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Abstract 

Let M =(E,  d~) be an oriented matroid on the ground set E. A real-valued vector x defined on 
E is a max-balanced flow for M if for every signed cocircuit Y~(.9 ±, we have 
maxe~y+xe=maxe~r -x  e. We extend the admissibility and decomposition theorems of 
Hamacher  from regular to general oriented matroids in the case of max-balanced flows, which 
gives necessary and sufficient conditions for the existence of a max-balanced flow x satisfying 
l ~< x ~< u. We further investigate the semilattice of such flows under the usual coordinate partial 
order, and obtain structural results for the minimal elements. We also give necessary and 
sufficient conditions for the existence of such a flow when we are allowed to reverse the signs on 
a subset F_~ E. The proofs of all of our results are constructive, and yield polynomial algorithms 
in case M is coordinatized by a rational matrix A. In this same setting, we describe a polynomial 
algorithm that for a given vector w defined on E, either finds a potential p such that w'= w + pA 
is max-balanced, or a certificate that M has no max-balanced flow. 

1. Introduction 

A rea l -va lued  v e c t o r  x i ndexed  on  the  g r o u n d  set E of  an  o r i en ted  m a t r o i d  

M = (E, (9) is ca l led  a max-balanced matroid flow for M, or  s imply  a max-balancedflow, 
if 

m a x x e = m a x x ~  for all Ye(9±. 
e~Y + e~Y 

I f  M is a g r a p h i c  o r i en ted  m a t r o i d ,  then  this de f in i t ion  is e q u i v a l e n t  to  the  fo l lowing:  

A r ea l -va lued  vec to r  x i ndexed  on  the  arc  set E o f  a d i r ec t ed  g r a p h  D = ( V ,  E~} is 

a m a x - b a l a n c e d  f low if 

m a x  x ~ =  m a x  x~ for a l l O c W c V .  
e~h+ (W) eeJ-(W) 
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In this paper, we extend a number of results for max-balanced flows in directed 
graphs and regular oriented matroids to general oriented matroids. In particular, we 
extend the admissibility and decomposition theorems of Hamacher [8, (3.21), (3.24)] 
from regular to general oriented matroids in the case of max-balanced flows. The 
resulting necessary and sufficient conditions for the existence of a max-balanced flow 
x satisfying l~< x ~< u also yield a good characterization. 

We further investigate the semilattice of such flows under the usual coordinate 
partial order, and obtain structural results for the minimal elements which extend 
results in [10]. We also give necessary and sufficient conditions for the existence of 
such a flow when we are allowed to reverse the signs on a subset F ~_ E, generalizing 
the result of Robbins [14] that an undirected graph is 2-edge connected if and only if it 
has an orientation which is strongly connected. 

The proofs of all of our results are constructive, and yield polynomial algorithms in 
case M is coordinatized by a rational matrix A. In this same setting, we describe 
a polynomial algorithm which for a given vector w defined on E, either finds 
a potential p such that w'= w +pA is max-balanced, or a certificate that M has no 
max-balanced flow. For a directed graph, this is known as the max-balancing 
problem, and has been studied by Schneider and Schneider [18, 20], Rothblum et al. 
[16] and Young et al. [21]. 

Max-balanced flows defined on digraphs have been studied by Schneider and 
Schneider [-18-20]. See also [10] for a discussion of max-balanced flows satisfying 
lower and upper bounds, [17] for a discussion of a related algebraic matrix scaling 
problem, and [21] for a discussion of efficient algorithms for max-balancing. Related 
algebraic generalizations of network flow and linear programming problems have 
been considered by Hoffman [11], Cunningham-Green [4], Hamacher [5-7, 9], and 
Zimmerman [22, 23]. See also the survey paper by Burkard and Zimmermann [3] and 
the collection of papers in [2]. Aloebraic matroid flows defined on regular matroids 
were introduced and studied by Hamacher [5-8]. If the matroid M is regular, then 
a max-balanced matroid flow is an instance of an algebraic matroid flow with flows 
contained in the ordered semigroup of the reals together with the semigroup 
operation of max. 

2. Preliminaries 

Following the development in [1], we present some of the theory of oriented 
matroids needed for this paper. We will assume knowledge of some basic properties of 
matroids (see, for example, [13]). A signed set X is a set _X, called the underlyin9 set of 
X, together with a partition of _X into possibly empty subsets (X +, X - ). For a signed 
set X, we use - X  to denote the signed set with underlying set X_ such that 
( - X ) + = X  - and ( - X ) - = X  +. For a matroid M with ground set E, a circuit 
signature of M is a collection ¢ of signed sets X whose underlying sets X are the 
circuits of M, such that -- Xe(_9 whenever XE(5'. A cocircuit signature of M is a circuit 



M. Hartmann, M.H. Schneider/Discrete Mathematics 137 (1995) 223-240 225 

signature of the dual matroid M ±. The pair (E, (9) is an oriented matroid if (9 is a circuit 
signature of M and there exists a cocircuit signature (9 ± of M such that the following 
property holds. 

Orthogonality. For all X E(9 and Y~(9± with Xc~ Y #O, both (X+c~Y+)u 
( X - n Y - ) ¢ O a n d ( X + n Y ) ~ ( X - n Y + ) # O .  

Such a cocircuit signature is uniquely determined whenever it exists. Signed sets 
Xe(9 and YE(9 ± are called (signed) circuits and cocircuits of (E, (9). 

We will also make use of two other properties of oriented matroids: 

Signed circuit elimination. For all X1,Xze(9,  x e ( X + n X ~ ) u ( X X n X ] ) ,  and 

y ~ ( X ~ - \ X 2 ) ~ ( X I \ X f )  there exists X3~(_9 such that X ~ _ ( X ~ - u X ] ) \ x ,  
X3- ~(XI-  uXz- ) \x  and y6X_3. 

Minty's painting iemma. For all e~E and all partitions of E into (possibly empty) 

subsets R, G,B, and W with e ~ R u G ,  exactly one of the following holds: 
(i) there exists X~(9 such that 

e ~ X ~ R u G w B  and X+ n G = X - c ~ R = O  

or,  

(ii) there exists Ye(g± such that 

e ~ Y ~ _ R u G u W  and Y + n G = Y - n R = O .  
I 

An oriented matroid M = ( E ,  (9) is said to be coordinatizable over a field o~ if there 
exists an o~-valued matrix A whose columns are indexed on the elements E such that 

the circuits and cocircuits of M are the signed supports of elementary vectors of, 
respectively, the null space and row space of A. Recall for any field ~ ,  an elementary 
vector of a subspace of the vector space ~-E is a nonzero vector x whose support is 
minimal. In the circuit X corresponding to x, the sets X + and X -  are, respectively, 

the coordinates of the positive and negative elements of x. In this case we say that 
M = ( E ,  (9) is coordinatized by the matrix A. For oriented matroids coordinatized by 
a real matrix A, we will make use of the following lemma from [15]. 

Harmonious decomposition. I f  Ax  = 0  and x 9 0  then there exist elementary vectors 
x 1 . . . . .  xn>~o in the null space of  A and nonnegative numbers lal . . . . .  #n such that 

x =~7= 1 #ix'. I f  the vector x has an element Xa >0,  then there exists an elementary 

vector ~ >~ 0 in the null space of A such that Xa > 0 and "2 e = 0 whenever Xe = O. 

This lemma implies that if x is a max-balanced flow for the oriented matroid 

coordinatized by the real matrix A, then maxe:~pA~e>oxe=maxe:~pA)~<oXe for any 
potential p such that pA ~ O. 
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3. Feasibility conditions 

There is a simple condit ion for the existence of a max-balanced matro id  flow for 

a given oriented matroid. 

L e m m a  1. There exists a max-balanced f low for the oriented matroid M =(E,  (9) if and 

only if  there is no Y~(9± with Y + = Y_. 

Proof. Clearly if Y is a cocircuit with Y+=_Y, then we cannot  have 

maxe~r+ x ~ = m a x ~ r - X e  for any x e N  E. Conversely, if no such cocircuit exists, then 
the vector x defined by xe =  1 for e~E  is a max-balanced flow for M. [] 

As a consequence of Lemma 1 we obtain the following result for oriented matroids  
coordinatized over R e. 

Corollary 2. There exists a max-balanced f low for  the oriented matroid M = ( E , ( 9 )  

coordinatized by the real matrix A if  and only if A x = O ,  x > 0 ,  is feasible. 

Proof. If x is a max-balanced flow for M, then it follows from Lemma 1 and Minty 's  

painting lemma with R = E and G = B = W =  0 that for each e E E there exists X ~ (9 with 

e e X  ÷ =_X. Because of  the correspondence between circuits of M and elementary 

vectors, for each e e E  there exists a vector x such that x~>0, x~>0,  and Ax=O.  
Summing these vectors gives the result. 

Conversely, if M has no max-balanced flow then by Lemma 1 there exists Ye(9 ± 

with Y+ = _Y. Let y = p A  >>,0 be the elementary vector in the row space of A corres- 

ponding to Y. Then if A x  = 0  and x >0 ,  we must  have pA =0 ,  a contradiction. [] 

Next, we give conditions for the existence of a max-balanced flow for an oriented 

matro id  satisfying given lower and upper bounds.  

Theorem 3. For an oriented matroid M = ( E ,  (9) and vectors 1, u ~ R  ~ satisfying I <~ u, the 

following are equivalent: 

(i) There exists a max-balanced f low x for  M satisfying l <~ x <~ u. 
(ii) For every Y~C ±, 

max le <~ max Ue. 
e ~ Y  + e e Y  

(iii) For each a~E there exists Xa~(9 such that a ~ X  + =X_~ and 

Ue>~la for all e~X_a. 

Proof. (i) ~ (ii): This follows directly, since for a max-balanced x satisfying 1~< x ~< u 
we have 

m a x  I e <~ max xe = max X e ~ max ue. 
eEY + eEY + e~Y  e ~ Y -  



M. Hartmann,  M . H .  Schneider /Discre te  Mathemat ics  137 (1995) 2 2 3 - 2 4 0  227 

(ii) ~ (iii): Suppose that (ii) holds. Then it follows from Minty's  painting lemma by 

setting R={eeElue>~la} ,  W = { e e E l u e < l ~ } ,  and G = B = O  that  either the desired 

circuit exists or there exists Yc(9 ± such that a c  Y+ and Ue < I~ for ee Y- .  In the latter 
case, 

max le >~ l~ > max us, 
e6Y + eEY 

which violates (ii), and so the desired circuit exists. 
(iii) ~ (i): Suppose that (iii) holds. Then define x ~  e by 

x ~ = m a x { l ~ l e c E  and a e X e  + }. 

Note  that for acE,  we have la~x~<~u, since a e X 2  and since a c X e  + implies that 

le<.U,. TO see that x is max-balanced,  let Yc(9 ± and choose a e Y  + so that 

xa=maxe~r+ Xe. NOW choose b so that a c X  + and x~=lb. Since a c X ~  Y+ it follows 
from or thogonal i ty  that there exists c c X ¢  c~ Y - .  Therefore, it follows that 

max Xe = X~ = l b <~ X c <~ max Xe. 
eEY + e~Y 

Since - Y c ( 9 1  for all Yc(9 ±, the reverse inequality holds also, and therefore (i) 

holds. [] 

Setting I = u = x, we obtain the following characterizat ion for max-balanced flows in 
oriented matroids. 

Corollary 4. A vector x c E  E is a max-balanced f low for  the oriented matroid M = ( E ,  (9) 

if and only if for  each a c e  there exists XaCC ~ such that a c X  + =X_a and 

Xe>~X. for all ec_X~. (1) 

We will use mbf(l, u) to denote the set of max-balanced flows x satisfying I<~x<<.u. 
Parts  (ii) and (iii) of Theorem 3 give a good  characterization for the feasibility of  the set 

mbf(1, u). The following procedure can be used to find a max-balanced flow in mbf(l, u) 
or show that  no such flow exists. 

Feasible flow algorithm 

Input: An oriented matroid  M =(E, (9) and vectors l, u e ~  E satisfying l <~ u. 
Output: Either a max-balanced flow x satisfying l<~x<~u, or an element a c E  and 

a cocircuit Y c C  ± such that a e  Y+ and 

Ue<l, for all ee  Y - .  

(0) Set Xe= --o¢ for all ecE.  

(1) If l~<x, return x and STOP.  
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(2) Choose any acE  with xa < l,. Find Xs(9 such that a s X  + = X and ue >~ la for all 
e~X,  and update x~ for e e X  + by 

x~=max{x~, l ,} .  

Return to (1). 
(3) Otherwise, find Ys(_9 ± such that a s  Y+ and u~ < I, for all ee Y- .  Return a and Y, 

and STOP. 

This simple algorithm is a paradigm for other algorithms which give constructive 
proofs for most of the results in this paper. If we process the elements in decreasing 
order of l~, then the algorithm can be thought of as trying to increase the subset of arcs 
that satisfy (1) in a top--down fashion, which guarantees once a value is set by the 
algorithm it is not changed in subsequent iterations. If M is the graphic oriented 
matroid associated with a directed graph D = ( V, E), then we can find either a directed 
circuit or a directed cocircuit containing a in O(I E I) time. If we contract the directed 
circuits found in (2), the feasible-flow algorithm can be modified to have an O(] VI IEI) 
running time in this case. 

If for a given partition E = R u  W with a s R  we can find in polynomial time either 
Xs(9 such that a s X + = X ~ _ R  or Ys(9 ± such that a ~ Y  + and Y - ~ _ W ,  then the 

I 

feasible-flow algorithm is polynomial. In particular, if M is coordinatized by a rational 
matrix A, then such X or Y can be obtained from corresponding basic optimal 
solutions x* and p*, 2* to the primal and dual linear programs: 

maximize xa 

subject to Ax=O, 

and 

minimize 

subject to 

xe=O for e e W ,  

x.~< 1, 

x~>0 

2 

(pA)e>~O for e s R \ a ,  

(pA)~+2~> 1, 

2~>0. 

If) .* = 1, then X is the circuit corresponding to x*. If 2* = 0, then Y is the cocircuit 
corresponding to y* = p*A. 

Similarly, if M is coordinatized by a rational matrix A, then for a given partition 
E = R ~ G u B u  W with a s R u G ,  we can obtain either Xs(9 such that a s  X ~ E \  W and 
X + n G = X - n R = O  or Ys(9 ± such that a~Y_~_E\B and Y + n G =  Y - n R = O  from 
corresponding basic optimal solutions to a primal~tual  pair of linear programming 
problems. As a consequence, our constructive proofs based on the alternatives in 



M. Hartmann, M.H. Schneider,,'Discrete Mathematics 137 (1995) 223 240 229 

Minty's painting lemma yield polynomial algorithms when M is coordinatized by 
a rational matrix. 

4. Sign reversal properties of max-balanced flows 

For an oriented matroid M =(E, (9) and a subset F_~ E, the matroid obtained from 
M by reversing the signs on F, which we denote by rev(M, F), is defined as follows: For 
each circuit X ~ (9, rev (M, F ) contains the circuit Z where Z + = (X + \F )  w(X - c~F ) and 
Z - = ( X - \ F ) u ( X + n F ) .  Note that the underlying sets X and _Z coincide. It is 
straightforward to show that rev (M,F)  is an oriented matroid and that 
(rev(M, F)) i =rev(M ±, F). We will use (gv and (gv ± to denote the circuit and cocircuit 
signatures of rev(M, F). We will also call a diagonal matrix A a ___ 1-diagonal matrix if 
each diagonal entry 2 ,e{ - 1, + 1}. 

The following sign-reversal problem was shown by Itai [12] to be NP-Complete.  

Problem 1. Given an undirected graph G =(V, E) and vectors l, u eN  e satisfying 1~< u, 
is there an orientation of G which admits a circulation x satisfying I~x<<.u? 

In this section, we give good characterizations for analogous problems for max- 
balanced matroid flows, which yield polynomial algorithms when M = (E, (9) is coor- 
dinatized by a rational matrix A. We start by describing two fundamentally different 
approaches. 

Let D be a fixed orientation of the graph G = ( V , E ) ,  and let A be the node-arc 
incidence matrix of D. Then Problem 1 asks for the existence of a _ 1-diagonal matrix 
A and a vector x~[~ E such that 

A A x = O  and l<~x<~u. (2) 

By making the change of variables y = Ax,  it is easy to see that (2) has a solution if and 
only if the system 

A x = O  and I<~Ax<~u (3) 

has a solution. In the context of max-balanced flows, the requirements analogous to 
(2) and (3) are not equivalent, and we show that each of the corresponding problems 
for max-balanced flows has a good characterization. 

The following theorem generalizes the result of Robbins [14] that an undirected 
graph is 2-edge connected if and only if it has an orientation which is strongly 
connected. 

Theorem 5. Let M =(E, (9) be an oriented matroid, and let l , u~E satisfy l <~ u. Then the 
following are equivalent: 

(i) There exists a subset F ~_ E such that rev(M,F) has a max-balanced flow x satisfy- 
ing l <~ x <~ u. 

(ii) For every Y~(9 ± and f e  Y_ there exists eE Y_ \ f  such that 11 <~Ue. 
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Proof. (i) ~ (ii): This implication follows directly from part (iii) of Theorem 3 since if 
rev(M,F) has a feasible max-balanced flow and fe_Y for some Ye(qe z, there exists 

XeCF such that f e X  + =_X and Is<~U ~ for all eeX_. Since orthogonality implies that 
I _sn_YI :g 1, there must be some ee(X_nY_)\ fwhich satisfies ls<~U ~. 

(i i)  ~ (i): To prove this implication, we show that the following procedure termin- 
ates either with the set F, as required in (i), or with a cocircuit Y violating (ii): 

(0) Set E ' = E  and F = 0 .  
(1) If E ' = 0 ,  return F satisfying (i) and STOP. 
(2) Select f e E '  satisfying 

I f  = max le, 
eEE' 

and let Xe(gF be such that f e X  +, X - c E', and 

u~>~ls for all ee_X. 

Set F = F u X - ,  E '=E' \X_ ,  and return to (1). 
(3) If there is no such Xe(9, then S T O P ~ i i )  is violated. 

Consider the following condition: 
For all a e E \ E ' ,  there exists X a e ( f l  F with aeX~* =X_,~_E\E'  such that U e ~ l  a for 
all eEXa +. Further, Ue>~l a for all e e E \ E '  and acE'.  

We claim that, if this Condition is satisfied at the beginning of an execution of (2) and 
the required circuit X in (2) exists, then it is satisfied at the end of(2) with respect to the 
new values of E '  and F, which we denote b y / ~ ' = E ' \ _ X  and F = F u X  -, where XeO v  
is the circuit selected in (2). To see this, note that for a e E \ E ' ,  the circuit X~eCr also 
satisfies a e X  + ' ^ ^ ' =X_~_E ,,,E' with respect to C~: since F~_F a n d / ~ ' c E .  For acE',  it 
follows from the selection of f and X in (2) that 

ue>~ls>~l~ for all ee_X, 

and therefore ue~l,  for all eeE",\E' and ae/~ '  and the circuit formed from X by 
reversing the signs on X -  is the required X,  in the condition. 

As a consequence, if the procedure terminates in (1), then the condition is precisely 
the characterization of part (iii) of Theorem 3 for the existence of a max-balanced flow 
x for rev(M,F) satisfying I~x<~u. 

If no such X exists in (2), then since u~>~l s for all e c E \ E '  it follows from Minty's 
painting lemma with G = 0 and 

,\ / 
R = { f } u E , , E ,  B={eeE ' \ f lue>~ly}  , W = { e e E ' l u e < l s }  

that there exists Y = C {  such that Y - ~ _ W  and f e Y + ~ _ R u W .  We claim that 
Y+ n R -  ~ ~ - ~,l ~. To see this, suppose that ae Y + n R ,  a C f  Then a e E \ E ' ,  and therefore 
there exists X , ~ _ E \ E '  with a e X  + =_x.. Therefore Y + • X  + ¢0 and it follows from 
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o r thogonal i ty  that  X~ + c~ Y ~0 ,  which is a contradic t ion since Y-  _~ W. Thus Y satis- 
fies u~ < l I for all ee  Y, e ¢f ,  and therefore Y violates (ii). 

The next theorem is an analogue of the sign reversal p roper ty  described in (3). 

Theorem 6. Let  M = ( E ,  (g) be an oriented matroid, and let 1, u 6 ~  E satisfy - u  <<. l<<. u. 

Then the following are equivalent: 

(i) There exists a +_ 1-diagonal matrix A such that there is a max-balanced f low x for  
M with l<<.Ax<~u. 

(ii) There is no subset F ~_ E and f E F  such that 

(a) for  each a 6 F \ f  there exists Yae(9 ± such that ae  Y+ and for  each e6 Ya either 

u~<l,  or e ~ F  and - l e < l ~ < l ~ ;  

(b) there exists Yf6(9 ± with f ~  }17, - l~ < - u f for  all e~ Y f  ~F ,  and Ue < -- u f for  

all ee  Y f  \F .  

Proof.  (i) ~ (ii): Suppose that  for a + 1-diagonal matr ix  A, x is a max-ba lanced  flow 
for M satisfying l <~ A x  <<. u, and there is a subset F _~ E a n d f ~ F  violating (ii). First note 
that  -u~ l<<.u  and I<<.Ax<<.u implies that  -u<~x<~u. 

We claim that  2 a = -  1 for all a e F \ f .  To see this, suppose that  for some a ~ F \ f  

every e ~ F \ f w i t h  le>la has 2e=  - 1 but that  2 °=  + 1. Consider  the cocircuit Y~ and 
let ee  Ya- Using par t  (ii) (a), if - l ~ < l a < l ~  and eeF ,  then by assumpt ion  2~= - 1 and 

I ~ - x e < ~ u ~ ,  which implies that  x~<<.--le<la. Otherwise we must  have Ue<l  a and 
thus xe<~u~<la. Therefore,  since 2 a = - +  1 and a e  Y,+, it follows that  

max  x~/> x~/> l~ > max  Xe, 
e~ Y2 e~ Y~ 

which contradicts  the assumpt ion  that  x is max-balanced.  
Now consider YI. Since A t - - -  1 for all e ~ F \ f ,  it follows from par t  (ii) (b) that  

x e ~ < - l ~ < - u  I for e ~ Y f c ~ F  and that  x ~ < ~ u e < - u  I for e E Y f \ F .  T h e r e f o r e f ~  Yy + 
implies that  

m a x  x e ~ x f  ~ - u f  > m a x  Xe, 
e~Y~ eeY 7 

again contradict ing the assumpt ion  that  x is max-balanced.  
(ii) ~ (i): We show that  the following procedure  terminates  either with a + 1- 

diagonal  matr ix  A, as required in (i), or  with a subset F~_E a n d f e F  violating (ii): 

(0) Set E '  = E and F = 0, l '  = I, u' = u, and A = I. 
(1) If  E ' = 0 ,  re turn A and STOP.  
(2) Select f e E '  satisfying 

I} = max  l~, 
eeE' 



232 

(3) 

M. Hartmann, M.H. Schneider; Discrete Mathematics 137 (1995) 223-240 

and let Xs(9 be such t h a t f s X + = X _  and 

l)<~U'e for all e e X .  

If there is no such Xe(9 and f ~ F ,  then return F andS, and STOP.  

If there is no such Xe(_9 and fSF, then set F = F w { f } ,  l'y=--u s, u'i=--l s, 
2 s = - 1  and return to (2). Otherwise,  set E ' =  E ' \  _X, and return to (1). 

This procedure  must  terminate,  since each execution of (3) either increases IF I or  
decreases ]E']. Consider  the following condition: 

_ i t ~  i For  all aeE\E'  there exists X~eO with a~X~=Xa~_E\E  such that  l~-~.u~ 
for all e~X_., and for each a~F there exists Y~(9 ± such that  a~ Y~*, and for 
each e~ Y~- either e~F and -l~<l.<l~, or Ue<l~. Further ,  l~>>.l~ for all a~F and 
eEE'. 
We claim that, if this condit ion is satisfied at the beginning of an execution of(2) and 

the procedure  does not  terminate  in (2), then it is satisfied at the end of(3) with respect 
to the new values of E' and F, which we denote  b y / ~ '  and/7 .  

First, suppose that  no such X~(9 exists in (2) a n d f ~ F .  If there exists no Y¢~(9 ± such 

that  f~  Yy+, and for each e~ Yf  either u~<l s or e~F and -I~<ls<le, then setting 
G=B=13 ,  

W= {e~F I --I~ <lf <le}U{eEE lUe <lf }, 

and R = E \  IV, then it follows from Minty 's  paint ing l emma that  there exists X~(£' such 
that  S e X  + = X  and for all eEX,  Ue>~ll and either e¢F or -le>~ly or le<~ly. There 
must  be some a 6 X n  F with l, ~< ly, since otherwise u'e ~> l} for all e 6 X. Since l~ ~> l~ = l I 
for all a~F, it must  be the case that  la=lf. Since a ~ X + n Y  +, it follows f rom 
or thogona l i ty  that  X + c~ Y~- :/: 13, which is a contradic t ion since X + ~ R and Y~- ~ W. 
Therefore  since l I = I} >~ l" for all e~E', the condi t ion remains satisfied fo r /?  = Fw{ f }  
a n d / ~ ' =  E '  at the end of (3). 

Next,  if X~(9 in (2) exists, then since u'e >-I'~'y ~'~>1' for all eEX_ and a6E'nX,_ taking 
Xa=X for all aeE 'nX ,  the condit ion holds for F = F  a n d / ~ ' = E ' \ X _  at the end of (3). 
As a consequence,  we now argue that  the a lgor i thm terminates  as stated. 

If the a lgor i thm terminates  in (1), then the condit ion is precisely the cycle cover  
character izat ion in par t  (iii) of  Theorem 3 for the existence of a max-ba lanced  flow 
x for M satisfying I .~x ..~u, or equivalently l<~Ax<~u. If in (2) there is no such XE(9 
a n d f 6 F  and so the a lgor i thm terminates,  then by Minty ' s  paint ing l emma there exists 
Ye(~± wi th f~  Y+ and u'~ < l) for all e~ Y -.  It  follows that  - le < -- U s for e~ Y-  c~F and 

that  ue < - u  s for e E Y - \ F ,  and so par t  (ii) is violated. [] 

A similar result also holds when the sign reversal propert ies  described in (2) and (3) 
are combined.  We omit  the proof,  which is similar to that  of Theorem 6. 
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Theorem 7. Let M =(E, (9) be an oriented matroid, and let 1, u c ~ satisfy - u  <~ l <<. u. 
Then the following are equivalent: 

(i) There exists a subset F ~_E and a -t- 1-diagonal matrix A such that r ev (M,F)  has 
a max-balanced flow x satisfying l <~ A x  <~ u. 

(ii) There is no subset G~_E and gcG such that 

(a) for each a c G \ g  there exists Y~e(9 ± such that aeYa  and for each ec Y_~\a 
either ue<la or eeG and - l e<l~<l~;  

(b) there exists Yoc(9 ± with gc  Y_g, - le < -- ugfor all ec Y_gc~G\g, and U e < - -  U O 
for all ecY_o\G. 

5. Structure of the set mbf(I, u) 

In this section, we extend results from [10] on the structure of the set mbf(l, u) in 
digraphs  to oriented matroids .  T h r o u g h o u t  we will assume that  l and u are such that  
mbf(1, u)¢O. First of all, we note that  if x, yembf( l ,u)  then zcmbf(l ,u) ,  where 
ze=maX{Xe,Ye} for ecE.  This implies that  mbf(l,u) is a semilattice under  the usual 
coordinate  part ial  order. F r o m  par t  (iii) of Theorem 3, we conclude that  for an a c E  

max Xa= max  { m i n u e t ,  (4) 
x~mbf( l ,u)  a~X + :X_ e ~ X  ) 

where the m a x i m u m  on the right is taken over  Xc(9. If in fact we can test feasibility of 
the set mbf(l, u) in polynomial  time, then we can use binary search over  the values Ue 
for e c E  to find the largest value la for which mbf(l, u) is nonempty  for each a c E  and 
thus find the maximal  element in mbf(l, u) in po lynomia l  time. A similar approach  can 
be used to find a minimal  element in mbf(l, u), but  the analogue of (4) is somewhat  
more  complicated.  

Fol lowing [10], we say that  b e E  is forcing for a if lb>~la and every Xe(9 with 
b e X  + = X ~ _ E  and ue>~lb for all ec_X has a c X .  We will denote  the set of elements 
which are forcing for a by force (a; 1, u) and omit  the dependence on 1 and u when the 
meaning  is clear from the context. Note  that  by definition acJbrce(a). The significance 
of forcing elements is a result of  the following lemma.  

Lemma 8. Let M = (E, (9) be an oriented matroid, and let I, uc  R E be such that mbf  (l, u) is 
nonempty. Then the following are true: 

(i) bcforce(a) if and only i f b = a  o r  l b ~  I a and there exists Ye(9 ± such that be Y+ and 
U e < I b for all ee Y \a. 

(ii) if ccforce(b) and bcforce(a) then ccforce(a). 
(iii) For each acE,  

min Xa= max lb. 
xembf( l ,u )  bE force(a) 

(iv) I f  y is a minimal element in the set mbf  (l, u) then Yb = Ib for each be force(a; I, y) 
with Ya = lb .  
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Proof.  (i) This follows from the definition of force(a) and Minty ' s  paint ing l emma  
with R={e~E\alu~>~lb}, W = E \ R  and B=G=13 .  

(ii) Suppose that  b ¢:a and bEforce(a). F r o m  par t  (i), there exists Ye(_9 ± such that  

be  Y+ and ue<lb for all e~ Y- \a .  Since c~force(b), we also have lc>~lb. If  cCforce(a), 
then since lc>~la there must  exist Xe(9  such that  c e X  ÷ =X_~E\a  and u~>>-lc for all 
e~_X. But then since lc>~lb, X + c ~ Y - = 1 3  so that  by or thogonal i ty  X + n Y + = 1 3 .  
Therefore  X_ ~_E\b, which contradicts  the fact that  ceforce(b). 

(iii) If x~mbf(l,u), then clearly Xa>~la. Suppose  that  b is forcing for a, and b~a.  
F r o m  par t  (i), there exists Y~(9 ± such that  be  Y + and u~ < lb for all ee  Y-  \a .  If xa < lb, 
then maxeEv xe<lb<<,max~Er+ Xb SO that  x is not  max-balanced.  Therefore  it follows 

that  
min Xa>~ m a x  1 b. 

x~mbf(I,u) b~ force(a) 

Define u ' e ~  E by u'~ = Ue for eeE\a  and u '~:  maxbe f . . . .  (a) lb" If the set mbf(l, u') is empty,  
then by par t  (ii) of Theorem 3 there exists Y~O ± such that  m a x ~ r +  le>maXe~y-u'~. 
Since mbf(l, u) is nonempty ,  by par t  (ii) of Theo rem 3, max  e~ y + le <<. max~ ~ r -  u~, so we 
must  have a e Y - .  Let b e Y  + satisfy l b = m a x ~ y +  l~. Since aeforce(a), we have 
lb > u, ~.-l, and thus b~force(a) by par t  (i). By definition of u~, this implies that  u~ i> lb, 

a contradict ion.  
(iv) Suppose that  be force(a;l, y) has y b > l b = Y a .  Since y is minimal,  yb=min{xb: 

x~mbf(l, y))  and hence by par t  (iii), yb=lc for some c~force(b;l,y). But then 
ce force(a; l, y) by par t  (ii), so that  by par t  (iii) we have Ya >~ lc = Yb > lb = Ya, a contradic-  
tion. [] 

Par t  (iii) of  L e m m a  8 shows that  we can use b inary  search over  the values le for eeE 
to find the minimal  value Ua for which mbf(1,u) is nonempty .  This leads to the 
following a lgor i thm for finding a minimal  element. 

Minimal element algorithm 

Input: An oriented mat ro id  M=(E, (9) ,  vectors 
nonempty ,  and a vector  z~N ~. 

Output: A minimal  element in mbf(l,u). 
(0) Set E'={eeElue>le}  and u'e=ue for all eeE. 
(1) If E'=13, then S T O P  and return u'. 
(2) Select a~E' satisfying 

za = min ze, 

set E' = E' \a, 

u'a = rain lb, 
bE force(a; I,u') 

and return to (1). 

l, ue~  E such that  mbf(l,u) is 



M. Hartmann, M.H. Schneider~Discrete Mathematics 137 (1995) 223-240 235 

The following corollary of Lemma 8 shows that every minimal element is the output 
of the minimal element algorithm for some vector z e R  e (see Corollary 13 for 
a stronger result). 

Corollary 9. I f  y is a minimal element in mbf(l, u), then y is the output of the minimal 
element algorithm with z = y. 

Proof. Suppose that a t E '  is selected in (2) and that u'~=ye i fye<ya and ye<~U'e<~U~ if 
y~/> ya. Since u'>~ y and y is a minimal element, by part  (iii) of Lemma 8 we have 

U'a= min x,<~ min x ,=ya .  
xembf(l,u') xcmbf(l,y) 

Now suppose that u', < Ya- By part  (iv) of Lemma 8 there must be some beforce(a; l, y) 
with Ya = lb = Yb. Since l~ ~< u'~ < y, ~< u~, we must have b =~ a so by part  (i) of Lemma 
8 there exists Ys(9± such that be Y+ and y~<lb=ya for all e6 Y - \ a .  Thus U'e=Ye<lb 
for all ee  Y-  \a,  so beforce (a; l, u') and hence u'~/> lb = y~ by part (iii) of Lemma 8. Since 
this is a contradiction, the result follows. [] 

Next, we prove a necessary condition for a vector y to be a minimal element in 
mbf(l, u). This is an extension of Lemma 8 in [10], whose proof extends to regular 
oriented matroids, but not to general oriented matroids. 

Lemma 10. Let M = (E, (9) be an oriented matroid and let I, u6 R e be such that mbf(l, u) 
is nonempty. I f  y is a minimal element in mbf (l, u) and Ce(9, then there exists c6C_ such 
that 

lc = Yc = min y~. 
ee_C 

Proof. Suppose not. Let 

L={aeC_: y , = m i n y e }  
es_C 

and let F be a maximal subset of L such that for some aeF, every Xe(9 with a e X  + = X_ 

and Ye >~ Ya for all e e X_ has F ~_ X. Clearly F ¢ 0, since we can take F = {a} for any a e L. 
We claim that for every fe_C\F, there exists Xye(9 such that f e X f  =X_y~_E\a and 

Ye)Ya for all ee_X s. To see this note if y i > y , ,  then since y is max-balanced, there 
exists X e 6  such t h a t f e X  + =X_ and ye>~yy for all eeX_. Since y y > y , ,  we must have 
acX_. On the other hand, i f f e L \ F  but every Xe(9 w i t h f e X  + = X  and ye>~y, for all 
eeX_ has aeX_, then every Xe(9 w i t h f e X  + = X  and Y~>Yl for all eeX_ has F~__X, so 
that F is not maximal. 

Let b~force (a; l, y) with Ya = lb = Yb, as guaranteed by parts (iii) and (iv) of Lemma 8. 
This means that every Xe(9 with b e X  + =X_ and y~>lb for all eeX_ has aeX_, and 

hence F~_X. Because Ye>le for all eeL,  b Ca  and further b¢C. 
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Now without loss of generality we may assume that a e C -  (if aeC +, then we can 
replace C by - C). If there exis tsfeC - \F ,  then s incefeC c~Xy + and aeC - \ X f ,  the 
signed elimination property implies that there exists C1 e(9 with C~ + ~ (C  + w X  7 ) \ f ,  
Ci- = _ ( C - w X f ) \ f = C - \ f ,  and a~_C1. We must have aEC~- since a¢C+wXT,  but 
b ¢ C (  since b¢C -. Clearly y~ >~Yo for all e~_C1. Now if there exists 9~C(- \F, we again 
apply the signed elimination property to C1 and X 0 to obtain C2e(9 with a~C2, 
b¢C2,  C2=_C~\9, and Y~>~Ya for all ee_C2. Since [CI- \F[  is decreasing, we can 
repeat this until we obtain Ck~(9 with a~C£,  bq~Ck, Ck =_F, and y~>~y, for all eE_Ck. 

Since y is max-balanced, by Corollary 4 there exists Xs(9 such that b~X + = X and 
Y~>~Yb for all eeX_. Since b~force (a; l,y) we must have a6X_ and hence F_=_X. 

Now by construction, Ck:#0 .  So let f~Ck=_X +. Since f s X + ~ C k  and 
b e X + \ C k ,  by the signed elimination property there exists Ck+1~(9 with 

C~-+x=_(C~-wX+)\f C d + I ~ _ ( C k w X - ) ~ \ f = C d \ f  and b~C_k+l. We must have 
b~C~-+t since b¢Cd,  but heref¢_Ck+l. Clearly ye>~y, for all e6C_k+X. Now if there 
exists g~Cd+a, we again apply the signed elimination property to X and Ck+~ to 

obtain C~+2~(9 with b~C~+2, 9¢C_~+2, and Ye>~Ya for all e~_C2. Since ICe-[ is 
decreasing, we can repeat this until we obtain C,e(9 with b~C + = _C,, e6_Co for some 

e~Cd ~_F, and Y~>~Ya for all e~C. .  
This contradicts the fact that every X ~ (9 with b e X + = _X and Ye >1 lb for all eeX_ has 

F ~ X .  [] 

The following theorem shows that if y is a minimal element of mbf(I, u), then the set 
{eeElya=la} must be maximal. 

Theorem 11. Let M = (E, (9) be an oriented matroid, and let 1, u6 R e such that mbf (1, u) is 
nonempty. I f  y is a minimal element of mbf(l, u), and x~mbf(l, u) with x # y, then there 
exists c6E such that y~=lc<xc and yc< y~for all e6E such that x~< ye. 

Proof. First, suppose that Xe<Ye for some e~E. Let y ,=min{ye [  Xe<Ye} and x,<ya. 
It follows from part (iii) of Lemma 8 that 

max lb ~< Xa < Ya = max lb. 
b ~ force(a; 1, x) b ¢ force (a; l, y) 

Therefore there must be some b~ force(a; l, y)\force(a; l, x). Since be force(a; l, x), there 
exists X e C  with beX + =X_~_E\a with Xe>>-lb for all eeX_. Since be force(a;l, y) we 
must have ye<lb for some e~_X. By Lemma 10 there is an element csX_ such that 

Ic = Yc <~ Ye < lb ~ Xc. This satisfies the requirements of the theorem, since Ye/> Ya ~> lb > Yc 
for all eeE such that Xe<Ye. 

Next, suppose that y ~< x and that Yo < Xa for some aeE.  By Corollary 4, there exists 
X~O with aeX + =_X and X~>~Xa for all ae_X. By Lemma 10 there exists ceX_ such 

that lc=y,<~ye for all e eX .  Since aE_X, it follows that lc=y~<~yo<Xa<Xc. [] 

The following results are immediate consequences of Theorem 11. 
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Corollary 12. Let M = (E, C) be an oriented matroid, and let l, u~ R E such that mbf(l, u) 

is nonempty. I f  x and y are minimal elements o f  mbf(l, u) and x~ = ye whenever y~ = l~, 

then x = y. 

Corollary 13. Let M = (E, C) be an oriented matroid, and let l, u~ R e such that mbf  (1, u) 

is nonempty. I f  z~ R e satisfies z~ < z~ whenever l~ = y~ < y~ and ye > le, then y is the output 

o f  the minimal element algorithm. 

In [10] it was shown that  the prob lem of minimizing a nonnegat ive  linear function 
cXx over  xembf ( l , u )  is NP-ha rd ,  even for the special case of 0-1  vectors c,l,u and 
graphic  oriented matroids .  However ,  we can use L e m m a  10 to obtain  an a priori  
upper  bound  for this problem.  First of  all, note that  we m a y  assume that  the opt imal  

solution x* is a minimal  element in mbf(l, u). Then by L e m m a  10, the set of e e E  such 
that  x* > le must  be an independent  set in the mat ro id  underlying M. Therefore  if I is 

an independent  set in this mat ro id  which maximizes  ~ e e l C e ( U e - - l e )  then 
y~e~lceu~+~E,~cel~  is an upper  bound.  In fact, by par t  (iii) of  L e m m a  8 we m a y  
replace 1, by I~=maxb~y .. . .  ~,)lb and u~ by u ' ,=max~.b~x.  =x_lb for all a t E ,  al though 
there appears  to be no good  character izat ion for the latter value. 

6. Max-balancing in coordinatized oriented matroids 

In this section we present an a lgor i thm for the following problem.  

Problem 2 (Oriented matroid max-balancing). Given an oriented ma t ro id  M = ( E , 6 )  
coordinat ized by the matr ix  A and a weight vector  ~oe R e, find a potent ial  p such that  
o~'= o9 + pA is max-balanced,  or  conclude that  no such p exists. 

First, we show that  the resulting max-ba lanced  flow to' is unique. 

Theorem 14. Let  M =(E,  C) be the oriented matroid coordinatized by the matrix A and 

let t o u r  E. I f  p and q are vectors such that toP=~o+pA and ogq=to+qA are max- 

balanced, then mP =mq. 

Proof.  Suppose that  ~o p 4: toq and without  loss of generali ty that  to~> 09a q. If  there exists 
Xe(.9 with a e X  ÷ such that  ~o~>o~g for all e e X  + and co~-..<ogg for all e e X - ,  then 
letting x be the e lementary  vector  corresponding to X we have (~oP)Tx > (COq)TX. Since 
Ax  = 0 this cannot  be the case, so by Minty 's  paint ing l emma with R = {ee E loge p > tog }, 
G =  {eeE I ~o~--.< tog} and B =  W = 0  there exists Ye(9 ± with a e  Y+ such that  toe>tog for 
all ee  Y+ and to,P-..< tog for all e~ Y- .  Therefore 

max  tog < max o~ = max to~ ~< max m~, 
eeY  + e~Y + e e Y -  e ~ Y -  

contradict ing the fact that  ~o q is max-balanced.  [] 



238 M. Hartrnann, M.H. Schneider/Discrete Mathematics 137 (1995) 223 240 

Consider the following algorithm. 

Matroid balancing algorithm 

Input: A matrix A and a vector coE~ ~. 
Output: A potential p such that co'=co+pA is a max-balanced flow for the oriented 

matroid coordinatized by A or a potential q such that qA <~ 0 and qA ~ O. 
(0) Set E ' - -E,  co'= o9 and p = 0. 
(1) If E ' = ¢ ,  then STOP and output p; 09' is max-balanced. 
(2) Solve the primal linear program 

maximize ~ co'~x~ 
e~E' 

subject to Ax=O, 

E Xe= 1, 
e~E' 

x>~O, 

whose dual is 

minimize 2 

subject to (pA)e>~O for e~E\E',  

(pA)~+ 2>~co'~ for ecE'. 

(3) If the primal problem is infeasible, STOP and output the phase-one dual 
solution q*; M has no max-balanced flow. 

(4) Let x* and (2*,p*) be optimal solutions to the primal and dual problems, 
respectively. Set 

E'=E' \{e~EIx*>O},  co'=co'--p*A, p=p--p* 

and return to (1). 

Note, that [E' r strictly decreases each time E'  is updated in (4), since the constraint 
Y~e~, xe= 1 implies that {eeE'lxe>O } is nonempty. 

Theorem 15. If M =(E, (9) is the oriented matroid coordinatized by A and co~e ,  then 
either the matroid balancing algorithm terminates in (1) with a vector p such that 
9;= co + pA is max-balanced, or the matroid balancing algorithm terminates in (2) with 
a vector q such that qA <~ 0 and qA ~ O, and M has no max-balanced flow. 

Proof. If there is a max-balanced flow for M, then by Corollary 2 the primal linear 
programming problem in (2) is feasible for any E':~0. If the primal linear 
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programming problem is ever infeasible, then the optimal value of the phase-one 
problem 

minimize z 
subject to Ax=O, 

x ¢ + z = l ,  
e~E' 

x~>0, z~>0 

and its dual 

maximize 

subject to 

W 

(qA)e<~O for e6E\E', 

(qA)e+w~<0 for e~E', 

w~< 1 

are both 1, so the optimal dual solution (q*,w*) has q*A<~O and q*A#O. By the 
harmonious decomposition lemma, there would then exist Y~C ± such that Y - =  _Y, 
and so M has no max-balanced flow. 

Now consider the following condition: 
For each a ~ E \  E' there exists X ~ C9 with a ~ X + = X_ ~_ E \ E '  such that o~'~ ~> o9'~ for all 
eE_X. Further, o9'e ~<~o'~ for all e~E' and a~E\E'. 
We claim that, if this condition is satisfied at the beginning of an execution of (2) and 

the primal linear programming problem is feasible, then it is satisfied at the end of (4) 
with respect to the new values of E'  and co', which we denote by/~'  and 6J'. First note 
that because of the correspondence between circuits of M and elementary vectors 
there must be a vector x such that Ax=O, x e = 0  for e~E' and x~>0 for e~E\E'. 
Therefore since (p*A)~>~O for eeE\E' it follows that ( p * A L = 0  for esE\E'. Thus 
69'e=~O'e for all eEE\E'. By complementary slackness, if x * > 0  and eeE' (that is, 
eeE'\E'), then 

r ~b'e=ooe-(p*AL=2*. 

If x* = 0  and e6E' (that is, e¢/~'), then 

~b'~ = ~o'e- (p*A)~ ~< 2". (5) 

Now since 2* is the optimal value of the primal linear programming problem, for each 
aeE\E' the condition implies that we have 

J ' * ~ -  2 , , , , , A, O')eXe ~ Z (OaXe =(Oa=(Da" 
e~E' eEE' 

This shows that 03'~<2" ~<oY~ for all eEE' and aeE\E'. It remains to show that for 
each asE'\IE' there exists XE(9 with a~X + =X_~_E\E' such that &'e ~> 2" for all e~X, 
but this follows from the harmonious decomposition lemma applied to x*. 

Now if the matroid balancing algorithm stops in (1), then the condition is precisely 
the characterization of Corollary 4 for o9' to be max-balanced. [] 
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In Appendix A of [16], Rothblum et al. present a related approach for graphic 
oriented matroids based on a closely related dual linear programming problem. 
Because they do not explicitly consider the primal problem, their approach requires 
computing an optimal dual solution for which the inequality in (5) is strict. Without 
the additional directed graph structure, their approach would necessarily be more 
time consuming for the case of an arbitrary rational matrix A. 
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