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On the Rate Distortion Functions of Memoryless Sources 
under a Magnitude-Error Criterion* 

ItoI ~I.  ],H.;NG AND STAMATIS CAMBANIS 

Department of Statistics, University of North Carolina, Chapel Hill, North Carolina 27514 

We consider the evaluation of and bounds for the rate distortion functions of 
independent and identically distributed (i.i.d.) sources under a magnitude- 
error criterion. By refining the ingeneous approach of Tan and Yao we evaluate 
explicitly the rate distortion functions of larger classes of i.i.d, sources and we 
obtain families of lower bounds for arbitrary i.i.d, sources. 

I. INTRODUCTION 

The rate distortion function of an independent and identically distributed 
(i.i.d.) source is clearly equal to the rate distortion function of each random 

variable of the source. We evaluate the rate distortion function R(D) of a random 
variable X with density p(x) satisfying certain conditions. A magnitude-error 

criterion is used throughout without further reminder. 
The  procedure used is based on the well known analytical expression of R(D) 

and was introduced by Tan  and Yao (1975), who calculated explicitly the rate 
distortion functions of an i.i.d. Gaussian source and of a certain class of i.i.d. 

sources. 
In  this papcr we make two uscs of this proccdure. First, in Section II, we refine 

thcir results, by a substantial weakcning of thc conditions on the dcnsity, thus 
calculating explicitly the ratc distortion functions of larger classes of i.i.d. 
sources. In  Theorem 1 thc density of the source has finite support, Theorem 2 
treats concavc source densities, and in Theorem l '  the support of thc source 
dcnsity is the entire real line or a half line. Wc also indicatc how Theorcms l and 
1' may be combined with a known result (Theorem A) in evaluating the rate 
distortion functions of ccrtain i.i.d, sources whosc densities do not satisfy the 
assumptions of Theorcms 1 and 1'. Secondly, we develop a family of lower 
bounds for thc rate distortion function of an arbitrary i.i.d, source (Theorcm 3) 
and compare them with the Shannon lower bound in Section I I I .  
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II .  RATE DISTORTION FUNCTIONS OF I . I .D .  S o w c E s  

W e  first consider  rate distort ion funct ions of r andom variables with cont inuous  
densit ies which  vanish outside a finite interval. 

THEOREM l. Let  X be a random variable with density p(x) which vanishes 

outside the interval  [a, b], - -  ve < a < b < oo. Assume the following: 

(A )  p is continuous with median tx and there is an at most f ini te set of  points 

a - d  o < d  1 < "" - < d , ,  .<d,,,.. t : = b  (m ~ , 0 )  such that on each [d~,d~.+l], 
j = O, 1 ..... m, p(x)  is differentiable and its derivative p ' (x)  is absolutely continuous 

and satisfies p ' ( d j )  "~ ' " .~ p+(d j ) , j  = l .... , m, where p'_(d~) and p+(dj) are the left and 
right limits of  p '  at dj respectively. Also 

[ f° p(t)  dt > 0  for  x > a; p( t )  dt > 0 
~ x  

(B)  The function 

: p(.,-)/~(~P(') d, f o r  .~ ~ [ . .  b) Kl(x)  

diverges to + ~c as x increases to b; and the function 

&(,) = p(x)/ (~p(t) dt  fo,. x ~ (~, IX] 
l d  a 

for  x < b. 

( i) 

(2) 

diverges to -i o'a as x decreases to a. 

Then fo r  each s E ( - -  ce, - 2p(ix)), there exist unique a, > 0 and b, > 0 sueh 

that  a s I Ix __ a and b~ ~ b -.- Ix as s I~ - -  oo and a s and b, are determined by 

IX - -  a.o :--~ min{y  ~ (a, IX): K 2 ( y  ) = i s [} (3) 

IX + t, ~ = max{3, c (tz, b): K s ( y  ) = [ s 1}. (4) 

Suppose in addition that 

(C)  f o r  each s ~ ( - -  ~a, --2p(ix)), 

p(x)  - -  s-Zp"(x) > / 0  a.e. [Leb.]  on [IX - -  a , , / x  --' bs]. 

Then the rate distortion function R(D) ,  0 < D < Dmax,  of  X is given para-  
metrically in s by 

R(D~) l n ~  j ( ,+b,  f , _ ~ ,  == - -  p(x) ln(ep(x)) dx - -  ln(p( / ,  - -  as)) p(x)  dx 
• , t t - - o  s 

. b  

- 1n(p(ix = b,O) o|+o. p(x) d~ (S) 
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z L  = T77  _o p (x )  d x  4 . (~  - -  a~ - x)  p ( x )  d x  

b 

4- f ,  (x --  t~ -- be)p(x) dx (6) 
+bs 

where --  ov < s < --2p(/z) and Dmax =~ ~ i x - -  tz [ p(x) dx. 

The proof of Theorem 1 is given in Appendix 1, and the following example is 
an application of Theorem l with non-monotonic Kl(x  ). 

EXAMPLE 1. l,et X be a random variable with density 

p(x) = ( x l n l O 0 )  -1, 0.01 ~.<x-~ 1. 

Then  p(x) is continuous and differentiable with tz = 0. I. Conditions (A) and (B) 
are clearly sarusfied. Note that Kl(X ) decreases for /z ~ x ~< e -x and then 
increases to + oo as x ~" 1. Condition (C) is not satisfied for all s but only for some 
s in (--oo,  --2p(/z)). In  this case, only a portion of R(D) can be obtained (corre- 
sponding to those D s for which s satisfies (C)). We have p(x) - -p"(x) /s  z := 
p(x)(l - -  2/(s2x2)) >~ 0 if and only if x ~ 2t/z/i s I. Thus  only for large I s J (C) 
will be satisfied. For s := --72.135, we have 21/2/I s] == .0196 and from (3) 
/z --  as == 0.02. Thus  s ~ --72.135 (C) is satisfied. This portion ofs corresponds 
to a region of small distortion D (since s is the slope of R(D)) and for this region 
R(D) is given parametrically by (5) and (6). 

We now show that certain continuous concave densities satisfy the assump- 
tions of Theorem 1 and thus their rate distortion functions can be obtained 
explicitly. 

THEOREM 2. Let X be a random variable with density p(x) which vanishes 
outsice the interval [a, b], --co < a < b < oo. Suppose p(x) is a continuous 
concave function on [a, b] and there is an at most finite set of points a = d o < 
d x < "" < d,~ < d,~+l = b (m >~ O) such that on each [dj, dj+l], j = 0,..., m, 
p(x) is differentiable and its derivative is absolutely continuous. Then the rate 
distortion function of X is given by (5) and (6). 

Proof. Sincep(x)is concave,p"(x) ~< 0 andp'_(x) >/p'+(x). Also ~ p ( t )  dt > 0 
for x > a. For suppose f~°p(t) dt = 0 for some x o > a. Thenp( t )  = 0 for each 
t ~ [a, x0] by the continuity of p. Thus  p'(t) = 0 for each t ~ [a, xo]. Since 
p'_(t) >/p+(t), we have p'(t) <~ 0 for each t ~ [a, b]. This implies p(t) = 0  for 
t E [a, b] which is a contradiction. Similarly j'~ p(t) dt > 0 for x < b. Thus  the 
only assumption left to be verified in Theorem 1 is (B). 
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I fp(b)  -,+ 0, then it is clear from (1) that K~(x) -~ .  i-2c as x ~ b. Suppose now 
that p(b) ' - O. Then  by l 'Hospital 's  rule 

lim K~(x) ::= lim --  p'(x):p(x). 
x ' fO x t b  

We will show thatp ' (b)  < 0 and thus 1~1(x ) --+ T v o  as x 1' b. By the concavity of 
p(x), p'(x) is a non-increasing function. Suppose p'(b) >~ O. Then  p'(x) ~ 0 for 
all x E [a, b] for which the derivative exists. Thus  p(x) is non-decreasing. Since 
p(b) ---- O, this implies that p(x) = 0 for all x ~ [a, b], which contradicts the fact 
that p is a density. Hence p'(b) ~. O. 

The  proof of Ks(x ) ~ + oo as x ~ a is of course similar. 
I t  should be noted that it can also be shown that Kx(x ) ~ ~v as x ~' b and 

K 2 ( x ) ~ m a s x l ,  a. | 

COROLLARY 2.1. Let X be a random variable with continuous density p con- 
sisting of line segments and vanishing outside a finite interval. Then the rate distortion 
function of X is given by (5) and (6) zf and only if  p is concave. 

Proof. I t  follows from Theorem 2 that i f p  is concave then its rate distortion 
function is given by (5) and (6). 

Now suppose that/) is not concave. Then  there exist two adjacent line segments 
such that the left derivative at their common point is smaller than the right 
derivative. Hence for each s, G~(y) in the proof of Theorem I is not a probability 
distribution function and thus the parametric expressions (5) and (6) do not give 
the rate distortion function of X. | 

The  following example is a direct application of Corollary 2.1. Calculation is 
straightforward and is omitted. 

EXAMPLE 2. TrapezoM &nsity. I f  0 -< c < a and 

II a + 
- -  - -  {;2)  

I x l ~ c  
c ~ I x l  -~ ..... a (7) 

then for 0 -< D ~ (a --  c)(a -~- 2c)/3(a c) 

R(D) ~ 2 c°se [ 4~r ~- -[- cos-'(--3D.;(a 2 -  c2)1'~)] - -  (a i 3c)/2(a i c) 

- - I n  ( 2 ( ( a -  c)/(a -T c)) 1/2 cos [ ~  " 1 1 o 

643/44,t2-2 
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and for (a - -  c)(a q- 2c)/3(a -b c) ~ D ~ Dmax ::= (a a --  ca)/3(a z --  c 2) 

R ( D )  = - - f ( D )  - -  l n ( l  - -  f ( D ) )  (9) 

where f ( D )  := [1 --  4D/(a -- c) ~- (a --  c)2/3(a-i- e)2] 1/2. 
Theorem I is also valid when the support  of p(x) is not finite. The  result is 

stated in the following: 

THEOREM 1'. Let X be a random variable with demity p(x). I f  p(x) satisfies 
all assumptions in Theorem 1 with - - .w <~ a < b <~ Ioo, then the rate distortion 
function of X is given by (5) and (6) with - - ~  ~ a < b <~ I 0o. 

Theorem 1' is an improvement  of Theorem 3 in [Tan and Yao, (1975)]. Here  
we no longer require the monotonicity of Ki(x), i = 1, 2, and we allow p '  (x) 
to have a finite number  of discontinuities instead of a single discontinuity at t*. 

T h e  following (known) result can be used along with Theorems 1 and 1' in 
evaluating the rate distortion functions of certain random variables. 

'I~HEOREM A. I f  the random variable X i ,  has distribution function b'~, and 
distortion rate function D~(R), i := 1,2, then for all R ".> O, 

_ . f ~  ] DI(R) D2(R)I ~ I & ( t ) - -  F2(t)l at. (lO) 
- - - : ( ,  

Thus i f  F ,  --  F -~  0 in L 1 , or i f  Fn -~ F weakly and F n , F have finite means, then 
D, (R)  --.~ D(R) uniformly. 

Proof. Corollary 1 of [Gray, Neuhoff and Shields (1975)] applied to i.i.d. 
sources with distributions F 1 and F 2 gives 

I DI(R) --  D.,(R)I ~ ~5(F1,F2). 

But bv [Vallender (1973)] tS (F l ,b½)=  ~_~ iFx( t ) - -F2( t ) ld t  and thus (10) 
follows. Now if F ,  converges to F weakly and all distributions involved have 
finite means, then by Theorem 2 of [Dobrushin (1970)], we have/5(F,~, F) -~ 0 
and hence D~(R) -~  D(R) uniformly. II 

The  following well-known property is useful in connection with Theorem A: 
I f  a sequence of probability density functions Pn converges to a probability 
density function p almost everywhere, then the correponding sequence of 
distributions Fn converges to the distribution F of p weakly. For example, 
suppose p(x) is a truncated double exponential density defined on [--c, el, 
c > 0,  i .e.  

p(x) == ~x exp(- -~  : x I)/2(1 --  exp(--c~e)) ] x I ~ e, ~x > O. (11) 
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T h e n  a direct application of Theo rem 1 yields 

R(D~) .... ln[I s i ( l  - -  exp(--~c)):'c~] 

- -  ~ exp(----~c)[c i :~-t In(1 .... ~/: s :)1/[1 - -  e x p ( - - ~ ) ]  

I2~ = [: s ! t  ~. ~-,. exp(--c,c) ln(l - -  c~/I s I)]/[1 --- exp(--~c)]  

12) 

13) 

where is : .c_ [~/(1 --  exp(--~c)),  oe) a n d  

/)max = [~ ~ - -  (c--}- c~ ~) exp(----c~c)]/[l - -  exp(--~c)] .  (14) 

Now  by letting c ~ oo in (1 l) -(14), we find the rate distortion function for the 
double exponential  density on the entire real line (since all distributions involved 
have finite means), i.e. R(D)  . . . .  In coD, 0 <C D ~ ~--1 == /)max. Of  course, 
this has been calculated by using the Shannon lower bound method [Berggr 
(1971), p. 95]. Note  that the double exponential density does not satisfy assump- 
tion (B) of  T heo rem 1', while the truncated double exponential  densities satisfy 
all the assumptions of T h e o r e m  1. This  demonstrates how Theorems  1 and A 
can be used in evaluating the rate distortion flmction of certain random variables 
and following are some further examples. 

EXAMPLI'; 3. (a) Triangular density: Lett ing c + 0 in (7) we see that the 
trapezoid density converges to the triangular density (a -- i x !)/5', ' x ! ~ a. I ts  
rate distortion funct ion is then found by letting c ~ 0 in (8): for 0 < D .~ ~'" 
a/3 = Omax, 

R(D)  2 c o s  0-[3 i ~ c o s  - l  - -  

1 In [2 cos 47r 1 _ , 
, - 

(b) Uniform derMO,: Let t ing c ,~ a in (7) we see that the trapezoid densi ty 
converges to the uniform density l/(2a), [ x ~ a, whose rate distortion funct ion 
is thus found by letting c ~ a in (9): fi)r 0 < D :~ a/2 :-- Dmax, 

. . . . . . . . . . . .  (J6) 

Note that the triangular and unifiu'm densities satisfy all assumptions of 
T h e o r e m  I and thus (15) and (16) could be obtained directly from (5) and (6). 
(16) was first given by Tan  and Yao (1974). 

I f  the mett lod used in Theo rem I is applied to a discontinuous probabil i ty 
density function, a ,~(x) ~ 0 may be found satisfying c ~ ( y ) ~ 1  whereas a 
distr ibution funct ion G~(y) satisfying (A.3) of Appendix  1 may not exist. In this 
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case, using the above mentioned A~, a lower bound RL(D) for the rate distort ion 
function R(D) of the discontinuous density can be obtained. The  following 
example illustrates this point. 

EXAMPLE 4. Let  

t l / 4  - -1  ~<x < 0  
p(x) --= t3/8 0 ~< x ~ 2. 

Then  for 0 < D ~< 9/16, we have 

RL(D) = --~(4 - -  5D) ~/2 -- ln(2 - -  (4 - -  5D) t!2) - -  ¼ 1n(54/625) 

and for 13/24 ~ D ~ 17/24 = Dmax, R(D) itself can be found and is given by 

R(D) = --(1 - (24D - -  1)/16) 1/2 -- ln(l - -  (1 - -  (24D - -  1)/16)1/z). 

Theorem A may yet be used in another way to find bounds for distort ion rate 
functions of discontinuous densities. 

EXAMPLE 5. Let  p(x) be the density of Example 4 and, for 0 < e < 1, 
consider the continuous approximating density 

I t :4 --1 ~ < x - ~ - - ~  
x2/16~ z :  x;"SE + 5 / 1 6  - - e ~ x  ~ 0  

p,(x) - -  )_x2/16¢  2 x"8¢ + 5./16 0 < x ~< ¢ 

~3/8 , < x ~ 2. 

Note that p,(x) converges to p(x) almost everywhere as ~ ~ 0. In  this case the 
R,(D) of p, can be evaluated by Theorem 1 and for E - :  0.59367, we have 

D,(R) .... 0.00367 ~< DL(R) < D(R) .~ D,(R) + 0.00367 

where DL(R ) is the inverse function of Rt.(D ) in Example 4. (For  the evaluation 
of D,(R) see Leung (1976).) 

I I I .  BOUNDS TO RATE DISTORTION FUNC'rtONS 

In this section (further) bounds are derived for rate distortion functions of 
random variables whose densities do not satisfy all the assumptions in the 
theorems of Section II .  Examples are then given comparing these bounds with 
the Shannon lower bound. 
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THEORFM 3. Let X be a random variable with dozsity p(x) satisfying the 
assumptiom in Theorem 1. Let X a be another random variable whose density pl(x) 
vanishes outside the interval [a, b] and has at most a finite number of simple dis- 
continuities. Then a lower bound for the rate distortion .function of X 1 is given 
parametrically in s by 

R ~ ( ] ) , ) :  - H A p O +  In - h~(p(~ - a~)) p~(x) dx 

~ - b s  b 

- f ,  p,(x) ln(~p(x)) d x -  ln(pO, ' b.~)) .!, ~ /,~(x) , ix 
- a s  ~ s 

(17) 

£,,. ±f.-o~ D,. --- (t' -- a~ -- x) p,(x) dx -v- I s I 3.-a, Pt(x) dx 

I b (x .... tx -- bs) px(x) dx ( 1 8) 
Ju -Lb s 

where l l~(p~) .~ fb, p~(x) In(pi(x) /p(x))dx is the generalized entropy of p~ w#h 
respect top  [Pinkser (1964), p. 18];/a is the median of p and a~ and b s are related to 
s by (3) and (4). 

The proof of Theorem 3 is given in Appendix 2. It should be noted that 
lt~,(pl) ~ O, with equality if and only ifp(x) ~ pl(x) a.e. [Pinsker (1964), p. 19], 
and that Rt is useful only when H~(pa ) < or. Clearly Theorem 3 is also valid 
when the support of the densities is not finite. Necessary and sufficient conditions 
for the lower bound RL(D ) of Theorem 3 to equal R(D) are given in the following 
theorem whose proof is given in Appendix 3. 

THEOREM 4. kbr each fixed s :~ 0, RI.(1)~) given in Theorem 3 is equal to 
R(DO if  and only if there exists a probabih'ty distribution function Q~ whose total 
probability is concentrated on (a subset of) [a, b] and is such that 

p~(x) 

[ s [ e--~"--a'-~')p(x) ['  e.~iz, yi dQ.~(y), 
2 p ( ~ -  a~) J,, 

L s [ f b e~;X-Yl dO~(y), 
2 3a ~" 

L s l e'~"+b'-~)p(x) I b 
2p(t, + bs) . ,  e.~-'~; dQ.~(y), 

x e [a, t' - a.0, 

x ~ [~ - a.~, tL -;- bs] , 

x~(t~ ' b , ,b] ,  

(19) 

where a, and b~ are given by (3) and (4), and 

b 

( a , ( x )  p(x) c x p ( s  j x - y I) d x  = 1 
*a  

a.e. [dQ.~]. (20) 
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I t  would be of interest to compare the lower bound of Theorem 3 with the 
well known Shannon lower bound for densities which vanish outside the interval 
[a,b], - - ~  < a < b < ~ .  

'I'ltEORr:M B. Let X be a random variable with density p(x)  which vanishes 
outside [a, b], --  oo < a < b < oo. Then the Shannon lower bound to R(D)  of X is 
given parametrically in s < 0 by 

RsL(D~) = h(p)  --  Is I(b - -  a)12k(s) -!- In Is  l/2ek(s) (21) 

D~ - I s  I -~ t- (b --  a)12k(s) (22) 

. . . .  ~ p ( x )  lnp(x) dx and k(s) ~: 1 --  exp(i s l(b --  a)/2). "Vloreover, ~ohere h(p)  
RsL(D ) < R(D)  for all D with R(D)  > 0 unless 

p(x) =- ! s:  exp(s I x --  (a !- b)/2 i)/2k(s), x ~ [a, b], (23) 

in v, hich case Rst.(Do) ~: R(Do) at the point D O with slope s. 

EXAMPLE 6. I Jet p(x) be the uniform density on [a, b] which satisfies all 
assumptions in Theorem 1, and let pl(x) be a pieccwise continuous density on 
[a, b]. Then  by applying Theorem 3, a lower bound for R(D) ofpz can be found. 
Evaluation of (17) and (18) shows that for s < --(b - -  a )  ' t  

i S1-1 
R L ( D  0 =: h(Pl) -!- In s i:2e ~ f [pl(a -~ t) - !  pl(b --  t)] dt (24) 

J0 

Ds ::  Is I -j - .Io t[pl(a -i- t) ~- p,(b - -  ill dt. (25) 

In  (25), if for a given D, [ s I is not single-valued, and if a branch of [ s I can be 
chosen such that (A.21) in Appendix 2 is satisfied, then for this branch of Is I, 
RL(D) is the best possible lower bound achieved by the method of Theorem 3. 
Note  that for this example condition (A.21) is equivalent to 

p ~ ( a  i - [ s l  -t) T P x ( b - - ' s l  -~) < i s l .  (26) 

The  lower bound of Theorem 3 is of course useful when Theorem 1 is not 
applicable to Pl • As an illustration we now calculate the lower bound of Theo rem 
3 when Pl is the truncated double exponential density given by (11). In  this case 
the rate distortion function of pl  is given by (12)-(14) and therefore we can see 
how tight is the lower bound determined by (24) and (25). Calculations show the 
following: 
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h(p) =:: 1 - -  ~ q- In 2u(~) - -  ~u(~) -~ 

2~ 
.RL(D. 0 =- - -  2- q-- In I s I u(~) + [2 exp(~:l  s l) - o~ - 2]/2{xu(o,) 

D ,  - -  I s - '  - -  Du(~) ] - - I [ ( I  .~ i --1 - -  ( : 1 )  exp(~, / i  * I) + ~ - q  

= [I_ (.~ . a _ l ) e x p ( , x / 2 ) ] / [  l _ e x p ( - - ~ : 2 ) ]  D E ( )  

w h e r e  u(a)  =-: [exp(a /2)  - -  l]/a. For  the  S h a n n o n  lower  b o u n d  we have 

ReL(D,O = ([ s ] - -  a ) ;2  - -  -~-u(c0-1 + In 2u(a) -',- In v(s) -~ v(s) 

D~ = Is l - ' ( l  - -  v(s)). 

R: hats 

T 
.,i/ 

I s i > 2  

[ s l > O  

(27) 

(28) 

,, . . . .  J:(D) 

~ x ' x . %  f.RL(D) 

, RSL(~, ~ 

.05 .1 .15 .2 .25 

Dmax 

• B 

0.248 

FIG. 1. a - .  O.l .  
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14: nLitS 

C 

i 

3 - 

o . . . .  R(D) 

. ~ \  s',, ~; 
RSI'(D]" 

I 
. i  .2  

F r o .  2. cx : 2. 

? I) 

= 0 .209 

Dmax 

I%1 Is~.~l 
F r o .  3 
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where v(s ) .~  is i/2(cxp(] s i / 2 ) -  1). Curvcs are ph,tted for ~ ~ 0.1, 2 in 
Figures 1 and 2. In general, R L is a better lower bound than Rst., except is a 
small neighborhood of Dmax where RSL is better. As .~-+ 0, the difference 
between R z and RSL becomes larger and as a - *  ~ ,  the difference becomes 
smaller. It can also be seen that R L is a very good approximation to R. If, for 
c~ > 0 fixed, we plot D as a function of [ s I as given by (27), we obtain a curve as 
shown in Figure 3. Note that at Is I = 2, D~ --  Dmax • Also D.~ achieves its 
maximum at some point is01 > 2, and D~ is a decreasing function for all 
I ' ' I , s -~ s01 I t  follows (as it is easily checked analytically) that for all , s]  >~ 
i Smax ], condition (26) is satisfied and thus the branch of i s ': ' s l > I Smax ] 
gives the tightest possible lower bound Rr.(D~). 

Another lower bound for the rate distortion function of the truncated double 
exponential density can be obtained by using the truncated Gaussian density and 
numerical calculations show that this lower bound is even slightly better than the 
one obtained using the uniform distribution. 

IV .  APPENDIXES 

1. Proof of Theorem 1 

The well-known analytical expression of R(D), D > O, is given by [Berger 
(1971)] 

[ f ] R ( D ) =  sup sD-~- p(x) lnAs(x)dx (A.I) 

where A~ is the set of all non-negative functions A~, satisfying 

f C~(y) = A.~(x) p(x) exp( s  x - -  3' i) dx ~< 1 for all y. (A.2) 
~ J  

Moreover, for fixed s ~< 0, the supremum in (A.I) is attained by a As if there is 
a distribution G~ with support Vs C [a, b] such that 

[A(x)]-' --  f.. exp(s [ x - -  y 1) dGs(y) (1.3) 
~ g  

8 

and C~(y) = I for all y ~ V s . Then  R(D) is expressed parametrically in s by 

f" R(D~) -- sl)., ~- p(x) In As(X ) ax (A.4) 

l)s = J As(x ) p(x) i x --  y I exp(s i x --  y ]) dx dGs(y). (A.5) 
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Following the procedure of 'Fan and Yao (1975), we let V, -- [t~ --  a~, t~ ] b~] 
be a subinterval of [a, b], and we specify as and bs (and Gs) so that (A.3) is 
satisfied and C.,(y) - 1 f o r y  e V.~ and C~(y) ~< 1 fo ry  ~ V~. 

As was proved by Tan  and Yao, (1975), C~(y) = 1 f o r y  e V~ and (A.3) are 
equivalent to (A.3) and (A.6) to (A.8): 

f veXp(s  ]x -- t I) aG.,(t) = (2/[ s I)p(x), x ~ V~, (A.6) 
s 

[ p(t) dt =: - ~  p(~ --  a,), (A.7) 

f f  p ( t )  d t  = I ]55 p(~ + b.0. (A.8) 
+bs 

Now (A.7) is equivalent to K~(/z --  a.0 ~-- ',sl. Note that conditions (A) and 
(B) imply that K2(x ) is continuous on (a, tz], differentiable on (a, tz] except at 
those d / s  which belong to (a,/z] at which left and right derivatives exist, and 
satisfies K20z ) := 2p(/z) and l im~,  K2(x ) -- 1-oo. I t  follows that given any 
s E (--  co, 2p(/z)) the equation K2(/z --  a.0 -~ ~ s '  has at least one solution. For  
reasons which will become clear latcr on in this proof we will choose the smallest 
solution: 

p, --  a, -= min{y ~ (a,/_t): K2(y) = ] s I} (A.9) 

which is clearly such that tz --  as ~ a as s ~ -- oo and has the following properties 
(to be used later on): 

K~.+(/~ - -  as) ~ 0, and K2(y ) > ] s [ for all y e (a,/z - -  as). 

Similarly, by the properties of Kl(x), b~ is uniquely determined by 

tz + b~ :.= max{y e (tz, b): Kl (y  ) = [ s ';} (A,10) 

and has the following properties:/z -!- b~ ~ b as s I~ -- oo, 

K~_(g -~- b~) >/O, and K~(y) > [ s [ for all y ~ (t~ -" b~, b). 

We next show that for each s e ( --  oo, --2p(/~)), the distribution function G~(x) 
which has absolutely continuous part with density p(x) -- s-2p"(x) on V~ and 
zero elsewhere, discrete part with atoms at the points/~ --  as,  t~ + b~ and the 
d / s  which are in [ / z -  a , , / ~ - :  bs] and masses to be determined, and zero 
continuous singular part, is a solution of (A.6). For notational convenience we 
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will work with the "densi ty" gs of the above described distribution function G~ 
which is thus of the form 

gs( t )  p ( t )  - -  s -2p"( t  ) -~- C x , f i ( t  - -  I" i- a , )  

+ G , . , 3 ( t  - t~ - bs) 
l + n - - 1  

Z D~,~( t  - -  4 )  (A.1 l) 

for t 6 I"~ and zero elsewhere, where dr_ j < ix - -  a,. G. dt < "'" < dr+._ t 

tL b~ < d~+. and 8 is the Dirac Delta function. A straightforward calculation 
gives the values of the masses C1. s , C,z..~ and Dj ,  s so that (A.6) is satisfied: 

C I .  s : :  

C g , s  : 

D~,s = 

s [e[I s I P(/~ - -  a , )  - -  p ; ( l ~  - -  a s )  ] ,  

s I-2[I s [p(m + b.¢) + F - ( ~  + b,O], 

- 2  t / , I [p_(aA - p ; . (a3] ,  l ~< .i ~- l + ,~ - I. 

(A.12) 

Having determined g,, so as to satisfy, (A.6) it remains to be shown that g.~ is a 
probability "densi ty" fimction, i.e. that G~ is a probability distribution function. 
Since p ( t )  - -  s -2p"( t )  ~ 0 a.e. [Leb] on I/"~ by assumption (C) and p'_(d~) - -  

p'~(d~) --~- 0 by assumption (A), it is clear from the expressions (A.l 1) and (A.12) 
that G, is a distribution function if and only if 

and 

I s lP( t z  - -  a~) - -  P'~(t" - -  a~) 2.>. 0 

', s I P(tz -1- b.0-1- P'-(~ + b~) ~ 0 

(A. 13) 

( a .14 )  

r 
1 .  g,(t)  dt = [ u G ( t )  = I. (A.1 5) 
~ v  ~V s 

To show (A. 13), we proceed as follows. Since K2z,+(tL - -  a~) ~ 0 w e  have from (2) 

. ~ - ( r  s 

P'.(t~ - -  as) Ja p ( t )  d t  - -  pZ(t~ - -  as) <._ 0 

and using (A.7) we obtain 

p(t) dt [p;_(.  - -  a.~) - -  I s I P(t~ - -  a3]  ~ 0. 

/*-¢zs t , Now since a < l  z - a . ,  we have f~  " p ( ) d t  ">0 by condition (A) and thus 
(A.13) follows. (A.14) can be proved similarly, and (A.15) can be verified easily. 
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Next we show that C~(y) ~ 1 fo ry  ¢ V,.  Substituting (A.I 1) and (A.I 2) into 
(A.3) we find 

i [! s l!2p(tz -- as)] exp(--s(~ -- a 0 i- sx) x ~ [a, tt --  as] 
As(x) = ~ j s [/2p(x) xE  Vs (A.16) 

( [I s I/2p(t~ bs)] exp(s(rt i b,O -- sx) x ~ [it " b~, b]. 

Now suppose that a ~ y < / ~ - -  as.  Then 

Cs(y) -- f~s As(x) p(x) exp(s(y -- x)) dx -!- -u f As(x) p(x) exp(s(x -- y)) dx. 

Differentiating Cs(y) with respect to y, we have 

C'~(y) . . . .  Is I f f  A~(x)p(x) exp(s(y -- x)) clx -!- I s i f ]  A~(x) p(x) exp(s(x Y)) dx 

= Is l(Cs(y) -- h~(y)) (A.17) 

where 

fa 
y 

hs(y) = 2 exp(sy) A,(x) p(x) exp(--sx) dx. 

Substituting (A.16) into (A.18) we have 

h,(y) = Is I exp(--s(t~ -- as) + sy) ["p(x) dx/p(t~ as) ~a 

p(x) dx] /[exp(s( l~-  as))f~a-a'p(x)dx] 

(A.18) 

a < ~ y < l ~ - - a ~ .  

We now show that 

f ( y )  - -  exp(sy )  P(O at, y e (a, ~ - aA, 

is increasing. Indeed we have 

f ' ( y )  = e x p ( s y ) ( p ( y ) - - I s ]  f~  p(t) dt). 

Now (A.9) and (2) imply, as was remarked, that 

K~(y) ~ K~(tz--a.O = Is' for a < y  ~ t ~ - - a s .  

It  then follows from (2) tha t f ' (y )  ~ 0, a < 3' ~ / z  --  as,  and thusf i s  increasing 
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on (a, ff --- a,.]. Hence h~(y) -~ 1 for y e (a, ix -- as] and since h~(a) := 0, it 
follows that h~(y) ~ 1 for y [a, ix --  as]. Now, as in Appendix A of Tan  and 
Yao (1975), it is shown that C.,(y) ~ 1 for all y ¢ V~. 

Thus  R(D) is given parametrically by (A.4) and (A.5) which have thc final 
expressions given in (5) and (6) as was shown in Appendix C of Tan  (1973). 

2. Proof of Theorem 3 

Since p satisfies the assumptions of Theorem 1, A~(x) given by (A.16) satisfies 

b 

Cs(y)  ~= fl A~(x) p(x) exp(s I x - -  >, i) dx ~ 1, for all y ~ [a, b]. 

Now define ,\~l)(x) by" 

Then  A~l)(x) also satisfies 

~')(x) p,(~) --- &(x) p(~). (A.19) 

~b 

e l y )  = t ~l)(x) p,(x) exp(. Ix - y I) dx :~ l, for all ), E [a, b]. 

By (A.I), A~(x) yields a lower bound to the rate distortion function of X 1 , i.e. 

) sup (,o :- 
s<O 

Lct R,.(D,s) .... s D - F f ,  pt(x) lnA~U(x)dx and let d j , j =  1 .... ,n,  a - - d  o <: 
d 1 < ' "  < d~ -< d,,+t - :  b bc the points where Pl has simple discontinuities. 
Then  from (A.19), (A.16) and thc existcnce of OAs(x)/bs, pt(x)lnA(~l)(x) is 
continuous both in s and x and its partial derivative with respect to s exists for 
each x e [a, b] and s <~ 0 and is bounded by a constant. Thus  

~A(:)(~c ) ?,Rt(D, s) j (a l  ,,-1 fd j . ,  f~  Pl(x) " " ~ " ' d x .  
- as --  D + -I. ~ + Am(,:) cs tJo. ' aj 

Setting bRL(D, s)/& - 0 and substituting (A.19) in the above expression, we 
have 

• -&f" p,.(x)..t~ eaff) ax. D~ = v77x (A.20) 

Thus  for each fixed D, if 

~"RL(D, s)/&"- .<..~ 0 for all s ~ 0 (A.21) 
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then Rz(D , s) as a function of s is concave and its supremum is achieved by the 
point  so satisfying (A.20), i.e. 

RL(D , So) = sup RL(D, s). 
s<o 

Whether  or not (A.21) is satisfied, RL(DO ::= RL(D~,s ) along with (A.20) 
provide the parametric expressions (in s) of a lower bound of the rate distort ion 
function of X 1 . Subst i tut ing the expression of ?,A~(x)/& [see Tan  and Yao (1975)] 
into (A.20), we obtain (18), and substituting (18) and (A.16) into (A.4), we 
obtain (17). 

3. Proof of Theorem 4 

Suppose the assumpttons are satisfied for a given s ~ 0. Subst i tut ing (A.16) 
into (19) and using (A.19), we have 

b 

p~(x) = A~(x) p(x) f~ exp(s ] x - -  y [) aQ~(y) 

b 

= 2:l(x)pdx).(,  exp(s Ix - y  I )dG(y) .  

Ifpa(x)  :~- 0, then we have 

[~1)(x)]-1 = r exp(s I x - y I) d0s(y).  
*a 

(A.22) 

I f  pl(x0) == 0 for some x o e [a, b], then from (19), pl(xo) = p(xo) =: 0 for some 
x 0 E [ a , / z -  a~)t_)0t b~, b]. In  this case, we can define A~l~(x) by (A.22). 
Therefore  Rz(DO = R(D O. Conversely, for a given s ~ 0, suppose RL(Ds) 
R(Ds). Then  A~sl)(x) achieves the supremurn in (A.I)  and hence it satisfies (A.3), 
i.e. (A.22), and is such that C~(y) := 1 a.e. [dQ~(y)] for some probabili ty dis tr ibu-  
tion Q.~. Subst i tut ing (A.19) and (A.16) into (A.22), we obtain (19). 
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