
INFORMATION AND COMPUTATION 9, 61-85 (1992)

Modular Construction of
a Byzantine Agreement Protocol

with Optimal Message Bit Complexity*

BRIAN A. COAN

Bellcore, Morristown, New Jersey 07960

AND

JENNIFER L. WELCH

University of North Carolina, Chapel Hill, North Carolina 27514

This paper presents a new Byzantine agreement protocol that tolerates z
processor faults using 3t+ 1 processors, t +o(t) rounds, 0(t’) total message bits,
and 0(t”) maximum message size, for any E > 0. The protocol is optimal or near
optimal in all cost measures: the number of processors is optimal, the message bit
complexity is optimal, the number of rounds exceeds the lower bound by o(t), and
the maximum message size exceeds the lower bound by O(P). The round com-
plexity is uniformly better than 2. (t + 1) and thus is reasonable even for small t.
This is the first Byzantine agreement protocol to have optimal message bit
complexity. The new protocol is constructed by recursively applying a simple, yet
general, transformation that changes the number of rounds, total message bits, and
maximum message size required by a Byzantine agreement protocol, but preserves
correctness, number of processor faults tolerated, and total number of processors.
Each application of this new transformation reduces the number of message bits
sent-at the expense of adding rounds of communication. Surprisingly, the base
case of the recursive construction is the agreement protocol of Lamport, Shostak,
and Pease, which has a number of message bits exponential in t. 0 1992 Academic

Press, Inc.

1. INTRODUCTION

In the field of distributed computing, Byzantine agreement is a
fundamental problem which was first introduced by Pease, Shostak, and
Lamport (1980). Many variants of this problem have been studied. In this

* This paper combines results that were presented in preliminary form at the 8th ACM
Symposium on Principles of Distributed Computing (Coan and Welch, 1989a) and the 27th
Allerton Conference on Communication, Control, and Computing (Coan and Welch, 1989b).

61
0890-5401/92$3.00

Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/475614321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

62 COAN AND WELCH

paper we consider a system of deterministic processors that communicate
by message passing in a sequence of synchronous rounds. Some processors
are correct, following their protocol exactly. The rest experience Byzantine
faults, deviating from their protocols in arbitrary ways. Each processor
begins with an input bit and eventually each nonfaulty processor must
irrevocably decide on an output bit satisfying two conditions: (1) all the
output bits are the same, and (2) if all the input bits are the same, then all
the output bits must equal the input bits. For this version of the problem,
there is currently a gap between the known lower bounds on resources and
the most efficient known protocols. The results in this paper help narrow
that gap.

There are five cost measures that interest us: number of processors,
rounds of communication, total number of message bits, size of the largest
message, and amount of local computation. If t is an upper bound on the
number of processor faults, then the following lower bounds are known:
3t + 1 processors (Lamport, Shostak, and Pease, 1982; Fischer, Lynch, and
Merritt, 1986), t + 1 rounds (Fischer and Lynch, 1982), Q(t2) message bits
(Dolev and Reischuk, 1985), and maximum message size of 1. The lower
bounds on processors, message size, and rounds were known to be
achievable. For example, the original protocol of Lamport, Shostak, and
Pease (1982) achieves the bounds on processors and rounds (but requires
a number of message bits that is exponential in t). Protocols of Bar-Noy
and Dolev (1991) and Coan (1988) achieve the lower bound on message
size and rounds (but exceed the lower bounds on processors and total
message bits). The best previous upper bound on message bits is achieved
by the protocol of Dolev et al. (1982), requiring O(t’ log t) total message
bits. Our new protocol achieves a message bit complexity of O(t’), which
is optimal. Most protocols, including ours, achieve polynomial local
computation; we will not discuss this measure further.

Our technique consists of the recursive application of a general two-step
transformation that reduces the number of message bits and the size of the
largest message sent at the expense of a small increase in the number of
rounds. The transformation leaves unchanged the number of processors
and the number of faults tolerated. The first step transforms any Byzantine
agreement protocol that has a known upper bound on rounds--essentially
all existing protocols have such a bound-into a protocol for the Byzantine
broadcast problem. The Byzantine broadcast problem is a new problem
first defined in this paper. In a Byzantine broadcast protocol, a subset of
the processors, called the “committee,” attempts to reach agreement and to
communicate the decision to the rest of the processors. The resulting
Byzantine broadcast protocol operates correctly as long as there are
enough nonfaulty processors in its committee. The second step of our
transformation produces a Byzantine agreement protocol from a collection

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 63

of Byzantine broadcast protocols that have disjoint committees. For the
combined protocol to work correctly, it is sufficient that the fault-tolerance
assumption of any one of its constituent Byzantine broadcast protocols be
satisfied-it does not impair the correct operation of the combined
protocol if the committees of the remaining Byzantine broadcast protocols
have “too many” faulty processors. Thus, we can combine B Byzantine
broadcast protocols, tolerating t1 , t, faults, respectively, to produce a
Byzantine agreement protocol tolerant of t, + . . + tB + B - 1 = t faults
overall. The resulting protocol satisfies the condition referred to above, and
thus our transformation can be applied recursively.

One application of our transformation takes B, the number of commit-
tees, as a parameter. In applying the transformation recursively, we
introduce two additional parameters, I and d. The parameter I is a lower
bound on the number of faults to be tolerated by protocol instances at the
base of the recursion. (There is a trade-off between the message size
complexity and the round complexity in the choice of I: a smaller 1 means
a smaller message size but more rounds.) Finally, we let the depth of the
recursion be a function f of t, the number of faults to be tolerated, and d,
our third parameter. (In sufficiently large systems, the parameter d deter-
mines a small constant increment in the depth of the recursion, thereby
reducing the message size; it is chosen to be max(4, r l/&l], where 0(fE)
is the desired upper bound on message size.) By using the protocol of
Lamport, Shostak, and Pease (1982) at the base of the recursion and by
defining f appropriately, we obtain a Byzantine agreement protocol that
uses 3t + 1 processors, t + o(t) rounds, O(t2) message bits, and O(f)
message size, for any E > 0. Judicious choices for B and 1, discussed in
Section 6, cause the round complexity to be uniformly better than
2 . (t + 1), even for small values of t.

A different attempt at narrowing the gap in resource requirements for
Byzantine agreement is the protocol of Moses and Waarts (1992), which
uses 6t + 1 processors, O(t”) message bits, and exactly t-t 1 rounds. Their
protocol is an ingenious synthesis of several complicated techniques; our
approach is simpler. The protocol of Berman, Garay, and Perry (1989a)
has further reduced the number of processors required to 4t + 1 while
leaving the other cost measures essentially unchanged. Compared to these
two protocols, our protocol uses fewer processors and message bits, at the
expense of using o(t) more rounds and of scarificing early stopping (Dolev,
Reischuk, and Strong, 1990).

Our technique resembles the “shifting gears” work of Bar-Noy et al.
(1992) in that it allows us to combine several Byzantine agreement
protocols into one that is more efficient than any of the originals. However,
our technique treats the Byzantine agreement protocols completely
abstractly and works for any collection of Byzantine agreement protocols

64 COAN AND WELCH

(that terminate in a known bounded number of rounds). The technique of
Bar-Noy et al. (1992) only works for protocols of a specific form, a form
that excludes some known protocols. There is also a similarity between
the structure of our new protocol and the structure of the randomized
agreement protocols of Ben-Or (1983), Rabin (1983), and Chor and Coan
(1985): the skeleton is the same, while the distributed coin flip in
the randomized protocols is replaced by Byzantine broadcast in our
(deterministic) protocol.

In a preliminary version of this paper (Coan and Welch, 1989a), we gave
a modular construction of a class of protocols with 3t + 1 processors,
t + o(t) rounds, 0(t) message size, and 0(t* +‘) total message bits, for all
E > 0. Simultaneously and independently Berman and Garay (1989) used a
single application of a transformation similar to ours to obtain a class of
protocols with 4t + 1 processors, (1 + E)(t + 1) rounds, t’(“‘) message size,
and tocl”) total message bits, for all a, 0 <E < 1. Subsequently, it was
observed independently by Berman, Garay, and Perry (1989b) and by
Coan and Welch (1989b) that a slight variant of the recursive construction
in Coan and Welch (1989a) yields a single protocol with optimal message
bit complexity-the protocol presented in this paper.

By a result of Lamport, Shostak, and Pease (1982), no Byzantine
agreement protocol for t faults can exist unless there are at least 3t + 1
processors. In this paper we only consider the case where there are
exactly 3t + 1 processors. Since processors are an expensive resource, it
is reasonable to minimize the total number of processors to achieve a
certain level of fault tolerance, as represented by t. The easiest way to
generalize our results for more than 3t + 1 processors is to utilize the
simple and elegant transformation given by Dolev et al. (1982). Details are
left to the reader.

In Section 2 we review the model. In Section 3 we define the Byzantine
agreement and Byzantine broadcast problems. In Section 4 we describe the
two components of our general transformation and we combine these to
give the general transformation. In Section 5 we construct our new
protocol by recursively applying our general transformation. In Section 6
we bound the constant in the round complexity of our protocol. In
Section 7 we discuss other applications of our transformation.

2. MODEL ,

We consider a computer system consisting of a collection P of processors
that interact by sending messages over links. Each link provides a bidirec-
tional communication path between a pair of processors. The collection of
links constitutes the communication network. It is known that no agree-

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 65

ment protocol is possible unless the connectivity of the communication
network is at least 2t + 1 (Dolev, 1982; Fischer, Lynch, and Merritt, 1986).
Throughout this paper we assume that the communication network is fully
connected and reliable.

We assume a synchronous timing model, meaning that all processors take
steps in unison and all messages are received in the next step after they are
sent. An execution of a protocol consists of a series of rounds. In each
round each processor sends messages, whose contents depend on its inter-
nal state, receives all the messages just sent to it, and acts on the messages
received by altering its internal state. The internal state of a processor is
simply the values of its variables and program counter. A protocol for P,
where P is a set of processors, prescribes what the processors’ internal
states are, what the initial internal states are, what messages should be sent,
and how internal states should be altered. Each processor in P is assumed
to have a unique name known to all the processors, and each processor can
reliably determine the name of the sender of each message that it receives.

Each processor’s state set contains a subset of initial states, partitioned
into v-initial states, and a subset of final states, partitioned into u-final
states, with the u-initial state of each processor being unique, zi E (0, 11. In
an execution, if processor p starts in a v-initial state, then u is p’s input;
if p enters a v-final state, then 2) is p’s output. At the beginning of an
execution, all nonfaulty processors must be in initial states. A protocol can
only map u-final states to v-final states, to model the irrevocability of
deciding on an output.

In an execution of a protocol, some processors are nonfaulty, and the
rest are faulty. A nonfaulty processor sends messages and changes state
according to the protocol. A faulty processor can deviate from the
protocol. We are interested in protocols that tolerate Byzantine processor
faults. In the Byzantine fault model there are no constraints on the contents
of messages sent by a faulty processor; however, the recipient of any
message knows the identity of the sender. Although a faulty processor may
send different messages to each of the other processors, it may not send
multiple messages to any single recipient in a round.

Our protocols will call other protocols as subroutines, using the
following syntax and semantics. Let 9 and 9’ be protocols for P and P’,
respectively, where P’ is a subset of P. Processor p in P’, during an execu-
tion e of protocol 9, may execute in some (constant, i.e., fixed before the
start of execution and therefore not computed by p) round, say Y,

call S-@(rounds: R, input: X, output: Y).

We require that every processor in P’ call 8’ in round r with the same
(constant, i.e., fixed before the start of execution and therefore not

66 COANANDWELCH

computed by that processor) value of R. (This is a requirement on the
code, not a requirement on the behavior of faulty processors.) The effect of
the call is that p gets a new set of variables, as specified by the protocol for
p in .P”, initialized to a u-initial state, where v is the value of variable X
at the beginning of round r; p computes according to 8’ for the R
rounds indexed from r to r + R - 1; and p returns value w in variable Y,
where p ends in a w-final state after the R rounds (Y = UNINITIALIZED if p
is not in a final state). The value of Y is available to the compute phase of
round v+ R- 1.

The processor complexity of a protocol for P is) PI. The round complexity
of a protocol is the maximum, over all executions e, of the number of
rounds of e required for all nonfaulty processors to be in final states. The
message bit complexity of a protocol is the maximum, over all executions
e, of the total number of bits sent in messages by nonfaulty processors in
e. The message size complexity of a protocol is the maximum, over all
executions e, of the number of bits sent in any single message by any
nonfaulty processor in e.

3. PROBLEM STATEMENTS

Our Byzantine agreement protocol uses as subroutines solutions to a
closely related problem, which we call the Byzantine broadcast problem.
We now define these two problems.

3.1. Byzantine Agreement

A protocol for P is a Byzantine agreement protocol for P and t, t < IPI,
if there exists an integer R 3 0 such that every execution at least R rounds
long satisfies the following three conditions.

l Termination. At the end of R rounds every nonfaulty processor in
P is in a final state.

l Agreement. If at most t processors in P are faulty, then there is a
u such that any nonfaulty processor in P that enters a final state enters a
v-final state.

l Validity. If at most t processors in P are faulty and there is a u
such that all nonfaulty processors in P begin in a v-initial state, then any
nonfaulty processor in P that enters a final state enters a v-final state.

This definition imposes the nonstandard requirement that a nonfaulty
processor must eventually enter a final state, even if more than t processors
are faulty. The more standard termination requirement, used elsewhere in

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 67

the literature, is that a nonfaulty processor must eventually enter a final
state in any execution in which t or fewer processors are faulty. Most, but
not all, protocols that satisfy the standard termination requirement can
trivially be transformed into protocols that satisfy our termination
requirement. In particular, this transformation is possible for any protocol
for which there is a known upper bound, possibly a function of IPI and t,
on the number of rounds needed for termination.

We have defined a Byzantine agreement protocol for a fixed P and t.
There is a natural sense in which we would like to consider two Byzantine
agreement protocols, for different sets of processors and different t’s, to be
instances of the same “protocol.” We thus assume an infinite set of
processor names U and define a Byzantine agreement protocol family to be
an infinite set { BA(n, t): n > 1 and t >, 0 > satisfying the following condition.
For all n and t, either BA(n, t) is the empty set, or BA(n, t) is an infinite
set of Byzantine agreement protocols, one protocol BA(P, t) for each
n-element subset P of U. Each BA(P, t) must be a Byzantine agreement
protocol for P and t. We require that for ail n-element sets P and P’,
BA(P, t) and BA(P’, t) are copies of each other (i.e., they are the same
protocol except for renaming of processors).

We now define complexity measures for Byzantine agreement protocol
families. We do not need analogous definitions for Byzantine broadcast.

The processor complexity, P(t) of protocol family BA is the minimum n
such that BA(n, t) # a, i.e., the minimum number of processors needed to
tolerate t faults. The rest of the complexity measures are defined assuming
the minimum number of processors. The round complexity, R(t), of
protocol family BA is the function describing the round complexity of
protocols in the set BA(n, t), where n = P(t). The message bit complexity,
M(t), of protocol family BA is the function describing the message bit
complexity of protocols in the set BA(n, t), where n = P(t). The message
size complexity, S(t), of protocol family BA is the function describing the
message size complexity of protocols in the set BA(n, t), where n = P(t).

3.2. Byzantine Broadcast

The Byzantine broadcast problem is essentially the problem of having a
known, fixed subset of the processors, called the committee, perform
Byzantine agreement and communicate the result to the rest of the
processors. Thus the committee causes each of the nonfaulty processors to
choose an element of (0, 1 } in such a way that if enough members of the
committee are nonfaulty then (1) all the nonfaulty processors choose the
same element, and (2) if there is a o in (0, 1) such that all the members of
the committee begin with the input u, then all the nonfaulty processors
choose u. The identity of each member of the committee is known to all
processors.

68 COANANDWELCH

A protocol for P is a Byzantine broadcast protocol for P, C, and t’, Cc P,
t’ < JCJ, if there exists an integer R > 0 such that every execution at least
R rounds long satisfies the following three conditions. (C is the committee.)

9 Termination, At the end of R rounds every nonfaulty processor in
P is in a final state.

l Agreement. If at most t’ processors in C are faulty, then there is a
D such that any nonfaulty processor in P that enters a final state enters a
v-final state.

l Validity. If at most t’ processors in C are faulty, and if there is a
u such that all nonfaulty processors in C begin in a v-initial state, then any
nonfaulty processor in P that enters a final state enters a v-final state.

4. TRANSFORMATIONS

Our general transformation is the composition of two transformations,
the first from a Byzantine agreement protocol to a Byzantine broadcast
protocol, and the second from a collection of Byzantine broadcast
protocols to a Byzantine agreement protocol. In this section we define the
component transformations and the general transformation.

4.1. Constructing a Byzantine Broadcast Protocol from
a Byzantine Agreement Protocol

This subsection describes a simple way to transform any Byzantine
agreement protocol (with a known, fixed upper bound on rounds) into a
Byzantine broadcast protocol. The processors in the committee perform the
Byzantine agreement protocol and then send the result to the rest of the
processors, each of which decides on a value that it receives “often
enough.”

The transformation is presented formally as Transformation 1, where P
is a set of processors, C E P is the committee, t’ is a nonnegative integer
with ICI 2 2t’ + 1, and BA is a Byzantine agreement protocol for C and t’
with round complexity R, message bit complexity M, and message size
complexity S. The requirement that 1 Cl 2 2t’ + 1 is sufficient for the
correctness of our transformation; although, in our model, the existence of
a Byzantine agreement protocol to be transformed requires (C(2 3t’ + 1.

Transformation 1: Changing Byzantine Agreement to Byzantine Broadcast

Code for processor p in P:
Initialization code:

bb-in(p) is initialized to the input of processor p
bb-out(p) is initialized to UNINITIALIZED; it will hold p’s

output

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 69

Code for round 1:
if p is in C

then call BA(rounds; R, input: bb-in(p), output: ba-out(p))
else do nothing

Code for round r, 2 < r < R:
comment: processors in C continue the subprotocol

processors in P - C continue to do nothing
Code for round R + 1:

send: if p is in C then send ba-out(p) to each processor in P - C
receive: if p is in P - C then receive messages from processors in C

compute: decisions(p) := the multiset of the messages just received,
discarding any message that is not an element of (0, 1 >

ifpisinC
then bb-out(p) := ba-out(p)
else bb-out(p) := the most common element in decisions(p)

(break ties by picking 0 as a default choice)

Let BB be the result of applying Transformation 1 to BA.

THEOREM 1. BB is a Byzantine broadcast protocol for P, C, and t’, with
complexities 1 PI processors, R + 1 rounds, M + (I PI - I C j) . / C/ message
bits, and max{ 1, S} message size.

Proof. Choose any execution of BB at least R + 1 rounds long.

Termination. We show that after R + 1 rounds, each nonfaulty
processor p in P has some output value for bb-out(p). If p is in C, then
since BA terminates after R rounds, ba-out(p) has some output value at the
end of round R, and hence bb-out(p) is assigned an output value in
round R + 1. If p is in P - C, then the code clearly assigns an output value
to bb-out(p) in round R + 1.

Agreement. Suppose at most t’ processors in C are faulty. Then
by agreement of BA, after R rounds there is some u in (0, l> such
that ba-out(p) = u, for all nonfaulty p in C. Then in round R + 1, each non-
faulty p in C sets bb-out(p) to be V, and each nonfaulty p in P - C receives
at least ICI - t’ messages for v and at most t’ messages for any w # ZI, Since
ICI B 2t’ + 1, a majority of the messages are for V, and thus each nonfaulty
p in P - C sets bb-out(p) to be v in round R + 1.

Validity. Suppose at most t’ processors in C are faulty, and for some
o in {,O, 1 } and for all nonfaulty p in C, bb-in(p) = u. By validity of BA,
after 8 rounds ba-out(p) = 21, for all nonfaulty p in C. By the same
argument as for agreement, bb-out(p) = v in round R + 1, for all nonfaulty
a in P.

70 COAN AND WELCH

Complexities. Obviously, the protocol uses (PI processors. One extra
round is added by Transformation 1, giving a total of R + 1 rounds. The
message bit complexity is equal to the message bit complexity M of the BA
subroutine, plus the maximum number of message bits sent by nonfaulty
processors in the extra round, in any execution. The number of additional
message bits is maximized in any execution with no faults: in the extra
round, each of the ICJ processors in C sends one bit to each of the
IPI - JCI processors not in C, for a total of (IPI - [Cl). ICI. The size of the
largest message sent is the maximum of the size S of the largest message
sent in the BA subroutine, and the size of the largest message sent in the
extra round, which is one. 1

4.2. Constructing a Byzantine Agreement Protocol from
Several Byzantine Broadcast Protocols

This subsection describes a simple way to transform a collection of
Byzantine broadcast protocols into a Byzantine agreement protocol for P
and t.

During the agreement protocol, each correct processor establishes and
maintains a favored value that it currently prefers as the decision. This
favored value can be adjusted as the protocol proceeds. At any time the
favored value can be 0 indicating a preference for 0, 1 indicating a
preference for 1, or ? indicating no preference. The goal is to bring the
favored values of the various processors into agreement on either 0 or 1
while not violating the validity condition,

A collection of disjoint subsets of processors is chosen (when the
protocol is written, not executed). For each subset in the collection, all the
processors in P execute the following block of rounds. First, two rounds of
preliminary message exchanges are performed, during which each processor
in P selects an element of (0, 1 } to use as input to a Byzantine broadcast
protocol and computes its current favored value. These preliminary rounds
ensure that no two nonfaulty processors favor different elements of (0, 1 },
and if any nonfaulty processor favors a v in (0, 1 }, then v is the common
input of all nonfaulty processors in the Byzantine broadcast protocol. Then
the processors execute a Byzantine broadcast protocol using the inputs just
calculated and using the current subset as the committee. The output of the
Byzantine broadcast protocol replaces the favored value for any nonfaulty
processor that lacked a preference for an element of (0, 1). The number
and size of the subsets is chosen in such a way that at least one of the sub-
sets includes sufficiently many nonfaulty processors. After the block of
rounds using such a subset, all the processors have the same favored value,
an element of (0, 1); this favored value persists until the end of the
protocol, at which time it is chosen as the output for the Byzantine agree-
ment.

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 71

Fix the following for the rest of Section 4:

l an integer t (the number of faults to be tolerated overall);

. a set of processors P, IPI = IZ = 3t + 1 (the collection of processors
to reach agreement);

l an integer B, 2 Q B < t + 1 (the number of committees);

. integers t,, where tb = L(t + 1 - b)/B_I, for I < b d B (the number
of faults to be tolerated by the bth committee);

l B disjoint subsets of P, Cb, 1~ b < B (the set of processors in the
bth committee), chosen arbitrarily such that lCbl = 3t, + 1; and

l Byzantine broadcast protocols BB, for P, C,, and t,, with round
complexity R,, message bit complexity M,, and message size complexity
Sb, l<bdB.

A few comments are in order. The t,‘s are approximately equal integers
whose sum is t + 1 -B, as is shown in Lemma 1. Thus, P is large enough
to choose the disjoint C,‘s (i.e., Cf= I (3tb + 1) < 3t + 1, since B Z 2) and, as
shown in Lemma 2, as long as there are at most t faulty processors in P,
there will be at least one BB, that operates correctly (i.e., enough
processors in C, are nonfaulty).

We now construct a Byzantine agreement protocol for P and t, using the
BB,‘s. Rounds are numbered using ordered pairs (b, i), where 1 < b < B
and 1 < i < R, + 2; the right-hand element of the pair increases faster,
giving a lexicographic ordering of the pairs. Let block b be rounds (b: 1)
through (b, R, + 2) inclusive.

Transformation 2: Changing Byzantine Broadcasts to Byzantine Agreement

Code for processor p in P:
Initialization code:

favor(p) is initialized to the input to processor p
ba-out(p) is initialized to UNINITIALIZED; it will hold p’s

output
Code for rounds (b, 1) and (b, 2), 1 d b < B:

send: if favor(p) E (0, 1 > then sendfavor to each processor in P
else do nothing

receive: receive messages from processors in P
compute: values(p) := the multiset of the messages just received,

discarding any message that is not an element of (0, 1)
common(p) := the most common element in values(p)

(break ties by picking 0 as a default choice)
number(p) := the cardinality of common(p) in values(p)
if number(p) > n - t

thenfavor := common(p) elsefavor := ?

64319711.6

72 COAN AND WELCH

Code for round (b, 3) 1 d b < B:
call BBb (rounds: R,, input: common(p), output: bb-out(p))

Code for rounds (b, 4) through (b, R, + 2), 1 <b < B:
comment: all processors continue the subprotocol

Code added to the end of the compute phase of round (b, R,+ 2),
ldb<B:

if favor(p) = ? then favor(p) := bb-out(p)
if b = B then ba-out(p) :=fivor(p)

Let BA be the protocol obtained by applying Transformation 2 to BB,,
l<b<B.

THEOREM 2. BA is a Byzantine agreement protocol for P and t, with
complexities

. n processors,
l Cl= 1 (Rb + 2) rounds,

l Cf= 1 (M, + 2n2) message bits, and
9 max (1, S, , S,] message size.

Five lemmas are needed for the proof of Theorem 2. Lemma 1 establishes
a relationship between the total number of faults and the fault tolerance of
the committees. This relationship is used in the proof of Lemma 2, which
states that there is at least one committee whose fault tolerance is not
exceeded. Lemma ‘3 is a technical result used in the proof of Lemma 4.
Lemma 4 states that there is a block such that all the nonfaulty processors
will favor the same element of { 0, 1 } at the end of that block. Lemma 5
states that once all the nonfaulty processors favor the same u in (0, l},
then they will continue to favor zi.

LEMMA 1. cf=, t,=t+l-B.

Proof Recall that tb = L(t + 1 - b)/B_I for all b, 1 <b d B. Choose non-
negative integers x and y such that t + 1 = xB + y and y < B. Then

Thus

X
t, =

if l<b<y;
x-l otherwise.

B

c tb=y-x+(B--)(x-l).
b=l

Substituting (t + 1 - y)/B for x and simplifying yields the result. 1

LEMMA 2. Consider any execution of BA at least B blocks long, in which
at most t processors in P are faulty. Then there is some b, 1 <b < B, such
that at most tb processors in C, are faulty.

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 73

Proof Suppose not. Then since the C, are disjoint, there are at least
Cf= 1 (t, + 1) faulty processors in P. We then calculate that

b$l (t,+l)=B+ ; t,
b=1

=B+t+l--B by Lemma 1

=t+l.

Thus we have contradicted the choice of t as the upper bound on the
number of faulty processors in P. 1

We use the following notation (assuming a particular execution of BA).
Let X(p)[b] be the value of variable X(p) at the end of block b (i.e., at
the end of round (b, R, + 2)). Let X(p)[O] be the value of variable X(p)
initially. Let X(p)[b, r] be the value of variable X(p) at the end of round
(b, r).

LEMMA 3. Consider any execution of BA at least B blocks long, in which
at most t processors in P are faulty. For all nonfaulty p and q in P, and all
b, 1 < b < B, if p sends a message with value v E {0, 1 } in round (b, 2) and
q sends a message with value w E (0, 1 } in round (b, 2), then v = w.

Proof Suppose p sends v in round (b, 2) and q sends w in round
(b, 2). Assume in contradiction v # w. Then favor(p)[b, l] = v and
favor(q)[b, l] = w. Thus p receives at least IZ - t messages for v in round
(b, 1), and q receives at least n - t messages for w in round (b, 1). Thus at
least n - 2t nonfaulty processors send messages for v in round (b, I), and
q receives at least n - 2t messages for v in round (b, 1). Then q recevies at
most 2t messages for w in round (b, 1). Since n > 3t, it follows that
n - t > 2t and q receives less than n-t messages for w in round (b, l), a
contradiction. b

LEMMA 4. Consider any execution of BA at least B blocks long, in which
at most t processors in P are faulty. Then there exists a b, 1 <b 6 B, and a
value v in (0, 1 } such that favor(p)[b] = v for all nonfaulty p in P.

Proof By Lemma 2, there is some b such that at most t, processors in
C, are faulty. Fix the smallest such b. There are three cases.

Case 1. All nonfaulty p in P set favor(p) to be bb-out(p) at the end
of block b. By agreement of BB,, we are done.

Case 2. All nonfaulty p in P set favor(p) to be common(p) at
the end of round (b, 2). Suppose that common(p)[b, 2]= v and
common(q)[b, 2]= w, for nonfaulty p and q in P. In round (b, 2) processor

74 COAN AND WELCH

p receives at least n - t messages for u, at least IZ - 2t > t of which are from
nonfaulty processors. Similarly, in round (b, 2) processor q receives more
than t messages for w from nonfaulty processors. By Lemma 3, v = w.

Case 3. Some nonfaulty p in P sets favor(p) to be M-out(p) at the
end of block b and some nonfaulty q in P sets favor(q) to be common(q)
at the end of round (b, 2). Suppose fauor(p)[b] = bb-out(p)[b] = U, and
fuuor(q)[b] = common(q, 2)[b] = w. We show v = w. In round (b, 2), q
receives at least IZ - t messages for w, at least y1- 2t > t of which are from
nonfaulty processors. By Lemma 3, no nonfaulty processor sends a message
for w’ # w in round (b, 2). Thus every nonfaulty r receives at least n - 2t
messages for w in round (b, 2), and at most t messages for w’ # w, causing
it to set commolz(r) to w before calling BB,; thus, common(r)[b, 2]= w. So
all nonfaulty processors Y in Cb, of which there is at least one, have
common(r)[b, 2]= w. By validity of BB,, bb-out(r)[b] = w for all non-
faulty Y, including: p. 1

LEMMA 5. Consider any execution of BA at least B blocks long, in which
at most t processors in P are faulty. Then for all b, I< b < B, if for some v
in (0, 1 > and for all nonfaulty p in P, favor(p)[b - l] = v, then for all non-
faulty p in P, favor(p) [b] = v.

ProoJ: All nonfaulty p in P send messages for u in round (b, 1). All non-
faulty p in P receive at least n - t messages for v in round (b, l), and set
favor(p) to v at the end of round (b, 1). Thus in round (b, 2), all nonfaulty
p in P send messages for v, and all nonfaulty p in P receive at least n - t
messages for v. Since n > 3t, it follows that n - t > n/2, implying v is the
most common element of (0, 1 } received. Thus for all nonfaulty p in P,
number(p)[b, 212 n - t, and p uses common(p) to set favor(p) to v. 1

Proof of Theorem 2. Choose any execution of BA at least B blocks
long.

Termination. By the code and termination of BB,, every nonfaulty p
in P has an output value for ba-out(p) after B blocks.

Agreement. Suppose at most t processors in P are faulty. By
Lemma 4, there is a block b and a v in (0, 1 > such thatfuuor(p)[b] = v for
all nonfaulty p in P. By Lemma 5, fuvor(p)[b’] = v for all nonfaulty p in P,
and all b’ Z b. Thus fuvor(p)[B] = v for all nonfaulty p in P, and thus
ba-out(p)[B] = v for all nonfaulty p in P.

Validity. Suppose at most t processors in P are faulty. Suppose for
some u in (0, 1 } and for all nonfaulty p in P, the input to p is v. Then
fuvor(p)[O] = v for all nonfaulty p in P, by the code. As in the argument
for agreement, ba-out(p)[B] = u for all nonfaulty p in P.

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 75

Complexities. By the definition of the protocol, IPI = n. Each block b,
1 d b <I?, consists of two overhead rounds and Rb Byzantine broadcast
rounds. Each block b, 1 <b < B, contributes n2 message bits per overhead
round (each processor sends one bit to each processor) and Mb message
bits from the Byzantine broadcast subroutine. The largest message sent in
an overhead round is one bit, and the largest message sent in the bth
Byzantine broadcast subroutine has size S,, 1 <b < B. 1

4.3. The General Transformation
In this subsection we give our general transformation. It is the composi-

tion of Transformations 1 and 2.
Recall that B is the number of committees in Transformation 2. Let BA’

be a Byzantine agreement protocol family with processor complexity 3t + 1,
round complexity R(t), message bit complexity M(t), and message size
complexity S(t). Given B and BA’, we define another Byzantine agreement
protocol family BA as follows. (This is Transformation 3.)

We define BA(P, t) for any P and t with IPI = 3t + 1. Let t, =
L(t + 1 - b)/B J, 19 b d B. Choose B disjoint subsets of P, Cb, 1 d b d B,
such that 1 Cb/ = 3t, + 1. Apply Transformation 1 to P and BA’(Cb, tb) to
obtain Byzantine broadcast protocol BB, for P, C,, and t,, for all b,
16 b d B. Apply Transformation 2 to P, t, and BB,, 1 d b d B, to obtain
BA(P, t). Thus Transformation 3 is simply a composition of Transforma-
tions 1 and 2.

THEOREM 3. BA is a Byzantine agreement protocol family with com-
plexities

l 3t + 1 processors,

l Cf=, (R(tb)+3) rounds,
o C,“=I (M(tb)+3(t- tb)(3tb+ 1)+2(3t+ 1)2) message bits, and
0 max{ 1, S(t,), S(t,)) message size.

Proof: Choose any P and t with IPI = 3t + 1.

Correctness. By Theorem 1, each BB, is a Byzantine broadcast
protocol for P, C,, and tb, 1 d b B B. Then by Theorem 2, BA(P, t) is a
Byzantine agreement protocol for P and t.

Complexities. By definition, BA(P, t) uses 3t + 1 processors. The
stated number of rounds is correct, since by Theorem 2 the number of
rounds is Gf= 1 (R, + 2), and by Theorem 1 each R, is R(tb) + 1. The
stated number of message bits is correct, since by Theorem 2 the number
of message bits is Cf= r (Mb + 2n2), and by Theorem 1 each M, is
M(tb)+(IPI-ICbl).ICbl, where lPl=n=3t+l and IC,/=3t,+l for all
b. By Theorem 2 the maximum message size is max(1, S,, S,), and by
Theorem 1 each Sb is maxi 1, S(tb) >, giving the stated bound. 1

76 COANANDWELCH

5. THE NEW BYZANTINE AGREEMENT PROTOCOL

In this section we recursively apply our general transformation to
construct our efficient new Byzantine agreement protocol.

Begin by fixing integers B > 2 and 12 0. The integer B is the number of
committees for Transformation 3. The integer I is a lower bound on the
number of faults to be tolerated by each instance of the base protocol. Now
we give an inductive definition of a class of protocols BA,. Each successive
member of the class is obtained by an additional application of Transfor-
mation 3 (using B as a parameter).

First we define the base protocol family, BA,. It is a slight variant of the
protocol family presented by Lamport, Shostak, and Pease (1982). In the
problem solved there, a single processor has an input bit on which the rest
must agree; we consider the obvious modification of their protocol to the
version of Byzantine agreement that we are studying-a copy of Lamport,
Shostak, and Pease’s protocol is run for each processor and its input, and
processors decide on the majority value in the resulting vector. We call this
modified Byzantine agreement protocol family LSP. (Since it terminates in
t + 1 rounds no matter how many faults there are, it satisfies our non-
standard termination condition.) Choose any P and t with 1 PI = 3 t + 1 and
t 2 0. Let BA,(P, t) be LSP(P, t).

Assume protocol family BA,- i has been defined, where i,-- 1 z 0. We
now define protocol family BA,. Choose any P and t with 1 PI = 3t + 1. Let
BA,(P, t) be Transformation 3 applied to B and BA,_ I if t > (I + 1) . B’ - 1;
otherwise, let BA,(P, t) be BA,-,(P, t). Thus, when t is big enough for i
applications of Transformation 3 to be well defined and for each instance
of the base protocol to tolerate at least I faults, BA,(P, t) is defined to be
the BA, protocol transformed i times; otherwise, it is defined to be the BA,
protocol transformed as many times as is possible and still have the base
protocols tolerate at least I faults. Lemma 6 below and inspection of the
transformations show that BA,-r has the necessary processor complexity,
namely 3t + 1, for Transformation 3 to be applicable.

We are now ready to define the protocol family that is the main result
of this paper. We define it as one of the BA, protocols, ehosen based on t,
the number of faults to be tolerated. First, fix E > 0; E is to be the exponent
in the message size complexity. Then let d = max { 4, r l/~l } and let

!r 1% d*t.loglogt
log t 1 if t24;

f(t)=
0 otherwise.

(The default base for logarithms in this paper is 2.) Now we define the

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 77

Byzantine agreement protocol family BA as follows. Given P and t, with
IPI = 3t + 1, let BA(P, t) be BA,(P, t), where i=f(t). The motivation for
this definition is that it yields committees at the lowest level of recursion
that are of size O(log t/log log t). Given that an exponential message bit
algorithm is used in these committees, this is the largest committee size that
will still yield an overall message bit complexity of 0(t2), We want commit-
tees as large as possible because increasing the size of committees decreases
the number of rounds, but we do not want them to be too big because
increasing the size of committees increases the size of messages. The role
played by d is to reduce the committee size by a factor of d, thereby saving
a factor of d in the exponent of the message size complexity. We now state
our main result.

THEOREM 4. BA is a Byzantine agreement protocol family with

l processor complexity P(t) = 3t + 1,
l round complexity R(t) = t + o(t),

l message bit complexity M(t) = O(t2), and

0 message size complexity S(t) = 0(t”).

Five lemmas are used in the proof of Theorem 4. Lemma 6 gives the
complexity of the base protocol BA,. Lemma 7 gives the round complexity
of BA,, for any i. Lemma 8 gives an upper bound on the message size eom-
plexity for BA,, for any i. Lemma 9 gives an upper bound on the message
bit complexity of BA,, for any i. Lemmas 7, 8, and 9 hold only when
t > (I+ 1) . B’ - 1, i.e., when t is large enough that the protocol consists of
i transformations of BA,. However, this will be sufficient for our
asymptotic analysis. Lemma 10 is a technical result used to bound the
portion of the message bit complexity of BA caused by execution of the
LSP protocol at the base level of the recursive construction.

Let BA, have processor complexity P,(t), round complexity Ri(t),,
message bit complexity Ali(and message size complexity Si(t), for all
i > 0.

LEMMA 6. BA, is a Byzantine agreement protocol family, and

l PC)(t) = 3t + 1,
. R,(t)= t+ 1,
l M,(t) d (3t + l)t+3, and

l S,(t) < (3t)’ if t 3 1, and S,(O) = 1.

ProoJ: By Lamport, Shostak, and Pease (1982). 8

M, and S, are only defined for nonnegative integers. It will be helpful
in the analysis to define nondecreasing functions of nonnegative real

78 COAN AND WELCH

arguments that upper-bound them. Let M,(t) = (3t + 1)‘+3 be defined for
all real t 2 0; let S,(t) = max{ 1, (3t)‘) be defined for all real t > 0 and
let S,(O) = 1. Note that M, is nondecreasing for all arguments and
M,(t) < M,(t) for all nonnegative integers t, and similarly for S, .

The next lemma gives an exact expression for the round complexity of
BA,. The expression is equal to the number of rounds in instances of BA,,
which is t + 1, plus the number of overhead rounds added by our transfor-
mation, which is the last term.

LEMMA 7. Ri(t) = t + 1 + 3 . cJ= 1 Bj for all i 2 0, and all t 2
(I+ 1)-B’- 1.

ProoJ We proceed by induction on i. The basis, i= 0, is true by
Lemma 6. Suppose the result is true for i - 12 0. We show it for i. Pick any
t>(Z+l).B’-1. By Theorem3,

R,(t)= c (Rip I(tb) + 3).
b=l

Note that for all b

tb = L(t + 1 - b)/B J by the definition of tb

>L((Z+ 1)-B’-b)/B_J becausetZ(l+l).B’-1

>L((I+ l).B’-B)/B] because b < B

=(Z+l).B’-‘-1.

Since t, 2 (I+ 1). B’-’ - 1, we can apply the inductive hypothesis to the
above expression for Ri(t) to get

R,(t)= 5 t,+1+3.‘C1B’+3
b=l j=l

=c,

i=l

tb+B+3B. 1 B’+3B
j=l

i-l

=t+l-B+B+3B.x B’+3B by Lemma 1
j=l

=t+l+3$ B’. 1
j=l

The next lemma gives an upper bound on the message size complexity
of BA,. The bound is the message size complexity for the instances of BA,,
each of which tolerates approximately t/B’ faults.

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 79

LEMMA 8. Sj(t) < S,(t/B’) for all i> 0, and all t 2 (I+ 1). B’- 1.

Pro05 We proceed by induction on i. The basis, i= 0, follows from
Lemma 6 and the definition of S, . Suppose the lemma is true for i - 1 z 0.
Choose t Z (I + 1) . B’ - 1. As shown in the proof of Lemma 7, tb >
(I + 1) . Bip 1 - 1 for all b, allowing use of the inductive hypothesis.

By Theorem 3,

Si(t) = max(l, Si- I(tl), Si-l(te)}.

By induction, since each tb 3 (I + 1) . B’- ’ - 1,

dmax{l, S,(t,/B’-‘), S,(t,/B’-l)).

Since S, is nondecreasing and each tb < t/B,

d max{ 1, S,(t/B’)}

= S.&/B’). 1

The next lemma gives an upper bound on the message bit complexity of
BA,. The expression is the sum of two terms. The first term is the message
bit complexity of the BA, instances: there are B’ instances and each is of
a size to tolerate approximately t/B’ faults. The second term is the cost of
the overhead rounds. There are B sets of overhead rounds involving all the
processors, i.e., O(Bt*) bits. There are B* sets involving a l/B fraction of
the processors, i.e., O(t’) bits, and so on, up to B’ sets involving a l/B’-’
fraction of the processors, i.e., O(t2/B’-*) bits. The sum of all these expres-
sions is O(B . t2), which is O(t*) since B is fixed.

There exists a constant c such that 3(t - t6)(3tb + 1) + 2(3t + l)* < et* for
all b. In fact, letting c =44 is sufficient. Use of this constant shortens the
statement of the bound on message bit complexity given in Theorem 3 and
thus simplifies the statement of the next lemma.

LEMMA 9. Mid B’~M,(t/B’)+c~t*~~~=, 1/Bke2 for all i>O, and
alltB(Z+l).B’-1.

Prooj We proceed by induction on i. The basis, i=O, follows from
Lemma 6 and the definition of M,. Suppose the lemma is true for i - 13 0.
Pick any t 3 (I+ 1). B’- 1. As shown in the proof of Lemma 7, t, <
(Z-t 1) a B’- ’ - 1 for all b, allowing use of the inductive hypothesis.

80 COAN AND WELCH

By Theorem 3 and the definition of c,

M,(t)< f (“i-l(tb)+C’t2).
b=l

By induction since each tb 2 (I + 1). B’- ’ - 1,

Since M, is nondecreasing and each tb < t/B,

<btl B’~‘.M,(UB’)+c.(t,B)‘.~~)~+c.fi) (
=B’4&.(t/B’)+c-t2- i

1
k=lBk--2. ’

We need one more lemma before we can prove the main result.

LEMMA 10. rf t > 4 then ((log t)/log log t)(‘Og t)iiog’ogt < t.

ProojI Choose t > 4. Using the identity that xX= 2x”0gX, with x =
(log t)/log log t, we get

((log wag 1% t) (log twg 1% f = peg ~)/lW 1% t) W(l% fMw3 log f)

< 2((log r)/log log t). log log f
\

= pg t

=t. fl

Proof of Theorem 4. For any P and t, BA(P, t) is defined to be
BA,(P, t), where i =f(t). Correctness of BA follows from the correctness of
the constituent transformations.

We now calculate the four complexity measures for BA. Recall that B, 2,
and d are fixed constants.

The processor complexity P(t) is 3t + 1. If f(t) = 0 this follows from
Lemma 6; otherwise, it follows from Theorem 3.

The round, message bit, and message size complexities are calculated
for all t > to, where t, is a constant such that to> max(4, (I+ 1). BfCro)}.
(Such a constant exists since t, 2 max(4, (I + 1) . Bf(“‘} implies log t, 2
(I + 1) . d . log log t, and log grows faster than log log.) Obviously for all
t>t,, t>max{4, (Z+l)-Bf(‘)}.

For the rest of this proof we assume t k t,. Thus Lemmas 7, 8, and 9
hold. For clarity of presentation, let i = f(t). We have the following facts.

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS 81

0 Fact 1. i = rlog,(d. t . (log log t)/log t)l, since t L 4.

l Fact 2. log,(d. t. (log log t)/log t) G i < log,(d. t. (log log t)/log t)
+ 1, by Fact 1 and the definition of ceiling.

l Fact 3. d- t _ (log log t)/log t < B’ < B. d. 1. (log log t)/log t, by
Fact 2.

l Fact 4. 1 6 t/Bi <log t/(d. log log t), since t 3 (I+ 1). B’ and by
Fact 3.

The round complexity is calculated as

R(t) =&(t)

=t+l+3-z B’
j=l

<t+l+3B’+’

by Lemma 7

<t+1+3B.B-d.t.(loglogt)/logt by Fact 3

= t + o(t) since B and dare fixed.

The message bit complexity is calculated as

M(t) = Mi(r)

< B’ -M.&/B’) + c . t2 . i & by Lemma 9.
k=l

We now show that each of the two terms is O(t’). The second term
obviously is. The first term is B’. M,(t/B’). By Fact 3, B’ < B. d. t.
(log log t)/log t. By the definition of M,,

M&/B’) = (3t/B’+ l)r’B’+3

< (4t/Bi)4’lBi since t/B’ 3 1 (Fact 4)

G(dl.~~~ r)‘iori-~~Jogl=~) by Fact 4

log t
(>

log r/log log *

<----- log log t since d>, 4.

<t by Lemma 10.

Thus the first term is O(t’ log log t/log t) = o(P).

82 COANANDWELCH

The message size complexity is calculated as

S(t) = iSi(t)

< S*(@‘) by Lemma 8

= (3t/B’)‘IB’ since t/P >, 1 (Fact 4)

b(d;l;;;o; t)lart'i"log'ogii by Fact4

since d> 4

<fi

d t”

This is O(P) as desired. 1

by Lemma 10

because d 2 l/s.

6. BOUNDING THE ROUND COMPLEXITY

In Theorem 4 of Section 5 we gave a bound of t + o(t) on the asymptotic
round complexity of our new protocol. In this section we show that the
appropriate choice of the parameters B and I to Transformation 3 yields a
protocol with a round complexity that is better than 2. (t + 1) for all t > 0.
In other words, the o(t) term is not hiding a large constant. This result
follows from Theorem 5 below, when B = 4 and I = 3.

THEOREM 5. For all i 2 0, t 2 0, 13 0, and B 2 2,

3B
(z+l)(B-l)+l .(t+l).

ProoJ: Fix B, I, i, P, and t. Let k=max{O}u{j: l<j<i and t>
(I + 1) . B’ - 11. By inspection of the recursive definition of BA,(P, t) in
Section 5 we see that BA,(P, t) = BA,(P, t). Thus R,(t)=R,(t) and it is
suffkient to bound Rk(t). There are two cases.

Case 1. Suppose k = 0. In this case Rk(t) = t + 1 by Lemma 6. The
claimed bound follows immediately since I3 0 and B > 2.

Case 2. Suppose k Z 1. From the definition of k it follows that
t > (I + 1) . Bk - 1. Thus Lemma 7 implies that

&(t)=t+1+3- i B’.
j=l

BYZANTINEAGREEMENTWITHOPTIMALMESSAGE BITS 83

Because B> 2 the sum of the geometric series is strictly less than
Bk+ ‘/(B - 1). Aft er substituting and rearranging we have that

R,(t)<t+ 1 +,n.&

Since t 3 (I + 1) . Bk - 1 if follows that (t + 1)/(I + 1) 3 Bk. Substituting this
bound for Bk in the above expression for Rk(t) and rearranging produces
the desired result. 1

7. OTHER APPLICATIONS OF THE TRANSFORMATION

In this section we use our general transformation to develop a few addi-
tional (small) results. Specifically, we consider the effect of recursively
applying our transformation to other base protocol families besides LSP.

Suppose we choose a Byzantine agreement protocol family for BA, such
that P,(t)=& + 1 for some aa 3, R,(t) = t + 1, M,(t) <M,(t) for some
nondecreasing function M, with nonnegative real arguments, and
S,(t) d S,(t) for some nondecreasing function S, with nonnegative real
arguments.

Then our analysis can be trivially modified to show that for all i > 0, and
for all sufficiently large t, P,(t) =at + 1, R,(t)< t + 1 +3B’+‘, Mj(t) <
B’ . M,(t/B’) + O(t2), and Si(t) < S,(t/B’).

Once one is given a particular choice of the base protocol family, it
remains to choose f(t), the function that gives the depth of the recursion
when tolerating t faults. The complexities of the resulting protocol family,
call them P, R, M, and S, can be obtained by substituting f(t) for i in the
above formulas.

Observation 1. If we let f(t) = max{O, Llog,(t/(3B))J), then, regard-
less of the base protocol, we get P(t) = at + 1, R(t) ,<2t + 1, M(t) = O(t2),
and S(t)= O(1). This choice of f(t) causes the number of faults to be
tolerated in each base protocol instance, which is t/B”‘), to be of constant
size, 3B. Since each base protocol instance is of constant size, its contribu-
tion to the complexities is constant. Thus if we use a base protocol family
with a= 3, the resulting protocol family has simultaneously optimal
processors, message bits, and message size, at the cost of doubling the
number of rounds.

Observation 2. Now suppose that BA, is a protocol such as that of
Moses and Waarts (1992) or Berman, Garay, and Perry (1989a), so that
a B 4, M,(t) = tX for some constant x, and S,(t) = tY for some constant
y -c x. Then if we let f(t) = Llog,(t(x-2)‘(x- “)A, we get P(t) = at + 1, R(t) d

84 COAN AND WELCH

t+ O(t(x-2)‘(x-1)) M(t)= O(P) and s(t) < tYIcX- ‘I. Compared to using
LSP as the base’protocol, we ‘have somewhat better round complexity
(although still t + o(t)) and worse processor complexity and message size
complexity. The message bit complexity remains optimal.

Observation 3. Now suppose that BA, is the protocol of Berman and
Garay (1990) with a = 3, R, = t + 1, M, = O(t’ .1.5’), and S, = O(1.5’).
We let f(t) = 0 if t < 1, otherwise we let f(t) = rlog,(d. t/log t)l, where d is
defined as in Section 5 to be max{ 4, r l/El}. The result is that P(t) = 3t + 1,
R(t) = t + O(t/log t), M(t) = 0(t2), and s(t) = 0(t”) for any E. Compared to
using LSP as the base, we obtain improved round complexity (the o(t)
term is O(t/log t) instead of O(t . log log t/log t)), while the other com-
plexities are unchanged.

ACKNOWLEDGMENTS

We thank Jamal Golestani, Will Leland, and the referees for carefully reading earlier
versions of this paper, Linda Ness, Abel Weinrib, and George Welch for helpful discussions,
and Yoram Moses for encouraging us to improve the constants in an earlier version.

RECEIVED January 2, 1990; FINAL MANUSCRIPT RECEIVED August 1, 1990

REFERENCES

BAR-N• Y, A., AND DOLEV, D. (1991), Consensus algorithms with one-bit messages, D&rib.
Comput. 4, 105-110.

BAR-N• Y, A., DOLEV, D., DWORK, C., AND STRONG, H. R. (1992) Shifting gears: Changing
algorithms on the fly to expedite Byzantine agreement, Inform. and Comput., to appear.

BEN-OR, M. (1983), Another advantage of free choice: Completely asynchronous agreement
protocols, in “Proceedings, 2nd ACM Symposium on Principles of Distributed
Computing,” pp. 27-30.

BERMAN, P., AND GARAY, J. A. (1989), Asymptotically optimal distributed consensus, in
“Proceedings, 16th EATCS Colloquium on Automata, Languages, and Programming,”
pp. 80-94.

BERMAN, P., AND GARAY, J. A. (1990), “Better Masking for Better Consensus,” Technical
Report CS-90-24, Department of Computer Science, Pennsylvania State University.

BERMAN, P., GARAY, J. A., AND PERRY, K. J. (1989a), Towards optimal distributed consensus,
in “Proceedings, 30th IEEE Symposium on Foundations of Computer Science,”
pp. 41@415.

BERMAN, P., GARAY, J. A., AND PERRY, K. J. (1989b), “Recursive Phase King Protocols for
Distributed Consensus,” Technical Report CS-89-24, Department of Computer Science,
Pennsylvania State University.

CHOR, B., AND COAN, B. A. (1985), A simple and efficient randomized Byzantine agreement
algorithm, IEEE Trans. Software Engrg. SE-II, 531-539.

COAN, B. A. (1988), Efficient agreement using fault diagnosis, in “Proceedings, 26th Allerton
Conference on Communication, Control, and Computing,” pp. 663672.

BYZANTINE AGREEMENT WITH OPTIMAL MESSAGE BITS x5

COAN, B. A., AND WELCH, J. L. (1989a), Modular construction of nearly optimal Byzantine
agreement protocols, in “Proceedings, 8th ACM Symposium on Principles of Distributed
Computing,” pp. 295-306.

COAN, B. A., AND WELCH, J. L. (1989b), A Byzantine agreement protocol with optimal
message bit complexity, in “Proceedings, 27th Allerton Conference on Communication,
Control, and Computing,” pp. 1062-1071.

DOLEV, D. (1982), The Byzantine generals strike again, J. Algorithms 3, 14-30.
DOLEV, D., FISCHER, M. J., FOWLER, R. J., LYNCH, N. A., AND STRONG, H. R. (1982), An

efficient algorithm for Byzantine agreement without authentication, Inform, and Control
52, 257-274.

DOLEV, D., AND REISCHUK, R. (1985), Bounds on information exchange for Byzantine
agreement, J. Assoc. Comput. Much. 32, 191-204.

DOLEV, D., REISCHUK, R., AND STRONG, H. R. (1990), Early stopping in Byzantine
agreement, J. Assoc. Comput. Mach. 31, 720-741.

FISCHER, M. J., AND LYNCH, N. A. (1982) A lower bound for the time to assure interacrtive
consistency, Inform. Process. Lett. 14, 183-186.

FISCHER, M. J., LYNCH, N. A., AND MERRITT, M. (1986) Easy impossibility proofs for
distributed consensus problems, Distrib. Comput. 1, 26-39.

LAMPORT, L., SHOSTAK, R. E., AND PEASE, M. (1982), The Byzantine generals problem, ACM
Trans. Program. Lang. Syst. 4, 382401.

MOSES, Y., AND WAARTS, 0. (1992), Coordinated traversal: (t-t l)-round Byzantine
agreement in polynomial time, J. Algorithms, to appear.

PEASE, M., SHOSTAK, R. E., AND LAMPORT, L. (1980), Reaching agreement in the presence of
faults, J. Assoc. Comput. Mach. 27, 228-234.

RABIN, M. (1983), Randomized Byzantine generals, in “Proceedings, 24th IEEE Symposium
on Foundations of Computer Science,” pp. 403409.

