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On the Rate Distortion Functions of Memoryless Sources
under a Magnitude-Error Criterion*

Hor M. LeuNG AND Stamatis CAMBANIS

Department of Statistics, University of North Carolina, Chapel Hill, North Carolina 27514

We consider the evaluation of and bounds for the rate distortion functions of
independent and identically distributed (i.i.d.) sources under a magnitude-
error criterion. By refining the ingencous approach of Tan and Yao we evaluate
explicitly the rate distortion functions of larger classes of i.i.d. sources and we
obtain families of lower bounds for arbitrary i.i.d. sources.

I. INTRODUGCTION

The rate distortion function of an independent and identically distributed
(i.i.d.) source is clearly equal to the rate distortion function of each random
variable of the source. We evaluate the rate distortion function R(D) of a random
variable X with density p(x) satisfying certain conditions. A magnitude-error
criterion is used throughout without further reminder.

The procedure used is based on the well known analytical expression of R(D)
and was introduced by Tan and Yao (1975), who calculated explicitly the rate
distortion functions of an i.i.d. Gaussian source and of a certain class of i.i.d.
sources.

In this paper we make two uses of this procedure. First, in Section 11, we refine
their results, by a substantial weakening of the conditions on the density, thus
calculating explicitly the rate distortion functions of larger classes of i.i.d.
sources. In Theorem 1 the density of the source has finite support, Theorem 2
treats concave source densities, and in Theorem 1’ the support of the source
density is the entire real line or a half line. We also indicate how Theorems 1 and
1’ may be combined with a known result (Theorem A) in evaluating the rate
distortion functions of certain i.i.d. sources whosc densities do not satisfy the
assumptions of Theorems 1 and 1’. Secondly, we develop a family of lower
bounds for the rate distortion function of an arbitrary i.i.d. source (Theorem 3)
and compare them with the Shannon lower bound in Section III.
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1I. Rate Distorrion Funcrions oF [.1.D. Sources

We first consider rate distortion functions of random variables with continuous
densities which vanish outside a finite interval.

THEOREM L. Let X be a random wvariable with density p(x) which vanishes
outside the interval [a, b], —oc < a << b << 0. Assume the following:

(A) pis continuous with median p and there is an at most finite set of points
a=dy <d < <d, <dyy =b (m=0) such that on each [d;,d;. ],
J =0, 1,...,m, p(x) is differentiable and its dertvative p’'(x) is absolutely continuous
and satisfies p_(d;) = p'(d;), j = 1,..., m, where p’ (d;) and p’.(d;) are the left and
right limits of p’ at d; respectively. Also

pr(t)dt>0 for x>a; [ p)d>0 for x<b.

v

(B) The function
ki) = [ oyt for welb) ()

diverges to 4 oc as x tncreases to b; and the function

K = p@)f [ Pt o weap) @

diverges to -; oo as x decreases to a.
Then for each s € (—oc, — 2p(u)), there exist unique a, > 0 and b, > 0 such
thata,\p — aand bt b — pass | —oo and a, and b are determined by

o= ac = minfy € (a, p): Ky(y) = (5[} (3}
w by = max{y e, b): Ky(y) =I5 I} (4)
Suppose in addition that
(C) for each s € (— o0, —2p(w)),

p(x) — s72p"(x) = 0 ae. [LebJon [ —ag, p - b

Then the rate distortion function R(D), 0 < D < Dmax, of X is given para-
metrically in s by

1+ u—a

p(%) In(ep(®)) dx — In(p(x — a,)) fa p(x) dx

IS

— In(p( = 6,)) |

b
+by

R(D,) = In % - [

p(x) dx (5)
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D, :ﬁf

[ — = b)) d ©)

utby

utbg u—a,

L P [ e e — )

where — o0 << s << —2p(u) and Dyax =— [, | & — p | p(x) dx.

The proof of Theorem 1 is given in Appendix 1, and the following example is
an application of Theorem 1 with non-monotonic K;(x).

ExampLE 1. Let X be a random variable with density
px) = (xIn100)71,  0.01 <Cx < 1.

Then p(x) is continuous and differentiable with u = 0.1. Conditions (A) and (B)
are clearly sarusfied. Note that K,(x) decreases for u <{ x < e and then
increases to -+ oo as x 1 1. Condition (C) is not satisfied for all s but only for some
s in (—oo, —2p(u)). In this case, only a portion of R(D) can be obtained (corre-
sponding to those D, for which s satisfies (C)). We have p(x) — p"(x)/s? ==
Pp(x)(1 — 2/(s®x%)) = 0 if and only if x > 2'/%/ s |. Thus only for large | s | (C)
will be satisfied. For s = —72.135, we have 21/2/| s | == .0196 and from (3)
w — ag; == 0.02. Thuss < —72.1 35(C) is satistied. This portion of s corresponds
to a region of small distortion D (since s is the slope of R(D)) and for this region
R(D) is given parametrically by (5) and (6).

We now show that certain continuous concave densities satisfy the assump-
tions of Theorem 1 and thus their rate distortion functions can be obtained
explicitly.

THEOREM 2. Let X be a random variable with density p(x) which vanishes
outsice the interval [a,b], —o0 < a < b < 0o. Suppose p(x) is a continuous
concave function on [a, b] and there is an at most finite set of points a = dy <
dy < <dpy <dy,y =b(m=0) such that on each [d;,d; 4], j =0,...m
p(x) is differentiable and its derivative is absolutely continuous. Then the rate
distortion function of X is given by (5) and (6).

Proof. Since p(x) is concave, p"(x) < 0and p! (x) = p’(x). Also [ p(t) dt >0
for x > a. For suppose fv p(#) dt = 0 for some x, > a. Then p(¢) == O for each
t € [a, xy] by the continuity of p. Thus p’(t) == 0 for each ¢ € [a, x,]. Since
p.(t) = pi(t), we have p'(t) < 0 for cach te [a, b]. This implies p(z) ==0 for
t € [a, b] which is a contradiction. Similarly jm p(t) dt > 0 for x < b. Thus the
only assumption left to be verified in Theorem 1 is (B).
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If p(b) # 0, then it is clear from (1) that K (x) — |- o as x } 6. Suppose now
that p(b) — 0. Then by ’'Hospital’s rule

it K,(x) == lim — 5'(3):p(%).

We will show that p’(6) < 0 and thus K(x) — —+ 0 as x 1 b. By the concavity of
p(x), p'(x) is a non-increasing function. Suppose p'(d) = 0. Then p'(x) = 0 for
all x € [a, b] for which the derivative exists. Thus p(x) is non-decreasing. Since
p(b) = 0, this implies that p(x) = O for all x € [a, b], which contradicts the fact
that p is a density. Hence p'(6) < 0.

The proof of K,(x) — 4-00 as x |, a is of course similar.

It should be noted that it can also be shown that Kj(x) 1 <0 as x 1) and
Kyx)towasxla |

CoroLLARY 2.1. Let X be a random variable with continuous density p con-
sisting of line segments and vanishing outside a finite interval. Then the rate distortion
Junction of X is given by (5) and (6) if and only if p is concaze.

Proof. 1t follows from Theorem 2 that if p is concave then its rate distortion
function is given by (5) and (6).

Now suppose thatp is not concave. Then there exist two adjacent line segments
such that the left derivative at their common point is smaller than the right
derivative. Hence for each s, G(y) in the proof of Theorem | is not a probability
distribution function and thus the parametric expressions (5) and (6) do not give
the rate distortion function of X. ]

The following example is a direct application of Corollary 2.1. Calculation is
straightforward and is omitted.

ExampLE 2. Trapezoid density. If 0 < ¢ < a and

(@+ o x|

(a — | x)(a® — &?) ¢ <

A

p(x) = " (7)

X

L a

then for 0 << D I (¢ — c)(a + 2¢)/3(a -~ ¢)
4 1 _ s ; . , .
R(D) = 2 cos? [? |- 5 cos H—3Di(a® — 02)1"2)] —(a - 3¢)i2(a-i-¢)
— In (2((a — ¢)i{a + ¢))*? cos [4?7 i %cos"l(——?)D,-’(az — 62)1’2)]) (8)

643/44/2-2
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and for (2 — ¢)(a + 2¢)/3{a + ¢) < D << Dmax = (a® — &)/3(a® — ¢?)

R(D) = —f(D) — In(1 — f(D)) %)

where f(D) == [1 — 4D(a — ¢) =+ (a — ¢)*/3(a -!- ¢)*]*/2
Theorem 1 is also valid when the support of p(x) is not finite. The result is
stated in the following:

‘THeorREM 1'. Let X be a random variable with density p(x). If p(x) satisfies
all assumptions in Theorem 1 with - ¢ < a < b < -}~ 00, then the rate distortion
Sunction of X is given by (5) and (6) with —oc << a < b < -I-c0.

Theorem 1’ is an improvement of Theorem 3 in {T'an and Yao, (1975)]. Here
we no longer require the monotonicity of Ky(x), = 1,2, and we allow p" (x)
to have a finite number of discontinuities instead of a single discontinuity at p.

The following (known) result can be used along with Theorems 1 and 1’ in
evaluating the rate distortion functions of certain random variables.

THeOREM A. If the random wariable X, has distribution function F;, and
distortion rate function D,(R), i := 1, 2, then for all R > 0,

| Dy(R) — Dy(R)| < [ |Fy(t) — Fy(t)] at. (10)
Thus if F, — F—01inl,, or if F, —> F weakly and F, | F have finite means, then
D, (R) -> D(R) uniformly.

Proof. Corollary 1 of [Gray, Neuhoff and Shields (1975)] applied to i.i.d.
sources with distributions F| and F, gives

| D(R) — Dy(R)| < §(F, ,Fy).

But by [Vallender (1973)] p(Fy,Fo) == [,  Fi() — Fy(?)| dt and thus (10)
follows. Now if F, converges to I weakly and all distributions involved have
finite means, then by Theorem 2 of [Dobrushin (1970)], we have p(F, ,F) — 0
and hence D, (R) — D(R) uniformly. [

The following well-known property is uscful in connection with Theorem A:
If a sequence of probability density functions p,, converges to a probability
density function p almost everywhere, then the correponding sequence of
distributions F, converges to the distribution F of p weakly. For example,
suppose p(x) is a truncated double exponential density defined on [—e, c],
c>0,ie.

p(x) == aexp(—a; x1)/2(1 — exp(—ac)) lx] ¢, a>0. (11)
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Then a direct application of Theorem 1 yields

R(D) - Inf| s (1 — exp(—ac))a]
— aexp(—ac)fe | atIn(l - of s )]/ - exp(—ac)]  (12)
D= [1stt 4 atexp(—ac) In(l — of] s )]/ -~ exp(—=c)]  (13)

where !5 @ [of(1 — exp(-—ac)), o¢) and
Dmax = [t — (¢ -F o 1) exp(—ac)]/[] — exp(—ac)]. (14)

Now by letting ¢ > o0 in (11) ((14), we find the rate distortion function for the
doublc exponential density on the entire real line (since all distributions involved
have finitc means), i.e. R(D) == —~InaD, 0 < D < o == Dy . Of course,
this has been calculated by using the Shannon lower bound method {Berger
(1971), p. 95]. Note that the double exponential density does not satisfy assump-
tion (B) of Theorem 1’, while the truncated double exponential densities satisfy
all the assumptions of Theorem'|. This demonstrates how Theorems 1 and 4
can be used in evaluating the rate distortion function of certain random variables
and following are some further examples.

Exampere 3. (a) Triangular density: Letting ¢ |0 in (7) we sce that the
trapezoid density converges to the triangular density (@ — | & 1)ja?, ' x| <{ a. Its
rate distortion function is then found by letting ¢ |0 in (8): for 0 << D <
;3 = Dmax,

R(D) - 2 cos® [%ﬁ ; %COS"I (_ _3;2_)]
omes [Tt (32 oy

(b) Uniform density: Letting ¢ 1 a in (7) we sec that the trapezoid density
converges to the uniform density 1/(2a), | ¥ = a, whose rate distortion function
is thus found by letting c t @ in (9): for 0 <2 D < @i2 == Dyay,

RD) - —(1— 2:))“ ~n (1 (1 2‘?—)”) (16)

AN

Note that the triangular and uniform densities satisfy all assumptions of
"Theorem 1 and thus (15) and (16) could be obtained directly from (5) and (6).
(16) was first given by Tan and Yao (1974).

If the method used in Theorem | is applied to a discontinuous probability
density function, a A(x) 2> 0 may be found satisfying ¢(y) <1 whereas a
distribution function G( y) satisfying (A.3) of Appendix 1 may not exist. In this
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case, using the above mentioned A, , a lower bound R, (D) for the rate distortion
function R(D) of the discontinuous density can be obtained. The following

example illustrates this point.

ExamvprLE 4. Let

1j4 —1<x<0
PO) = i3s g<x <.

Then for 0 < D < 9/16, we have
R, (D) = —3}(4 — 5D)2 — In(2 — (4 — SD)*?) — 1 In(54/625)
and for 13/24 << D < 17/24 = Duyax , R(D) itself can be found and is given by
R(D) = —(1 — (24D — 1)/16)** — In(1 — (1 — (24D — 1)/16)'/3).

Theorem A may vet be used in another way to find bounds for distortion rate
functions of discontinuous densities.

Exampie 5. Let p(x) be the density of Example 4 and, for 0 < e < 1,
consider the continuous approximating density

1:4 -l <x << —¢
 Vai6e 4 xi8e + 5116 e < x <0
P¥) = 216e — xi8¢ + 516 0<x<e
3,-"8 € < X < 2.

Note that p(x) converges to p(x) almost cverywhere as € — 0. In this case the
R (D) of p, can be cvaluated by Theorem 1 and for € =: 0.59367, we have

D(R) — 0.00367 < D;(R) < D(R) < D/(R) + 0.00367
where D, (R) is the inverse function of R, (D) in F,xamplc 4. (For the evaluation
of D(R) see Leung (1976).)
III. Botxps To RATE DISTORTION FUNCTIONS
In this section (further) bounds are derived for rate distortion functions of
random variables whose densities do not satisfy all the assumptions in the

theorems of Section II. Examples arc then given comparing these bounds with
the Shannon lower bound.
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THEOREM 3. Let X be a random variable with density p(x) satisfying the
assumptions in Theorem 1. Let X, be another random wvariable whose density p,(x)
vanishes outside the interval [a, b] and has at most a finite number of simple dis-
continuities. Then a lower bound for the rate distortion function of X is given
parametrically i s by

RuP) - —H(p) + 0 (e —a) [ pi as
[ p e ds — (o b [ a7
D= [ a9 e [ as
[ e b)) (18)

where IT(p,) — fz pi(x) In(py(x)! p(x)) dx s the generalized entropy of p, with
respect to p [Pinkser (1964), p. 18]; u is the median of p and a, and b, are related to
s by (3) and (4).

The proof of Theorem 3 1s given in Appendix 2. It should be noted that
H,(py) = 0, with equality if and only if p(x) — p,(x) a.e. [Pinsker (1964), p. 19],
and that R, is useful only when H,(p,) < 0. Clearly Theorem 3 is also valid
when the support of the densities is not finite. Necessary and sufficient conditions
for the lower bound R, (D) of Theorem 3 to equal R(D) are given in the following
theorem whose proof is given in Appendix 3.

THEOREM 4. For each fixed s <. 0, R;(D,) given in Theorem 3 is equal to
R(D,) if and only if there exists a probab:lﬂy distribution function Q, whose total
probability is concentrated on (a subset of ) [a, b] and is such that

l S e—-b(u— as—:r)

2l @) O

puy — (B[ eienrag ), xefp—a,p-bl (19)

Is| es(u+b,—a: p(x) 0 o _ |
i | e aQu ), weeaibo),

va

where a, and b, are groen by (3) and (4), and

f: M) px)exp(s|x —yNdx =1  ae [dO,]. (20)
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It would be of interest to compare the lower bound of Theorem 3 with the
well known Shannon lower bound for densities which vanish outside the interval
[a,b], —0 << a < b < cc.

‘THEOREM B. Let X be a random variable with density p(x) which vanishes
outside [a, b], —00 < a < b < oo. Then the Shannon lower bound to R(D) of X is
given parametrically ins < 0 by

Rsi(D.) = h(p) — |51 (b — a)j2A(s) - In| s |[2ek(s) 1)
D, =[] |- (b — a)f2k(s) (22)

where h(p) — —fz P(x) In p(x) dx and k(s) -= 1 — exp(i s | (b — a)/2). Moreover,
R (DY << R(D) for all D with R(D) > 0 unless

p(x) = !siexp(s|x — (a  b)[21)/2k(s), x€[a, b, (23)
in which case Rg (Dy) == R(D,) at the point D, with slope s.

ExampLE 6. lLet p(x) be the uniform density on [a, b] which satisfies all
assumptions in Theorem 1, and let py(x) be a piecewise continuous density on
[a, b]. Then by applying Theorem 3, a lower bound for R(D) of p, can be found.
Evaluation of (17) and (18) shows that fors < —(b — a)™!

i si

RiDY = M) +Inlsi2e [* [pan )0 pib— 0]dt (24)

0

P N

soeas| —JO" [ pyla-i- t) = py(b— 1)) dt. (25)

In (25), if for a given D, | 5 | is not single-valued, and if a branch of | s | can be
chosen such that (A.21) in Appendix 2 is satisficd, then for this branch of | s |,
R, (D) is the best possible lower bound achicved by the method of Theorem 3.
Note that for this example condition (A.21) is equivalent to

Pa s wpb— st < sl (26)

The lower bound of Theorem 3 is of course uscful when Theorem 1 is not
applicable to p, . As an illustration we now calculate the lower bound of Theorem
3 when p, is the truncated double exponential density given by (11). In this case
the rate distortion function of p, is given by (12)—-(14) and therefore we can see
how tight is the lower bound determined by (24) and (25). Calculations show the
following:



RATE DISTORTION FUNCTION OF TID SOURCES 125

B(p) = 1 =5 -+ In 2u(x) — Lu(e)™
R(D)— — ; T In s | u(x) + [2 exp(a| s |) — o — 2]/20u(cx)

| >2 (27)
Dy = |'s 7 — [au(@)] (] s [ — oY) exp(egi s [) + o]

R exp(x(2)] 11 — exp(—a72)]

where #(«) == [exp(a/2) — ]/a. For the Shannon lower bound we have
Re (D) = (| 5| — «)i2 — (o)™ + In 2u(e) 5- In o(s) + 2(s)
Is| >0 (28)

s = [ 17— o(s)).

R: nats

[

o~ - == R(D)

Dmax ~ 0.248
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°- - - -R(D)

~ -

D

> |s]

157

Is]

Fic. 3
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where o(s) - s [ 2(exp(] s ;{2) — 1). Curves are plotted for « — 0.1, 2 in
Figures 1 and 2. In general, R, is a better lower bound than Ry, , except is a
small neighborhood of Dpax where Rg; is better. As x— 0, the difference
between R, and R, becomes larger and as x — oo, the difference becomes
smaller. It can also be scen that R, is a very good approximation to R. If, for
a > 0 fixed, we plot D as a function of | s | as given by (27), we obtain a curve as
shown in Figurc 3. Notc that at | s| = 2, D, == Dmax . Also D, achieves its
maximum at some point |sy| > 2, and D), is a decreasing function for all
s 2z syl It follows (as it is easily checked analytically) that for all |s| =
. $max |, condition (26) is satisfied and thus the branch of | s':'s| > | smax !
gives the tightest possible lower bound R, (D).

Another lower bound for the rate distortion function of the truncated double
exponential density can be obtained by using the truncated Gaussian density and
numerical calculations show that this lower bound is even slightly better than the
one obtained using the uniform distribution.

IV. APPENDIXFES

1. Proof of Theorem |

The well-known analytical expression of R(D), D > 0, is given by [Berger
(1971)]

RD) = sup [sD-+ f: P() In () ] (A1)

<0, €4

where A, is the set of all non-negative functions A, satisfying

Cfy) = fw Adx) p(x) exp(s ; x — y ) dx < 1 for all y. (A.2)

-

Moreover, for fixed s <{ 0, the supremum in (A.1) is attained by a A, if there is
a distribution G with support V C [a, b] such that

AT = | expls |+ — 3 ) dG() (A3)
and Cy(y) = 1 for all y e V. Then R(D) is expressed parametrically in s by

R(D,) = D, |- [_ " p(x) In A(x) dx (A4)

A%

D= [ [T a@p)ix— vl explsin— y ) dvdG(y).  (AS)
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Following the procedurc of Tan and Yao (1975), welet V, = [u — a,, u | b,]
be a subinterval of [«, ], and we specify a, and b, (and G,) so that (A.3) is
satisfied and C(y) = 1forye V,and C(y) < 1 fory e V.

As was proved by T'an and Yao, (1975), C(y) = | for y e V, and (A.3) are
equivalent to (A.3) and (A.6) to (A.8):

fv exp(s | x — £ ) dG(t) = (2/] s ) p(x), xeV,, (A.6)
[0t = pte— (&)
[, #0rat = - ot + b (a.8)

Now (A.7) is equivalent to Ky(x — a,) == | s |. Note that conditions (A) and
(B) imply that K,(x) is continuous on (a, u], differentiable on (a, u] except at
those d,’s which belong to (a, u] at which left and right derivatives exist, and
satisfies Ky(p) == 2p(p) and lim, , Ky(x) = |-c0. It follows that given any
s€(—o0, 2p(n)) the equation Ky(n — a,) = ! s’ has at least one solution. For
reasons which will become clear later on in this proof we will choose the smallest
solution:

p — a, = min{ye(a,p): Ky(y) =5} (A9)

which is clearly such that 4 — a, | a as s |, — 20 and has the following propertics
(to be used later on):

K; . (p—a) <0, and Ky(v) > is| for all y € (a, p — a;).

Similarly, by the properties of K;(x), b, is uniquely determined by
o+ b == max{y e (u, b): Ky(y) = |51} (A.10)
and has the following properties: . - bt bass | — o0,
K _(p-+b) =0, and Ki(y) > {s]| for all ye (u -+ b, b).
We next show that for each s € (— 00, —2p(p)), the distribution function G (x)
which has absolutely continuous part with density p(x) — s=2p"(x) on V, and
zero elsewhere, discrete part with atoms at the points g — a;, n + &, and the

d;s which arc in [u — a,,u - b and masses to be determined, and zero
continuous singular part, is a solution of (A.6). For notational convenience we
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will work with the “density’” g, of the above described distribution function G,
which is thus of the form

gs(z) P([) - S_zp”(t) T Cl.ss(l — i ay)

l+n—~1
+ Gt —p— b)Y, Dyt d)) (A.11)

j=t

for te}; and zcro elsewhere, where d, | < p —a, <d; < <djny <
p — by < d,,, and 8 is the Dirac Delta function. A straightforward calculation
gives the values of the masses () ¢, C, , and D; ; so that (A.6) is satisfied:

Croo = |5 1¥[] 5| pls — @) — P — )],
Car = IS 172 s p(p = b) -+ pLu + b)), (A.12)
Dy, =|sI[pi(d) — pi(d)), I<j<I+n—1.

Having determined g, so as to satisfy (A.6) it remains to be shown that g, is a
probability “‘density’” function, i.c. that G is a probability distribution function.
Since p(t) — s72p"(t) = 0 a.c. [Leb] on V by assumption (C) and p’(d;) —
2°.(d;) = 0 by assumption (A), it is clear from the expressions (A.11) and (A.12)
that (G 1s a distribution function if and only if

|$1p(n — a) — Py — a) 2 0 (A.13)
S IP A b)) - plp + 8,) 2 0 (A.14)
and
f gt)dt = | dG) = 1. (A.15)
v, YV,

To show (A.13), we procced as follows. Since K, (1 — a,) < 0 we have from (2)
s

Pl —ag) | p(t) dt — p(p — a) <O
and using (A.7) we obtain

[ p0rad] (2t — @) = 11 s — a1 <0

h—ag

Now since a < —a, we have [,7"°p(2) dt > 0 by condition (A) and thus
(A.13) follows. (A.14) can be proved similarly, and (A.15) can be verified casily.
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Next we show that C(y) < 1 for y ¢ V, . Substituting (A.11) and (A.12) into
(A.3) we find

(0513000 — adl explstu— ) 1 20)  welo—al
M) = 115 1720(x) xe V., (A.16)
(1151200 = b)) explstu i b) —s3)  xelu by, 8]

Now suppose that a <y < p — a,. Then

€9 = [ M) p) explsly — ) d ~[: A () p() expls(x — 7)) d.

Differentiating C(y) with respect to y, we have

Ci») = —ls 1 [ M) p0) xpls(y — 2 s+ |51 j (%) P(®) exp(s(x — 3)) dx
— 15 1(C3) — hd3) (A.17)

where
h2) = 2exp() [ M) p(x) exp(—sx) d. (A.18)

Substituting (A.16) into (A.18) we have

B3 = |5 | exp(—s(x — a) + ) [ plx) dslp( — @)
‘ a<y<p—a.

= [ooton [ o) ] et = e [ 118

We now show that

Y
f) =exp) [ p0dt,  yelan—al
is increasing. Indeed we have
, v
£(3) = expl) (o) — 151 | p(0) ).
Now (A.9) and (2) imply, as was remarked, that
Ky(y) = Ko(p —a) =1s, for a<y<p—a,.

It then follows from (2) thatf'(y) > 0,2 <y < p — a,,and thusfis increasing
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on (a, ;- aJ. Hence h(y) < 1 for y€e(a,p — a;] and since hya) == 0, it
follows that A (y) < 1 for y [a, p — ag]. Now, as in Appendix A of Tan and
Yao (1975), it is shown that C(y) < 1 forall y ¢ V

Thus R(D) is given parametrically by (A.4) and (A 5) which have the final
expressions given in (5) and (6) as was shown in Appendix C of Tan (1973).

2. Proof of Theorem 3

Since p satisfies the assumptions of Theorem 1, A(x) given by (A.16) satisfies
b
Cyy) = f A(x) p(x) exp(s [ x -~ v ) dx < 1, forall y e [a, b].

Now define AY(x) by
M) pu(x) = M) ple)- (A.19)

Then A{P(x) also satisfies
~b
Cfy) = ' A0 (x) pya) exp(s | x — v ) dx < 1, for all v € [a, b].
Yo
By (A.1), A¥(x) yields a lower bound to the rate distortion function of X, i.e.

sup (sD fp, ln/\m(,\)dx)

$<0

Let Ry(D,s) - sD + IZ pu(x) In AM(x) dx and let d;, j =1,.,7n, a=d, <
d, < - <d, <d,., — b be the points where p, has simple discontinuities.
Then from (A.19), (A.16) and the existence of 2A(x)/Gs, py(x) In A{(x) is
continuous both in s and x and its partial derivative with respect to s exists for
cach x € [a, b} and s < 0 and is bounded by a constant. Thus

IL—

GRUD,s)

Setting &R, (1), s)/és — 0 and substituting (A.19) in the above expression, we
have

- f | | pax) ()

AD(x)  és

~ ’A’lgg 0)‘55") . (A.20)

"I'hus for cach fixed D, if

SR (D, 5){os? < 0 forall s =<0 (A.21)
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then R; (D, s) as a function of s is concave and its supremum is achieved by the
point s, satisfying (A.20), i.e.

Ry(D, sp) = sup R.(D, s).

<0

Whether or not (A.21) is satisfied, R;(D,) = R;(D,,s) along with (A.20)
provide the parametric expressions (in s) of a lower bound of the rate distortion
function of X . Substituting the expression of ¢A(x)/6s [see Tan and Yao (1975)]
into (A.20), we obtain (18), and substituting (18) and (A.16) into (A.4), we
obtain (17).

3. Proof of Theorem 4

Suppose the assumptions are satisfied for a given s < 0. Substituting (A.16)
into (19) and using (A.19), we have

P = M) p3) [ expls | x — 3 D Q)

— A0 pi) [ expls |3 — 3 1) dOUH).

va

If pi(x) # 0, then we have

PO = [ explo 15—y ) Q). (4.22)

If py(xy) == O for some x, € [, ], then from (19), p,(%4) = p(x,) =: 0 for some
%€ [a, p — @) U (u — by, b]. In this casc, we can define A{(x) by (A.22).
Therefore R, (D,) =— R(D,). Conversely, for a given s < 0, suppose R;(D;) —=
R(Dy). Then A{P(x) achieves the supremum in (A.1) and hence it satisfies (A.3),
i.e. (A.22), and is such that C(y) == 1 a.e. [dQ( )] for some probability distribu-
tion O, . Substituting (A.19) and (A.16) into (A.22), we obtain (19).
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