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We study properties of rewrite systems that are not necessarily terminating, but allow instead for 

transfinite derivations that have a limit. In particular, we give conditions for the existence of a 

limit and for its uniqueness and relate the operational and algebraic semantics of infinitary theories. 

We also consider sufficient completeness of hierarchical systems. 

Is there no limit? 
-Job 16:3 

1. Introduction 

Rewrite systems are sets of directed equations used to compute by repeatedly 

replacing equal terms in a given formula, as long as possible. For one approach to 

their use in computing, see [23]. The theory of rewriting is an outgrowth of the 

study of the lambda calculus and combinatory logic, and has important applications 
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in abstract data type specifications and functional programming languages. For 

surveys of the theory of rewriting, see [13,16], or [8]; our notations conform to the 

latter. 

A key property for rewrite systems is that every term rewrites to a unique normal 

form. This is usually decomposed into two requirements: “normalization”, which 

ensures that at least one normal form always exists; and “confluence”, which ensures 

that there can never be more than one normal form. 

In this paper, we consider systems that have in&rite terms as normal forms. Such 

systems are not normalizing in the classical sense; instead we develop a notion of 

“w-converging”, the property that any (infinite) derivation has a limit (not 

necessarily a normal form).’ Under certain conditions, if a system is w-converging 

then it is also “w-normalizing”, that is, there is a limit that is in normal form. We 

then investigate “w-confluence”, a property that ensures uniqueness of normal 

forms. Together, these properties imply the existence of a (potentially infinite) 

unique normal form for any input term, which can be viewed as the “value” of the 

term initiating the derivation, and we call such a system w-canonical. As a program- 

ming language, rewrite systems have the full power of Turing machines; hence, 

these properties, and others, are easily shown to be undecidable in general. Our 

results may have implications for stream-based programming languages. 

The next section defines the basic concept of normal forms in the context of 

transfinite chains. Section 3 considers properties of rewrite systems and the length 

of their derivations. Section 4 characterizes derivations that lead to normal forms. 

Section 5 presents methods for establishing o-normalization and Section 6, for 

w-confluence. With these operational notions in place, Section 7 gives “algebraic” 

semantics to infinite rewriting with w-canonical systems; it is followed by a section 

on the semantics of hierarchically typed systems. We conclude with a brief discussion. 

Algebraic semantics involving infinite terms were developed by [3,4,21, 19a] from 

a different perspective (particularly, the formal meaning of recursive program 

schemata). The work in [9,19,27] is more closely related to our approach. Recent 

developments, following our preliminary work [6,7] in this area, include [2,10, 151. 

2. Infinite chains 

We are interested in properties of binary relations. Let -+ denote any binary 

relation, and -+* its reflexive-transitive closure. We use + and *+-for their respective 

inverses. A relation + over a set S is said to be jinitely terminating if there exist no 

infinite chains s0 + s, --, . . . + s, * * + . of elements si in S; it is finitely conjluent 

if for any elements s, t, u in S such that u +* s and u +* t, it is the case that s +* v 

and t -* v for some ~1 in S. Confluence may be expressed as the set-theoretic 

inclusion *t 0 ** G +* 0 *+, where 0 denotes composition of relations. 

’ This property should not be confused with (finite) “convergence” of (finitely) terminating and 
confluent systems (to unique normal forms), in the terminology of [8]. 
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This paper concerns limits of transfinite sequences of elements. Let (sp)p-ca be a 

finite or transfinite sequence of elements of a topological space S, indexed by ordinals 

p less than some ordinal number (Y. We say that t is the limit of the sequence for 

limit ordinal (Y, written lim,,, sp = t, if for any neighborhood V of t, there exists 

an ordinal y < CY such that sP is in V for all /3 between y and CX.’ 

Infinite “chains” are defined by transfinite induction: 

Definition 2.1. Given a binary relation - on a topological space, its witerate +“, 

for given ordinal LY, is defined as follows: 

(a) if (Y = 0, then + 0 is the identity relation; 

(b) if (Y is a successor ordinal p + 1, then +a =+’ u (--+’ 0 +); 

(c) if cr is a limit ordinal, then sO-+‘” t if so+’ t for some /3 < Q or if there exist 

elements (.Q)~__ such that s, -2 sP for all y < /3 <(Y and lim,,, sP = t. 

Definition 2.2. An a-chain for a binary relation --$ over a topological space and 

ordinal (Y is a finite or transfinite sequence (s~)~~~ such that s, -2 sg for all 

y<p<a. 

In particular, s -+w t, for s and t in S, if s +* t or if there is a chain s = sg 
-+s,-+“‘+s,+” . such that the limit of the s,, as n goes to infinity (n + CO), 

is t. 

Definition 2.3. A binary relation + over a topological space is a-closed if +’ = jn 

for any ordinal /3 2 LX. 

Lemma 2.4. A binary relation + over a metric space is w-closed if +w 0 --f G ---zw. 

Proof. The hypothesis means that +“‘+’ = +“‘. Transfinite induction establishes that 
-+a =+w for successor ordinals and limit ordinals (Y 2 w. 

Suppose (Y is a successor ordinal @ + 1 > w. By induction, --+’ =+w. Hence, 
+a =+W0-+, which, by hypothesis, is contained in -+w (which, by definition, is 

contained in --*). 

Suppose (Y > w is a limit ordinal and s0 --+a s, for elements so and s, of the space. 

There must be an ordinal y < (Y indexing an element of the transfinite sequence 

s0 --+y sy +a s, such that the distance (in the metric space) between sy and s, is less 

than 4. By induction, so-(” sy. Far enough along this sequence, there is an element 

so, of distance less than 5 from s,. We have s,, +* sp, -+O s,, and this construction 

can be continued to form an w-chain s0 -+* sP, +* so2 - . . . with limit s,. 0 

* We use this notation for limits instead of the more precise lima_,-. 
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Definition 2.5. A binary relation + over a topological space is a-converging, for 

limit ordinal CY, if for any a-chain (s~)~<, of elements sP of S, the limit lima,, sp 

exists. 

Definition 2.6. Let + be a binary relation over a topological space S. An element 

s of S is a normalform if s = s’ whenever s + s’. An element s’ of S is an a-normal 

form of s in S, for ordinal (Y, if s’ is a normal form and s +a s’. The relation + is 

a-normalizing if every s in S has an a-normal form; it is uniquely a-normalizing if 

every element has exactly one (Y-normal form. 

BY Ol+-, we will denote the inverse of the relation _s~. 

Definition 2.7. A binary relation -+ over a topological space is a-confluent, for 

ordinal CY, if a~o+a c-+~ 0 a+. 

Note that a-confluence implies that there can be at most one a-normal form, 

since were one element s to lead to two limits u and v, then by confluence 
U-9~0~ + v, which for a-normal forms u and v could only be if u = v. Without 

cy-normalization, it could be that all a-chains have limits that are not a-normal 

forms. For an a-converging relation all chains must “end”, but none need end in 

a-normal forms. 

Proposition 2.8. A binary relation over a topological space is uniquely a-normalizing, 

for ordinal a, if it is cu-normalizing and a-confluent. 

3. Infinite derivations 

We are particularly interested in relations over terms. Let 3(9, Z), or just 3, 

denote a set of finite (first-order) terms containing function symbols and constants 

from some finite vocabulary (signature) 9 and variables from some denumerable 

set 28. Let Y(9, Z), or just P, denote the set of finite and injinite terms over the 

same vocabulary and variable set. (Infinite terms are like infinite ordered trees, 

rooted at their outermost symbol, with finite outdegree at each node. Their nodes 

are all connected by paths of finite length, though some paths from the root may 

be of length w.) The set of finite ground (variable-free) terms is 9( 9) (= .Y( 9,0)), 

or just ‘3; the set of finite and infinite ground terms is ‘3”(9), or just 9”. In the 

sequel, we use lower-case Greek letters for ordinals, s, t, u, v for terms in p, x 

and y for variables in 2, and various lower-case Latin letters for operators and 

constants. 

A position in (finite or infinite) terms may be represented as a jinite sequence of 

positive integers, giving the path to that position in the ordered-tree representation 

of terms. The empty sequence A denotes the outermost (topmost) position. The 
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subterm of a term t in p rooted at position p will be denoted tl,,, and-in 

particular-the ith immediate subterm of t is tli. The depth IpI of a position p is 

the length of the sequence representing it, which corresponds to the level of the 

subterm in the tree representation of the term. Disjoint positions are such that 

neither is below the other. 

A distance d is defined on P and %?= as follows: Let d(s, t) = 1/2”(‘,“, where 

the natural number U(S, t) is the smallest depth of a symbol occurrence at which 

terms s and t differ-with the convention that d (t, t) = 0. Finite and infinite (first- 

order or ground) terms, with this distance, form a complete ultra-metric space [21]. 

A rewrite system R is a finite family of pairs (5 r) of (finite) terms of Y(9, %‘), 

each written in the form I+ r; we will assume that all variables appearing on a 

right-hand side Y also appear on the corresponding left-hand side 1. A system R 

defines a rewrite relation jR over 9-” as follows: For t in 5-“‘, we say that t rewrites 

via R to t’, and write t +R t’ (or simply t + t’), if there exists a rule 1 ---z r in R, a 

context c[ .I,,, where c is a term in 9I” and p is a position in c, and a substitution 

CT: %+ .Y-” such that t = c[la& (the subterm tl,, of t is an instance of the left-hand 

side 1) and t’= c[ru],, (t’ is the result of replacing the subterm at p with the 

corresponding instance ru of the right-hand side). A position p in t at which a 

rewrite can take place is called a redex. We use IRI to denote the maximum depth 

of a left-hand side of a system R. 

Since we are interested here primarily in sequences of rewrites issuing from finite 

terms t, (unlike [4, lo]), we will restrict our attention to that case.3 

Definition 3.1. A derivation of length CY, for rewrite system R and ordinal CY, is a 

finite or transfinite sequence of (finite or infinite) terms to in P, such that t, is a 

finite term in 9 and (tp)pC,, is an a-chain for -+R. 

In particular, if (ta) is of length w + 1, then, for any depth d, there is a point N 

such that for all n, N c n < o, the distance between t, and the limit t,,, is no more 

than 1/2d. 

For example, the system 

a -f(a) 

has a derivation 

(I) 

a *Rf(a) +Rf(f(a)) ‘R ’ ’ ’ +Rf(f.. .fta). . .)‘R ’ ’ ‘f” 

of length w + 1, where the limit f” of the chain (f”(a)),,, is the infinite term 

f(f(f(. . .))), composed of infinitely many occurrences of the unary symbol J; and 

in which the constant a no longer occurs. 

We will say that a rewrite system R is a-closed if s +’ t implies s -+” t, for all 

finite terms s in Y, finite or infinite terms t in Y-“-, and ordinals p 2 a. In particular, 

3 For many of the results we report on here, this assumption is not critical 



16 N. Dershowitz et al. 

o-closure means that all (finite or infinite) terms derivable from a finite term are 

limits of derivations containing only finite terms. Finitely terminating systems are 

o-closed. 

The systems 

a + b, b-a (2) 

and 

f(x) + g(f(x)), g(x) -+f(g(x)) (3) 

are w-closed. The following system is not w-closed: 

a -+ g(a), b - g(b), f(x,x)-2 c. (4) 

We have 

f(% b) +:f(E?, g”) ‘R C 

but f(a, b) 74: c. In fact, this system is closed only at o x 2, since there are longer 

derivations like: 

f(f(f(% b), c), c) -:f(f(f(gw, g”), c), c) +?zf(c, c) ‘R C. 

Closure may occur farther up the ordinal hierarchy, too; for example, the system 

a + g(a), b -+ g(b), f(x, x) - h(f(a, b)) (5) 

has the following derivation: 

f(a, b) *gxi h’(f(a, b)) +$ h” 

The remainder of this section is devoted to w-closure of rewrite systems. Sub- 

sequent sections deal with properties of normal forms. 

Definition 3.2. A rewrite system R is top-terminating if there are no derivations of 

length w with infinitely many rewrites at the topmost position A. 

A rewrite system R is said to be left-linear if the left-hand side 1 of each rule 

I+ r in R has at most one occurrence of any variable. As we will see in the proof 

of the following theorem, with left-linearity, a derivation to--+: tm+R t& can be 

simulated by a derivation to -+ z t’ -+ a t R &, provided none of the steps in to -g t, 

are above or only slightly below the position of the step ta,JR t&. 

Theorem 3.3. If R is a left-linear top-terminating rewrite system, then R is w-closed. 

This is essentially the same as the wo-Lemma in [lo], where only top-terminating 

derivations are considered.4 

Proof. By Lemma 2.4, it is sufficient to show that -+g o-R C+g. Let 

to+R t,+R t2’R- ’ . --+; t,, and suppose t, jR t& at position p via rule I+ r 

4 Our preliminary versions of this claim omitted the top-termination requirement. 
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with substitution u. Since R is top-terminating, there exists an index N such that, 

for n 3 N, f, +R f,,+i at position p,, deeper than 1 pi + 1 RI, which is within the “variable 

part” of I+ r. Then, on account of left-linearity, t, is rewritable at t,],,t via I + r 

to the term t: = t,[m],. 

If pn is at or below the position of a variable of I (that is, if the redex is a subterm 

of the term matching the variable), then t; -_*R t’,+r , again due to the left-linearity 

of R. Otherwise, p and p,, are disjoint positions in t,, and tk jR tL+r . In either case: 

t&--+,q.. ’ +R fNp,+R fN ‘R tN+l ‘R’ ’ .‘“R t, 

R R 

I i 

t’ N -+* t’ R Nt, 
-+; . . . 

tjc 

Clearly, lim.,, t: = tb, which proves that to --+g t&. q 

Neither hypotheses in this theorem suffices by itself. Example (4) is a non-left- 

linear, top-terminating system, for which the theorem does not hold. Left-linearity 

turns out to be crucial (as in [4], but cf. [ll]), and throughout this paper, we deal 

exclusively with left-linear systems. Unfortunately, left-linearity is insufficient. The 

following is an example (from [lo]) of a left-linear non-top-terminating system that 

is not w-closed: 

a + b, f(x, a) -+f(g(xL a). (6) 

We have 

t-cc, a) ‘WRfkW, a) --+‘Rf(f, b) 

but f(c, a) +WRfW’, b). 

A term t is said to overlap a term t’ if t-after renaming all its variables so as 

not to conflict with those in t’-unifies with a non-variable subterm of t’; a system 

is non-overlapping if no left-hand side overlaps another (or itself at a proper subterm). 

A system that is both left-linear and non-overlapping is called orthogonal (or 

“regular”). Orthogonal systems are important since they are always confluent and 

can have at most one normal form [22], but since they need not be finitely terminating, 

there may be terms having no normal form. 

Even orthogonal systems need not be w-closed, when they are not top-terminating, 

as can be seen from the following (rather disconcerting) example: 

a + b, .I-(4 VI +f(x, g(x, Y)). (7) 

It allows an “outermost” derivation 

f(a, cl +WRf(a, da, Aa,. . .))I +‘Rf(b, da, da,. . .I)) 

but f(a, c) +if(b, da, da,. . .))). 
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On the other hand, neither left-linearity, nor top-termination is necessary for 

w-closure; just consider the simple rule 

./xx, xl -+fk(x), g(x)). (8) 

Even with left-linearity, o-closure does not imply top-termination, as can be seen 

from the following trivial system: 

x -+ f(x). (9) 

4. Infinite normal forms 

Definition 4.1. An a-normal form of a term s in !F, for rewrite system R and 

ordinal a, is a term t in p, such that s --+g t and t -+R t’ only if t’= t (for t’E P). 

Note that this does not imply that a normal form cannot be rewritten at all, but 

rather that it may rewrite only to itself. This allows a system like 

f-(x) -.ff(f(x)) (10) 

to compute an w-normal form f” of any term f(t), just as example (1) computes 

the w-normal form f” of a. 

Accordingly, we say that a system is a-converging if every derivation of length 

a issuing from a jinite term in 3 has a limit in J -, that it is a-normalizing if every 

finite term t in F admits an a-normal form t, in F, and that it is uniquely 

a-normahzing if every finite term has exactly one a-normal form.5 Similarly, we say 

that a system is a-confluent if, for all finite terms u in Y and (finite or infinite) 

terms s and t in PC, s a +- u +W t implies the existence of a (possibly infinite) term 

v in JY such that s +a v Ut t. 

System (9) is w-closed, non-finitely-terminating, and has no finite normal forms; 

yet it is both w-converging and uniquely w-normalizing. Systems (2) and (3), though 

w-closed, are not w-converging; system (4) is (w x 2)-closed, (o x 2)-converging, 

and w-confluent, but has no o-normal forms. 

If a standard rewriting system is (finitely) normalizing and finitely confluent, then 

any finite term t has exactly one finite normal form, which can be taken as its 

“value”. Similarly, infinite normal forms can be considered the “value” of a term, 

when they are unique and lend themselves to approximation. Analogous to the finite 

case, combining existence of w-normal forms with w-confluence, gives uniqueness 

of w-normal forms. By definition, any finitely terminating system is w-converging. 

5 This property should not be confused with the (finite) “unique normal form” (i.e. at most one normal 
form) property of (finitely) confluent systems-in the terminology of [16]. 
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For systems, like (6), that are w-normalizing, certain derivations always lead to 

normal forms. A “fair” computation is a derivation for which no redex persists 

forever. More precisely: 

Definition 4.2. A derivation to -+R t, jR . . . -+R t, +R . . . is fair if whenever there 

is a rule l+ r in R and position p such that, for all n past some N, the subterm 

t,I, is an instance 1~~ of l, then (at least) one of the rule applications t, +R t,,+, 
(n 2 N) is an application of l--+ r at p. 

Theorem 4.3. Let R be a left-linear rewrite system. If a term t,, in T-admits an w-normal 

form t, in J-“, then there exists a fair derivation t, --+R t, -+R . * * +g t, with limit t,. 

Of course, unfair derivations can also lead to normal forms. For example, either 

rule in 

f(x) -ff(f(x)L f(x) -f(f(f(x))) (11) 

can be forever ignored. 

Proof. Suppose that t,-+R t, *R. . . -i t,, and t, is a normal form. If the deriva- 

tion is not fair, then for some point N’, position p, and rewrite rule r, the rule must 

be continually applicable at p in the subsequence (t,) naNs, though not actually 

applied. Let N z N’ be such that for all n 2 N, we have d (t,, t,) c l/2’p’+‘R’t’R’. Let 

t; denote the result of applying r to t, at p. On account of the low positions of the 

rewrites, any changes incurred by the steps past N take place in the variable part 

of r. With left-linearity, this implies that the given derivation from tN can be mimicked 

by a derivation issuing from t’, : 

tO-+R.. fN +‘R .--+“R tm 

Though the same rule also 

that the result of rewriting t, 

being applied to the t: , d (tk , 

* t’, -*R ttN+, ‘R . . . Lx 

applies to t,, since t, is a normal form, it must be 

is t, itself. Because essentially the same rewrites are 

t,) s 1/21p’ for all n 2 N and, moreover, lim.,, t:, = 

t This process may be repeated, beginning at some tkf (for n’> N) such that 

dm(;$, t,) s @‘+’ , to obtain a fair derivation with t, as the limit. 0 

Fair derivations compute normal forms: 

Theorem 4.4. Let R be a left-linear rewrite system. For any fair derivation 

t,,+, t, jR+ . -+s t,, the limit tm, if it exists, is an w-normal form of to. 

Proof. Suppose that t, is not a normal form and that t,-R t& Via some rule r at 

some position p. For all n greater or equal to some N, d (t,, t,) s 1/2’P’+‘R’. But with 



80 N. Dershowitz et al. 

left-linearity, r may be applied at position p of each t, (n 2 IV), contradicting the 

fairness of the derivation. 0 

With a weaker notion of fairness, in which applying any rule at or above the 

position of the persisting redex is fair enough, the limit is not necessarily a normal 

form. The second rule of system (7), for example, applied repeatedly to f(a, c), 

leads to f(a, g(o, g(a, . . .))I, t o which the first rule can still be applied. 

Without left-linearity, even with top-termination, the limit of a fair derivation 

need not be a normal form. For example, the only normal form of terms in ‘9({f, g, c}) 

with the w-closed system 

c + g(c), “0x9 x) -+ c (12) 

is gU, though there is a fair derivation 

f(g(c), c) +Rf(g(g(c)), c, -+Rf(g(g(c)), g(c)) -+R ’ ’ . ‘:fkW, g”). 

And, without left-linearity, even with w-closure, there are normal forms that cannot 

be obtained fairly. For example, there is a derivation 

h(f(g(c), g(c))) ‘R h(f(gk(c)), ddc)))) *R * ’ ’ -“R h(fk”, 8”)) 

for 

f(x, x) +f(g(x), g(x)), h(f(x, g(y))) * h(f(g(x), Y)) (13) 

that is not even weakly fair (in the above sense), but once the second rule is applied 

the normal form h(f(g”, g”)) is unreachable. 

Since fair derivations must end in normal forms for left-linear o-converging 

systems, it follows that at least one normal form exists: 

Corollary 4.5. If R is a left-linear w-converging rewrite system, then R is w-normalizing. 

Examples (2) and (4) demonstrate the need for both requirements. 

5. Existence of normal forms 

If a system is finitely terminating, then any finite term has at least one finite 

normal form. For a survey of methods for establishing finite termination of rewrite 

systems, see [5]. In this section, we weaken this demand, and consider, instead, 

w-converging systems, for which every derivation of length w has a limit. We 

concentrate on special cases that are of practical importance. 

A top-terminating system need not be finitely terminating. For instance, system 

(1) is top-terminating, while (10) is not. Neither is finitely terminating. The system 

f(x) - x, g(x) - x (14) 

is finitely terminating, and, hence, top-terminating for jinite terms, but note that 

some derivations issuing from injinite terms like f(g( f(g( . . * )))) have no limit. 
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Proposition 5.1. If R is a top-terminating rewrite system, then R is w-converging. 

The converse does not hold. For example, system (10) is not top-terminating. 

Proof. If R is top-terminating, then after a finite number of rewrites, no more 

rewrites are applied at the top, and the outermost symbol in the remainder of the 

derivation is fixed. The same argument can then be applied to the subterms to show 

that the rewrites must occur deeper and deeper, and, hence, that the sequence has 

a limit. 0 

By Corollary 4.5, top-termination, with left-linearity, guarantees existence of 

w-normal forms. Left-linearity and top-termination do not, however, suffice for all 

limits to be normal forms: 

a + b, c +f(a, c). (15) 

Theorem 5.2. Let > be a well-founded (partial) ordering on the set 9 offinite terms, 

and let & be a compatible quasi-ordering. Let R and S be two rewrite systems such 

that +R G >, +s G +, and S is a-converging. Then the combined system R u S is 

a-converging. 

A quasi-ordering is a reflexive and transitive binary relation. As usual, s > t if 

s & t F s; also, s - t means s + t > s. By “compatible”, we mean here that Z= 0 > 5 

> o>. 

Proof. Let tO-RUS t, +RUS * . . be a derivation in the combined system. Then, 

to* t,* fZ3.. . . Were there are an infinite number of R steps in the derivation, 

then by compatibility, there would be an infinite sequence of terms to > ti > t; > . . . , 

contradicting well-foundedness. Hence, there must be a point tN in the derivation 

after which only S steps appear, and by the fact that S is a-converging, the derivation 

has a limit. 0 

As an example, if R u S is 

h(g(x),f(y)) + h(x, Y), a + s(a) (16) 

we can compare finite terms by comparing the total number of occurrences of the 

symbol f in them. Applying the finitely terminating rule h(g(x),f(y)) --+ h(x, y) 

reduces this number; applying the w-converging rule a * g(a) effects no change. 

(This example is an adaptation of the finite termination method of [18].) 

In some cases, one can use the transitive closure of +R for > and the reflexive- 

transitive closure of -+s for 3. A rewrite system is right-linear if the right-hand 

sides have at most one occurrence of each variable. 

Corollary 5.3. Let R and S be two rewrite systems. Zf R is left-linear and finitely 

terminating, S is right-linear and a-converging, and the right-hand sides of S and 

left-hand sides of R do not overlap, then R u S is a-converging. 



82 N. Dershowitz et al. 

Under the stated circumstances, the “commutation” property -+s 0 -+R E +R 0 -2 

holds; see [24]. 

This corollary does not have wide applicability, since the left-hand sides of 

finitely-terminating R may not refer to symbols used by S to construct an infinite 

structure. It does not, for example, apply to example (16), since g(a) unifies with 

the subterm g(x) of the left-hand side of R. 

To provide semantic methods of proving existence of limits, we define termination 

orderings for proofs of top-termination that are analogous to the well-founded 

quasi-orderings used to show finite termination (see [5]). 

Definition 5.4. A quasi-ordering Z= over a set of terms 9 is a top-termination ordering 

if it has the replacement property: sIi + tli, for i = 1,. . . , n, implies s > t for all 

s =f(sl1,.. . > sl,,) and t =f(sj,, . . . , sl,,) in 9, and if its strict part > is well-founded. 

Such orderings are not hard to devise. What is significant is what happens near 

the top of the term. For example, one can define a top-termination ordering on 

terms that is induced by a given quasi-ordering Z= on operators in 9: if f > g in the 

operator ordering, then any term s = f(sl,, . . . , sl,,,) is greater than t = g( tll,. . . , tl,,) 

in the term ordering; while if f - g, then s and t are equivalent. We always have 

f(sl,, . . ., 4n) -f(tl, 7.. .v tl,) in this ordering on terms. 

Theorem 5.5. A rewrite system R over T-(9,2’) is top-terminating if there exists a 

top-termination ordering 3 such that lu > ru for all rules I-+ r in R and finite 

substitutions u : 2 + 9. 

Proof. Suppose lu > ru for a top-termination ordering +. For an infinite w-deriva- 

tion to +R t, -+R t2 -+R . . . , if ti -+R ti+, at top position A, then t, > ti+l, and if 

t, +R ticI at an inner position, then ti + ti+l . Thus, an infinite number of top rewrites 

ti -+R t,,, would contradict the no infinite strictly descending sequence property of 

top-termination orderings. •i 

In the remainder of this section, we deal with constructor rewrite systems, by 

which we mean a set of rules R over a vocabulary 9 = SO u 9,) such that no term 

in %(3,,) is rewritable. In such systems, the left-hand sides must always contain a 

non-constructor symbol from 9,. 

Theorem 5.6. Let R be a left-linear constructor rewrite system. Suppose there is a 

quasi-ordering +, the strict part of which is well-founded, with the following properties: 
(a) If f is a constructor in SO, then s = f (. . . , sIi, . . .) + sli in the quasi-ordering 

(foranyimmediatesubtermsliofs); iffisanon-constructorin$,, thenf(. . . , slir . . .)> 

sli. 
(b) Ifs jR t then s & t in the quasi-ordering; ifs -+n t at its topmost redex but t 

has a non-constructor at its topmost position, then s > t. 
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(c) All jinite ground non-constructor terms in ~\~(.F,J are reducible. Then R is 

top-terminating for ground terms. Moreover, all o-normal forms of ground terms are 

constructor terms in ie”(9J. 

Proof. Were the system not top-terminating, then there would be an infinite deriva- 

tion to --+R t, -+R f . . with an infinite number of rewrites at the top, and, hence, with 

non-constructors at the top of each of its terms. Then, by (b), there would be an 

infinite descending sequence in t , contradicting its well-foundedness. 

Next, we show that, for any ground term s in $2 and for any integer kz0, there 

is a term t in 9 such that s -+E t and t has only constructors at depths less than k. 

This is by induction on s, using the well-founded ordering >, and for equivalent 

terms, by induction on k. 

Let s be of the form f(sl,, . . . , ~1,). If S is a constructor in SO, then s Z= sli, and 

by the inductive hypotheses for each sIi there is a ti such that sIi -g ti and t, has 

only constructors above level k - 1. 

Suppose, then, that f is not a constructor. Then, by (a), s > sli, so we can apply 

the induction hypothesis to each sli, and get arbitrarily many constructors at the 

top levels of those subterms. Let m be larger than the maximum depth of a left-hand 

side in R. Thus, sli-+g tj for t, with only constructors at the top m levels. By 

assumption (c) and left-linearity, any sufficiently deep term, headed by a non- 

constructor, must be rewritable at the topmost position A (since applicability of a 

rule cannot depend on anything below level m). So, s +gf( t, , . . , t,) -+R t, where 

the last rewrite is at the top. 

Now, consider the consequences of (b). If t has a non-constructor at the top, 

then s > t, and we apply the induction hypothesis to t. If t has a constructor at the 

top, then s & t, but t is strictly greater than its subterms, and we apply the induction 

hypothesis to them, as above. 0 

For instance, let SO = {a} and 9, = {f, g}. The system 

f(a) + a, f(x) - g(fk(x))) (17) 

has normal forms a and g”. For the quasi-ordering, we use s > t if s has at least 

as many occurrences of the non-constructor f as does t. 

We conclude this section with another method of showing that the limit of a 

derivation is a constructor term. 

The nesting level L’(t) of non-constructors in a ground term t in 3 is defined as 

follows: 

l If t is a constructor constant, then e(t) = 0. 

l If t is a non-constructor constant, then k?(t) = 1. 

l If t isf(tlI,...,tln) andf’ IS a constructor, then e(t) = max{e( cl,), . . . , k’( tl,,)}. 
@If t is f(tll,-.., tl,,) and f is not a constructor, then l(t)= 

1 +max{4tl,), . . . , 4tL)>. 
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We say that a constructor rewrite system R does not increase the nesting level of 

non-constructors if, for all rules l+ r in R and substitutions a, J(la) 2 &to). This 

condition can be checked syntactically by noting the nesting of function symbols 

above each variable. 

Theorem 5.7. Suppose that R is a left-linear top-terminating constructor rewrite system 

that does not increase the nesting level of non-constructors. Suppose further that all 

finite ground non-constructor terms in YI\ YI( so) are reducible. Then all w-normalforms 

of ground terms in 3 are constructor terms in CP( s,,). 

Proof. Let to-SR t, +R t2 jR. . . be an infinite derivation. Since R does not increase 

the depth of nesting of non-constructors, f?( t,) 2 f( t,) 2 /?( t2) 2. * * . It can be shown 

that the non-constructors must get farther and farther apart in the terms to, t, , t2, . . . , 

and so the limit is a constructor term. Note that if all finite ground non-constructor 

terms in %\Y( $,J are reducible by a left-linear system, then infinite ground 

non-constructor terms in Y~\%“(~,J are too. The limit is irreducible, since R is 

top-terminating. Therefore, the limit cannot have a non-constructor symbol, since 

all such terms are reducible. 0 

System (17) falls under this theorem. On the other hand, if we have a depth 

increasing rule, instead, as in: 

f(a) --+ 4 f(c(x))-f(f(c(x))), (18) 

then there are non-constructor w-normal forms, such as f w. 

The one-rule system 

f(x) + c(x,f(s(x))) (19) 

(for constructing a “stream” of “integers” s’(O)), with one non-constructor A is 

obviously top-terminating and has constructor normal forms by the above theorem. 

For example, the w-normal form of f(0) is ~(0, c(s(O), c(s(s(O)), . . .))). 

The system 

d(x) + c(a(x, x), d(s(x))), ~(0, Y) --+ Y, 

a(s(x), Y) - s(a(x, Y)) 
(20) 

(for computing a stream of even “integers”), with $,,= (0, s, c}, also meets the 

requirements of the above theorem. On the other hand, the system 

4(x) - c(m(x, x), q(s(x))), ~(0, Y) + Y, 

44x), Y) + s(a(x, Y)), m(O, Y) - 0, (21) 

44x), Y) - a(~, m(x, Y)) 

(for a stream of “squares”) does not fit into the scheme, since the last rule increases 

the nesting of non-constructors m and a. 
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The same idea as in this theorem applies whenever one can show that the nesting 

level is bounded, even if it temporarily increases. 

It can be shown that, in general, top-termination is undecidable, even for left-linear 

w-converging systems. Similarly, for top-terminating w-confluent systems, it is 

undecidable whether the distance between a term and its normal form is less than 

a given E > 0. A programming language with infinite constructor normal forms is 

described in [20]. 

6. Uniqueness of normal forms 

Recall that a relation + is w-confluent if We 0 -+‘” G +W 0 W+-. Confluence is 

decidable for finitely terminating systems [ 17,121, but not for non-finitely- 

terminating ones. For o-converging systems, we can use the following variation. 

Definition 6.1. A binary relation + over a topological space is semi-w-conjluent if 
WCo-*~-+“owt. 

A straightforward induction shows that, for w-closed systems, semi-o-confluence 

is equivalent to the more “local” condition: W+~ + c --Jo 0 w+. 

The notions of ordinary confluence and semi-w-confluence are independent: the 

system 

a -f(a), a -+ c, f(c) + c (22) 

is confluent, but not semi-w-confluent; the system 

a + b, a + c, b - g(b), c - g(c) (23) 

is semi-w-confluent, but not confluent. 

Obviously, w-confluence implies semi-w-confluence. The converse is not true in 

general; witness the non-w-converging, non-w-confluent, but semi-w-confluent, 

rewrite system: 

a +f(a), a - g(a), f(x) * x, g(x) + x. (24) 

However: 

Theorem 6.2. An w-converging semi-w-confluent binary relation - over a metric space 

has at most one o-normal form. 

Proof. Let u, and vE be w-normal-forms of to. Consider an element t, at least 

“halfway” between to and u,. That is, u, w+ t, *+ t,, +‘” v, and d(s, u,) <4 for 

every s in the chain from t, to u,. By semi-confluence, we have t, -+“’ vco. By the 

same token ua, w+- t, --+* t2 jw vmr for some t, such that d (s, v,) <i for s between 

t2 and voc, and t, -+‘” u,. Now u, w+ t3 *+ t2 jw vcor where t3 is such that d(s, u,) < 

d for s between t, and u,, and so on. Consider the chain t,,-* t, +* t,-+* . . . . 
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Since + is w-converging, this chain has a limit t,, and, clearly, d(u,, t,) = 

d(v,, t,)=O. Thus, u,=zl,. Cl 

A similar argument shows that: 

Theorem 6.3. An w-closed, w-converging binary relation + over a metric space is 

semi-w-conjluent if and only if; it is w-confluent. 

The hypothesis of w-closure may be unnecessary, but is used in the following. 

Proof. For the inobvious direction, suppose *+ 0 +W c “+ 0 +w. Let t, be such 

that u0 W + to +* t, -+” v,, and d(s, vO) < ; for every s between t, to q,. By semi- 

confluence, 1.4~ +W u1 W+- t,. Similarly, t, ** t2 +w vl w+ vo, for t2 such that 

d(s,u,)<a for s in t2+-Wu,, and so on. Since + is w-converging, the w-chain 

to+*tl+*t2-+*-.- has a limit t,. The w”-chains u0 +w U, jW I.+. . . and 

uO+Wq+. . . are such that the distance between tzi and ui is no more than l/4’ 

and between tzi+, and vi is 1/22’+‘. Thus, these chains have limits U, and v,, 

respectively. But d( u,, t,) = d( v,, t,) = 0; hence, U, = urn. Since -+ is w-closed, 

u~--+wu,=v, W+-- vO, and the relation is w-confluent. This is shown in Fig. 1. 0 

l 

UI u2 

Fig. 1. 

Recall that orthogonal systems are left-linear and non-overlapping. Such systems 

are always conlluent; they are not, however, w-confluent.6 

6 Despite claims to the contrary in our earlier work. 
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Theorem 6.4. If R is an w-converging orthogonal rewrite system, then R is semi-w- 

conjluen t. 

Non-left-linear system (4) is not semi-w-confluent: the term f(f(a, b),f(a, b)) 

rewrites to normal form c in one step and to f(f(a, g”),f(g”, b)) in w steps, but 

it takes o + 1 steps to join them. The requirement of w-convergence may be super- 

fluous. 

The notion of parallel rewriting is crucial in reasoning about orthogonal systems. 

We write +k to denote one multiple rewrite step, applying the same rule and 

substitution at any number (from 0 to w inclusive) of disjoint positions, and use 

-+L,, to specify the rule (r) and substitution ((T) used. 

Proof. Suppose to -+R t, +R. . . -E t,, and to +rc tb by some rule r in R. It is well 

known (see [ 16,221) that there exist terms t: such that, for all i < w, 

t, 'R ti+l 

If one goes far enough along the o-converging derivations to -+R t, +R. . . -_“R t, 
and tA+k ti -1’ . . . +g t’ R -2, the top parts of the ti and ti will have stabilized, and 

just like t, -k t:,we have t,-+h t&. 

It follows that t’-+g t& k+-. . . k+- t,, whenever t’ + t +G t,, for natural 

number n. Since R is orthogonal, it is always possible to interleave the (up to w x n) 

steps between t, and t& so that in fact t, -z tb. 0 

Recall that orthogonal systems need not be w-converging (example (2)), nor 

w-closed (example (7)). Indeed, the following non-w-converging orthogonal system 

(due to [15]) does not have unique w-normal forms: 

a --f(g(a)), f(x) - x, g(x) + x. 

The term a has normal forms, f” and g”‘. 

Nonetheless: 

(25) 

Corollary 6.5. If R is an w-converging orthogonal rewrite system, then R is uniquely-w- 

normalizing. 

Proof. By Theorem 6.2, R has at most one w-normal form. By Corollary 4.5, R has 

at least one. 0 

The semantic methods of Section 5 may be used to establish ground w-confluence 

of a system R, that is, w-confluence on the ground terms s(9), as well as s@cient 
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completeness, that is, any ground term in g(9) has an w-normal form that is a 

ground constructor term in %(FO). Using Theorem 5.6 or 5.7, one can determine 

that o-normal forms of ground terms are always constructor terms in 9”. Let 

n[f(sl,, . . . 3 4,)lp and ddtlI, . . . , tl,,)],, be two terms with distinct constructors 

f and g in SO embedded in the same constructor context u[ -1, in 9(s0, Z), where 

the sli and tli are arbitrary terms in 9. If R is such that no two such terms are 

provably equal (by replacement using the symmetric closure of+R), then confluence 

follows from the normal forms being constructor terms. Without this condition on 

provability, a simple system like 

a + b, a+c (26) 

with constructors b and c, would mistakenly be deemed confluent. 

Even for left-linear, top-terminating systems, o-confluence is undecidable. Also, 

the joinability of critical pairs (as in [ 171) is not a sufficient (nor necessary) condition 

for o-confluence, as can be seen from the following w-converging system: 

a + b, g(x, a) +f(g(x, a)), 

g(x, b) - c, f(c)+ c. 
(27) 

The term g(x, a) rewrites in one step to either f(g(x, a)) or g(x, b), both of which 

rewrite within a few steps to c; yet, g(x, a) has two distinct o-normal forms, c and 

f”. 
In [4], a condition on normal forms, called “R-propriety”, is used to establish 

existence of unique solutions (as functions over F-“) to non-constructor operators, 

defined by a set of recursive rules. 

7. Algebraic semantics 

In this section, we consider algebraic aspects of infinitary theories-that is, their 

models-and their connection to operational aspects (namely, w-rewriting). Since 

we are interested in infinite computations, it is natural to work with continuous 

models. (We refer the reader to [25,26] for general references on the topic.) It is 

also natural to use a topological completion process. Alternative notions of comple- 

tion have been studied in the algebraic framework, leading to different initial models, 

each with its own abstract properties (see, for instance, [l, 19,271). 
Since our approach is unusual, we first illustrate the difficulty in assigning an 

appropriate algebraic semantics in the continuous case. In particular, the “natural” 

semantics identifies all terms, whenever there is identity function or axiom of 

idempotence. Consider the equations q(0) = 0 and q( 1) = 1, thinking of q as “squar- 

ing”. We have 

O=q(O)=q(q(O))=.-. 
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and 

l=q(l)=q(q(l))=.... 

Were equations to carry over to the limits, we would find both 0 and 1 equal to qw, 

which is “inconsistent”. This is why we will work instead with oriented equations, 

interpreted in a model as inequations (but see [2]). 

Definition 7.1. Given a vocabulary 9, a continuous S-algebra consists of: 

l A universe M, with a quasi-ordering <, such that each non-empty, strictly 

increasing w-chain admits a least upper bound (lub) in M. 

l A continuous interpretation f M : M” +M, for each f in 9 (with arity n). Con- 

tinuitymeanslub,,,f”(t,‘,. . . , t:)=f”(lub,,, tt,.. .,lub,,, t:)foranychains 

(r,‘),+, . . . , (fY)jrw. 

Given a continuous S-algebra M, any assignment cr: %‘+ M extends to a 

homomorphism u : T( 9,2) + M, as usual: if t =f( tl, , . . . , tl,,) for somef in 9, then 

ta=f”(t~,q.. . , tl,a); if t = x for some x in 2, then ta = xu. 

Definition 7.2. Given a rewrite system R over .Y( 9, Z), an R-model is a continuous 

S-algebra M that satisfies: 

(1) for any rule I+ r in R, assignment (T: Z+ M, and context c[ .I,, for 9, the 

inequality c[ ICI,, < c[ ra], (in M) holds; 

(2) for any assignment (T: SF’+ M and derivations (u,)~+ and (Ui)i-<w such that 

lim,_, ui = lim,_, vi, it is the case that lubi,, UP = lub,,, UP. 

The class of all R-models is denoted OrdR. 

Note that a model need not obey equality of left- and right-hand sides, as in the 

classical case, but, rather, inequality. The existence of least upper bounds in (2) 

comes from the fact that the two sequences (u,) and (0,) are increasing, by (1). The 

class OrdR is a non-empty category (cf. Theorem 7.4). 

Definition 7.3. Given a rewrite system R over 3, the ordered model @R has a universe 

consisting of all finite ground terms 9 and all their (possibly infinite) w-normal 

forms, partially ordered by + E. The model $R consists of the terms 3 and their 

w-normal forms, ordered by -g. 

It can be shown that @, and .@K satisfy both conditions for R-models for 

w-canonical (that is, w-normalizing and w-confluent) systems. Without w- 

confluence, even with unique w-normalization, condition (2) need not hold for 

non-top-terminating systems. 
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Theorem 7.4. Let R be an w-canonical rewrite system. The ordered model @, is initial 

in the class OrdR of R-models. 

Proof. Let M E OrdR ; we need a homomorphism 4 : 4, --+ M. For t finite, we must 

take +[t] = t”. For an infinite w-normal form t,, we have ti --+w t,, for some 

derivation (ti)i<w. We define: c$[tJ = +[lub,,, ti] !Zf lubi<,(t”). This 4 is 

%-morphism, 

F(lub(ti,,)“. . . . 
since 4[f(fmll,. . . , t,l.)l=lubf”((tiI,)M,. . -7 (tiInI”)= 

, luWln)“) =f M(4[k&l,. . . , +[&I,,]), where n is the arity off: 

Lastly, 4 is continuous, by construction. 0 

We may now extend the definition of tcr to infinite terms. For any model M in 

OrdR and infinite term t, in 4, that is the limit of a derivation (ti),+, let 

t,u dzf lub,<, f,u. Thanks to condition (2) of Definition 7.2, the lub does not depend 

on the derivation ( ti) leading to t,. 

Definition 7.5. Given terms t and t’ in gR, and an R-model M in OrdR, we say 

that M obeys the inequality t =S t’, and write M k t < t’, if fu< t’a for every assign- 

ment u : 2 + M. For a class of models M, we write M + t < t’ if M i= t < t’, for 

every M in M. 

Theorem 7.6. Let R be an w-canonical rewrite system and t, t’ be terms in gR. Then 

OrdR k t < t’ if, and only if; t +g t’. 

Proof. Suppose that Ord, k t < t’. In particular, $R + d < t’, which means that 

t -+E t’. Conversely, suppose that t -_“R t’. Let M E OrdR and let u : i? + M. Without 

loss of generality, we may assume t to be finite, since otherwise it would have to 

be a normal form and t = t’. Hence, there exists a derivation t = 
&--tR.. .+Rfi’R.. .‘“R t’. By the nature of rewriting, we have tu -_*R &a for all 

i, and, since M is an R-model, the t,u form a chain in <. Since M is a continuous 

algebra, tu < lub,<, tiu = t’u. In other words, M k t < t’. 0 

Definition 7.7. The class Eq, of equational R-models is the subclass of the R-models 

OrdR for which (~[Eu],,)~ = (c[ru],)“, for any rule I+ r in R, substitution 

u: Z-+ 9, and context c[ .I,, for 9. 

Note that M is in Eq, only if M obeys l- r(thatis, M+l=Zrand Ml=r<l) 

for all rules I-+ r in R. 

Definition 7.8. Given R, a uniquely w-normalizing rewrite system, the normal-form 

model NFR consists of the w-normal forms of the finite terms, ordered in a discrete 

fashion (that is the quasi-ordering 6 for NFR is equality of terms). 
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Theorem 7.9. Let R be an w-canonical rewrite system. The normal-form model NFR 

is initial in the class Eq, of equational R-models. 

Proof. It is clear that NFR satisfies the conditions on R-models. Let A4 E Eq, ; we 

need a homomorphism Cc, : NFR --$ M. Denote by &,r and 4,,., the homomorphisms 

(as per Theorem 7.4) from C?, to NFR and from @, to M, respectively. We want 

~,?+,r 0 $ = +M. Thus, for any u-normal form t, that is the limit of a derivation ( ti)i<w, 

we must define rj as follows: $[tJ d&flub,,, tj”‘. One can check that such a (I, is 

well-defined. Moreover, as previously, $ is a continuous morphism. 0 

Corollary 7.10. Let R be an w-canonical rewrite system, and t, t’ be terms in gR. Then 

Eq, I= t = t’ iJ; and only if, t -+z 0 z+ t’. 

The relationship between the models in OrdR, Eq,, and Alg, (the class of the 

finite, usual models of the equations represented by R), ordered by inclusion, forms 

a lattice, as illustrated in Fig. 2. The quotient model ??/=R is initial in the class 

Alg, of algebraic models; the ordered model @, is initial in the R-models OrdR ; 

the normal-form model NFR is initial in the intersection Eq, of the two other 

classes. The trivial model Triv lies at the top of the lattice. 

CT,? Gl =I, 

Fig. 2. Lattice of R-models. 

For example, let the vocabulary 9 consist of two constants, 0 and 1, and unary 

operator q. Let R be 

0 -+ 9(O), l- q(l). (28) 

The ordered model @, has as universe 

IO, 9(O), . . . ,9”(0),...,1,9(l),...,9”(~),...,9”} 



92 N. Dershowitz et al. 

ordered by: 

O<q(O)<. . *=Gq”(O)=S. ’ .<qw, 

The universe NFR collapses to the trivial model {qw}. Notice that OrdR does not 

obey 0 < 1 or 1 < 0, and that Alg, does not obey 0 = 1, whereas Eq, obeys all these. 

Consider the following system R: 

0+x-+x. (29) 

Eq,, that is, the set of models that obey 0+x = x, contains in particular NFR, which 

is exactly the jinite expressions that do not have subexpressions of the form 0 + x. 

Consider now S: 

X~O-tX. (30) 

Eq, has only one trivial model: NFs = {0+ (O+ . * . )}. It does not contain NFR. We 

have the apparent paradox of two classes of models Eq, and Eq,, “defined” by 

the same equation x = 0+x, which do not coincide. This stems from the fact that 

an R-model models an equation oriented in a particular way; the orientation 

influences the class of models Ord,, even when the orientation is “forgotten” in Eq,. 

Definition 7.11. The class of the o-reachable models is the subclass of the models 

M of Ord, such that the canonical morphism 4M : GR - M is surjective. 

The w-reachable models form a non-empty, complete sublattice of OrdR (contain- 

ing at least 54,). 

Theorem 7.12. For any o-reachable model M, there exists a continuous congruence 

=M on $?K such that M is isomorphic to &/-,. 

By “continuous”, we mean that t, = ,,,, t for any derivation ( ti)icw with limit t, 

such that t, -M t for all i. The proof is as in the finite case, with t = ,+, t’ if, and only 

if, 5b[fl = 4kLf’l. 

8. Hierarchical systems 

In this section, we consider typed systems (cf. [l, 13]), which are more general 

than the constructor systems of Section 5. A vocabulary (signature) is now a pair 

(9, 5), where Y stands for a finite family of sort names and 9 is a finite family of 

operators on Y’. All the definitions given so far extend to the sorted case. 
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Definition 8.1. A hierarchical speci$cation is a triple (9, 9, R), where the sorts Y are 

split into a disjoint union 9, u 9,) the operators 9 into SO u 9,) and the rewrite 

system R into R,u R,. The systems RO and R are w-canonical on Y((YO, SO), 2) 

and S((.Y, 9), E), respectively. Let SO denote the set ie((.Y,,, 9,J) of ground construc- 

tor terms. The class HOrdR of hierarchical models is the class of models M of OrdR 

such that the restriction of M to the vocabulary (.YO, SO) is isomorphic to ‘&. 

In the sequel, we suppose that the left-hand sides of the rules of R, always contain 

at least one symbol of 9r (otherwise, hierarchical consistency, defined below, could 

only be satisfied in trivial cases). In Section 5, RO was void. 

Definition 8.2. A hierarchical specification is suficiently complete if for every t in 

%((.YO, PI)), there exists a t’ in %&, such that OrdR k t < t’. 

Definition 8.3. A hierarchical specification is hierarchically consistent if for any t in 

Y$ and for any t’ in gOR,, OrdR k t < t’ if, and only if, Ord, k t < t’. 

Note that an infinite term t’ in &ORo is by definition a normal form for R,. It is 

also a normal form for R, due to the hypothesis about left-hand sides of rules of 

R, . Thus, sufficient completeness is equivalent to the existence of a normal form t’ 

such that t -g t’, and hierarchical consistency, to t --+G t’ if, and only if, t -+&, t’. 

These definitions are consonant with those of [27] for their notion of continuous 

specifications. Sufficient completeness means that any finite term t of an old sort, 

built with old and (possibly) new operators, is smaller than a (possibly infinite) 

term t’ built with old operators only. Hierarchical completeness means that for two 

terms t and t’ built with old operators only, t =G t’ holds in the new specification if, 

and only if, it holds in the old one. Note also that the above definitions extend, as 

for finitary specifications, to the case where no new sort is introduced (9, =(d); 

operators of 9” are then called constructors, and operators of 9, are called derived 

operators (or simply “non-constructors”). As before, a constructor term is a term 

containing only constructors; a non-constructor term is a term containing at least 

one non-constructor. For instance, the specification: 

constructors: a: + elem 

c: elem X elem --+ elem 

derived operator: 6: + elem 

law: b < c(a, b) 

is sufficiently complete in our sense. Note that in the classical, finitary framework 

[28], it would simply be rejected as (finitely) incomplete. 

Now, the main result is that, as in the finitary case, a hierarchically consistent 

and sufficiently complete specification satisfies its hierarchical constraints, in the 

following sense. 
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Theorem 8.4. If (9, SF, R) is sujiciently complete and hierarchically consistent, then 

HOrdR is a non-empty, complete sublattice of OrdR. Its initial model is G,. 

Proof. The proof is essentially as in the finite case. The main difference is in showing 

that GR is actually in HOrdR, which we establish as follows. 

The restricted model GoOR may be canonically embedded into #&,,. If too E 5!& is 

finite, then t, is in fact in $, and therefore also in S?&. If t, is infinite, we may 

write tO+R tl ‘R ’ ’ . +g t,, where the ti are terms of Y?‘((.Y’,,, 9)). Using sufficient 

completeness, there exists t&E +&, such that tm --+E t&. Since t, is a normal form 

for R, this means that t, = t&, i.e. that t, belongs to Go&,. 

Thus, &j,, may be seen as a subset of @Oollo. Now, hierarchical consistency shows 

that it is actually equal to the whole set, and that the orderings induced by R, and 

by R are identical. This finally establishes that GR E HOrdR. 

Define a quasi-ordering < Ohs on @, as follows: when restricted to the sorts of Sp, 

it is +&(or equivalently +s, because of hierarchical consistency), and t <Ohs t’ if, 

and only if, c[t], -+& c[t’],, for any terms t, t’ in 4, of sort s in Y, and context 

c[ .lP with result in a sort of YO. 

Theorem 8.5. The quotient $R/-ObS ordered by <Ohs, is terminal among the 

w-generated models of HOrdR. 

The proof is classical. 

9. Discussion 

There are circumstances (such as, stream-based programming) when the intended 

meaning of a function application is an infinite structure. As non-deterministic 

rewrite rules are convenient for specifying algebraic properties, we studied the 

semantics of rewritings that result in infinite terms. 

We investigated the following properties of infinite derivations, among a few 

others: 

l w-closure: Any term that can be computed from a finite term in a transfinite 

number of rewrite steps is the limit of w steps. 

l top-termination: Any sequence of w rewrite steps has at most a finite number of 

rewrites at any one position. 

l w-normalization: Every finite term has at least one normal form reachable in w 

steps. 

l unique w-normalization: Every finite term has exactly one w-normal form. 

A number of counter-examples to conditions that seemed prima facie to assure 

w-closure or w-normalization were observed. On the other hand, some sufficient 

conditions for these properties were found, though we believe they leave room for 
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improvement. In particular, for achieving such properties, left-linearity is important, 

top-termination is beneficial, while orthogonality is insufficient. With unique w- 

normalization, one can assign semantics to rewriting under which function applica- 

tions that result in the same infinite structure are equal. 

There are many alternatives to the definitions we have given that are worth 

exploring: normal forms can be defined as (possibly infinite) terms to which no 

rewrite applies (see [ 151); the initial terms of derivations are permitted to be infinite 

(finitely representable infinite terms are dealt with in [2, lo]); strong convergence 

properties, like top-termination, can be required (see [ 10, 11, 151); transfinite terms 

(with paths of length greater than w) can be considered, in which subterms do not 

necessarily “disappear” after being pushed down w times (cf. [2]); rewrite rules 

containing infinite terms (from Ym) themselves, and not just applying to infinite 

terms, can be allowed. 
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