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An explicit construction is given which produces all the proper flats and the Tutte polynomial
of a geometric lattice (or, more generally, a matroid) when only the hyper planes . are known. A
further construction explicitly calculates the polychromate (a generalization of the Tutte
polynomial) for a graph from its vertex-deleted subgrarhs.

1. Introduction

It was shown in [1 1] that geomt.tnc latt!ces of senes—parallel networks sansfy no
latticc identity not satisfied by the class of all lattices. Such is not the case for
numerical invariants, since for all such connected qsxmple) ]atnces L, the invariant

B(L)=(-1y® ZLr(x)n(O, x)
xX€
takes the value 1, and this, in fact, characterizes series-parallel lattices among all
geometric lattices [2]. This latter invariant can be calculated from the Tutte
polynomial of L, t(L; x, y) (it is equal to (3t/ax)(L; 0, 0)). Other invariants (for
appropriate geometric lattices) which can be evaluated from t(L) have applica-
tions in the fields of graph colorings and orientations, codtng theory, network
flows, embeddings in projective. and - affine space, h, Jsarplane dissection and
separation in Euclidean space, zonotopes, peroolatlon theory, demgns, and pack-
ing. Surveys of these apphcatlons can be found. for: exampss, in 1,3,7,8, 10, 15].

The Tutte polynomial was introduced in [13] for graphs it was later generalized
by Crapo to arbitrary geometric lattices [9]), and Tutte later showed that for
graphs one could reconstruct it from the deck of vertex-deleted induced sub-
graphs [14]. Tutte’s proof, although adaptable to other invariants, is not easily
implemented: it involves the calculation of a cc.aplicated and potentially infinite
generating function. :

The purpose of tix's paper is two-fold. First, it is showh that for an arbitrary
geometric lattice L, when the deck of hyperplane isomorphism classes of L is
given, the deck of isomorphism classes of all proper flats {(with their multiplicities)
can be computed. This in turn readily gives the Tutte polynomial of the lattice.
(This generalizes vertex reconstruction of graphs, since for three-connected
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graphs, if L is the geometric lattice of G, the geometric lattices of the vertex-
deleted subgraphs of G are precisely the simple hyperplane intervals of L [5].)

Secondly, the multichromatic polynomial of a graph G (an invariant introduced
in [6]) i showa to be explicitly reconstructible from, the multichromatic polyno-
raials of the vertex-deleted subgraphs of G, ¢ .2 this in turn leads to an easy
reconsiuction o t(G). The paper concludes with some examples and counterex-
amples.

2. Matreid lattices and invariants

A (finite; geometric lattice L is a semimodular point lattive (i.e. every lattice
element is a supremum of atoms, and there is a rank function r such that for ail x,
yeL,

rix)+r(y)zr(xvy)+r(xay)).

For any such lattice the upper interval [x, 1] is also a geometric lattice, as is the
lower interval [0, x]. A matroid lattice M is a geometric lattice with an integer
weight assigned to its zero, 0, and to each atom a€ A, where w(0>=0 is the
number of loops of M, and w(a)=1 is the multiplicity of the atom a. We then say
the atom a consists of w(a) points, and the m = |M| points of M are partitioned by
the atoms (and perhaps 0) (Geometric lattices generalize the notion of a subset of
projective space, while matroid lattices generalize subsets of vactors in a vector
space allowing the zero vector and repetitions.)

General lattice clements are called flats, and for each flat x, its cardinality is
given by

x| = w(0)~+ Z w(a).
The case w(0)>0 is easily reduced to the loopless case, so we wil! usually assume
in the (olowing that M is loopless. The geometric lattice associated with M is
denoted M, and for each such lattice (w(0)=0 and) w(a)=1 for all atoms a.
Thus, |x| will be the number of atoms contained in (i.e., less than or equal to) the
flat x, and we will identify x with its matroid lattice [0, x]. Flats x such that
rivy=r{1)—1 are termed hyperpianes.

For any point p e M, the deletion M —p is a matroid lattice where if p is a loop
or part of a multiple atom a, —1\71_:;—)=1\7I with w(0) or w(a) respectively reduced
by one. If p is an atom, m is isomorphic to the supremum subsemilattice
generated by the atoms A —{p} with weights the same as in M. A point p is an
isthmus if r(M—p)<r(M).

The contraction M/p is isomorphic to M —p if p € 0. Otherwise, if pe a, Mip is

isomorphic to the interval [a, 1] with all weights (cardinalities) in the interval
reduced by one.
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The Tutte polynomial t(M; x, y) is defined recursively by:
t(M)=y M cons1sts of a smgle loop,

HM)=2x lf M is the geometrlc lattlce consnstmg of a smgle (atomxc)
point,

t{M)=t(p)t(M—p) if p is a loop or isthmus,
and ‘
t(M) = t(M- p)+t(M/p) otherwise.

For a geometric lattice L, the characteristic polynomial of L is given by
X(L; )= Y, u(0,x)am—re (1)

xel

where u is the Mobius function of L. The coboundary polynomial of M is defined
as

¥(M; z,A)= Y 2x(x, 1];A)

xeM

= Y nlxy)zHardme, 2)

b=x=y=<i

For a matroid M, if P is its sst of points and P' < P, define
r(P)= r(V {a: pea for some pe P’})

The rank generating function is then given by
SM;u,v)= Y, uPvr™, (3)

P'cP

For any flat F of rank k&, let
S*(F; u)= ), g’

where g; is the number of (spanning) subsets of F of rank k. Therefore:

S(M; u,v)= 2': v* Y SK(F;u). 4

k=0 F:v(F)=k

The three two-variable polynomial invariants defined above are aii equivaient
in the sense that any can be derived from any other [3, 8.9]:

: +
S(M; u, v) = (uv)’“’t(M; “‘;v LI 1), (5)

X(M; 2,2 =A"PS(M; 2= 1,071, (©)

The reason for mentioning all three invariants is that the coboundary polyno-
mizl, being a sum ov-r flats, is more lattice-theoretic, while the rank generating
function is a sum over subsets of points and so is more in the spirit of matroids.
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The Tutte polynomial on the other hand is generally easier to compute being
defined recursively and is aseful in applications (there being many classical
invariants which obey the same recursion and which are therefore evaluations of

t\M)).

3. Hyperpiane reconsiruction

In this section, M is a fixed matroid lattice of rank r with n atoms. For any
k =0, let us index the isomorphism classes of matroids of rank k by the indexing
set A* ={a"}. Thus F,: stands for a rank-three matroid isomorphism class, and it
has |F_»| atoms. Let n(F,.) denote the number of Jats x of M isomorphic to F,..
More generaily, call the sequence of isomorphism classes (Fyx, Fox+1, . . ., Fom) the
flag F.. - if F, is (isomorphic to) a hyperplane of F,.. for i=
k,k+1,...,m—1. Further, for any such sequence, let n(¥.. .= be the
number of seauences of flats (x,, . . ., x,,.) iit F,~ with x; isomorphic to F,. for all i.
Thus, n(g“k _____ a'") = n(@ak'am) : n(g‘,kn‘auz) e n(g"am--'am).
Lemma 3.1. Let M be a matroid with n atoms, and let F.,« be an isomorphism
class. Then: ‘

n(Fo)n=Fa)= ¥ 0w dnlFp)(Fool=[Fo) ()
akle AT

where the sum is over ¢ii isomorphism classes of matroids of rank k + 1 (and in fact
need only be over ihe finite set of classes of rank-(k + 1) flats of M).

Proof. A geometric lattice is characterized by the fact that for any flat x and any
atom a, a £ x, a v x covers x, and that, conversely, any cover of x is the supreraum
of x and some atom. Thus, both sides of (7) count the pairs (a, x;.) where x;, =F -
and a¥ x,. The left-hand side sums first over such flats x, and the right-hand side
sums over all flats x, ., which have a hiyporplane isomorphic to F..

Proposition 3.2. For a matroid lattice M of rank r with |M|=n atoms,

n(Fa)= 3, n(F. )

a'"le A1

ke (n = [F)(n = [Foea) - - (n = [Fral) " (®)

Proof. *We use induction on r—k, the corank of F_«. If r—k =1, all products are
empty while n(%,.-) = 1, so that both sides of (8) give the number of hyperplanes
of M which are isomorphic to F,.-.. Now assume we have proved the proposition
for isomorphism classes of corank r—k—1 and let F,« be some isomorpkism
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class. Then by (7) we get:

n( ) akueZAku (n - ‘Fa,“)

9

Using (8) to calculate n{F,«:) we obtain the correct formula for n(F,.) after
noting that n(F,« oe+) * M(Forer 0 )=0(For o).

Since n(F« .
for all i <v, if n(F,--) is knows for all «’ '€ A™! the right-hand side of (8) gives
n(F,.) for all indices a* (k<r—1) as a function of n, the number of atoms of M.
But n is reconstructible as we now prove.

Theorem 3.3. The number of flats x of M isomorphic to F .« is given for all k <r—1
and a* € A* by (8) where n is the unique integer (greater than the size of any
hyperplane) which satisfies ihe equation:

1= ¥ n(F.-)
ar-—lEAv-l
n(gu"‘ ... a'”‘)(IFazl_lFa‘D ttt (!Fa'"’l_lFa'_zl)
v > - ——— — — 10)
8 aza n(n—1(n—|F,) - - (n—|F,-) (

where o° indexes the matroid isomorphic to the number of loops in any hyperplane
of M (so that (n—\F,o))=n and (|[E,)|—|E,q)=1).

Proof. By (8), the right hand side is the number of flats isomorphic to 0eM. The
solution is unique since for n > max,.-: (|F,.-1), the right-hand side decreases mono-
tonically in n.

Corollary 3.4. A deck of hyperplanes comes from a matroid M only if for all |,
o<i=r-1,

r-1

("‘)= Y ¥ n*(F.Bi(F.) (10"
l k=1a*cA*

where n is the solution of (10), n*(F,.) is given by the right-hand side of (8), and

B,(I") is the number of l-element subsets of atoms whose supremum is F.

Proof. Any [-element subset of atoms must span some flat of rank k (0<k=<I).
Thus (10') partitions the [-subsets of atoms of M according to their supremum.

Example 3.5. Let the deck ¥ of hyperplanes of a rank four matroid be as follows
(where in the * a*i.ic picture,” multiple poinis are represented by juxtaposcd dots,
n, =n(F) and ny; = n(%, ) - ({Fl-ED).
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n5=8

Then, isomorphism classes of lines are

F F

7 ) 8

and isomorphism classes of atoms are
Flo 1
[ [

(there are no loops).
Calculating the flag multiplicities we obtain:

nq,=6(4—2)=12

nq,=21 Ngp=2

ny3=9 Hg3=2 Ng3=12
ny4=6 Ng4=6
n,s=3

Nye=1 Noe=2
N7 =2

Nips =6

Nygo=1 "11.9=1-
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Thus, by (8)

ny -——~(5 12+4+2-214+1-946-6+8- 3+4 1)-—31% ,
__6 __56 -
"mTao3 TRy
1 (175 36 56 _ (_5_§..\,
"‘““n»l(ne2‘2+,n—3‘6+n—2 1)’ G| By

Equation (10) becomes:
__1 (350+6.56+56)
nn-1)\Wn-2 n-3 n-2 n-2
which for n>$ has the unique solution n =9,

Therefore, n, =25, ng=1, ny=8, ny=8, and ny;=1. (An. example of
such a matroid is AG(3 2) with oree double pomt and another pomt placed on one
of the two-point lines.)

We now reconstruct the rank generating functlon (and therefore the Tutte
polynomial or coboundary polyncmial).

Theorem 3.6. The rank generating function S(M; u, v) can be reconstiu-ted from
the deck of proper flats (and therefore from the deck of hyperplanes) by the
equation:

SM;u, v)=v"(u+ D™+ Y (v -v") Y nlF,)8*(Fa;u) (11)
k<r akeAk
where r=r(M)=rF,-)+1, and m =|M|=|F,o|+ % n(F,1) - |F..
Proof. By (4), A
SM; u,v)=v"S"(M; u)+ Z v* 2 n(E )S*(F x: u). (12)
k<r a*

Clearly, (11) and (12) agrec except perhaps for terms involving v'. But
S(M; u, 1)=(u+1)™, and (11) also satisfies this identity. Thus both agree on the
coe 25t cf u'v' for all i

Example 3.7. For the matroid of Exampie 3.4, we have
S(M; u, v)=vHu+ 1"+ (03—
x[S(u*+4u®) + 2(u® +5u* +9u?)
+(ub+6u’+ 15u*+15u?)
+6(u®+5u*+7u + 8ul+4(u* + 21%))]
+(v2=v9[25u%+ W3+ 2u?) + 8(u3 + 2u?))
+(v—0H[8u+(u>+2u)]+1—0"
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4. Reconstructing graphs

Let G be a graph with vertex set V, |V|=r. In [6] the polychromatic polynomial
(or polychromate) of G, c(G; Yy, z4,. .., 2.) is defined:

c(Giy, 21, ..., 2)= 2, Mg(i, m)y'z™ (13)

where 7 ranges cver all partitions of the integer r, and if w=1%2%-- - r* (so that
Y.ja;=r), then Z" = z$1z52 - - - z, and Mg(i, 7) is the number of paititions of the
vertex set of G of type = (that is with a; blocks of j vertices each) such that there
are precisely i edges of G each of which join two vertices within the same biouk.
The polychromate ¢(G) generalizes the Tutte polynomial in the sense that if
M(G) is the matroid lattice of G (where multiple points correspond to multiple
edges), then

X(M(G); 2, M) =c(G; 2, W, W, . .., Wlwiea— 1A =2)-(h—i 41)- (14)

The polychromate, however, gives more information about the graph G. For
example, if G has no multiple edges or loops, then c(G) allows one to compute
1(G) for the complementary graph G of G and also gives the size of a maximal
matching.

We will assume in the following that G has no loops (for reconstruction, loops
are ~asily handled). If V'c V, let G(V— V') denote the induced subgraph of G
obtained when the vertices V' (and all incident edges) are deleted. A classical
reselt [12, 14] shows that (in analogy with Proposition 3.2) (he deck of proper
subgraphs G(V—-V") (V'c V, V'#0) can be obtained froin the vertex deletions
{G(V—-v)}. Let {B*}=B* index isomorphism classes of graphs with k vertices,
and for any given isomorphism class let n(Gg+) be the number of k-vertex subsets
V' sucn that G(V')= Gg«. Thus, if n(Gg.-) is given for all indices '€ B",
then n(Gg.) is known for all k<r.

For the graph G, we now define the one-variable polynomial p(G;y) by:

p(G)= Y vOWI=Y MG, m)y’ (15)

wcV i
[Wi=k

where |G(W)| is the number of edges in the subgraph induced by the vertex
subset W, and = is the partition with a, == 1 and a, =|V|— k. More generally, let

P-(G)= 7 Mg (i, m)y’ (16)
for a partition 7 of r.

Lemma 4.1. Let G be a graph with r vertices. For all k, p.(G) is reconst uctible:
p(G)=y™ where m= Y. n(Gg:)|Ggl

B82%eB?
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and

(G)= Y n(Ga)y'%* forall k<r.

B"EB

Proof. For k <r, the equation for pk(G) is immediate, while p,(G) = yi%, ad IG|
is the sum of the multiplicities o' all edges.

We are now able to prove our principal result: that c(G) is (explicitly)
reconstructible We do so by first showing how to get the polynomial contribution
Y. viz$ o« 2% for a fixed partition o = 1%+« « r*, From Theorem 4.2, the formula
for ¢+ 7) in Corollary 4.3 is immediate, but we emphasize that it is Theorem 4.2
which proiides the easiest calculation for the actuai coefficients in ¢(G).

Theorem 4.2. Let G be a graph with r vertices and let w=1%2%---r% b a
partition of r. Then

(G == ¥ -19* I n(Ge) [1@®(Ga). (17)
I1 a;! k=0 gteB* i

i

Proof. Let 7 be represented by the sequence (m,,...,w) where m=m,,=0
and |{m;: m = k}} = a,. For any subgraph H of G with vertex set Vy, let %, be the
set of all sequences (W, ..., W,) of vertex subsets of H with |W,|=m. The
number n,,..{H) of such sequences such that Y; |H(W,){=m is the coefficient of
y™ in

[1 P =TT (o, (HD)™.
i j
Then the coeflicient of y™ in the right-hand side of (17) is given by

——I—VZV Vi (G(VY). (18)
Mai"<

For any subset V' & V. denote by #,, .. v(H) the number of sequences in W,
such that ¥, |[H(W,)|=m and U, W, = V. Then, clearly,

N H)= Y iy A HD. (19)

V'eVy

Inverting (19) by inclusion-exclusion we get

ApavH) = % (1)Vel Vi, (H(V)). (20)

Ve Vy

But 7, .. v (G) is the coefficient of y™ in I}, 4! p.(G), so combining (20) and (18),
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we get that both sides of (17) are egual to

1a;!

J

1 -
z "’m.-n'.VC,(G)ym'
Wiiess otk sides of (17) are multiplied by z§

-+ z% and then summed over all

integer partitions of r, we obtain:
Corollary 4.3. For any graph G, the polychromate is reconstructible by the formula:

Gy zi,...,2)= z (=1 Z n(Gg:) CXP(Z Zipi(GBk))
k=0 BkeB* i
rd r—1
=Y -1y *Y n(GBk)exp(Z zipi(GB.‘)\)
k=0 B* i=0
r—1
+exp Z zZ; (Z n(GBi)y|GB‘|>+ z'y): "(ng)lcezl) (21)
=() Bi
where, as verial
zipi(H) ) .

r—1
€xp Zo Zipi(H))= (1+ zZ,p,(H)+ 21
g—lpf—l(m+. ' )

Z
(1 +2z,4p—i(H)+ T

Example 4.4. Let G be a six-edge circuit, and for B5={1}, B*={2, 3,4}, B*=
{5,6.7}, and B*>={3, 9}, let the induced graphs G; be pictured below along with

their multiplicities and ‘‘edge-generating function” p,{G;).

n1=6

PZ(GI) =4y + 6

/ G2 \ / G3 GA
6-2
=6 ng =6 n =3
PZ(GI‘) = 2y 4+ 4

T2

by
P,(G,) = 2y + 4

P,(G)) = 3y + 3
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€g
e
F)(Gg) = 2y +1 ng = 12 n, =2
P,(Gg) =y + 2 Py(6)) =3
Cg
o . ©
ng = 6 ng =9
P,(Gg) = P, Gy = 1

Then p,(G)=ngzy +n,=6y+9, and
px(G) =H(6y +9)*—6(4y +6)°+6(3y +3)°> +6(2y +4)° +3(2y +4)°
—6(2y +1)*~12(y +2)*—2(3)* + 6y>+9] |
=2y3+3y2+6y+4

(the polynomial coefficient of z3 in ¢(G)). 'I‘hus, for example, G has 2 perfect
matchings, and its complement has 4.

5. Counterexamples

Generally, of course, the number of atoms of a lattice can i:ot be determined
from its deck of corank-one intervals. For example, within the ciass of order duals
of geometric lattices, the following counterexample occurs.

Example 5.1. Let L, be the geometric lattice of the affine geometry AG(2, 3) and
let L, be the projective geometry PG(2, 3) with a quadrangle dcleted. Then both
L, and L, have nine atoms and every upper interval is isomorphic to the lattice of
a four-point line (rank o, four aton.s). However, L, has 12 hyperplanes and L,
has 13 hyperplaaes since in the former case a line is removed from PG(2, 3) and
in the latter case, at most two points are deleted from any original line of
PG(2, 3), and so each is spanned by atoms not in Q.

Results in [4] however show that for matroid lattices (i.e., when the atoms are
assigned multiplicities in the contractions}, all isomorphism classes of proper con-
tractions and their multiplicities are reconstructible from single-point contractions.
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Example 5.2. There is, of course, no reason to believe that we can reconstruct
t(G) if we know only the cardinalities of all the flats of L (as opposed to their
isomorphism type).

For example, let M; and M, be the rank-three matroids pictured below:

)
€ o o o

M, and M, each have ten points with nontrivial multiplicities |a]=3 and
ib| =|c| = 2. Further, let M! be the seven point matroid whose seometric lattice is
isomorphic to that of M, but with multipiicities |a| =2, |b|=|c|=1.

Finally, let M, be the matroid on 34 points consisting of M;, three copies of

5, and a triangle placed freely in rank three and let M, be *he rank-three
matroid consisting of M,, three copies of M’, and a three-point line. (Each lattice
is the cartesian prs.iuct of five lattices truncated to rank three.) The reader may

check that t(M,) # t(M,) but that M, and M, have the same number of i-point
atoms and lines for all i.

Example 5.3. We present a matroid example to show that knowing the car-
dinalities of all the hyperplanes is insufficient to determine the number of atoms
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(or points). Let M, be the rank-three matroid consisting of one line of seven
double points and 99 other points in general position. Let M, consist of a line L
of 14 points placed freely in rank three with respect to a matroid M} consisting of
105 atoms, 693 three-point lines, and 3381 two-point lines (such a matroid is
possible since one may take a Steiner triple system of 105 points and destroy
1127 of the 1820 three-point subsets (lines).

One easily checks that M; and M, both have one line of 14 points, 4851 lines
of two points each, and 493 three-point lines. However, M, has 106 atoms and
113 points, while M, has 119 atoms (with no multiple points).
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