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a b s t r a c t

A range-finding scanner can collect information about the shape of an (unknown) polygonal
room in which it is placed. Suppose that a set of scanners returns not only a set of
points, but also additional information, such as the normal to the plane when a scan beam
detects a wall. We consider the problem of reconstructing the floor plan of a room from
different types of scan data. In particular, we present algorithmic and hardness results
for reconstructing two-dimensional polygons from point-wall pairs, point-normal pairs,
and visibility polygons. The polygons may have restrictions on topology (e.g., to be simply
connected) or geometry (e.g., to be orthogonal). We show that this reconstruction problem
is NP-hard undermostmodels, but that some restrictive assumptions do allowpolynomial-
time reconstruction algorithms.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Range scanners have been configured in many ways: looking in to capture objects on a platform or in situ, looking down
to capture terrain or urban environments, and looking out to capture rooms or factory floors. The problem of reconstructing
surfaces in three dimensions from the resulting point clouds has been given both theoretical and practical consideration.
Theoretical solutions can provably reconstruct the correct surface when the sample points are sufficiently dense relative to
local feature size [1,2,7]. Applied solutions handle noisy data and often incorporate additional information such as estimated
normals [19].

In addition to point coordinates, some scanners [6,19] also return surface labels, normals, or the visible line segments from
the scanner position, and the user may know something about the geometry (such asmonotonicity and/or orthogonality) or
topology (connectivity) of the environment.We originally sought to evaluate the utility of such information for the ‘‘simple’’
case of reconstructing the two-dimensional floor plan of a polygonal room. We discovered that even this two-dimensional
problem is NP-hard for most models, and that we could achieve polynomial-time algorithms only for special cases.

1.1. Models and problem definition

We consider fivemodels for input data thatmay be obtained by scanning a roomwith one ormore scanners, as illustrated
in Fig. 1.

1. A point scan is a set of points, each of which lies on a wall (the interior of an edge) of the scanned room (polygon).

✩ Some of these results appeared in preliminary form at the International Symposium on Algorithms and Computation (Biedl et al. (2009) [5]).
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Fig. 1. Input instances of the five scan models and a common solution.

2. A point-wall scan is a point scan for which each point records the line containing the wall on which it lies (i.e., the
orientation of the wall).

3. A point-normal scan is a point-wall scan for which each point–line pair records a normal perpendicular to the line that
points towards the room’s interior. (This is a natural model for laser scanning systems that use multiple returns to reject
noise, because they will typically create an estimate of the surface normal along with each point that they return.)

4. A segment scan is a point-normal scan for which each point records the position of its scanner; this implies that the entire
line segment from a scanner to the corresponding scan point must be inside the room.

5. A visibility-polygon scan is a set of visibility polygons, i.e., the entire region visible from each scanner.

Given n observations under one of the five models, the polygon reconstruction problem is to determine whether there
exists a polygon that is consistent with the input data. If there is, wewould also like to knowwhether the solution is unique.

Without additional restrictions, the answer for the point-scan model is always ‘‘yes, a polygon exists and is not unique’’.
One can easily construct a monotone polygon from any point set [23] in Θ(n log n) time (many polygons, if the point set is
not in convex position). The answer for other models is, therefore, also ‘‘yes’’ if a solution may include additional edges not
encountered by any input point. In this paper, therefore, we assume that each wall has been seen, i.e., that each polygon
edge contains at least one scan point. Unlike a number of previous polygon reconstruction algorithms in computational
geometry [12,20,21,23,8,9], in which scan points are polygon vertices, we require that each scan point lie in the interior of a
polygon edge.

These five models define a proper hierarchy: any information available about a data point under one model is also
available for all subsequent models. For example, the orientation of the wall at a data point provided in the point-wall
scanmodel is also known in the point-normal, segment, and visibility-polygon scanmodels. Consequently, any polynomial-
time algorithm for reconstructing a polygon under the point-wall model can also be applied to the point-normal, segment,
and visibility-polygon scan models.

As we will see, however, all of these models are NP-hard, except in special cases with restricted environments. For
polynomial-time reconstruction in these special cases we initially focused on the segment scan model, but we realized that
our algorithms depended only on information about the orientation or normals ofwalls; hence, we formulate our algorithms
for these simpler models.

1.2. Related work

There are many previous results on reconstructing shape from densely spaced samples on a surface in the point-scan
model, including those cited earlier [1–3,7,19,22]. Sampling density is critical in the point-scan model. For scan models
that provide additional information, however, sample points need not be closely spaced if each edge includes at least one
sample point. Thus, even with the caveat that sample points are drawn from edges, not vertices, our approach is closest to
algorithms that reconstruct a polygon from its vertices. O’Rourke [20] gives an O(n log n) time algorithm for reconstructing
an orthogonal polygon when edges form right angles at all vertices, and shows that when a solution exists, it is unique. This
problem is NP-hard if edges at a vertex may meet either straight or at right angles [21] and also NP-hard if edges must be
parallel to one of three (or more) given directions [12].

The reconstruction problem in many of our models can be formulated as a matching problem in a graph G = (V , E) with
additional restrictions. Each sample point corresponds to a segment on the polygon’s boundary: let V contain two vertices
for each sample point, one for each direction out from the segment. Join two vertices by an edge in E if the corresponding
rays intersect. See Fig. 2. The polygon reconstruction problem reduces to finding a spanning subgraph H ⊆ G that has
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Fig. 2. Under the point-wall scanner model, the line through each data point in set P corresponds to two rays, each of which can be represented by a
vertex in graph G. Edges are added to G by connecting any two vertices in Gwhose corresponding rays intersect in P . Point set P has a (possibly crossing or
disconnected) polygonal solution if and only if G has a perfect matching.

Table 1
This table displays an overview of our hardness and algorithmic results for finding a polygonal solution
under each combination of a given inputmodel and a set of geometric constraints. In all caseswe require
that a solution be connected and non-crossing.

Unconstrained orthogonal monotone Orthogonal monotone Star-shaped

Point wall NP-hard NP-hard Open Θ(n log n) Polytime
Point normal NP-hard NP-hard Θ(n log n) Θ(n log n) Θ(n log n)
Segment NP-hard NP-hard Θ(n log n) Θ(n log n) Θ(n log n)
Visibility polygon NP-hard NP-hard Θ(n log n) Θ(n log n) Θ(n log n)

specific properties. In particular, we require that H be a perfect matching that is simple (no matching edges cross each
other). Furthermore, if each pair of vertices induced by a sample point is joined by an edge, the resulting subgraph must be
connected.

If the constraints of simplicity and connectivity are dropped, the problem is reducible to finding a perfect matching and
is solvable in polynomial time [10,13,14,17]. Adding either constraint renders the problem hard: finding a non-crossing
2-factor in a geometric graph was shown to be NP-hard by Jansen and Woeginger [16], and a connected 2-factor is simply
a Hamiltonian cycle, which is well known to be NP-hard to find [13], even in grid graphs [15]. Neither of these results,
however, directly implies hardness for the polygon reconstruction problems we consider.

1.3. Our results

We first show that the reconstruction problem is NP-hard, even when restricted to orthogonal edges (Section 2). We
describe a reduction for the visibility-polygon scan model which we then generalize to the point-wall, point-normal, and
segment scan models.

For positive results, we consider geometric restrictions to the allowable configurations of polygons. These geometric
constraints may include requiring that a polygonal solution be star-shaped, monotone, or orthogonal. A star-shaped polygon
is entirely visible from somepoint in its interior (i.e., the polygon can be seen by a single scanner). The interior of amonotone1
polygon intersects every vertical line in at most one line segment. The boundary of a monotone polygon can be divided into
two chains, the upper and lower chains, both of which are monotone. Finally, every edge in an orthogonal polygon is either
horizontal or vertical.

Althoughour hardness reduction implies that the reconstruction problem remainsNP-hard even for orthogonal polygons,
we show that when both orthogonality and monotonicity are required, the problem can be solved in O(n log n) time
under the point-wall scan model (Section 3). Similarly, we show that reconstruction is possible in O(n log n) time when
monotonicity is required under the point-normal scan model (Section 4) or when a solution must be star-shaped under the
point-normal scan model (Section 5). Finally, we present a lower bound showing that the running times of our algorithms
are optimal (Section 6). See Table 1 for a summary of these results.

2. Hardness results

In this section, we prove that reconstructing a simply connected polygon from a visibility-polygon scan is NP-hard.2
Weuse a reduction fromORTHOGONAL NON-CROSSING SPANNING TREE, whichwas shown to be NP-hard by Jansen and

Woeginger [16]. An orthogonal graph is a graph drawn in the plane such that every edge is a single horizontal or vertical line
segment connecting two vertices and no edge contains any vertex in its interior. Edge crossings are allowed in the graph, but

1 For simplicity, we use the termmonotonicity to refer to x-monotonicity.
2 After this paper was accepted for publication, the authors learned of a similar result obtained independently by Evrendilek et al. that appeared in the

Proceedings of the 2010 International Symposium on Combinatorial Optimization [11]. The hardness results of Section 2were first presented by Biedl et al.
in a workshop abstract [4] and conference proceedings [5].
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Fig. 3. The vertex gadget is a portion of the polygon with four scanners: vertices of degree four (A) and degree two (B). Dashes indicate how a gadget may
be closed or continued, provided it matches a corresponding gadget on the other end. Graph edge crossings that are not vertices need no gadget.

Fig. 4. A spanning tree of a graph G and the corresponding simple polygon in f (G).

Fig. 5. A pair of adjacent vertex gadgets may be joined by a pair of edges forming a corridor (A) or both endpoints of the corridor may be closed off, causing
the gadgets to be locally disjoint (B). That is, either both or neither corridor edge can included in a solution.

note that bends are forbidden, unlike some definitions used in the graph drawing literature. The task is to find a spanning
tree of the vertices with no edge crossings.

ORTHOGONAL NON-CROSSING SPANNING TREE
Instance. An orthogonal graph G.
Question. Find a graph H ⊆ G that is a spanning tree of G such that no two edges in H cross.

Theorem 1. Polygon reconstruction under the visibility-polygon scan model is NP-hard.

Proof. Given any orthogonal graph G, from an instance of ORTHOGONAL NON-CROSSING SPANNING TREE, we construct an
instance of the visibility-polygon scan problem, f (G), by replacing each vertex v in Gwith the vertex gadget f (v) illustrated
in Fig. 3. In this gadget, there is a gap in the corresponding polygon edge for every neighbour of the vertex. This allows
either connecting to the corresponding neighbouring vertex gadget via the corridor formed by a pair of parallel edges (blue,
dashed), or closing off the gap by extending an edge (red, dotted). If a vertex has degree less than four, then the positions of
edges near the corresponding scanners can be moved accordingly such that there is no gap (Fig. 3B).

Assume (after possible scaling) that G is drawnwith vertices on the unit grid. Then f (G) consists of a set of vertex gadgets
such that a gadget of width and height 1/4 is centered at the position of every vertex v in G. See Figs. 3 and 4.

Components f (v1) and f (v2) can be joined by a pair of horizontal or vertical parallel edges forming a corridor if and only
if vertices v1 and v2 are adjacent in G. Each edge in the corridor completes a partial edge in one of the two vertex gadgets.
Note that the resulting instance f (G) can be constructed in time proportional to the size of G on a Cartesian grid.

If G has a non-crossing spanning tree, then f (G) has a simple polygonal solution formed by including the corridors that
correspond to the edges of the spanning tree. On the other hand, if f (G) has a simple polygonal solution, then all vertex
gadgets must be joined. Since every edge of the polygon must be seen by a scan, joining edges complete partial edges, and
are therefore orthogonal. Since the polygonmust be simple, the solution selects both or neither edge in a corridor, and edges
from two crossing corridors cannot be selected simultaneously. See Fig. 5. Therefore, G has a non-crossing spanning tree. �

Remark 1. Clearly, one can verify in polynomial time that the boundary and interior of every input visibility polygon agree
with the boundary and interior of the solution polygon, that every edge of the solution polygon is met by an edge on the
boundary of some input visibility polygon, and that the solution polygon is non-crossing and connected. That is, the polygon
reconstruction problem belongs to the set NP. Therefore, polygon reconstruction is NP-complete by Theorem 1.

Since all edges in the reduction are orthogonal, the visibility-polygon scan problem remains NP-hard for orthogonal
polygons, giving the following corollary:

Corollary 2. Reconstructing an orthogonal polygon under the visibility-polygon scan model is NP-hard.



T. Biedl et al. / Theoretical Computer Science 412 (2011) 4161–4172 4165

A B C

Fig. 6. (A) The vertex gadget under the point-wall scan model. (B) Observation 1 implies the presence of the solid polygon edges in any solution. (C) As in
the proof of Theorem 1, adjacent vertex gadgets may connect via a pair of edges forming a corridor.

Fig. 7. Illustration in support of Observation 1. (A) Points u and v must be adjacent in any solution. (B) The presence of point p in region H allows the
possibility of a solution in which u and v are not adjacent.

A B

Fig. 8. Since edge e is forced, this vertex gadget allows the possibility of connecting to only three corridors; the only possible obstruction would be an
edge f coming from an eligible vertical scan point p in a neighbouring gadget gp; by Observation 1, the edge through p is met by adjacent edges in gp and,
therefore, cannot meet f . A similar construction can be used to eliminate other corridors.

As we now show, the construction can be modified to show hardness for the point-wall scan, point-normal scan, and
segment scan models.

Theorem 3. Polygon reconstruction under the point-wall, point-normal, and segment scan models is NP-hard.

Proof. The result follows by an argument analogous to that used to prove Theorem 1. Again, we use a reduction from
ORTHOGONAL NON-CROSSING SPANNING TREE. Given any orthogonal graph G, we construct an instance of the point-wall
scan problem, f (G), by replacing each vertex v in Gwith the vertex gadget f (v) illustrated in Fig. 6A.

Under the visibility-polygon scan model, each vertex gadget’s edges were visible to a scanner. Under the point-wall scan
model, we must show that these edges in fact meet as desired in any solution. Given a scan point u met by a horizontal
wall and a scan point v met by a vertical wall, let V , H , and VH denote the regions induced by the horizontal and vertical
half-planes through u and v, as illustrated in Fig. 7A. The following observation establishes a sufficient condition for u and v
to be adjacent, i.e., for the edges through u and v to meet at a vertex of the polygon.

Observation 1. If the interiors of regions H and VH are free of scan points met by horizontal edges and regions V and VH are free
of scan points met by vertical edges, then u and v must be adjacent in every solution.

Since scan points are positioned at grid coordinates, Observation 1 implies the existence of the solid edges in every
vertex gadget, as illustrated in Fig. 6B. When a vertex v in G has degree less than four, we modify the vertex gadget f (v)
accordingly to eliminate the possibility of including the corresponding corridor in any solution. This is achieved by adding
two scan points to the corresponding side of the vertex gadget, as illustrated in Fig. 8A. Edge e is forced; otherwise, edge f
would be required, implying the existence of a vertical scan point thatmeets f . See Fig. 8B. Any such scan point p is contained
in a vertex gadget, say gp; by Observation 1, p is constrained to lie on an edge joining its neighbours in vertex gadget gp and,
thus, cannot meet edge f .

The remainder of the reduction is analogous to that described in the proof of Theorem 1. Similar reductions apply to
the point-normal scan and segment scan models by using the corresponding vertex gadgets illustrated in Fig. 9. The result
follows. �

Once again, the orthogonality of the construction implies the following corollary:

Corollary 4. Reconstructing an orthogonal polygon under the point-wall, point-normal, and segment scan models is NP-hard.
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Fig. 9. Vertex gadgets under the point-normal scan (A) and segment scan models (B).

3. Orthogonal monotone polygons

Since the general reconstruction problem is NP-hard, we consider special cases that are solvable in polynomial time.
Many actual room layouts are both orthogonal and monotone, motivating our consideration of these natural geometric
constraints in this section. We show that an orthogonal monotone polygon can be reconstructed uniquely from a point-wall
scan, i.e., each data point returns whether its edge is horizontal (H) or vertical (V).

Theorem 5. A monotone orthogonal polygon can be reconstructed from a point-wall scan in O(n log n) time. Moreover, the
solution is unique.

Proof. We represent the input as a sequence σ of symbols over the alphabet {V ,H} in left-to-right order (breaking ties from
bottom to top) in correspondence to whether the associated edge is vertical or horizontal. It will suffice to determine for
each symbol whether it belongs to the lower or the upper chain; the chains are then easily reconstructed by parsing points
in left-to-right order. This parsing may return that there is no feasible solution respecting the assignment to an upper/lower
chain, but since (aswewill see) the assignment to the chains is unique, thismeans that therewas no feasible solution overall.

Our approach is to begin at a subsequence of σ for which the solution is uniquely determined locally, and then to
propagate the solution, first to the right and then to the left. In all our claims below, we assume that the input can actually
be realized by an orthogonal monotone polygon.

Claim 1. Sequence σ contains a subsequence HH, i.e., two data points of horizontal edges with no vertical edge between their
x-coordinates.

Proof. Sequence σ must begin and end with V for the leftmost and rightmost edges (recall that no data point is at a vertex).
Assume first that σ has no duplicate data points on vertical edges. Any orthogonal polygon has equally many horizontal and
vertical edges, so σ has no more Vs than Hs. Since σ begins and ends with V, it hence contains HH.

Now assume that σ has duplicate data points on vertical edges. Since points are sorted from left to right, this necessarily
creates a VV; in other words, duplicate vertical data points can only duplicate existing Vs, not insert new ones. Let σ ′ be the
substring of σ obtained by deleting all duplicate vertical data points. By the above argument, σ ′ contains HH, and since no
V can be inserted between the two Hs by duplicate points, σ must also contain HH. �

Claim 2. At any subsequence HH, if both data points have the same y-coordinate, then they belong to the same edge. Otherwise
the data point with larger y-coordinate must be in the upper chain and the other in the lower chain.

Proof. Suppose the data points are labelled p1 and p2. Any vertical line with x-coordinate3 between p1.x and p2.x must
intersect both horizontal edges defined by p1 and p2. Thus if p1.y = p2.y, then this must be the same edge, otherwise the
two chains would overlap. If p1.y ≠ p2.y, then their order must determine which edge belongs to which chain. �

Thus, search for an occurrence of HH in σ . If both points have the same y-coordinate, then remove one of them from σ
(and later on, assign it to the same chain to which the other point was assigned). The resulting sequence must still contain
HH. Continue searching until reaching an occurrence of HH whose points have different y-coordinates. This fixes two data
points, say pu and pℓ, to belong to horizontal edges of the upper and lower chains, respectively.

Now we extend the chains rightwards from pu and pℓ. If the next element of σ is H, then it must be a duplicate data
point for a horizontal edge. If it shares a y-coordinate with pu or pℓ, then we assign it to the same chain and delete it from
σ . Otherwise, there are three distinct horizontal edges without any vertical edge between them, which implies infeasibility
of the input.

Now assume that the next element of σ is V; let pv denote the corresponding data point. If the next element of σ is H
(with corresponding data point denoted ph), then the chains can be expanded as follows:

• If pv.y > pu.y, then pv belongs to the upper chain (see Fig. 10A).
• If pv.y < pℓ.y, then it belongs to the lower chain (see Fig. 10B).

3 For all a ∈ R2 , let a.x and a.y denote the respective x- and y-coordinates of a.
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Fig. 10. Four cases for resolving a substring VH.

• If pℓ.y < pv.y < pu.y, then the decision is determined by ph:
– If pv.y > ph.y then pv belongs to the upper chain (see Fig. 10C).
– If pv.y < ph.y then pv belongs to the lower chain (see Fig. 10D).

• In all of the above cases, ph belongs to the same chain as pv .
• In all other cases (pv.y = pu.y or pv.y = pℓ.y or pv.y = ph.y) there is either a crossing between the chains or a data point

at a vertex, so we break and declare the input infeasible.

Correctness of these steps is straightforward; we only argue the first case here. Assume pv.y > pu.y. If pv belonged to the
lower chain, then the edge through pu (which then would extend beyond pv.x) would intersect the lower chain (containing
pℓ and pv). Therefore, if a feasible solution exists, then pv belongs to the upper chain.

Thus, if the next two elements of σ are VH, we can resolve these two edges. Moreover, again we know the y-coordinates
of the last horizontal edge of the upper and lower chains, and hence can repeat the process.

If we reach VV, the scanning may stop. Let p1, p2, . . . , pk be the next k data points that all are vertical (k ≥ 2; k > 2 is
feasible only if there are multiple data points on a vertical edge), and let ph be the (horizontal) data point thereafter. We
proceed as follows:

• If there are three or more x-coordinates among p1, . . . , pk, then no realizing polygon can exist.
• If there are exactly two x-coordinates among p1, . . . , pk, then this determines two distinct vertical edges. Delete all data

points except p1 and pk.
• If p1, . . . , pk all have the same x-coordinate, then use their y-coordinates as well as ph to determinewhich of them belong

to the same vertical edge.
– If p1.y < pℓ.y < pk.y, then p1 and pk cannot both belong to the lower chain, and so there are two different vertical

edges among these data points. See Fig. 11A. Delete p2, . . . , pk−1.
– If p1.y < pu.y < pk.y, then similarly p1 and pk are in different vertical edges. Delete p2, . . . , pk−1.
– If pℓ.y < p1.y < pk.y < pu.y, then let 0 ≤ i ≤ k be such that pi.y < ph.y < pi+1.y. Then p1, . . . , pi must all belong to

one vertical edge, and pi+1, . . . , pk belong to another. See Fig. 11B.
∗ If i = 0 or i = k, delete p2, . . . , pk. This leaves a subsequence VH in σ , which we resolve as explained earlier.
∗ If 1 ≤ i < k, delete p2, . . . , pk.

• We are now left with two vertical data points p1, pk that are known to belong to different vertical edges. There is no
horizontal edge between them, so they must belong to two different chains.

• From the y-coordinates of pℓ, pu, p1 and pk, we can now determine which of p1 and pk belongs to the lower/upper chain.
– If p1.y < pℓ.y, then p1 belongs to the lower chain and pk to the upper one. See Figs. 11C1–C3.
– If p1.y > pu.y, then p1 belongs to the upper chain and pk to the lower one.
– If pℓ.y < p1.y < pu.y:

∗ If p1.y < pk.y, then p1 belongs to the lower chain and pk to the upper one. See Figs. 11D1 and D2.
To see the correctness in this case, note that the chain containing p1 must continue with a horizontal edge that

extends beyond pk.x. If pk belonged to the lower chain, then this horizontal edge would have y-coordinate < p1.y,
and therefore the path through p1 and this horizontal edge would cross the path through pℓ and pk.

∗ If p1.y > pk.y, then similarly p1 belongs to the upper chain and pk to the lower one.

We cannot continue the scan beyond this VV, since no y-coordinates of the upper and lower chains are known to the
right. But we can continue the scan somewhere farther to the right:

Claim 3. Let σ = σ1σ2, where σ1 ends with VV and these two Vs represent distinct vertical edges. Then σ2 contains HH.

Proof. The proof is similar to that of Claim 1. If σ2 contains no two data points on a vertical edge, then Vσ2 (which could be
completed to an orthogonally monotone polygon) contains at least one HH. Adding duplicate data points on vertical edges
cannot insert a V, so the original σ2 must also contain HH. �

Thus if we cannot continue the scan at a substring VV, then there must be a substring HH later on. We jump forward to
this occurrence of HH, and then resolve rightward from then on until we reach another VV, jump forward to the next HH,
and so on. This continues until at some point we reach a subsequence of Vs that is not followed by H; we have then reached
the rightmost edge.

We then repeat the same process in the opposite direction: start at the rightmost HH, resolve each substring HV leftward
(in a symmetric manner) until we reach VV, eliminate duplicate vertical points at this VV, continue if possible, else jump
leftward to the next HH, and so on, until we have reached the leftmost edge.
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Fig. 11. Two cases for resolving vertical data points with the same x-coordinates, and two cases for resolving a substring VV.

Fig. 12. Even under the visibility-polygon scan model this input instance has two distinct monotone solution polygons; the central horizontal edge could
belong to the left or right chains. Note, the figures are rotated by 90◦ , i.e., they are y-monotone; our algorithm refers to x-monotone polygons and upper
or lower chains.

The process stops at a VV substring only if this represents two distinct vertical edges. As in Claim 3, one argues that if the
rightward scan stops at a VV, and the leftward scan stops at a later VV, then they must have a substring HH between them.
Thus no gaps remain between such VV stopping points. Upon terminating, we have determined for every edge whether it
belongs to the upper or lower chain.

The time complexity of the algorithm is linear once the data points are sorted by x-coordinates. Furthermore, the resulting
orthogonal polygon is unique since each edge is deterministically assigned to a chain. �

4. Monotone polygons

In this sectionwe consider the reconstruction problem formonotone (not necessarily orthogonal) polygons from a point-
normal scan. In this case, each input point knows the orientation and interior of the polygon boundary passing through it.
In the monotone setting, these half-planes determine whether each non-vertical edge belongs to the upper or lower chain
of the polygon. This leaves the set of vertical edges to be assigned to chains. Nevertheless, the problem is non-trivial; in
particular, a solution is not necessarily unique (e.g., see Fig. 12).

Theorem 6. A monotone polygon can be reconstructed from a point-normal scan in O(n log n) time.

Proof. We use a dynamic programming algorithm that determines the chain to which vertical edges are assigned. Scan all
data points from left to right and update a function that stores whether there is a partial solution (in the form of upper and
lower chains) up to the current x-coordinate, with some conditions on where the upper and lower chains end.

We introduce additional definitions to simplify references to points on chains. Let t be an x-coordinate that is not the
coordinate of any data point. The upper-left line of t is the line through the last data point before t for which the edge is not
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Fig. 13. In this example f (t, L, R) = true. White circles indicate points in which the upper/lower chain might be required to end.

Fig. 14. Using a vertical left-facing data point for the upper chain.

vertical and is in the upper chain (i.e., the associated normal points downward). The upper-right line of t is the line through
the first data point after t for which the edge is not vertical and is in the upper chain.We define the lower-left and lower-right
lines of t analogously.

Observe that the vertical line through t intersects the upper chain of any solution necessarily in either the upper-left line
or the upper-right line; otherwise one of the corresponding data points could not be used for the upper chain (and could
not be used for the lower chain by the given normals). We compute a partial solution and prescribe which of the two lines it
uses for the upper chain, and correspondingly for the lower. Thus, define f (t, u, ℓ) ∈ {true, false}, where u, ℓ ∈ {L, R}, with
f (t, u, ℓ) = true if and only if there exist two monotone chains such that

• the two chains have a common left endpoint point and do not intersect each other (hence they define an upper chain
and a lower chain, respectively),

• the upper chain ends at t using the upper-left line if u = L, and using the upper-right line if u = R,
• the lower chain ends at t using the lower-left line if ℓ = L, and using the lower-right line if ℓ = R,
• the two chains use all lines through data points to the left of t , with the half-planes on the correct side, and use no other

lines except the upper-right or lower-right line if so indicated by u or ℓ.

See also Fig. 13.
We can initialize f (t, u, ℓ) at the leftmost point of the polygon and update f (t, u, ℓ) as t increases. More precisely, to

initialize, compute the upper-right and lower-right lines with respect to −∞. If the leftmost data point does not lie on a
vertical line, then initialize t to be the x-coordinate of the intersection of these two lines, and set f (t + ε, R, R) = true.4
If the leftmost data point has a vertical line, then initialize t to be the x-coordinate of that data point, and initialize
f (t + ε, R, R) = true if and only if the data point lies below the upper-right and above the lower-right lines on the vertical
line {x = t}. All other values f (t + ε, u, ℓ) are initialized to be false.

We update f (t, u, ℓ) as t increases. The truth assignment of f (t, u, ℓ) may change only at a value of t that is the
x-coordinate of a data point, or the x-coordinate of a crossing of two of the four ‘‘adjacent’’ lines at t (because the chains
might then also cross). Most of these updates are quite straightforward and are omitted here; we only describe the update
for one of the complicated cases.

Suppose a data point has x-coordinate t , is not the rightmost data point, and lies on a vertical line with normal to the left.
If the upper chain uses this vertical edge, then the order along line {x = t} from bottom to top must be ‘‘intersection point
with upper-right line’’, ‘‘data point for vertical line’’, and ‘‘intersection point with upper-left line’’. See Fig. 14. Furthermore,
the lower chain must not interfere with this, i.e., depending on the value of ℓ, the lower-left or the lower-right line must
intersect {x = t} below the upper-right line.

Similarly we can determine from the equations of the four lines adjacent to t whether the lower chain could use this
vertical segment. Now we update according to the following boolean expressions:

• f (t + ε, R, L) = f (t − ε, L, L) AND the upper chain could use the vertical edge.
• f (t + ε, L, R) = f (t − ε, L, L) AND the lower chain could use the vertical edge.

4 ‘‘t + ε’’ means ‘‘for values greater than t and smaller than the next x-coordinate where f may change. Similarly we use t − ε. In reality, parameter t is
not needed since we always update from t − ε to t + ε; we use it here to simplify notation.
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• f (t + ε, R, R) = (f (t − ε, L, R) AND the upper chain could use the vertical edge) OR (f (t − ε, R, L) AND the lower chain
could use the vertical edge).

• f (t + ε, L, L) = false . (One of the two chains must use the vertical segment.)

This update, as well as all updates in all other cases, can be done in constant time. The time complexity for this algorithm
is linear once the data points have been sorted by x-coordinate, resulting in a total running time of O(n log n). �

5. Star-shaped polygons

We briefly describe simple results for reconstructing a star-shaped polygon, i.e., a polygon that is entirely visible from
some point in its interior. The region of points that see all of a star-shaped polygon is its kernel.

Reconstructing a star-shaped polygon is straightforward in the point-normal model. Any point in the kernel must be
visible to all data points. It suffices to verify that the intersection of the set of half-planes associated with data points is
non-empty, and to identify a point o in the interior of the intersection. This can be achieved in O(n) time using the linear
programming algorithm of Megiddo [18]. If no such point o exists, then there is no solution. To compute the solution, sort
all data points in clockwise order around o in O(n log n) time, and compute the polygon defined by them in this order.
Either this polygon is star-shaped or there is no solution. Consequently, a solution is unique if it exists, giving the following
theorem:

Theorem 7. A star-shaped polygon can be reconstructed from a point-normal scan in O(n log n) time. Moreover, the solution is
unique.

We can also reconstruct a star-shaped polygon from a point-wall scan, but the time complexity increases. Consider the
arrangement defined by the set of lines that pass through walls. As for point-normal scans, the kernel of a star-shaped
polygonmust be one of the cells defined by this arrangement, i.e., one of themaximal connected regions that do not contain
a point on a line. There are O(n2) such cells for n lines. For each cell we can select a point o and attempt to reconstruct a
star-shaped polygon with o in its kernel as explained above. The corresponding time complexity is O(n3 log n), giving the
following theorem:

Theorem 8. A star-shaped polygon can be reconstructed from a point-wall scan in polynomial time.

We suspect that the running time can be improved: instead of repeating the O(n log n) test in every cell, it might be
possible to update the intersection of half-planes dynamically each time a half-plane is crossed. Furthermore, we believe
that the solution, if one exists, is unique. Both of these questions remain open.

6. Lower bound

We show the following lower bound on the worst-case running time of any algorithm that finds an orthogonal solution
to an instance of the polygon reconstruction problem under the point scan, point-wall scan, point-normal scan, or segment
scan models. This lower bound also applies to the orthogonal monotone case, showing that our results in Theorems 5–7 are
optimal.

Theorem 9. Any algorithm that reconstructs an orthogonal polygon from point scans requires Ω(n log n) comparisons in the
worst case. Any algorithm that reconstructs a polygon from point-wall scans, point-normal scans, or segment scans requires
Ω(n log n) comparisons in the worst case. Furthermore, these lower bounds also apply to the cases for which a solution must
be orthogonal, monotone and star-shaped.

Proof. We describe a linear-time reduction from sorting, for which we assume that an input instance consists of n distinct
integers X = {x1, . . . , xn}. Let xmin and xmax denote the respective minimum and maximum values in X; these values can be
found in linear time. Now define a set P of scan points as follows. For each xi ∈ X add points (2xi, 2xi) and (2xi + 1, 2xi + 1)
to P . Furthermore, add points (2xmin + 1, 2xmin − 1) and (2xmax + 2, 2xmax) to P . See Fig. 15.

We claim that there exists a unique orthogonal polygon solution that realizes the points in P under the point scanmodel.
The four extreme points must be as in Fig. 15 in any realizing polygon. This forces (2xmin + 1, 2xmin + 1) to be realized
with a horizontal edge, for if it were vertical there would be no (unused) data point for a horizontal edge at its lower end.
For similar reasons, this then forces (2x′, 2x′) to be horizontal, where x′ is the next-smallest number in X . Continuing this
argument shows that all data points must have edges with the orientation as in Fig. 15. Now applying Observation 1 shows
that these data points can only be realized by the given polygon. Note that this polygon is monotone and star-shaped.

This solution gives the points of X in sorted order while walking along the polygon boundary. Consequently,
reconstruction from a point scan sorts the values in set X and, therefore, requires Ω(n log n) comparisons in the worst
case.

If we endow the points with corresponding horizontal/vertical walls, or normals, or place a scanner at (2xmax +1, 2xmin),
then the same lower bound holds for the point-wall scan, point-normal scan and segment scan models. �

We can also create a similar lower bound for the visibility-polygon model; the resulting polygon is orthogonal and
monotone, but not star-shaped.
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Fig. 15. Given the set X = {0, 1, 3, 6, 8}, the transformation returns this set of points P and the corresponding orthogonal (monotone and star-shaped)
polygonal solution.

Fig. 16. (A) The placement of a pair of opposed scanners, illustrating the visible edges within their respective vertical tunnels. (B) Given the set X =

{1, 3, 6, 7}, the transformation returns this set S of scanners (marked by black points) and the corresponding unique orthogonal monotone polygonal
solution. The placement of the leftmost and rightmost scanners is not to scale.

Theorem 10. Any algorithm that reconstructs a polygon from visibility-polygon scans requires Ω(n log n) comparisons in the
worst case. Furthermore, this lower bound also applies to the cases for which a solution must be orthogonal and monotone.

Proof. As in the proof of Theorem 9, we describe a linear-time reduction from sorting. Again, suppose an input instance
consists of n distinct integers X = {x1, . . . , xn} and let xmin and xmax denote the respective minimum and maximum values
in X .

We define a set S of scanners as follows. For each xi ∈ X add scanners at (4xi, −7) and (4xi, 7). Each such scanner is
placed within a unit-width vertical tunnel, closed at one end and open at the other, such that the open ends of opposing
scanners face each other. These corridors have the property that a scanner can see only edges in its corridor and the corridor
immediately above/below it. See Fig. 16A. Finally add two scanners at (−z, 0) and (z, 0), where z is a sufficiently large integer
(z = max{6xmax −2xmin, 2xmax −6xmin} suffices). These two scanners are placed within unit-height horizontal tunnels such
that, again, each can see only edges in its corridor and the corridor at the opposite left/right end. See Fig. 16B.

Clearly a solution can be realized that meets the scanners in order of x-coordinates. Every edge in a solution must be
visible by some scanner. Consequently, each incomplete edge segment in our construction has only a single possible edge
with which it can be paired. It follows that the solution is unique. Observe that the solution polygon is orthogonal and
monotone. The reconstructed polygon gives the points of X in sorted order while walking along the polygon boundary.
Consequently, reconstruction from a visibility-polygon scan sorts the values in set X and, therefore, requires Ω(n log n)
comparisons in the worst case. �

7. Discussion and directions for future research

We have examined the problem of polygon reconstruction from scanner data under various models of scanner input. As
shown, the problem is NP-hard, and remainsNP-hard even if a solution is required to be orthogonal. This hardnessmotivated
our examination of polynomial-time algorithms when specific geometric constraints are imposed on a solution, including
monotonicity, orthogonality, and/or star-shapedness.

If a solution is not unique, a natural question is to determine the number of additional scanners necessary to reveal
the true solution. This question is NP-hard since Theorem 1 shows hardness for an instance of the corresponding decision
problem. Approximation algorithms might be interesting to consider.

Several variants of our problem have not yet been considered and remain open. In particular:

• Can we reconstruct a monotone polygon from a point-wall scan? This is the only remaining unresolved complexity
question in Table 1.

• What other restrictions on a solution make reconstruction feasible in polynomial time? For example, a reasonable
assumption could be that a room has four walls, each of which is a polygonal chain: two x-monotone walls and two
y-monotone walls.

• Finally, a natural question is to consider the corresponding problems in three or higher dimensions.
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