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Dyadic Sampling Approximations for 
Non-Sequency-Limited Signals 

M. K. HABIB AND S. CAMBANIS* 

Department of Statistics, University of North Carolina, Chapel Hill, North Carolina 27514 

Dyadic sampling approximations, as well as error estimates, are derived for non 
random signals which are Walsh-Stieltjes transforms and for dyadic-stationary and 
Walsh-harmonizable random signals. Also derived are inversion formulae for 
Walsh-Stieltjes transforms, which are used in this paper. 

1. I N T R O D U C T I O N  

Recently, Walsh functions have been increasingly used in digital 
communication systems: they are easily generated, their pulse shape ( 1 , - 1 )  
conforms with operations of digital computers, and they play, for signals 
with possible discontinuities at the dyadic rationals, the role complex 
exponential functions (and Fourier analysis) play for continuous signals. In 
addition, they have been used in experimental sequency-multiplex systems, 
image coding and enhancement, etc. (see, e.g., Harmuth, 1977). 

Dyadic sampling representations for sequency-limited (non-random) 
signals have been obtained by several authors, among them Pichler (1968) 
and Kak (1970). The concept of a sequency-limited signal is the (Walsh) 
analogue of the (Fourier) concept of a band-limited signal. However, as Kak 
pointed out, the class of sequency-limited functions contains only step 
functions and is therefore a rather small class (this is in sharp contrast to the 
richness of the class of band-limited functions). Butzer and Splettst6sser 
(1978) obtained dyadic sampling approximations, as well as error estimates, 
for time-limited non-random signals. Maqusi (1980) derived a dyadic 
sampling representation for sequcncy-limited non-stationary random signals. 

In Section 2 we derive dyadic sampling approximations, as well as error 
estimates, for non-random signals which are Walsh transforms of finite 
measures and for dyadic-stationary and Walsh-harmonizable random signals. 
These signals are not necessarily sequency-limited or time-limited. These 
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sampling approximations are of the sample and hold type, and while such 
step function approximations are well known for continuous signals, it is 
remarkable that they remain valid for classes of signals that are not 
everywhere continuous. Similar results for the classical sampling series were 
established by Cambanis and Habib (1982). In Section 3 we derive inversion 
formulae for Walsh-Stieltjes transforms which are needed in Section 2. 

2. SAMPLING APPROXIMATIONS 

The following notation and definitions will be used in the sequel. ~+ = 
[0, or), ~ is the set of all integers, ~+ is the set of all non-negative integers, 
and D+ is the set of all non-negative dyadic rationals (k2-";  kC~q+,  
n E ~). Each t > 0 has the dyadic expansion 

t =  ~ tj2 -s, t i e  {0, 1}, (2.1) 
j= --N(t) 

for all j ,  where N(t) is such that 2N(t)~ t < 2 N(t)+l, and we put tj = 0 for 
j < --N(t). If t ~ D+,  there are two expansions and the finite one is chosen. 
The component-wise addition modulo 2 (dyadic addition) of t, s ~ fR+ is 
defined by t ® s  = ~j%_~ I t j - s j l  2 -J (see Butzer and Splettst6sser, 1978). 
The set of Walsh functions {~,(t)}n~N+ on [0, 1) is defined for each non- 
negative integer n = ~ 0  u~,) nj2 -j  by 

l N(n) + 1 I 
Vn(t)=exp 7ri ~ nl_flj , 

j~l  

and is orthonormal and complete in L2[0, 1). The Walsh functions are 
extended by Fine (1950) to {~%(t)},,t>~0 by 

N(u)+ 1 I qq(u) = ~t~(t) = exp ~i ~ u l_jtj , 
j = --N(t) 

and they have the property that, for all u >~ 0 whenever t ® s ~ D+,  

~u(t ® s) -- ~u(t) ~,u(S). 

A function f on E+ is called W-continuous (W is for Walsh) if f is 
continuous on E +\D + and right continuous on D +. I f f E  L 1 (~ +), its Walsh 
transform f is defined by 

f (u )  = f o  q/u(t)f(t) dt, u >1 0, 
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and f is bounded and W-continuous. If f ,  f ~  L 1(~ +) and f is W-continuous, 
then the Walsh transform o f f  can be inverted to give 

f ( t )  = ~,,(u)Z(u) du, t >~ O, 

(Butzer and Splettst6sser, 1978). The Walsh transform of a finite (signed or 
complex) measure # on the Borel subsets of ~+ is defined by 

~OG 

p(u) = ~0 ~,u(t) d#(t), u/> 0, 

and inversion formulae are established in Section 3. Both inversion formulae 
of Walsh transforms, of integrable functions on f~+ and of finite measures, 
have the usual multidimensional analogues. 

A complex function f on ~ + of the form 

~2 n 

f ( t )  =~}o ~,(u) F(u) du, t >/O, 

for some n C N and some F C LI(0, 2") is called sequency-limited to 2". A 
sequency-limited function in L 1(~ +) has a dyadic sampling expansion of the 
form 

s(,)= 
~o 

where d(v; t) = J~o qJt(u) du, t, v >>. 0 is the Walsh-Dirichlet kernel (Fine, 
1950). As it was pointed out by Kak (1970) and Butzer and Splettst6sser 
(1978), 

Y(1; (2" 0 @ k) = 112 ,k,2 ,(k+ ,))(t), 

and thus (under the stated conditions) the functions that are sequency-limited 
to 2", for some n C N, are precisely the functions that are constant on each 
interval [2-"k, 2 - " (k  + 1)), a rather small class of functions. 

A dyadic sampling approximation for W-continuous time-limited non- 
random functions was derived by Butzer and Splettst6sser (1978) along with 
error estimates. We first derive a finite dyadic sampling approximation as 
well as error estimates for functions which are Walsh transforms of finite 
(signed or complex) measures and thus not necessarily time-limited or 
sequency-limited. 

The following notation will be needed. The dyadic modulus of continuity 
of a function f C  L I ( ~ + )  is defined for 6 > 0 by 

co(f; 6) = sup IIf(')--f(" @ h)ll~, 
O.<<h <,~ 

643,/49/3-3 
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where I lf l l l  = f~o If(t)[ at. The Lipschitz class Lip(a, L), 0 < a, L < oo, is 
defined by 

Lip(a, L) = { f ~  L'(I~ +): w(f; 5) ~ L5 ~, 5 > 0}. 

If should be noted that a > 1 does not imply that Lip(a, L) contains only 
constant functions (as in the case where the usual rather than the dyadic 
addition is used in defining the modulus of continuity). 

THEOREM 2.1. Let f be the Walsh transform of  a finite (signed or 
complex) measure .u on the Borel subsets of  ~ + : 

GO 

f ( t )  = ~i ~t(u) dlz(u), t >/O. (2.2) 

Then for every t >/0 and integer n, 

f , ( t )  := f 112 ,k,z ,(k+ ,)(t) = , ~t(U) dtl(u), (2.3) 
k=O 

where for each f ixed t >/O, ,q/t(u) is the 2"-periodic extension o f  the function 
~t(u), 0 <~ u < 2", to [0, oo), 

If(t) - f . ( t ) l  ~< 2 I~",/[2", oo)}, (2.4) 

and thus 
f ( t )  : lim f,(t).  (2.5) n--~O0 

If, in addition, f E Lip(a, L) for some a > 1, 0 < L < ~ ,  then for every t >/0 
and for  large values of  n we have 

L 1 
I f ( t ) - - f , ( t ) l  ~< a_--TT • 2,(~_1 ) . (2.6) 

Proof. Fix t ) 0 and n E N. Since ,  ~t, C L ~ [0, 2 n) is periodic with period 
2", W-continuous, and of bounded variation on [0, 2"), then the partial sums 
of its Walsh-Fourier series converge everywhere to ,~'t (Chrestenson, 1955, 
Theorem 2), i.e., 

,~t(u) = ~ a,,k(t) ~',(2-"u), u/> 0, (2.7) 
k = 0  

where 
L l.2n 

a,.k(t) -= 2" Jo ~t(v) ~uk(2 -nv) dv 

- J ( 1 ;  (2"t) (~ k) = l[2_,k,2_n(k+l))(t ). (2.8) 
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Let 

eK(t; n) = f 1 t2-,k,z-.~k+ l),(t) -- j ,gtt(u) d/a(U) 
k = O  0 

K 

<~I" ,Wt(u)- ~ ~'k(2-"u) l[2-°k,z-.{k+m(t) d]/al (u). (2.9) 
~ 0  k = 0  

The integrand in (2.9) is bounded by 2 and tends to zero as K--, oo by (2.7) 
and (2.8). It follows that eK(t; n)-+ 0 as K--+ oo, proving (2.3). Now by (2.2) 
and (2.3), 

.OO 

If(t) -L(t)l ~<J2o } ~,,(u) - ,  ~ut(u)l d I/a l (u) ~< 2 I/a}{ [2", oo)}, 

hence (2.4) and (2.5). To prove (2.6), notice that, by Corollary 3.1, if 
fEL1(~+) then # is absolutely continuous with respect to Lebesgue 
measure, and we put dg(u)/du = f ( u )  (and consider a W-continuous version 
o f f ) .  Thus i f f C  Lip(a,L),  it follows from (the proof of) a lemma on page 
102 of Butzer and Splettst6sser (1978) that for any e > 0, 

; u 

and thus If(u)] ~L/(2u~), u > 0. (2.6) then follows from (2.4). | 

Even though the approximating function f ,  is defined through a series, 
since it is of the sample and hold type (cf. (2.3)), it can be use.d in the case 
of practical interest where only a finite number of samples is available, 
{f(k2-")}~=l,  to approximate f over the interval [0, N2-") .  Notice that in 
this case the interval where the approximation is feasible depends on the 
number N of samples available, while the bound on the approximation error 
given by (2.4) depends only on the frequency of sampling. 

We now derive dyadic sampling approximations for certain random 
signals which are not necessarily mean square continuous. A second order 
process {x(t), t >~ 0} with (not necessarily continuous) correlation function 
R(t, s) is called Walsh-harmonizable if for all t, s >/0, 

oo oo 

R(t, s) = fl ~i qJ,(u) ~ (v )  d/a(u, v), (2.10) 

where/a is a finite (signed or complex) measure on the Borel subsets of ~ ~ = 
[0, oo) × [0, oo), called its spectral measure, or equivalently if for all t ~> O, 

oo 

x(t) = ~i ~ut(u) dZ(u), (2.11) 
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where Z is a random measure on the Borel subsets of ~+ such that for all 
Borel sets A, B ~ ~ +, /~(A × B ) = E [ Z ( A ) Z ( B ) ] .  

We also need the fllowing notation. A function R on ~2  is called W- 
2 2 continuous if R is continuous on ~+ \D+ and continuous from above-right 

on D~_. If R ~L~(~2+), its dyadic modulus of continuity is defined for 
3 , 2 > 0  by 

co(R; 6, ~,) = sup{HAh,ge Ih, o 4 h < 6, 0 ~ g < 4} 

where (Ah,gR)(t, s) = R(t  @ h, s ® g) - R(t  ® h, s) - R(t, s @ g) + R(t, s) 
and IIR II1 = f~o f;~ IR(t, s)] dt ds. Also the Lipschitz class Lip(a, L), 0 < a, 
L < m, is defined by 

Lip(a, L)  = {R G L1(I~2): co(R; 3,2) ...< L6'~2 ~, 3 > 0,2 > 0}. 

THEOREM 2.2. Let {x(t), t/> 0} be a second order Walsh-harmonizabIe 
process with random measure Z and speetraI measure ~. Then for each t >I 0 
and n ~ ~ with probability one, 

l x,( t)  := /.@ x ltz ,k,2 ,(k+l,,(t) = 
k=O 0 

. ~.,t(u) dZ(u), (2.12) 

and 

so that 

E Ix(t) --x,(t)l 2 ~ 4 IP] {[2", oo) X [2", oo)} (2.13) 

x( t )=  lim x,( t)  (2.14) 
n-~O0 

in quadratic mean. If, in addition, R ~ Lip(a, L)  for some a > 1, L < m, 
then for every t ) 0  and for large values of n we have 

L 1 
E~lx(t)-x°(t)12 ~ 1 " ~ ( a  - j 2 2 n ( ~ - l )  " ( 2 . 1 5 )  

Proof. The proofs of (2.12) through (2.14) are similar to those of 
Theorem 2.1 and are thus omitted. To show (2.15) observe that since 
R ~ L1(~2),  then by Corollary 3.1,/~ is absolutely continuous with respect 
to Lebesgue measure on •2 Put dot(u, v)/du dv =/~(u, v) and choose a W- + .  

continuous version of/~. The existence of such a version follows from the 
two-dimensional Walsh transform (established in the one-dimensional case 
by Butzer and Splettst6sser (1978)): 

l~(u, v) = ~,u(t) qJ~(s)R (t, s) dt ds, u,v >~O. 
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Now for any 0 < u =# 2 ~, n ~ ~N+, q/u(u -a)  = - 1  (Butzer and Splettst6sser, 
1978, page 102), so that VG(t @ u - ~ ) =  ~'~(t) ~u(U -~) =-~t t (u  ) whenever 
t @ u - ~ D + . T h u s f o r  a n y 0 < u 4 = 2  " , n E ~ q + , w e h a v e  

co fl 
oo oo 

= - -  fO fl  R(t(~)u-l 's)[/Jt~(t) l /J~J(s)dtds'  

and similarly for the other terms. It follows that for all u, v ~ {2 n, n ~ N + } 
we have 

(~o oo 
t~(U'V)=¼Jo ~i [ R ( t @ u - 1 ' s @ v - 1 ) - - R ( t @ u - l ' s )  

-- R( t ,  s @ u -1 )  q_ R (t, s)]  ~l/u(t ) ~/v(s) dt ds. 

It follows for all u, v > 0 and ~ > 0 that 

. < l o )  R;  , ~ L - -  , JR(u, v)[-~ 4 u v 

so that putting e = 0  we obtain ]l~(u,v)lKL/{4(uv)~}.  The proof  is 
completed as that of  Theorem 2.1. II 

The following corollary shows that the approximating sequence x,(t)  
frequently converges to x(t) with probability one (cf. (2.14)) and gives the 
rate of convergence. 

COROLLARY 2. l. Let x be as in Theorem 2.1 and assume that a > 7. 
Then for  each t >~ O, as n ~ oo, 

2 v" {x(t) - x,(t)} --+ 0, 

with probability one where 0 < 7 < a - 3. 

Proof. For each fixed t/> 0, define Xu, 0 ~< u K 1, by 

(2.16) 

X u = x ( t )  for u = 0 

1 1 
= x . ( t )  for  ~ < u ~< 2~ . _  , ,  n~ /1 .  

Then X is separable in u, and from (2.15) we have (with n such that 
2 - ~ < u ~ 2  -(~ ~) 

E IX0 - X  u 12 = E Ix(t) - x,(t)l 2 ~ Const 2-2"(~- i )  < Const u 1+~, 



206 HABIB AND CAMBANIS 

where fl--- 2a - 3 > 0. Thus, by Kolmogorov's theorem (Neveu, 1965, page 
97), as h ~ 0, 

1 
o<,.sup IXo-Xul---, O, T ,  

with probability one, and (2.16) follows by putting h = 2 -n. II 

When the random measure Z of a Walsh-harmonizable process x is 
orthogonal, or, equivalently, when its spectral measure a is supported by the 
diagonal of N~_, then x is called dyadic-stationary and its correlation 
function R(t,  s) is a function of t ® s: 

R(t, s) = f? aa(X) 

(where, with the usual abuse of notation, we denote by p the measure on ~ ÷ 
which represents the spectral measure a on D+). (See Morettin, 1974, and 
Nagai, 1977, for the discrete time case.) For a dyadic-stationary process the 
bound (2.15) simplifies to 

2L 1 
E Ix(t) -- x.(t)} 2 <. - -  

a - -  1 2n~-1~; 

therefore, y in Corollary 2.1 satisfies 0 < ~ < a/2  - 1  and a > 2. 
We conclude by considering certain Walsh-harmonizable (but not dyadic- 

stationary) stable processes which are the analogues of real dyadic- 
stationary Gaussian processes. Since stable processes have infinite second 
moments, in this case the approximating sampling sequence converges in the 
pth mean for appropriate values of p strictly less than 2. The following 
notation and facts are needed. 

A random variable X is symmetric a-stable (SaS) ,  0 < a ~< 2, if its 
characteristic function is of the form E(e  itx) = exp(--IIXIt ~ I tl~), where for 
1 < a ~< 2, the positive constant Ilxll defines a norm on a linear space of S a S  
random variables (Schilder, 1970). Also ~' ] X f  < oo for all 0 < p  < a, and 
in fact 

IXl  = C(p, a)IIx[I 

for some universal constant C(p,  a)  depending only on p and a and not on X 
(Cambanis and Miller, 1981). A stochastic process {x(t), t>~0} is called 
S a S  if every finite linear combination of its random variables is SaS .  

The following can be found in Schilder (1970). If the process Z(2), )l. ~> 0, 
is S a S  with independent increments, and 1 < a ~ 2, then the function F(2) = 
NZ(/I)II '~, ~.>~0, is non-decreasing and thus defines a Lebesgue-Stieltjes 
measure p on the Borel sets of [0, oo). If the family of functions {f(t, .), 
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t >/0} belongs to L ~ ) ,  then the integral f ~ f ( t ,  2)dZ(2),  t >/0, defines an 
SaS process, and for every t ~> 0, 

o f ( t ,  )~) dZO0 = ]f(t ,  ;t)l ~ d#(~,). 

COROLLARY 2.2. Consider the SaS process 

x(t) = f£ ~t(),) dZ(2), t>~0, 

where 1 < a < 2 and Z is a SaS process with independent increments and 
finite (spectral) measure ~. Then for each t~O,  (2.12) holds, and for 
0 < p < a ,  

Ix(t) - x,(t)[ p ~< C(p, a) 2;/1P/~{[2", c~)}, 

and thus if n ~ ~ ,  

x(t) = lim x,(t) 
n -'-~ 0 9  

in the pth mean. 

The proof is straightforward and thus omitted. 

3. INVERSION FORMULAE FOR WALSH--STIELTJES TRANSFORMS 

In this section, inversion formulae are derived for Walsh transforms of 
finite measures, and it is shown that if the Walsh transform of a finite 
measure is integrable, then the measure is absolutely continuous with respect 
to Lebesgue measure. While for simplicity the univariate case is considered, 
the natural multivariate analogues are similarly valid. These results are used 
in Section 2 and, to the best of our knowledge, they are not available in the 
Walsh transform literature. 

THEOREM 3.1. 

subsets of  7~ +, and if f is its Walsh transform, 

. OD 

f ( t )  = J ~,,(,~) du(~), t >i O, 
o 

then for all 0 <<. a < b < or, 

L(2. 
#((a, b)) +/J({a}) +u({b}) = l ifn 2"30 

I f #  is a finite (signed or complex) measure on the BoreI 

~o,~(t) f( t)  dt, (3.1) 
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where 7J~,b(t) = f~ qtt(u) du, and for all a > 0, 

1 2" 
p({a}) = ~imo~ ~-y fl ~a(t)f(t) dt. (3.2) 

Proof. We have 

f]°W ,b(t)f(t)dt=f2" (ff 
b 2n 

o o  o o  

= 2 " ; 0  ap(2)~ I l(a,b,(u) l~o,z_,)(u®2)au, (3.3) 

where we used Fubini's theorem and the properties ~',(u)~/t(2)= ~/t(u @ 2) 
whenever u @ 2 ~ D+ and 

.2  n 

_ Io gtt(v ) dt = 2nl[0,2-,)(V) (3.4) 

(Fine, 1950). If 2 = ~ = _ u ( a )  2k 2-k, we put 

2 ~") ~ 2~2 k, = /_... 
k = --N(,3.)  

and notice that for fixed n and 2, and all u ~> 0, 

l~o,~_,)(u ® 2) = 1[~(°,,~(.,+ ~_°)(u). (3.5) 

Thus, (3.3) may be written as 

;]" Ta,~(t) f (t) at = f ~  A,(2)dp(2), (3.6) 

where 
(K) 

A,(2) = 2" j£ l(.,b)(u ) I[A(,).2(.O+Z-,)(U ) d u .  

A straightforward calculation shows that 

A,(),) = 0 for ), > a C"), 

= 1 - 2n(a - a (")) for a (n) ~ 2 ~ a (n) -}- 2 ", 

= 1 fora  ~")+2 - n < 2 < b  (n), 

= l - 2 " ( b - - b  (")) for b ( ' ) ~ 2 ~ b ( ' ) + 2  -", 

= 0 for 2 > b (0) + 2 - ' ,  
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and using the dominated convergence theorem, we have from (3.6) that 

.2 n 

lim j 7J~.b(t)f(t) dt =/a((a, b)) +/.t({a}) +/.t({b}), 
. - + 0 0  . 0 

proving (3.1). Equation (3.2) is proven in a similar way: 

1 "2n ] ~ "2n 

co 

= ~  d~(u) lt0a_,,(u G a) 

= f ;  l~o,°,.o,.,+ ~_.,(u) dr(u) 

by (3.4) and (3.5). Since lra~.~,.~.~+2 . ) (u)~  ll<(u ) as n ~ oo, the dominated 
convergence theorem implies 

lim 1 ;~° ,-,~o 2--; VG(t)f(t)dt=u({a})" II 

COROLLARY 3. l. Let f and ,z be defined as in Theorem 3.1. I f  
f ~  L 1(~ +), then # is absolutely continuous with respect to Lebesgue measure 
on ~ + with Radon-Nikodym derivative 

oo 

F(u) = f'o tG(t)f(t) dr, u >. O. 

Proof. S i n c e f ~  '~ L (>+), f~" ~,,(t)f(t)dt converges to the finite number 
(~ Wa(t)f(t)dt as n ~  oo, and by (3.2),/a({a}) = 0 for all a>/0.  Then (3.1) 
gives, for all 0 ~< a < b < oo, 

¢z((a, b ) ) =  f o  T~'b(t)f(t) dt = f[ (rio gtu(t)f (t) dt) du, 

where we used Fubini's theorem, and the result follows. II 

For the sake of completeness, we include and prove the following result, 
whose counterpart in Fourier analysis is due to Wiener. 

COROLLARY 3.2. With f and l2 as in Theorem 3.1, we have 

1 (2o 
lira 2"30 If(t)12dt-= ~' I/'t({u})12" (3.7) 
n - ~ m  u~>O 
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Proof.  

at most  a countable  number  o f  atoms. Now, if # />  0, then 

1_ (2. 
2"d0 f2(u) du 2"Jo 

1 ~oo ,oo .2 n 

.OO 

=J0 ~([u("J'u("~+2-")n[O'°o))d/4u)" (3.8) 

Since g{[u ~"~, u("~+ 2 - " ) ~  [0, 0o)} is integrable for each fixed n (by the 
integrability of the left-hand side of (3.8)), and for all u/> 0 it converges to 
/~({u}), then by the dominated convergence theorem we have 

] t2n 2 

lira 2-;~o f (t)dt= • U2({u}). 
n~c~ u>/0 

I f g  is complex,  the same argument  gives (3.7). II 

Final ly ,  we notice from ( 3 . 7 ) t h a t  if f @  L 2 ( ~ + ) ,  then g is non-atomic.  

HABIB A N D  C A M B A N I S  

Notice that  the r ight-hand side of  (3.7) is meaningful  since/1 has 
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