be the rightmost a to the right of b in2 i 1

a . . . a p which is adjacent to b . There must be at least one suchq 1 1

a somewhere in a , . . . , a before b , or else no q1 at b would bei 1 q 1 1
Ž .created. If there was a q1 at b in C p , then stop. Repeat until some b2 n

Ž .is produced which has a q1 in C p . There must be such a b , sincen
a . . .a p is defined. The only b which could be equal to c would be b , ifq 1 j 1
b s a . But b was chosen to be adjacent to c. Hence b / c for1 q 1 j

Ž .1 F j F n. Then there must be 0’s at each of b , . . . , b in C p , since1 ny1
Ž .the only y1 label in C p was at c. Certainly b p is defined. For h G 1,n

the definition of b implies that it is the only b in b . . . b p which ishq1 j hq1 n
Ž . Ž .adjacent to b . Hence CC b . . . b p s 0 and so CC b . . . b p sh b hq2 n b hq1 nh h

q1, implying that b . . . b p is defined if b . . . b p is defined. Soh n hq1 n
Ž .b . . . b p is defined. Clearly C b . . . b p has only one y1 at b . So1 n 1 n 1

b . . . b p is joint irreducible in L . Since p - b . . . b p F r and r is a1 n z 1 n
minimal joint irreducible above p , we must have b . . . b p s r. Hence1 n
b s a , . . . , b s a . The b ’s are distinct by definition, and b is adjacent1 q n 1 j j
only to b and b for 2 F j F m y 1. The node b is the unique bjq1 jy1 n j

Ž .with a q1 in C p . We know b s a s d. It is clear that b , . . . , b is the1 q n 1
unique sequence such that r s s . . . s p , since p y r determines theb b1 n

number of times each node of N will be used to reach r from p . We
chose b s d to be adjacent to c, so c / d.1

COROLLARY 6.5. Let P be a wa¨e poset. If y co¨ers x in P , then thez z

Ž wŽ .x. Ž wŽ .x.unique y1 on C w y is adjacent to the unique y1 in C w x .
Corresponding to any chain x s x ª x ª ??? ª x s y in P , there is a0 1 n z

Ž . Ž .path in N traced out by the unique y1’s associated to x , x , . . . .0 1

An immediate consequence of Lemma 6.1 and Proposition 6.4 is the
following.

COROLLARY 6.6. Wa¨e posets P are properly colored.z

LEMMA 6.7. Let P be a wa¨e poset and let z g P . Then z cannot co¨erz z

three or more distinct elements in P .z
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Proof. Suppose that z covers w, x, and y and let the corresponding
colors by d, c , c , and c . Since the w, x, and y are incomparable and P1 2 3 z

is properly colored, we see that d, c , c , and c are distinct. Each of c ,1 2 3 1
wŽ . � 4xc , and c is adjacent to d. Set p [ w w, x, y y w, x, y and r [2 3

wŽ .xw w, x, y . Note that y s s s s t . Hence the value at d in the wavec c c3 2 1
Ž .picture for w, x, y is at least q2. But the node d must be fired in order

Ž . Ž .to reach z from w, x, y , which is now impossible. So z cannot cover
three distinct elements.

A cycle in a simple graph G with node set N is a subset C : N such
that every element of C is adjacent to exactly two other elements of C. We

Ž .say that G is acyclic if it contains no cycles. Given z s zz g V, defineb
� 4the support of z to be N [ d g N: zz ) 0 . Let G denote the subgraphz zd

of G induced by N .z

LEMMA 6.8. Let z g V. Then G is acyclic.z

Proof. Let z s a . . . a u . Suppose that C : N is a cycle. Let d be then 1 z

last node in C to be fired for the first time in a . . . a u , and suppose thatn 1
Ž .j is minimal such that a s d. Initially, CC u G 0, and two neighbors of dj d

Ž .will be fired before d is fired for the first time. Hence CC a . . . a u Gd jy1 1
Ž .q2, implying that a a . . . a u is undefined. So there is no cyclej jy1 1

C : N .z

PROPOSITION 6.9. Wa¨e posets P are simply colored.z

w xProof. Let x, y g P be such that the interval x, y is a chain. Denotez

Ž .this chain by x s x ª x ª ??? ª x s y, and set a [ k x for 1 F i F0 1 n i i
Ž . � 4 w xn. Let J [ y and I [ J y x , . . . , x be ideals in P. Set p [ w I and1 n

w xr [ w J . Then r s a . . . a p in L . By Corollary 6.5, the a ’s trace out an 1 z i
path in G . Let q - r be such that a s a and such that there are noz q r

repeated colors in a , . . . , a or other occurrences of a . In order toqq1 ry1 q

recharge the y1 produced at a , there must be two distinct colors inq
a , . . . , a which are adjacent to a . These must be a and a . Soqq1 ry1 q qq1 ry1
we would have a cycle in G , which is impossible. So the colors occurringz

in this chain must be distinct.

LEMMA 6.10. Let P be a wa¨e poset. Suppose that x - y in P withz z

Ž . Ž . Ž . wŽ .x Ž . wŽ .xk x \ c adjacent to k y \ d in G. Let pp [ w x and rr [ w y .b b
If pp s rr , then y co¨ers x in P zz.c c

wŽ .x Ž wŽ .x.Proof. The unique y1 is at c in w x and at d in C w y . Suppose
that y does not cover x; let x s x ª x ª ??? ª x s y be a chain in P0 1 n z

from x to y. By Corollary 6.5, the unique y1 will trace a corresponding
path in G from c to d. If this path does not pass through c again afterz

leaving it, then we would observe a cycle in G . But G is acyclic. And thez z
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wŽ .xnode c cannot be fired after leaving w x since pp s rr . So y must coverc c
x.

7. WAVE POSETS ARE COLORED d -COMPLETEk

We continue to work in the environment established at the beginning of
Section 6. We begin by confirming that any wave poset P satisfies thez

axiom D1 for colored d -completeness.3

PROPOSITION 7.1. Suppose that in a wa¨e poset P there exists some zz

which co¨ers two elements x and y. Then there exists a fourth element w g Pz

Ž . Ž .which is co¨ered by both x and y, and in fact k w s k z .

Ž . Ž . Ž . � 4Proof. Let k x s b and k y s c. By Lemma 6.7, we have z y z
Ž . Ž .s x, y . Suppose z s h d, m for some d g N and some m G 1. Let

Ž . wŽ .xrr [ w x . Proposition 6.4 implies that rr s m y 1 and that b and ca d
Ž . wŽ . � 4xare each adjacent to d. Let y s uu [ w x, y y x, y in L . In passingza

wŽ .xfrom y to w x, y , the nodes b and c are fired once apiece without d
being fired at all. Hence uu s y1, or else the value at d would becomed

wŽ .x wŽ . � 4xtoo large to fire to reach w z from w z y z . So d was fired at least
Ž .once before y , and so m G 2. Set w [ h d, m y 1 . Obviously x ) w and

y ) w. Note that rr s m y 1. Lemma 6.10 implies that x covers w, andd
similarly it can be seen that y covers w.

PROPOSITION 7.2. Let P be a wa¨e poset. If w, z g P are such thatz z

Ž . Ž . w x Ž .w s h d, m y 1 and z s h d, m for some m G 2, then w, z ( d 1 fork
some k G 3.

Proof. Let w s x ª x ª ??? ª x s z be a chain in P from w to z0 1 n z

of maximal length. By Proposition 6.4, we must have n G 2. Suppose that
n s 2. By simple coloring, there must be another element y besides x1
such that x - y - z. By the maximality of n, we have x ª y ª z. By

w x Ž .Lemma 6.7, we have w, z ( d 1 .3
Now suppose that we have verified this proposition for 2 F nX - n. By

Corollary 6.5, the unique y1 traces out a path in N starting at d andz

Ž wŽ .x. Ž wŽ .x.ending at d as we observe C w x , C w x , . . . in L . Since G is0 1 z z

Ž . Ž .acyclic, we must have k x s k x \ c. Assume n ) 2. Choose a1 ny1
wŽ .x wŽ .xfiring sequence in L from w w to w z which passes through eachz

wŽ .xw x . Clearly, the node d can be fired only as the very last step wheni
wŽ .xreaching w z in L . There cannot be any firings at c beyond the arrivalsz

at x and x , or else the wave coefficient at d would be raised too high.1 ny1
Ž . Ž .Hence x s h c, q and x s h c, q q 1 for some q G 1, and we can1 ny1

w x Ž .apply our induction hypothesis to conclude that x , x ( d 1 for1 ny1 k
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Ž .some k G 3. Now the open interval x , x can contain more than0 n
w xx , x only if there is either some u / x covering w s x such that1 ny1 1 0
u - z or some ¨ / x covered by z s x such that ¨ ) w. In either case,ny1 n
there would be a node b / c adjacent to d in N which would have to be

wŽ .x wŽ .xfired at least once when passing from w w to w z in L . With the twoz

Ž w x.firings at c, this would raise CC w I to at least q2 by the time wed
Ž . � 4 w x Ž .reached I s z y z . So w, z ( d 1 .kq1

PROPOSITION 7.3. Wa¨e posets P satisfy the D4 colored d -completez k
axiom for any k G 4.

Proof. The proof will be by induction on k, with the k s 3 case
Ž .Proposition 7.1 serving as the base case. Assume that k G 4 and that the
result has been shown for kX - k.

w x ySuppose that x, z g P are such that x, z is a d -interval. Supposez k

Ž .z s s d, m for some d g N and some m G 1. Let y be the element
Ž .covered by z which is in this interval. Let c [ k y . The colors c and d

Žare adjacent in G. By induction, axiom D4 is satisfied at k y 1 or the
. w x Ž . Ž .axiom D1 when k y 1 s 3 , and so x, y ( d 1 implies that k x s c.ky1

Induction and Lemma 8.2 below imply that the color c appears nowhere
w x Ž . wŽ . � 4x wŽ .else in x, y . Set p s pp [ w x y x . In passing from p to w z yb

� 4xz , the node c is fired twice: the elements of color c form a totally
ordered set, and so any other occurrence of c in this ideal build-up would

w x Ž .have to occur in x, y . Accepting for now that it exists i.e., that m G 2 ,
Ž .set w [ h d, m y 1 . We have w - z. Since d is adjacent to c, either

w ) y or w - y. The former is impossible since z covers y. So w - y. And
w xw ) x or w - x. Suppose w ) x. Then w g x, y . If w was a middle or

w x w xhigher element in x, y , then w, z would be a chain and the simple
w xcoloring condition would be violated. If w were below the middle in x, y ,

then a ‘‘sister’’ element above the middle would violate the simple coloring
condition with z. So w - x, if it exists. So there are no elements of color d

wŽ .xwhen passing from p to w z , except for the very last step. This means
that pp s y1 to start, or else the value at d would become too large tod
fire from the two firings at c. This means that d was fired at least once in

wŽ .xreaching p , and so m y 1 G 1 and w exists. In passing from w w to
wŽ .x wŽ .xw x , the node d cannot be fired, since w - x - z implies that w x has

had d fired m y 1 times. So Lemma 6.10 implies that x covers w. Since
Ž . Ž .k w s d s k z , we have shown D4 at k.

Proposition 8.1 below will indicate that we now can infer from proper
coloring, colored axioms D1rD4, and finiteness that any wave poset Pz

satisfies axioms D3rD6 for d -completeness.k
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PROPOSITION 7.4. Wa¨e posets P satisfy the D2rD5 axioms for d -com-z k
pleteness for k G 3.

w x Ž .Proof. Suppose that w, z ( d 1 for some k G 3, and that there is ank
Ž . Ž .element u not below z which covers w. Then k u is adjacent to k w in

Ž .G. Since both u and z are maximal elements of the ideal u, z , the
Ž wŽ .x.adjacent y1s in C w u, z would violate Lemma 6.2. So no such u can

exist.

Since we have confirmed that any wave poset P satisfies the coloredz

axioms D1]D6, we now know that it is colored d-complete. Recall that
uncolored d-completeness follows trivially from colored d-completeness.
Hence we have confirmed that forward direction of Theorem B, since the

Ž .posets j L there are precisely the wave posets P .z z

8. PROPERTIES OF d-COMPLETE POSETS

We begin by presenting the two lemmas which were used in Section 7.

PROPOSITION 8.1. Let P be a properly colored poset which satisfies the
colored D1rD4 axioms for e¨ery k G 3. Then P satisfies the colored D3rD6
axioms for e¨ery k G 3.

Proof. Let k s 3 and suppose that two elements z and zX each cover
Ž . Ž X.both of two other elements x and y. Let k z s c and k z s d . Then1 1

applying D1 to z, we see that there must exist an element w with
Ž . X Ž X.k w s c . Similarly there exists w with k w s d . Since P is properly1 1

colored, c / d . Hence we must have w / wX. This reasoning would need1 1
to be applied forever in order to satisfy D1. But P is finite. Hence, having
four such elements is impossible and D3 holds. Let k G 4 and suppose that
two elements z and zX both cover an element y for which there exists an x

w x Ž . Xsuch that x, y ( d 1 , and that each of z and z do not cover anyky1
Ž . Ž X.other elements above x. Let k z s c and k z s d . Applying D41 1

X Žimplies the existence of w and w each covered by x, with by proper
. Xcoloring distinct colors c and d . So w / w again. Applying the D1rD41 1

axioms implies the existence of further elements below w and wX, which
together with repeating the above argument leads to a contradiction of the
finiteness of P. So D6 is true as well, for k G 4.

LEMMA 8.2. Let k G 3. Let P be a colored d X-complete poset for e¨eryk
X w x Ž .3 F k F k. If w, z g P are such that w, z ( d 1 , then no elements ink

w x Ž . Ž .w, z other than w and z ha¨e color k w s k z .

w x w xProof. Let u and ¨ be the two ‘‘middle’’ elements of w, z . Then w, u
Ž xis a chain. Since P is simply colored, all of the elements in w, u have
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Ž . X
Xcolors distinct from k w . By colored d -completeness for k - k, we seek

Ž xthat the colors in the chain u, z are respectively the same as those in
w . Ž .w, u . Repeat this reasoning for ¨ and conclude that k w never occurs in
Ž .w, z .

LEMMA 8.3. No element can co¨er three or more elements in a d-complete
Ž .poset. ‘‘Strict neck’’ elements in d -inter̈ als necessarily k G 4 cannot co¨erk

any elements outside of the inter̈ al.

Proof. Let P be d-complete. Suppose that ¨ g P covers x, y, and z.
Then by axiom D1, there exist elements w , w , and w which are covered1 2 3
by x and y, y and z, and x and z, respectively. If any two of these
elements coincide, then axiom D2 would be violated. So they are distinct.
Now apply D1 three more times to produce elements ¨ , ¨ , and ¨ which1 2 3
are covered respectively by pairs of the w s. This would continue forever,i
but we are assuming that P is finite. If a ‘‘strict neck’’ element covered an
element outside of the interval, axiom D1 could be used to propagate
diamonds downward until an element covering three other elements was
produced.

Let P be any poset. The bottom forest F of P is the subposet consisting
w xof every y g P such that x, y is a possibly empty chain for every minimal

element x of P.

LEMMA 8.4. Let P be a d-complete poset and let z be an element of its
bottom forest F. Then there is exactly one minimal element x of P which is
below z.

Proof. Let w be one minimal element of P below z. Then there is a
chain w ª ??? ª y ª z. If any of these elements covers another element
outside of this chain, then repeated applications of D1 would produce a
downward sequence of diamonds which would eventually contradict the
fact that w is minimal. So z can have only one minimal element below
itself.

LEMMA 8.5. Let P be a d-complete poset with bottom forest F and let z be
a maximal element of P. Then exactly one of the following is true:

Ž .i The element z is a maximal element of F.
Ž . w x Ž .ii There exists some k G 3 and some w - z such that w, z ( d 1 .k

Proof. If z g F, then it is clearly maximal in F. By Lemma 8.4, the
Ž .element z cannot be as in ii . Suppose that z f F. If z s z covers only1

one element, denote that element z . Repeat until some element z2 n
covers two elements x and y. This must happen eventually, or else z g F.
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Then by D1, the elements x and y must cover some element w . Apply D4n
w xfor k s 4, 5, . . . , n q 1 to detect elements w , . . . , w such that w , z (ny1 1 i i

Ž . w x Ž .d 1 . When i s 1, we have w , z ( d 1 for k s n q 2.nq3yi 1 1 k

PROPOSITION 8.6. Let P be a d-complete poset with bottom forest F. Let
< < < <N be a set of colors such that N s F . Let k : F ª N be a bijection. Then

there is a unique extension of k to all of P which turns P into a colored
d-complete poset.

< <Proof. Use induction on P , with the base cases being the ‘‘forest’’
posets P such that P s F. If P / F, let z be a maximal element of P not

X � 4 Xin F. Let P [ P y z . Since P is an ideal of P, it is d-complete. It will
have the same bottom forest F. By induction, the coloring k has been

X � 4 Ž .uniquely extended to P [ P y z . By Lemma 8.5 ii , the element z is
w xthe maximal element of a d -interval w, z for some k G 3 and somek

Ž . Ž .w - z. Colored axioms D1rD4 force the extension of k by k z [ k w
\ d. The sequence of choices of elements for the induction is immaterial,
since these extensions of k are determined only by the colors of elements
below z, and not by colors of elements incomparable to z. Note that z
does not cover w. Suppose that the element w is not the unique maximal
element of color d in PX, and that the adjunction of z is the first time for
color d that the existing reference element w is not the unique maximal
element of color d. Then at some earlier stage, an element zX / z was

w X x Ž .adjoined such that w, z ( d 1 for some h G 3. The existence of bothh
w X x w xw, z and w, z in P would lead to a violation of D2rD5. So w was the
unique maximal element of color d in PX, and this implies that P is
properly colored. The interval between two consecutive occurrences of one
color will never be a chain when this procedure is followed. So P is simply
colored.

9. d-COMPLETE POSETS ARE WAVE POSETS

Throughout this section, let P be a fixed d-complete poset. Let F be
the bottom forest of P. Fix a bijection k from the elements of F to the

< < < <colors in a set N such that N s F . Use Proposition 8.6 to color the
elements of P so that it becomes a colored d-complete poset. Define a
simple graph G on the node set N by taking its set of undirected edges to
consist of the covering relations amongst the corresponding elements of F.

N Ž .As in Section 2, define L [ Z . Let l s ll be the element of L suchb
that ll s 1 if f g N corresponds to a minimal element of F, and such1
that ll s 0 otherwise. Construct V with respect to G and l as in Sectionf

2. Taking I s P and ignoring the colors in the statement of the following
proposition yields the reverse direction of Theorem B.
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PROPOSITION 9.1. Let P be a colored d-complete poset with bottom forest
F. Let G, l, and V be as just defined. Let I be an ideal of P. Then there
exists an element z g V such that P s I as colored posets.z

Proof. The ideal I is colored d-complete. Its colors come from N, and
< <its bottom forest F is an ideal of F. The proof is by induction on I .I

< < Ž .When I s 1, it consists of one minimal element of P or of F . It can be
seen that a good z for I can be produced by firing the q1 at the

< <corresponding node of G. Let I ) 1. Let z be a maximal element of I.
Ž . X � 4 XLet d [ k z . Set I s I y z . By induction, let z g V be such that

X Ž .X XI s P s j L as colored posets. Below we will argue in each case thatz z

s z X \ z is defined in V. Since L will have one more rank than L X as ad z z

Ž . Ž .Xdistributive lattice, it will be the case that j L will consist of j L withz z

one element adjoined as a new maximal element. Proposition 5.4 will be
used often in this proof.

There are two possibilities for z listed in Lemma 8.5, where P is to be
replaced by I and F by F . First suppose that z is a maximal element ofI
F . If z is also minimal in P, then I is the disjoint union of I X and z.I
Consider defining z [ s z X. From the procedure of Proposition 8.6, anyd

X Ž X.color reappearing in I i.e., any node fired to reach z must appear in the
bottom forest of I X. Since the colors of elements of F are distinct, theI
node d cannot have been fired yet in z X, and so the original q1 at d in
Ž . Ž .C u s l is still present. So z is defined, and h d, 1 is a nontrivial

Ž . Ž .element of L . Clearly h d, 1 s s u . Let t denote h d, 1 viewed as anz d

Ž . Ž .element of j L ; it is of color d. Clearly j L is the disjoint union ofz z
X Ž . � 4 Ž .XI s j L and t , and so j L s I as desired.z z

Next suppose that z is maximal in F , but not minimal in P. HenceI
ll s 0 in l. Since z is nonminimal in F , it covers exactly one element ofId

Ž . XF , say y with k y [ c. Now y g I , and so by induction the node at c isI
fired in reaching L X . As before, any color appearing in I X must appear inz

F X . So any such color cannot label an element of F above z. The onlyI
other node adjacent to d in G is c. So c is the only node adjacent to d
which was fired in reaching z X. We now show that it was fired only once in
this process. The element y is the minimal element of I X of color c, and
there are no others; otherwise, by Proposition 7.2 for P X s I X, there is anz

w Ž .x Ž . X Xinterval y, h c, 2 ( d 1 for some k in I . Since z f I , it cannot be ink
this interval of I X, and then in I it would be an element violating D2rD5

Ž . Xfor that d 1 interval. So the node c is fired only once in I , and thusk
Ž X. X

CC z s q1. Hence we may define z [ s z . We want to locate thed d
Ž . Ž .nontrivial h d, 1 in L . Let y ª y ª ??? ª y s y describe y : F,z n ny1 1

and let c , c , . . . , c s c be the corresponding colors. Then clearlyn ny1 1
Ž . Ž . Ž .h c, 1 s c . . . c u and h d, 1 s dc . . . c u in L . Let t denote h d, 11 n 1 n z
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Ž . Ž .Xviewed as an element of j L . Observe that t f j L , and it covers onlyz z

Ž . Ž . Ž . Ž . wŽ .x Ž .h c, 1 in j L since h d, 1 s s h c, 1 in L . But w y s h c, 1 gz d z

Ž . Ž . Ž . X
X Xj L . So j L consists of j L s I together with an element t of colorz z z

d adjoined which covers only y. But z covered only y in I. Hence
Ž .j L s I as desired.z

Ž .Now we consider the possibility ii of Lemma 8.5. Let k G 3 and w g I
w xsuch that z is the maximal element of a d -interval w, z .k

Suppose k s 3. Then there exist x, y, w g I X such that in I we have z
covering x and y, and in I X each of these elements covers w. Let b and c

Ž . Ž .be the colors of x and y. Note that k w s k z s d is adjacent to each
X X Ž X.of b and c. Let z ) w be minimal in I such that k z s d. Then by

w X xProposition 7.2, we have w, z ( d for some h G 3. But in I we alsoh
w x Ž .have w, z ( d 1 . This would lead to some kind of violation of D2rD5,3

since z / zX. Hence w is the maximal element of color d in I X. There is
Ž .some m G 1 such that w s h d, m .

Ž wŽ .x. wŽ .xNote that there is a unique y1 at d in C w w . Pass from w w to
wŽ .x Ž . Ž .Xw x, y in L by using edges specified by building up to x, y from wz

X Ž . Ž .in I . If ¨ g x, y y w is not above w, then it is incomparable to w.
Ž . Ž .Then Lemma 6.3 implies that k ¨ is not adjacent to k w s d. So no

colors for elements used in the build-up besides those for x and y can be
adjacent to d. So the firings at b and c are the only firings which occur

Ž . Ž . Ž wŽ .x.adjacent to d in passing from w to x, y . Hence CC w x, y s q1. Letd
X wŽ .xXa , . . . , a be a sequence of nodes in G such that z s a . . . a w x, y .1 q z q 1

X Ž .These are just the colors of the elements in I y x, y . Since w is the
maximal element in I X of color d, none of the a ’s is equal to d. Supposei

X Ž .that one of them is adjacent to d. Let ¨ be an element in I y x, y of
wŽ .x Ž .that color, and let w ¨ s uu . Since reaching w was the last time that db

was fired, we have uu s m. Then by Lemma 6.10, we see that ¨ covers wd
X w x Ž .in I . So then ¨ covers w in I. Since w, z ( d 1 and I is d-complete, by3

D2 we see that ¨ must be either x or y. But ¨ was chosen from
X Ž . Ž X .I y x, y . So none of the a , . . . , a are adjacent to d. Hence CC z s1 q d

q1. Define z [ s z .d
Ž . NWe now know that h d, m q 1 is nontrivial in L . By the l g Nz

Ž wŽ .x.version of Proposition 5.4, we see that the only y1’s in C w x, y are at
wŽ .x w xb and c. Define p [ s w x, y . Then there is only one y1 in C p , andd

Ž . Ž .it is at d. Hence h d, m q 1 s p . Let t denote h d, m q 1 when viewed
Ž . Ž .as an element of j L . Since w s h d, r was the maximal occurrence ofz

Ž . Ž . Ž . Ž .X X Xd in j L , the element t f j L . So j L consists of j L togetherz z z z

with the one element t of color d. By Lemma 8.3, we see that z covered
exactly x and y in I. It is clear from the work above and Lemma 6.10 that

Ž .t covers x and y in j L . By Lemma 6.7, we see that these are the onlyz

Ž . Ž .elements that t covers in j L . So j L s I when k s 3.z z
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X w xNow suppose that k G 4. Then there exists w g I such that w, z (
Ž . Ž . Ž . Ž .d 1 in I. Note that k w s k z s d. Let x be the unique by D5k

X Ž .element of I which covers w and let y be the unique by Lemma 8.3
X w x Ž .element of I which is covered by z. Note that x, y ( d 1 . Letky1

Ž . Ž .c [ k x s k y . Note that c is adjacent to d. As with k s 3, we can see
that the element w is the maximal element of color d in I X. Let w s
Ž .h d, m .

Ž wŽ .x. wŽ .xNote that there is a unique y1 at d in C w w . Pass from w w to
wŽ .x Ž . Ž . X

Xw y in L by using edges specified by building up to y from w in I .z

Ž . Ž .If ¨ g y y w is not above w, then it is incomparable to w. Then
Ž . Ž .Lemma 6.3 implies that k ¨ is not adjacent to k w s d. So in the

w xbuild-up, only colors for elements in x, y could be adjacent to d. If a
w x w x Ž .color b appears in x, y , then there exists a u g x, y such that k u s b

w xand w, u is a chain. Corollary 6.5 implies that the sequence of colors
corresponding to this chain forms a path in G X . Since this graph is acyclic,z

Ž .none of these colors is adjacent to d except for the first, namely, c s k x .
So two firings at c are the only firings which occur adjacent to d in passing

Ž . Ž . Ž wŽ .x.from w to y . Hence CC w y s q1. Let a , . . . , a be a sequence ofd 1 q
X wŽ .xXnodes in G such that z s a . . . a w y . These are just the colors of thez q 1

X Ž .elements in I y y . An argument similar to the one used here for k s 3
Ž X.shows that CC z s q1. Again define z [ s z .d d

Ž .We now know that h d, m q 1 is nontrivial in L . Note that the uniquez

wŽ .x wŽ .xy1 for w y is at c. Define p [ s w y . Then there is only one y1 ind
w x Ž . Ž .C p , and it is at d. Hence h d, m q 1 s p . Let t denote h d, m q 1

Ž . Ž .when viewed as an element of j L . As above, the poset j L consists ofz z

Ž .Xj L together with the one element t of color d. By Lemma 8.3, we seez

that z covered only y in I. It is clear from the work above and Lemma
Ž . Ž . Ž .6.10 that t covers y in j L . Note that y s h c, r for some r G 1. Sincez

Ž . Ž .h d, m q 1 s s h c, r in L , it must be the case that t covers only y ind z

Ž . Ž .j L . So j L s I when k G 4 and we have finished the proof ofz z

Proposition 9.1.

10. GROUP, REPRESENTATION, AND
GEOMETRIC COMMENTS

Let G be a fixed simple graph with finite node set N. View G as a
simply laced Coxeter diagram, and let W be the corresponding Coxeter

Ž .group. Let L be the set of labellings m of the nodes of G withi ig N
integers. For each k g N, let SS be the operation on elements of L whichk
multiplies the k th label m by y1 and adds m to the labels of each ofk k
the adjacent nodes. This action is linear, and it is easy to check that the
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2 Ž .Coxeter relations SS s e, SS SS s SS SS for j and k nonadjacent , andk j k k j
Ž .SS SS SS s SS SS SS for j and k adjacent are preserved. Hence L is ak j k j k j

W-module. Our restricted numbers game generates initial portions of the
orbits of initial vectors under this action.

Let gg denote the simply laced Kac]Moody algebra with Dynkin diagram
G, and let gg

X denote its derived subalgebra. Let hh and hh
X denote the

X X � k4Cartan subalgebras of gg and gg. The space hh has a basis a i ig N
� 4consisting of the simple coroots. Let v denote the fundamentali ig N

XU Ž k.weight basis of hh ; here v a s d is the definition of v . For i g N,i j i j i
let a denote the restriction of the ith simple root of gg to hh

X. With thisi
notational convention we have a g hXU , and the a are no longer linearlyi i
independent if gg is not finite-dimensional. When one expresses a re-
stricted root a in terms of the v , one obtains a s 2v y Ýv , wherek i k k j
the sum is over all j g N which are adjacent to k in G. Let L denote the
Z-lattice in hh

XU generated by the v : this is the set of the restrictions ofi
the elements of the usual lattice P : hh

U to hh
X. Let Lq denote the set of

nonnegative integral sums of the v . Let W be the Weyl group of gg. Thei
w x U XUaction 4, p. 35 of W on hh restricts to hh . It is well known that the

Weyl group W of gg is the Coxeter group of the preceding paragraph, and
it is easy to see that the Kac]Moody action of W on L becomes the action
of the preceding paragraph when all vectors are written as N-tuples with
respect to the v basis.i

We now relate the restricted numbers game of Section 2 to this action of
W on L. The wave state space L becomes the lattice L. A potential initial
state l g N N for Theorem B is just a dominant integral weight l g Lq.
The space of tallies J is the set of nonnegative sums of positive simple
roots restricted to hh

X. The initial tally u is the empty sum of positive
Ž .simple roots, and C u s l. Other tallies are to be subtracted from l

after being converted to the v basis. The wave state corresponding to thei
Ž .tally s . . . s u is C s . . . s u s SS . . . SS l. A further tally can be gener-i i i i i ik 1 k 1 k 1

w xŽ k.ated with the action of s if s . . . s l a s q1, that is, if the dthd i i dk 1

coefficient with respect to the v basis is q1.i
Put the reverse of the usual order on L: for m, n g L, we say that m G n

w xif n y m is a sum of positive roots. Lemma 3.11 of 4 can be used to prove
q Ž .the following lemma: Let l g L and w g W. Then, for k g N, ll SS wk

Ž .) ll w if and only if SS wl ) wl.k
Fix l g Lq. We say that w g W is l-minuscule if there exists some

Ž . Ždecomposition w s SS . . . SS such that SS SS . . . SS l s SS . . .i i i i i ik 1 j jy1 1 jy1

.SS l y a for 1 F j F k. Now think of l as being an initial state.i i1 j

Applying the procedures of the restricted numbers game to l will obvi-
ously produce all possible such decompositions SS . . . SS for all l-minus-i ik 1

cule elements w in W. Fix one such game play sequence i , . . . , i and set1 k
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w [ SS . . . SS . Then z [ l y wl is the corresponding tally s . . . s u .i i i ik 1 k 1

Theorem A stated that the poset L defined in Section 2 is a distributivez

Ž .lattice. Under the map C, this lattice becomes the subposet C L of L.z

Let W denote the stabilizer of l in W. Using the results of this paper, onel

can associate a well-defined element ¨ g WrW to each tally p g L . Letl z

the symbol w also denote the element of WrW corresponding to z . Usingl

the lemma just noted above, it can be seen that the order inherited from
L by the subset of WrW generated in this fashion is the same as thez l

w xorder obtained from the notion of weak Bruhat order. Let e, w be the
initial interval in the weak Bruhat order on WrW determined by w. Thel

w xlemma above can also be used to conversely show that any ¨ g e, w is
w xrepresented in L , and that e, w is order isomorphic to L . When the fullz z

Bruhat order on WrW is realized on the orbit Wl, the only coveringl

relations which are not already present in the weak Bruhat order corre-
spond to subtraction of multiples of nonsimple roots. The fact that the

Ž .ranks of C L are spaced apart by the subtraction of just one positivez

w xsimple root at each step implies that the initial interval e, w in the full
Bruhat order on WrW is also isomorphic to L .l z

q Ž . XFix l g L . Let P l denote the set of weights of the integrable gg

module with highest weight l. Let w s SS . . . SS g W be l-minuscule.i ik 1

Ž Ž ..Set z [ s . . . s u and m [ wl s C z . The set of weights correspond-i ik 1

ing to the elements of L , that is, all weights of the form l y p forz

Ž . Ž . Ž .p g L , is C L . Let P l denote the subset of P l consisting ofz z m

weights which are weakly below m in our order on L. It will be shown in a
w x Ž . Ž .future version of 10 that P l s C L , and that each weight in this setm z

Ž .occurs with multiplicity 1 for the representation. The set P l is what wem

meant in the introduction by a ‘‘minuscule portion’’ of the weight diagram
for the representation.

Ž .For f g N, let v s ll denote the element of L with ll s q1f bg Nb f
and ll s 0 otherwise. The reduction given near the end of Section 2b
amounts to saying: If we want to study a particular l-minuscule w or the

w xcorresponding portion e, w of a weight lattice, then we might as well
Ž X . Xstudy several simpler situations of the form G , l , where G is a rooted

tree Dynkin diagram with root f and l s v .f
Let w be a l-minuscule element of a simply laced Weyl group. Let z be

the corresponding tally constructed above, and let P be the correspondingz

colored wave poset constructed in Section 5. Then as noted just before
Corollary 5.5, the reduced decompositions of w correspond to the order
extensions of P . The x s 1 specialization of our recent hook lengthz

Žgenerating function result for d-complete posets joint work with Dale
.Peterson yields a hook product formula for the number of order exten-

sions of P and for the number of reduced decompositions of w. Proposi-z
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tions 8.6 and 9.1 imply that one can obtain a hook product count of order
Ž .extensions for any uncolored d-complete poset.

w xThe classification of d-complete posets 7 can be used to list all simply
laced l-minuscule elements and all of their reduced decompositions.

Let GG be the simply laced Kac]Moody group corresponding to gg.
Consider l s v for some f g N. Let PP be the corresponding maximalf

parabolic subgroup of GG. Let w be l-minuscule. Then the Schubert
subvariety X of the flag manifold GGrPP has a particularly simple struc-w

Ž .ture which is described to some extent Schubert cellular decomposition
by the distributive lattice L , where z corresponds to w as above. Thesez

subvarieties are closely analogous to the Schubert subvarieties X ofw
Ž .Grassmannians. In those cases, the wave posets P s j L arising for az z

fixed GGrPP are precisely the shapes contained within a fixed rectangular
poset. It is well known that each such shape P contains geometricallyz

useful information concerning the corresponding variety X . The generalw

simply laced ‘‘l-minuscule’’ Schubert subvarieties X above are automati-w

cally classified at the same time that all d-complete posets are classified in
w x7 , and it is hoped that the irreducible d-complete posets P drawn there
will be as helpful in studying these varieties as the shapes P have been forz

the Grassmannian Schubert varieties. A small example of this was the
w xrederivation in 8 of the degrees of the minuscule flag manifolds by

counting the number of order extensions of the associated d-complete
Ž .posets then called ‘‘minuscule’’ posets .

Let W be an arbitrary Coxeter group. Stembridge has studied the
w xelements w g W for which the weak Bruhat interval e, w is a distributive

w xlattice 13 . He showed that this property is equivalent to w being ‘‘fully
commutative,’’ namely, any reduced decomposition for w can be converted
into any other reduced decomposition for w using only relations of the

w xform s s s s s . Let w be l-minuscule. By relating e, w in the weaki j j i

Bruhat order to the poset L as above, we can use Theorem A to concludez

w x w xthat e, w is a distributive lattice. Then Theorem 2.2 of 13 implies that w
is fully commutative. The wave posets P of this paper arise as ‘‘heaps’’ inz

w x13 . Our Theorem B can be thought of as characterizing the heaps of
some particularly nice fully commutative elements from simply laced Weyl
groups.
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